Science.gov

Sample records for piping system design

  1. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  2. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  3. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  4. Acoustical pipe lagging systems design and performance

    SciTech Connect

    Stevens, R.D.; Chapnik, B.V.; Howe, B.

    1998-10-30

    HGC Engineering was retained by the PRC International at the American Gas Association, to undertake a study of acoustical pipe lagging systems. The study included gathering input from PRCI member companies regarding their concerns and their established material specifications for lagging systems; conducting a comprehensive acoustical measurement program; using the measured results in conjunction with computer modeling to identify optimal lagging configurations; and developing material specifications for several standardized lagging systems for use by PRCI member companies. For all the lagging configurations, the measurement and modeling results showed amplification of sound at frequencies less than about 315 Hz. This result is a well known phenomenon, widely discussed the published acoustical literature, which means that pipe lagging is only effective for controlling higher frequencies noise (above about 500 Hz). Fortunately, in many gas piping applications, it is this higher frequency range that is of concern. The measurement and modeling results further showed that the high frequency performance of a lagging system is dependent primarily on having sufficient jacket mass and insulation thickness. The performance can be improved using an intermediate mass loaded barrier layer.

  5. Experimental Evaluation of Design Methods for Hardened Piping Systems.

    DTIC Science & Technology

    prediction capabilities of present day computer methods. The basic pipe elements tested included straight pipes, area changes, elbows , valves, a pump, and...surge tanks. The piping system tested was a closed loop system which contained the following elements: elbows , straight pipes, valves, a pump, and an

  6. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  7. Engineering design aspects of the heat-pipe power system

    SciTech Connect

    Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

    1997-10-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  8. Engineering design aspects of the heat-pipe power system

    NASA Technical Reports Server (NTRS)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  9. Seawater piping systems designed with AISI 316 and RCP anodes

    SciTech Connect

    Valen, S.; Johnsen, R.; Gartland, P.O.; Drugli, J.M.

    1999-11-01

    Internal cathodic protection by resistor controlled anodes--Resistor controlled Cathodic Protection (RCP)--has been introduced as an alternative method for the prevention of localized corrosion of seawater transportation systems. More than 1000 RCP anodes have been installed in seawater piping systems made from highly alloyed stainless steel which previously had suffered from corrosion. The application of cheaper stainless steels like AISI 316 in combination with RCP anodes results in significant cost savings for the seawater system, and a few systems have been installed. This paper gives a short review of the theoretical background, and a presentation of the experience from some of the installations with these materials and RCP.

  10. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  11. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  12. Optimal pipe size design for looped irrigation water supply system using harmony search: Saemangeum project area.

    PubMed

    Yoo, Do Guen; Lee, Ho Min; Sadollah, Ali; Kim, Joong Hoon

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  13. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    PubMed Central

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  14. Experimental Evaluation of Design Methods for Hardened Piping Systems. Schedule D. Volume II.

    DTIC Science & Technology

    prediction capabilities of present day computer methods. The basic pipe elements tested included straight pipes, area changes, elbows , values, a pump, and...surge tanks. The piping system tested was a closed loop system which contained the following elements: elbows , straight pipes, values, a pump, and an

  15. Design demonstrations for Category B tank systems piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1994-12-01

    Demonstration of the design of the piping systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA)-Region IV, the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE). This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems designated in the FFA as Category B (i.e., existing tank systems with secondary containment). Based on the findings of the Design Demonstrations for the Remaining 19 Category B Tank Systems, (DOE/OR/03-1150 & D2), three tank systems originally designated as Category B have been redesignated as Category C (i.e., existing tank systems without secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system and presented in Table 2.0-1.

  16. Design of a heat pipe governed thermal control system for the Solar Electric Propulsion Stage /SEPS/

    NASA Technical Reports Server (NTRS)

    Ruttner, L. E.; Wright, J. P.

    1975-01-01

    A 2200-w capacity spacecraft heat rejection system designed for the SEPS and utilizing heat pipe radiator panels has been investigated. The total thermal control system consists of two radiator panels connected to the heat source by variable conductance heat pipes (VCHP's). The system was designed to operate in the 223 to 333 temperature range. The radiators have an emittance of 0.88 at their operational temperature and a fin efficiency of approximately 80 percent. The radiators are thermally isolated from the SEPS and environment by multilayer insulation and thermal shields. Butane was selected as the working fluid for the VCHP because of its low freezing point (135), which is necessary to prevent diffusion freezeout of the liquid during the cold outbond missions. Helium was selected for the control gas. This paper describes the VCHP system, discusses the system design parameters and presents the results of the analyses.

  17. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  18. A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot

    NASA Astrophysics Data System (ADS)

    Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang

    2017-03-01

    An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.

  19. Design, development and testing of a cryogenic temperature heat pipe for the icicle system. [breadboard models

    NASA Technical Reports Server (NTRS)

    Trimmer, D. S.

    1974-01-01

    An analytical model was formulated for a cryogenic heat pipe, and thermal and transport analyses were developed to predict the performance characteristics of various heat pipe designs. These analyses permitted optimization of various design parameters. A series of four breadboard heat pipes were fabricated and tested to provide inputs such as internal film coefficients, minimum capillary radii, and wick permeabilities which are required for the analyses. The results of instrumentation, charging, and testing of cryogenic heat pipes were applied to the prototype heat pipes. After a thorough design analysis of three potential heat pipe wicks (slab, artery, and axial groove), the first two were chosen for application to two prototype heat pipes. Detailed designs were made of the two heat pipes and the units were fabricated. Tests were conducted which verified the integrity and safety margin of the design to withstand the internal pressure at ambient temperature and fatigue of thermal cycling. During the acceptance testing in the vacuum chamber, no difficulty was experienced in priming the slab-wick heat pipe and it met the performance design requirements. The artery-wick heat pipe would not prime with nitrogen working fluid for any test conditions.

  20. Design Guidelines for Avoiding Thermo-Acoustic Oscillations in Helium Piping Systems

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-01-01

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.2 K), and the closed ends of these tubes are connected to the high temperature (300K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location.

  1. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  2. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.

  3. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE PAGES

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  4. In Situ Corrosion and Heat Loss Assessment of Two Nonstandard Underground Heat Distribution System Piping Designs

    DTIC Science & Technology

    2011-06-01

    of this specific design consists of a carrier pipe, carrier pipe insulation ( mineral wool ), an annular air space, steel casing, a layer of exterior...excavation site agree with Perma-Pipe “Multi-Therm 500” nominal specs for 10” carrier with 2” mineral wool insulation. 3. Conduit Temperature: Supply...the ASHRAE calculation method or by manufacturer performance claims. MEC is reasonably certain that the mineral wool insulation used by the

  5. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Piping systems. 127.1101 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems. Each piping system within the marine transfer area for LHG used for the transfer of LHG must meet...

  6. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  7. Chemical laser exhaust pipe design research

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  8. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  9. A structural design and analysis of a piping system including seismic load

    SciTech Connect

    Hsieh, B.J.; Kot, C.A.

    1991-01-01

    The structural design/analysis of a piping system at a nuclear fuel facility is used to investigate some aspects of current design procedures. Specifically the effect of using various stress measures including ASME Boiler Pressure Vessel (B PV) Code formulas is evaluated. It is found that large differences in local maximum stress values may be calculated depending on the stress criterion used. However, when the global stress maximum for the entire system are compared the differences are much smaller, being nevertheless, for some load combinations, of the order of 50 percent. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis with the modal responses combined by using the absolute summation (ABS), by using the square root of the squares (SRSS), and by using the 10 percent method (10PC). It is shown that for a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to an RSM analysis based on ABS. However, it appears that an adequate design would be obtained from the ESM approach even without the use of a spectrum amplification factor. 7 refs., 3 figs., 3 tabs.

  10. Design procedure prevents PE pipe rupture

    SciTech Connect

    Grigory, S.C.

    1995-12-01

    A rupture prevention design procedure for plastic gas distribution pipe is nearing completion at Southwest Research Institute (SWRI). Given the pipe size, polyethylene (PE) resin, and minimum operating temperature, the maximum safe operating pressure can be determined for which rapid crack propagation (RCP) cannot occur. A computer program, called PFRAC, has been developed for this purpose and uses Charpy energy as the measurement of fracture toughness of PE. Present efforts, however, involve replacing Charpy energy with a dynamic toughness measurement obtained from the Small Scale Steady State (S4) test that is required in ISO 4437. The program is being financed by the Gas Research Institute, Chicago. RCP events in PE pipe have been rare primarily because operating pressures are low and pipe diameters are small in most gas distribution systems. However, controlled RCP experiments in the US and other countries clearly demonstrate that as the gas industry moves toward higher line pressures and larger diameters, the likelihood of an RCP event increases. Recognizing this, ISO includes a requirement for RCP in its ISO 4437 standard for pipe greater than 10 inches in diameter or operating pressures greater than 58 psig. The S4 test may be used on all pipe diameters. A full scale test or the S4 test can be used on pipe greater than 10 inches diameter.

  11. Determination of Secondary Encasement Pipe Design Pressure

    SciTech Connect

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  12. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cause stresses that exceed the design stresses, the piping and piping system components and cargo tanks... including: (1) Bellows; (2) Slip joints; (3) Ball joints; or (e) Other means specially approved by...

  13. System for Testing Thermal Insulation of Pipes

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.; Nagy, Zoltan F.

    2003-01-01

    An apparatus and method have been developed for measuring the rates of leakage of heat into pipes carrying liquids, the purpose of the measurements being to quantify the thermal performance of the insulation system. The apparatus is designed primarily for testing pipes used to carry cryogenic liquids, but can also be used for measuring the thermal performance of other insulated pipes or piping systems. The basic measurement principle is straightforward: The outer surface of the pipe insulation is maintained at a fixed warmer temperature. The interior of the pipe is maintained in a narrow fixed lower-temperature range by means of a regular liquid (e.g., water) that is pumped through the pipe at a known flow rate or a cryogenic liquid (e.g., nitrogen) that is saturated at atmospheric pressure and replenished until steady-state conditions are achieved. In the case of water or another liquid pumped through, the inlet and outlet temperatures are measured and heat-leak power is calculated as the mass flow rate of the liquid multiplied by the specific heat of the liquid multiplied by the inlet-to-outlet temperature rise of the liquid. In the case of liquid nitrogen or another low-temperature boiling liquid, the heat-leak power is calculated as the rate of boil-off multiplied by the latent heat of vaporization of the liquid. Then the thermal-insulation performance of the pipe system can be calculated as a function of the measured heat-leak power, the inner and outer boundary temperatures, and the dimensions of the pipe. The apparatus can test as many as three pipes simultaneously. The pipes can have inner diameters up to .15 cm and outer diameters up to .20 cm. The lengths of the pipes may vary; typical lengths are of the order of 18 m. Two thermal guard boxes . one for each end of the pipe(s) under test . are used to make the inlet and outlet fluid connections to the pipe(s) (see figure). The connections include bellows that accommodate thermal expansion and contraction

  14. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  15. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A

    2017-03-13

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  16. Design of Refractory Metal Heat Pipe Life Test Environment Chamber, Cooling System, and Radio Frequency Heating System

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Bragg-Sitton, S. M.; Reid, R. S.; Stewart, E. T.; Davis, J. D.

    2011-01-01

    A series of 16 Mo-44.5%Re alloy/sodium heat pipes will be experimentally tested to examine heat pipe aging. To support this evaluation, an environmental test chamber and a number of auxiliary subsystems are required. These subsystems include radio frequency (RF) power supplies/inductive coils, recirculation water coolant loops, and chamber gas conditioning. The heat pipes will be grouped, based on like power and gas mixture requirements, into three clusters of five units each, configured in a pentagonal arrangement. The highest powered heat pipe will be tested separately. Test chamber atmospheric purity is targeted at <0.3 ppb oxygen at an approximate operating pressure of 76 torr (.1.5 psia), maintained by active purification (oxygen level is comparable to a 10(exp -6) torr environment). Treated water will be used in two independent cooling circuits to remove .85 kW. One circuit will service the RF hardware while the other will maintain the heat pipe calorimetry. Initial procedures for the startup and operation of support systems have been identified. Each of these subsystems is outfitted with a variety of instrumentation, integrated with distributed real-time controllers and computers. A local area network provides communication between all devices. This data and control network continuously monitors the health of the test hardware, providing warning indicators followed by automatic shutdown should potentially damaging conditions develop. During hardware construction, a number of checkout tests.many making use of stainless steel prototype heat pipes that are already fabricated.will be required to verify operation.

  17. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi

    2015-11-01

    Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.

  18. Light pipe - design for efficiency

    SciTech Connect

    Hockey, S.N.

    1985-08-01

    The high cost and availability of materials which are clear enough to transmit light without absorption has limited the idea of piping large-scale quantities of light. The light pipe uses the principle of Total Internal Reflection, with the light guided by very accurate prisms. The transmission of light directed into the end of a Light Pipe at an angle of less than 27.6 degrees is theoretically 100% efficient. The author describes its uses and advantages for lighting offices, cold storage areas, difficult access and hazardous areas, and for solar lighting. Future directions will be to improve the economics and accuracy of the technology. 4 references, 2 figures.

  19. Theory and design of variable conductance heat pipes: Steady state and transient performance

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

    1972-01-01

    Heat pipe technology pertinent to the design and application of self-controlled, variable conductance heat pipes for spacecraft thermal control is discussed. Investigations were conducted to: (1) provide additional confidence in existing design tools, (2) to generate new design tools, and (3) to develop superior variable conductance heat pipe designs. A computer program for designing and predicting the performance of the heat pipe systems was developed.

  20. Fiberglass Reinforced Piping for Shipboard Systems

    DTIC Science & Technology

    1976-07-01

    B16.5 far flanges. Piping is gal- vanized. Thickness corresponds to standard weight. Diameters are 8" and 10”. Joininq. The piping system is welded ...critical, standard elbows are used in place of bends. Supports. Pipe hangers are made of U-bolts through angle iron supports welded directly to the ship...and 30" . Joining. The piping system is welded wherever possible, including at bulkhead penetrations. Spuds are welded into the pipe to form tee

  1. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... meet 49 CFR 195.248. (c) The transfer manifold of each liquid transfer line and of each vapor...

  2. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  3. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  4. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  5. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  6. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  7. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  8. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  9. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  10. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  11. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  12. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  13. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  14. Photogrammetry and computer-aided piping design

    SciTech Connect

    Keneflick, J.F.; Chirillo, R.D.

    1985-02-18

    Three-dimensional measurements taken from photographs of a plant model can be digitized and linked with computer-aided piping design. This can short-cut the design and construction of new plants and expedite repair and retrofitting projects. Some designers bridge the gap between model and computer by digitizing from orthographic prints obtained via orthography or the laser scanning of model sections. Such valve or fitting then processed is described in this paper. The marriage of photogrammetry and computer-aided piping design can economically produce such numerical drawings.

  15. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  16. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  17. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  18. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  19. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  20. Heat Pipe Space Nuclear Reactor Design Assessment. Volume 1. Design Status of the SP-100 Heat Pipe Space Nuclear Reactor System

    DTIC Science & Technology

    1985-08-01

    design studies for a higher power , unmanned nuclear reactor space power source with a long design lifetime (7 yr). A 100 kWe , high temperature...reactors are potentially the best source of high power levels (in excess of 100 kWe ) for space. Other possible sources are chemical combustion...configured as a com- pact power source of greater than 10 kWe . Table 1 compares solar to nuclear power at three

  1. Analyzing HVAC piping systems

    SciTech Connect

    Smith, W.W. )

    1993-10-01

    This article describes requirements and considerations for a software tool for analyzing both the hydraulic and heat transfer characteristics of a HVAC system to help in selecting systems components and predicting their performance. The topics of the article include analysis of installed system evolution, selection and analysis of pumps and valves, heat transfer in heating and cooling coils, and capacity to handle large systems.

  2. Metallurgical investigation of material from chill-water piping system

    SciTech Connect

    Alexander, D.J.

    1990-02-01

    The mechanical properties and microstructures of two steel pipes that were removed from the Oak Ridge National Laboratory (ORNL) chill-water system have been studied. Concerns for low-stress failure of aging pipes prompted a metallurgical investigation to determine the risk of using a cryogenic freeze-plug technique to isolate a section of piping for repair. The two pipes, designated S and L, were low-alloy carbon steel, with microstructures of ferrite and pearlite. Pipe S had a small grain size and a banded microstructure, whereas pipe L had a larger grain size with less pearlite, which was randomly spaced. Pipe S had a ductile-to-brittle transition temperature (DBTT) of 0{degree}C, compared to 84{degree}C for pipe L. Because of the high transition temperature and the very low level of the lower shelf, cooling to liquid-nitrogen temperature resulted in a very small margin of safety for these pipes. Therefore, this technique is not recommended for the pipe materials, and caution is advised in applying this technique to any pipe with unknown toughness properties. 8 figs., 2 tabs.

  3. Heat Pipe Space Nuclear Reactor Design Assessment. Volume 2. Feasibility Study of Upgrading the SP-100 Heat Pipe Space Nuclear Power System.

    DTIC Science & Technology

    1985-08-01

    design of the core and the fuel system of space nuclear reactors. Such a design must permit operation at both low (-100 kWe ) and high electrical power ...line design of the HPSNR system (Refs. 1,6-8) was developel to generate 100 kWe of continuous power for -3-7 yr lifetime while keeping the system...determine the physical size of the HPSNR power system for an electrical power output higher than the [00 kWe established for the oas - line design , the

  4. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  5. Artery heat pipes for space-power systems

    SciTech Connect

    Merrigan, M.; Prenger, C.; Martinez, H.E.; Runyan, J.

    1982-01-01

    High-temperature liquid-metal heat pipes are being developed as part of the SP-100 space power system. The operating temperature of the heat pipes is in the 1400 to 1500 K range and the design power level is 15kW per pipe. Baseline design for the heat pipes is an arterial configuration using a fine mesh screen for the arteries and distribution wick. Performance predictions for this configuration have been conducted and the designs characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. In parallel with this effort the screen wick materials have been characterized experimentally in terms of pore size and permeability. As a verification of the performance predictions a heat pipe employing two tubular arteries and a distribution wick of tightly compacted, 150-mesh molybdenum screen has been assembled and operated with sodium as a working fluid.

  6. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  7. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  8. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  9. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  10. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  11. Commercial high efficiency dehumidification systems using heat pipes

    SciTech Connect

    Not Available

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  12. Sink or swim pipe

    SciTech Connect

    Dubois, B.C.; Rhines, J.A.

    1985-07-01

    The development of a six-inch ID flexible pipe system for use as a rapidly deployable offshore fuel delivery system is described. Pipe design data, pipe construction, and advantages of the offshore petroleum delivery system are discussed.

  13. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  14. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  15. Advanced thermoplastic materials for district heating piping systems

    SciTech Connect

    Raske, D.T.; Karvelas, D.E.

    1988-04-01

    The work described in this report represents research conducted in the first year of a three-year program to assess, characterize, and design thermoplastic piping for use in elevated-temperature district heating (DH) systems. The present report describes the results of a program to assess the potential usefulness of advanced thermoplastics as piping materials for use in DH systems. This includes the review of design rules for thermoplastic materials used as pipes, a survey of candidate materials and available mechanical properties data, and mechanical properties testing to obtain baseline data on a candidate thermoplastic material extruded as pipe. The candidate material studied in this phase of the research was a polyetherimide resin, Ultem 1000, which has a UL continuous service temperature rating of 338/degree/F (170/degree/C). The results of experiments to determine the mechanical properties between 68 and 350/degree/F (20 and 177/degree/C) were used to establish preliminary design values for this material. Because these prototypic pipes were extruded under less than optimal conditions, the mechanical properties obtained are inferior to those expected from typical production pipes. Nevertheless, the present material in the form of 2-in. SDR 11 pipe (2.375-in. O. D. by 0.216-in. wall) would have a saturated water design pressure rating of /approximately/34 psig at 280/degree/F. 16 refs., 6 figs., 8 tabs.

  16. 46 CFR 154.310 - Cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo piping systems. 154.310 Section 154.310 Shipping... Arrangements § 154.310 Cargo piping systems. Cargo liquid or vapor piping must: (a) Be separated from other piping systems, except where an interconnection to inert gas or purge piping is required by §...

  17. Modelling the performance of the tapered artery heat pipe design for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1988-01-01

    The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.

  18. Heat pipe technology for coal-fired power systems

    SciTech Connect

    Uherka, K.L.; Holtz, R.E.; McLennan, G.A.; Koehl, E.R.

    1985-04-01

    This report summarizes the results of heat pipe R and D activities at Argonne National Laboratory (ANL) during the 1977 to 1984 time period. The heat pipe development efforts were associated with a variety of DOE supported projects involving coal-fired prime movers for stationary power generation. The role of heat pipes for these power systems is in their potential application as thermal transport systems for integrating fluidized bed combustors (FBC) with prime movers ranging from Stirling engines in total energy systems (approx.10 MWe) to closed-cycle gas turbines in central power plants (approx.1000 MWe). The results of initial investigations at ANL demonstrated that high-temperature sodium heat pipes provided the best heat exchanger technology for integrating Stirling engines with coal-fired FBC systems. A major accomplishment included the development and validation of a computer code (ANL/HTP) which calculates heat pipe operating limits and other significant characteristics necessary for power plant design. A number of developmental and prototype heat pipes were designed and fabricated through a subcontract effort with Thermacore, Inc., and delivered to ANL for performance testing. Preliminary test results from ANL's Heat Pipe Test Facility, using induction heating and a gas-water calorimeter to establish energy balances, are given in the report. Test data obtained to date are consistent with ANL/HTP code predictions. 47 refs., 53 figs., 22 tabs.

  19. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  20. Analytical considerations in the code qualification of piping systems

    SciTech Connect

    Antaki, G.A.

    1995-02-01

    The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice.

  1. Design of megawatt power level heat pipe reactors

    SciTech Connect

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao; Reid, Robert Stowers

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  2. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Disconnect” Device (d) Gas pipe sizing. Gas piping systems shall be sized so that the pressure drop to any... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. (a) General. The requirements of this section shall govern...

  3. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Disconnect” Device (d) Gas pipe sizing. Gas piping systems shall be sized so that the pressure drop to any... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. (a) General. The requirements of this section shall govern...

  4. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Do Not Use Tools To Separate the “Quick-Disconnect” Device (d) Gas pipe sizing. Gas piping systems... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. Link to an amendment published at 78 FR 73987, Dec. 9, 2013....

  5. Potential Of Light Pipes System In Malaysian Climate

    NASA Astrophysics Data System (ADS)

    Abd Kadir, Aslila; Hakim Ismail, Lokman; Kasim, Narimah; Kaamin, Masiri

    2016-11-01

    Light-pipes system are simple structures that allow the transmission of daylight from the outside to the inside of a room. It is a practical application in many buildings where daylight cannot reach due to building design and limited facade to placing windows. Since roof is the element directly exposed to the sunlight, light pipes system could be introduced. This paper examines the illumination levels obtained using light pipes system under Malaysia climate conditions. A light-pipe system that was installed in a test room located in Batu Pahat. Indoor illuminance distributions and concurrent outdoor illuminance were monitored at a 30 minutes interval for 5 days. The results indicated that the amount of daylight penetrated into the building are varied with less than 150lux in the early morning and late evening, and maximum at over 350lux in the noon and early afternoon. The average internal illuminance levels offer by light pipe system met the MS 1525:2007 recommendation for application in Malaysian buildings. These findings indicated that the light pipe system has a potential as a tool for introducing daylight indoors in Malaysia.

  6. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  7. Heat pipe systems using new working fluids

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.

  8. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  9. Pipe inspection and repair system

    NASA Technical Reports Server (NTRS)

    Schempf, Hagen (Inventor); Mutschler, Edward (Inventor); Chemel, Brian (Inventor); Boehmke, Scott (Inventor); Crowley, William (Inventor)

    2004-01-01

    A multi-module pipe inspection and repair device. The device includes a base module, a camera module, a sensor module, an MFL module, a brush module, a patch set/test module, and a marker module. Each of the modules may be interconnected to construct one of an inspection device, a preparation device, a marking device, and a repair device.

  10. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  11. Theory and design of variable conductance heat pipes

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1972-01-01

    A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.

  12. Design considerations, tooling, and equipment for remote in-service inspection of radioactive piping and pressure-vessel systems

    SciTech Connect

    Swannack, D.L.; Schmoker, D.S.

    1983-01-01

    This paper summarizes results obtained in use of remotely-operated nondestructive testing (NDT) equipment for inspection of reactor-system components. Experience obtained in operating the Fast Flux Test Facility (FFTF) has provided a basis for field verification of remote NDT equipment designs and has suggested development improvements. Remote Viewing and data gathering systems used include periscopes, borescopes, fiberscopes, hybrid borescopes/fiberscopes, and closed circuit television. A summary of design consideration for inspection equipment and power plant design is presented to achieve improved equipment operation and reduction of plant maintenance downtime.

  13. Novel systems for corrosion detection in piping

    SciTech Connect

    Raad, J.A. de; Fingerhut, M.P.

    1995-12-31

    Predictive maintenance requires accurate quantitative information. Nondestructive testing (NDT) tools have been able provide the necessary information, economically. Examination of the full surface of components is often required, which is contrary to the more typical spot location measurements. In addition, predictive maintenance inspection often requires the examination of hot and or insulated components. These challenges have been satisfied by recent developments in NDT and are applicable to a broad range of facility types such as tank terminals and pulp and paper plants. For non-insulated and above ground piping systems magnetic flux leakage (MFL) tools have recently been introduced into the marketplace. These tools allow very quick and reliable detection of local and extensive general corrosion, in carbon steel pipes or vessel walls, with nominal wall thicknesses of up to 15 mm. A relatively new method for detection of corrosion under insulated components is the RTD-Incotest, pulse eddy current (PEC) system. This system can also provide the components remaining wall thickness at general corrosion locations. Demand for corrosion detection under insulation on piping has also been satisfied by new dynamic Real-Time-Radiography systems. These systems are relatively fast, but the concept itself and its weight require close human access to the pipe, hence, some method of accessing above ground piping is required. Nevertheless, the systems satisfy a market demand. Time-of-flight-Diffraction (TOFD) for detection and sizing of weld root corrosion as well as coherent color enhanced thickness mapping will also be introduced.

  14. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  15. Design characteristics of a heat pipe test chamber

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Jang, J. Hoon; Yu, Juin S.

    1992-01-01

    LeRC has designed a heat pipe test facility which will be used to provide data for validating heat pipe computer codes. A heat pipe test chamber that uses helium gas for enhancing heat transfer was investigated. The conceptual design employs the technique of guarded heating and guarded cooling to facilitate accurate measurements of heat transfer rates to the evaporator and from the condenser. The design parameters are selected for a baseline heat pipe made of stainless steel with an inner diameter of 38.10 mm and a wall thickness of 1.016 mm. The heat pipe operates at a design temperature of 1000 K with an evaporator radial heat flux of 53 W/sq. cm.

  16. Risk based management of piping systems

    SciTech Connect

    Conley, M.J.; Aller, J.E.; Tallin, A.; Weber, B.J.

    1996-07-01

    The API Piping Inspection Code is the first such Code to require classification of piping based on the consequences of failure, and to use this classification to influence inspection activity. Since this Code was published, progress has been made in the development of tools to improve on this approach by determining not only the consequences of failure, but also the likelihood of failure. ``Risk`` is defined as the product of the consequence and the likelihood. Measuring risk provides the means to formally manage risk by matching the inspection effort (costs) to the benefits of reduced risk. Using such a cost/benefit analysis allows the optimization of inspection budgets while meeting societal demands for reduction of the risk associated with process plant piping. This paper presents an overview of the tools developed to measure risk, and the methods to determine the effects of past and future inspections on the level of risk. The methodology is being developed as an industry-sponsored project under the direction of an API committee. The intent is to develop an API Recommended Practice that will be linked to In-Service Inspection Standards and the emerging Fitness for Service procedures. Actual studies using a similar approach have shown that a very high percentage of the risk due to piping in an operating facility is associated with relatively few pieces of piping. This permits inspection efforts to be focused on those piping systems that will result in the greatest risk reduction.

  17. Implementation of Seismic Stops in Piping Systems

    SciTech Connect

    Bezler, P.; Simos, N.; Wang, Y.K.

    1993-02-01

    Commonwealth Edison has submitted a request to NRC to replace the snubbers in the Reactor Coolant Bypass Line of Byron Station-Unit 2 with gapped pipe supports. The specific supports intended for use are commercial units designated ''Seismic Stops'' manufactured by Robert L. Cloud Associates, Inc. (RLCA). These devices have the physical appearance of snubbers and are essentially spring supports incorporating clearance gaps sized for the Byron Station application. Although the devices have a nonlinear stiffness characteristic, their design adequacy is demonstrated through the use of a proprietary linear elastic piping analysis code ''GAPPIPE'' developed by RLCA. The code essentially has all the capabilities of a conventional piping analysis code while including an equivalent linearization technique to process the nonlinear spring elements. Brookhaven National Laboratory (BNL) has assisted the NRC staff in its evaluation of the RLCA implementation of the equivalent Linearization technique and the GAPPIPE code. Towards this end, BNL performed a detailed review of the theoretical basis for the method, an independent evaluation of the Byron piping using the nonlinear time history capability of the ANSYS computer code and by result comparisons to the RLCA developed results, an assessment of the adequacy of the response estimates developed with GAPPIPE. Associated studies included efforts to verify the ANSYS analysis results and the development of bounding calculations for the Byron Piping using linear response spectrum methods.

  18. IMPLEMENTATION OF SEISMIC STOPS IN PIPING SYSTEMS.

    SciTech Connect

    BEZLER,P.

    1993-02-01

    Commonwealth Edison has submitted a request to NRC to replace the snubbers in the Reactor Coolant Bypass Line of Byron Station -Unit 2 with gapped pipe supports. The specific supports intended for use are commercial units designated ''Seismic Stops'' manufactured by Robert L. Cloud Associates, Inc. (RLCA). These devices have the physical appearance of snubbers and are essentially spring supports incorporating clearance gaps sized for the Byron Station application. Although the devices have a nonlinear stiffness characteristic, their design adequacy is demonstrated through the use of a proprietary linear elastic piping analysis code ''GAPPIPE'' developed by RLCA. The code essentially has all the capabilities of a conventional piping analysis code while including an equivalent linearization technique to process the nonlinear spring elements. Brookhaven National Laboratory (BNL) has assisted the NRC staff in its evaluation of the RLCA implementation of the equivalent linearization technique and the GAPPIPE code. Towards this end, BNL performed a detailed review of the theoretical basis for the method, an independent evaluation of the Byron piping using the nonlinear time history capability of the ANSYS computer code and by result comparisons to the RLCA developed results, an assessment of the adequacy of the response estimates developed with GAPPIPE. Associated studies included efforts to verify the ANSYS analysis results and the development of bounding calculations for the Byron Piping using linear response spectrum methods.

  19. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  20. Heat pipe heat rejection system and demonstration model for the nuclear electric propulsion (NEP) spacecraft

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1981-01-01

    The critical evaluation and subsequent redesign of the power conversion subsystem of the spacecraft are covered. As part of that evaluation and redesign, prototype heat pipe components for the heat rejection system were designed fabricated and tested. Based on the results of these tests in conjunction with changing mission requirements and changing energy conversion devices, new system designs were investigated. The initial evaluation and redesign was based on state-of-the-art fabrication and assembly techniques for high temperature liquid metal heat pipes and energy conversion devices. The hardware evaluation demonstrated the validity of several complicated heat pipe geometries and wick structures, including an annular-to-circular transition, bends in the heat pipe, long heat pipe condensers and arterial wicks. Additionally, a heat pipe computer model was developed which describes the end point temperature profile of long radiator heat pipes to within several degrees celsius.

  1. Computerized system automates GMA pipe welding

    SciTech Connect

    Nadeau, F.; Blain, J. ); Dufour, M. )

    1990-06-01

    This article describes the basic principles of the control method and how it was applied to the development of a completely automated welding work cell designed for the pipe prefabrication industry. The results of a weld qualification study and a productivity study are presented.

  2. GTRAN- TRANSIENT ANALYSIS OF GAS PIPING SYSTEMS

    NASA Technical Reports Server (NTRS)

    TROVILLION T A

    1994-01-01

    The GTRAN program was developed to solve transient, as well as steady state, problems for gas piping systems. GTRAN capabilities allow for the analysis of a variety of system configurations and components. These include: multiple pipe junctions; valves that change position with time; fixed restrictions (orifices, manual valves, filters, etc.); relief valves; constant pressure sources; and heat transfer for insulated piping and piping subjected to free or forced convection. In addition, boundary conditions can be incorporated to simulate specific components. The governing equations of GTRAN are the one-dimensional transient gas dynamic equations. The three equations for pressure, velocity, and density are reduced to numerical equations using an implicit Crank-Nicholson finite difference technique. Input to GTRAN includes a description of the piping network, the initial conditions, and any events (e.g. valve closings) occuring during the period of analysis. Output includes pressure, velocity, and density versus time. GTRAN is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX series computer. GTRAN was developed in 1983.

  3. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect

    Schempf, H.; Bares, J.; Mutschler, E.

    1995-12-31

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

  4. Reconfigurable manufacturing execution system for pipe cutting

    NASA Astrophysics Data System (ADS)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  5. BOA: Pipe asbestos insulation removal robot system

    SciTech Connect

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-12-31

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  6. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Separation of piping systems. 153.292 Section 153.292 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Systems and Cargo Handling Equipment § 153.292 Separation of piping systems. Cargo piping systems must...

  7. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Separation of piping systems. 153.292 Section 153.292 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Systems and Cargo Handling Equipment § 153.292 Separation of piping systems. Cargo piping systems must...

  8. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Separation of piping systems. 153.292 Section 153.292 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Systems and Cargo Handling Equipment § 153.292 Separation of piping systems. Cargo piping systems must...

  9. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Separation of piping systems. 153.292 Section 153.292 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Systems and Cargo Handling Equipment § 153.292 Separation of piping systems. Cargo piping systems must...

  10. 46 CFR 153.292 - Separation of piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Separation of piping systems. 153.292 Section 153.292 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Systems and Cargo Handling Equipment § 153.292 Separation of piping systems. Cargo piping systems must...

  11. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Oil piping systems. 3280.706... Systems § 3280.706 Oil piping systems. Link to an amendment published at 78 FR 73988, Dec. 9, 2013. (a... repair, of any oil piping systems shall be new and free from defects or internal obstructions. The...

  12. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Oil piping systems. 3280.706... Systems § 3280.706 Oil piping systems. (a) General. The requirements of this section shall govern the... installation extension, alteration, or repair, of any oil piping systems shall be new and free from defects...

  13. Design and test of a self-controlled heat pipe radiator.

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Hembach, R.

    1973-01-01

    A 15,000-W spacecraft waste heat rejection system utilizing heat pipe radiator panels has been investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500-W radiator panel has been designed, built, and bench tested. The panel, which is a module of the 15,000-W system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiator. The thermal load to the VCHP is supplied by a Freon 21 liquid loop via an integral heat exchanger. This paper describes the results of the system studies and the radiator design. Also presented are test data on the VCHP, heat exchanger and isothermalizer heat pipes.

  14. Light pipe design method and stepper experimentation for interference effects reduction in laser illumination

    NASA Astrophysics Data System (ADS)

    Poyet, Jean-Michel; Lutz, Yves

    2016-07-01

    The use of light pipes is an efficient and low-cost technique to get a homogeneous illumination for laser-gated viewing systems. However, this technique suffers from drawbacks when used with coherent sources like solid-state lasers. Compacting light pipe-based laser illuminators involves working with small light pipe sections, and experiments show that interference fringes appear on the laser illumination profiles. The principle of light pipe homogenization has been reviewed using geometrical optics to understand the phenomenon better, and a pragmatic light pipe design method, based on laser-gated viewing system parameters, is proposed. Another original solution based on optical stepper is studied to reduce both interference fringes and speckle noise to increase the homogeneity of laser illumination profiles.

  15. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect

    Unknown

    2000-09-15

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  16. Marathon pipe line's new control system

    SciTech Connect

    Ross, J.

    1983-03-01

    A new control system for Marathon Pipe Line Company's 4200 mile long oil pipeline is described. The pipeline transports 1 1/2 million barrels/day of crude oil and refined products. A comprehensive, centralized computer control system in Findlay, Ohio was developed to provide precision control of the system. Marathon is almost finished with the supervisory control and data acquisition system which can almost instantaneously control fluid movements throughout the network with the push of a few buttons.

  17. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  18. 29 CFR 1915.163 - Ship's piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ship's piping systems. 1915.163 Section 1915.163 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.163 Ship's piping systems. (a) Before work is performed on a valve, fitting, or section...

  19. 29 CFR 1915.163 - Ship's piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's piping systems. 1915.163 Section 1915.163 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.163 Ship's piping systems. (a) Before work is performed on a valve, fitting, or section...

  20. 29 CFR 1915.163 - Ship's piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ship's piping systems. 1915.163 Section 1915.163 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.163 Ship's piping systems. (a) Before work is performed on a valve, fitting, or section...

  1. 29 CFR 1915.163 - Ship's piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ship's piping systems. 1915.163 Section 1915.163 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.163 Ship's piping systems. (a) Before work is performed on a valve, fitting, or section...

  2. 29 CFR 1915.163 - Ship's piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ship's piping systems. 1915.163 Section 1915.163 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.163 Ship's piping systems. (a) Before work is performed on a valve, fitting, or section...

  3. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  4. Design and demonstration of a high-temperature, deployable, membrane heat-pipe radiator element

    SciTech Connect

    Trujillo, V.L.; Keddy, E.S.; Merrigan, M.A.

    1989-01-01

    Demonstration of a high-temperature, deployable, membrane heat-pipe radiator element has been conducted. Membrane heat pipes offer the potential for compact storage, ease of transportation, self-deployment, and a high specific radiator performance (kg/kW) for use in thermal reflection systems of space nuclear power plants. A demonstration heat pipe 8-cm wide and 100-cm long was fabricated. The heat pipe containment and wick structure were made of stainless steel and sodium used as the working fluid. The tests demonstrated passive deployment of the high-temperature membrane radiator, simulating a single segment in a flat array, at a temperature of 800 K. Details of test procedures and results of the tests are presented in this paper together with a discussion of the design and development of a full-scale, segmented high-temperature, deployable membrane heat pipe. 5 refs., 7 figs.

  5. Cured-in-place pipe reconstruction of existing underground systems

    SciTech Connect

    Knasel, J.

    1995-09-01

    This paper describes InLiner USA{reg_sign} which is a cost effective process that allows pipes to be rebuilt without digging and avoids disturbing the area surrounding the pipe. This cured-in-place pipe (CIPP) technology is a unique process for reconstructing deteriorated pipe line systems in municipal and industry applications, which includes powerplants. The process uses a resin that coats and rebuilds th interior of the pipe to improve its structural integrity and corrosion resistance. CIPP creates continuous, seamless construction which increases flow capacities, stops infiltration, improves structural strength, resists long term corrosion and forms its own pipe within a pipe. It can be installed in a matter of hours or days and can be utilized in gravity and pressure pipes for storm sewers, sanitary sewers, combined sewers, water mains, gas mains and process piping.

  6. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    SciTech Connect

    Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  7. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  8. The development of radiant cooler and cryogenic heat pipes for 200K cryogenic optical system cooling

    NASA Astrophysics Data System (ADS)

    Liu, Enguang; Wu, Yinong; Yang, Xiaofeng; Mu, Yongbin

    2016-05-01

    This paper presents a heat transfer system, in which a radiant cooler, cryogenic heat pipes and flexible thermal links were developed for heat transfer, by which a cryogenic system was cooled down to 200K from room temperature. A scrolling mechanism was designed for the radiant cooler to anti-contamination and block sunlight in the initial orbit phase. The cryogenic heat pipe is a type of grooved heat pipe with the working fluid of ethane and working temperature ranging from 160K to 210K. Some experimental and simulation results of the radiant cooler, cryogenic heat pipes will be discussed in this paper.

  9. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  10. Piping design considerations in a solar-Rankine power plant. [pipe size

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    Two of the main parameters in sizing the piping of a solar power plant are the working pressure of the vapor leaving the solar collectors, and the type of working fluid used. Numerical examples for each case are given using the graphical Moody friction charts and the analytical Darcy-Weisbach equation. Different working pressures of steam vapor in the solar collector-turbine pipe connection indicate their major role in the design. The size variation was found not to be in linear proportion to vapor density variations. On the other hand, high molecular weight organic fluids such as R-11 and R-113, when compared with water, show insignificant changes in piping sizes.

  11. Heat pipe design handbook, part 2. [digital computer code specifications

    NASA Technical Reports Server (NTRS)

    Skrabek, E. A.

    1972-01-01

    The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.

  12. Shuttle orbiter Ku-band radar/communications system design evaluation. Ku band bent-pipe channel performance evaluation

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Dodds, J. G.

    1980-01-01

    Because of difficulties with the bit detector of the SPA mode 1 channel 3 input port, a new bit synchronizer was required. The two prime candidate designs are described and analyzed. The selected design is a modification of one which utilizes a phase frequency detector to track the received data clock frequency and a mid-bit transition point sample detector to generate a bit timing error (phase error) signal to control the relative phase between the local clock and the local data stream. The model used to calculate the effects of cable attenuation and rise time degradation is discussed.

  13. Design and analysis of megawatt-class heat-pipe reactor concepts

    SciTech Connect

    Poston, D.; Kapernick, R.

    2012-07-01

    There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

  14. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  15. Monogroove heat pipe design: Insulated liquid channel with bridging wick

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Brown, R. F.; Kosson, R. L. (Inventor)

    1985-01-01

    A screen mesh artery supported concentrically within the evaporator section of a heat pipe liquid channel retains liquid in the channel. Continued and uniform liquid feed to the heat pipe evaporation section (20) during periods of excessive heat transfer is assured. The overall design provides high evaporation and condensation film coefficients for the working fluid by means of the circumferential grooves in the walls of the vapor channel, while not interfering with the overall heat transport capability of the axial groove. The design has particular utility in zero-g environments.

  16. 30. DETAIL OF PIPE FEED SYSTEM TO CLASSIFIER, LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. DETAIL OF PIPE FEED SYSTEM TO CLASSIFIER, LOOKING EAST. THIS PIPE WAS MOUNTED ALONG THE JOISTS AT TOP, ALIGNING WITH THE TWO SMALLER PIPES PROTRUDING DOWNWARD FROM THE JOISTS. THESE PIPES CONVEYED PULP MATERIAL FROM THE STAMP APRONS ON THE UPPER FLOOR TO THE CLASSIFIER, SEEN IN THE DISTANCE AT CENTER. THE STRUCTURAL SUPPORTS AT CENTER LEFT WREE ADDED AS PART OF THE MILL STABILIZATION BY THE PARK SERVICE IN 1993-4. THIS WOUND AND RIVITED PIPE IS IDENTICAL TO THE 23-MILE PIPELINE THAT CONVEYED WATER TO THE MILL FROM TELESCOPE PEAK. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  17. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  18. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  19. Piping benchmark problems for the ABB/CE System 80+ Standardized Plant

    SciTech Connect

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1994-07-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the ABB/Combustion Engineering System 80+ Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the System 80+ standard design. It will be required that the combined license licensees demonstrate that their solution to these problems are in agreement with the benchmark problem set. The first System 80+ piping benchmark is a uniform support motion response spectrum solution for one section of the feedwater piping subjected to safe shutdown seismic loads. The second System 80+ piping benchmark is a time history solution for the feedwater piping subjected to the transient loading induced by a water hammer. The third System 80+ piping benchmark is a time history solution of the pressurizer surge line subjected to the accelerations induced by a main steam line pipe break. The System 80+ reactor is an advanced PWR type.

  20. Pipe support for use in a nuclear system

    DOEpatents

    Pollono, Louis P.; Mello, Raymond M.

    1977-01-01

    A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.

  1. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    SciTech Connect

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  2. Mechanical integrity and piping systems -- The forgotten elements

    SciTech Connect

    Miller, S.D.; Uscocovich, J.S.

    1996-07-01

    Many codes and regulations address the issue of process piping inspections, the most recent being AP1570. OSH1910.119 paragraph (j) also contains requirements for maintaining the mechanical integrity of an operating system through inspections and tests. This paper includes details for an examination approach dealing with process piping as a system, including often neglected items such as piping supports and expansion joints. A training methodology will be discussed which incorporates site walkdowns, operating history, typical failures and other items which may be used to formulate a site specific and flexible program to ensure safe and reliable piping systems as well as compliance with OSHA 1910.119 paragraph (j).

  3. Pressure surge reflector for pipe type cable system

    SciTech Connect

    Chu, H.; El Badaly, H.A.; Ghafurian, R. ); Aabo, T.; Ringlee, R.R.; Williams, J.A. ); Melcher, J. )

    1990-04-01

    This paper describes work performed on the development and testing of a pressure surge reflector, designed to reduce the pressure seen at potheads during an electrical failure in a pipe type cable system. The reflector is designed to protect the potheads from failing due to the pressure surge that may be large enough to fracture the porcelain, particularly when the electrical failure is physically close to the pothead. Test results show that the prototype reflector will lower the pressure significantly, bringing the pressure surge below the factory pressure test level for standard potheads.

  4. Biplastic pipes for high-pressure oil pipeline systems

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Tashkinov, A. A.; Larionov, A. F.; Pospelov, A. B.

    2000-05-01

    A high-performance, corrosion-resistant biplastic pipe for high-pressure oil pipeline systems is presented. The pipe combines an outer load-carrying layer formed from unidirectionally glass-reinforced plastic (GRP) sublayers by wet multi-circuit winding and an inner sealing layer of high-density polyethylene. Both demountable and permanent joints, tees, and other parts are constructed for these pipes. The biplastic pipes ensure reliable operation of oil pipeline systems under a pressure of up to 200 bar. The experimental results and calculated estimates of the strength of biplastic pipes are presented. The results of using these pipes in oil pipeline systems in the Perm' region are discussed.

  5. Programmable immersive peripheral environmental system (PIPES): a prototype control system for environmental feedback devices

    NASA Astrophysics Data System (ADS)

    Frend, Chauncey; Boyles, Michael

    2015-03-01

    This paper describes an environmental feedback device (EFD) control system aimed at simplifying the VR development cycle. Programmable Immersive Peripheral Environmental System (PIPES) affords VR developers a custom approach to programming and controlling EFD behaviors while relaxing the required knowledge and expertise of electronic systems. PIPES has been implemented for the Unity engine and features EFD control using the Arduino integrated development environment. PIPES was installed and tested on two VR systems, a large format CAVE system and an Oculus Rift HMD system. A photocell based end-to-end latency experiment was conducted to measure latency within the system. This work extends previously unpublished prototypes of a similar design. Development and experiments described in this paper are part of the VR community goal to understand and apply environment effects to VEs that ultimately add to users' perceived presence.

  6. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  7. Design and analysis of a cryogenic variable conductance axial grooved heat pipe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation to adapt axial grooved designs to the gammit of heat pipe thermal control techniques, with particular emphasis on those suited for cryogenic applications was conducted. In addition to considering both active and passive gas control, diode designs utilizing liquid or gas blockage, or a liquid trap, are evaluated. The use of the liquid trap as a secondary heat pipe for forward mode operation during diode shutdown is also studied. This latter function is basically that of a thermal switch. Finally, a system capable of hybrid functions consisting of gas-controlled variable conductance and liquid trap diode shutdown or thermal switching is defined.

  8. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  9. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  10. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  11. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    SciTech Connect

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  12. Static analysis of a piping system with elbows

    SciTech Connect

    Bryan, B.J.

    1994-03-01

    Vibration tests of elbows to failure were performed in Japan in the early 1970s. The piping system included two elbows and an eccentric mass. Tests were run both pressurized and unpressurized. This report documents a static analysis of the piping system in which the elbows are subjected to out of plane bending. The effects of internal pressure and material plasticity are investigated.

  13. Sodium heat pipe use in solar Stirling power conversion systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Divakaruni, S. M.; Won, Y. S.

    1980-01-01

    Sodium heat pipes were selected for use as a thermal transport method in a focus-mounted, distributed concentrator solar Stirling power conversion system intended to produce 15-20 kWe per unit. Heat pipes were used both to receive thermal power in the solar receiver and to transmit it to a secondary heat pipe containing both latent heat salt (for up to 1.25 hours of thermal storage) and the heat exchanger of the Stirling engine. Experimental tests were performed on five solar receiver heat pipes with various internal wicking configurations. The performance of the heat pipes at various power levels and operating attitudes was investigated at temperatures near 1550 F; the unidirectional heat transfer in these heat pipes was demonstrated in normal operating attitudes and particularly in the inverted position required during overnight stowage of the concentrator.

  14. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  15. Characterization of pipes, drain lines, and ducts using the pipe explorer system

    SciTech Connect

    Cremer, C.D.; Kendrick, D.T.; Cramer, E.

    1997-05-01

    As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer {trademark} system are presented. The heart of the system is SEA`s pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer{trademark}. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D&D. Future improvements and extensions of their capabilities are discussed.

  16. Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems

    SciTech Connect

    Johnson, Rolland; Neubauer, Michael

    2014-10-29

    This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

  17. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    SciTech Connect

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  18. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  19. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  20. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  1. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  2. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  3. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Heating, Cooling and Fuel Burning...) Grade of piping. Fuel oil piping installed in conjunction with gravity feed systems to oil heating equipment shall slope in a gradual rise upward from a central location to both the oil tank and...

  4. Integrated heat pipe-thermal storage system performance evaluation

    SciTech Connect

    Keddy, E.; Sena, J.T.; Merrigan, M.

    1987-01-01

    Performance verification tests of an integrated heat pipe-thermal energy storage system have been conducted. This system is being developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System (ORC-SDPS) receiver for future space stations. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage (TES) canisters within the vapor space along with an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the surface of the heat pipe elements of the ORC-SDPS receiver and is internally transferred by the potassium vapor for use and storage. Part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was fabricated that employs axial arteries and a distribution wick connecting the wicked TES units and the heater to the solar insolation surface of the heat pipe. Tests were conducted to verify the heat pipe operation and to evaluate the heat pipe/TES units/heater tube operation by interfacing the heater unit to a heat exchanger.

  5. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  6. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  7. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  8. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-01

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  9. Vapor-modulated heat pipe report. Flight data analysis and further development of variable-conductance heat pipes. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1975-01-01

    The design and testing of a heat pipe for spacecraft application is presented. The application in mind calls for heat loads up to 20 watts, a set-point temperature of 294K, and a sink that varies from -220K to nearly as high as the set-point. The overall heat pipe length is 137 cm. Two basically different mechanisms of achieving variable conductance in the pipe by vapor-flow throttling were studied. In one, the thermal resistance between the heat source and sink is due to a saturation-temperature drop corresponding to the vapor-pressure drop developed across the valve. In the other, the pressure difference across the valve induces capillary groove and wick dry out in an evaporation region, and thus results in an increased thermal resistance. This mechanism was selected for fabrication and testing. The pipe is a stainless-steel/methanol two-heat-pipe system. Results are presented and discussed. Engineering drawings and specifications of the pipe are shown.

  10. Seismic design technology for breeder reactor structures. Volume 4. Special topics in piping and equipment

    SciTech Connect

    Reddy, D.P.

    1983-04-01

    This volume is divided into five chapters: experimental verification of piping systems, analytical verification of piping restraint systems, seismic analysis techniques for piping systems with multisupport input, development of floor spectra from input response spectra, and seismic analysis procedures for in-core components. (DLC)

  11. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    SciTech Connect

    Not Available

    1985-04-01

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  12. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  13. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  14. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  15. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  16. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  17. 23. FIRE SUPPRESSION SYSTEM PIPE, 'GRINNELL VALVE', 'VICTROLIC COUPLING,' AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. FIRE SUPPRESSION SYSTEM PIPE, 'GRINNELL VALVE', 'VICTROLIC COUPLING,' AND ALARM AT THE REAR OF BAY NO. 5. - Barstow-Daggett Airport, Hangar Shed No. 4, 39500 National Trails Highway, Daggett, San Bernardino County, CA

  18. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May...

  19. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May...

  20. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May...

  1. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May...

  2. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May...

  3. Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems. Phase 1 and 2 feasibility study, conceptual design, and prototype development. Final report, March 1991-July 1993

    SciTech Connect

    Carroll, S.; Fowler, T.; Peters, E.; Power, W.; Reed, M.

    1994-01-05

    The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies, Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system. The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements); a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

  4. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  5. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... designed for a pressure not exceeding 14 inch water column (1/2 psi) and not less than 7 inch water column (1/4 psi). The manufacturer shall indicate in his written installation instructions the design... protected. (c) Piping design. Each manufactured home requiring fuel gas for any purpose shall be...

  6. Applications of equivalent linearization approaches to nonlinear piping systems

    SciTech Connect

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-04-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA`s are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations.

  7. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  8. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pipe sizes and discharge rates for enclosed ventilation... HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing... enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the...

  9. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pipe sizes and discharge rates for enclosed ventilation... HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing... enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the...

  10. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pipe sizes and discharge rates for enclosed ventilation... HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing... enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the...

  11. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    PubMed

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.

  12. 46 CFR 154.522 - Materials for piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Materials for piping. 154.522 Section 154.522 Shipping... Process Piping Systems § 154.522 Materials for piping. (a) The materials for piping systems must meet § 154.625 for the minimum design temperature of the piping, except the material for open ended...

  13. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  14. BOA II: pipe-asbestos insulation removal system

    SciTech Connect

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-12-31

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  15. Multimode tapered optical light pipe for illumination systems

    NASA Astrophysics Data System (ADS)

    Romańczuk, Patryk; Pietrzycki, Marcin; Źmojda, Jacek; Kochanowicz, Marcin; Dorosz, Dominik

    2015-09-01

    In the article the multimode tapered optical light pipe for illumination systems was investigated. Based on tree light emitting diodes at the wavelength of 460 nm (blue), 528 nm (green) and 631 nm (red) possibility of white light emission on the output surface of the tapered light pipe was submitted. Influence of optical power of LEDs on the colour coordinates (CIE-1931) has been investigated.

  16. Large-size heat pipes intended for use in a megawatt-class space nuclear power system

    NASA Astrophysics Data System (ADS)

    Gribkov, A. S.

    2013-12-01

    The schematic design of a space nuclear power system is suggested that is fitted with a radiating cooler, which deploys and forms a part of the radiation protection cone once a spacecraft has been inserted into its orbit. The principle of selecting a design of a capillary structure for heat pipes with high thermal output (hundreds of kilowatts) is proposed. Comparison is drawn between heat pipes having the proposed and the conventional design. The advantages of the proposed design of heat pipes are shown by calculation results.

  17. Vibration control in piping system by dual dynamic absorbers

    SciTech Connect

    Sodeyama, H.; Ikahata, N.; Sunakoda, K.; Seto, K.

    1995-12-31

    This paper deals with the applicability of a seismic response reduction method with a dual dynamic absorber for equipment, piping system, etc. in a nuclear power plant. The dual dynamic absorber which utilizes a magnetic damping effect was developed and the investigation was done to the characteristics of vibration controllability through excitation tests. As the primary stage of this study, a simple vertical straight pipe with a diameter of 60.8 mm and a length of 2,000 mm was excited by random vibration input, and amplitude of vibration level was reduced by the dual dynamic absorber mounted on the pipe. The mass ratio of the dual dynamic absorber to the straight pipe was 0.05. The result of this test was that the response reduction effect of the dual dynamic absorber for random excitations was verified. Also, the damping characteristic with fine linearity for the input level was obtained.

  18. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    SciTech Connect

    Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.

  19. 46 CFR 108.441 - Piping and discharge rates for CO2 systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping and discharge rates for CO2 systems. 108.441 Section 108.441 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire...

  20. 46 CFR 108.441 - Piping and discharge rates for CO2 systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Piping and discharge rates for CO2 systems. 108.441 Section 108.441 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire...

  1. 46 CFR 108.441 - Piping and discharge rates for CO2 systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping and discharge rates for CO2 systems. 108.441 Section 108.441 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire...

  2. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-01

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor (~ 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  3. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-06

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor ({approx} 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  4. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  5. Heat pipe radiation cooling of advanced hypersonic propulsion system components

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Keddy, M.; Merrigan, M. A.; Silverstein, C. C.

    1991-01-01

    Heat transfer, heat pipe, and system studies were performed to assess the newly proposed heat pipe radiation cooling (HPRC) concept. With an HPRC system, heat is removed from the ramburner and nozzle of a hypersonic aircraft engine by a surrounding, high-temperature, heat pipe nacelle structure, transported to nearby external surfaces, and rejected to the environment by thermal radiation. With HPRC, the Mach number range available for using hydrocarbon fuels for aircraft operation extends into the Mach 4 to Mach 6 range, up from the current limit of about Mach 4. Heat transfer studies using a newly developed HPRC computer code determine cooling system and ramburner and nozzle temperatures, heat loads, and weights for a representative combined-cycle engine cruising at Mach 5 at 80,000 ft altitude. Heat pipe heat transport calculations, using the Los Alamos code HTPIPE, reveal that adequate heat trasport capability is available using molybdenum-lithium heat pipe technology. Results show that the HPRC system radiator area is limited in size to the ramburner-nozzle region of the engine nacelle; reasonable system weights are expected; hot section temperatures are consistent with advanced structural materials development goals; and system impact on engine performance is minimal.

  6. Pipe protection bibliography

    SciTech Connect

    Guy, N.G.

    1987-01-01

    Pipes and pipelines are being used for an ever widening range of materials, for increasing flows and in harsher applications. There is also more legal and social pressure to reduce the hazards associated with handling materials in pipes. All of this increases the demand for improved pipe reliability. Two of the major preventable causes of pipe failure are corrosion and wear. These may result from the pipe surroundings, or from the material which is carried and it is often impossible to prevent failure by the choice of pipe materials and design. However, additional pipe protection measures are available and it is these measures which are considered in this bibliography. The most common pipe protection methods are the application of coatings and the use of cathodic protection. Accordingly, much of this bibliography is devoted to these techniques. Articles dealing with other means of protecting pipes have also been included. The bibliography covers the protection of oil pipes, (both offshore and on land); water supply systems; gas distribution systems; sewer pipes; pipes for hydraulic and pneumatic transport of solids; power plant pipework; process plant pipework.

  7. The LDEF heat pipe experiment power systems

    NASA Technical Reports Server (NTRS)

    Tiller, S. E.

    1980-01-01

    A heatpipe experiment for a long duration exposure facility is described. The design and configuration of the power system of the spacecraft is reported with emphasis placed on its solar array panels, 12-ampere hour 18-cell nickel battery, and its electronic controller.

  8. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units...

  9. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units...

  10. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units...

  11. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units...

  12. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units...

  13. Design, development and test of a capillary pump loop heat pipe

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  14. Pipe Crawler{reg_sign} internal piping characterization system - deactivation and decommissioning focus area. Innovative Technology Summary Report

    SciTech Connect

    1998-02-01

    Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, and intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.

  15. Piping support system for liquid-metal fast-breeder reactor

    DOEpatents

    Brussalis, Jr., William G.

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  16. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  17. Evaporator Development for an Evaporative Heat Pipe System

    NASA Technical Reports Server (NTRS)

    Peters, Leigh C.

    2004-01-01

    As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead

  18. 30 CFR 75.1101-12 - Equivalent dry-pipe system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt conveyor drives and freezing temperatures prevail, an equivalent dry-pipe system may be installed....

  19. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    SciTech Connect

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  20. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Atmospheric control within cargo tanks and cargo piping... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric...

  1. Thermal Vacuum Testing of a Novel Loop Heat Pipe Design for the Swift BAT Instrument

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Ku, Jentung; Feenan, David

    2003-01-01

    An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.

  2. OTEC Cold Water Pipe Design for Problems Caused by Vortex-Excited Oscillations.

    DTIC Science & Technology

    to structural damage and to destructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect... OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in...structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with the shedding of vortices from cylinders in

  3. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air...-minute period must not exceed a pressure drop of 10 percent of the test pressure. (2) Individual branch... must be tested as described in paragraph (a)(1) of this section. (b) Inert gas systems. A pressure...

  4. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air...-minute period must not exceed a pressure drop of 10 percent of the test pressure. (2) Individual branch... must be tested as described in paragraph (a)(1) of this section. (b) Inert gas systems. A pressure...

  5. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air...-minute period must not exceed a pressure drop of 10 percent of the test pressure. (2) Individual branch... must be tested as described in paragraph (a)(1) of this section. (b) Inert gas systems. A pressure...

  6. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  7. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  8. Heat pipe heat rejection system. [for electrical batteries

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.

    1976-01-01

    A prototype of a battery heat rejection system was developed which uses heat pipes for more efficient heat removal and for temperature control of the cells. The package consists of five thermal mock-ups of 100 amp-hr prismatic cells. Highly conductive spacers fabricated from honeycomb panels into which heat pipes are embedded transport the heat generated by the cells to the edge of the battery. From there it can be either rejected directly to a cold plate or the heat flow can be controlled by means of two variable conductance heat pipes. The thermal resistance between the interior of the cells and the directly attached cold plate was measured to be 0.08 F/Watt for the 5-cell battery. Compared to a conductive aluminum spacer of equal weight the honeycomb/heat pipe spacer has approximately one-fifth of the thermal resistance. In addition, the honeycomb/heat pipe spacer virtually eliminates temperature gradients along the cells.

  9. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  10. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  11. BOA: Asbestos Pipe-Insulation Abatement Robot System

    SciTech Connect

    Schempf, H.

    1996-06-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  12. 30 CFR 75.1101-12 - Equivalent dry-pipe system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt conveyor drives and freezing temperatures prevail, an equivalent dry-pipe system may be installed. ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Equivalent dry-pipe system. 75.1101-12...

  13. 46 CFR 108.441 - Piping and discharge rates for CO2 systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Piping and discharge rates for CO2 systems. 108.441... Systems § 108.441 Piping and discharge rates for CO2 systems. (a) The size of branch lines to spaces protected by a CO2 system must meet Table 108.441. (b) Distribution piping within a space must...

  14. 46 CFR 108.441 - Piping and discharge rates for CO2 systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Piping and discharge rates for CO2 systems. 108.441... Systems § 108.441 Piping and discharge rates for CO2 systems. (a) The size of branch lines to spaces protected by a CO2 system must meet Table 108.441. (b) Distribution piping within a space must...

  15. 30 CFR 75.1101-12 - Equivalent dry-pipe system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt conveyor drives and freezing temperatures prevail, an equivalent dry-pipe system may be installed. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Equivalent dry-pipe system. 75.1101-12...

  16. Historic drawing. Oxygen Distribution Piping System, 1944. Photographic copy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic drawing. Oxygen Distribution Piping System, 1944. Photographic copy of original. Boston National Historical Park. Charlestown Navy Yard. BOSTS 13520, #631-1 - Charlestown Navy Yard, Oxygen Plant, Midway along northern boundary of Charlestown Navy Yard, on Little Mystic Channel, near junction of Eighteenth Street & Fourth Avenue, Boston, Suffolk County, MA

  17. 46 CFR 154.310 - Cargo piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo piping systems. 154.310 Section 154.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... under § 154.703, not enter or pass through a machinery space other than a cargo pump or compressor...

  18. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Merrigan, M. A.; Elder, M. G.; Sena, J. T.; Keddy, E. S.; Silverstein, C. C.

    1992-01-01

    Analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, it is found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700 F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90,000 ft lowers the peak hot-section temperatures to around 2800 F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature.

  19. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  20. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  1. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    SciTech Connect

    Hauck, J. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Stich, D. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Heidemeyer, P. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Bastian, M. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Hochrein, T. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  2. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Stich, D.; Heidemeyer, P.; Bastian, M.; Hochrein, T.

    2014-05-01

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  3. The design of a multimegawatt heat pipe radiator for an inertial fusion rocket powered manned Mars mission

    NASA Technical Reports Server (NTRS)

    Murray, K. A.

    1988-01-01

    A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).

  4. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  5. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  6. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  7. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  8. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  9. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... within cargo tanks and cargo piping systems. (a) Each vessel must have a piping system for purging each... remaining after purging. (c) For cargo tanks certificated to carry flammable gases, the piping system must allow purging the tank of flammable vapors before air is introduced and purging the tank of air...

  10. Design basis for protection of light water nuclear power plants against effects of postulated pipe rupture

    SciTech Connect

    Not Available

    1981-01-01

    This standard addresses the design bases for light water reactor, nuclear power plant structures and components essential for the protection of public health and safety from the potential adverse effects of pipe whip, jet impingement, pressurization of compartments outside containment, environmental conditions and flooding associated with a postulated pipe rupture. The design bases for missile protection and the design bases for containment pressurization are not within this standard.

  11. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.

    PubMed

    Al-Jasser, A O

    2007-01-01

    Water quality can deteriorate in the transmission and distribution system beyond the treatment plant. Minimizing the potential for biological regrowth can be attained by chlorinating the finished water. While flowing through pipes, the chlorine concentration decreases for different reasons. Reaction with the pipe material itself and the reaction with both the biofilm and tubercles formed on the pipe wall are known as pipe wall demand, which may vary with pipe parameters. The aim of this paper was to assess the impact of the service age of pipes on the effective chlorine wall decay constant. Three hundred and two pipe sections of different sizes and eight different pipe materials were collected and tested for their chlorine first-order wall decay constants. The results showed that pipe service age was an important factor that must not be ignored in some pipes such as cast iron, steel, cement-lined ductile iron (CLDI), and cement-lined cast iron (CLCI) pipes especially when the bulk decay is not significant relative to the wall decay. For the range of the 55 years of pipe service age used in this study, effective wall decay constants ranged from a decrease by -92% to an increase by +431% from the corresponding values in the recently installed pipes. The effect of service age on the effective wall decay constants was most evident in cast iron pipes, whereas steel pipes were less affected. Effective chlorine wall decay for CLCI and CLDI pipes was less affected by service age as compared to steel and cast iron pipes. Chlorine wall decay constants for PVC, uPVC, and polyethylene pipes were affected negatively by pipe service age and such effect was relatively small.

  12. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  13. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  14. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  15. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  16. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  17. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  18. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  19. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  20. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  1. For Piping Corrosive Wastes--Glass, Metal Or Plastic? Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J. Clyde

    1964-01-01

    Materials (piping and joints) for waste-piping systems are evaluated and a material or materials best qualified for above ground service in health research facilities are recommended. Evaluation is based on cost and performance because the potential value of any material depends on its ability to compete in both areas. In general, the following…

  2. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-01

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the

  3. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  4. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    SciTech Connect

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  5. Description and orbit data of variable-conductance heat-pipe system for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Gedeon, L.

    1979-01-01

    A variable-conductance heat-pipe system (VCHPS) with methanol as the working fluid and a nitrogen and helium mixture as the control gas was used for the thermal control of a 200 W RF traveling wave tube of the Communication Technology Satellite. Three stainless steel heat pipes (one redundant) and an aluminum radiator were designed to transfer 196 watts for an evaporator temperature of 50 C. The system has operated for three years with no noticeable change in performance. On four occasions the heat pipes apparently deprimed. A short time after reducing the tube power, the heat pipes reprimed and the system continued to operate normally. The description, qualification testing, and orbit data of the VCHPS are presented.

  6. Panoramic optical annular staring inspection system for evaluating the inner surface of a pipe

    NASA Astrophysics Data System (ADS)

    Zhao, Liefeng; Feng, Huajun; Bai, Jian; Jin, Hao

    2008-01-01

    There should be flaws and defects on the inner surface during the producing period of a pipe, as well as contaminations and corrosions during the using period of it. A corresponding panoramic optical annular staring inspection system has been developed. It requires no rotating mechanism to exam the whole circumference of a cross section of the inner pipe surface at once, which results high speed inspection. There are two main subsystems in this inspection system, the panoramic optical annular staring imaging subsystem and driving robot subsystem. The Flat Cylinder Perspective (FCP) is the principle to image a panoramic annular view to a flat imagery, i.e. a cylinder of vision imaged is flat. Our imaging subsystem includes a panoramic annular lens (PAL), which is critical and used to implement the FCP, a series of image rotation lenses, a charge-coupled device (CCD) camera, and an illuminating light-emitting diode (LED) ring. The CCD camera sending the signal to a personal computer (PC) via VGA signal results a real time inspection. The driving robot subsystem is a fine designed complicated mechanism including a subassembly of stepper motor. It can drive the inspection system forward and backward continuously in the pipe along the axial direction. The experimental system reported in this paper has the following specifications: average detection resolution of 0.5 mm at the circumference direction and 1.0 mm at the axial direction of a pipe, and inspection speed of 15 mm/s.

  7. Design, Development, Pre-Testing and Preparation for Full Scale Cold Testing of a System for Field Remediation of Vertical Pipe Units at the Hanford Site 618-10 Burial Grounds -12495

    SciTech Connect

    Halliwell, Stephen

    2012-07-01

    At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items and augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)

  8. Large scale shaking table test on modal responses of 3-D piping system with friction support

    SciTech Connect

    Shimizu, Nobuyuki; Suzuki, Kohei; Watanabe, Tetsuya; Ogawa, Nobuyuki; Kobayashi, Hiroe

    1996-12-01

    Friction between pipe and supporting structure is generally known to reduce seismic responses of the piping system. Vibration tests using large-scale piping model of three dimensional configuration with friction support were carried out to evaluate reduction effect of piping response. The piping responses were governed by the first and the second mode of vibration. The test data of load and velocity via displacement showed that the mathematical model of friction in plane motion was reasonably described by f = {minus}{mu}N{nu}/{vert_bar}{nu}{vert_bar}, and was applicable to evaluate the response of the piping with friction support. A seismic response analysis procedure of the piping system with friction was developed by an approximate modal analysis and confirmed to be adequate to evaluate the piping response by comparing simulated results and test results, and consequently, response reduction effect due to friction was evaluated.

  9. Niobium 1% zirconium/potassium and titanium/potassium life-test heat pipe design and testing

    SciTech Connect

    Sena, J.T.; Merrigan, M.A.

    1989-01-01

    Experimental lifetime performance studies currently in progress use Niobium-1% Zirconium (Nb-1Zr) and Titanium (Ti) heat pipes with potassium (K) as the working fluid. A heat pipe life-test matrix has been developed for testing the heat pipes. Because the corrosion rates in alkali metal heat pipes are affected by temperature and working fluid evaporation flux, the variable parameters of the experimental matrix are established as steady operating temperature and input heat flux density. Total impurity inventory is a factor in corrosion rate so impurity levels are being evaluated in the heat pipe materials before and after testing. Eight Nb-1Zr/K heat pipes were designed, fabricated, and tested. Two of the heat pipes have completed testing whereas the other six are currently in test. These are gravity-assist heat pipes operating in a reflux mode. The heat pipes are tested by sets, one set of two and two sets of three heat pipes. Three Ti/K heat pipes are also in life test. These heat pipes are tested as a set in a horizontal position in a capillary pumped annular flow mode. Each of the heat pipes is encapsulated in a quartz vacuum container with a water calorimeter over the vacuum container for power throughput measurements. Thermocouples are attached to the heat pipes for measuring temperature. Heat input to the heat pipes is via an rf coil. The heat pipes are operating at between 800 and 900 K, with heat input fluxes of 13.8 to 30 W/sq cm. Of the Nb-1Zr/K heat pipes, two of the heat pipes have been in operation for 14,000 hours, three over 10,000 hours, and three over 7,000 hours. The Ti/K heat pipes have been in operation for 1,266 hours. 5 refs., 4 figs., 1 tab.

  10. Smart Pipe System for a Shipyard 4.0.

    PubMed

    Fraga-Lamas, Paula; Noceda-Davila, Diego; Fernández-Caramés, Tiago M; Díaz-Bouza, Manuel A; Vilar-Montesinos, Miguel

    2016-12-20

    As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification) are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS) and improve the overall accuracy of the system.

  11. Smart Pipe System for a Shipyard 4.0

    PubMed Central

    Fraga-Lamas, Paula; Noceda-Davila, Diego; Fernández-Caramés, Tiago M.; Díaz-Bouza, Manuel A.; Vilar-Montesinos, Miguel

    2016-01-01

    As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification) are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS) and improve the overall accuracy of the system. PMID:27999392

  12. Thermal Performance of High Temperature Titanium - Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Astrophysics Data System (ADS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity aided, in the horizontal position and elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  13. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  14. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  15. A method for certification of FRP piping fabricators for ASME B31.3 systems

    SciTech Connect

    Andersen, K.D.

    1996-07-01

    Cost-effective FRP piping is often the material of choice for transport of corrosive chemicals. Plant Managers and Engineers have great concern about the integrity of FRP piping joints and the safety of these systems. A specification requirement, in the bid documents, that all fabricators be Certified by the FRP piping manufacturer is a method to promote successful fabrication. A method is proposed, which is in accordance with ASME B31.3 Piping Code, to train and certify fabricators.

  16. Numerical Study on the Inhibition of Cavitation in Piping Systems

    NASA Astrophysics Data System (ADS)

    Byeon, Sun Seok; Lee, Sang Jun; Kim, Youn-Jea

    Abrupt closing valve in piping systems is sometimes resulted in cavitation due to the occurrence of high pressure difference. The bubbles generating by cavitation influence operating pressure and then those generate shock wave and vibration. These phenomena can consequentially cause to corrosion and erosion. So, the cavitation is the important factor to consider reliability of piping systems and mechanical lifetime. This paper investigated the various inhibition methods of cavitation in piping systems in which butterfly valves are installed. To prevent cavitation occurrence, it is desirable to analyze its characteristics between the upstream and downstream of process valve. Results show that the fluid velocity is fast when a working fluid passed through butterfly valve. The pressure of these areas was not only under saturation vapor pressure of water, but also cavitation was continuously occurred. We confirmed that the effect of existence of inserted orifice and influence to break condition under saturation vapor pressure of water. Results were graphically depicted by pressure distribution, velocity distribution, and vapor volume fraction.

  17. Laser-GMA Hybrid Pipe Welding System

    DTIC Science & Technology

    2007-11-01

    robust and industrially hardened robot teach pendant. • Improve head design with caliper -type adjustments to set relative orientation of GMAW torch to...over-travel. Powered axes shall have adjustable speed control and electrical limits as well. After the HLAW Head is positioned, brakes or other

  18. 46 CFR 108.447 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 108.447 Section 108.447 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.447 Piping. (a) Each pipe,...

  19. CTS TEP thermal anomalies: Heat pipe system performance

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1977-01-01

    A part of the investigation is summarized of the thermal anomalies of the transmitter experiment package (TEP) on the Communications Technology Satellite (CTS) which were observed on four occasions in 1977. Specifically, the possible failure modes of the variable conductance heat pipe system (VCHPS) used for principal thermal control of the high-power traveling wave tube in the TEP are considered. Further, the investigation examines how those malfunctions may have given rise to the TEP thermal anomalies. Using CTS flight data information, ground test results, analysis conclusions, and other relevant information, the investigation concentrated on artery depriming as the most likely VCHPS failure mode. Included in the study as possible depriming mechanisms were freezing of the working fluid, Marangoni flow, and gas evolution within the arteries. The report concludes that while depriming of the heat pipe arteries is consistent with the bulk of the observed data, the factors which cause the arteries to deprime have yet to be identified.

  20. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manifold to close within 30 seconds without creating excessive stresses on the system, the layout must be reconfigured to reduce the stresses to a safe level. (f) Each waterfront facility handling LHG that...

  1. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manifold to close within 30 seconds without creating excessive stresses on the system, the layout must be reconfigured to reduce the stresses to a safe level. (f) Each waterfront facility handling LHG that...

  2. Design of ceramic fabric heat pipe with water working fluid

    NASA Astrophysics Data System (ADS)

    Antoniak, Z. I.; Bates, J. M.; Webb, B. J.

    1989-08-01

    A novel class of space radiators, constructed of ceramic fabric materials selected for their high-temperature strength and optical characteristics, is under development at Pacific Northwest Laboratory (PNL). An earlier study indicated that heat pipe radiators constructed of fabric tubes lined with metal foil will have superior performance characteristics with lower mass than most other radiator types. Test results confirm these earlier predictions.

  3. Design, manufacturing and testing of a portable vaccine carrier box employing thermoelectric module and heat pipe.

    PubMed

    Putra, N

    2009-01-01

    Vaccination is a highly effective method and a cheap tool for preventing certain infectious diseases. Routine immunization programs protect most of the world's children from diseases that claim millions of lives each year. There are many practical problems impeding vaccine delivery, especially to maintain the cold chain system, which is the means for storing and transporting vaccines in a potent state from the manufacturer to the person being immunized at a temperature of 2-8 degrees C. The development of the solid state thermoelectric cooling system has permitted newly developed packages that are capable of meeting many requirements and applications where environmental concern, size, weight, performance and noise are an issue. This paper describes the development of a vaccine carrier box. A combination of a thermoelectric module and a heat pipe is used for the cooling system. The position of the heat pipe as a heat sink on the hot side of the thermoelectric module will enhance the thermoelectric performance. The minimum temperature in the cabin of the vaccine carrier box reached -10 degrees C, which indicates that the design of the vaccine carrier box can maintain the vaccine at desired temperatures.

  4. The Vibration and Acoustic Properties of Pipes with Squeeze Film and Some Friction Damping Systems.

    NASA Astrophysics Data System (ADS)

    Li, Meng

    1991-01-01

    Available from UMI in association with The British Library. This study was motivated by the need to decrease the noise radiation and vibration of pipework in power plants, particularly at elevated temperature. A thin circular cylindrical shell has been studied theoretically. The exact solutions for natural frequencies of the symmetrical and anti-symmetrical modes for cylindrical shell vibration have been derived in matrix form. Using this theory, numerical results for natural frequencies and mode shapes with free-free, clamped-free and clamped -clamped boundary conditions have been evaluated. Based upon studies of the thin cylindrical shell theory and the physical phenomenon of air film damping of two parallel plates, the theory for predicting the loss factor of an annular double pipe damping system with a very small air gap has been developed. Flugge's thin shell equations of motion and the Navier-Stokes equation for viscous fluid were employed in the analysis. The fluid motion was expressed in terms of the shell displacement by using a travelling wave type solution. The solutions gave the fluid velocity profiles and stresses in the clearance between two cylindrical, concentric shells. According to the definition of energy dissipated in the fluid, an equation was derived for predicting the loss factor of the whole damping system. Based on the principle of similarity, an optimum design for a system generating squeeze film damping in pipes has been made. The theory was then extended to study the damping caused by various kinds of viscous fluid in the gap between the two annular structures. Experiments have been carried out to investigate the loss factor of the double pipe system with in-phase and out-of-phase modes of vibration. Friction damping has been studied experimentally on a thin-walled pipe with a coiled steel spring or wire rope attached or with a mineral wool wrapping. Flexural vibration was examined in the experiments. This study included an experimental

  5. Performance Analysis of Potassium Heat Pipes Radiator for HP-STMCs Space Reactor Power System

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-04

    A detailed design and performance results of C-C finned, and armored potassium heat pipes radiator for a 110 kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The radiator consists of two sections; each serves an equal number of STMCs and has 162 longitudinal potassium heat pipes with 0.508 mm thick C-C fins. The width of the C-C fins at the minor diameter of the radiator is almost zero, but increases with distance along the radiator to reach 3.7 cm at the radiator's major diameter. The radiator's heat pipes (OD = 2.42 cm in front and 3.03 cm in rear) have thin titanium (0.0762 mm thick) liners and wicks (0.20 mm thick with an effective pore radius of 12-16 {mu}m) and a 1.016 mm thick C-C wall. The wick is separated from the titanium liner by a 0.4 mm annulus filled with liquid potassium to increase the capillary limit. The outer surfaces of the heat pipes in the front and rear sections of the radiator are protected with a C-C armor that is 2.17 mm and 1.70 mm thick, respectively. The inside surface of the heat pipes in the front radiator is thermally insulated while the C-C finned condensers of the rear heat pipes are exposed, radiating into space through the rear opening of the radiator cavity. The heat pipes in both the front and the rear radiators have a 1.5 m long evaporator section and each dissipates 4.47 kW while operating at 43.6% of the prevailing sonic limit. The front and rear radiator sections are 5.29 m and 2.61 m long with outer surface area and mass of 47.1 m2 and 314.3 kg, and 39.9 m2 and 243.2 kg, respectively. The total radiator is 7.63 m long and has minor and major diameters of 1.48 m and 5.57 m, respectively, and a total surface area of 87 m2; however, the effective radiator area, after accounting for heat rejection through the rear of the radiator cavity, is 98.8 m2. The radiator's total mass including the C-C armor is 557.5 kg and the specific area and specific mass are 6

  6. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis

    2005-02-01

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called "HPR-1".

  7. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 128.320 of this subpart, a Class II non-vital piping-system need not meet the requirements for materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be...

  8. Instabilities of a spatial system of articulated pipes conveying fluid

    NASA Technical Reports Server (NTRS)

    Bohn, M. P.; Herrmann, G.

    1974-01-01

    A spatial system of two articulated pipes conveying fluid is examined analytically and experimentally. As the flow rate is increased, stable equilibrium may be lost by either divergence (static buckling) or by flutter (oscillations with increasing amplitude), depending upon the value of an angle beta which measures the 'out-of-planeness' of the system. It is found that in the range O less than beta less than 90 deg there exists a transition value below which stability is lost by flutter and above which stability is lost by divergence.

  9. Field Tests of Plastic Pipe for Airport Drainage Systems.

    DTIC Science & Technology

    1979-12-01

    over the pipe were generally less than 3 percent. The one exception was the case of the 10-in. PE pipe with a cover depth of 15 in. which had a...diameters. All pipe installations except No. 18 were laid out with an average distance of 7 ft between pipes at the center of the pipe length. Pipe 18 was...within the trench so that gages (in the case of Test Site No. 1) were in the proper location, and several elevation mea- surements were made along the top

  10. Pipe inspection system of a pipe by three-modes guide wave using polarized-transverse wave EMATs

    NASA Astrophysics Data System (ADS)

    Murayama, Riichi; Weng, Jie; Kobayashi, Makiko

    2015-03-01

    Conventional non-destructive inspection of a pipe by ultrasonic wave has difficulty with inspection efficiency because it is a technique to apply by using longitudinal wave or transverse wave which propagates to the thickness direction of a pipe for smaller area than an ultrasonic sensor. However, a guide wave is provided with a characteristic of long-range propagation to the axis direction of a pipe, so it is possible to detect a lot of defects through wide range of a pipe at once. At present, there is a technique to generate a guide wave by a piezoelectric element (PZT). Such transducer has some difficulties to use in industrial application, which is required high viscosity couplant. Therefore we tried to develop a guide wave inspection system to use an electromagnetic ultrasonic transducer (EMAT) which doesn't require any couplant. First, we could confirm that guide wave can be transmitted and received in aluminum pipe by a shear horizontal polarized-EMAT, and we have confirmed the most suitable transmission and reception EMAT-specification and the most suitable drive condition to generate for L, T and F-mode guide wave. Finally, we have evaluated the detective performance using the developed system.

  11. Design and development of a shape memory alloy activated heat pipe-based thermal switch

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Notardonato, W. U.; Meneghelli, B. J.; Vaidyanathan, R.

    2013-10-01

    This work reports on the design, fabrication and testing of a thermal switch wherein the open and closed states were actuated by shape memory alloy (SMA) elements while heat was transferred by a two-phase heat pipe. The motivation for such a switch comes from NASA’s need for thermal management in advanced spaceport applications associated with future lunar and Mars missions. As the temperature can approximately vary between -233 and 127 ° C during lunar day/night cycles, the switch was designed to reject heat from a cryogen tank into space during the night cycle while providing thermal isolation during the day cycle. A Ni47.1Ti49.6Fe3.3 (at.%) alloy that exhibited a reversible phase transformation between a trigonal R-phase and a cubic austenite phase was used as the sensing and actuating elements. Thermomechanical actuation, accomplished through an antagonistic spring system, resulted in strokes up to 7 mm against bias forces of up to 45 N. The actuation system was tested for more than thirty cycles, equivalent to one year of operation. The thermal performance, accomplished via a variable length, closed two-phase heat pipe, was evaluated, resulting in heat transfer rates of 13 W using pentane and 10 W using R-134a as working fluids. Experimental data were also compared to theoretical predictions where possible. Direct comparisons between different design approaches of SMA helical actuators, highlighting the effects of the helix angle, were carried out to give a layout of more accurate design methodologies.

  12. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.

    PubMed

    Zhang, Zhe; Stout, Janet E; Yu, Victor L; Vidic, Radisav

    2008-01-01

    Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.

  13. Design of passively aerated compost piles: Vertical air velocities between the pipes

    SciTech Connect

    Lynch, N.J.; Cherry, R.S.

    1996-09-01

    Passively aerated compost piles are built on a base of porous materials, such as straw or wood chips, in which perforated air supply pipes are distributed. The piles are not turned during composting, nor is forced-aeration equipment used, which significantly reduces the operating and capital expenses associated with these piles. Currently, pile configurations and materials are worked out by trial and error. Fundamentally based design procedures are difficult to develop because the natural convection air flow rate is not explicitly known, but rather is closely coupled with the pile temperature. This paper develops a mathematical model to analytically determine the maximum upward air flow velocity over an air supply pipe and the drop in vertical velocity away from the pipe. This model has one dimensionless number, dependent on the pile and base properties, which fully characterizes the velocity profile between the pipes. 9 refs., 4 figs., 1 tab.

  14. A flexible variable conductance heat pipe design for temperature control of spacecraft equipment

    NASA Astrophysics Data System (ADS)

    Hwangbo, Han; Joost, T. E.

    1988-06-01

    The paper describes a variable conductance heat pipe design with a flexible joint. The heat pipe is developed for temperature control of high power electronics using a deployable space radiator. The evaporator section of the heat pipe is attached to the baseplate of the electronics. The condenser section of the heat pipe and the reservoir of noncondensible gas are attached to the deployable radiator. During the ascent phase of the flight the radiator is stowed for minimum heat rejection. During the final orbit period the radiator is deployed for full operation. An analytical thermal model of a Flexible Variable Conductance Heat Pipe (FVCHP) is developed to predict the heat transport capacity and the location of the noncondensible gas front in the heat pipe. Also, transient performance of the FVCHP in an orbital environment with electrical feedback temperature control is predicted. The analysis results indicate that a FVCHP radiator can reject at least twice the heat of a single sided fixed radiator of the same size. Results also indicate that control of the evaporator within 75 + or - 5 F is feasible for a unit with 100 W dissipation using the FVCHP radiator design presented.

  15. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  16. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  17. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  18. Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design

    SciTech Connect

    Vanderhoff, J. F.; Rao, G. V.; Stein, A.

    2012-07-01

    The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Due to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)

  19. Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

    1986-01-01

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

  20. Balance-of-plant options for the Heat-Pipe Power System

    SciTech Connect

    Berte, M.; Capell, B.

    1997-09-01

    The Heat-Pipe Power System (HPS) is a near-term, low-cost space fission power system with the potential for utilizing various option for balance-of-plant options. The following options have been studied: a low-power thermoelectric design (14-kWe output), a small Brayton cycle system (60--75 kWe), and a large Brayton cycle system (250 kWe). These systems were analyzed on a preliminary basis, including mass, volume, and structure calculations. These analyses have shown that the HPS system can provide power outputs from 10--250 kWe with specific powers of {approximately} 14 W/kg for a 14-kWe model to {approximately} 100 W/kg for a 250-kWe model. The system designs considered in this study utilize a common component base to permit easy expansion and development.

  1. A new electromagnetic acoustic transducer design for generating torsional guided wave modes for pipe inspections

    NASA Astrophysics Data System (ADS)

    Hill, Samuel; Dixon, Steve; Sri Harsha Reddy, K.; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    Guided waves inspection is a well-established method for the long-range ultrasonic inspection of pipes. Guided waves, used in a pulse-echo arrangement, can inspect a large range of the pipe from a single point as the pipe structure carries the waves over a large distance due to the relatively low attenuation of the wave modes. However, the complexity of the dispersion characteristics of these pipe guided wave modes are well known, and can lead to diffculty interpreting the obtained results. The torsional family of guided wave modes are generally considered to have much simpler dispersion characteristics; especially the fundamental T(0,1) mode, which is nominally non-dispersive, making it particularly useful for guided wave inspection. Torsional waves have been generated by a circumferential ring of transducers to approximate an axi-symmetric load to excite this T(0, 1) mode. Presented here is a new design of Electromagnetic Acoustic Transducer (EMAT) that can generate a T(0, 1) as a single transducer, rather than a circumferential array of transducers that all need to be excited in order to generate an axisymmetric force. The EMAT consists of a periodic permanent magnet array and a single meander coil, meaning that the excitation of the torsional mode is greatly simplified. The design parameters of this new EMAT are explored, and the ability to detect notch defects on a pipe is demonstrated.

  2. Solving FRP piping and ducting problems

    SciTech Connect

    Britt, F.

    1997-12-01

    This paper presents an analytical approach to the design and installation of FRP piping and duct systems that can be used by piping designers and engineers to prevent failures. Design, installation, testing, and start up procedures will be presented that have proven to provide safe and long lasting service. Procedures offered will insure the most cost effective system based on operational requirements.

  3. NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2008-01-01

    In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.

  4. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  5. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  6. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  7. The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1988-01-01

    The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat pipe as the link between the engine and the heat source. Two inexpensive verification tests are proposed. The SSE heat exchanger module is described and the operating conditions for the module are outlined. The design process of the heat exchanger modules, including the sodium heat pipe, is briefly described. Similarities between the proposed SSE heat exchanger modules and the LeRC test modules for two test engines are presented. The benefits and weaknesses of using a sodium heat pipe to transport heat to a Stirling engine are discussed. Similarly, the problems encountered when using a true heat pipe, as opposed to a more simple reflux boiler, are described. The instruments incorporated into the modules and the test program are also outlined.

  8. Engineer Design of a Mono-Mooring System.

    DTIC Science & Technology

    1966-01-01

    PREPARATION OF CARGO PRODUCT PIPINGVI. OPERATIONAL TEST PROCEDURES ,4?JL) J 6.0 INTRODUCTION 6.1 TESTS AND TRIALS 1 6.2 MACHINERY 1 6.3 ELECTRICAL6.4 PIPING ...design 1 2. Preliminary piping design 3. Preliminary mooring system design 4. Preliminary swivel design I 5. Anchor system component selection 6...outboar d flan ge of buoy pro duct piping to tanker mani fold durin g cargo transfer. Floats Cylindrically-shaped floats which provide necessary buoy- ancy

  9. Design, fabrication and test of liquid metal heat-pipe sandwich panels

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Camarda, C. J.

    1983-01-01

    Integral heat-pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich panel construction, were fabricated and tested. The designs utilize two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and potassium or sodium as the working fluid. Panels were tested by radiant heating, and the results indicate successful heat pipe operation at temperatures of approximately 922K (1200F). These panels, in addition to solving potential thermal stress problems in an Airframe-Integrated Scramjet Engine, have potential applications as cold plates for electronic component cooling, as radiators for space platforms, and as low distortion, large area structures.

  10. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  11. Alpha detection in pipes using an inverting membrane scintillator

    SciTech Connect

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  12. Development and test of a cryogenic pulsating heat pipe and a pre-cooling system

    NASA Astrophysics Data System (ADS)

    Bonnet, Fabien; Gully, Philippe; Nikolayev, Vadim

    2012-06-01

    The needs of thermal links in cryogenic applications are increasing, especially because of the use of cryocoolers which offer a reduced size cold finger. The Pulsating Heat Pipe (PHP) is a passive two-phase high performance thermal link. Like the conventional heat pipe, it features a closed tube filled with a two-phase fluid able to transfer heat from its hot part (evaporator) to the cold part (condenser). A general problem for any two-phase cryogenic thermal link is the pre-cooling of the evaporator to ensure the presence of liquid inside the evaporator to start the flow motion. In conventional heat pipes, this problem is by passed by the wick but in the case of PHPs it has to be specially addressed. We have designed, manufactured and tested a helium PHP associated to a novel pre-cooling system. The cool down time of the PHP evaporator is reduced significantly. The maximum transferred power of the PHP is 145 mW with a cold source at 4.2 K.

  13. 46 CFR 182.710 - Piping for vital systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... systems; (4) Bilge system; (5) Steering system; (6) Propulsion system and its necessary auxiliaries and... subject to a pressure of more than 1,034 kPa (150 psig), be designed, fabricated, and inspected...

  14. 46 CFR 182.710 - Piping for vital systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... systems; (4) Bilge system; (5) Steering system; (6) Propulsion system and its necessary auxiliaries and... subject to a pressure of more than 1,034 kPa (150 psig), be designed, fabricated, and inspected...

  15. 46 CFR 182.710 - Piping for vital systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... systems; (4) Bilge system; (5) Steering system; (6) Propulsion system and its necessary auxiliaries and... subject to a pressure of more than 1,034 kPa (150 psig), be designed, fabricated, and inspected...

  16. Development of three-pipe DHC system with once-through domestic hot water supply

    SciTech Connect

    Not Available

    1991-03-01

    Wide use of computers in the United States and installation of different heat recovery systems in buildings reduce the requirements for heating. At the same time, heating, cooling and domestic hot water are often required simultaneously or in a daily cycle (morning heating and afternoon cooling). Also at any given time, some buildings in a service area may require heating, while others require cooling. The present method of serving these needs is the use of four-pipe system with supply and return pipes for heating and domestic hot water service and supply and return pipes for cooling. Both such systems typically circulate water from the district heating and cooling (DHC) plant through user heat exchangers back to the DHC plant in a closed cycle. In order to reduce costs, a three-pipe system is proposed. One pipe supplies hot water for heating and domestic hot water, the second pipe supplies chilled water, and the third pipe is a common return. The purpose of this project was to perform a preliminary investigation of the three-pipe system with once-through hot water supply. In order to accomplish this goal the following tasks have been performed: (1) Technical and economic analysis of the applicability of the three-pipe system in different climatic zones of the United States, (2) Assessment of the corrosion control methods and treatment in the DHC systems, (3) Assessment of the existing code requirements as applied to the three-pipe system with once-through water supply, and (4) Corrosion and water quality field tests in the Jamestown District Heating System as applicable to the once-through water supply. 10 refs., 11 figs.

  17. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  18. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this compartment by the use of a hand portable bilge pump or other equipment, and such equipment is... bilge pipe. (c) Except when individual pumps are provided for separate spaces, individual bilge suction.... (d) A bilge pipe piercing the collision bulkhead must be fitted with a screw-down valve located...

  19. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this compartment by the use of a hand portable bilge pump or other equipment, and such equipment is... bilge pipe. (c) Except when individual pumps are provided for separate spaces, individual bilge suction.... (d) A bilge pipe piercing the collision bulkhead must be fitted with a screw-down valve located...

  20. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this compartment by the use of a hand portable bilge pump or other equipment, and such equipment is... bilge pipe. (c) Except when individual pumps are provided for separate spaces, individual bilge suction.... (d) A bilge pipe piercing the collision bulkhead must be fitted with a screw-down valve located...

  1. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this compartment by the use of a hand portable bilge pump or other equipment, and such equipment is... bilge pipe. (c) Except when individual pumps are provided for separate spaces, individual bilge suction.... (d) A bilge pipe piercing the collision bulkhead must be fitted with a screw-down valve located...

  2. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this compartment by the use of a hand portable bilge pump or other equipment, and such equipment is... bilge pipe. (c) Except when individual pumps are provided for separate spaces, individual bilge suction.... (d) A bilge pipe piercing the collision bulkhead must be fitted with a screw-down valve located...

  3. Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Kondracka, Marta

    2016-12-01

    This paper aims to provide a more comprehensive characterization of piping systems in mountainous areas under a temperate climate using geomorphological mapping and geophysical methods (electrical resistivity tomography - ERT and ground penetrating radar - GPR). The significance of piping in gully formation and hillslope hydrology has been discussed for many years, and most of the studies are based on surface investigations. However, it seems that most surface investigations underestimate this subsurface process. Therefore, our purpose was to estimate the scale of piping activity based on both surface and subsurface investigations. We used geophysical methods to detect the boundary of lateral water movement fostering pipe development and recognize the internal structure of the underlying materials. The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mountains. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a mean depth of about 0.7-0.8 m. The geophysical techniques that were used are shown to be successful in identifying pipes. GPR data suggest that the density of piping systems is much larger than that detectible from surface observations alone. Pipe length can be > 6.5-9.2% (maximum = 49%) higher than what surface mapping suggests. Thus, the significance of piping in hillslope hydrology and gully formation can be greater than previously assumed. These results also draw attention to the scale of piping activity in the Carpathians, where this process has been neglected for many years. The ERT profiles reveal areas affected by piping as places of higher resistivity values, which are an effect of a higher content of air-filled pores (due to higher soil porosity, intense biological activity, and well-developed soil structure). In addition, the ERT profiles show that the pipes in the study area develop at the soil-bedrock interface, probably above the layers of shales or mudstones which create a water restrictive layer

  4. Computational simulations of frictional losses in pipe networks confirmed in experimental apparatusses designed by honors students

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas A.; Hynes, Eric; Kutz, April

    2015-11-01

    Lectures in introductory fluid mechanics at NIU are a combination of students with standard enrollment and students seeking honors credit for an enriching experience. Most honors students dread the additional homework problems or an extra paper assigned by the instructor. During the past three years, honors students of my class have instead collaborated to design wet-lab experiments for their peers to predict variable volume flow rates of open reservoirs driven by gravity. Rather than learn extra, the honors students learn the Bernoulli head-loss equation earlier to design appropriate systems for an experimental wet lab. Prior designs incorporated minor loss features such as sudden contraction or multiple unions and valves. The honors students from Spring 2015 expanded the repertoire of available options by developing large scale set-ups with multiple pipe networks that could be combined together to test the flexibility of the student team's computational programs. The engagement of bridging the theory with practice was appreciated by all of the students such that multiple teams were able to predict performance within 4% accuracy. The challenges, schedules, and cost estimates of incorporating the experimental lab into an introductory fluid mechanics course will be reported.

  5. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  6. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  7. Cryogenic & Gas System Piping Pressure Tests (A Collection of PT Permits)

    SciTech Connect

    Rucinski, Russell A.; /Fermilab

    2002-08-22

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  8. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range

    SciTech Connect

    Allam, E.M.; McKean, A.L. )

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulated with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.

  9. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range. Final report

    SciTech Connect

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulated with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.

  10. Performance demonstration of a high-power space-reactor heat-pipe design

    SciTech Connect

    Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

    1983-01-01

    Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500/sup 0/K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm/sup 2/ at 1465/sup 0/K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm/sup 2/. The extrapolated limit for the heat pipe at its 1500/sup 0/K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm/sup 2/. Sonic and capillary limits for the design were investigated in the 1100 to 1500/sup 0/K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed.

  11. A 2.2 sq m /24 sq ft/ self-controlled deployable heat pipe radiator - Design and test

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    An all heat pipe, deployable radiator has been developed which can effectively control pumped fluid loop temperatures under varying loads using variable conductance panel heat pipes. The 2.2 sq m (24 sq ft) aluminum panel can be coupled to either a fluid header or a flexible heat pipe header capable of transporting 850 watts in a 90-deg bent configuration. Test results support the feasibility of using this system to passively control Freon-21 loop temperatures.

  12. Inhibited glycols in piping distribution systems -- some disasters that could have been easily prevented

    SciTech Connect

    Denkmann, J.L.

    1997-12-31

    Use of an inhibited glycol (IG) as a freezing point depressant is common. Numerous chilled-water piping distribution systems, particularly in northern climates, use a small IG concentration to prevent rupture of chilled-water coils during winter months. Many ice-based thermal storage systems use higher IG concentrations as the primary heat transfer fluid for freezing water in the storage modules. When a system has been designed for inclusion of an IG fluid and all necessary precautions are taken, these systems perform at expected capacity and without difficulty. But there have been some rather notable disasters, all of which could have been prevented had proper precautions been taken. This paper will address several systems that are indicative of the first corollary of Murphy`s Law, which states, The cost of the fix varies to the cube of the cost had the system been correctly built from the outset.

  13. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Diego Fonseca, Luis; Miller, Franklin; Pfotenhauer, John

    2015-12-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load.

  14. Transient performance investigation of a space power system heat pipe

    SciTech Connect

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1986-01-01

    Start-up, shut-down, and peak power tests have been conducted with a molybdenum-lithium heat pipe at temperatures to 1500 K. The heat pipe was radiation coupled to a water cooled calorimeter for the tests with rf induction heating used for the input to the evaporator region. Maximum power throughput in the tests was 36.8 kw corresponding to a power density of 23 kw/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The corresponding evaporator flux density was approximately 150 w/cm/sup 2/ over an evaporator length of 40 cm at peak power. Condenser length for the tests was approximately 3.0 m. A variable geometry radiation shield was used to vary the load on the heat pipe during the tests. Results of the tests showed that liquid depletion in the evaporator region of the heat pipe could occur in shut-down and prevent restart of the heat pipe. Changes in surface emissivity of the heat pipe condenser surface were shown to affect the shut-down and re-start limits. 12 figs.

  15. Flexible retractable cold water pipe for an ocean thermal energy conversion system

    SciTech Connect

    Wenzel, J.G.; Trimble, L.C.

    1985-02-05

    A cold water pipe for an ocean thermal energy conversion (OTEC) system comprises a tubular membrane made of a fabric such as a canvas, which is substantially impervious to flowing water. A proximal end of the pipe is secured to a surface structure such as a ship, and a distal end of the pipe is extendible from the surface structure to a selected ocean depth. The pipe functions as a conduit through which cold water from the selected ocean depth can be drawn to the surface structure for use in a thermodynamic process of the OTEC system. The distal end of the pipe can be quickly retracted to the surface structure when it becomes desirable to move the surface structure.

  16. Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1992-01-01

    Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.

  17. TESTING AND PERFORMANCE EVALUATION OF AN INNOVATIVE INTERNAL PIPE SEALING SYSTEM FOR WASTEWATER MAIN REHABILITATION

    EPA Science Inventory

    Many utilities are seeking emerging and innovative rehabilitation technologies to extend the service life of their infrastructure systems. This report describes the testing and performance evaluation of an internal pipe sealing system, which provides a permanent physical seal fo...

  18. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  19. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  20. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  1. Analysis of two-phase flow included vibrations in piping systems

    SciTech Connect

    Hiramatsu, T.; Komura, Y.; Yano, S.

    1982-01-01

    The purpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a horizontally supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. A theoretical analysis is achieved using the transfer method for vibration responses of the system excited by the forces of traveling liquid piston and the momentum change of two-phase flow. Comparing experimental and theoretical studies, the author concluded that the vibrational behavior of piping systems conveying two-phase flowing fluid can be predicted quantitatively. 8 refs.

  2. American National Standard: design basis for protection of light water nuclear power plants against effects of postulated pipe rupture

    SciTech Connect

    Not Available

    1980-12-31

    This standard addresses the design bases for light water reactor, nuclear power plant structures and components essential for the protection of public health and safety from the potential adverse effects of pipe whip, jet impingement, pressurization of compartments outside containment, environmental conditions and flooding associated with a postulated pipe rupture. The design bases for missile protection and the design bases for containment pressurization are not within this standard.

  3. Some considerations for establishing seismic design criteria for nuclear plant piping

    SciTech Connect

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping & Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI.

  4. Risk management and maintenance optimization of nuclear reactor cooling piping system

    NASA Astrophysics Data System (ADS)

    Augé, L.; Capra, B.; Lasne, M.; Bernard, O.; Bénéfice, P.; Comby, R.

    2006-11-01

    Seaside nuclear power plants have to face the ageing of nuclear reactor cooling piping systems. In order to minimize the duration of the production unit shutdown, maintenance operations have to be planned well in advance. In a context where owners of infrastructures tend to extend the life span of their goods while having to keep the safety level maximum, Oxand brings its expertise and know-how in management of infrastructures life cycle. A dedicated methodology relies on several modules that all participate in fixing network optimum replacement dates: expertise on ageing mechanisms (corrosion, cement degradation...) and the associated kinetics, expertise on impacts of ageing on functional integrity of piping systems, predictive simulation based on experience feedback, development of monitoring techniques focused on actual threats. More precisely, Oxand has designed a patented monitoring technique based on optic fiber sensors, which aims at controlling the deterioration level of piping systems. This preventive maintenance enables the owner to determine criteria for network replacement based on degradation impacts. This approach helps the owner justify his maintenance strategy and allows him to demonstrate the management of safety level. More generally, all monitoring techniques used by the owners are developed and coupled to predictive simulation tools, notably thanks to processes based on Bayesian approaches. Methodologies to evaluate and optimize operation budgets, depending on predictions of future functional deterioration and available maintenance solutions are also developed and applied. Finally, all information related to infrastructure ageing and available maintenance options are put together to reach the right solution for safe and performing infrastructure management.

  5. 46 CFR 182.710 - Piping for vital systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Steering system; (6) Propulsion system and its necessary auxiliaries and controls; (7) Ship's service and...Pa (150 psig), be designed, fabricated, and inspected in accordance with the principles of ANSI B...

  6. 46 CFR 182.710 - Piping for vital systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Steering system; (6) Propulsion system and its necessary auxiliaries and controls; (7) Ship's service and...Pa (150 psig), be designed, fabricated, and inspected in accordance with the principles of ANSI B...

  7. A Versatile Inspection System for Pipe Structure Using Ultrasonic Waves Propagation Imager

    NASA Astrophysics Data System (ADS)

    Truong, T. C.; Lee, J. R.

    2015-07-01

    Pipe structure is vulnerable to many types of damage, such as flow-accelerated corrosion, crack, and in the case of multi-layers pipe, debonding damage. A versatile damage inspection system is needed, where it must be easily used for variety types of pipeline, must have the capability to detect many types of damage, as well as must be able to carry out inspection in the working condition of the pipe system. In this paper, we present the Ultrasonic Propagation Imager (UPI) that demonstrated to meet those demands. The UPI system consists of a high speed Q-switched laser, a high speed scanning mirror, a DAQ system, and a changeable sensing system depends on applications. Advanced signal processing using ultrasonic wavenumber imaging algorithm and energy mapping were applied for damage detection of the pipe structures.

  8. Design, fabrication, and testing of a 30 kW(sub t) screen-wick heat-pipe solar receiver

    NASA Astrophysics Data System (ADS)

    Andraka, C. E.; Diver, R. B.; Wolf, D. A.

    Heat-Pipe reflux receivers have been identified as a desirable interface to couple a Stirling engine with a parabolic dish solar concentrator. The reflux receiver provides power uniformly and nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. Therefore, the heat pipe reflux receiver allows the receiver and heater head to be independently thermally optimized, leading to high receiver thermal transport efficiency. Dynatherm Corporation designed and fabricated a screen-wick heat-pipe receiver for possible application to the Cummins Power Generation, Inc. first-generation 4 kW(sub e) free-piston dish-Stirling system, which required up to 30 kW(sub t). The receiver features a composite absorber wick and a homogeneous sponge-wick on the aft dome to provide sodium to the absorber during hot restarts. The screen wick is attached to the absorber dome by spot welds. Refluxing troughs collect the condensate in a cylindrical condenser and return it directly to the absorber surface. The receiver was fabricated and lamp tested to 16 kW(sub t) throughput by Dynatherm. The receiver has been tested on Sandia's 60 kW(sub t) solar furnace to a throughput power of 27.5 kW(sub t) and vapor space temperature up to 780 C. Infrared thermography was used to monitor the entire absorber dome for impending dryout while the receiver was tested. The receiver was started using solar input, without the assistance of electrical pre-heaters. The power was extracted with a gas-gap cold-water calorimeter to simulate the operation of a Stirling engine. The receiver design, thermal performance analysis, flux distribution analysis, test results, and post-test analysis are presented.

  9. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    SciTech Connect

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.

  10. Seismic fragility evaluation of a piping system in a nuclear power plant by shaking table test and numerical analysis

    SciTech Connect

    Kim, M. K.; Kim, J. H.; Choi, I. K.

    2012-07-01

    In this study, a seismic fragility evaluation of the piping system in a nuclear power plant was performed. For the evaluation of seismic fragility of the piping system, this research was progressed as three steps. At first, several piping element capacity tests were performed. The monotonic and cyclic loading tests were conducted under the same internal pressure level of actual nuclear power plants to evaluate the performance. The cracks and wall thinning were considered as degradation factors of the piping system. Second, a shaking tale test was performed for an evaluation of seismic capacity of a selected piping system. The multi-support seismic excitation was performed for the considering a difference of an elevation of support. Finally, a numerical analysis was performed for the assessment of seismic fragility of piping system. As a result, a seismic fragility for piping system of NPP in Korea by using a shaking table test and numerical analysis. (authors)

  11. Design, cost and performance comparisons of several solar thermal systems for process heat. Volume 4: Energy centralization

    NASA Astrophysics Data System (ADS)

    Iannucci, J. J.; Hostetler, L. D.

    1981-03-01

    A large matrix of self-consistent piping systems for dishes, troughs, and central receivers are designed, costed, and analyzed for performance. The solar installations collect thermal energy at temperatures ranging from 2000 to 20000 F, at sizes of 3, 30, 300, and 1500 megawatts thermal. First order design differences and similaies are highlighted, with emphasis on the comparison of dish and trough piping. Dishes are found to inefficient piping networks due to the large length of piping required.

  12. Design and experimental analysis of a screened heat pipe for solar applications

    NASA Astrophysics Data System (ADS)

    Jafari, D.; Filippeschi, S.; Franco, A.; Di Marco, P.

    2015-11-01

    This paper summarizes the design, the construction and the preliminary results of a transient and steady state investigation of the heat transfer mechanisms of a horizontal heat pipe (HP). The experiments are performed using a custom-made HP constituted by copper tube with outer diameter and length as 35 mm and 510 mm, respectively, with the inner surface covered by three layers stainless steel mesh wick (100 mesh/inch). Water is used as a working fluid. The evaporator section is heated by electrical resistances wrapped around the tube and the cooling system consists of an insulated water manifold with inner diameter of 39 mm, connected to chilled water bath to maintain the inlet temperature of the circulating cooling water at 25 °C for various heat loads (30-100 W). The aims of this activity is to obtain data to verify the steady state HP analytical model already presented by authors at a fixed filling volume and to determine the effect of the heat transfer load on the heat transfer performance of screen mesh HPs. The heat transfer coefficients are determined using thermocouples on the outer wall and within the core of the HP. The agreement between the analytical results and the preliminary experimental data appears to be very good.

  13. IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995

    SciTech Connect

    Scott, P.; Olson, R.; Marschall, C.; Rudland, D.

    1997-02-01

    This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.

  14. System reliability analysis of granular filter for protection against piping in dams

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Sivakumar Babu, G. L.

    2015-09-01

    Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.

  15. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  16. BOA II: Asbestos Pipe-Insulation Removal Robot System. Innovative Technology Summary Report.

    SciTech Connect

    2001-09-01

    The objective of this task is to develop and demonstrate a mechanical, asbestos-removal system that can be remotely operated without a containment area. The technology, known as BOA, consists of a pipe-crawler removal head and a boom vehicle system with dual robots. BOA's removal head can be remotely placed on the outside of the pipe and can crawl along the pipe, removing lagging and insulation. The lagging and insulation is cut using a hybrid endmill water-jet cutter and then diced into 2-inch cube sections of ACM. These ACM sections are then removed from the pipe using a set of blasting fan- spray nozzles, vacuumed off through a vacuum hose, and bagged. Careful attention to vacuum and entrapment air flow ensures that the system can operate without a containment area while meeting local and federal standards for fiber count.

  17. Transient performance evaluation of an integrated heat pipe-thermal storage system

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    Transient performance tests of an integrated heat pipe-thermal storage system have been conducted. This system was developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System receiver for future power systems. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage canisters within the vapor space and an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. The transient performance tests determined the operating characteristics and power input limits of the integrated heat pipe-thermal storage unit under conditions corresponding to re-acquisition of the sun during emergence from eclipse conditions and to the initial start-up of the solar dynamic power system. The tests demonstrated that the heat pipe-thermal storage element is not limited under conditions corresponding to emergence from eclipse during normal orbital operations and the heat pipe will successfully start-up from the frozen condition with full input power at the onset. Details of the test procedures and results of the tests are presented in this paper.

  18. Thermal design of spiral heat exchangers and heat pipes through global best algorithm

    NASA Astrophysics Data System (ADS)

    Turgut, Oğuz Emrah; Çoban, Mustafa Turhan

    2017-03-01

    This study deals with global best algorithm based thermal design of spiral heat exchangers and heat pipes. Spiral heat exchangers are devices which are highly efficient in extremely dirty and fouling process duties. Spirals inherent in design maintain high heat transfer coefficients while avoiding hazardous effects of fouling and uneven fluid distribution in the channels. Heat pipes have wide usage in industry. Thanks to the two phase cycle which takes part in operation, they can transfer high amount of heat with a negligible temperature gradient. In this work, a new stochastic based optimization method global best algorithm is applied for multi objective optimization of spiral heat exchangers as well as single objective optimization for heat pipes. Global best algorithm is easy-to-implement, free of derivatives and it can be reliably applied to any optimization problem. Case studies taken from the literature approaches are solved by the proposed algorithm and results obtained from the literature approaches are compared with thosed acquired by GBA. Comparisons reveal that GBA attains better results than literature studies in terms of solution accuracy and efficiency.

  19. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2012-01-01

    GPM is a satellite constellation to study precipitation formed from a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA). The GPM Core Observatory, being developed and tested at GSFC, serves as a reference standard to unify precipitation measurements from the GPM satellite constellation. The Core Observatory carries an advanced radar/radiometer system to measure precipitation from space. The scientific data gained from GPM will benefit both NASA and JAXA by advancing our understanding of Earth's water and energy cycle, improving forecasts of extreme weather events, and extending our current capabilities in using accurate and timely precipitation information to benefit society.

  20. The case for design and build in piped medical gases.

    PubMed

    Cruddas, I

    1990-10-01

    The proposal is not new or radical in that currently many small works are and historical have been carried out implicitly utilising this system. Furthermore, this idea is not suggesting that M&E consultants be omitted from the process only that their role be redefined in terms of approving/checking proposals/installations/commissioning etc. There is an appropriate form of contract already available through JCT '80 why not utilise it? As is being done with boilers, water treatment, lifts etc. etc. The recommendation would improve quality, reduce time and cost, directly apportion accountability and involve the knowledgeable professionals within the industry.

  1. Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Douglas, Donya; Ku, Jentung; Kaya, Tarik

    1998-01-01

    This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.

  2. Transient heat pipe investigations for space power systems

    SciTech Connect

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm/sup 2/ over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs.

  3. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump and...) Number of pumps; and (2) Amount of piping. (b) Each piping system that is arranged to convey...

  4. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump and...) Number of pumps; and (2) Amount of piping. (b) Each piping system that is arranged to convey...

  5. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump and...) Number of pumps; and (2) Amount of piping. (b) Each piping system that is arranged to convey...

  6. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump and...) Number of pumps; and (2) Amount of piping. (b) Each piping system that is arranged to convey...

  7. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  8. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  9. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump and...) Number of pumps; and (2) Amount of piping. (b) Each piping system that is arranged to convey...

  10. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  11. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  12. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  13. High temperature heat pipe experiments in low earth orbit

    SciTech Connect

    Woloshun, K.; Merrigan, M.A.; Sena, J.T. ); Critchley, E. )

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

  14. High temperature heat pipe experiments in low earth orbit

    SciTech Connect

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-02-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

  15. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  16. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  17. Nonlinear Seismic Correlation Analysis of the JNES/NUPEC Large-Scale Piping System Tests.

    SciTech Connect

    Nie,J.; DeGrassi, G.; Hofmayer, C.; Ali, S.

    2008-06-01

    The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the US and Japan on seismic issues, the US Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using derailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.

  18. Noise and vibration control for HVAC and piping systems

    SciTech Connect

    Yerges, J.F.; Yerges, J.R.

    1997-10-01

    This article offers engineering advice on how to avoid noise and vibration problems through good mechanical engineering design and strategic communication with other members of the construction team. The design of ducted HVAC systems must address six distinct but related issues--airborne equipment noise, equipment vibration, ductborne fan noise, duct breakout noise, flow generated noise, and ductborne crosstalk. Each and every one of these issues must be addressed, or the design will fail.

  19. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  20. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests....

  1. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests....

  2. Hidden gully erosion - detection and characterization of piping systems using geomorphological and geophysical methods (GPR, ERT)

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Kondracka, Marta

    2016-04-01

    The significance of piping in gully formation and hillslope hydrology has been discussed for many years. However, piping as a subsurface erosion caused by water flowing through the soil is still considered as one of the most difficult erosion processes to study, because it occurs below the soil surface and traces of piping become visible on the surface only when a pipe roof collapses, or a pipe inlet or a pipe outlet has been located. Detection of pipes and their complex characterization is still a methodological challenge. Therefore, this study aims at a better detection and characterization of piping systems in a mountainous area under a temperate climate using geomorphological mapping and geophysical methods (ground penetrating radar and electrical resistivity tomography). The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mts. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a depth ranging from ca 0.70 to 1.00 m. The geomorphological mapping was carried out in the in the whole catchment (2.96 km2), whereas the geophysical survey was limited to two zones (zone A - ca 32 x 82 m, zone B - ca 58 x 115 m). In this study a standard RAMAC GPR system (Malå GeoScience) with shielded 500 MHz antenna was used. The electrical resistivity tomography (ERT) was performed using electrical imaging system LUND with Terrameter SAS 4000 produced by company ABEM. The ERT and GPR data were interpreted in the RES2DINV (Geotomo Software) and RadExplorer software (DECO Geophysical Ltd) respectively. In total, 3 longitudinal and 26 transverse GPR profiles and five ERTs were performed. The used geophysical techniques are shown to be successful in identifying pipes tested in the pilot catchment. Pipes identified by GPR and ERT were verified by the surface indicators (i.e. lowering of surface above pipes). The GPR and ERT applications suggest that piping systems density is much greater than could be detected from surface observation alone

  3. Numerical Investigation of the effect of adiabatic section location on thermal performance of a heat pipe network with the application in thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2015-11-01

    Latent heat thermal energy storage systems benefits from high energy density and isothermal storing process. However, the low thermal conductivity of the phase change material leads to prolong the melting or solidification time. Using a passive device such as heat pipes is required to enhance the heat transfer and to improve the efficiency of the system. In the present work, the performance of a heat pipe network specifically designed for a thermal energy storage system is studied numerically. The network includes a primary heat pipe, which transfers heat received from solar receiver to the heat engine. The excess heat is simultaneously delivered to charge the phase change material via secondary heat pipes. The primary heat pipe composed of a disk shape evaporator, an adiabatic section and a disk shape condenser. The adiabatic section can be either located at the center or positioned outward to the surrounding of the container. Here, the effect of adiabatic section position on thermal performance of the system is investigated. It was concluded that displacing the adiabatic section outwards dramatically increases the average temperatures of the condensers and reduces the thermal resistance of heat pipes.

  4. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  5. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Service. (4) Steel tubing shall have a minimum wall thickness of 0.032 inch for diameters up to 1/2 inch... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Heating, Cooling and Fuel Burning... installation of all liquid fuel piping attached to any manufactured home. None of the requirements listed...

  6. System remotely inspects, measures, and records internal irregularities in piping

    NASA Technical Reports Server (NTRS)

    Burry, F. H.; Cunningham, J. Y.; Heisman, R. M.; Iceland, W. F.; Norwood, L. B.

    1968-01-01

    Video electromechanical probe visually inspects and measures internal offset and peaking of welds in relatively large piping. Irregularity dimensions are recorded on peripheral equipment consisting of video tape and X-Y plotter. The probe is used for inspection of vacuum-jacketed liquid lines that cannot be inspected externally.

  7. Mountain Plains Learning Experience Guide: Plumbing. Course: Supply Piping Systems.

    ERIC Educational Resources Information Center

    Arneson, R.; And Others

    One of three individualized courses included in a plumbing curriculum, this course covers installing, servicing, and repairing supply lines and fixtures commonly found in residential/commercial structures. The course is comprised of four units: (1) Pipe and Fittings, (2) Cold Water Supply, (3) Hot Water Supply, and (4) Fixtures. Each unit begins…

  8. Remediation System Evaluation, Northwest Pipe and Casing Site

    EPA Pesticide Factsheets

    The Northwest Pipe and Casing Site is located in Clackamas, Oregon, approximately 20 miles southeastof Portland. The site consists of approximately 53 acres, and has historically been divided into two parcels(Parcel A to the north and Parcel B to the..

  9. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... joint compound. Screw joints shall be made up tight with listed pipe joint compound, insoluble in...″ 43 29 24 20 18 16 15 14 13 12 3/8″ 27 18 15 13 11 10 9 9 8 8 3/8″ 95 65 52 45 40 36 33 31 29 27...

  10. Three-dimensional method for integrated transient analysis of reactor-piping systems

    SciTech Connect

    Wang, C.Y.

    1981-01-01

    A three-dimensional method for integrated hydrodynamic, structural, and thermal analyses of reactor-piping systems is presented. The hydrodynamics are analyzed in a reference frame fixed to the piping and are treated with a two-dimensional Eulerian finite-difference technique. The structural responses are calculated with a three-dimensional co-rotational finite-element methodology. Interaction between fluid and structure is accounted for by iteratively enforcing the interface boundary conditions.

  11. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  12. Thermal Vacuum/Balance Test Results of Swift BAT with Loop Heat Pipe Thermal System

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The Swift Burst Alert Telescope (BAT) Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate PAP), and two loop heat pipes (LHPs) transport heat from the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array xA1 ASIC temperatures. The radiator has AZ-Tek's AZW-LA-II low solar absorptance white paint as the thermal coating, and is located on the anti-sun side of the spacecraft. A thermal balance (T/B) test on the BAT was successfully completed. It validated that the thermal design satisfies the temperature requirements of the BAT in the flight thermal environments. Instrument level and observatory level thermal vacuum (TN) cycling tests of the BAT Detector Array by using the LHP thermal system were successfully completed. This paper presents the results of the T/B test and T N cycling tests.

  13. Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding

    NASA Astrophysics Data System (ADS)

    Muramatsu, Masahiro; Suga, Yasuo; Mori, Kazuhiro

    In order to obtain sound welded joints in the welding of horizontal fixed pipes, it is important to control the back bead width in the first pass. However, it is difficult to obtain optimum back bead width, because the proper welding conditions change with welding position. In this paper, in order to fully automatize the welding of fixed pipes, a new method is developed to control the back bead width with monitoring the shape and dimensions of the molten pool from the reverse side by autonomous mobile robot system. This robot has spherical shape so as to move in a complex route including curved pipe, elbow joint and so on. It has also a camera to observe inner surface of pipe and recognize a route in which the robot moves. The robot moves to welding point in the pipe, and monitors the reverse side shape of molten pool during welding. The host computer processes the images of molten pool acquired by the robot vision system, and calculates the optimum welding conditions to realize adaptive control of welding. As a result of the welding control experiments, the effectiveness of this system for the penetration control of fixed pipes is demonstrated.

  14. Experimental study on rack cooling system based on a pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Lu, Qianyi; Jia, Li

    2016-02-01

    A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.

  15. An off-line programming system for welding the root bead in pipe branches

    SciTech Connect

    Lauridsen, J.K.; Madsen, O.; Holm, H.; Hafsteinsson, I.; Boelskifte, J.

    1996-12-31

    At the Department of Production, Aalborg University, Denmark, an automatic off-line programming system for welding the root bead in pipe branches has been developed and tested successfully and implemented at Odense Steel Shipyard, Denmark. In this paper, the off-line system is presented. The system uses a Gas Metal Arc welding machine and a one degree of freedom manipulator for manipulation of the pipe branch, and a six degree of freedom robot for manipulation of the welding torch. The off-line programming system is based on (1) a geometry model of the pipe branch, that describes the groove variation, including gab variation, along the intersection of the main pipe and the nozzle and (2) an empirical established inverse welding process model, that maps the groove variation into appropriate welding control variables. In the paper, the main structure of the off-line programming system is presented. Furthermore, the main elements of the system is presented. Furthermore, the main elements of the system is presented. This includes a presentation of the empirical established inverse welding process model, and how the model together with the geometry model of the pipe branch are used to control the welding machine and the movement of the manipulator and robot. Finally, a number of weldings performed by the off-line programming system are presented and discussed, and future research areas is outlined.

  16. Improvement of heat pipe performance through integration of a coral biomaterial wick structure into the heat pipe of a CPU cooling system

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Septiadi, Wayan Nata

    2016-08-01

    The very high heat flux dissipated by a Central Processing Unit (CPU) can no longer be handled by a conventional, single-phased cooling system. Thermal management of a CPU is now moving towards two-phase systems to maintain CPUs below their maximum temperature. A heat pipe is one of the emerging cooling systems to address this issue because of its superior efficiency and energy input independence. The goal of this research is to improve the performance of a heat pipe by integrating a biomaterial as the wick structure. In this work, the heat pipe was made from copper pipe and the biomaterial wick structure was made from tabulate coral with a mean pore diameter of 52.95 μm. For comparison purposes, the wick structure was fabricated from sintered Cu-powder with a mean pore diameter of 58.57 µm. The working fluid for this experiment was water. The experiment was conducted using a processor as the heat source and a plate simulator to measure the heat flux. The utilization of coral as the wick structure can improve the performance of a heat pipe and can decrease the temperature of a simulator plate by as much as 38.6 % at the maximum heat load compared to a conventional copper heat sink. This method also decreased the temperature of the simulator plate by as much as 44.25 °C compared to a heat pipe composed of a sintered Cu-powder wick.

  17. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    NASA Astrophysics Data System (ADS)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  18. Numerical and experimental analysis of heat pipes with application in concentrated solar power systems

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe

    Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material

  19. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  20. Leak locating microphone, method and system for locating fluid leaks in pipes

    DOEpatents

    Kupperman, David S.; Spevak, Lev

    1994-01-01

    A leak detecting microphone inserted directly into fluid within a pipe includes a housing having a first end being inserted within the pipe and a second opposed end extending outside the pipe. A diaphragm is mounted within the first housing end and an acoustic transducer is coupled to the diaphragm for converting acoustical signals to electrical signals. A plurality of apertures are provided in the housing first end, the apertures located both above and below the diaphragm, whereby to equalize fluid pressure on either side of the diaphragm. A leak locating system and method are provided for locating fluid leaks within a pipe. A first microphone is installed within fluid in the pipe at a first selected location and sound is detected at the first location. A second microphone is installed within fluid in the pipe at a second selected location and sound is detected at the second location. A cross-correlation is identified between the detected sound at the first and second locations for identifying a leak location.

  1. Design and demonstration of heat pipe cooling for NASP and evaluation of heating methods at high heating rates

    SciTech Connect

    Merrigan, M.A.; Sena, J.T.

    1989-01-01

    An evaluation of two heating methods for demonstration of NASP leading edge heat pipe technology was conducted. The heating methods were and rf induction heated plasma jet and direct rf induction. Tests were conducted to determine coupling from the argon plasma jet on a surface physically similar to a heat pipe. A molybdenum tipped calorimeter was fabricated and installed in an rf induction heated plasma jet for the test. The calorimetric measurements indicated a maximum power coupling of approximately 500 W/cm{sup 2} with the rf plasma jet. The effect of change in gas composition on the heating rate was investigated using helium. An alternative to the plasma heating of a heat pipe tip, an rf concentrator was evaluated for coupling to the hemispherical tip of a heat pipe. A refractory metal heat pipe was designed, fabricated, and tested for the evaluation. The heat pipe was designed for operation at 1400 to 1900 K with power input to 1000 W/cm{sup 2} over a hemispherical nose tip. Power input of 800 W/cm{sup 2} was demonstrated using the rf concentrator. 2 refs., 13 figs.

  2. ELIMINATING CONSERVATISM IN THE PIPING SYSTEM ANALYSIS PROCESS THROUGH APPLICATION OF A SUITE OF LOCALLY APPROPRIATE SEISMIC INPUT MOTIONS

    SciTech Connect

    Anthony L. Crawford; Robert E. Spears, Ph.D.; Mark J. Russell

    2009-07-01

    Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system [1]. A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 input motions whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 [2] from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper.

  3. Environmental design criteria for the 1/3 scale OTEC (Ocean Thermal Energy Conversion) cold water pipe At-Sea Test Site off Honolulu, Hawaii

    SciTech Connect

    Not Available

    1982-01-01

    A fully instrumented At-Sea Test of a 1/3 scale OTEC cold water pipe (CWP) will be carried out. The future prototype for this 1/3 scale model is envisioned to be the OTEC Pilot Plant design in the 10 to 40 megawatt-electric size range with an estimated CWP diameter of about 30 ft and an overall vertical length of about 3000 ft. Thus the 1/3 scale CWP consists of a pipe about 10 ft in diameter and 1000 ft long. The selected At-Sea Test site is located at 21/sup 0/15.5'N latitude and 157/sup 0/54.6'W longitude off Honolulu, Hawaii. In order to expedite development of the design of the 1/3 scale At-Sea Test CWP/Platform/Mooring System the report provides environmental design criteria data at the proposed At-Sea Test site evaluated from available historic data.

  4. Examination of the CLIC drive beam pipe design for thermal distortion caused by distributed beam line

    SciTech Connect

    C. Johnson; K. Kloeppel

    1997-01-01

    Beam transport programs are widely used to estimate the distribution of power deposited in accelerator structures by particle beams, either intentionally as for targets or beam dumps or accidentally owing the beam loss incidents. While this is usually adequate for considerations of radiation safety, it does not reveal the expected temperature rise and its effect on structural integrity. To find this, thermal diffusion must be taken into account, requiring another step in the analysis. The method that has been proposed is to use the output of a transport program, perhaps modified, as input for a finite element analysis program that can solve the thermal diffusion equation. At Cern, the design of the CLIC beam pipe has been treated in this fashion. The power distribution produced in the walls by a distributed beam loss was found according to the widely-used electron shower code EGS4. The distribution of power density was then used to form the input for the finite element analysis pro gram ANSYS, which was able to find the expected temperature rise and the resulting thermal distortion. As a result of these studies, the beam pipe design can be modified to include features that will counteract such distortion.

  5. In-Service Monitoring of Steam Pipe Systems at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Scott, James S.; Blosiu, Julian O.; Widholm, Scott E.

    2011-01-01

    An effective, in-service health monitoring system is needed to track water condensation in real time through the walls of steam pipes. The system is required to measure the height of the condensed water from outside the pipe, while operating at temperatures that are as high as 250 C. The system needs to account for the effects of water flow and cavitation. In addition, it is desired that the system does not require perforating the pipes and thereby reducing the structural integrity. Generally, steam pipes are used as part of the district heating system carrying steam from central power stations under the streets to heat, cool, or supply power to high-rise buildings and businesses. This system uses ultrasonic waves in pulse-echo and acquires reflected signal data. Via autocorrelation, it determines the water height while eliminating the effect of noise and multiple reflections from the wall of the pipe. The system performs nondestructive monitoring through the walls of steam pipes, and automatically measures the height of condensed water while operating at the high-temperature conditions of 250 C. For this purpose, the ultrasonic pulse-echo method is used where the time-of-flight of the wave reflections inside the water are measured, and it is multiplied by the wave velocity to determine the height. The pulse-echo test consists of emitting ultrasonic wave pulses from a piezoelectric transducer and receiving the reflections from the top and bottom of the condensed water. A single transducer is used as a transmitter as well as the receiver of the ultrasonic waves. To obtain high resolution, a broadband transducer is used and the frequency can be in the range of 2.25 to 10 MHz, providing sharp pulses in the time domain allowing for higher resolution in identifying the individual reflections.

  6. In-Service Monitoring of Steam Pipe Systems at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Lih, Shyh-Shiuh (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Scott, James Samson (Inventor); Blosiu, Julian O. (Inventor); Widholm, Scott E. (Inventor)

    2014-01-01

    A system and method for monitoring the properties of a fluid, such as water, in a steam pipe without mechanically penetrating the wall of the pipe. The system uses a piezoelectric transducer to launch an ultrasonic probe signal into the pipe. Reflected ultrasonic signals are captured in a transducer, which can be the same transducer that launched the probe signal. The reflected signals are subjected to data processing, which can include filtering, amplification, analog-to-digital conversion and autocorrelation analysis. A result is extracted which is indicative of a property of the fluid, such as a height of the condensed fluid, a cavitation of the condensed fluid, and a surface perturbation of the condensed fluid. The result can be recorded, displayed, and/or transmitted to another location. One embodiment of the system has been constructed and tested based on a general purpose programmable computer using instructions recorded in machine-readable non-volatile memory.

  7. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    SciTech Connect

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  8. The decay of chlorine associated with the pipe wall in water distribution systems.

    PubMed

    Hallam, N B; West, J R; Forster, C F; Powell, J C; Spencer, I

    2002-08-01

    Free chlorine decay rates in water distribution systems for bulk and wall demands should be modelled separately as they have different functional dependencies. Few good quality determinations of in situ wall demand have been made due to the difficulty of monitoring live systems and due to their complexity. Wall demands have been calculated from field measurements at 11 locations in a distribution system fed from a single source. A methodology for the laboratory determination has been evolved and shown to give results that are similar to the in situ results. Pipe materials were classified as either having high reactivity (unlined iron mains) or low reactivity (PVC, MDPE and cement-lined ductile iron). The results indicate that wall decay rates for the former are limited by chlorine transport and for the latter by pipe material characteristics. The wall decay rate is inversely related to initial chlorine concentration for low reactivity pipes. In general, water velocity increases wall decay rates though the statistical confidence is low for low reactivity pipes. A moderate biofilm coating did not influence the wall decay rate for low reactivity pipes.

  9. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  10. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect

    Merrigan, M.A.; Elder, M.G.; Keddy, E.S.; Sena, J.T.

    1984-08-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance (kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of light weight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  11. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.

    PubMed

    Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A

    2004-03-01

    Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.

  12. Design, fabrication and test of a hydrogen heat pipe. [extruding and grooving 6063-T6 aluminum tubes for cryogenic heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    Re-entrant groove technology was extended to hydrogen heat pipes. Parametric analyses are presented which optimize the theoretical design while considering the limitations of state-of-the-art extrusion technology. The 6063-T6 aluminum extrusion is 14.6 mm OD with a wall thickness of 1.66 mm and contains 20 axial grooves which surround a central 9.3 mm diameter vapor core. Each axial groove is 0.775 mm diameter with a 0.33 mm opening. An excess vapor reservoir is provided at the evaporator to minimize the pressure containment hazard during ambient storage. Modifications to the basic re-entrant groove profile resulted in improved overall performance. While the maximum heat transport capacity decreased slightly to 103 w-m the static wicking height increased markedly to 4.5 cm. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady state performance data taken over a 19 to 23 K temperature range indicated: (1) maximum heat transport capacity of 5.4 w-m; (2) static wicking height of 1.42 cm; and (3) overall heat pipe conductance of 1.7 watts/deg C.

  13. Technology development plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Riggins, Michael

    1989-04-01

    An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.

  14. Early On-Orbit Operation of the Loop Heat Pipe System on the Swift BAT Instrument

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Ku, Jentung; Choi, Mike; Feenan, Dave

    2005-01-01

    The Burst Alert Telescope (BAT) is one of three instruments on the Swift satellite. Two Loop Heat Pipes (LHP's), one at either side of the BAT's Detector Array Plate (DAP), transfer heat to a common radiator for rejection to space. This viewgraph presentation provides information on LHP design for the BAT, and the performance of the LHPs in orbit.

  15. APPLICATION OF STEEL PIPE PILE LOADING TESTS TO DESIGN VERIFICATION OF FOUNDATION OF THE TOKYO GATE BRIDGE

    NASA Astrophysics Data System (ADS)

    Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji

    Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.

  16. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  17. The qualification of advanced composite pipe for use in fire water deluge systems on open type offshore oil platforms

    SciTech Connect

    Lea, R.H.; Stubblefield, M.A.; Pang, S.S.

    1996-12-01

    Different types of FIBERBOND{reg_sign} pipe in the dry condition and with a butt and strap joint were subjected to a controlled fire for fire endurance evaluation. Testing adheres to a modification of the ASTM 1173-95 guideline, which simulates the development of an actual hydrocarbon fire. For a fire water deluge system, the pipe is in the dry condition approximately one to three minutes during an actual hydrocarbon fire. Preliminary testing shows that composite pipe is able to withstand this exposure to fire for the five minute duration of the test. This is achieved with modifying the chemical composition of the composite pipe and in some cases, adding an additional structural component to the overall pipe. Therefore, composite pipe could be used for the deluge fire system of an offshore oil platform.

  18. Investigations on the Suitability of Coated Steel Piping System for High Pressure Seawater Reverse Osmosis Application

    NASA Astrophysics Data System (ADS)

    Mobin, Mohammad

    2010-03-01

    This study deals with the investigations concerning with the suitability of coated steel piping system as an economically viable alternative to costly stainless steel piping for high pressure seawater reverse osmosis (SWRO) application. The piping system selected for investigation is a carbon steel piping coated internally and externally with thermoplastic coating (coating powder Plascoat PPA 571). The performance of thermoplastic coating was investigated by conducting SWRO pilot plant test, salt spray test, mechanical tests and testing of the coating under crevices (both in pilot plant and laboratory), and for leachable organics and inorganics (both in laboratory and pilot plant test). The testing of coating in the pilot plant resulted in the formation of some blisters on the internal surface of the pipes. The blisters were broken causing the corrosion of underneath steel. The coating showed a poor resistance to salt fog test. In general, the coating performed satisfactorily under the crevices but showed blistering on either side of the test panels. The adhesive strength of the coating was found to be poor; however, it showed good flexibility. The results of chemical analysis did not show the leaching of organic or inorganic pollutants from the coating.

  19. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... same rate as water is introduced. Pumps used as part of the processing of fish do not count for meeting this requirement. The dewatering system must be interlocked with the pump(s) supplying water to the... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge pumps, bilge piping, and dewatering systems....

  20. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  1. 78 FR 41434 - Proposed Revisions to Design of Structures, Components, Equipment and Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ..., their supports, and core support structures which are considered to be ASME Code Class 1, 2 and 3. The... COMMISSION Proposed Revisions to Design of Structures, Components, Equipment and Systems AGENCY: Nuclear..., ``ASME Code Class 1, 2 and 3 Piping Systems, Piping Components and their Associated Supports,'' of...

  2. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  3. The National Shipbuilding Research Program. Semi-Automatic Pipe Handling System and Fabrication Facility. Phase II - Implementation

    DTIC Science & Technology

    1983-03-01

    order to obtain proper welding results, the use of machine cutting is desirable. The various cutting machines required to process alloy mix of pipe ...burning has gone into the selection of the type of automatic welding equipment needed to process the mix of pipe going through the system. For welding ...straight pipe , rolling devices have been supplied incorporating automatic loading and unloading mechan- isms controlled by pushbuttons. Automated welding

  4. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  5. Heat Pipes

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  6. Handheld three-dimensional pipe measurement system with a slit-ray projector

    NASA Astrophysics Data System (ADS)

    Kawasue, Kikuhito; Komatsu, Takayuki; Yoshida, Kumiko

    2013-03-01

    We propose a point cloud data acquisition system that employs slit ray projection. In this system, a slit laser projector and a high-resolution CCD camera are connected to a Microsoft Kinect Sensor. The system is sufficiently compact that it can be hand held. In measurements of pipes, the user directs the laser slit ray at the measurement target. Kinect then detects point cloud data while the CCD camera simultaneously detects the laser streak generated on the target surface. The user manually scans the system by directing the laser slit ray along the measurement pipe. The point cloud data obtained by Kinect is used to determine the movement of the system by adjusting overlapping data in consecutive frames using the ICP (Iterative Closest Point) algorithm. This permits the system to be freely scanned. The pipe cross section is estimated from data obtained by the slit-ray projection method. The three-dimensional shape of the pipe is constructed on a computer from the obtained cross sections.

  7. A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tabassum, Tonny

    Solar energy is an intermittent supply source of energy. To efficiently utilize this free renewable energy source some form of thermal energy storage devices are necessary. Phase change materials (PCMs), because of their high energy density storage capacity and near isothermal phase change characteristics, have proven to be promising candidates for latent heat thermal energy storage (LHTES) devices. Among the various LHTES devices for low temperature residential heating and cooling applications, the shell-and-tube type heat exchanging devices are the most simple to operate and can be easily fabricated. This work numerically investigates the buoyancy driven heat transfer process during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a horizontal double pipe heat exchanger. The heated working fluid (water) is passing through the central tube of the annulus at a sufficiently high flow-rate and thereby maintaining an almost isothermal wall temperature at the inner pipe which is higher than the melting temperature of the PCM. The transient, two-dimensional coupled laminar momentum and energy equations for the model are suitably non-dimensionalized and are solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the flow patterns and temperature distributions are presented through velocity vector fields and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a strategically placed longitudinal finned annulus, are studied. The total energy stored, the total liquid fraction and the energy efficiency at different melting times are evaluated for three different operating conditions and the results are compared between the plain and finned annuli. The present study will provide guidelines for system thermal performance and design optimization of the shell-and-tube LHTES devices. .

  8. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    SciTech Connect

    D. Erdem; D. rockwell; P. Oshkai; M. Pollack

    2002-05-29

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. Moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  9. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    SciTech Connect

    D. Erdem; D. Rockwell; P.L. Oshkai; M. Pollack

    2001-02-28

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  10. Implicit finite element structural dynamic formulation for long-duration accidents in reactor piping systems

    SciTech Connect

    Wang, C.Y.

    1985-01-01

    This taper describes an implicit three-dimensional finite-element formulation for the structural analysis of reactor piping system. The numerical algorithm considers hoop, flexural, axial, and torsion modes of the piping structures. It is unconditionally stable and can be used for calculation of piping response under static or long duration dynamic loads. The method uses a predictor-corrector, successive iterative scheme which satisfies the equilibrium equations. A set of stiffness equations representing the discretized equations of motion are derived to predict the displacement increments. The calculated displacement increments are then used to correct the element nodal forces. The algorithm is fairly general, and is capable of treating large displacements and elastic-plastic materials with thermal and strain-rate effects. 7 refs., 7 figs.

  11. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  12. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  13. Experimental study on seismic responses of piping systems with friction. Part 2: Simplified analysis method on the effect of friction

    SciTech Connect

    Kobayashi, H.; Yokoi, R.; Chiba, T.; Suzuki, K.; Shimizu, N.; Minowa, C.

    1995-08-01

    Friction between pipe and support structure is generally known to reduce seismic response of the piping systems. Vibration tests using large-scale piping model with friction support were carried out to evaluate the reduction effect. The piping response was mainly governed by the first modal deformation. The simplified analysis method based on linear response spectrum analysis was developed and confirmed to be applicable. In this method, the reduction effect by friction is treated as equivalent viscous damping ratio. This paper deals with the analysis method, and the comparison between the experimental results and analytical ones.

  14. Robotic platform for traveling on vertical piping network

    DOEpatents

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  15. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    NASA Technical Reports Server (NTRS)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  16. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    PubMed

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  17. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  18. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  19. Computer program grade 2 for the design and analysis of heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Edwards, D. K.

    1976-01-01

    This user's manual describes the revised version of the computer program GRADE(1), which designs and analyzes heat pipes with graded porosity fibrous slab wicks. The revisions are: (1) automatic calculation of the minimum condenser-end stress that will not result in an excess-liquid puddle or a liquid slug in the vapor space; (2) numerical solution of the equations describing flow in the circumferential grooves to assess the burnout criterion; (3) calculation of the contribution of excess liquid in fillets and puddles to the heat-transport; (4) calculation of the effect of partial saturation on the wick performance; and (5) calculation of the effect of vapor flow, which includes viscousinertial interactions.

  20. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  1. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  2. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  3. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  4. ANALYSIS OF MATERIALS IN AN EXPERIMENTAL TESTING PIPE SYSTEM FOR AN INHIBITOR OF MUSSEL KILL

    SciTech Connect

    Daniel P. Molloy

    2003-06-04

    A comprehensive series of 16 laboratory experiments demonstrated that the presence of vinyl tubing within a recirculating pipe system was responsible for lowering zebra mussel kill following treatment with the bacterium Pseudomonas fluorescens. All vinyl tubing was replaced in all testing units with silicone tubing, and high mussel kill (>95%) was then obtained.

  5. Analysis of nuclear piping system seismic tests with conventional and energy absorbing supports

    SciTech Connect

    Park, Y.; DeGrassi, G.; Hofmayer, C.; Bezler, P.; Chokshi, N.

    1997-04-01

    Large-scale models of main steam and feedwater piping systems were tested on the shaking table by the Nuclear Power Engineering Cooperation (NUPEC) of Japan, as part of the Seismic Proving Test Program. This paper describes the linear and nonlinear analyses performed by NRC/BNL and compares the results to the test data.

  6. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  7. Analysis of chlorinated polyvinyl chloride pipe burst problems :Vasquez residence system inspection.

    SciTech Connect

    Black, Billy D.; Menicucci, David F.; Harrison, John

    2005-10-01

    This report documents the investigation regarding the failure of CPVC piping that was used to connect a solar hot water system to standard plumbing in a home. Details of the failure are described along with numerous pictures and diagrams. A potential failure mechanism is described and recommendations are outlined to prevent such a failure.

  8. Design data brochure for a pyramidal optics solar system

    SciTech Connect

    Not Available

    1980-09-01

    This Design Data Brochure provides information on a Pyramidal Optics Solar System for solar heating and domestic hot water. The system is made up of the collecting, storage, and distribution subsystems. Contained in the brochure are such items as system description, available accessories, installation arrangements, physical data, piping and wiring diagrams, and guide specifications.

  9. Gas dynamic design of the pipe line compressor with 90% efficiency. Model test approval

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Rekstin, A.; Soldatova, K.

    2015-08-01

    Gas dynamic design of the pipe line compressor 32 MW was made for PAO SMPO (Sumy, Ukraine). The technical specification requires compressor efficiency of 90%. The customer offered favorable scheme - single-stage design with console impeller and axial inlet. The authors used the standard optimization methodology of 2D impellers. The original methodology of internal scroll profiling was used to minimize efficiency losses. Radically improved 5th version of the Universal modeling method computer programs was used for precise calculation of expected performances. The customer fulfilled model tests in a 1:2 scale. Tests confirmed the calculated parameters at the design point (maximum efficiency of 90%) and in the whole range of flow rates. As far as the authors know none of compressors have achieved such efficiency. The principles and methods of gas-dynamic design are presented below. The data of the 32 MW compressor presented by the customer in their report at the 16th International Compressor conference (September 2014, Saint- Petersburg) and later transferred to the authors.

  10. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  11. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  12. Reliability Estimation for Double Containment Piping

    SciTech Connect

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  13. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  14. Argon Intercalibration Pipette System (APIS): Smoking from the Same Pipe

    NASA Astrophysics Data System (ADS)

    Turrin, B. D.; Swisher, C. C., III; Hemming, S. R.; Renne, P. R.; Deino, A. L.; Hodges, K. V.; Van Soest, M. C.; Heizler, M. T.

    2014-12-01

    40Ar/39Ar age inter-calibration experiments, conducted as part of the US NSF sponsored EARTHTIME initiative, (http://www.earth-time.org), using two of the most commonly used 40Ar/39Ar mineral standards, Fish Canyon (FC, ~28.2 Ma) and Alder Creek (AC, ~1.2 Ma) sanidines, have revealed significant inter-laboratory inconsistencies. The reported ages for the AC sanidines range from 1.173 to 1.200 Ma (FC 28.02) (±~2%), ~4 times greater than the reported precision. These experiments have caused the 40Ar/39Ar community to scrutinize procedures and several informal lab intercalibrations have been conducted among different labs. This exercise is leading to better agreement, but discrepancies remain that need to be addressed. In an effort to isolate the cause(s) of these inconsistencies, two Argon Inter-calibration Pipette System (APIS) were designed and constructed. Each consists of three gas canisters; one contains atmospheric Ar, while the other two contain artificial gas mixtures with 40Ar/39Ar ratios similar to those of FC and AC. Each canister has 4x10-10 moles of 40Ar, is equipped with 0.1, 0.2 and 0.4 cc pipettes, and can deliver gas volumes from 0.1-0.7 cc. All volumes were determined manometrically to 0.4% or better and then filled to uniform pressure with Ar standard gases. This experimental design eliminates sample heterogeneity, leaving only interlaboratory variations in gas purification, data reduction, and isotopic measurement as potential sources of interlaboratory calibration discrepancies. APIS-1 was designated as a traveling unit that is brought to participating labs. APIS-2 is the reserve/master standard. Currently, APIS-1 is in its early stages in the voyage and has been to three labs (Rutgers, LDEO, and New Mexico Tech) as of this writing. The interlaboratory comparisons are ongoing, and will include ASU, BGC, Univ. of Wisconsin, and Oregon State University, plus additional laboratories of opportunity. A progress report will be presented at AGU.

  15. L- and U-shaped heat pipes thermal modules with twin fans for cooling of electronic system under variable heat source areas

    NASA Astrophysics Data System (ADS)

    Wang, Jung-Chang

    2014-04-01

    This study utilizes a versatile superposition method with thermal resistance network analysis to design and experiment on a thermal module with embedded six L-shaped or two U-shaped heat pipes and plate fins under different fan speeds and heat source areas. This type of heat pipes-heat sink module successively transfer heat capacity from a heat source to the heat pipes, the heat sink and their surroundings, and are suitable for cooling electronic systems via forced convection mechanism. The thermal resistances contain all major components from the thermal interface through the heat pipes and fins. Thermal performance testing shows that the lowest thermal resistances of the representative L- and U-shaped heat pipes-heat sink thermal modules are respectively 0.25 and 0.17 °C/W under twin fans of 3,000 RPM and 30 × 30 mm2 heat sources. The result of this work is a useful thermal management method to facilitate rapid analysis.

  16. Experimental study on seismic responses of piping systems with friction. Part 1: Large-scale shaking table vibration test

    SciTech Connect

    Suzuki, K.; Watanabe, T.; Mitsumori, T.; Shimizu, N.; Kobayashi, H.; Ogawa, N.

    1995-08-01

    This report deals with the experimental study of seismic response behavior of piping systems in industrial facilities such as petrochemical, oil refinery, and nuclear plants. Special attention is focused on the nonlinear dynamic response of piping systems due to frictional vibration appearing in piping and supporting devices. A three-dimensional mock-up piping and supporting structure model wherein piping is of 30-m length and 200-mm diameter is excited by a large-scale (15 m x 15 m) shaking table belong to the National Research Institute for Earth Science and Disaster Prevention in Tsukuba, Ibaraki. Power spectra of the response vibration and the loading-response relationship in the form of a hysteresis loop under several loading conditions are obtained. The response reduction effect caused by frictional vibration is evaluated and demonstrated in terms of response reduction factor.

  17. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  18. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  19. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  20. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  1. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure relief piping. 56.50-20 Section 56.50-20... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-20 Pressure relief piping. (a) General... pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop...

  2. The Pipe-Quadrupole, an Alternative for High Gradient Interaction Region Quadrupole Designs

    SciTech Connect

    Oort, J.M. van; Scanlan, R.M.

    1996-12-12

    In the design of interaction region (IR) quadrupoles for high luminosity colliders such as the LHC or a possible upgrade of the Tevatron, the radiation heating of the coil windings is an important issue. Two obvious solutions to this problem can be chosen. The first is to reduce the heat load by added shielding, increased cooling with fins or using Nb{sub 3}Sn to increase the temperature margin. The second solution eliminates the conductor from the areas with the highest radiation intensity, which are located on the symmetry-axes of the midplanes of the coils. A novel quadrupole design is presented, in which the conductor is wound on four half-moon shaped supports, forming elongated toroid sections. The assembly of the four shapes yields a quadrupole field with an active flux return path, and a void in the high radiation area. This void can be occupied by a liquid helium cooling pipe to lower the temperature of the windings from the inside. The coil layout, harmonic optimization and mechanical design are shown, together with the calculated temperature rise for the radiation load of the LHC interaction region quadrupoles.

  3. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inclusions affecting pipe quality. (2) A mill inspection program or internal quality management program must... paragraph (b)(2)(iii) of this section. (c) Plate/coil quality control (1) There must be an internal quality management program at all mills involved in producing steel, plate, coil, skelp, and/or rolling pipe to...

  4. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inclusions affecting pipe quality. (2) A mill inspection program or internal quality management program must... paragraph (b)(2)(iii) of this section. (c) Plate/coil quality control (1) There must be an internal quality management program at all mills involved in producing steel, plate, coil, skelp, and/or rolling pipe to...

  5. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inclusions affecting pipe quality. (2) A mill inspection program or internal quality management program must... paragraph (b)(2)(iii) of this section. (c) Plate/coil quality control (1) There must be an internal quality management program at all mills involved in producing steel, plate, coil, skelp, and/or rolling pipe to...

  6. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inclusions affecting pipe quality. (2) A mill inspection program or internal quality management program must... paragraph (b)(2)(iii) of this section. (c) Plate/coil quality control (1) There must be an internal quality management program at all mills involved in producing steel, plate, coil, skelp, and/or rolling pipe to...

  7. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inclusions affecting pipe quality. (2) A mill inspection program or internal quality management program must... paragraph (b)(2)(iii) of this section. (c) Plate/coil quality control (1) There must be an internal quality management program at all mills involved in producing steel, plate, coil, skelp, and/or rolling pipe to...

  8. Computer program grade for design and analysis of graded-porosity heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1974-01-01

    A computer program for numerical solution of differential equations that describe heat pipes with graded-porosity fibrous wicks is discussed. A mathematical problem is provided with a summary of the input and output steps used to solve it. The program is also applied to the analysis of a typical heat pipe.

  9. Pipe Line Control

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The array of tanks, pipes and valves in the photo below is a petroleum tank farm in Georgia, part of a petrochemical pipe line system that moves refined petroleum products from Texas and Louisiana to the mid-Eastern seaboard. The same pipes handle a number of different products, such as gasoline, kerosene, jet fuel or fuel oil. The fluids are temporarily stored in tanks, pumped into the pipes in turn and routed to other way stations along the pipe line. The complex job of controlling, measuring and monitoring fuel flow is accomplished automatically by a computerized control and communications system which incorporates multiple space technologies.

  10. Crack instability analysis methods for leak-before-break program in piping systems

    SciTech Connect

    Mattar Neto, M.; Nobrega, P.G.B. da

    1995-11-01

    The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing prior to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.

  11. Numerical Analysis of JNES Seismic Tests on Degraded Combined Piping System

    SciTech Connect

    Zhang T.; Nie J.; Brust, F.; Wilkowski, G.; Hofmayer, C.; Ali, S.; Shim, D-J.

    2012-02-02

    Nuclear power plant safety under seismic conditions is an important consideration. The piping systems may have some defects caused by fatigue, stress corrosion cracking, etc., in aged plants. These cracks may not only affect the seismic response but also grow and break through causing loss of coolant. Therefore, an evaluation method needs to be developed to predict crack growth behavior under seismic excitation. This paper describes efforts conducted to analyze and better understand a series of degraded pipe tests under seismic loading that was conducted by Japan Nuclear Energy Safety Organization (JNES). A special 'cracked-pipe element' (CPE) concept, where the element represented the global moment-rotation response due to the crack, was developed. This approach was developed to significantly simplify the dynamic finite element analysis in fracture mechanics fields. In this paper, model validation was conducted by comparisons with a series of pipe tests with circumferential through-wall and surface cracks under different excitation conditions. These analyses showed that reasonably accurate predictions could be made using the abaqus connector element to model the complete transition of a circumferential surface crack to a through-wall crack under cyclic dynamic loading. The JNES primary loop recirculation piping test was analyzed in detail. This combined-component test had three crack locations and multiple applied simulated seismic block loadings. Comparisons were also made between the ABAQUS finite element (FE) analyses results to the measured displacements in the experiment. Good agreement was obtained, and it was confirmed that the simplified modeling is applicable to a seismic analysis for a cracked pipe on the basis of fracture mechanics. Pipe system leakage did occur in the JNES tests. The analytical predictions using the CPE approach did not predict leakage, suggesting that cyclic ductile tearing with large-scale plasticity was not the crack growth mode for

  12. Internal cathodic protection of piping system by the RCP method: What is the experience?

    SciTech Connect

    Johnsen, R.; Valen, S.; Gartland, P.O.; Drugli, J.M.

    1997-12-01

    Internal cathodic protection by resistor controlled anodes--Resistor controlled Cathodic Protection (RCP)--was introduced in 1991 as an alternative method for the prevention of localized corrosion of seawater transportation systems. More than five hundred RCP anodes have been installed in seawater piping systems made from highly alloyed stainless steel which had suffered from corrosion. This paper describes some of the installations including experiences so far. In addition the possible use of AISI 316L combined with RCP anodes is described.

  13. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    PubMed

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  14. 46 CFR 119.715 - Piping subject to more than 1,034 kPa (150 psig) in non-vital systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping subject to more than 1,034 kPa (150 psig) in non... 49 PASSENGERS MACHINERY INSTALLATION Piping Systems § 119.715 Piping subject to more than 1,034 kPa (150 psig) in non-vital systems. Piping subject to more than 1034 kPa (150 psig) in a non-vital...

  15. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  16. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  17. Friction loss in straight pipes of unplasticized polyvinyl chloride.

    PubMed

    Iwasaki, T; Ojima, J

    1996-01-01

    In order to design proper ductwork for a local exhaust system, airflow characteristics were investigated in straight pipes of unplasticized polyvinyl chloride (PVC). A linear decrease in static pressure was observed downstream at points from the opening of the VU pipes (JIS K 6741) located at distances greater than 10 times the pipe diameter, for velocities ranging between 10.18-36.91 m/s. Roughness inside pipes with small diameters was found to be 0.0042-0.0056 mm and the friction factor was calculated on the basis of Colebrook's equation for an airflow transition zone. An extended friction chart was then constructed on the basis of the roughness value and the friction factor. This chart can be applied when designing a local exhaust system with the ducts of diameters ranging from 40 to 900 mm. The friction loss of the PVC pipe was found to be approximately 2/3 of that of a galvanized steel pipe.

  18. The search for an alternative to piped water and sewer systems in the Alaskan Arctic.

    PubMed

    Hickel, Korie A; Dotson, Aaron; Thomas, Timothy K; Heavener, Mia; Hébert, Jack; Warren, John A

    2017-03-29

    Forty-two communities in rural Alaska are considered unserved or underserved with water and sewer infrastructure. Many challenges exist to provide centralized piped water and sewer infrastructure to the homes, and they are exacerbated by decreasing capital funding. Unserved communities in rural Alaska experience higher rates of disease, supporting the recommendation that sanitation infrastructure should be provided. Organizations are pursuing alternative solutions to conventional piped water and sewer in order to maximize water use and reuse for public health. This paper reviews initiatives led by the State of Alaska, the Alaska Native Tribal Health Consortium, and the Yukon Kuskokwim Health Corporation to identify and develop potential long-term solutions appropriate and acceptable to rural communities. Future developments will likely evolve based on the lessons learned from the initiatives. Recommendations include Alaska-specific research needs, increased end-user participation in the design process, and integrated monitoring, evaluation, and information dissemination in future efforts.

  19. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  20. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  1. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  2. In-service monitoring of steam pipe systems at high temperatures

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Scott, Jim; Blosiu, Julian

    2010-03-01

    An effective in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water in real-time at high temperatures. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250°C. The system needs to be able to make time measurements while accounting for the effects of water flow and cavitation. For this purpose, ultrasonic waves were used to perform data acquisition of reflected signals in pulse-echo and via autocorrelation the data was processed to determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers. There are transducers with Curie temperatures that are significantly higher than the required for this task offering the potential to sustain the conditions of the pipe over extended operation periods. This paper reports the progress of the current feasibility study that is intended to establish the foundations for such health monitoring systems.

  3. The acoustic simulation and analysis of complicated reciprocating compressor piping systems, II: Program structure and applications

    NASA Astrophysics Data System (ADS)

    To, C. W. S.

    1984-09-01

    The main objectives of the investigation reported in this paper, Part II, and its companion paper, Part I, are (a) to provide a formulation, including the mean flow effects and suitable for digital computer automation, of the acoustics of complicated piping systems, and (b) to develop a comprehensive digital computer program for the simulation and analysis of complicated reciprocating compressor piping systems. In this paper, the digital computer program structure and applications of the program developed, written in Fortran IV, are described. It is concluded that the computer program is versatile and user-friendly. It is capable of providing a great deal of information from one set of input data, and is open-ended and modular for updating.

  4. Scaling the Pipe: NASA EOS Terra Data Systems at 10

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ramapriyan, Hampapuram K.

    2010-01-01

    Standard products from the five sensors on NASA's Earth Observing System's (EOS) Terra satellite are being used world-wide for earth science research and applications. This paper describes the evolution of the Terra data systems over the last decade in which the distributed systems that produce, archive and distribute high quality Terra data products were scaled by two orders of magnitude.

  5. Guided Wave Sensing In a Carbon Steel Pipe Using a Laser Vibrometer System

    NASA Astrophysics Data System (ADS)

    Ruíz Toledo, Abelardo; Salazar Soler, Jordi; Chávez Domínguez, Juan Antonio; García Hernández, Miguel Jesús; Turó Peroy, Antoni

    2010-05-01

    Non-Destructive Evaluation (NDE) techniques have achieved a great development during the last decades as a valuable tool for material characterization, manufacturing control and structural integrity tests. Among these tools, the guided wave technology has been rapidly extended because it reduces inspection time and costs compared to the ordinary point by point testing in large structures, as well as because of the possibility of inspecting under insulation and coating conditions. This fast development has motivated the creation of several inspection and material characterization systems including different technologies which can be combined with this technique. Different measurements systems based on laser techniques have been presented in order to inspect pipes, plates and diverse structures. Many of them are experimental systems of high cost and complexity which combine the employment of a laser for generation of waves in the structure and an interferometer for detection. Some of them employ air-coupled ultrasound generation transducers, with high losses in air and which demand high energy for exciting waves in materials of high stiffness. The combined employment of a commercial vibrometer system for Lamb wave sensing in plates has been successfully shown in the literature. In this paper we present a measurement system based on the combined employment of a piezoelectric wedge transducer and a laser vibrometer to sense guided acoustic waves in carbon steel pipes. The measurement system here presented is mainly compounded of an angular wedge transducer, employed to generate the guided wave and a commercial laser vibrometer used in the detection process. The wedge transducer is excited by means of a signal function generator whose output signal has been amplified with a power signal amplifier. A high precision positioning system is employed to place the laser beam at different points through the pipe surface. The signal detected by the laser vibrometer system is

  6. The use of GRP materials in piping systems: The experience of Total

    SciTech Connect

    Aubert, C.F.P.

    1993-12-31

    The first use of GRP materials by Total took place in 1975 on one of the authors off-shore oil production facilities in the Middle-East. After only 8 months of operation, the fire water and the cooling water systems, which were made of galvanized carbon steel materials, happened to be heavily corroded, and, consequently, had to be changed. Corrosion experts had the evidence that this corrosion was caused by the use of sea water, and, accordingly, had to select an appropriate corrosion resistant material for the replacement of the existing systems which turned to the advantage of GRP materials for several reasons: good corrosion resistance, light weight, no need for hot work permits. As many other end-users, because it was found that the overall level of standardization of GRP materials was not as comprehensive as what it is for metallic materials, Total had to specify to some details what to use, where and how to use it. This led to the issue of several technical specifications, and, among them, one for the supply of GRP piping materials. This document is mainly based on ASTM standards, with additional guidelines in the following areas: type of resins, manufacturing processes, types of joints, gaskets, pipes supporting, inspection, testing of finished products (destructive tests and tightness tests). As an end-user, they also had to set-up a policy for the use of GRP piping materials with regards to its advantages, but also taking into account some disadvantages such as its poor fire resistance. This policy (which is based on several fire tests which have been carried-out) has been, for essential services such as Fire Water Systems, to use GRP materials only on lines which are permanently kept full of water; down-stream the block valves, where piping is normally dry (for instance, on deluge systems), they would only use metallic materials.

  7. 5. INDUSTRIAL PIPING SYSTEM FOR 500 H.P. LLEWELLYN BOILER, ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INDUSTRIAL PIPING SYSTEM FOR 500 H.P. LLEWELLYN BOILER, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet M1. Plan no. 10,551. Scale 1/4 inch to the foot. June 1, 1945. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  8. USS PRINCETON (CG59): Microbiologically Influenced Corrosion (MIC) and Macrofouling Status of Seawater Piping Systems

    DTIC Science & Technology

    1990-06-01

    chest. Due to the recurring nature and the extent of the macrofouling in the seawater piping systems, it appears likely that these microorganisms have...34Effect of High Frequency Fields on Microorganisms ," Electrical Engineering, Jan 1944, pp. 18-21. 53. Murr, L. E., "Biophysics of Plant Growth in an...oxidation; (5) depolarization of cathodic or anodic reactions; (6) disruption of natural or other protective films and breakdown of corrosion inhibitors and

  9. Communications technology satellite - A variable conductance heat pipe application

    NASA Technical Reports Server (NTRS)

    Mock, P. R.; Marcus, B. D.; Edelman, E. A.

    1974-01-01

    A variable-conductance heat pipe system (VCHPS) has been designed to provide thermal control for a transmitter experiment package (TEP) to be flown on the Communications Technology Satellite. The VCHPS provides for heat rejection during TEP operation and minimizes the heat leak during power down operations. The VCHPS described features a unique method of aiding priming of arterial heat pipes and a novel approach to balancing heat pipe loads by staggering their control ranges.

  10. Design and experimental investigation of a neon cryogenic loop heat pipe

    NASA Astrophysics Data System (ADS)

    He, Jiang; Guo, Yuandong; Zhang, Hongxing; Miao, Jianyin; Wang, Lu; Lin, Guiping

    2017-03-01

    Next generation space infrared sensor and detector have pressing requirement for cryogenic heat transport technology in the temperature range of 30-40 K. Cryogenic loop heat pipe (CLHP) has excellent thermal performance and particular characteristics such as high flexibility transport lines and no moving parts, thus it is regarded as an ideal thermal control solution. A neon CLHP referring to infrared point-to-point heat transfer element in future space application has been designed and experimented. And it could realize supercritical startup successfully. Experimental results show that the supercritical startup were realized successfully at cases of 1.5 W secondary evaporator power, but the startup was failed when 0.5 and 1 W heat load applied to secondary evaporator. The maximum heat transport capability of primary evaporator is between 4.5 and 5 W with proper auxiliary heat load. Before startup, even the heat sink temperature decreased to 35 K, the primary evaporator can still maintain at almost 290 K; and the primary evaporator temperature increased at once when the powers were cut off, which indicated the CLHP has a perfect function of thermal switch. The CLHP could adapt to sudden changes of the primary evaporator power, and reach a new steady-state quickly. Besides, some failure phenomena were observed during the test, which indicated that proper secondary evaporator power and heat sink temperature play important roles on the normal operation.

  11. Heat pipe radiator. [for spacecraft waste heat rejection

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  12. Application of formal optimization techniques in thermal/structural design of a heat-pipe-cooled panel for a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Riley, Michael F.

    1987-01-01

    Nonlinear mathematical programming methods are used to design a radiantly cooled and heat-pipe-cooled panel for a Mach 6.7 transport. The cooled portion of the panel is a hybrid heat-pipe/actively cooled design which uses heat pipes to transport the absorbed heat to the ends of the panel where it is removed by active cooling. The panels are optimized for minimum mass and to satisfy a set of heat-pipe, structural, geometric, and minimum-gage constraints. Two panel concepts are investigated: cylindrical heat pipes embedded in a honeycomb core and an integrated design which uses a web-core heat-pipe sandwich concept. The latter was lighter and resulted in a design which was less than 10 percent heavier than an all actively cooled concept. The heat-pipe concept, however, is redundant and can sustain a single-point failure, whereas the actively cooled concept cannot. An additional study was performed to determine the optimum number of coolant manifolds per panel for a minimum-mass design.

  13. Hardfacing takes the inside track in coating small diameter pipe

    SciTech Connect

    Not Available

    1985-03-01

    A Canadian company has adapted a standard hardfacing method to solve the problem of coating smaller pipe sizes. Small diameter piping and valves are hardfaced using a custom-designed plasma transferred arc (PTA) system. With an arrangement of automatically controlled mechanical arms, the firm is able to operate a PTA torch inside piping 6 to 12 inches in diameter and as long as 13 feet. Recently, the company improved the system so it can automatically hardface elbows up to 24 in. as well as straight runs of pipe.

  14. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  15. W-314, waste transfer alternative piping system description

    SciTech Connect

    Papp, I.G.

    1998-04-30

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation.

  16. Numerical simulation on rectifying flow in intake system of a pumping station connected with headrace pipe

    NASA Astrophysics Data System (ADS)

    Zi, D.; Wang, F. J.; Yao, Z. F.; Xiao, R. F.; Chen, X.; He, C. L.

    2016-11-01

    Pipes are usually adopted in those conditions for which the pump house is far from water source. As for fore-bay, flow of headrace pipe can be considered as jet-flow. Jet-flow has a high velocity, and creates large pressure gradient between jet-flow and near wall flow, which contributes to large scale circulation. In that circumstance, a single rectification measure cannot effectively improve the flow pattern of intake flow field. For large scale pumping station, there is enough space to arrange complex anti-vortex devices. Thus, a new type of combined diversion piers composed of double-I type pier, three-I type pier and cross anti-vortex baffle was proposed. In order to investigate the influences of combined division piers on flow pattern, four cases with different geometry and location parameters are designed. The results of numerical simulation and site tests show that the combined diversion piers could effectively improve the intake flow field of pumping station with headrace pipe. As for pumping station with headrace pipe, the distance between inlet section of fore-bay and leading edge of double-I type diversion pier should be 0.25L-0.53L (where L is the length of fore-bay). The distance between inlet section of fore-bay and trailing edge of double-I type diversion pier should be 0.5L-0.73L. The total length of double-I type pier should be 0.2L-0.25L.

  17. Lithium and potassium heat pipes for thermionic converters

    NASA Technical Reports Server (NTRS)

    Miskolczy, G.; Kroeger, E. W.

    1978-01-01

    A prototypic heat pipe system for an out-of-core thermionic reactor was built and tested. The emitter of the concentric thermionic converter consists of the condenser of a tungsten heat pipe utilizing a lithium working fluid. The evaporator section of the emitter heat pipe is radiation heated to simulate the thermal input from the nuclear reactor. The emitter heat pipe thermal transport is matched to the thermionic converter input requirement. The collector heat pipe of niobium, 1% zirconium alloy uses potassium as the working fluid. The thermionic collector is coupled to the heat pipe by a tapered conical joint designed to minimize the temperature drop. The collector heat flux matches the design requirements of the thermionic converter.

  18. Numerical study of finned heat pipe-assisted latent heat thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2014-11-01

    In the present study the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers as well as the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. Furthermore, it is showed that the number of fins does not affect the performance of the system considerably.

  19. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-2. Pressure vessel components design and analysis

    SciTech Connect

    Gawaltney, R.C.

    1985-01-01

    There are seven sessions covered in this book on Pressure Vessel Components Design and Analysis. The papers are divided into the following six subject areas: composites, valves, tubesheets, pressure vessels and piping, bolted flanges, and nonlinear computational methods. The design procedures and analysis methods described in this book are not discussed previously. The engineers working in the field of pressure vessel design can only keep up with current developments in these areas by reviewing a substantial amount of technical literature. A goal of this book is to help in this endeavor by offering selected papers in the area by authors who are experienced and distinguished workers in their fields.

  20. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial