Sample records for pit crater chains

  1. Distribution, morphology, and origins of Martian pit crater chains

    NASA Astrophysics Data System (ADS)

    Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.

    2004-06-01

    Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.

  2. Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains

    NASA Astrophysics Data System (ADS)

    Martin, Emily S.; Kattenhorn, Simon A.; Collins, Geoffrey C.; Michaud, Robert L.; Pappalardo, Robert T.; Wyrick, Danielle Y.

    2017-09-01

    Enceladus is the first outer solar system body on which pit chains have been positively identified. We map the global distribution of pit chains and show that pit chains are among the youngest tectonic features on Enceladus's surface, concentrated in the cratered plains centered on Enceladus's Saturnian and anti-Saturnian hemispheres. Pit chains on Enceladus are interpreted as the surface expressions of subsurface dilational fractures underlying a cover of unconsolidated material, which we infer to be a geologically young cover of loose regolith that mantles the surface of Enceladus. A widespread layer of regolith may act to insulate the surface, which has implications for the thermal state of Enceladus's ice shell. The widespread distribution of pit chains across the cratered plains indicates that this ancient surface has recently been tectonically active.

  3. Hephaestus Fossae

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 3 July 2002) Off the western flank of Elysium are the Hephaestus Fossae, including linear arrangements of small, round pits. These features are commonly called 'pit chains' and most likely represent the collapse of lava tubes. Lava tubes allow molten rock to move long distances underground. When the lava drains out it leaves unsupported tunnels, which can collapse and form pits. These particular pit chains are unusual because they change direction abruptly. In the lower portion of the image, pits have collapsed at the bends and allow us to observe the sharp, nearly right angle corners. These direction changes are most likely due to some sort of structural control during the emplacement of the lava tubes. There is an extraordinarily high concentration of small, degraded craters on the plains surface. The size range of these craters is fairly consistent and they all appear to be of similar age. It is unlikely that these were caused by primary impacts (impacts of meteors onto the surface) because both the size and timing distributions of primary impactors vary tremendously. However, the craters in the image could have been created from secondary impacts. Secondaries are impacts of material that is excavated during a large cratering event nearby or from the disintegration of a primary meteor in the atmosphere into many smaller parts that rain onto the surface. In contrast to these older, small craters, there is a relatively young crater in the center of the image. A hummocky ejecta blanket is visible around the crater and has covered some of the smaller craters on the plain around it. The edges of the crater are sharp, formed by rocky material in the crater rim. This material is visible as the layer of rough, grooved material at the top of the inside walls. Small dust avalanches have left dark streaks down the inside walls of the crater.

  4. Craters Near Nilokeras Scopulus

    NASA Image and Video Library

    2015-03-04

    This image from NASA Mars Reconnaissance Orbiter of craters near Nilokeras Scopulus shows two pits partially filled with lumpy material, probably trapped dust that blew in from the atmosphere. This image shows two pits partially filled with lumpy material, probably trapped dust that blew in from the atmosphere. The pits themselves resemble impact craters, but they are part of a chain of similar features aligned with nearby faults, so they could be collapse features instead. Note also the tracks left by rolling boulders at the bottom of the craters. Nilokeras Scopulus is the name for the cliff, about 756 kilometers long, in the northern hemisphere of Mars where these craters are located. It was named based on an albedo (brightness) feature mapped by astronomer E. M. Antoniadi in 1930. http://photojournal.jpl.nasa.gov/catalog/PIA19304

  5. Evidence for the interior evolution of Ceres from geologic analysis of fractures

    USGS Publications Warehouse

    Scully, Jennifer E. C.; Buczkowski, Debra; Schmedemann, Nico; Raymond, Carol A.; Castillo-Rogez, Julie C.; Scott King,; Bland, Michael T.; Ermakov, Anton; O'Brien, D.P.; Marchi, S.; Longobardo, A.; Russell, C.T.; Fu, R.R.; Neveu, M.

    2017-01-01

    Ceres is the largest asteroid belt object, and the Dawn spacecraft observed Ceres since 2015. Dawn observed two morphologically distinct linear features on Ceres's surface: secondary crater chains and pit chains. Pit chains provide unique insights into Ceres's interior evolution. We interpret pit chains called the Samhain Catenae as the surface expression of subsurface fractures. Using the pit chains' spacings, we estimate that the localized thickness of Ceres's fractured, outer layer is approximately ≥58 km, at least ~14 km greater than the global average. We hypothesize that extensional stresses, induced by a region of upwelling material arising from convection/diapirism, formed the Samhain Catenae. We derive characteristics for this upwelling material, which can be used as constraints in future interior modeling studies. For example, its predicted location coincides with Hanami Planum, a high-elevation region with a negative residual gravity anomaly, which may be surficial evidence for this proposed region of upwelling material.

  6. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  7. Method for Identifying Lava Tubes Among Pit Craters Using Brightness Profile Across Pits on the Moon or Mars

    NASA Astrophysics Data System (ADS)

    Jung, Jongil; Hong, Ik-Seon; Cho, Eunjin; Yi, Yu

    2016-03-01

    Caves can serve as major outposts for future human exploration of the Moon and Mars. In addition, caves can protect people and electronic equipment from external hazards such as cosmic ray radiation and meteorites impacts and serve as a shelter. Numerous pit craters have been discovered on the Moon and Mars and are potential entrances to caves; the principal topographic features of pit craters are their visible internal floors and pits with vertical walls. We have devised two topographical models for investigating the relationship between the topographical characteristics and the inner void of pit craters. One of our models is a concave floor void model and the other is a convex floor tube model. For each model, optical photographs have been obtained under conditions similar to those in which optical photographs have been acquired for craters on the Moon and Mars. Brightness profiles were analyzed for determining the profile patterns of the void pit craters. The profile patterns were compared to the brightness profiles of Martian pit craters, because no good-quality images of lunar pit craters were available. In future studies, the model profile patterns will be compared to those of lunar pit craters, and the proposed method will likely become useful for finding lunar caves and consequently for planning lunar bases for manned lunar expeditions.

  8. Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Kim, Eojin

    2014-06-01

    Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

  9. Interior and Ejecta Morphologies of Impact Craters on Ganymede

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Klaybor, K.; Katz-Wigmore, J.

    2006-09-01

    We are utilizing Galileo SSI imagery of Ganymede to classify impact crater interior and ejecta morphologies. Although we are in the early stages of compiling our Catalog of Impact Craters on Ganymede, some interesting trends are beginning to emerge. Few craters display obvious ejecta morphologies, but 68 craters are classified as single layer ejecta and 3 as double layer ejecta. We see no obvious correlation of layered ejecta morphologies with terrain or latitude. All layered ejecta craters have diameters between 10 and 40 km. Sinuosity ("lobateness") and ejecta extent ("ejecta mobility ratio") of Ganymede layered ejecta craters are lower than for martian layered ejecta craters. This suggests less mobility of ejecta materials on Ganymede, perhaps due to the colder temperatures. Interior structures being investigated include central domes, peaks, and pits. 57 dome craters, 212 central peak craters, and 313 central pit craters have been identified. Central domes occur in 50-100 km diameter craters while peaks are found in craters between 20 and 50 km and central pit craters range between 29 and 74 km in diameter. The Galileo Regio region displays higher concentrations of central dome and central pit craters than other regions we have investigated. 67% of central pit craters studied to date are small pits, where the ratio of pit diameter to crater diameter is <0.2. Craters containing the three interior structures preferentially occur on darker terrain units, suggesting that an ice-silicate composition is more conducive to interior feature formation than pure ice alone. Results of this study have important implications not only for the formation of specific interior and ejecta morphologies on Ganymede but also for analogous features associated with Martian impact craters. This research is funded through NASA Outer Planets Research Program Award #NNG05G116G to N. G. Barlow.

  10. The Geomorphology of Rhea

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Horner, V. M.; Greeley, R.

    1985-01-01

    Rhea was imaged to a resolution of approximately 1 km/lp by the Voyager spacecraft, providing the most detailed view of any Saturnian satellite. A preliminary study of Rhea divided the northern hemisphere into population 1 cratered terrain (between 20 deg and 120 deg) and population 2 cratered terrain (between 300 deg and 360 deg). Population 1 includes craters that are 40 km and were formed before the termination of population 2 bombardment, which formed craters primarily 40 km. Several geomorphic features on Rhea are classified and interpreted including three physiographic provinces, multiringed basins, craters, megascarps, ridges and scarps, and troughs and coalescing pit chains. A generalized chronology for Rhea is constructed from an analysis of the superposition relationships among the landforms and physiographic provinces.

  11. Atypical pit craters on Mars: new insights from THEMIS, CTX and HiRISE observations

    USGS Publications Warehouse

    Cushing, Glen; Okubo, Chris H.; Titus, Timothy N.

    2015-01-01

    More than 100 pit craters in the Tharsis region of Mars exhibit morphologies, diameters and thermal behaviors that diverge from the much larger bowl-shaped pit craters that occur in most regions across Mars. These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50-350 m, and high depth-to-diameter (d/D) ratios that are usually greater than 0.3 (which is an upper-range value for impacts and bowl-shaped pit craters), and can exceed values of 1.8. Observations by the Mars Odyssey THermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night, and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters. Kīlauea volcano, Hawai'i, hosts pit craters that formed through subsurface collapse into active volcanic dikes, resulting in pits that can appear morphologically analogous to either APCs or bowl-shaped pit craters. Partially-drained dikes are sometimes exposed within the lower walls and floors of these terrestrial APC analogs and can form extensive cave systems with unique microclimates. Similar caves in martian pit craters are of great interest for astrobiology. This study uses new observations by the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) to refine previous work where seven APCs were described from lower-resolution THEMIS visible-wavelength (VIS) observations. Here, we identify locations of 115 APCs, map their distribution across the Tharsis region, characterize their internal morphologies with high-resolution observations, and discuss possible formation mechanisms.

  12. Gullies and Voids

    NASA Image and Video Library

    2018-02-05

    Intricate gullies have formed on the northern wall of this impact crater located in the Terra Cimmeria region in this image from NASA's Mars Reconnaissance Orbiter (MRO). This crater may have formed in a region rich in ground water. This ground water likely flowed down the wall, eventually eroding numerous gullies while carrying sediments to form fan deposits. Ultimately the water likely infiltrated and froze beneath the surface. Other hypotheses say gullies form through carbon dioxide frost avalanches that we can see today. What about this chain of pits snaking their way downhill? After material was transported, subsurface voids may have formed, removing support for the overlying material. The collapse of the surface into the cavities below likely resulted in the pits and troughs, perhaps beginning a new cycle of gully formation. https://photojournal.jpl.nasa.gov/catalog/PIA22239

  13. Evidence of stratabound liquefaction in the formation of fractured topographic margins, cone chains and pit catenas along the Martian Dichotomy Boundary and in Isidis Planitia, Mars.

    NASA Astrophysics Data System (ADS)

    Gallagher, C.; Balme, M. R.

    2012-04-01

    On the low-lying plains along much of the Martian Dichotomy Boundary (MDB) and in the Isidis impact basin, cones and curving chains of cones, referred to as thumbprint terrain (TPT), are common. In the same settings, pit chains (catenas) occur in orthogonal to curving and conchoidal fracture sets between mesa-like crustal blocks, generally at or near topographic margins. Many of the fractures consist of linked pits rather than simple propagated cracks. These assemblages are often associated with the more disaggregated populations of blocks comprising chaos terrain. We show that the local planimetric arrangement of the cone chains, fractures and pit catenas is strikingly similar in both shape and scale, including lateral separation, length, longitudinal slope and radius of curvature. The summits of cones tend to be closely accordant along individual cone chains. Neighbouring cone chains tend to be mutually accordant on low gradient basin surfaces but generally stepped en echelon closer to the fractured basin margins. Similarly, the crustal blocks (including very isolated block sets) are often mutually stepped, and fractures between these en echelon blocks tend to be very close to horizontal. Hence, many cone chains, fractures and pit catenas in fractures share the property of being arranged along strike. They diverge morphologically by the cone chains being positive forms separated by narrow gulfs but the pit catenas being negative forms separated by planar blocks. All of these characteristics point to the possibility that the arcuate cone chains and the arcuate pit catenas have a common origin. In particular, we hypothesise that the cone chains characteristic of TPT along the MDB and in Isidis are filled, indurated and then exhumed pit catenas revealed by the stripping-away of intervening blocks [cf. 1]. Many other surfaces on Mars are pervaded by pits and pit catenas, with evidence of former water flow through the catenas suggesting that ground-ice thaw played a role in at least one mode of catena formation [2]. As well as presenting the morphological evidence for a genetic association between TPT and pit catenas, we present corroborative evidence that fluvial channel networks on Mars have in places increased in complexity through the linking of pits arranged in linear to arcuate arrays, culminating in a pseudo-branching channel network. Such systems do not occur at topographic margins and did not disintegrate into stepped crustal blocks. However, the scale of these channels and the volumes of liquid intermittently impounded in craters along these channel systems indicate that pit chains are associated with significant excess groundwater production leading to channelized flow, including catastrophic discharges when crater-impounded lakes along-flow were breached. Are the MDB and Isidis cone chains exhumed pit catenas and are the pits the surface expression of more deep-seated conduits? Do pit catenas indicate excess pore-water production, sufficient to link individual pits and dissect crustal blocks? Together, do these assemblages reflect the degradation of the MDB and Isidis margins and the subsequent stripping of adjacent low-lying plains? The crucial observations presented in this research (cone chains lying between crustal blocks, together with the morphometric similarities) are consistent with the interpretation of the cones and catenas having a common origin. Consequently, we hypothesise that the translated, back-rotated, tilted and capsized disposition of en echelon blocks is very reminiscent of the morphology produced during lateral spreading [3] associated with stratabound liquefaction below a low-gradient, rigid, insensitive surface. Significantly, such liquefaction events cause extensive, arcuate ground fractures along with the discharge of sediment-laden groundwater from the liquefiable substratum to the surface through pipes and conical boils confined within inter-block fractures. These conduits and their injectite are frequently indurated by secondary mineralisation, often making them more competent and less erodible than the confining material. Most often, lateral spreads occur at coastlines, with basin-ward normal faulting and extension of the original surface. Generally, seismic shaking of susceptible materials is responsible for lateral spreading but pore-water pressure changes, e.g. due to rapid marine recession and drawdown, may also play a role. Given the basin-and-margin setting of the martian cone, pit and block assemblages described in this research, we speculate that all three broad morphological types reflect the degradation of extensive marine margins and the deflation of the interiors of marine basins during long-term marine recession. [1] Williams et al. (2007) in Willis et al. (eds), Utah Geological Association Publication 36. [2] Weitz et al. (2006) Icarus 184, 436-451. [3] Wang et al. (2005) Icarus 175, 551-555.

  14. Central Pit Crater

    NASA Image and Video Library

    2015-11-13

    Crater floors can have a range of features, from flat to a central peak or a central pit. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Terra Sabaea has a central pit. This unnamed crater in Terra Sabaea has a central pit. The different floor features develop do due several factors, including the size of the impactor, the geology of the surface material and the geology of the materials at depth. Orbit Number: 60737 Latitude: 22.3358 Longitude: 61.2019 Instrument: VIS Captured: 2015-08-23 20:13 http://photojournal.jpl.nasa.gov/catalog/PIA20092

  15. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.

  16. A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1983-01-01

    The hypothesis that palimpsests and anomalous pit craters are essentially pristine crater forms derived from high-velocity impacts and/or impacts into an ice crust with preimpact temperatures near melting is explored. The observational data are briefly reviewed, and an impact model is proposed for the direct formation of a palimpsest from an impact when the modification flow which produces the final crater is dominated by 'wet' fluid flow, as opposed to the 'dry' granular flow which produces normal craters. Conditions of 'wet' modification occur when the volume of impact melt remaining in the transient crater attains a volume comparable to the transient crater. The normal crater-palimpsest transition is found to occur for sufficiently large impacts or sufficiently fast impactors. The range of crater diameters and morphological characteristics inferred from the impact model is consistent with the observed characteristics of palimpsests and anomalous pit craters.

  17. Rain Erosion Studies of Sapphire, Aluminum Oxynitride, Spinel, Lanthana- Doped Yttria, and TAF Glass

    DTIC Science & Technology

    1990-07-01

    small , there is little change in average scatter for any material in any test. CONCLUSIONS AND DISCUSSION The principal conclusions are 1. ALON...20 Sample broke erosion damage 10 Slight pitting, 20 No change erosion damage 15 Pitting, cratering, 20 Small surface pits erosion damage 15 Pitting...Sample broke 10 No damage 15 Sample pitted, small edge fracture 15 Slight pitting, 1 crater, 20 Sample pitted, erosion damage small edge fracture 15 SUght

  18. The volcanotectonic structures of Ascraeus Mons

    NASA Astrophysics Data System (ADS)

    Byrne, Paul; van Wyk de Vries, Benjamin; Murray, John; Troll, Valentin

    2010-05-01

    Ascraeus Mons is the tallest of three large volcanoes situated to the NE of the Tharsis Rise and aligned parallel to a NE-SW regional structural trend. With a vertical relief of 14.9 km and an E-W diameter of 400 km, the main shield has a convex-upward morphology and a summit plateau, whilst significantly younger lava rift aprons issue from expansive embayments on its lower flanks onto the surrounding plains. The volcano hosts several types of well-preserved surface structures, and so has served as a basis for understanding Martian volcano geodynamics. Previous studies have not incorporated the full set of structures on Ascraeus Mons, however, and have been limited by photogeological data of lower resolution than that available today. We have used a GIS of MOLA, HRSC, and CTX data to map the spatial and temporal distributions of the most pronounced structures on Ascraeus Mons — its summit calderas, flank terraces, arcuate graben, and pit craters — to develop as comprehensive an evolutionary sequence for this volcano as possible. We summarise our mapping results here. · The 55-km wide caldera complex consists of at least three NE-SW-aligned depressions, with a possible fourth caldera on the periphery. Depths range from 818 m for the shallowest caldera to 3,110 m for the deepest. Whilst most lavas on the volcano are summit-derived, even the latest flows are cut by post-caldera formation subsidence and fracturing. · Flank terraces, topographically subtle outward-verging, convex-upward structures, encircle Ascraeus Mons in an imbricate, fish-scale pattern. 142 terraces in total extend from immediately below the summit to the basal plains, but do not occur on the rift aprons. The mean circumferential length for terraces is 31.9 km, though terraces over 60 km long lie on the NW and SE flanks. · Arcuate graben crosscut the NW flanks and surrounding plains, and extend for ca. 90° concentric to the volcano. These structures vary in width from 400 m to 1,200 m, and are between 10 and 100 m deep. They are shallower and more laterally continuous than the pit troughs observed elsewhere on the flanks (described below), although pits do occur nearby, and in places are laterally contiguous with graben. · Pit craters are circular or ovoid rimless depressions, between 190 and 3,000 m in diameter and several 100s m deep, that are superposed upon the latest lavas on the volcano. Rows of pits form crater chains, whilst chains can merge to form troughs. We mapped 4,166 pits across the volcano, trending circumferential near the summit to radial low on the NE and SW flanks; here, chains and troughs coalesce to form the embayments. Caldera formation is likely the result of evacuation of an underlying magma chamber. Recent work indicates that flank terraces are compressive structures, formed by upper flank shortening of a volcano as it flexes the supporting lithosphere; flexure could also account for the arcuate graben concentric to the shield. In contrast, pit craters are probably extensional structures, formed by collapse into subsurface voids. A developmental sequence for Ascraeus Mons, therefore, needs to account for the disparate formation mechanisms proposed for these spatially coincident structures. Incorporating our findings with earlier studies of this volcano, we conclude that Ascraeus has experienced a history of rapid shield building, coeval with magma chamber evacuation, which initiated sustained lithospheric flexure and led to the formation of flank terraces and concentric graben. Main shield construction was followed by a period of repose before rift apron volcanism initiated on the lower flanks along the NE-SW regional lineament. Ultimately, the dominant tectonic regime upon the volcano's flanks changed from compressional to extensional, resulting in the development of pit craters. This model may help establish a framework for understanding the volcanotectonic histories of large shields across Mars.

  19. The Unique Geomorphology and Physical Properties of the Vestalia Terra Plateau

    NASA Technical Reports Server (NTRS)

    Buczkowski, D.L.; Wyrick, D.Y.; Toplis, M.; Yingst, R. A.; Williams, D. A.; Garry, W. B.; Mest, S.; Kneissl, T.; Scully, J. E. C.; Nathues, A.; hide

    2014-01-01

    We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual "dark ribbon" material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

  20. Exposed Fractured Bedrock in the Central Pit of a Crater

    NASA Image and Video Library

    2016-11-09

    This HiRISE image shows the central pit feature of an approximately 20-kilometer diameter complex crater in located at 304.480 degrees east, -11.860 degrees south, just north of the Valles Marineris. Here we can observe a partial ring of light-toned, massive and fractured bedrock, which has been exposed by the impact-forming event, and via subsequent erosion that typically obscure the bedrock of complex central features. Features such as this one are of particular interest as they provide scientists with numerous exposures of bedrock that can be readily observed from orbit and originate from the deep Martian subsurface. Unlike on Earth, plate tectonics do not appear to be active on Mars. Thus, much of the Martian subsurface is not directly observable through uplift, erosion and exposure of mountain chains, which provide the majority of bedrock exposures on Earth. Exposures of subsurface materials generated by these features provides us with some of the only "windows" into the subsurface geology. This makes the study of impact craters an invaluable source of information when trying to understand, not only the impact process, but also the composition and history of Mars. Although much of what we see here is composed of massive and fractured bedrock, there are zones of rock fragmentation, called "brecciation." These fragmented rocks (a.k.a., breccias) are best viewed in the eastern portion of the central pit, which was captured in a previous HiRISE image. Additionally, we see some occurrences of impact melt-bearing deposits that surround and coat the bedrock exposed within the central pit. Several dunes are on the surface throughout the central pit and surrounding crater floor. The mechanisms behind the formation of central features, particularly central pits, are not completely understood. Geologic mapping of these circumferential "mega" blocks of bedrock indicate radial and concentric fracturing that is consistent with deformation through uplift. The exposed bedrock shows well-expressed lineament features that are likely fractures and faults formed during the uplift process. Studies of the bedrock, and such structures in this image, allows us better to understand the formative events and physical processes responsible for their formation. Current research suggests that their formation is the result of some component of uplift followed by collapse. http://photojournal.jpl.nasa.gov/catalog/PIA21205

  1. Geological Mapping of the Ac-H-9 Occator Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra; Williams, David; Scully, Jennifer; Mest, Scott; Crown, David; Aileen Yingst, R.; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Marchi, Simone; De Sanctis, M. Cristina; Raymond, Carol; Russell, Chris

    2016-04-01

    As was done at Vesta [1], the Dawn Science Team is conducting a geological mapping cam-paign at Ceres during the nominal mission, including iterative mapping using data obtained dur-ing each orbital phase. We are using geological mapping as a method to identify the geologic processes that have modified the surface of dwarf planet Ceres. We here present the geology of the Ac-H-9 Occator quadrangle, located between 22°S-22°N and 216-288°E. The Ac-H-9 map area is completely within the topographically high region on Ceres named Erntedank Planum. It is one of two longitudinally distinct regions where ESA Herschel space telescope data suggested a release of water vapor [2]. The quadrangle includes several other notable features, including those discussed below. Occator is the 92 km diameter crater that hosts the "Bright Spot 5" that was identified in Hubble Space Telescope data [3], which is actually comprised of multiple bright spots on the crater floor. The floor of Occator is cut by linear fractures, while circumferential fractures are found in the ejecta and on the crater walls. The bright spots are noticeably associated with the floor fractures, although the brightest spot is associated with a central pit [4]. Multiple lobate flows are observed on the crater floor; these appear to be sourced from the center of the crater. The crater has a scalloped rim that is cut by regional linear structures, displaying a cross-section of one structure in the crater wall. Color data show that the Occator ejecta have multiple colors, generally related to changes in morphology. Azacca is a 50 km diameter crater that has a central peak and bright spots on its floor and within its ejecta. Like Occator, Azacca has both floor fractures and circumferential fractures in its ejecta and crater walls. Also like Occator, the Azacca ejecta is multi-colored with variable morphology. Linear structures - including grooves, pit crater chains, fractures and troughs - cross much of the eastern hemisphere of Ceres. Some of these structures appear to be radial to the large basins Urvara and Yalode, and most likely formed due to impact processes. However, a set of regional linear structures (RLS) do not have any obvious relationship to impact craters and may represent internally driven tectonics [5]. In the Ac-H-9 map area, many of the longer RLS are comprised of smaller structures that have linked together, suggestive of en echelon fracturing. Also, many of the RLS are crosscut by the linear features radial to Urvara and Yalode, indicating they are not fractures formed due to stresses released during those impact events. Kirnis is a 115 km diameter crater with a degraded rim deformed by one of RLS pit crater chains. A dome-like feature on the floor of Kirnis might represent uplifting of the Ceres surface. References: [1] Yingst et al. (2014) PSS, 103, 2-23. [2] Küppers, M., et al. (2014) Nature, 505, 525-527. [3] Li J.Y. et al. (2006) Icarus, 182, 143-160. [4]Schenk, P. et al. (2015) EPSC2015-527. [5] Buczkowski D.L. et al. (2015) GSA, abstract #261709.

  2. Corrosion pitting of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1986-01-01

    The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.

  3. Lunar and Planetary Science XXXVI, Part 15

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Impact Metamorphism of Subsurface Organic Matter on Mars: A Potential Source for Methane and Surface Alteration. Preliminary Study of Polygonal Impact Craters in Argyre Region, Mars. Geochemistry of the Dark Veinlets in the Granitoids from the Souderfjarden Impact Structure, Finland: Preliminary Results. An Experimental Method to Estimate the Chemical Reaction Rate in Vapor Clouds: An Application to the K/T Impact. Study of the Apollo 16 Landing Site: Re-Visit as a Standard Site for the SELENE Multiband Imager. First X-Ray Observation of Lunar Farside from Hayabusa X-Ray Spectrometer. Lunar X-Ray Fluorescence Spectrometry from SELENE Lunar Polar Orbiter. Origin and Thermal History of Lithic Materials in the Begaa LL3 Chondrite. Evidence of Normal Faulting and Dike Intrusion at Valles Marineris from Pit Crater Topography. Evidence of Tharsis-Radial Dike Intrusion in Southeast Alba Patera from MOLA-based Topography of Pit Crater Chains. Are They Really Intact? Evaluation of Captured Micrometeoroid Analogs by Aerogel at the Flyby Speed of Stardust. Numerical Simulations of Impactor Penetration into Ice-Over-Water Targets. A Probable Fluid Lava Flow in the Hebes Mensa (Mars) Studied by HRSC Images. New Drill-Core Data from the Lockne Crater, Sweden: The Marine Excavation and Ejection Processes, and Post-Impact Environment. Cross-Sectional Profile of Baltis Vallis Channel on Venus: Reconstruction from Magellan SAR Brightness Data.

  4. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-14

    This VIS image of Rabe Crater is dominated by the extensive dunes that cover the crater floor. To the top of the image part of the pit is visible, as well as a small peninsula that has been eroded into the upper level floor materials. On the upper elevation on the side left of the peninsula the dunes cascade onto the lower pit elevation. There is also a slight arc to the dunes on the pit floor due to how the peninsula changed the wind pattern. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52206 Latitude: -43.6573 Longitude: 34.9551 Instrument: VIS Captured: 2013-09-20 13:07 https://photojournal.jpl.nasa.gov/catalog/PIA22142

  5. Pit Crater - False Color

    NASA Image and Video Library

    2015-06-18

    The THEMIS VIS camera contains 5 filters. Data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the central pit of an unnamed crater south of Coprates Catena.

  6. Pits and Scarps

    NASA Image and Video Library

    2015-04-08

    Lessing crater can be seen in the lower left of this image. Instead of the typical central peak found in a complex crater on Mercury, Lessing sports a central pit, likely formed by volcanic activity. A large tectonic scarp that formed when the planet's interior cooled and contracted can be seen running through a crater near the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19276

  7. Gullies in a Central Pit Crater

    NASA Image and Video Library

    2015-10-14

    Sometimes a central pit forms inside some Martian craters, especially when there substantial ground ice. Such is the case in this observation from NASA Mars Reconnaissance Orbiter spacecraft. Sometimes what we call "mass wasting" processes (think small avalanches or landslides) occur on the slopes of the central pit. We took this image to search for any recent activity that would add to or modify previously identified gullies. http://photojournal.jpl.nasa.gov/catalog/PIA20005

  8. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission should be able to detect specific silicate signatures on the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular, compaction of material, will affect the local activity. The increase of tensile strength can stop the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity [11]. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  9. MEVTV Workshop on Tectonic Features on Mars

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R. (Editor); Golombek, Matthew P. (Editor)

    1989-01-01

    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed.

  10. Preliminary Geological Map of the Ac-H-3 Dantu Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Kneissl, T.; Schmedemann, N.; Neesemann, A.; Williams, D. A.; Crown, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Frigeri, A.; Ruesch, O.; Hiesinger, H.; Walter, S. H. G.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Platz, T.; Hoffmann, M.; Schäfer, M.; De Sanctis, M. C.; Raymond, C. A.; Russell, C. T.; Kersten, E.; Naß, A.

    2015-12-01

    We are using Dawn spacecraft data to create a geologic map of the Ac-H-3 Dantu Quadrangle of dwarf planet Ceres. The quadrangle is located between 21-66˚N and 90-180˚E and includes the following dominant features: 1) the central and northern portion of the 124.6 km diameter impact crater Dantu; 2) crater chains and/or grooves oriented in an east-west direction; 3) a portion of the 84 km diameter impact crater Gaue, whose ejecta blanket covers the SW corner of the quadrangle. Dantu is a complex impact crater showing terraces, a central pit structure, concentric fractures, and smooth deposits on the crater floor. The materials interpreted to be ejecta deposits of Dantu show low crater frequencies and dominate the southern half of the quadrangle. These deposits appear to be relatively bright and correspond to parts of the #2 high albedo region observed by (1) with the HST indicating different composition and/or material properties than the surroundings. The east-west striking crater chains and grooves are mainly found in the southern half of the quadrangle. They seem to be connected to the crater chains found in Ac-H-4 Ezinu, the neighboring quadrangle to the east, and are potentially related to ballistic ejecta emplacement (see 2). Further work will be focused on Dantu crater and its complex interior and exterior. The current geologic map is based on Framing Camera (FC) image mosaics derived from Approach (~1.3 km/px) and Survey (~400 m/px) data as well as digital terrain models (DTMs) derived from stereo imagery. In the course of the mission, we will incorporate mosaics from the High Altitude Mapping Orbit (~140 m/px, Fall 2015) and Low Altitude Mapping Orbit (~35 m/px, Spring 2016) phases. We acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work is partly supported by the German Space Agency (DLR), grant 50 OW 1101. (1) Li, J-Y. et al. (2006), Icarus, 182, 143-160. (2) Scully, J.E.C. et al. (2015), this conference.

  11. Topography and Geomorphology of the Interior of Occator Crater on Ceres

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    2017-04-01

    With a diameter of 92km, Occator is one of the most prominent craters on Ceres. Its depth ranges from 4.8km along the crater rim to -1.1km at the crater floor with respect to a reference ellipsoid. Occator shows a set of specific features such as post impact formation crater filling including multiple flow features, a central pit with a dome in its center, extensional tectonics expressed as linear radial and concentric graben, and spectral variations indicating a complex formation process. We processed 550 LAMO stereo images from Cycle01-Cycle11 with a resolution of 35m/pixel to generate a high-resolution digital terrain model (DTM) of the Occator impact structure. Occator crater has mass wasting deposits originating from the crater rims and walls, which extend into the crater for 10 to 20km. However, in the southeast and northeast these mass wasting deposits are completely covered by crater floor plains material that extends from the crater center to the rim, ponding against the crater walls. The flows also superimpose the mass wasting deposits from the rims [1]. Furthermore, crater densities on Occator's interior deposits are slightly lower than on its ejecta blanket, indicating post-impact formation or target parameter variation between consolidated melt and unconsolidated ejecta deposits [2,3,4]. The terrain northwest of the central area is very rough, shows mass wasting deposits and is about 2km thick w.r.t the rim of the central pit. The plains to the southeast are smooth, pond against the crater wall, and are less than 500m thick w.r.t. the rim of the central pit The central pit is about 3.5km wide and 600m deep while the dome rises 250m within the pit [5]. In the northeast, multiple flows approaching the crater rim very closely. These flow plains are also less than 500m thick w.r.t. the rim of the central pit. Some of the flows seem to have been superposed on the lower parts of the crater wall and then flowed back into depressions of the plains. The flows to the northeast appear to originate from the central region and move slightly uphill. This indicates either a feeding zone that pushes the flows forward by supplying low-viscosity material or an extended subsidence of the crater center, possibly after discharging a subsurface reservoir [1,2], or lateral oscillations of an impact melt sheet during emplacement. The plains material covers an area of about 4750km2 with an average depth of about 250m resulting in a body of plains material of about 1200km3. The plains material is slightly younger than the impact event and the bright deposits are even younger than the plains material. Post impact processes might be due to impact melt, hydrothermal alteration, or cryovolcanic crater filling [1] K. Krohn et al, GRL43, 11994, (2016). [2] R. Jaumann et al., LPSC47, 1455 (2016). [3] N. Schmedemann et al, GRL43, 11987. (2016) [4] A. Neesemann, et al., Icarus, in prep. [5] P. Schenk, et al., LPSC47 (2016).

  12. A South Polar Pit or an Impact Crater?

    NASA Image and Video Library

    2017-05-30

    This observation from NASA's Mars Reconnaissance Orbiter show it is late summer in the Southern hemisphere, so the Sun is low in the sky and subtle topography is accentuated in orbital images. We see many shallow pits in the bright residual cap of carbon dioxide ice (also called "Swiss cheese terrain"). There is also a deeper, circular formation that penetrates through the ice and dust. This might be an impact crater or it could be a collapse pit. https://photojournal.jpl.nasa.gov/catalog/PIA21636

  13. A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars

    NASA Astrophysics Data System (ADS)

    Tornabene, Livio L.; Watters, Wesley A.; Osinski, Gordon R.; Boyce, Joseph M.; Harrison, Tanya N.; Ling, Victor; McEwen, Alfred S.

    2018-01-01

    We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ∼1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from ;problematic; craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347 ± 0.021)D0.537 ± 0.017 and dr = (0.323 ± 0.017)D0.538 ± 0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.

  14. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-11

    Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. In this VIS image the rim of the pit is visible near the top of the image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17074 Latitude: -43.6954 Longitude: 34.66 Instrument: VIS Captured: 2005-10-20 04:05 https://photojournal.jpl.nasa.gov/catalog/PIA22139

  15. Ganymede Groove Lanes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An ancient dark terrain surface is cut by orthogonal sets of fractures on Jupiter's moon Ganymede. Subdued pits visible on unbroken blocks are the remnants of impact craters which have degraded with time. Across the top of the image, a line of these subdued pits may have been a chain of craters which are now cut apart by the northwest to southeast trending fractures. North is to the top. Younger craters appear as bright circles. The fractures in this image range from less than 100 meters (328 feet) to over a kilometer (0.62 miles) in width. They display bright walls where cleaner ice may be exposed, and deposits of dark material fill their floors. This 27 by 22 kilometer (17 by 14 mile) image of northern Marius Regio was obtained on September 6, 1996 by NASA's Galileo spacecraft at a resolution of 85 meters (278 feet) per picture element (pixel).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  16. Sesquinary reimpacts dominate surface characteristics on Phobos

    NASA Astrophysics Data System (ADS)

    Nayak, Michael

    2018-01-01

    We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ˜1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from "problematic" craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347±0.021)D0.537±0.017 and dr = (0.323±0.017)D0.538±0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.

  17. Exhuming South Polar Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 February 2004 The large, circular feature in this image is an old meteor impact crater. The crater is larger than the 3 kilometers-wide (1.9 miles-wide) Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, thus only part of the crater is seen. The bright mesas full of pits and holes--in some areas resembling swiss cheese--are composed of frozen carbon dioxide. In this summertime view, the mesa slopes and pit walls are darkened as sunlight causes some of the ice to sublime away. At one time in the past, the crater shown here may have been completely covered with carbon dioxide ice, but, over time, it has been exhumed as the ice sublimes a little bit more each summer. The crater is located near 86.8oS, 111.6oW. Sunlight illuminates this scene from the upper left.

  18. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-12

    In this VIS image of the floor of Rabe Crater the step down into the pit is visible in the sinuous ridges on the left side of the image. The appearance of the exposed side of the cliffs does not look like a volcanic, difficult to erode material, but rather an easy to erode material such as layered sediments. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 34456 Latitude: -43.7164 Longitude: 34.4056 Instrument: VIS Captured: 2009-09-20 09:38 https://photojournal.jpl.nasa.gov/catalog/PIA22140

  19. Erosion and Deposition in Schaeberle Crater

    NASA Image and Video Library

    2016-01-14

    Schaeberle Crater is a large, heavily-infilled crater with many interesting features. This image NASA Mars Reconnaissance Orbiter spacecraft shows a window into the crater fill deposit, showcasing eroding bedrock and aeolian landforms. This pit is located near the geometric center of our image, making it a central pit crater. Central pit craters are thought to form from impact melt draining through subsurface cracks in the deepest part of the crater shortly following impact. A closeup image shows light-toned bedrock and a small cliff that appears to be weathering away. Below the cliff there are several different types of aeolian features, including ripples and transverse aeolian ridges (TAR). The sand that forms the small, bluish ripples may be weathering out of the cliff face, in contrast to the larger, light-toned TAR which are thought to be currently inactive. More of the TAR are visible in another closeup image. In this case, they are clearly covered by a dark, ripple-covered sand sheet. We have only imaged this location once, so it is impossible to determine whether or not the sand sheet is blowing in the wind. But due to repeated HiRISE imaging in other areas, active dunes are now known to be common across Mars and we can reasonably speculate that these dunes are moving, too. http://photojournal.jpl.nasa.gov/catalog/PIA20339

  20. Pedestal Craters in Utopia Planitia and Malea Planum: Evidence for a Past Ice-Rich Substrate from Marginal Sublimation Pits.

    NASA Astrophysics Data System (ADS)

    Kadish, S. J.; Head, J. W.; Barlow, N. G.; Marchant, D. R.

    2008-09-01

    Introduction: Pedestal craters (Pd) are a subclass of impact craters unique to Mars [1] characterized by a crater perched near the center of a pedestal (mesa or plateau) that is surrounded by a quasi-circular, outward-facing scarp. The marginal scarp is usually several crater diameters from the crater rim (Figs. 2,4,5), and tens to over 100 meters above the surrounding plains (Fig. 2). Pd have been interpreted to form by armoring of the proximal substrate during the impact event. Hypotheses for the armoring mechanism include an ejecta covering [e.g., 3], increased ejecta mobilization caused by volatile substrates [4], distal glassy/melt-rich veneers [5], and/or an atmospheric blast/thermal effect [6]. Subsequently, a marginal scarp forms by preferential erosion of the substrate surrounding the armored region, most commonly thought to involve eolian removal of fine-grained, non-armored material [e.g., 3]. An understanding of the distribution of Pd, which form predominantly poleward of ~40°N and S latitude [7-9] (Fig. 1), and the role of redistribution of ice and dust during periods of climate change [e.g., 10-11], suggests that the substrate might have been volatile-rich [8-9, 12-14]. As such, some researchers [e.g., 8-9] have proposed a model for Pd formation that involves impact during periods of higher obliquity, when mid- to high-latitude substrates were characterized by thick deposits of snow and ice [e.g., 15]. Subsequent sublimation of the volatile units, except below the armored regions, yielded the perched Pd. Thus, this model predicts that thick deposits of snow/ice should underlie Pd. This is in contrast to the eolian model [3], which calls primarily for deflation of sand and dust. Here, we show the results of our study [8,16] that has documented and characterized 2461 Pd on Mars equatorward of ~65° N and S latitude (Fig. 1) in order to test these hypotheses for the origin of pedestal craters. In particular, we report on the detection of 50 Pd in Utopia Planitia and 21 Pd in Malea Planum that have pits in their marginal scarps [17]. We interpret these as sublimation pits (Fig. 3), providing evidence for snow/ice deposits preserved below the protective cover of the Pd. Marginal Pits in Pedestal Craters: Pedestal craters with marginal pits are a newly identified crater morphology in which one or more pits exist along the marginal scarp of a Pd (Figs. 2,4,5). The ejecta deposit surface (top of the pedestal) is perched ~100 m above the surrounding terrain (Fig. 2), about twice as high as a typical Pd crater. At the Pd plateau edge, the marginal scarp slopes down to the surrounding terrain, except where it is interrupted by a pit. The pits have a typical depth of ~20 m, often contain isolated mesas (Fig. 2), and are elongated, generally spanning <3 km in length (measured tangential to the pedestal margin) and <1 km in width (measured normal to the pedestal margin). In some cases, pits appear to coalesce to form larger pits (Fig. 5), and can yield a marginal, moatlike depression along a significant part of the pedestal circumference. Altimetry data from MOLA indicate that pits form in the side of the pedestal scarp; they do not extend below the elevation of the surrounding substrate (profiles in Fig. 2). Pd containing scarp pits identified thus far occur poleward of 48°N in Utopia Planitia and 58°S in Malea Planum (orange dots in Fig. 1). Pits are similar in morphology to dissected terrain [11,18] and pits on the floors of some ancient outflow channels [19], both thought to represent sublimation of an ice-rich substrate. They are also similar to formerly ice-rich and now beheaded pits in the proximal part of debris-covered glaciers on Earth [20] and Mars [21] (see also [22]). Both of the regions in which we observe Pd with marginal pits also exhibit scallop-shaped depressions, indicative of sublimation of interstitial ice [e.g. 23-25]. Climate models show that these specific regions are both predicted to have high seasonal water-ice accumulations during periods of high obliquity [26,27]. Discussion: The morphologic similarity between the marginal pits associated with Pd and ice sublimation pits leads us to favor an origin of preferential sublimation of ice/snow from the Pd scarp. In this interpretation, an impact crater forms in a thick (~10s to ~100s m) regional highlatitude deposit of ice and snow, mixed with dust. The area around the crater (the future pedestal surface) is armored by proximal ejecta and distal sintering effects of impact melt and atmospheric blast/thermal effects accompanying crater formation [5-6]. Following crater formation, obliquitydriven climate change leads to removal of the intervening snow and ice, leaving the Pd perched. Over time, the volatile-rich scarp margins, where the armoring tapers off, undergo continued sublimation to produce the pits, while the heavily armored Pd surface inhibits/prevents sublimation of underlying volatiles (Fig. 3). Ice-rich layered substrates are thus interpreted to be preserved under Pd. On the basis of our analysis, Pd represent the remnants of a past extensive, layered, climate-related deposit, similar to, but thicker than the latitude-dependent mantle emplaced in a recent ice age [11,18]. Due to the large number and widespread distribution of Pd (Fig. 1) [8,9,16], we believe that this climate-related deposit persisted for a considerable part of the recent past, implying that obliquity was relatively higher than at present during a significant portion of the Amazonian period of the history of Mars. References: [1] Barlow, N. et al. (2000) JGR, 105, 26733. [2] McCauley, J. (1973) JGR, 78, 4123. [3] Arvidson, R. (1976) Icarus, 27, 503. [4] Osinski, G. (2006) MAPS, 41, 1571. [5] Schultz, P. and Mustard, J. (2004) JGR, 109, E01001. [6] Wrobel, K. et al. (2006) MAPS, 41, 1539. [7] Mouginis-Mark, P. (1979) JGR, 84, 8011. [8] Kadish, S. and Barlow, N. (2006) LPSC 37, #1254. [9] Kadish, S. et al. (2008) LPSC 39, #1766. [10] Jakosky, B. et al. (1995) JGR, 100, 1579. [11] Head, J. et al. (2003) Nature, 426, 797. [12] Barlow, N. (2005) RVAMIC, #3041. [13] Head, J. and Roth, R. (1976) LSI, 50-52. [14] Schultz, P. and Lutz, A. (1988) Icarus, 73, 91. [15] Levrard, B. et al. (2004) Nature, 431, 1072. [16] Kadish, S. et al. (2008) JGR, in progress. [17] Kadish, S. et al. (2008) GRL, in progress. [18] Mustard, J. et al. (2001) Nature, 412, 411. [19] Levy, J. and Head, J. (2005) Terra Nova, 17, 503. [20] Marchant, D. and Head, J. (2007) Icarus, 192, 187. [21] Head, J. and Marchant, D. (2008) Workshop on Martian Gullies, #8009. [22] Moore, J. et al. (1996) Icarus, 122, 63. [23] Lefort, A. et al. (2006) 4th Mars Polar Science Conf., #8061. [24] Zanetti, M. et al. (2008) LPSC 39, 1682. [25] Morgenstern, A. et al. (2007) JGR, 112, E06010. [26] Forget, F. et al. (2006) Science, 311, 368-371. [27] Madeleine, B. et al. (2007) LPSC 38, #1778.

  1. The 2011 collapse of Puu Oo pit crater, Hawaii: insights from digital image correlation and Discrete Element Method models

    NASA Astrophysics Data System (ADS)

    Holohan, E. P.; Walter, T. R.; Schöpfer, M. P. J.; Walsh, J. J.; Orr, T.; Poland, M.

    2012-04-01

    In March 2011, a spectacular fissure eruption on Kilauea was associated with a major collapse event in the highly-active Puu Oo crater. Time-lapse cameras maintained by the Hawaii Volcano Observatory captured views of the crater in the moments before, during, and after the collapse. The 2011 event hence represents a unique opportunity to characterize the surface deformation related to the onset of a pit crater collapse and to understand what factors influence it. To do so, we used two approaches. First, we analyzed the available series of camera images by means of digital image correlation techniques. This enabled us to gain a semi-quantitative (pixel-unit) description of the surface displacements and the structural development of the collapsing crater floor. Secondly, we ran a series of 'true-scale' numerical pit-crater collapse simulations based on the two-dimensional Distinct Element Method (2D-DEM). This enabled us to gain insights into what geometric and mechanical factors could have controlled the observed surface displacement pattern and structural development. Our analysis of the time-lapse images reveals that the crater floor initially gently sagged, and then rapidly collapsed in association with the appearance of a large ring-like fault scarp. The observed structural development and surface displacement patterns of the March 2011 Puu Oo collapse are best reproduced in DEM models with a relatively shallow magma reservoir that is vertically elongated, and with a crater floor rock mass that is reasonably strong. In combining digital image correlation with DEM modeling, our study highlights the future potential of these relatively new techniques for understanding physical processes at active volcanoes.

  2. Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of ;irregular mare patches;

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2017-04-01

    Volcanic eruptions on the Moon take place in conditions of low gravity and negligible atmospheric pressure, very different from those on Earth. These differences lead to characteristic lunar versions of hawaiian and strombolian explosive activity, and to the production of unusual eruption products neither predicted nor observed on Earth in the terminal stages of eruptions. These include the unusual mounds and rough (hummocky, blocky) floors of some small-shield summit pit crater floors, elongate depressions and mare flows (similar to those named ;irregular mare patches;, IMPs, by Braden et al., 2014). We examine the ascent and eruption of magma in the waning stages of the eruptive process in small-shield summit pit crater floors and show that many IMP characteristics can be plausibly explained by basaltic magma behavior as the rise rate of the ascending magma slows to zero, volatiles exsolve in the dike and lava lake to form a very vesicular foam, and the dike begins to close. Stresses in the very vesicular and porous lava lake crust produce fractures through which the foam extrudes at a rate determined by its non-Newtonian rheology. Waning-stage extrusion of viscous magmatic foams to the surface produces convex mounds whose physical properties inhibit typical impact crater formation and regolith development, creating an artificially young crater retention age. This mechanism for the production and extrusion of very vesicular magmatic foams is also applicable to waning-stage dike closure associated with pit craters atop dikes, and fissure eruptions in the lunar maria, providing an explanation for many irregular mare patches. This mechanism implies that IMPs and associated mare structures (small shields, pit craters and fissure flows) formed synchronously billions of years ago, in contrast to very young ages (less than 100 million years) proposed for IMPs by some workers.

  3. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-20

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52231 Latitude: -43.6665 Longitude: 34.2627 Instrument: VIS Captured: 2013-09-22 14:29 https://photojournal.jpl.nasa.gov/catalog/PIA22146

  4. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-22

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67144 Latitude: -43.5512 Longitude: 34.5951 Instrument: VIS Captured: 2017-02-01 12:57 https://photojournal.jpl.nasa.gov/catalog/PIA22148

  5. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-19

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 51157 Latitude: -43.6787 Longitude: 34.3985 Instrument: VIS Captured: 2013-06-26 05:33 https://photojournal.jpl.nasa.gov/catalog/PIA22145

  6. Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 7 May 2002) The Science Four exceptionally large volcanoes in a region called Tharsis are unique to the western hemisphere of Mars. Three of the Tharsis volcanoes, Ascraeus Mons, Pavonis Mons, and Arsia Mons, are aligned along a NE - SW trend, with Pavonis in the middle, straddling the equator. Olympus Mons, the fourth Tharsis volcano and the largest in the solar system, is located NW of Pavonis Mons. At the top right of the image, the rim of the caldera of Pavonis Mons is just barely visible, with steep NE-facing cliffs formed by the collapse of a portion of the volcano's summit. At the southwest edge of the caldera, additional fractures are apparent and may someday collapse, making the summit caldera even larger. This image of Pavonis Mons also demonstrates some of the distinctive characteristics of the martian surface in the Tharsis region. Tharsis is very dusty; the dust covers everything like fresh snow, which is the reason why there is very little contrast in the surface materials as compared to other THEMIS images that show apparently bright and dark surfaces in the same picture. This dust cover makes it difficult to distinguish different geologic or geomorphic units in the area, and even the piles of lava flows that constructed this volcano are difficult to make out. Most of the craters on the volcano are small, a few tens of meters to kilometers in diameter, suggesting that this surface is a relatively young one on Mars (the older a surface is, the more and larger craters it has). In the lower third of the image, linear arrangements of small, round pits can be seen. These features are commonly called 'pit chains' and most likely represent the collapse of lava tubes. Lava tubes are like a subway, allowing molten rock to move from place to place underground. A particularly large pit near the bottom center of the image looks a lot like a crater. However, the lack of degradation of the rim of this feature suggests that if it were an impact crater, it would be relatively young, and an ejecta blanket of debris should be visible. Because there is no apparent sign of an ejecta blanket, it is more likely that this and nearby similar features are simply the result of larger collapses. The Story Mars is Volcano Land, home to the largest volcanoes in the solar system. The small context image to the right shows a hole reminiscent of Darth Vader's Death Star, but it's really the sunken-in mouth of Pavonis Mons, one of three volcanoes that fall in a line across the Martian surface, almost like giant beads. You can see the very edge of this deep volcano hole at the uppermost righthand corner of the image. Deep fractures at the southwest edge of the caldera suggest that surrounding terrain might collapse, making the volcano depression even larger someday. Except for this darker hole, the landscape looks rather drab and uniform in color. No wonderful black-and-white contrasts of terrain appear here as they do in many other THEMIS images. That's because dust in this area covers everything like fresh snow, giving the surface a smooth and unvaried look. Unfortunately, that makes it really hard for scientists to understand what different kinds of geologic features are present and what the lava flows are like. Usually, you can tell something about when each lava layer happened . . . but that depends on being able to see how each of the layers flowed over and under one another. That's not apparent here. There are, however, some really cool features to study in this image. Deep, trenchlike tracings can be seen in the lower third of the image, as if a giant finger had scooped them out. So, how did they form? When a volcano erupts, lava flows in rivers, finding narrow channels that make easy pathways down the slopes. Gradually, the surface of the flow becomes crusted over, and the molten lava is confined to a tube of its own making. Lava tubes are a little like a subway, allowing molten rock to move from place to place underground. When the lava stops flowing from its source and the rest of it drains out, what's left? Long, hollow lava-tube caves that slope down the volcano. Sometimes these lava tubes collapse, forming 'pit chains' like the long depressions seen here. While most of the round depressions in this image are craters, the large one near bottom center may fool you. Because it doesn't have a blanket of ejected material around it, its probably just a larger type 'pit chain' collapse. The craters that we do see in this image have their own story to tell. Since most of them are small, they reveal that the exposed Martian surface is probably much younger than in other places. Older surfaces are typically pitted by larger craters. That's because the planet was bombarded by much larger pieces of debris earlier in the formation of the solar system when more material was still 'flying around.' What this means is that the volcanic eruptions probably happened after the early stages of planetary bombardment, but not before all of the impacting material had a chance to make a lasting mark.

  7. Crommelin Crater #1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dunes in etch pits and troughs in Crommelin Crater in the Oxia Palus area. This 3.2 x 3.5 km image (frame 3001) is centered near 4.1 degrees north, 5.3 degrees west.

    Figure caption from Science Magazine

  8. Impact Cratering Processes as Understood Through Martian and Terrestrial Analog Studies

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Osinski, G. R.; Tornabene, L. L.

    2016-12-01

    Impact ejecta deposits allow an understanding of subsurface lithologies, volatile content, and other compositional and physical properties of a planetary crust, yet development and emplacement of these deposits on terrestrial bodies throughout the solar system is still widely debated. Relating relatively well-preserved Martian ejecta to terrestrial impact deposits is an area of active research. In this study, we report on the mapping and geologic interpretation of 150-km diameter Bakhuysen Crater, Mars, which is likely large enough to have produced a significant volume of melt, and has uniquely preserved ejecta deposits. Our mapping supports the current formation hypothesis for Martian crater-related pitted material, where pits are likened to collapsed degassing features identified at the Ries and Haughton terrestrial impact structures. As hot impact melt-bearing ejecta deposits are emplaced over volatile-saturated material during crater formation, a rapid degassing of the underlying layer results in lapilli-like fluid and gas flow pipes which may eventually lead to collapse features on the surface. At the Haughton impact structure, degassing pipes are related to crater fracture and fault systems; this is analogous to structure and collapse pits mapped in Bakhuysen Crater. Based on stratigraphic superposition, surface and flow texture, and morphological and thermophysical mapping of Bakhuysen, we interpret the top-most ejecta unit to be likely melt-bearing and analogous to terrestrial impact deposits (e.g., Ries suevites). Furthermore, we suggest that Chicxulub is an apt terrestrial comparison based on its final diameter and the evidence of a ballistically-emplaced and volatile-entrained initial ejecta. This is significant as Bakhuysen ejecta deposits may provide insight into larger impact structures where limited exposures make studies difficult. This supports previous work which suggests that given similarities in volatile content and subsurface stratigraphy, mechanisms of multi-unit ejecta emplacement extend to impact cratering processes on comparable rocky bodies. The widespread pitted material, ejecta rampart and lobe formations, and distal debris flows associated with Bakhuysen impactite emplacement further indicates a volatile-rich Martian crust during its formation.

  9. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-21

    This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. This VIS image crosses the entire crater and demonstrates how extensive the dunes are on the floor of Rabe Crater. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67013 Latitude: -43.2572 Longitude: 34.5875 Instrument: VIS Captured: 2017-01-21 18:25 https://photojournal.jpl.nasa.gov/catalog/PIA22147

  10. Sub-surface structures and collapse mechanisms of summit pit craters

    NASA Astrophysics Data System (ADS)

    Roche, O.; van Wyk de Vries, B.; Druitt, T. H.

    2001-01-01

    Summit pit craters are found in many types of volcanoes and are generally thought to be the product of collapse into an underpressured reservoir caused by magma withdrawal. We investigate the mechanisms and structures associated with summit pit crater formation by scaled analogue experiments and make comparisons with natural examples. Models use a sand plaster mixture as analogue rock over a cylinder of silicone simulating an underpressured magma reservoir. Experiments are carried out using different roof aspect ratios (roof thickness/roof width) of 0.2-2. They reveal two basic collapse mechanisms, dependant on the roof aspect ratio. One occurs at low aspect ratios (≤1), as illustrated by aspect ratios of 0.2 and 1. Outward dipping reverse faults initiated at the silicone margins propagates through the entire roof thickness and cause subsidence of a coherent block. Collapse along the reverse faults is accommodated by marginal flexure of the block and tension fractures at the surface (aspect ratio of 0.2) or by the creation of inward dipping normal faults delimiting a terrace (aspect ratio of 1). At an aspect ratio of 1, overhanging pit walls are the surface expressions of the reverse faults. Experiments at high aspect ratio (>1.2) reveal a second mechanism. In this case, collapse occurs by stopping, which propagates upwards by a complex pattern of both reverse faults and tension fractures. The initial underground collapse is restricted to a zone above the reservoir and creates a cavity with a stable roof above it. An intermediate mechanism occurs at aspect ratios of 1.1-1.2. In this case, stopping leads to the formation of a cavity with a thin and unstable roof, which collapses suddenly. The newly formed depression then exhibits overhanging walls. Surface morphology and structure of natural examples, such as the summit pit craters at Masaya Volcano, Nicaragua, have many of the features created in the models, indicating that the internal structural geometry of experiments can be applied to real examples. In particular, the surface area and depth of the underpressured reservoir can be roughly estimated. We present a morphological analysis of summit pit craters at volcanoes such as Kilimanjaro (Tanzania), San Cristobal, Telica and Masaya (Nicaragua), and Ubinas (Peru), and indicate a likely type of subsidence and possible position of the former magma reservoir responsible for collapse in each case.

  11. Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea

    NASA Image and Video Library

    2017-01-12

    This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078

  12. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-18

    The majority of the dune field in Rabe Crater consists of a sand sheet with dune forms on the surface. The sand sheet is where a thick layer of sand has been concentrated. As continued winds blow across the sand surface it creates dune forms. The depth of the sand sheet prevents excavation to the crater floor and the dune forms all appear connected. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 58024 Latitude: -43.6954 Longitude: 34.8236 Instrument: VIS Captured: 2015-01-12 09:48 https://photojournal.jpl.nasa.gov/catalog/PIA22144

  13. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-15

    This VIS image provides another instance where the topography of the upper floor material affects the winds and dune formation. At the edges of the dune field, the dunes become smaller and more separated, revealing the harder surface that the dunes are moving across. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 57843 Latitude: -43.3482 Longitude: 34.6454 Instrument: VIS Captured: 2014-12-28 12:37 https://photojournal.jpl.nasa.gov/catalog/PIA22143

  14. Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is characterized by relatively dark ejecta material. The albedo variations and differences in color data indicate materials of different compositions in the subsurface. Interestingly, Dantu is located in a longitude range where the Herschel space telescope might have observed the release of water vapor [7]. In the course of the mission, analyses of LAMO imagery as well as VIR spectral data will help to identify potential water sources, constrain the compositional variations, and the overall geologic history of the Dantu crater region. Further CSFD measurements we will help to determine the formation ages of other impact structures in the quadrangle. Acknowledgements: We acknowledge the support of M. Hoffmann, M. Schaefer, M.C. De Sanctis, C.A. Raymond, and the Dawn Instrument, Operations, and Science Teams. This work is partly supported by the German Space Agency (DLR), grant 50 OW 1101. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Preusker, F. et al. (2016), LPSC abstract. [4] Scully, J.E.C. et al. (2016), this meeting. [5] Buczkowski D. L. et al. (2015), AGU abstract #P44B-05. [6] Li, J-Y. et al. (2006), Icarus, 182, 143-160. [7] Küppers, M., et al. (2014), Nature, v. 505, 525-527.

  15. Candidate cave entrances on Mars

    USGS Publications Warehouse

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  16. Origins of Central Pits and Domes on Ceres: Dawn Mapping Constraints and Ganymede Comparisons

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Hiesinger, H.; Platz, T.; Bowling, T.; Schmidt, B.; Sizemore, H.

    2017-09-01

    The bright faculae (spots) on Ceres are the most provocative features on this small planetary body and in Occator crater are associated with a prominent fractured dome and pit complex. This feature is analogous to those observed on large icy moon Ganymede and is potentially related to hydrothermal venting of carbonate-rich fluids followed by doming of the pit floor.

  17. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  18. Investigating Mars: Rabe Crater

    NASA Image and Video Library

    2017-12-13

    Dunes cover the majority of this image of Rabe Crater. As the dunes are created by wind action the forms of the dunes record the wind direction. Dunes will have a long low angle component and a short high angle side. The steep side is called the slip face. The wind blows up the long side of the dune. In this VIS image the slip faces are illuminated more than the longer side. In this part of the crater the winds were generally moving from the lower right corner of the image towards the upper left. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 35105 Latitude: -43.8533 Longitude: 34.8802 Instrument: VIS Captured: 2009-11-12 19:59 https://photojournal.jpl.nasa.gov/catalog/PIA22141

  19. An in-depth study of Marcia Crater, Vesta

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Ruesch, Ottaviano; Williams, David A.; Nathues, Andreas; Prettyman, Thomas H.; Tosi, Frederico; De Sanctis, M. Christina; Scully, Jennifer E. C.; Schenk, Paul M.; Aileen Yingst, R.; Denevi, Bret W.; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2014-05-01

    After visiting the second most massive asteroid Vesta from July 2011 to September 2012, the Dawn spacecraft is now on its way to asteroid Ceres. Dawn observed Vesta with three instruments: the German Framing Camera (FC), the Italian Visible and InfraRed mapping spectrometer (VIR), and the American Gamma Ray and Neutron Detector (GRaND) [1]. Marcia crater (190°E, 10°N; 68 x 58 km) is the largest of three adjacent impact structures: Marcia (youngest), Calpurnia, and Minucia (oldest). It is the largest well-preserved post-Rheasilvia impact crater, shows a complex geology [2], is young [2], exhibits evidence for gully-like mass wasting [3], contains the largest location of pitted terrain [4], has smooth impact melt ponds [5], shows enhanced spectral pyroxene signatures on its inner walls [2], and has low abundances of OH and H in comparison to the surrounding low-albedo terrain [6, 7]. Geophysically, the broad region of Marcia and Calpurnia craters is characterized by a higher Bouguer gravity, indicating denser material [9]. Williams et al. [2] have produced a detailed geologic map of Marcia crater and the surrounding terrain. They identified several units within Marcia crater, including bright crater material, pitted terrain, and smooth material. Units outside Marcia, include undivided crater ejecta material, bright lobate material, dark lobate material, and dark crater ray material [2]. Because of its extensive ejecta and fresh appearance, the Marcia impact defines a major stratigraphic event, postdating the Rheasilvia impact [2]. However, the exact age of Marcia crater is still under debate. Compositionally, Marcia crater is characterized by higher iron abundances, which were interpreted as more basaltic-eucrite-rich materials suggesting that this region has not been blanketed by diogenitic materials from large impact events [10, 11]. Using FC data, [13] identified "gray material" associated with the ejecta blanket of Marcia crater. This material is characterized by a 0.75-mm reflectance of ~15%, a shallow visible slope, and a weak R(0.75 µm)/R(0.92 µm) ratio [12], which is still high compared to immediately adjacent terrains. The most prominent thermal feature in Marcia is the pitted terrain on its floor [8]. Temperatures of the pitted floor of Marcia are significantly lower than in the surrounding terrains, when observed under similar solar illumination. Denevi et al. [4] argued that the morphology and geologic setting are consistent with rapid degassing of volatile-bearing materials following an impact, which would lead to an increased local density and/or a higher thermal conductivity [8]. References: [1] Russell et al. (2007), Earth Moon Planets 101; [2] Williams et al. (2014), submitted to Icarus; [3] Scully et al. (2013), LPSC 45; [4] Denevi et al. (2012), Science 338; [5] Williams, D.A., et al. (2013) PSS, in press, j.pss.2013.06.017 [6] De Sanctis et al. (2012b) Astrophys. J. Lett. 758; [7] Prettyman et al. (2012), Science 338; [8] Tosi et al. (2014), submitted to Icarus; [9] Konopliv et al. (2013) Icarus, in press; [10] Yamashita et al. (2013), Met. Planet. Sci. 48; [11] Prettyman et al. (2013), Met. Planet. Sci. 48; [12] Reddy et al. (2012), Science 336

  20. Pits and Gullies on Vesta: Potential Insights from Terrestrial Analogs

    NASA Astrophysics Data System (ADS)

    Sears, D. W.; Tornabene, L. L.; Osinski, G. R.; Hughes, S. S.; Heldmann, J. L.

    2013-12-01

    Arguably the most surprising discovery of the Dawn mission during its observations of Vesta were the pitted terrain [1,2], low albedo regions [3,4], and hydrogen abundances [5,6]. The presence of pitted terrain at the floors of craters on Vesta has been ascribed to the release of volatiles during impact, following the discovery of similar features on Mars where they are interpreted as volatile-rich impact melt deposits [7]. The numerous dark regions and the H abundance have been ascribed to the presence of infall material resembling CM chondrites. CM chondrite clasts are relatively common in brecciated meteorites [8], including the HED meteorites that are presumed to have come from Vesta (or Vesta fragments) [9,10], and contain up to about 10 vol% water [11]. On the walls of craters associated with the pitted terrain in craters, but also observed outside craters, are features resembling gullies [12,13]. The nature of these features, the amount of fluids required, and - especially - the relationship between the pits and gully-like features is unclear. Pit-like structures are commonly observed at terrestrial impact craters (hydrothermal pipes, [14]) and in volcanic fields (phreatic craters, [15]) in which water was present during the active phases of these processes. They are usually well-studied and offer a range of 'ground truths' which might help us understand the features on Vesta. The number, morphology, and locations of the features provide temporal information on their histories. The number, size and distribution of boulders around the features, provides information on energetics and water content. We expect such structures to be present in water-bearing C and X asteroids, where the water in endogenous, and S asteroids where, like Vesta, the water is exogenous. Such features, if present, were generally obscured by regolith on Eros [16], but a search in regolith-poor areas might be worthwhile. In summary, we suggest that new insights into volatile behavior on near-Earth asteroids, with its relevance to geological evolution, astrobiology, and space resources, will be possible through the study of terrestrial analogs. [1] Denevi et al 2012. Science 338, 246-249. [2] Boyce et al 2012. Icarus 221 262-275. [3] McCord et al., 2012. Nature 491, 83-86. [4] Reddy et al 2012. Icarus 221 544-559. [5] De Sanctis et al. 2012. Science 336, 697-700. [6] Prettyman et al 2012. Science 338, 242-246. [7] Tornabene et al (2012). Icarus 220, 348-368. [8] Wilkening et al 1973. Geochim. Cosmochim. Acta 37, 1985-1989. [9] McCord et al 1970. Science 168, 1445-1447. [10] Drake 2001. Meteorit. Planet. Sci. 36, 501-513. [11] Wiik 1969. Commun. Phys. Math. 34 135-145 [12] Scully et al 2012. AGU Meeting, 2012, December 3-7th. [13] Scully et al 2013. 44th LPSC paper #1578. [14] Kirsimäe and Osinski 2013. Chapter 6 in 'Impact Cratering: Processes and Products' eds Osinski and Pierazzo, Blackwell. [15] Hughes et al 1999. Pages 143-168 in 'Guidebook to the Geology of Eastern Idaho' eds Hughes and Thackray, Idaho Museum of Natural History. [16] Robinson et al 2001. Meteorit. Planet. Sci. 37, 1651-1684.

  1. A preliminary report on the study of the impact sites and particles of the solar maximum satellite thermal blanket

    NASA Technical Reports Server (NTRS)

    Zook, H. A.

    1985-01-01

    A preliminary study of the work on examination of the impact pits in, or penetrations through, the thermal blankets of the Solar Maximum Satellite is presented. The three largest pieces of the thermal blanket were optically scanned with a total surface area of about one half square meter. Over 1500 impact sites of all sizes, including 432 impacts larger than 40 microns in diameter, have been documented. Craters larger in diameter than about 100 microns found on the 75 micron thick Kapton first sheet of the main electronics box blanket are actually holes and constitute perforations through the blanket. A summary of the impact pit population that were found is given. The chemical study of these craters is only in the initial stages, with only about 250 chemical spectra of particles observed in or around impact pits or in the debris pattern being recorded.

  2. Icy Erosion

    NASA Image and Video Library

    2015-12-23

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows an interesting collection of kilometer-scale craters with flat and smooth floors. The craters themselves may be the result of secondary impacts, craters caused by debris from a distant larger impact. Since then, the surface has been significantly modified and reworked, muting the craters and flattening their floors. Presently, there are a few sand dunes and a broad overlay of a dusty soil mantle. This soil mantle occurs over much of the middle latitudes of Mars. Here, as elsewhere, the mantle covers these craters, but a closer inspection reveals that its smooth texture becomes significantly pitted and bumpy on the pole facing slopes of each crater interior wall. http://photojournal.jpl.nasa.gov/catalog/PIA20288

  3. Depressions and Channels on the Floor of Lyot Crater

    NASA Image and Video Library

    2017-12-12

    Lyot Crater (220-kilometers in diameter) is located in the Northern lowlands of Mars. The crater's floor marks the lowest elevation in the Northern Hemisphere as seen in this image from NASA's Mars Reconnaissance Orbiter (MRO). On the crater's floor, we see a network of channels. connecting a series of irregular shaped pits. These resemble terrestrial beaded streams, which are common in the Arctic regions of Earth and develop from uneven permafrost thawing. If terrestrial beaded streams are a good analog, these landforms suggest liquid water flow in the past. If not then these pits may result from the process of sublimation and would indicate pockets of easily accessible near-surface ground ice, which might have potentially preserved evidence of past habitability. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 12.2 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 93 centimeters (36.6 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22186

  4. Secrets of the Noachian Highlands: Pit Craters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] A) Context Image [figure removed for brevity, see original site] B) Gullies in M12-00595 [figure removed for brevity, see original site] C) Layers and gullies in M09-00539, M15-00964

    Among the most exciting places that the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has photographed during its three and a half years in orbit has been this crater in central Noachis Terra. Located at 47oS, 355oW, the crater appears to have been almost completely filled, and subsequently eroded in localized pits, by unknown processes. In this one place we see elements of the two most important results of the MOC investigation--the discovery of young gullies formed by fluid erosion and the occurrence of thick sequences of layered rock attesting to a martian past of substantial geologic activity.

    Picture A shows the location of the other two figures, which are sections of three of about a dozen images acquired of this crater. Picture B (M12-00595) shows examples of gullies on the pit walls. Their contributary pattern (including the angles at which they join) argues for fluid behavior during their creation; the dark floors suggest that they have been active recently (or else they, like the slopes around them and most of Mars, would be lighter-toned owing to the accumulation of dust). These gullies are formed well down on the pit wall, where a distinctive, boulder-rich layer is found. Figure C, a mosaic of two high resolution images (M09-00539 and M15-00964), shows an area somewhat higher in the sequence of layered material that fills the crater. This sequence clearly alternates between layers that either contain or erode to form boulders and layers that do not have boulders. Note in particular the overhanging layers near the top center--such overhangs are evidence of the strength of the material. Here, too, gullies appear to start at specific layers; these, however, may not be as young as those seen in (B), as they appear to have at least a thin covering of dust. How it is that this crater came to be filled with layers of material containing (or eroding to create) boulders is a mystery.

  5. Distribution, formation mechanisms, and significance of lunar pits

    NASA Astrophysics Data System (ADS)

    Wagner, Robert V.; Robinson, Mark S.

    2014-07-01

    Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.

  6. Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Asphaug, Erik; McKinnon, William B.; Melosh, H. J.; Weissman, Paul R.

    1996-01-01

    Prominent crater chains on Ganymede and Callisto are most likely the impact scars of comets tidally disrupted by Jupiter and are not secondary crater chains. We have examined the morphology of these chains in detail in order to place constraints on the properties of the comets that formed them and the disruption process. In these chains, intercrater spacing varies by no more than a factor of 2 and the craters within a given chain show almost no deviation from linearity (although the chains themselves are on gently curved small circles). All of these crater chains occur on or very near the Jupiter-facing hemisphere. For a given chain, the estimated masses of the fragments that formed each crater vary by no more than an order of magnitude. The mean fragment masses for all the chains vary by over four orders of magnitude (W. B. McKinnon and P. M. Schenk 1995, Geophys. Res. Lett. 13, 1829-1832), however. The mass of the parent comet for each crater chain is not correlated with the number of fragments produced during disruption but is correlated with the mean mass of the fragments produced in a given disruption event. Also, the larger fragments are located near the center of each chain. All of these characteristics are consistent with those predicted by disruption simulations based on the rubble pile cometary nucleus model (in which nuclei are composed on numerous small fragments weakly bound by self-gravity), and with those observed in Comet D/Shoemaker-Levy 9. Similar crater chains have not been found on the other icy satellites, but the impact record of disrupted comets on Callisto and Ganymede indicates that disruption events occur within the Jupiter system roughly once every 200 to 400 years.

  7. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    PubMed Central

    Platz, T.; Schorghofer, N.; Prettyman, T. H.; De Sanctis, M. C.; Crown, D. A.; Schmedemann, N.; Neesemann, A.; Kneissl, T.; Marchi, S.; Schenk, P. M.; Bland, M. T.; Schmidt, B. E.; Hughson, K. H. G.; Tosi, F.; Zambon, F.; Mest, S. C.; Yingst, R. A.; Williams, D. A.; Russell, C. T.; Raymond, C. A.

    2017-01-01

    Abstract Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice‐rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization. PMID:28989206

  8. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution.

    PubMed

    Sizemore, H G; Platz, T; Schorghofer, N; Prettyman, T H; De Sanctis, M C; Crown, D A; Schmedemann, N; Neesemann, A; Kneissl, T; Marchi, S; Schenk, P M; Bland, M T; Schmidt, B E; Hughson, K H G; Tosi, F; Zambon, F; Mest, S C; Yingst, R A; Williams, D A; Russell, C T; Raymond, C A

    2017-07-16

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  9. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    USGS Publications Warehouse

    Sizemore, H.G.; Platz, Thomas; Schorghofer, Norbert; Prettyman, Thomas; De Sanctis, Maria Christina; Crown, David A.; Schmedemann, Nico; Nessemann, Andeas; Kneissl, Thomas; Simone Marchi,; Schenk, Paul M.; Bland, Michael T.; Schmidt, B.E.; Hughson, Kynan H.G.; Tosi, F.; Zambon, F; Mest, S.C.; Yingst, R.A.; Williams, D.A.; Russell, C.T.; Raymond, C.A.

    2017-01-01

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  10. Breaking Ground on the Moon and Mars: Reconstructing Lunar Tectonic Evolution and Martian Central Pit Crater Formation

    NASA Astrophysics Data System (ADS)

    Williams, Nathan Robert

    Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon's surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris -- selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction. Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims -- consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2011-06-01

    Corrective Action Unit 367 comprises four corrective action sites (CASs): • 10-09-03, Mud Pit • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-45-03, Uncle Crater Site The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation of the corrective actions and site closure activities implemented at CAU 367. A corrective action of closure in place with use restrictions was completed at each of the three crater CASs (10-45-01, 10-45-02, and 10-45-03); corrective actions were not required at CAS 10-09-03. In addition, a limited soil removal corrective action was conducted at the locationmore » of a potential source material release. Based on completion of these correction actions, no additional corrective action is required at CAU 367, and site closure is considered complete. Corrective action investigation (CAI) activities were performed from February 2010 through March 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of non-test or other releases (e.g., migration in washes and potential source material). Based on the proximity of the Uncle, Ess, and Sedan craters, the impact of the Sedan test on the fallout deposited from the two earlier tests, and aerial radiological surveys, the CAU 367 investigation was designed to study the releases from the three crater CASs as one combined release (primary release). Corrective Action Site 10-09-03, Mud Pit, consists of two mud pits identified at CAU 367. The mud pits are considered non-test releases or other releases and were investigated independent of the three crater CASs. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 367 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. For the primary release, radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface or shallow subsurface soil outside the default contamination boundary. However, it was assumed that radionuclides are present in subsurface media within each of the three craters (Sedan, Ess, and Uncle) due to prompt injection of radionuclides from the tests. Based on the assumption of radiological dose exceeding the FAL, corrective actions were undertaken that consisted of implementing a use restriction and posting warning signs at each crater CAS. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. With regard to other releases, no contaminants of concern were identified at the mud pits or any of the other release locations, with one exception. Potential source material in the form of lead was found at one location. A corrective action of clean closure was implemented at this location, and verification samples indicated that no further action is necessary. Therefore, NNSA/NSO provides the following recommendations: • A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 367. • Corrective Action Unit 367 should be promoted from Appendix III to Appendix IV of the FFACO.« less

  12. The Mendeleev Crater chain: A description and discussion of origin

    NASA Technical Reports Server (NTRS)

    Eppler, D.; Heiken, G.

    1974-01-01

    A 113-kilometer-long crater chain on the floor of Mendeleev Crater is the best morphological example of several similar chains on the lunar far side. Age relationships relative to Mendeleev Crater indicate that it is a younger feature that may have developed over a fault parallel to the lunar grid system. The dumbbell shape of the chain may be related to a differential stress along a fault crossing the floor that resulted in varying resistance to magma invasion.

  13. Origin of collapsed pits and branched valleys surrounding the Ius chasma on Mars

    NASA Astrophysics Data System (ADS)

    Vamshi, G. T.; Martha, T. R.; Vinod Kumar, K.

    2014-11-01

    Chasma is a deep, elongated and steep sided depression on planetary surfaces. Several hypothesis have been proposed regarding the origin of chasma. In this study, we analysed morphological features in north and south of Ius chasma. Collapsed pits and branched valleys alongwith craters are prominent morphological features surrounding Ius Chasma, which forms the western part of the well known Valles Marineris chasma system on Martian surface. Analysis of images from the High Resolution Stereo Camera (HRSC) in ESA's Mars Express (MEX) with a spatial resolution of 10 m shows linear arrangement of pits north of the Ius chasma. These pits were initially developed along existing narrow linear valleys parallel to Valles Merineris and are conical in shape unlike flat floored impact craters found adjacent to them. The width of conical pits ranges 1-10 km and depth ranges 1-2 km. With more subsidence, size of individual pits increased gradually and finally coalesced together to create a large depression forming a prominent linear valley. Arrangement of pits in this particular fashion can be attributed to collapse of the surface due to l arge hollows created in the subsurface because of the withdrawal of either magma or dry ice. Branched valleys which are prominent morphologic features south of the Ius chasma could have been formed due to groundwater sapping mechanism as proposed by previous researchers. Episodic release of groundwater in large quantity to the surface could have resulted in surface runoff creating V-shaped valleys, which were later modified into U-shaped valleys due to mass wasting and lack of continued surface runoff.

  14. Exploring Tectonic Activity on Vesta and Ceres

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    Images of Vesta and Ceres taken by the Dawn spacecraft revealed large-scale linear structural features on both asteroids. We evaluate their morphology to determine 1) what processes caused them to form and 2) what implications this has for the history of Vesta and Ceres as planetary bodies. The Divalia Fossae are wide troughs bounded by steep scarps that encircle Vesta roughly aligned with the equator. Fault plane analysis suggests that their formation was triggered by the impact event that formed the Rheasilvia basin. The Saturnalia Fossae extend from Divalia to the northern polar region; fault plane analysis ties their formation to the Veneneia basin impact event. Also, it has been suggested that the elongate hill Brumalia Tholus could have been formed as a magmatic intrusion utilizing the subsurface Albalonga fracture as a conduit to the surface, intruding into and deforming the rock above it. Kilometer-scale linear structures cross much of the eastern hemisphere of Ceres. Many structures appear to be radial to the large craters Urvara and Yalode, and likely formed due to impact processes. However, the Samhain Catenae do not have any obvious relationship to a crater and the lack of raised rims makes it unlikely that these are secondary impacts; they are also crosscut by linear features radial to Urvara and Yalode, indicating they are not fractures formed during those impact events. Instead, the morphology of these structures more closely resembles that of pit crater chains (buried normal faults), and show en echelon orientation and S-shaped linkages. Polygonal craters, which form where there is pervasive subsurface fracturing, are widespread on Ceres, and those polygonal craters proximal to the Samhain Catenae have straight crater rims aligned with the structures. Several craters on Ceres have fractured floors, similar to lunar floor-fractured craters (FFCs), which are theorized to form from floor uplift due to magmatic intrusion. Large (>50 km) Ceres FFCs can have both radial and concentric fractures at the crater center, and/or concentric fractures near the crater wall. Smaller craters have a v-shaped moat separating the wall scarp from the crater interior, but different interior morphologies. A depth vs. diameter analysis shows that the Ceres FFCs are unusually shallow, consistent with the magmatic intrusion models.

  15. Volcanology and morphology

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.

    1976-01-01

    Apollo 15 photographs of the southern parts of Serenitatis and Imbrium were used for a study of the morphology and distribution of wrinkle ridges. Volcanic and structural features along the south margin of Serenitatis were also studied, including the Dawes basalt cinder cones. Volcanic and structural features in crater Aitken were investigated as well. Study of crater Goclenius showed a close relationship between morphology of the impact crater and grabens which tend to parallel directions of the lunar grid. Similar trends were observed in the walls of crater Tsiolkovsky and other linear structures. Small craters of possible volcanic origin were also studied. Possible cinder cones were found associated with the Dawes basalt and in the floor of craters Aitken and Goclenius. Small pit craters were observed in the floors of these craters. Attempts were made to obtain contour maps of specific small features and to compare Orbiter and Apollo photographs to determine short term changes associated with other processes.

  16. Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism

    NASA Astrophysics Data System (ADS)

    Kadish, Seth J.; Barlow, Nadine G.; Head, James W.

    2009-10-01

    We report on the results of a survey to document and characterize pedestal craters on Mars equatorward of ˜60°N and 65°S latitude. The identification of 2696 pedestal craters reveals a strong latitude dependence, with the vast majority found poleward of 33°N and 40°S. This latitudinal extent is correlated with many climate indicators consistent with the presence of an ice-rich substrate and with climate model predictions of where ice is deposited during periods of higher obliquity in the Amazonian. We have measured key physical attributes of pedestal craters, including the farthest radial extents of the pedestals, pedestal heights, and the circularity of the pedestal margins. In conjunction with the geographic distribution, our measurements strongly support a sublimation-related formation mechanism. This is in contrast to previous hypotheses, which have relied on eolian deflation to produce the elevated plateaus. The identification of marginal pits on the scarps of some pedestal craters, interpreted to be sublimation pits, provide direct evidence for the presence of ice-rich material underlying the armored surface of pedestal craters. On the basis of our findings, we propose a formation mechanism whereby projectiles impact into a volatile-rich dust/snow/ice substrate tens to hundreds of meters thick overlying a dominantly fragmental silicate regolith. The area surrounding the resulting crater becomes armored. Pedestals extend to a distance of multiple crater radii, farther than typical ejecta deposits, necessitating an armoring mechanism that is capable of indurating the surface to a distance greater than the reach of the ejecta. Return to low obliquity causes sublimation of the volatile-rich layer from the intercrater plains, lowering the elevation of the regional terrain. This yields generally circular pedestal craters elevated above the surrounding plains. As a result, the armored surfaces of pedestal craters have preserved a significant record of Amazonian climate history in the form of ice-rich deposits.

  17. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta's ancient crust preserved on Vestalia Terra.

  18. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic breccia, marking the pit crater foundering. Interestingly, this final stage compares well with the formation of pit craters on Kilauea volcano, Hawaii. Reoccurring of similar activity on the NW rift represents a major source of risk, for this now densely populated region (more than 150,000 people living in the affected area).

  19. Impact crater morphology and the Central Pit/Dome of Occator: Ceres as an Ice-rich Body

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Marchi, S.; O'Brien, D. P.; Platz, T.; Bland, M. T.; Buczkowski, D.; Scully, J. E. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Pristine crater morphologies on Ceres (at D <40 km) are astonishingly similar to those on midsize icy bodies (e.g., moons of Saturn) but very different from those on silicate-rich Vesta. All these bodies have similar gravity and broadly similar impact velocities, and these patterns reveal that the upper 10s of km of Ceres are much weaker than on silicate-rich Vesta. This stands in contrast to the lack of viscous relaxation (Bland et al., 2016), which implies an upper layer on Ceres capable of resisting flow despite the relatively high surface temperatures. This can be explained as distinct responses of an outer layer partially composed of weak ices and strong silicates that fail during high-strain impact processes (which are apparently controlled by the weak phase) but does not flow under low-strain creep (which is apparently controlled more by the strong phase). Furthermore, comparison with Martian craters indicates that, in contrast to Ceres, the amount of water ice in the crust of Mars results in hybrid morphologies only midway between silicate and ice worlds, indicating that the upper layers of Ceres must have more ice than does Mars. The presence of apparent impact melt deposits and central pits in larger craters (D>40 km and D>75 km, respectively) on Ceres implies either warmer conditions than at Saturn, or the presence of a deeper layer enriched in (weaker) ice at comparable depths, also consistent with partial relaxation in larger craters. The formation of a fractured dome 3-km-wide and 0.75-km-high within recently formed Occator crater may be due to refreezing of a water zone melted after impact, or mobilization of carbonates or ice in the crater center, possibly from such deeper layers.

  20. Khensu Crater on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The dark-floored crater, Khensu, is the target of this image of Ganymede. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. Khensu is located at 2 degrees latitude and 153 degrees longitude in a region of bright terrain known as Uruk Sulcus, and is about 13 kilometers (8 miles) in diameter. Like some other craters on Ganymede, it possesses an unusually dark floor and a bright ejecta blanket. The dark component may be residual material from the impactor that formed the crater. Another possibility is that the impactor may have punched through the bright surface to reveal a dark layer beneath.

    Another large crater named El is partly visible in the top-right corner of the image. This crater is 54 kilometers (34 miles) in diameter and has a small 'pit' in its center. Craters with such a 'central pit' are common across Ganymede and are especially intriguing since they may reveal secrets about the structure of the satellite's shallow subsurface.

    North is to the top-left of the picture and the sun illuminates the surface from nearly overhead. The image covers an area about 100 kilometers (62 miles) by 86 kilometers (54 miles) across at a resolution of 111 meters (370 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  1. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-02

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  2. STS 8 Orbiter mission window pitting and the possible association with the El Chichon eruption of March and April 1982

    NASA Technical Reports Server (NTRS)

    Cour-Palais, B. G.; Kessler, D. J.; Zook, H. A.; Clanton, U. S.

    1985-01-01

    The possibility that the pitting that occurred in the STS-8 Orbiter windows was caused by dust from the El Chichon volcano eruption in March-April 1982 is considered. The pit density was more than 30/sq cm, most being 2.5-5 microns deep, and showed no evidence of impact melting. An 'alley' of higher incidence of pits in one window coincided with the line of a seam between TPS tiles. The particles causing the sandblasting were concluded to have arrived in parallel and could not be attributed to the ET, SRBs or a dust storm. The sulfuric gas-rich El Chichon plume injected sufficient material into the atmosphere so that the globe was soon encircled. Most of the resulting particulates (480-8400 tons) stayed in the Northern Hemisphere, and H2SO4 and ash concentrations were high during the STS-8 mission. The Orbiter cut through the debris layer at 19.8 km altitude at a 10 deg angle of attack, which matches the particle crater impact angle in the Orbiter windows. Since the passage was at night, larger H2SO4 droplets may have coalesced and formed larger particles on available solid nuclei, thus producing the 20-40 microns cratering observed in the windows.

  3. Near-ridge seamount chains in the northeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Reynolds, Jennifer R.; Davis, Alicé S.

    2000-07-01

    High-resolution bathymetry and side-scan data of the Vance, President Jackson, and Taney near-ridge seamount chains in the northeast Pacific were collected with a hull-mounted 30-kHz sonar. The central volcanoes in each chain consist of truncated cone-shaped volcanoes with steep sides and nearly flat tops. Several areas are characterized by frequent small eruptions that result in disorganized volcanic regions with numerous small cones and volcanic ridges but no organized truncated conical structure. Several volcanoes are crosscut by ridge-parallel faults, showing that they formed within 30-40 km of the ridge axis where ridge-parallel faulting is still active. Magmas that built the volcanoes were probably transported through the crust along active ridge-parallel faults. The volcanoes range in volume from 11 to 187 km3, and most have one or more multiple craters and calderas that modify their summits and flanks. The craters (<1 km diameter) and calderas (>1 km diameter) range from small pit craters to calderas as large as 6.5×8.5 km, although most are 2-4 km across. Crosscutting relationships commonly show a sequence of calderas stepping toward the ridge axis. The calderas overlie crustal magma chambers at least as large as those that underlie Kilauea and Mauna Loa Volcanoes in Hawaii, perhaps 4-5 km in diameter and ˜1-3 km below the surface. The nearly flat tops of many of the volcanoes have remnants of centrally located summit shields, suggesting that their flat tops did not form from eruptions along circumferential ring faults but instead form by filling and overflowing of earlier large calderas. The lavas retain their primitive character by residing in such chambers for only short time periods prior to eruption. Stored magmas are withdrawn, probably as dikes intruded into the adjacent ocean crust along active ridge-parallel faults, triggering caldera collapse, or solidified before the next batch of magma is intruded into the volcano, probably 1000-10,000 years later. The chains are oriented parallel to subaxial asthenospheric flow rather than absolute or relative plate motion vectors. The subaxial asthenospheric flow model yields rates of volcanic migration of 3.4, 3.3 and 5.9 cm yr-1 for the Vance, President Jackson, and Taney Seamounts, respectively. The modeled lifespans of the individual volcanoes in the three chains vary from 75 to 95 kyr. These lifespans, coupled with the geologic observations based on the bathymetry, allow us to construct models of magma supply through time for the volcanoes in the three chains.

  4. Characteristics of circular features on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Deller, J. F.; Güttler, C.; Tubiana, C.; Hofmann, M.; Sierks, H.

    2017-09-01

    Comet 67P/Churyumov-Gerasimenko shows a large variety of circular structures such as pits, elevated roundish features in Imhotep, and even a single occurrence of a plausible fresh impact crater. Imaging the pits in the Ma'at region, aiming to understand their structure and origin drove the design of the final descent trajectory of the Rosetta spacecraft. The high-resolution images obtained during the last mission phase allow us to study these pits as exemplary circular features. A complete catalogue of circular features gives us the possibility to compare and classify these structures systematically.

  5. The Fault in Our Mars

    NASA Image and Video Library

    2017-12-12

    Lyot Crater (220-kilometers in diameter) is located in the Northern lowlands of Mars. The crater's floor marks the lowest elevation in the Northern Hemisphere as seen in this image from NASA's Mars Reconnaissance Orbiter (MRO). On the crater's floor, we see a network of channels. connecting a series of irregular shaped pits. These resemble terrestrial beaded streams, which are common in the Arctic regions of Earth and develop from uneven permafrost thawing. If terrestrial beaded streams are a good analog, these landforms suggest liquid water flow in the past. If not then these pits may result from the process of sublimation and would indicate pockets of easily accessible near-surface ground ice, which might have potentially preserved evidence of past habitability. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 12.2 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 93 centimeters (36.6 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22186

  6. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt rocks. Second, it is proposed that layered ejecta deposits on Earth and Mars form from a common multi-stage emplacement model. Third, in terms of the origin of central pit craters it is shown that based on current definitions, these central uplift morphologies also occur on Earth, which offers important insights in their formation.

  7. Fluvial erosion as a mechanism for crater modification on Titan

    USGS Publications Warehouse

    Neish, Catherine D.; Molaro, J. L.; Lora, J. M.; Howard, A.D.; Kirk, Randolph L.; Schenk, P.; Bray, V.J.; Lorenz, R.D.

    2016-01-01

    There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan’s crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan’s drier equatorial regions.

  8. Chain of Secondary Craters in Mare Orientale

    NASA Image and Video Library

    2010-03-29

    This image taken by NASA Lunar Reconnaissance Orbiter shows a small secondary crater chain near the southwestern margin of Mare Orientale, within the Inner Rook Mountains. The ~125-meter-long chain lies within the Orientale multi-ring basin.

  9. Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data

    USGS Publications Warehouse

    Farrand, W. H.; Gaddis, L.R.; Keszthelyi, L.

    2005-01-01

    Domes and cones with summit pits located in Acidalia Planitia and Cydonia Mensae were studied using MOC and THEMIS images and a TES-derived thermal inertia map. North of 40.5??N latitude, the features have a dome-like morphology, and south of that latitude, the morphology is more cone-like. Layering is apparent in the summit craters of fresher looking southern cones, and asymmetric aprons were observed in some instances. Some of the northern domes also display layering in their summit craters, but asymmetric aprons were not observed. The northern domes can also display multiple summit pits or no summit pits at all and can occur in association with higher-albedo "pancake" features. The northern domes are higher in albedo but have apparent thermal inertias that are lower than the surrounding plains. The apparent thermal inertia values of the southern cones range from values comparable to the surrounding plains to slightly lower. From the TES thermal inertia map, we infer that the thermal inertia values of the pitted cones are between those of basaltic fine dust and sand, while those of the surrounding plains are closer to that of basaltic sand. While a unique interpretation of the origin of the pitted cones is not possible with the available data, we do not find compelling evidence to suggest an origin related to either basaltic volcanism or ground-ice. Instead, an origin for these features through some combination of mud volcanism and evaporite deposition around geysers and/or springs is most consistent with the observations. Copyright 2005 by the American Geophysical Union.

  10. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    NASA Astrophysics Data System (ADS)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic eruption that ejected blocks up to 2 m strewn over 200 m onto the lava lake surface.

  11. Irregular Mare Patches (IMPs): 100 Ma or 3 Ga?

    NASA Technical Reports Server (NTRS)

    Stopar, Julie; Robinson, Mark Southwick; van der Bogert, Carolyn H.; Giguere, Thomas; Lawrence, Samuel J.; Ostrach, Lillian Rose; Clegg-Watkins, Ryan N.

    2016-01-01

    IMPs exhibit a perplexing combination of characteristics that are consistent with either an approximately 100 Ma or 3 Ga formation. Dozens of small-area IMPs have crisp morphologies and crater size-frequency distributions (SFDs) that denote relatively recent geologic activity (less than 100 Ma); however, the apparently well-developed regolith on portions of the IMPs are in conflict with such a young age [1]. To test possible formation hypotheses (e.g., [1-5]), which range from ancient volcanism to contemporary outgassing, we examined IMP morphology at the meter-scale with LROC NAC images and derived elevation models. We focused on the largest IMPs (Ina, Sosigenes, Cauchy, Maskelyne, and Nubium), where contacts between deposits are best developed. Most of our observations are consistent with multiple generations of inflation and breakouts (or squeeze-ups) of basaltic lavas that were affected by local slopes. Some of the extrusions coalesced into larger mounds or filled pre-existing craters. We did not observe evidence of large-scale void space (e.g., fissures, fractures, linear depressions, or pits) within or beneath the mounds or rougher deposits (e.g., [5]). But, small-scale voids may be signified by isolated pitted textures. We also did not detect evidence of the cooling fractures or lava plates expected in young lava flows and observed in lunar impact melt deposits. The smooth texture of the mounds is enigmatic. Block-less craters suggest at least 5 m of friable or poorly-cohesive material (such as regolith), yet mound margins exhibit slopes greater than 30 deg requiring significant material strength. Blocks are not common on the mounds, but are sometimes excavated by impacts (usually excavated from beneath the mounds). The uneven deposits are equally enigmatic and texturally varied (blocky, pitted, and crenulated). They are deficient in superposed craters compared to the mounds. If the mounds are indeed of similar age to the rougher units, then their different superposed crater morphologies and SFDs need to be explained by factors other than their ages. Any mounds originally composed of friable surface materials would evolve differently from more coherent deposits (e.g., [6-7]).

  12. Pit-chain in Noctis Labyrinthus

    NASA Image and Video Library

    2002-12-20

    These pit-chain features in this NASA Mars Odyssey image of south Noctis Labryinthus are oriented parallel to grabens in the area, suggesting that tensional stresses may have been responsible for their formation.

  13. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image from orbit. Although the vent itself may have been excavated partly by explosive volcanism, the most recent event is collapse of a 7 km wide zone in the south centre of the vent. The sharpness of features within this (unmuted either by regolith-forming processes or by fall of volcanic ejecta) suggests that this collapse considerably post-dates the rest of the vent interior. It could reflect a late-stage minor 'throat clearing' explosive eruption, but (in the absence of evidence of associated volcanic ejecta) more likely reflects collapse into a void within the volcanic conduit, itself a result of magma-drainage. A class of 'hole' that is so far conspicuous by its absence on Mercury is sinuous rilles (as opposed to much straighter tectonic grabens) or aligned skylights representing collapsed or partly-collapsed drained lava tubes. Tube-fed flows are to be expected during emplacement of volcanic plains, and it will be surprising if no examples are revealed on MESSENGER and BepiColombo high-resolution images.

  14. Morphologic and morphometric studies of impact craters in the northern plains of Mars

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    Fresh impact craters in the northern plains of Mars display a variety of morphologic and morphometric properties. Ejecta morphologies range from radial to fluidized, interior features include central peaks and central pits, fluidized morphologies display a range of sinuosities, and depth-diameter ratios are being measured to determine regional variations. Studies of the martian northern plains over the past five years have concentrated in three areas: (1) determining correlations of ejecta morphologies with crater diameter, latitude, and underlying terrain; (2) determining variations in fluidized ejecta blanket sinuosity across the planet; and (3) measurement of depth-diameter ratios and determination of regional variations in this ratio.

  15. Galle Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 June 2002) The Science This image is of part of Galle Crater, located at 51.9S, 29.5W. This image was taken far enough south and late enough into the southern hemisphere fall to catch observe water ice clouds partially obscuring the surface. The most striking aspect of the surface is the dissected layered unit to the left in the image. Other areas also appear to have layering, but they are either more obscured by clouds or are less well defined on the surface. The layers appear to be mostly flat lying and layer boundaries appear as topographic lines would on a map, but there are a few areas where it appears that these layers have been deformed to some level. Other areas of the image contain rugged, mountainous terrain as well as a separate pitted terrain where the surface appears to be a separate unit from the mountains and the layered terrain. The Story Galle Crater is officially named after a German astronomer who, in 1846, was the first to observe the planet Neptune. It is better known, however, as the 'Happy Face Crater.' The image above focuses on too small an area of the crater to see its beguiling grin, but you can catch the rocky line of a 'half-smile' in the context image to the right (to the left of the red box). While water ice clouds make some of the surface harder to see, nothing detracts from the fabulous layering at the center left-hand edge of the image. If you click on the above image, the scalloped layers almost look as if a giant knife has swirled through a landscape of cake frosting. These layers, the rugged, mountains near them, and pits on the surface (upper to middle section of the image on the right-hand side) all create varying textures on the crater floor. With such different features in the same place, geologists have a lot to study to figure out what has happened in the crater since it formed.

  16. Recent Volcanism in Valles Marineris

    NASA Image and Video Library

    2014-01-15

    This image from NASA Mars Reconnaissance Orbiter shows cones with summit pits that are very similar to cinder cones on Earth. They are also very well-preserved, peppered by only small impact craters, so they must be geologically young.

  17. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, Eric S.; Rosenberg, Ethan R.; Ristenpart, William D.

    2017-11-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV/cm). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1 to 3 microns wide, often with features similar to splash coronae. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660°C <=Tm <= 3414°C). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  18. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, E. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2017-09-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV /cm ). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1-3 μ m wide, often with features similar to a splash corona. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660 °C ≤Tm≤3414 °C ). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  19. Mercury's Crater-Hosted Hollows: Chalcogenide Pryo-Thermokarst, and Permafrost Analogs on Earth, Mars, and Titan

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey

    2013-04-01

    MESSENGER has acquired stunning images of pitted, light-toned and variegated light/dark terrains located primarily on the floors—probably impact-melt sheets—of many of Mercury's large craters. Termed "hollows", the pitted terrains are geomorphologically similar to some on Mars formed by sublimation of ice-rich permafrost and to lowland thermokarst on Earth formed by permafrost thaw; to "swiss cheese" terrain forming by sublimation of frozen CO2 at the Martian South Pole; and to suspected hydrocarbon thermokarst at Titan's poles. I shall briefly review some analogs on these other worlds. The most plausible explanation for Mercury's hollows is terrain degradation involving melting or sublimation of heterogeneous chalcogenide and sulfosalt mineral assemblages. I refer to these Mercurian features as pyrothermokarst; the etymological redundancy distinguishes the conditions and mineral agents from the ice-related features on Earth and Mars, though some of the physical processes may be similar. Whereas ice and sulfur have long been suspected and ice recently was discovered in permanently shadowed craters of Mercury's polar regions, the hollows occur down to the equator, where neither ice nor sulfur is plausible. The responsible volatiles must be only slightly volatile on the surface and/or in the upper crust of Mercury's low to middle latitudes at 400-800 K, but they must be capable of either melting or sublimating on geologically long time scales. Under prevailing upper crustal and surface temperatures, chalcophile-rich "permafrost" can undergo either desulfidation or melting reactions that could cause migration or volume changes of the permafrost, and hence lead to collapse and pitting. I propose the initial emplacement of crater-hosted chalcogenides, sulfosalts and related chalcophile materials such as pnictides, in impact-melt pools (involving solid-liquid and silicate-sulfide fractionation) and further differentiation by associated dry or humid fumaroles (solid-vapor and liquid-vapor fractionation and recondensation). Key phase transitions can occur in the temperature range of Mercury's surface and upper crust. Vapor-solid, vapor-liquid, and solid-liquid transitions of the heated materials resulted in migration and loss of volatiles and anatectic liquids, causing collapse pits to form. Seasonal heating near perihelion may work together with geothermal flux or early impact heating to drive off volatiles and produce the pits. In some cases, local recondensation of moderately volatile materials may have occurred on the rims of the pits; some volatiles may have been transported to the polar regions or lost by exospheric escape. Impacts by comets may have caused local oxidation and formation of oxygenated salts and other minerals, whose local recondensation from fumarole gases can explain the light-toned layers and light-toned rims of many pits. Plating of native volatile metals and semi-metals may also account for some light-toned deposits. Large contrasts in thermal conductivity as well as local topographic shading and latitude controls may result in large differences in element mobility and mineral assemblages. Pyrothermokarst on Mercury may be more chemically heterogeneous and complex in its development than any other thermokarst in the Solar System. Validation of this model would require a future mission with high-resolution multispectral imaging and neutral/ion detection.

  20. A history of the Lonar crater, India: An overview

    NASA Technical Reports Server (NTRS)

    Nayak, V. K.

    1992-01-01

    The origin of the circular structure at Lonar, India, described variously as cauldron, pit, hollow, depression, and crater, has been a controversial subject since the early nineteenth century. A history of its origin and other aspects from 1823 to 1990 are overviewed. The structure in the Deccan Trap Basalt is nearly circular with a breach in the northeast, 1830 m in diameter, 150 m deep, with a saline lake in the crater floor. Over the years, the origin of the Lonar structure has risen from volcanism, subsidence, and cryptovolcanism to an authentic meteorite impact crater. Lonar is unique because it is probably the only terrestrial crater in basalt and is the closest analog with the Moon's craters. Some unresolved questions are suggested. The proposal is made that the young Lonar impact crater, which is less than 50,000 years old, should be considered as the best crater laboratory analogous to those of the Moon, be treated as a global monument, and preserved for scientists to comprehend more about the mysteries of nature and impact cratering, which is now emerging as a fundamental ubiquitous geological process in the evolution of the planets.

  1. Axomama Crater on Ceres

    NASA Image and Video Library

    2017-10-06

    This image from NASA's Dawn spacecraft highlights Axomama Crater, the small crater shown to the right of center. It is 3 miles (5 kilometers) in diameter and located just inside the western rim of Dantu Crater. Axomama is one of the newly named craters on Ceres. Its sharp edges indicate recent emplacement by a small impact. This picture also shows details on the floor of Dantu, which comprises most of the image. The many fractures and the central pit (see also PIA20303) are reminiscent of Occator Crater and could point to a similar formation history, involving activity driven by the presence of liquid water in the subsurface. Axomama is named after the Incan goddess of potato, or "Potato-mother." NASA's Dawn spacecraft acquired this picture during its extended mission on July 24, 2016, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 24 degrees north latitude, 131 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21908

  2. 3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Yu, Jaehyung; Haruyama, Junichi

    2015-06-01

    When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

  3. Impulse Loading Resulting fromShallow Buried Explosives in Water-Saturated Sand

    DTIC Science & Technology

    2007-01-01

    speed photographs of the associated soil cratering and ejecting phenomena. The work of Bergeron et al. [6] was subsequently extended by Braid [7] to...place, a series of water hoses is placed in pit bottom to allow the introduction of water into the pit from the bottom. Next, approximately 14.2 m3...blast. Final report for contract no. DAAK70-92-C-0058, US Army Belvoir RDEC, Ft. Belvoir, VA, 1993. 6 Bergeron, D. Hlady, S., and Braid , M. P

  4. Planetary Exploration of Lava Tubes with Lidar at Craters of the Moon, Idaho

    NASA Technical Reports Server (NTRS)

    Garry, W. B.; Hughes, S. S.; Nawotniak, S. E. Kobs; Whelley, P. L.; Lim, D. S. S.; Heldmann, J. L.

    2017-01-01

    We completed a lidar survey of lava tubes in Idaho as an analog to the exploration of pits on the Moon and Mars. Pits are exploration targets for future missions because they provide both lucrative science and possible shelter. Exploration at these sites will require innovative engineering to access the interiors. We present findings that demonstrate the scientific and operational potential of lidar within such challenging environments, and discuss our results for Indian Tunnel, the largest tube we surveyed (Fig. 1).

  5. Pits, rifts and slumps: the summit structure of Piton de la Fournaise

    NASA Astrophysics Data System (ADS)

    Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre

    2007-06-01

    A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.

  6. The topography of Ceres and implications for the formation of linear surface structures

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Otto, K.; Ruesch, O.; Scully, J. E. C.; Williams, D. A.; Mest, S. C.; Schenk, P.; Jaumann, R.; Nathues, A.; Preusker, F.; Park, R. S.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    NASA's Dawn spacecraft began orbiting the dwarf planet Ceres in April 2015. Framing Camera data from the Approach (1.3 km/px) and Survey (415 m/px) orbits include digital terrain models derived from processing stereo images. These models have supported various scientific studies of the surface. The eastern hemisphere of Ceres is topographically higher than the western hemisphere. Some of linear structures on Ceres (which include grooves, pit crater chains, fractures and troughs) appear to be radial to the large basins Urvara and Yalode, and most likely formed due to impact processes. However, set of regional linear structures (RLS) that do not have any obvious relationship to impact craters are found on the eastern hemisphere topographic high region. Many of the longer RLS are comprised of smaller structures that have linked together, suggestive of en echelon fractures. Polygonal craters, theorized to form when pervasive subsurface fracturing affects crater formation [1], are widespread on Ceres [2], and those proximal to the RLS have straight crater rims aligned with the grooves and troughs, suggesting that the RLS are fracture systems. A cross-section of one RLS is displayed in FC images of the Occator crater wall. Comparing these images to the digital terrain models show 1) that the structure dips ~60º and 2) there is downward motion on the hanging wall, implying normal faulting. The digital terrain models also reveal the presence of numerous positive relief features with sub-circular shapes. These dome-like features have been tentatively interpreted as volcanic/magmatic features [3]; other possibilities include salt domes. Analog models of domal uplift in areas of regional extension [4] predict patterns of linear structures similar to those observed in the RLS near Occator. Utilizing topography data provided by the Ceres digital terrain models, we assess the relationship between the RLS and nearby domes and topographic high regions to determine the mechanism by which the RLS may have formed. [1] Thomas, P.C. et al. (1999) Icarus, doi: 10.1006/icar.1999.6121 [2] Otto et al. (2015) EPSC2015-284 [3] Ruesch et al. [this meeting] [4] Sims et al. (2013) AAPG Bulletin, doi: 10.1306/02101209136

  7. Investigation of Secondary Craters in the Saturnian System

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  8. Martian 'Brain'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    5 May 2004 Most middle-latitude craters on Mars have strange landforms on their floors. Often, the floors have pitted and convoluted features that lack simple explanation. In this case, the central part of the crater floor shown in this 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image bears some resemblance to the folded nature of a brain. Or not. It depends upon the 'eye of the beholder,' perhaps. The light-toned 'ring' around the 'brain' feature is more easily explained--windblown ripples and dunes. The crater occurs near 33.1oS, 91.2oW, and is illuminated from the upper left. The picture covers an area about 3 km (1.9 mi) across.

  9. Crater topography on Titan: Implications for landscape evolution

    NASA Astrophysics Data System (ADS)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of craters on Titan (gray diamonds) compared to similarly sized, fresh craters on Ganymede (central peaks, +; central pits, *) and a handful of relaxed craters (black squares) from Bray et al. (2012). References: Bray, V., et al.: "Ganymede crater dimensions - implications for central peak and central pit formation and development". Icarus, Vol. 217, pp. 115-129, 2012. Neish, C.D., Lorenz, R.D.: "Titan’s global crater population: A new assessment". Planetary and Space Science, Vol. 60, pp. 26-33, 2012. Schenk, P.M., et al.: "Ages and interiors: the cratering record of the Galilean satellites". In: Bagenal, F., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004. Stiles, B.W., et al.: "Determining Titan surface topography from Cassini SAR data". Icarus, Vol. 202, pp. 584-598, 2009. Wood, C.A., et al.: "Impact craters on Titan". Icarus, Vol. 206, pp. 334-344, 2010.

  10. Zooming in on Pluto Pattern of Pits

    NASA Image and Video Library

    2015-12-10

    On July 14, 2015, the telescopic camera on NASA's New Horizons spacecraft took the highest resolution images ever obtained of the intricate pattern of "pits" across a section of Pluto's prominent heart-shaped region, informally named Tombaugh Regio. Mission scientists believe these mysterious indentations may form through a combination of ice fracturing and evaporation. The scarcity of overlying impact craters in this area also leads scientists to conclude that these pits -- typically hundreds of yards across and tens of yards deep -- formed relatively recently. Their alignment provides clues about the ice flow and the exchange of nitrogen and other volatile materials between the surface and the atmosphere. The image is part of a sequence taken by New Horizons' Long Range Reconnaissance Imager (LORRI) as the spacecraft passed within 9,550 miles (15,400 kilometers) of Pluto's surface, just 13 minutes before the time of closest approach. The small box on the global view shows the section of the region imaged in the southeast corner of the giant ice sheet informally named Sputnik Planum. The magnified view is 50-by-50 miles (80-by-80 kilometers) across. The large ring-like structure near the bottom right of the magnified view -- and the smaller one near the bottom left -- may be remnant craters. The upper-left quadrant of the image shows the border between the relatively smooth Sputnik Planum ice sheet and the pitted area, with a series of hills forming slightly inside this unusual "shoreline." http://photojournal.jpl.nasa.gov/catalog/PIA20212

  11. Cratering on Titan: A Pre-Cassini Perspective

    NASA Technical Reports Server (NTRS)

    Lorenz, R. D.

    1997-01-01

    The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km (compared with 4 km on Venus, or 0.5 km on Earth). Crater chains are unlikely on Titan, since impactors must pass close enough to Saturn to be tidally disrupted; as a result, they would suffer aerodynamic disruption. Crater counting on adjacent satellites gives densities of about 200 per 10 (exp 6) square km for 20-km-diameter craters. However, the presence of a thick atmosphere leads to atmospheric shielding, depleting the relative abundance of small craters. This has been evaluated by models, and the relative abundance of small craters may be due to a diagnostic atmospheric collapse. A number of radar-dark "splotches" have been detected on Venus; these have been attributed to the interaction of the surface with the atmospheric shockwave produced by the Tunguska-like explosion of a bolide in the atmosphere. Simple analogy suggests that similar features might occur on Titan, but the shocked mass density (which controls the momentum coupling between the surface and the shockwave) of Titan's cold N2 atmosphere is about 20x smaller than that of Venus's hot CO2 atmosphere. Unless ice is much more easily turned to rubble than is rock, such features seem less probable on Titan. When the energy deposited by an impact forms a fireball with an equilibrate greater than one scale height, the fireball expands upward and can distribute ejecta. on ballistic exoatmospheric trajectories. On Venus this process is believed to be responsible for the parabolic features; the interaction of various-sized particles falling through the atmosphere with the zonal wind field winnows the particles to form a parabolic deposit. Although such a process is possible on Titan, the large scale height at higher altitudes would make it more difficult. Comparison with craters on other icy satellites suggests that craters on Titan will be fairly shallow (depth/diameter about 0.1) and craters greater than 10 km in diameter will have central peaks or domed bases, perhaps with central pits. The formation of ejecta. blankets may involve the atmosphere in a significant way, both by restraining the expansion of the ejecta cloud and by influencing the thermal history of the ejecta. Compared with Venus, Titan's atmosphere will chill an impact melt somewhat quickly, so the long ejecta flows seen on Venus seem less likely, detailed modeling needs to be performed to determine the impact melt production. Crater topography on Titan may be highlighted by the influence of liquids forming crater lakes. Craters with central peaks will typically form ring-shaped lakes, although horseshoe-shaped takes may be common; domed craters with central pits may even form bullseye lakes with islands with central ponds. If liquids have covered a substantial part of Titan's surface for a substantial period, hydroblemes and tsunami deposits may be common.

  12. Cratering on Titan: A Pre-Cassini Perspective

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    1997-01-01

    The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km (compared with 4 km on Venus, or 0.5 km on Earth). Crater chains are unlikely on Titan, since impactors must pass close enough to Saturn to be tidally disrupted; as a result, they would suffer aerodynamic disruption. Crater counting on adjacent satellites gives densities of about 200 per 10 6 square km for 20-km-diameter craters. However, the presence of a thick atmosphere leads to atmospheric shielding, depleting the relative abundance of small craters. This has been evaluated by models, and the relative abundance of small craters may be due to a diagnostic atmospheric collapse. A number of radar-dark "splotches" have been detected on Venus; these have been attributed to the interaction of the surface with the atmospheric shockwave produced by the Tunguska-like explosion of a bolide in the atmosphere. Simple analogy suggests that similar features might occur on Titan, but the shocked mass density (which controls the momentum coupling between the surface and the shockwave) of Titan's cold N2 atmosphere is about 20x smaller than that of Venus's hot CO2 atmosphere. Unless ice is much more easily turned to rubble than is rock, such features seem less probable on Titan. When the energy deposited by an impact forms a fireball with an equilibrate greater than one scale height, the fireball expands upward and can distribute ejecta. on ballistic exoatmospheric trajectories. On Venus this process is believed to be responsible for the parabolic features; the interaction of various-sized particles falling through the atmosphere with the zonal wind field winnows the particles to form a parabolic deposit. Although such a process is possible on Titan, the large scale height at higher altitudes would make it more difficult. Comparison with craters on other icy satellites suggests that craters on Titan will be fairly shallow (depth/diameter about 0.1) and craters greater than 10 km in diameter will have central peaks or domed bases, perhaps with central pits. The formation of ejecta. blankets may involve the atmosphere in a significant way, both by restraining the expansion of the ejecta cloud and by influencing the thermal history of the ejecta. Compared with Venus, Titan's atmosphere will chill an impact melt somewhat quickly, so the long ejecta flows seen on Venus seem less likely, detailed modeling needs to be performed to determine the impact melt production. Crater topography on Titan may be highlighted by the influence of liquids forming crater lakes. Craters with central peaks will typically form ring-shaped lakes, although horseshoe-shaped takes may be common; domed craters with central pits may even form bullseye lakes with islands with central ponds. If liquids have covered a substantial part of Titan's surface for a substantial period, hydroblemes and tsunami deposits may be common.

  13. THEMIS Observation of Diurnal Temperature Change in the Pit Craters on Mars

    NASA Astrophysics Data System (ADS)

    Cho, E.; Jung, J.; Yi, Y.; Yu, J.; Oh, S.

    2015-10-01

    The cave candidates have been found on Pavonis Mons and Ascraeus Mons in Tharsis Montes. And we have examined the temperature change at daytime and at nighttime for cave candidates using the method of Cushing et al. (2007).

  14. The volcanic and tectonic history of Enceladus

    USGS Publications Warehouse

    Kargel, J.S.; Pozio, S.

    1996-01-01

    Enceladus has a protracted history of impact cratering, cryo-volcanism, and extensional, compressional, and probable strike-slip faulting. It is unique in having some of the outer Solar System's least and most heavily cratered surfaces. Enceladus' cratering record, tectonic features, and relief elements have been analyzed more comprehensively than done previously. Like few other icy satellites, Enceladus seems to have experienced major lateral lithospheric motions; it may be the only icy satellite with global features indicating probable lithospheric convergence and folding. Ridged plains, 500 km across, consist of a central labyrinthine ridge complex atop a broad dome surrounded by smooth plains and peripheral sinuous ridge belts. The ridged plains have few if any signs of extension, almost no craters, and an average age of just 107 to 108 years. Ridge belts have local relief ranging from 500 to 2000 m and tend to occur near the bottoms of broad regional troughs between swells. Our reanalysis of Peter Thomas' (Dermott, S. F., and P. C. Thomas, 1994, The determination of the mass and mean density of Enceladus from its observed shape, Icarus, 109, 241-257) limb profiles indicates that high peaks, probably ridge belts, also occur in unmapped areas. Sinuous ridges appear foldlike and are similar to terrestrial fold belts such as the Appalachians. If they are indeed folds, it may require that the ridged plains are mechanically (perhaps volcanically) layered. Regional topography suggests that folding may have occurred along zones of convective downwelling. The cratered plains, in contrast to the ridged plains, are heavily cratered and exhibit extensional structures but no obvious signs of compression. Cratered plains contain a possible strike-slip fault (Isbanir Fossa), along which two pairs of fractures seem to have 15 km of right-lateral offset. The oldest cratered plains might date from shortly after the formation of the saturnian system or the impact disruption and reaccretion of Enceladus. Another area of cratered plains has modified craters (e.g., Ali Baba and Aladdin), which some workers have explained by anomalous heat flow and viscous relaxation; lateral shear and shield-building volcanism also may have been important. A young rift-like structure (northern Samarkand Sulci) has few craters and a concentration of cracks or grabens and flattened, flooded, and rifted craters. Pit chains and cratered domes suggest explosive volcanism. Smooth plains may have formed by cryovolcanic equivalents of flood-basalt volcanism. Pure H2O would be difficult to extrude through an icy crust and is cosmochemically improbable as a cryovolcanic agent. Density relations rule out eutectic brine lavas on Enceladus, but NH3-H2O volcanism is possible. Current steady-state tidal dissipation may cause melting of ammonia hydrate at a depth of ???25 km if the crust is made of ammonia hydrate or ???100 km if it is made of water ice. ?? 1996 Academic Press, Inc.

  15. Influence of Fault-Controlled Topography on Fluvio-Deltaic Sedimentary Systems in Eberswalde Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.

    2011-01-01

    Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.

  16. Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.

    1991-01-01

    Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.

  17. The complex filling of alae crater, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Swanson, D.A.; Duffield, W.A.; Jackson, D.B.; Peterson, D.W.

    1972-01-01

    Since February 1969 Alae Crater, a 165-m-deep pit crater on the east rift of Kilauea Volcano, has been completely filled with about 18 million m3 of lava. The filling was episodic and complex. It involved 13 major periods of addition of lava to the crater, including spectacular lava falls as high as 100 m, and three major periods of draining of lava from the crater. Alae was nearly filled by August 3, 1969, largely drained during a violent ground-cracking event on August 4, 1969, and then filled to the low point on its rim on October 10, 1969. From August 1970 to May 1971, the crater acted as a reservoir for lava that entered through subsurface tubes leading from the vent fissure 150 m away. Another tube system drained the crater and carried lava as far as the sea, 11 km to the south. Much of the lava entered Alae by invading the lava lake beneath its crust and buoying the crust upward. This process, together with the overall complexity of the filling, results in a highly complicated lava lake that would doubtless be misinterpreted if found in the fossil record. ?? 1972 Stabilimento Tipografico Francesco Giannini & Figli.

  18. Topographic analysis of lunar secondary craters of Copernicus and implications

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Aggarwal, H. R.

    1977-01-01

    An analysis is conducted of the topography of lunar secondary craters and the associated herringbone pattern observed on lunar topophotomaps. The topography and the patterns are compared with those of crater pairs produced in the laboratory. The results are used to identify secondaries on the lunar uplands. The chain of craters that was selected for mapping and which is described is known to be a secondary impact crater chain produced by material ejected from Copernicus Crater because it lies on a well-developed ray system of Copernicus. Oberbeck et al. (1977) had hypothesized that most lunar areas exhibit more craters smaller than 50 km than are observed on Mars and Mercury because lower lunar gravity permitted more widespread distribution of secondaries for the moon. After removal of basin secondaries it is found that the surfaces of the lunar uplands are only sparsely populated by craters between 5 and 50 km. The lunar uplands appear then similar to the Mercurian terrain.

  19. The origin of Phobos grooves from ejecta launched from impact craters on Mars: Tests of the hypothesis

    NASA Astrophysics Data System (ADS)

    Ramsley, Kenneth R.; Head, James W.

    2013-01-01

    The surface of the martian moon Phobos is characterized by parallel and intersecting grooves that bear resemblance to secondary crater chains observed on planetary surfaces. Murray (2011) has hypothesized that the main groove-forming process on Phobos is the intersection of Phobos with ejecta from primary impact events on Mars to produce chains of secondary craters. The hypothesis infers a pattern of parallel jets of ejecta, either fluidized or solidified, that break into equally-spaced fragments and disperse uniformly along-trajectory during the flight from Mars to Phobos. At the moment of impact with Phobos the dispersed fragments emplace secondary craters that are aligned along strike corresponding to the flight pattern of ejecta along trajectory. The aspects of the characteristics of grooves on Phobos cited by this hypothesis that might be explained by secondary ejecta include: their observed linearity, parallelism, planar alignment, pitted nature, change in character along strike, and a "zone of avoidance" where ejecta from Mars is predicted not to impact (Murray, 2011). To test the hypothesis we plot precise Keplerian orbits for ejecta from Mars (elliptical and hyperbolic with periapsis located below the surface of Mars). From these trajectories we: (1) set the fragment dispersion limits of ejecta patterns required to emplace the more typically well-organized parallel grooves observed in returned images from Phobos; (2) plot ranges of the ejecta flight durations from Mars to Phobos and map regions of exposure; (3) utilize the same exposure map to observe trajectory-defined ejecta exposure shadows; (4) observe hemispheric exposure in response to shorter and longer durations of ejecta flight; (5) assess the viability of ejecta emplacing the large family of grooves covering most of the northern hemisphere of Phobos; and (6) plot the arrival of parallel lines of ejecta emplacing chains of craters at oblique incident angles. We also assess the bulk volume of ejecta from martian impact events and the number of events that are necessary to supply sufficient bulk densities of secondary impactor fragments. On the basis of our analysis, we find that six major predictions of the Murray hypothesis are not consistent with a wide range of Mars ejecta emplacement models and observations as follows: (1) To emplace families of parallel grooves as observed in the most common features (grooves that manifest virtually no positional defects), and to reach the maximum geographic extent of Phobos, grid patterns of ejecta fragments must be produced with nearly identical diameters (often tens of thousands in number) and must launch with virtually zero rates of dispersion (<1 mm/s and <1.0 μrad in all degrees of freedom) into fixed patterns of arrays where fragment dispersion is referenced to a common datum point for the duration of flights from Mars to Phobos of up to 3 h. (2) Half of the areal region observed as a "zone of avoidance" (where grooves are absent on the trailing orbital apex of Phobos) is directly exposed to ejecta trajectories from the surface of Mars, which suggests that the "zone of avoidance" is unrelated to ejecta trajectories. (3) Several families of grooves display groove segments that are observed in a region of Phobos that is shadowed from martian ejecta trajectories for flight durations up to 3 h. Where the Murray hypothesis predicts the emplacement of groove families from a single ejecta plume, this strongly suggests that these families of grooves could not have been produced by martian impact ejecta. (4) To reach increasingly westerly locations of Phobos ejecta must travel in space for substantially longer flight times (up to 20X) which would produce substantially lower secondary crater densities on the anti-Mars side of Phobos and observably reduce their pit organization. This is not observed. (5) The largest family of grooves cannot be emplaced by any valid trajectory from Mars in its present day or ancient orbit. (6) If emplaced by grid patterns of ejecta, the irregular topography and small-body radius of Phobos would clearly disrupt groove family linearity and parallelism due to the preponderance of oblique incident angle impacts. However, when viewed from any position, the vast majority of groove families and individual grooves appear to completely avoid the effects of Phobos' morphology. Based on our analysis we conclude that the Murray hypothesis, that many Phobos grooves are formed by intersection of ejecta from craters on Mars, is not valid.

  20. Anatahan, Northern Mariana Islands: Reconnaissance geological observations during and after the volcanic crisis of spring 1990, and monitoring prior to the May 2003 eruption

    USGS Publications Warehouse

    Rowland, S.K.; Lockwood, J.P.; Trusdell, F.A.; Moore, R.B.; Sako, M.K.; Koyanagi, R.Y.; Kojima, G.

    2005-01-01

    Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ???1 km across and ???200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the outer flanks and in the caldera walls. These include thick (???10 m) and thin (2-3 m) lava flows, well-indurated tuffs, and scoria units that make up the bulk of the island. Rock compositions range from basaltic andesite to dacite, and most are plagioclase-phyric. On the steep north and south flanks of the volcano, these rocks are cut by numerous east-west-oriented, few-hundred-m-long lineaments of undetermined origin. Indurated breccias unconformably overlie scarps cut into stage 1 units low on the south flank. Intermediate-age eruptive units (stage 2) include caldera-filling lava flows and pyroclastic deposits and, on the outer flanks, vents and valley-filling lava flows. The youngest pre-2003 volcanic unit on Anatahan (stage 3) is a hydromagmatic surge and fall deposit rich in accretionary lapilli. Prior to 2003, this unit was found over almost the entire island, and in many places original depositional surfaces and outcrops could be found in high-energy environments along the coast, indicating a young (but undetermined) age. During reconnaissance visits in 1990, 1992, 1994, and 2001, geothermal activity (fumaroles as well as pits with boiling, sediment-laden pools) was observed in the southern part of the pit crater. In March and April 1990, increased local seismicity, a large regional earthquake, and reported increased fumarolic activity in the pit crater prompted evacuation of Anatahan village, at the west end of the island. Our first field investigation took place in late April 1990 to assess the level of volcanic unrest, conduct reconnaissance geological observations, collect rock and geothermal water samples, and set up a geophysical monitoring network. Results at this time were inconclusive with respect to determining whether the activity was anomalous. Water in some of the geothermal pits within the pit crater was boiling, and pH values as low as 0.7 were recorded in the field. An electronic distance measurement (EDM) network was installed, and over a ???1-week period, up to 9 cm of extension occurred across some lines but not others. Seismicity was characterized by intermittent local earthquakes but no sustained swarms or tremor. A brief visit in June 1990 revealed that the shallow lake near the boiling pits was gone, but activity in the pits themselves was similar to that of April 1990. Only minor extension had occurred along a single EDM line since the previous visit, and no earthquakes >M2.5 occurred during the visit. Subsequent 1- to 2-day visits occurred in October 1990, May 1992, May 1994, and June 2001. Activity within the geothermal pits was relatively constant during every visit, although during this 11-year period the level of the water in each pit decreased. In June 2001, a ???50-m-wide region of mud pots and steaming ground in the central part of the geothermal area had developed. No geologic evidence, however, suggested that an eruption would occur <2 years afterward. Most of the EDM lines showed slight extension between late 1990 and 1992, followed by very gradual contraction from 1992 to 2001. A more extensive seismic-monitoring system was installed on the Northern Mariana Islands during these visits, and it recorded a small seismic swarm at Anatahan from May to July 1993. The telemetry component of the seismic equipment broke prior to 2001 and had not been repaired by the time of the May 2003 eruption, so no precursory seismic data were recorded to indicate pre-eruption unrest. ?? 2005 Elsevier B.V. All rights reserved.

  1. How the Distribution of Impact Ejecta may explain Surface Features on Ceres and Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Schmedemann, N.; Neesemann, A.; Schulzeck, F.; Krohn, K.; von der Gathen, I.; Otto, K. A.; Jaumann, R.; Wagner, R.; Michael, G.; Raymond, C. A.; Russell, C. T.

    2017-09-01

    The high rate of Ceres' rotation in addition to its low surface gravity result in strong Coriolis forces affecting significant amounts of far flying impact ejecta. Dawn Framing Camera observations of specific orientations of secondary crater chains and global scale color ratio anomalies can be explained by application of our crater ejecta distribution model. The model is also applied to Saturnian satellites for understanding their pattern of secondary crater chains and cluster.

  2. Exploring Martian Impact Craters: Why They are Important for the Search for Life

    NASA Technical Reports Server (NTRS)

    Schwenzer, S. P.; Abramov, O.; Allen, C. C.; Clifford, S.; Filiberto, J.; Kring, D. A.; Lasue, J.; McGovern, P. J.; Newsom, H. E.; Treiman, A. H.; hide

    2010-01-01

    Fluvial features and evidence for aqueous alteration indicate that Mars was wet, at least partially and/or periodically, in the Noachian. Also, impact cratering appears to have been the dominant geological process [1] during that epoch. Thus, investigation of Noachian craters will further our understanding of this geologic process, its effects on the water-bearing Martian crust, and any life that may have been present at the time. Impact events disturbed and heated the water- and/or ice-bearing crust, likely initiated long-lived hydrothermal systems [2-4], and formed crater lakes [5], creating environments suitable for life [6]. Thus, Noachian impact craters are particularly important exploration targets because they provide a window into warm, water-rich environments of the past which were possibly conducive to life. In addition to the presence of lake deposits, assessment of the presence of hydrothermal deposits in the walls, floors and uplifts of craters is important in the search for life on Mars. Impact craters are also important for astrobiological exploration in other ways. For example, smaller craters can be used as natural excavation pits, and so can provide information and samples that would otherwise be inaccessible (e.g., [7]). In addition, larger (> 75 km) craters can excavate material from a potentially habitable region, even on present-day Mars, located beneath a >5-km deep cryosphere.

  3. Dawn arrives at Ceres: Exploration of a small, volatile-rich world.

    PubMed

    Russell, C T; Raymond, C A; Ammannito, E; Buczkowski, D L; De Sanctis, M C; Hiesinger, H; Jaumann, R; Konopliv, A S; McSween, H Y; Nathues, A; Park, R S; Pieters, C M; Prettyman, T H; McCord, T B; McFadden, L A; Mottola, S; Zuber, M T; Joy, S P; Polanskey, C; Rayman, M D; Castillo-Rogez, J C; Chi, P J; Combe, J P; Ermakov, A; Fu, R R; Hoffmann, M; Jia, Y D; King, S D; Lawrence, D J; Li, J-Y; Marchi, S; Preusker, F; Roatsch, T; Ruesch, O; Schenk, P; Villarreal, M N; Yamashita, N

    2016-09-02

    On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres' surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres' dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts. Copyright © 2016, American Association for the Advancement of Science.

  4. Results of examination of the returned Surveyor 3 samples for particulate impacts

    NASA Technical Reports Server (NTRS)

    Cour-Palais, B. G.; Flaherty, R. E.; High, R. W.; Kessler, D. J.; Mckay, D. S.; Zook, H. A.

    1972-01-01

    The television housing and a section of the strut of the radar altimeter and Doppler velocity sensor were examined optically and with a scanning electron microscope for particulate impacts. The white surface of the camera was discolored during the months the Surveyor 3 was on the moon; however, most of the craters must have occurred as a result of lunar dust sandblasted by the LM exhaust. The polished section of the strut exhibits contamination which appears brown and seems to be partially composed of crystals. Electron microscopic analysis of the strut section indicated no craters of hypervelocity impact origin, confirmed pitting density results of the optical scans, and indicated that material in the craters is of lunar origin. No meteorite impacts larger than 25 microns were detected on the tubing section.

  5. Overlapping Ballistic Ejecta Fields: Separating Distinct Blasts at Kings Bowl, Idaho

    NASA Astrophysics Data System (ADS)

    Borg, C.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Heldmann, J. L.; Lim, D. S. S.; Haberle, C. W.; Sears, H.; Elphic, R. C.; Kobayashi, L.; Garry, W. B.; Neish, C.; Karunatillake, S.; Button, N.; Purcell, S.; Mallonee, H.; Ostler, B.

    2015-12-01

    Kings Bowl is a ~2200ka pit crater created by a phreatic blast along a volcanic fissure in the eastern Snake River Plain (ESRP), Idaho. The main crater measures approximately 80m in length, 30m in width, and 30m in depth, with smaller pits located nearby on the Great Rift fissure, and has been targeted by the FINESSE team as a possible analogue for Cyane Fossae, Mars. The phreatic eruption is believed to have occurred due to the interaction of groundwater with lava draining back into the fissure following a lava lake high stand, erupting already solidified basalt from this and previous ERSP lava flows. The contemporaneous draw back of the lava with the explosions may conceal some smaller possible blast pits as more lava drained into the newly formed pits. Ballistic ejecta from the blasts occur on both sides of the fissure. To the east, the ballistic blocks are mantled by fine tephra mixed with eolian dust, the result of a westerly wind during the explosions. We use differential GPS to map the distribution of ballistic blocks on the west side of the fissure, recording position, percent vesiculation, and the length of 3 mutually perpendicular axes for each block >20cm along multiple transects parallel to the fissure. From the several hundred blocks recorded, we have been able to separate the ballistic field into several distinct blast deposits on the basis of size distributions and block concentration. The smaller pits identified from the ballistic fields correspond broadly to the northern and southern limits of the tephra/dust field east of the fissure. Soil formation and bioturbation of the tephra by sagebrush have obliterated any tephrostratigraphy that could have been linked to individual blasts. The ballistic block patterns at Kings Bowl may be used to identify distinct ejecta groups in high-resolution imagery of Mars or other planetary bodies.

  6. Impact cratering on porous targets in the strength regime

    NASA Astrophysics Data System (ADS)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  7. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta

    PubMed Central

    Nayak, M.; Asphaug, E.

    2016-01-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002

  8. Volcanism on Mercury

    NASA Astrophysics Data System (ADS)

    Rothery, David A.

    2017-12-01

    Mercury has no recognized tracts of intact primary crust analogous to lunar highland crust, probably because Mercury's iron-poor magma ocean was insufficiently dense to enable crystallized silicates to float. Its surface is accepted to consist mostly of multiple generations of lavas, rather like terrestrial "large igneous provinces" or LIPs, emplaced in greatest volumes prior to about 3.5 Ga. Subsequently, erupted volumes decreased, and became largely confined to impact craters. Plains younger than about 3.7 Ga are scarred by so few impact craters that they are mapped as "smooth plains." Older plains are termed "intercrater plains." There is no consensus on whether plains with characteristics intermediate between smooth and intercrater plains can be consistently mapped (as "intermediate plains"). The volcanic nature of Mercury's smooth plains was ambiguous on images returned by the first mission to Mercury, Mariner 10 (three flybys in 1974–1975. Better imaging by MESSENGER (in orbit 2011–2015) removed doubt by documenting innumerable ghost craters and wrinkle ridges. Vents are obscure, as is normal in LIPs, but there are good examples of streamlined islands showing the passage of fast-flowing, low-viscosity lava. The causes of mantle partial melting necessary to supply Mercury's eruptions are unclear, but secular cooling of a small, one-plate planet is expected to lead to the decrease in volcanic activity that we observe. Factors include loss of primordial heat and declining rate of radiogenic heat production, and closure of pathways by planetary thermal contraction. Lava compositions resemble komatiites but with low iron content. Regional variations may reflect lateral and vertical heterogeneities in the mantle, or different degrees of partial melting. The cessation of effusive volcanism on Mercury is hard to date because the youngest areas are small. However, it probably continued until about 1 Ga. That was not the end of volcanism on the planet. MESSENGER images show >100 "pits," which are noncircular holes up to tens of km across and up to about 4 km deep. Many are surrounded by spectrally red deposits, with faint outer edges many tens of km from the pit, interpreted as ejecta from explosive eruptions. Some pits have complex floors, suggesting vent migration. Explosive eruptions require violent gas expansion. This could be either a magmatic volatile expanding near the top of a magma conduit, or a result from heating of a crustal/near-surface volatile by approaching magma. Mercury's crust is surprisingly rich in volatiles, of which the one likely to be of most importance in driving the explosive eruptions is sulfur. We do not know when explosive volcanism began on Mercury. Cross-cutting relationships suggest that some explosion pits are considerably less than 1 Ga old, though most could easily be older than 3 Ga. They characteristically occur associated with structures inside impact craters, and while some pits have no discernible "red spot" surrounding them (perhaps because over time it has faded into the background), there is no known example of partial burial of a red spot by a smooth plains unit. Thus, there seems to have been a change in eruptive style, with (small volume) explosions supplanting (large volume) effusive events.

  9. Samhain Catenae on Ceres

    NASA Image and Video Library

    2017-11-09

    This image made with data from NASA's Dawn spacecraft shows pit chains on dwarf planet Ceres called Samhain Catenae. Scientists created this image by draping the grayscale mosaic of Ceres' surface onto the shape model of the dwarf planet. The arrows in the image point to a few of the pit chains investigated in a 2017 study in the journal Geophysical Research Letters. https://photojournal.jpl.nasa.gov/catalog/PIA22086

  10. Martian Impact Craters as Revealed by MGS and Odyssey

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    2005-01-01

    A variety of ejecta and interior morphologies were revealed for martian impact craters by Viking imagery. Numerous studies have classified these ejecta and interior morphologies and looked at how these morphologies correlate with crater diameter, latitude, terrain, and elevation [1, 2, 3, 4]. Many of these features, particularly the layered (fluidized) ejecta morphologies and central pits, have been proposed to result when the crater formed in target material containing high concentrations of volatiles. The Catalog of Large Martian Impact Craters was originally derived from the Viking 1:2,000,000 photomosaics and contains information on 42,283 impact craters 5-km diameter distributed across the entire martian surface. The information in this Catalog has been used to study the distributions of craters displaying specific ejecta and interior morphologies in an attempt to understand the environmental conditions which give rise to these features and to estimate the areal and vertical extents of subsurface volatile reservoirs [4, 5]. The Catalog is currently undergoing revision utilizing Mars Global Surveyor (MGS) and Mars Odyssey data [6]. The higher resolution multispectral imagery is resulting in numerous revisions to the original classifications and the addition of new elemental, thermophysical, and topographic data is allowing new insights into the environmental conditions under which these features form. A few of the new results from analysis of data in the revised Catalog are discussed below.

  11. The Geology of Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  12. Moonshine Versus Earthshine: Physics Makes a Difference

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.

    2005-01-01

    Introduction: Recently released, high-resolution images from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) reveal a myriad of intriguing landforms banked along the northern edge of Terby Crater located on the northern rim of Hellas (approx.28degS, 287degW). Landforms within this crater include north-trending troughs and ridges, a remarkable 2.5 km-thick sequence of exposed layers, mantled ramps that extend across and between layered sequences, fan-like structures, sinuous channels, collapse pits, a massive landslide and viscous flow features. The suite of diverse landforms in Terby and its immediate surroundings attest to a diversity of rock types and geologic processes, making this locality ideal for studying landform-climate relationships on Mars. In order to decipher the complicated geologic history of Terby Crater and the nature of the layered deposits, a generalized geomorphic map was created and the slope of the layered deposits was examined.

  13. Surface Diversity

    NASA Image and Video Library

    2016-03-17

    This enhanced color view of Pluto's surface diversity was created by merging Ralph/Multispectral Visible Imaging Camera (MVIC) color imagery (650 meters per pixel) with Long Range Reconnaissance Imager panchromatic imagery (230 meters per pixel). At lower right, ancient, heavily cratered terrain is coated with dark, reddish tholins. At upper right, volatile ices filling the informally named Sputnik Planum have modified the surface, creating a chaos-like array of blocky mountains. Volatile ice also occupies a few nearby deep craters, and in some areas the volatile ice is pocked with arrays of small sublimation pits. At left, and across the bottom of the scene, gray-white CH4 ice deposits modify tectonic ridges, the rims of craters, and north-facing slopes. The scene in this image is 260 miles (420 kilometers) wide and 140 miles (225 kilometers) from top to bottom; north is to the upper left. http://photojournal.jpl.nasa.gov/catalog/PIA20534

  14. The Geology of Pluto and Charon Through the Eyes of New Horizons

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Howard, A. D.; Schenk, P. M.; Beyer, R. A.; Nimmo, F.; Singer, K. N.; Umurhan, O. M.; White, O. L.; hide

    2016-01-01

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that is involved in convection and advection, with a crater retention age no greater than 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic, and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to 4 Ga old that are extensionally fractured and extensively mantled and eroded by glacial or other processes. Charon is not currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest proposed impactor size-frequency distributions.

  15. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    NASA Technical Reports Server (NTRS)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  16. Hephaestus Fossae

    NASA Image and Video Library

    2002-07-03

    Off the western flank of Elysium are the Hephaestus Fossae, seen in this image from NASA Mars Odyssey, with linear arrangements of small, round pits. These features are commonly called pit chains and most likely represent the collapse of lava tubes.

  17. Mountains, Craters and Plains

    NASA Image and Video Library

    2016-03-17

    New Horizons views of the informally named Sputnik Planum on Pluto (top) and the informally named Vulcan Planum on Charon (bottom). Both scale bars measure 20 miles (32 kilometers) long; illumination is from the left in both instances. The Sputnik Planum view is centered at 11°N, 180°E, and covers the bright, icy, geologically cellular plains. Here, the cells are defined by a network of interconnected troughs that crisscross these nitrogen-ice plains. At right, in the upper image, the cellular plains yield to pitted plains of southern Sputnik Planum. This observation was obtained by the Ralph/Multispectral Visible Imaging Camera (MVIC) at a resolution of 1,050 feet (320 meters) per pixel. The Vulcan Planum view in the bottom panel is centered at 4°S, 4°E, and includes the "moated mountain" Clarke Mons just above the center of the image. As well as featuring impact craters and sinuous troughs, the water ice-rich plains display a range of surface textures, from smooth and grooved at left, to pitted and hummocky at right. This observation was obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 525 feet (160 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20535

  18. Transient features and growth behavior of artificial cracks during the initial damage period.

    PubMed

    Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan

    2017-02-01

    The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.

  19. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.

  20. Estimates of Comet Fragment Masses from Impact Crater Chains on Callisto and Ganymede

    NASA Technical Reports Server (NTRS)

    McKinnon, William B.; Schenk, Paul M.

    1995-01-01

    Chains of impact craters, or catenae, have been identified in Voyager images of Callisto and Ganymede. Although these resemble in some respects secondary crater chains, the source craters and basins for the catenae cannot be identified. The best explanation is a phenomenon similar to that displayed by former comet Shoemaker-Levy 9; tidal (or other) breakup close to Jupiter followed by gradual orbital separation of the fragments and collision with a Galilean satellite on the outbound leg of the trajectory. Because the trajectories must pass close to Jupiter, this constrains the impact geometry (velocity and impact angle) of the individual fragments. For the dominant classes of impactors, short period Jupiter-family comets and asteroids, velocities at Callisto and Ganymede are dominated by Jovian gravity and a satellite's orbital motion, and are insensitive to the pre-fragmentation heliocentric velocity; velocities are insensitive to satellite gravity for all impactor classes. Complex crater shapes on Callisto and Ganymede are determined from Voyager images and Schmidt-Holsapple scaling is used to back out individual fragment masses. We find that comet fragment radii are generally less than about 500 m (for ice densities) but can be larger. These estimates can be compared with those for the Shoemaker-Levy 9 impactors.

  1. Impacts on Hubble Space Telescope solar arrays: discrimination between natural and man-made particles.

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Moussi, A.

    A Post-Flight Investigation was initiated by the European Space Agency to analyze impact fluxes on solar arrays of the Hubble Space Telescope (HST), exposed to space for 8.25 years at approximately 600 km altitude. The solar cells were deployed during servicing mission SM-1 (December 1993), and retrieved by shuttle orbiter Columbia in March 2002 (SM-3B). A sub-panel of 2 m2 was cut from the --V2 wing and cells were selected for in-depth analysis. Twelve cells (9.6x10-3 m2) were surveyed for flux of all craters of sizes greater than 5 microns Dco; six at the NHM, and six at ONERA. Cumulative flux plots reveal slightly greater abundance of very small craters than in a comparable survey of SM-1 cells. Analytical scanning electron microscopy was used to locate impact features and to analyse residues at the NHM. 103 features of 3 -- 4000 micron conchoidal detachment diameter (Dco) were located on a total of 17 solar cells. 78 features show identifiable residue: 36 are Space Debris impacts and 42 Micrometeoroid impacts. Of the remaining 25: 4 contain residue of ambiguous origin, 1 is a minor manufacturing flaw, 1 is obscured by contamination, and 19 are unresolved, lacking recognizable residue. Space debris impacts on the SM-3B cells are all less than 80 microns Dco, dominated by Al- rich residue, probably of solid rocket motor origin, some may be unburnt fuel. Three craters may be sodium metal droplet impacts. No residues from paint pigment, aluminium or ferrous alloys, or copper- and tin-bearing metal were found. All craters larger than 100 microns are of micrometeoroid origin, or unresolved. Most residues are magnesium-iron silicate or iron sulfide. A few craters show vesicular Mg, S, Fe and Ni residue. A single Fe Ni metal residue was found, as well as enigmatic Mg- and S-bearing residues, all considered of micrometeoroid origin. A few Fe-, O- and C-bearing residues were classified as of ambiguous origin. The quality and quantity of residue is clearly linked to the crater pit morphology, with oval pit features containing more identifiable residue, perhaps due to lower peak shock pressures experienced in these oblique-incidence impacts.

  2. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  3. Tantalus Fossae

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 25 June 2002) The Science Tantalus Fossae is a set of long valleys on the eastern side of Alba Patera. These valleys are referred to as grabens and are formed by extension of the crust and faulting. When large amounts of pressure or tension are applied to rocks on timescales that are fast enough that the rock cannot respond by deforming, the rock breaks along faults. In the case of a graben, two parallel faults are formed by extension of the crust and the rock in between the faults drops downward into the space created by the extension. Numerous sets of grabens are visible in this THEMIS image, trending from north-northeast to south-southwest. Because the faults defining the graben are formed parallel to the direction of the applied stress, we know that extensional forces were pulling the crust apart in the west-northwest/east-southeast direction. The large number of grabens around Alba Patera is generally believed to be the result of extensional forces associated with the uplift of Alba Patera. Also visible in this image are a series of linearly aligned pits, called a pit chain. The pits are not the result of impact cratering, but are similar to sinkholes on Earth. Sinkholes are typically formed by the removal of rock (commonly limestone) underground by groundwater -- when enough rock is removed, the overlying rock becomes too heavy to be supported, and it collapses, forming a pit. Unlike sinkholes, however, the pit chains near Alba Patera were likely formed when empty underground lava tubes collapsed, accounting for the presence and alignment of many pits. Numerous channel features are also observed in the image, and follow the local topographic slope, which is downhill to the east-southeast. One of these, a long channel in the center of the image, nicely demonstrates the complex relations possible between geologic features. The geologist's rule of superposition says that a feature on top of (superposing) another feature, or cutting across another feature is younger than the feature it covers or cuts. In one location, the channel cuts across the somewhat subdued fault defining a graben (near the right side of the image), indicating that the channel was carved after the graben was formed. But in other places (near the center of the image), the channel is clearly cut by a large fault defining one of the grabens, indicating that some faulting was occurring after the channel was carved. These relationships can be observed throughout this image. By mapping out superposition relationships in detail, geologists can establish a complex sequence of events that occurred long ago. The Story The first thing that catches your eye in the image above is a string of round pits that are strewn dramatically on the surface. Although they may look like craters, nothing came hurtling in from the sky to make them. Instead, collapses along a lava tube have created this long dotted line on the Martian surface. The lava tube, a hollow feature beneath the surface, can't always withstand the weight from above, and so collapses in places, forming pits like the ones seen here. Throughout the rest of the image are a series of depressed valleys known as grabens that run roughly from the northeast to the southwest. They formed when the crust of the Martian surface was stretched so fast that it broke along faults. When that happened, the rock in between fell downward into the space created by the extension, creating the long subtle streaks of lowered terrain. They were probably created when Alba Patera, the shield volcano of this area, was elevated or 'uplifted' through tectonic forces. This area of long valleys is named after Tantalus, a king of ancient Lydia who, according to legend, betrayed the gods and was sent to Hades. In this subterranean place, he was forced to stand in water up to his chin underneath the branches of fruit trees. Every time he tried to drink, the water would recede, and every time he tried to eat, the boughs would move the fruit just out of reach. You can easily see where the word 'tantalize' comes from. Scientists are intrigued so much by the history of this area that they seek to understand its elusive past. Luckily, their interests are much more in reach than those of poor Tantalus. A number of channels in this image (running downhill from the west-northwest to the east-southeast) help them understand the chain of events that worked to create the compelling features in this region. Take a look at the channels close-up and see if you can tell whether the channels or the grabens happened first. A rule of thumb is that if one feature is on top of another or cuts across it, it is younger than the feature it covers or cuts. One of the channels in the center of the image is great to study. Toward the right side of the image, the channel cuts across a fault, indicating it formed before the graben. Follow the channel westward, however, and you'll see that a large fault cuts the channel, indicating that this graben formed after the channel. That probably means this criss-crossed region went through a seeming eternity of torture itself, as the land kept tearing and stretching, as channels were carved and recarved, as lava tubes formed and then finally collapsed, only to have their walls erode in further streaks as well.

  4. Impact Crater Morphology and the Structure of Europa's Ice Shell

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  5. The Crater Ejecta Distribution on Ceres

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Neesemann, Adrian; Schulzeck, Franziska; Krohn, Katrin; Gathen, Isabel; Otto, Katharina; Jaumann, Ralf; Michael, Gregory; Raymond, Carol; Russell, Christopher

    2017-04-01

    Since March 6 2015 the Dawn spacecraft [1] has been in orbit around the dwarf planet Ceres. At small crater diameters Ceres appears to be peppered with secondary craters that often align in chains or form clusters. Some of such possible crater chains follow curved geometries and are not in a radial orientation with respect to possible source craters [2]. Ceres is a fast rotating body ( 9 h per revolution) with comparatively low surface gravity ( 0.27 m/s2). A substantial fraction of impact ejecta may be launched with velocities similar to Ceres' escape velocity (510 m/s), which implies that many ejected particles follow high and long trajectories. Thus, due to Ceres' fast rotation the distribution pattern of the reimpacting ejected material is heavily affected by Coriolis forces that results in a highly asymmetrical and curved pattern of secondary crater chains. In order to simulate flight trajectories and distribution of impact ejected material for individual craters on Ceres we used the scaling laws by [3] adjusted to the Cerean impact conditions [4] and the impact ejecta model by [5]. These models provide the starting conditions for tracer particles in the simulation. The trajectories of the particles are computed as n-body simulation. The simulation calculates the positions and impact velocities of each impacting tracer particle with respect to the rotating surface of Ceres, which is approximated by a two-axis ellipsoid. Initial results show a number of interesting features in the simulated deposition geometries of specific crater ejecta. These features are roughly in agreement with features that can be observed in Dawn imaging data of the Cerean surface. For example: ray systems of fresh impact craters, non-radial crater chains and global scale border lines of higher and lower color ratio areas. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry for Economic Affairs and Energy, Germany, grants 50 OW 1505 (NS, AN) and 50 QM 1301 (GM), and Helmholtz-Gemeinschaft (Helmholtz Association) PD-207 (KK). We thank the Dawn flight team for their excellent job of navigating and maintaining the probe. References: [1] C. T. Russell, et al., Science, 353, 1008 (2016). [2] J. E. C. Scully et al., American Astronomical Society, DPS meeting #48, id.321.02 (2016). [3] B. A. Ivanov, Space Science Reviews, 96, 87 (2001). [4] H. Hiesinger et al., Science, 353, 1003 (2016). [5] K. R. Housen and K. A. Holsapple, Icarus, 211, 856 (2011).

  6. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.

  7. High Resolution Digital Elevation Models of Pristine Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements, correlation of ejecta size and composition with radar and visible-thermal IR remote sensing signatures, and comparison of these results with similar measurements of Mars. The final DEMs, ancillary data sets, and derived data products will be made available to the community.

  8. Textural Characterization Of Scoria From Low Energy Strombolian Events At Villarrica Volcano: Preliminary Data From November 2004

    NASA Astrophysics Data System (ADS)

    Gurioli, L.; Houghton, B.; Polacci, M.; Harris, A.

    2005-12-01

    During November 2004 a multidisciplinary experiment was deployed for a 10-days period at Villarrica Volcano (Chile). Activity since the 1984-85 eruption has consisted of continuous, passive degassing from a summit lava lake/vent and subordinate strombolian activity. During the experiment, a small lava lake was active within a 70-m-deep summit pit. Within the lake regular bubble bursting ejected fragments that rose and fell within the crater itself, together with splashing of lava onto the inner pit walls. Rarer, more energetic events emplaced scoria around the crater rim extending just a few 10's of meters from the pit rim. The limited dispersion of the products, confirm the low energy character of even these events. This report presents preliminary analyses of the textural features of the juvenile material ejected by the low energy strombolian events that occurred between November 8 and 17. We collected two sample suites of 100-to-300 clasts lying on fresh snow at the eastern and western sides of the crater area and within 50 m of the pit edge. Products included decimeter-sized bombs, scoria lapilli, centimeter-sized reticulites and coarse ash comprising fresh glassy shards. Bombs were rounded as well as elongated, and included spindle bombs and flattened spatter forms. Apart from the golden reticulites, all products were black and iridescent, with metallic surface lusters. We have completed density measurements on pyroclasts ranging from 2 to 7 cm in diameter. The juvenile population of the first (8 November) sample was dominated by scoria (65%) with vesicularities of 50-80%, with the remaining 35% comprising pumice/reticulite with vesicularities of 79-94%. The second (17 November) sample had a lower percentage of reticulite (less than 15% of the total sample) with vesicularities of 89-96%. The scoria in this sample had vesicularities of 41-81%. In general reticulite is characterized by rare large vesicles (up to 5 mm diameter) in a closely packed network of mostly spherical medium-to-small bubbles, with scarce phenocrysts (olivine and plagioclase) and clear microlite-free glass. In contrast the scoria fragments contained abundant phenocrysts and microphenocrysts (olivine and plagioclase) which increase in abundance with increasing density. Low and medium density scoria were typically characterized by a single large (cm-sized) rounded vesicle at their core, surrounded by abundant small vesicles. The high-density scoriae show a decrease in the abundance of small vesicles.

  9. First images of asteroid 243 Ida

    USGS Publications Warehouse

    Belton, M.J.S.; Chapman, C.R.; Veverka, J.; Klaasen, K.P.; Harch, A.; Greeley, R.; Greenberg, R.; Head, J. W.; McEwen, A.; Morrison, D.; Thomas, P.C.; Davies, M.E.; Carr, M.H.; Neukum, G.; Fanale, F.P.; Davis, D.R.; Anger, C.; Gierasch, P.J.; Ingersoll, A.P.; Pilcher, C.B.

    1994-01-01

    The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56 kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations. Ida is interpreted to have a substantial regolith. The high crater density and size-frequency distribution (-3 differential power-law index) indicate a surface in equilibrium with saturated cratering. A minimum model crater age for Ida - and therefore for the Koronis family to which Ida belongs - is estimated at 1 billion years, older than expected.

  10. Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1984-01-01

    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied using a 20-kHz ultrasonic magnetostrictive oscillator in viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hcp-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of the fcc metals. Scanning electron microscopy indicates that the cavitation pits are initially formed at the grain boundaries and precipitates and that the pits that formed at the triple points grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements show that the pits that formed over the grain boundaries deepended faster than other pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t(0) t 2.5 t(0), where t(0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period.

  11. Pits in Polar Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This full-frame image from the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbiter shows faults and pits in Mars' north polar residual cap that have not been previously recognized.

    The faults and depressions between them are similar to features seen on Earth where the crust is being pulled apart. Such tectonic extension must have occurred very recently because the north polar residual cap is very young, as indicated by the paucity of impact craters on its surface. Alternatively, the faults and pits may be caused by collapse due to removal of material beneath the surface. The pits are aligned along the faults, either because material has drained into the subsurface along the faults or because gas has escaped from the subsurface through them.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  12. Scaling Impact-Melt and Crater Dimensions: Implications for the Lunar Cratering Record

    NASA Technical Reports Server (NTRS)

    Cintala , Mark J.; Grieve, Richard A. F.

    1997-01-01

    The consequences of impact on the solid bodies of the solar system are manifest and legion. Although the visible effects on planetary surfaces, such as the Moon's, are the most obvious testimony to the spatial and temporal importance of impacts, less dramatic chemical and petrographic characteristics of materials affected by shock abound. Both the morphologic and petrologic aspects of impact cratering are important in deciphering lunar history, and, ideally, each should complement the other. In practice, however, a gap has persisted in relating large-scale cratering processes to petrologic and geochemical data obtained from lunar samples. While this is due in no small part to the fact that no Apollo mission unambiguously sampled deposits of a large crater, it can also be attributed to the general state of our knowledge of cratering phenomena, particularly those accompanying large events. The most common shock-metamorphosed lunar samples are breccias, but a substantial number are impact-melt rocks. Indeed, numerous workers have called attention to the importance of impact-melt rocks spanning a wide range of ages in the lunar sample collection. Photogeologic studies also have demonstrated the widespread occurrence of impact-melt lithologies in and around lunar craters. Thus, it is clear that impact melting has been a fundamental process operating throughout lunar history, at scales ranging from pits formed on individual regolith grains to the largest impact basins. This contribution examines the potential relationship between impact melting on the Moon and the interior morphologies of large craters and peaking basins. It then examines some of the implications of impact melting at such large scales for lunar-sample provenance and evolution of the lunar crust.

  13. Icy Flow in a Crater

    NASA Image and Video Library

    2017-03-08

    The material on the floor of this crater appears to have flowed like ice, and contains pits that might result from sublimation of subsurface ice. The surface is entirely dust-covered today. There probably was ice here sometime in the past, but could it persist at some depth? This crater is at latitude 26 degrees north, and near-surface ice at this latitude (rather than further toward one of the poles) could be a valuable resource for future human exploration. A future orbiter with a special kind of radar instrument could answer the question of whether or not there is shallow ice at low latitudes on Mars. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 57.5 centimeters (22.6 inches) per pixel (with 2 x 2 binning); objects on the order of 172 centimeters (67.7 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21556

  14. The Geology and Petrography of Crater Lake National Park

    USGS Publications Warehouse

    Diller, Joseph Silas; Patton, Horace Bushnell

    1902-01-01

    Origin of the name Mount Mazama - A great impetus to the spread of information concerning Crater Lake was given by the Mazamas of Portland, Oreg., who held a meeting at the lake in August, 1896, which attracted many visitors. The principal features in the history of the lake had previously been made out, and the Mazamas, recognizing the fact that the great peak which was nearly destroyed in preparing the pit for the lake had no name, gave it the name of their own society. Upon the rim of the lake are a number of small peaks, each having its own designation. The term Mount Mazama refers to the whole rim encircling the lake. It is but a mere remnant of the once lofty peak, the real Mount Mazama, which rose far into the region of eternal snow. To get a basis for reconstructing the original Mount Mazama it is necessary to study in detail the structure and composition of its foundation, now so attractively displayed in the encircling cliffs of Crater Lake.

  15. The Geology of the Marcia Quadrangle of Asteroid 4Vesta: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Denevi, B. W.; Mittlefehldt, D. W.; Mest, S. C.; Schenk, P. M.; Jaumann, R.; DeSanctis, M. C.; Buczkowski, D. L.; Ammannito, E.; Prettyman, T. H.; hide

    2012-01-01

    We used geologic mapping applied to Dawn data as a tool to understand the geologic history of the Marcia quadrangle of Vesta. This region hosts a set of relatively fresh craters and surrounding ejecta field, an unusual dark hill named Arisia Tholus, and a orange (false color) diffuse material surrounding the crater Octavia. Stratigraphically, from oldest to youngest, three increasingly larger impact craters named Minucia, Calpurnia, and Marcia make up a snowmanlike feature, which is surrounded by a zone of dark material interpreted to consist of impact ejecta and possibly impact melts. The floor of Marcia contains a pitted terrain thought to be related to release of volatiles (1). The dark ejecta field has an enhanced signature of H, possibly derived from carbonaceous chondritic material that accumulated in Vesta s crust (2,3). The dark ejecta has a spectrally distinctive behavior with shallow pyroxenes band depths. Outside the ejecta field this quadrangle contains various cratered terrains, with increasing crater abundance moving south to north away from the Rheasilvia basin. Arisia Tholus, originally suggested as an ancient volcano, appears to be an impact-sculpted basin rim fragment with a superposed darkrayed impact crater. There remains no unequivocal evidence of volcanic features on Vesta s surface, likely because basaltic material of the HED meteorite suite demonstrates magmatism ended very early on Vesta (4). Ongoing work includes application of crater statistical techniques to obtain model ages of surface units, and more detailed estimates of the compositional variations among the surface units.

  16. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE PAGES

    Laurence, T. A.; Ly, S.; Shen, N.; ...

    2017-06-22

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  17. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T. A.; Ly, S.; Shen, N.

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  18. Young Surface of Pluto’s Sputnik Planitia Caused by Viscous Relaxation

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Hu, Yongyun; Liu, Yonggang; Lin, Douglas N. C.; Yang, Jun; Showman, Adam P.

    2018-03-01

    One of the most prominent features of Pluto observed by the New Horizon mission is the absence of craters on Sputnik Planitia (SP). Vigorous thermal convection could renew the SP surface with sufficient depth at a timescale of ∼500,000 years. Here we present numerical simulations demonstrating that craters can be removed much more quickly across all of SP by viscous relaxation of nitrogen (N2) ice. The timescale of relaxation is in years if the N2 layer is 4 km thick and the viscosity is as determined in the lab, and will increase to 104 years if the viscosity is 104 times larger than the measured value. For such high viscosity, the thermal convection will have a timescale of greater than 106 years if it happens at all, so that the relaxation timescale is still more than 2 orders of magnitude shorter. The relaxation timescale decreases with increasing thickness and temperature of the ice layer. The existence of pits on SP can be explained by the surface enhancement of viscosity. Such enhancement does not have significant influence on the relaxation timescale of craters with diameters greater than a few kilometers. Therefore, although convection is required to explain the polygon shapes, it may have a lesser role in the absence of craters on SP. The viscous relaxation mechanism can readily explain the nondetection of both craters and polygon shapes on the southeast SP.

  19. Environment modelling in near Earth space: Preliminary LDEF results

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.

    1992-01-01

    Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).

  20. Topographic Analysis of the Asymmetric Ejecta of Zunil Crater, Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Sharpton, V. L.

    2016-12-01

    The 10.1 km diameter crater Zunil (7.7oN, 166.2oE) has many of the attributes of a fresh impact crater on Mars, including pitted material on the crater floor, an extensive field of secondary craters, as well as thermally-distinct crater rays. But unlike most craters of this size and location, Zunil crater displays a striking azimuthal variation in ejecta deposits with both fluidized and ballistic ejecta. Here we investigate the geometric attributes of the crater cavity and rim to try to identify the cause of this ejecta asymmetry, as well as the possible explanation for the formation of the ballistic ejecta. To accomplish this, we have created a digital elevation model (DEM) from stereo Context Camera (CTX) images, using the Ames Stereo Pipeline software. We used CTX frames F06_038250_1877 and G05_020211_1877 to produce a DEM with a nominal spatial resolution of 24 m/pixel, and use this DEM to conduct a detailed morphometric analysis of the crater in order to ascertain the nature of this "lobate-ballistic ejecta dichotomy", as well as derive new information on local target properties and the nature of the impact process itself. Measuring the rim height and radius at one-degree increments of azimuth, we find there are numerous places on the rim crest that are both higher and wider, or lower and narrower, than is typical for Zunil crater. There are places where rim height and radius are both close to average, while in other places both the rim height and radius are larger or smaller than the average. There is also a lack of consistency between the geometry of the crater and the type of ejecta; namely no direct correlation between rim height, crater radius, and ejecta type, but a slight negative correlation between radius and rim height for parts of the crater which possess ballistic ejecta. We find good circumstantial evidence that some of the target rock within which Zunil crater formed may have been dry at the time of impact compared to other craters of this size, latitude and elevation. We speculate that this lack of volatiles most likely arose from the drainage of water to depths greater than the excavation depth of Zunil crater. The asymmetric nature of the ejecta blanket argues strongly against the notion that the Martian atmosphere was partially responsible for ejecta fluidization.

  1. Geology of the Selk crater region on Titan from Cassini VIMS observations

    USGS Publications Warehouse

    Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Barnes, J.W.; Jaumann, R.; Le Mouélic, Stéphane; Sotin, Christophe; Stephan, K.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2010-01-01

    Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ???800. km north-northwest of the Huygens landing site. The crater rim-crest diameter is ???90. km; its floor diameter is ???60. km. A central pit/peak, 20-30. km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15. km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21?? and 122?? east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk's ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest. ?? 2010 Elsevier Inc.

  2. Analysis of the bacterial community in aged and aging pit mud of Chinese Luzhou-flavour liquor by combined PCR-DGGE and quantitative PCR assay.

    PubMed

    Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue

    2015-10-01

    The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P < 0.05). There were some significant differences in the microbial community structure between aged and aging pit mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.

  3. The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P.; Boyce, J.

    2010-01-01

    We are producing a 1:200K geologic map of Tooting crater, Mars. This work has shown that an incredible amount of information can be gleaned from mapping at even larger scales (1:10K 1:25K) using CTX and HiRISE data. We have produced two new science papers (Morris et al., 2010; Mouginis-Mark and Boyce, 2010) from this mapping, and additional science questions continue to arise from our on-going analysis of Tooting crater: 1) What was the interplay of impact melt and volatile-rich sediments that, presumably, were created during the impact? Kieffer and Simonds [1980] predicted that melt would have been destroyed during impacts on Mars because of the volatiles present within the target we seek to understand if this is indeed the case at Tooting crater. We have identified pitted and fractured terrain that formed during crater modification, but the timing of the formation of these materials in different parts of the crater remains to be resolved. Stratigraphic relationships between these units and the central peak may reveal deformation features as well as overlapping relationships. 2) Morris et al. [2010] identified several lobate flows on the inner and outer walls of Tooting crater. It is not yet clear what the physical characteristics of the source areas of these flows really are; e.g., what are the sizes of the source areas, what elevations are they located at relative to the floor of the crater, are they interconnected, and are they on horizontal or tilted surfaces? 3) What were the details of dewatering of the inner wall of Tooting crater (Fig. 1)? We find evidence within Tooting crater of channels carved by water release, and the remobilization of sediment (which is inferred to have formed during the impact event). Sapping can be identified along the crest of unit 8 near the floor of the crater (Fig. 2a, 2b). This unit displays amphitheater-headed canyons that elsewhere on Mars are typically attributed to water leaking from the substrate [Laity and Malin, 1985; Malin and Edgett, 2000].

  4. The Pits

    NASA Technical Reports Server (NTRS)

    2006-01-01

    8 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a pit chain on the lower, northern flank of the giant martian volcano, Arsia Mons. Pits such as these commonly form as a result of collapse of surface materials into a subsurface void, possibly along a fault or into an old lava tube. The layered material, exposed near the top of several of the pits, is shedding house-sized boulders which can be seen resting on the sloping sidewalls and floors of many of the pits.

    Location near: 6.7oS, 120.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  5. Evidence for Recent Extension and Volcanism inside the Southern Margin of Mare Frigoris

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.; Harris, R. Scott

    2014-11-01

    We report the identification of possible recent volcanic activity inside the southern margin of Mare Frigoris. Evidence includes two elliptical constructs with associated dark flows found at 56.6° N, - 19.7° W, north of the La Condamine J impact crater. They were discovered on high resolution (0.5 m/pixel) LROC WAC and NAC imagery (e.g., M188379739R and M142393589L) by the first author while performing a systematic geologic overview of the area.The constructs occur along a 3.2 km lineament trending southwest to northwest. The southwestern construct is the largest, measuring approximately 1.4 km in diameter by 65 m in height while the northeastern structure measures 1.2 km wide by 40 m high. The summits appear to be concave and contain well-defined pits 190 m and 120 m in diameter, respectively, each encircled by a deposit of raised material. Distinct dark deposits, exhibiting flow lobes, emanate from the pits. In addition, rubbly, flow-like dark deposits are found sporadically along the flanks of each feature.We interpret these structures as low profile steep-sided volcanic domes. Hawke et al. (2014) discussed volcanic constructs in the eastern part of Mare Frigoris; however, the features described in this study appear to be significantly younger. The domes may represent upwelling along a localized rift. Continued extension on the flanks appears to have released discrete dark flows. Well-defined flows crossing the floors of summit pits appear to have flowed uphill. We suggest that the evacuation of the magma chambers beneath these flows caused subsidence, forming the pits and giving the illusion that the lava flowed up and over the rims. Although the age of these constructs and flows is unknown, the paucity of impact craters suggests that they are relatively young. These could represent very recent eruptions of evolved magma on the Moon, similar to those reported by Jolliff et al. (2011). References: B. R. Hawke et al., 2014, LPSC, 45, 1318. Jolliff et al., 2012, Nature Geoscience, 4, 566-571.

  6. Very long period conduit oscillations induced by rockfalls at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2013-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in 2010 and continuing to the present time is characterized by transient outgassing bursts accompanied by very long period (VLP) seismic signals triggered by rockfalls from the vent walls impacting a lava lake in a pit within the Halemaumau pit crater. We use raw data recorded with an 11-station broadband network to model the source mechanism of signals accompanying two large rockfalls on 29 August 2012 and two smaller average rockfalls obtained by stacking over all events with similar waveforms to improve the signal-to-noise ratio. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–1000 s. The VLP signals associated with the rockfalls originate in a source region ∼1 km below the eastern perimeter of the Halemaumau pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks including an east striking crack (dike) dipping 80° to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each rockfall is marked by a similar step-like inflation trailed by decaying oscillations of the volumetric source, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes induced by the rock mass impacting the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes: rockfall volume (200–4500 m3), length of magma column (120–210 m), diameter of pipe connecting the Halemaumau pit crater to the subjacent dike system (6 m), average thickness of the two underlying dikes (3–6 m), and effective magma viscosity (30–210 Pa s). Most rockfalls occur during episodes of sustained deflation of the Kilauea summit. The mass loss rate in the shallow magmatic system is estimated to be 1400–15,000 kg s−1 based on measurements of the temporal variation of VLP period in the two large rockfalls that occurred on 29 August 2012.

  7. Did Martian Meteorites Come From These Sources?

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2007-01-01

    Large rayed craters on Mars, not immediately obvious in visible light, have been identified in thermal infrared data obtained from the Thermal Emission Imaging System (THEMIS) onboard Mars Odyssey. Livio Tornabene (previously at the University of Tennessee, Knoxville and now at the University of Arizona, Tucson) and colleagues have mapped rayed craters primarily within young (Amazonian) volcanic plains in or near Elysium Planitia. They found that rays consist of numerous chains of secondary craters, their overlapping ejecta, and possibly primary ejecta from the source crater. Their work also suggests rayed craters may have formed preferentially in volatile-rich targets by oblique impacts. The physical details of the rayed craters and the target surfaces combined with current models of Martian meteorite delivery and cosmochemical analyses of Martian meteorites lead Tornabene and coauthors to conclude that these large rayed craters are plausible source regions for Martian meteorites.

  8. Field guide to summit area and upper east rift zone, Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The field trip is divided into two sections: (1) Crater Rim Road; and (2) Chain of Craters Road. Most bibliographic references are omitted from the text, but a selected list of references to recent Hawaiian volcanic activity and to special studies is included.

  9. Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1985-01-01

    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied. The erosion experiments were conducted with a 20-kHz ultrasonic magnetostrictive oscillator in a viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hop-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of those of the fcc materials. Studies with scanning electron microscopy indicated that the cavitation pits were initially formed at the grain boundaries and precipitates and that the pits formed at the junction of grain boundaries grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements showed that the pits that formed over the grain boundaries deepened faster than pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t (sub 0) t 2.5 t (sub 0), where t (sub 0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period.

  10. Unique crater morphologies on Vesta, and the context of a deep regolith and intermediate gravity

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Nathues, A.; Vincent, J. B.; Sierks, H.

    2012-04-01

    The Dawn spacecraft orbiting the minor planet Vesta has revealed details of the surface properties on a key object for the understanding of the evolution processes in an early epoch of our planetary system. In order to understand these phenomena the three dimensional structure of the surface must be deduced from identifiable processes known to be present elsewhere in the planetary system. Therefore the morphology of impact craters and their geological context (Keil 2002, Clark et al. 2002) plays an important role. They expose material at significant depth in the surface layers, they show a chronologic sequence of rearrangement of the original uppermost layer of Vesta, and their apparent mechanical properties fill the gap between topographic roughness and micro-structural photometric roughness and porosity. Many impact craters on Vesta show significant differences to impact craters on the Moon and Mercury, where their morphology is basically dominated by a rigid surface, and to those on volatile-rich surfaces like on Mars or the icy satellites of the outer planets. The closest match with Vestan crater morphologies is that with those on Lutetia (Vincent et al. 2012). This similarity can be seen by signs of granular fluidity in land-slide phenomena. A prominent and unique property of craters on Vesta is the occurrence of features showing singular concentric central pits, which so far have been associated with liquid materials: either molten rock on Mercury or the Moon, or the liquefaction of ice on Mars, Ganymede, and Callisto (Schultz, 1988). Selected from a collection of 200 sample features in the diameter range 1 to 30 km, some prototypes of this type are presented as indicators of such a porous regolith. The prototypes include simple hopper-shaped to pan-shaped features (the basic structure), but also a subclass with approximately circular symmetric multiple-depression structure (features typically larger than 10 km), and a subclass with unusual halo shapes not observed in regular impact craters. Main criteria of establishment of a causal link between the outer halo and the inner depression are the unique coincidence of their morphologies, the consistency from an 'evolutionary' point of view, and a statistically significant excess with respect to the expected number of chance configurations. These criteria have been tested and confirmed. The variety of features with the basic structure is consistent with more than a single kind of process. Several active and passive modes of their generation could be identified by the observational evidence, e.g. the collapse of a porous area shaken by the seismic wave from an impact into a regolith layer with high porosity. The required geophysical context is the presence of a sufficiently deep layer of regolith, a suitable distribution of size and shapes of its constituents, a deposit under low velocity and low pressure conditions, and a specific seismic history. These conditions are met by the giant impacts on Vesta, the 'intermediate' gravity (escape velocity sufficient for retention of ejecta but small for complete structural destruction by re-impactors), and the environment of craters of intermediate diameter (in the range of 10 km). Then significantly deep layers with similar properties can be created with the intact porosity of a fractal aggregate (Kaye, 1989). Diagnostic data are the histograms of the local distribution, the determination of surface roughness on all scales. Test areas on opposite sides of Vesta with areas of 400 km2 show differences in the abundance of pit craters to normal ones by a factor of two. Locally the fraction of pit craters exceeds 50% of all, whereas elsewhere they are obviously rare. Since under-abundance is found in the low albedo hemisphere of Vesta, a correlation with composition is indicated. The existence of the necessary conditions for the formation of a porous regolith has been tested by calculation of the trajectories of crater ejecta on the rapidly rotating object Vesta. Results show that on the trailing side of the original impact the opportunity for very slow re-impacts (less than a few meters per second) is significantly enhanced. Also the traveling times for the seismic wave and the arrival of ejecta have been compared, resulting in consistent details of the distance distribution of the related compactions. Further evidence comes from the analysis of brightness profiles of the surface which demonstrates local smoothing. The distribution of diameter ratio of halo to central depression matches that found for the Iovian satellite Callisto, thus hinting to the granular fluidity of the regolith on Vesta. Another unique type of interacting craters on Vesta is shown, which is related to different stages of compaction of the regolith. Concluding, it is shown that for individual features strong indications are found for a common origin of a crater and a surrounding halo by identifiable processes. A completely equivalent environment of impacts has been created by Lohse et al (2004) in laboratory, resulting in strikingly similar features. Therefore the paradigms of crater erosion and saturation have to be expanded to porous collapses. Age determinations by crater counts are affected. Although it is obvious that also some of these features were created by chance, even then the outcome in the sense of a compaction process can be studied.

  11. The geology of Pluto and Charon through the eyes of New Horizons

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; McKinnon, William B.; Spencer, John R.; Howard, Alan D.; Schenk, Paul M.; Beyer, Ross A.; Nimmo, Francis; Singer, Kelsi N.; Umurhan, Orkan M.; White, Oliver L.; Stern, S. Alan; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Cruikshank, Dale P.; Grundy, Will M.; Linscott, Ivan R.; Reitsema, Harold J.; Reuter, Dennis C.; Showalter, Mark R.; Bray, Veronica J.; Chavez, Carrie L.; Howett, Carly J. A.; Lauer, Tod R.; Lisse, Carey M.; Parker, Alex Harrison; Porter, S. B.; Robbins, Stuart J.; Runyon, Kirby; Stryk, Ted; Throop, Henry B.; Tsang, Constantine C. C.; Verbiscer, Anne J.; Zangari, Amanda M.; Chaikin, Andrew L.; Wilhelms, Don E.; Bagenal, F.; Gladstone, G. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Bhaskaran, S.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Hinson, D. P.; Holdridge, M. E.; Horanyi, M.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Protopapa, S.; Redfern, J.; Roberts, J. H.; Rogers, G.; Rose, D.; Retherford, K. D.; Ryschkewitsch, M. G.; Schindhelm, E.; Sepan, B.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Strobel, D. F.; Summers, M. E.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Tyler, G. L.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zirnstein, E.

    2016-03-01

    NASA’s New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto’s encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

  12. The geology of Pluto and Charon through the eyes of New Horizons.

    PubMed

    Moore, Jeffrey M; McKinnon, William B; Spencer, John R; Howard, Alan D; Schenk, Paul M; Beyer, Ross A; Nimmo, Francis; Singer, Kelsi N; Umurhan, Orkan M; White, Oliver L; Stern, S Alan; Ennico, Kimberly; Olkin, Cathy B; Weaver, Harold A; Young, Leslie A; Binzel, Richard P; Buie, Marc W; Buratti, Bonnie J; Cheng, Andrew F; Cruikshank, Dale P; Grundy, Will M; Linscott, Ivan R; Reitsema, Harold J; Reuter, Dennis C; Showalter, Mark R; Bray, Veronica J; Chavez, Carrie L; Howett, Carly J A; Lauer, Tod R; Lisse, Carey M; Parker, Alex Harrison; Porter, S B; Robbins, Stuart J; Runyon, Kirby; Stryk, Ted; Throop, Henry B; Tsang, Constantine C C; Verbiscer, Anne J; Zangari, Amanda M; Chaikin, Andrew L; Wilhelms, Don E

    2016-03-18

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt. Copyright © 2016, American Association for the Advancement of Science.

  13. The Geology of Pluto and Charon Through the Eyes of New Horizons

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; McKinnon, William B.; Spencer, John R.; Howard, Alan D.; Schenk, Paul M.; Beyer, Ross A.; Nimmo, Francis; Singer, Kelsi N.; Umurhan, Orkan M.; White, Oliver L.; hide

    2016-01-01

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than approximately 10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to approximately 4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

  14. Mini-RF and LROC observations of mare crater layering relationships

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T. S.; Bussey, D. B. J.

    2016-07-01

    The lunar maria cover approximately 17% of the Moon's surface. Discerning discrete subsurface layers in the mare provides some constraints on thickness and volume estimates of mare volcanism. Multiple types of data and measurement techniques allow probing the subsurface and provide insights into these layers, including detailed examination of impact craters, mare pits and sinuous rilles, and radar sounders. Unfortunately, radar sounding includes many uncertainties about the material properties of the lunar surface that may influence estimates of layer depth and thickness. Because they distribute material from depth onto the surface, detailed examination of impact ejecta blankets provides a reliable way to examine deeper material using orbital instruments such as cameras, spectrometers, or imaging radars. Here, we utilize Miniature Radio Frequency (Mini-RF) data to investigate the scattering characteristics of ejecta blankets of young lunar craters. We use Circular Polarization Ratio (CPR) information from twenty-two young, fresh lunar craters to examine how the scattering behavior changes as a function of radius from the crater rim. Observations across a range of crater size and relative ages exhibit significant diversity within mare regions. Five of the examined craters exhibit profiles with no shelf of constant CPR near the crater rim. Comparing these CPR profiles with LROC imagery shows that the magnitude of the CPR may be an indication of crater degradation state; this may manifest differently at radar compared to optical wavelengths. Comparisons of radar and optical data also suggest relationships between subsurface stratigraphy and structure in the mare and the block size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. These observations suggest that surface CPR measurements may be used to identify near-surface layering. Here, we use ejected material to probe the subsurface, allowing observations of near-surface stratigraphy that may be otherwise hidden by layers higher from remote observations.

  15. Crater Chains

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  16. Evidence for recent groundwater seepage and surface runoff on Mars.

    PubMed

    Malin, M C; Edgett, K S

    2000-06-30

    Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.

  17. Seismic source dynamics of gas-piston activity at Kı¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip

    2015-04-01

    Since 2008, eruptive activity at the summit of Kı¯lauea Volcano, Hawai`i has been confined to the new Overlook pit crater within the Halema`uma`u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20-25 August 2011 during a gentle inflation of the Kı¯lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1-10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ˜1 km below the eastern perimeter of the Halema`uma`u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10-50 m), foam cell diameter (0.04-0.10 m), and gas-injection velocity (0.01-0.06 m s-1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema`uma`u pit crater to the subjacent dike system. The height of the magma column is estimated at ˜104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ˜23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ˜1.2-2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.

  18. Seismic source dynamics of gas-piston activity at Kı̄lauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2015-01-01

    Since 2008, eruptive activity at the summit of Kı̄lauea Volcano, Hawai‘i has been confined to the new Overlook pit crater within the Halema‘uma‘u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20–25 August 2011 during a gentle inflation of the Kı̄lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ∼1 km below the eastern perimeter of the Halema‘uma‘u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10–50 m), foam cell diameter (0.04–0.10 m), and gas-injection velocity (0.01–0.06 m s−1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema‘uma‘u pit crater to the subjacent dike system. The height of the magma column is estimated at ∼104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ∼23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ∼1.2–2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.

  19. Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    PubMed Central

    Liu, Menglong; Wang, Kai; Lissenden, Cliff J.; Wang, Qiang; Zhang, Qingming; Long, Renrong; Su, Zhongqing; Cui, Fangsen

    2017-01-01

    Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence. PMID:28772908

  20. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for fiscal year 2013 (October 2012 - September 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-01-31

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches.

  1. Manual on the Fatigue of Structures. II. Causes and Prevention of Damage. 7. Mechanical Surface Damage,

    DTIC Science & Technology

    1981-06-01

    observed in the fatigue tests on bearings278. Tichler and Scott27’ had noted a correlation between cavitation erosion and rolling contact fatigue resistance...in the case of ball bearing steels. In the cavitation tests the pits appear before the deep craters. Tichler et al.280 investigated chromium steels...during the first period and the true tensile strength o^ . In a subsequent paper when studying 6 chromium steels and 6 Cu-Ni alloys. Tichler et al.281

  2. Method to repair localized amplitude defects in a EUV lithography mask blank

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Chapman, Henry N.

    2005-11-22

    A method and apparatus are provided for the repair of an amplitude defect in a multilayer coating. A significant number of layers underneath the amplitude defect are undamaged. The repair technique restores the local reflectivity of the coating by physically removing the defect and leaving a wide, shallow crater that exposes the underlying intact layers. The particle, pit or scratch is first removed the remaining damaged region is etched away without disturbing the intact underlying layers.

  3. Terrestrial Analogs for Surface Properties Associated with Impact Cratering on the Moon - Self-secondary Impact Features at Kings Bowl, Idaho

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M. A.; Zanetti, M.; Neish, C.; Kukko, A.; Fan, K.; Heldmann, J.; Hughes, S. S.

    2017-12-01

    The Kings Bowl (KB) eruptive fissure and lava field, located in the southern end of Craters of the Moon National Monument, Idaho, is an ideal location for planetary analogue field studies of surface properties related to volcanic and impact processes. Here we look at possible impact features present in the KB lava field near the main vent that resulted in squeeze-ups of molten lava from beneath a semi-solid lava lake crust. These may have been caused by the ejection of blocks during the phreatic eruption that formed the Kings Bowl pit, and their subsequent impact into a partially solidified lava pond. We compare and contrast these features with analogous self-secondary impact features, such as irregular, rimless secondary craters ("splash craters") observed in lunar impact melt deposits, to better understand how self-secondary impacts determine the surface properties of volcanic and impact crater terrains. We do this by analyzing field measurements of these features, as well as high-resolution DEM data collected through the Kinematic LiDAR System (KLS), both of which give us feature dimensions and distributions. We then compare these data with self-secondary impact features on the Moon and related surface roughness constrained through Lunar Reconnaissance Orbiter observations (Mini-RF and LROC NACs). Possible self-secondary impact features can be found in association with many lunar impact craters. These are formed when ballistic ejecta from the crater falls onto the ejecta blanket and melt surrounding the newly formed crater. Self-secondary impact features involving impact melt deposits are particularly useful to study because the visibly smooth melt texture serves to highlight the impact points in spacecraft imagery. The unusual morphology of some of these features imply that they formed when the melt had not yet completely solidified, strongly suggesting a source of impactors from the primary crater itself. We will also discuss ongoing efforts to integrate field and LiDAR data collected at KB with virtual reality environments as another technique for advancing exploration efforts through analogue field studies of impact features.

  4. Lunar Floor-Fractured Craters: Classification, Distribution and Implications for Magmatism and Shallow Crustal Structure

    NASA Technical Reports Server (NTRS)

    Jozwiak, L. M.; Head, J. W.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    Floor-fractured craters (FFCs) are a class of lunar craters defined by their distinctly shallow, often plate-like floors, and combinations of radial, con-centric, and polygonal floor-fractures; a variety of other interior features are often observed, such as moats, ridges, small dark-haloed pits, and patches of mare material. They were first classified by Schultz [1] , who recognized eight overall types of floor-fractured crater. These eight subtypes have widely differing appearances, a factor that could provide insight into formation mechanisms (different manifestations of the same mechanism, or indicators of varying formation mechanisms). Two formation mechanisms for FFCs were initially proposed: 1) magmatic intrusion [1], in which magma rising toward the surface in dikes encountered low-density breccia lenses beneath crater floors and spread laterally to form sills, raising and fracturing the crater floor. 2) viscous relaxation [2], in which the properties of the crust permitted viscous flow in the vicinity of the crater, causing long-wavelength relaxation of the topography and uplift and fracturing of the crater floor. Critical to distinguishing between these two end-member hypotheses and identifying others is a quantitative assessment of the topography of FFCs and knowledge of their regional and local settings. The purpose of this study is to use newly available Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) altimeter and Lunar Reconnaissance Orbiter Camera (LROC) image data to provide an updated global catalog of the locations, classes, morphometric and morphologic characteristics of all lunar floor-fractured craters. We use the excellent 8-class system initially described in Schultz [1] as a starting point for classification and the enhanced LOLA/LROC data sets to examine and categorize all FFCs; we found evidence for a new FFC class, discernably different from the previously existing types. Our approach, and the global categorization of all FFCs, permits the spatial distribution of each FFC-subtype to be plotted and assessed allowing for further investigation into FFC formation mechanisms. Upon completion, the data set will be made available on our web site at http://www.planetary.brown.edu/html_pages/data.htm.

  5. http://www.esa.int/esaSC/Pr_11_2004_s_en.html

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Phoebe hi-res Size hi-res: 2280 kb Credits: NASA/JPL/Space Science Institute Peering at Phoebe Shown here is a mosaic of seven of the sharpest, highest resolution images taken of Phoebe during the Cassini-Huygens close fly-by of the tiny moon. The image scales range from 27 to 13 metres per pixel. Smaller and smaller craters can be detected as resolution increases from left to right. The number of blocks, or bumps on the surface also increases to the right. The Sun is coming from the right, so the bright-dark pattern is reversed between blocks and small craters. Grooves or chains of pits are seen on the left portion of the mosaic, which may mark fractures or faults induced by large impact events. Many of the small craters have bright rays, similar to recent craters on the Moon. There are also bright streaks on steep slopes, perhaps where loose material slid downhill during the seismic shaking of impact events. There are also places where especially dark materials are present, perhaps rich in carbon compounds. Phoebe hi-res Size hi-res: 265 kb Credits: NASA/JPL/Space Science Institute Dark desolation On 11 June 2004, during its closest approach to Phoebe, Cassini-Huygens obtained this extremely high-resolution view of a dark, desolate landscape. Regions of different reflectivity are clearly visible on what appears to be a gently rolling surface. Notable are several bright-rayed impact craters, lots of small craters with bright-coloured floors and light-coloured streaks across the landscape. Note also the several sharply defined craters, probably fairly young features, near the upper left corner. This high-resolution image was obtained with an angle of 30.7 degrees between the Sun, Phoebe and spacecraft and from a distance of approximately 2365 kilometres. The image scale is approximately 14 metres per pixel. The image was high-pass filtered to bring out small-scale features and then enhanced in contrast. Phoebe hi-res Size hi-res: 311 kb Credits: NASA/JPL/Space Science Institute A view to the south A mosaic of two images of Saturn's moon Phoebe taken shortly after Cassini's fly-by on 11 June 2004, gives a close-up view of a region near its South Pole. The view, taken about 13 000 kilometres from Phoebe, is about 120 kilometres across and shows a region battered by crater impacts. Brighter material, likely to be ice, is exposed by small craters and streams down the slopes of large craters. The skyline is a combination of Phoebe's roundish shape and the formation of impact craters. Walls of some of the larger craters are more than four kilometres high. The image scale is 80 metres per pixel. Phoebe hi-res Size hi-res: 136 kb Credits: NASA/JPL/Space Science Institute A skyline view Images like this one, showing bright 'wispy' streaks thought to be ice revealed by subsidence of crater walls, are leading to the view that Phoebe is an icy-rich body overlain with a thin layer of dark material. Obvious downslope motion of material occurring along the walls of the major craters in this image is the cause for the bright streaks, which are over-exposed here. Significant slumping has occurred along the crater wall at top left. The slumping of material might have been caused by a small projectile punching into the steep slope of the wall of a pre-existing larger crater. Another possibility is that the material collapsed when triggered by another impact elsewhere on Phoebe. Note that the bright, exposed areas of ice are not very uniform along the wall. Small craters are exposing bright material on the ‘hummocky’ floor of the larger crater. Elsewhere on this image, there are local areas of outcropping along the larger crater wall where denser, more resistant material is located. Whether these outcrops are large blocks being exhumed by landslides or actual 'bedrock' is not currently understood. The crater on the left, with most of the bright streamers, is about 45 kilometres in diameter, front to back as viewed. The larger depression in which the crater sits is on the order of 100 kilometres across. The slopes from the rim down to the ‘hummocky’ floor are approximately 20 kilometres long; many of the bright streamers on the crater wall are on the order of 10 kilometres long. A future project for Cassini image scientists will be to work out the chronology of slumping events in this scene. This image was obtained with an angle of 78 degrees between the Sun, Phoebe and the spacecraft, from a distance of 11 918 kilometres. The image scale is approximately 70 metres per pixel. No enhancement was performed on this image. On Friday 11 June, at 22:56 CET, the Cassini-Huygens spacecraft flew by Saturn's outermost moon Phoebe, coming within approximately 2070 kilometres of the satellite's surface. All eleven on-board instruments scheduled to be active at that time worked flawlessly and acquired data. The first high-resolution images show a scarred surface, covered with craters of all sizes and large variation of brightness across the surface. Phoebe is a peculiar moon amongst the 31 known satellites orbiting Saturn. Most of Saturn's moons are bright but Phoebe is very dark and reflects only 6% of the Sun's light. Another difference is that Phoebe revolves around the planet on a rather elongated orbit and in a direction opposite to that of the other large moons (a motion known as 'retrograde' orbit). All these hints suggested that Phoebe, rather than forming together with Saturn, was captured at a later stage. Scientists, however, do not know whether Phoebe was originally an asteroid or an object coming from the 'Kuiper Belt'. The stunning images obtained by Cassini's high-resolution camera now seem to indicate that it contains ice-rich material and is covered by a thin layer of dark material, probably 300-500 metres thick. Scientists base this hypothesis on the observation of bright streaks in the rims of the largest craters, bright rays radiating from smaller craters, grooves running continuously across the surface of the moon and, most importantly, the presence of layers of dark material at the top of crater walls. "The imaging team is in hot debate at the moment on the interpretations of our findings," said Dr Carolyn Porco, Cassini imaging team leader at the Space Science Institute in Boulder, USA. "Based on our images, some of us are leaning towards the view that has been promoted recently, that Phoebe is probably ice-rich and may be an object originating in the outer solar system, more related to comets and Kuiper Belt objects than to asteroids." The high-resolution images of Phoebe show a world of dramatic landforms, with landslides and linear structures such as grooves, ridges and chains of pits. Craters are ubiquitous, with many smaller than one kilometre. "This means, besides the big ones, lots of projectiles smaller than 100 metres must have hit Phoebe," said Prof. Gerhard Neukum, Freie Universitaet Berlin, Germany, and a member of the imaging team. Whether these projectiles came from outside or within the Saturn system is debatable. There is a suspicion that Phoebe, the largest of Saturn's outer moons, might be parent to the other, much smaller retrograde outer moons that orbit Saturn. They could have resulted from the impact ejecta that formed the many craters on Phoebe. Besides these stunning images, the instruments on board Cassini collected a wealth of other data, which will allow scientists to study the surface structures, determine the mass and composition of Phoebe and create a global map of it. "If these additional data confirm that Phoebe is mostly ice, covered by layers of dust, this may well mean that we are looking at a 'leftover' from the formation of the Solar System about 4600 million years ago," said Dr Jean-Pierre Lebreton, ESA Huygens Project Scientist. Phoebe might indeed be an icy wanderer from the distant outer reaches of the Solar System, which, like a comet, was dislodged from the Kuiper Belt and captured by Saturn when the planet was forming. Whilst studying the nature of Phoebe may give scientists clues on the origin of the building blocks of the Solar System, more data are needed to reconstruct the history of our own neighbourhood in space. With that aim, ESA's Rosetta mission is on its way to study one of these primitive objects, Comet 67P/Churyumov-Gerasimenko, from close quarters for over a year and land a probe on it. The fly-by of Phoebe on 11 June was the only one that Cassini-Huygens will perform with this mysterious moon. The mission will now take the spacecraft to its closest approach to Saturn on 1 July, when it will enter into orbit around the planet. From there, it will conduct 76 orbits of Saturn over four years and execute 52 close encounters with seven other Saturnian moons. Of these, 45 will be with the largest and most interesting one, Titan. On 25 December, Cassini will release the Huygens probe, which will descend through Titan's thick atmosphere to investigate its composition and complex organic chemistry.

  6. Hanami Planum on Ceres

    NASA Image and Video Library

    2018-03-22

    This image from NASA's Dawn spacecraft showing the northern part of Hanami Planum on Ceres honors the Japanese cherry blossom festival, or "Hanami," which is a long-standing Japanese tradition of welcoming spring. Hanami Planum is the third largest geological feature on Ceres, after Vendimia Planitia and the Samhain Catenae. It extends over 345 miles (555 kilometers). This image shows familiar features, such as Occator Crater, characterized both by bright material inside the crater and dark ejecta material outside. Several parallel linear features, called Junina Catenae, can be seen departing from Occator and extending toward the top of the image. These catenae are chains of small craters formed by the impact and scouring of material ejected when large craters are formed. Scientists were able to relate these crater chains to Urvara and Yalode. Even though these are located in the southern hemisphere, some of their ejecta could reach the northern hemisphere, thanks to Ceres' fast rotation and small size. This image was obtained by Dawn on June 15, 2015. The spacecraft was then in its survey orbit (2,700 miles, or 4,400 kilometers high), when the footprint of Dawns framing camera on Ceres surface was about 260 miles (420 kilometers). The resolution is 1,400 feet (410 meters) per pixel. The central coordinates of the picture are 14 degrees north latitude, 213 degrees east in longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21921

  7. Impact damage to dinocysts from the Late Eocene Chesapeake Bay event

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.

    2003-01-01

    The Chesapeake Bay impact structure, formed by a comet or meteorite that struck the Virginia continental shelf about 35.5 million years ago, is the focus of an extensive coring project by the U.S. Geological Survey and its cooperators. Organic-walled dinocysts recovered from impact-generated deposits in a deep core inside the 85-90 km-wide crater include welded organic clumps and fused, partially melted and bubbled dinocysts unlike any previously observed. Other observed damage to dinocysts consists of breakage, pitting, and folding in various combinations. The entire marine Cretaceous, Paleocene, and Eocene section that was once present at the site has been excavated and redeposited under extreme conditions that include shock, heat, collapse, tsunamis, and airfall. The preserved dinocysts reflect these conditions and, as products of a known impact, may serve as guides for recognizing impact-related deposits elsewhere. Features that are not unique to impacts, such as breakage and folding, may offer new insights into crater-history studies in general, and to the history of the Chesapeake Bay impact structure in particular. Impact-damaged dinocysts also are found sporadically in post-impact deposits and add to the story of continuing erosion and faulting of crater material.

  8. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with diameters of up to 20 cm, probably abraded by fluidization within the vent, that were laterally transported for hundreds of meters through water. In spite of the great depth, both edifices feature dense but highly fragmented volcanic deposits with an unexpected combination of large clast sizes and wide clast dispersal. This suggests an energetic eruptive environment, which may have similarities with that seen in pyroclastic eruptions on land.

  9. Pi in the Sky

    NASA Astrophysics Data System (ADS)

    O'Brien, W. P.

    2008-12-01

    Pi In The Sky (PITS) consists of a loose collection of virtual globe (VG) activities with a slight mathematical twist, wherein students search for interesting circular structures on the surface of Earth (Moon or other planets) and measure the circumference C and diameter D of each structure, using the built-in VG measure tool, in order to determine experimental values of pi from the C/D ratios. Examples of man-made circular structures visible using VG browsers include Fermilab and l"Arc de Triomphe roundabout; quasi-circular natural structures include certain volcano calderas and impact craters. Since a circle is but a special case of an ellipse, a natural extension of the activity involves making similar measurements of perimeter P, semi-major axis a, and semi-minor axis b of a visible elliptical structure (such as one of the thousands of elliptical Carolina bays, enigmatic depressions on the Atlantic Coast of North America) and solving for pi using Ramanujan's first approximation for the dependence of the perimeter of an ellipse on a and b. PITS exercises can be adapted to a wide range of student ages and teaching goals. For instance, K-6 students could measure C and D of the huge irrigation circles near Circle, Texas, to discover pi in the same way they might infer pi from measurements of coffee-can lids in math class. Middle school and high school students could move beyond man-made circles to consider the near-circularity of certain volcano calderas and impact craters in earth science units, make measurements for Olympus Mons on Mars or Crater Kepler on the moon in astronomy units, or search for circularity among Arctic thermokarst lakes as an introduction to climate change in tundra environments in environmental science units; such studies might ignite student curiosity about planetary processes. High school students of analytic geometry could examine several elliptical Carolina bays and calculate not only values of pi (as noted above) but also determine the range of eccentricities exhibited by these structures; through these exercises, ellipses acquire significance beyond conic sections and planetary orbits. At whatever level, PITS exercises function as easy bait, enticing students to learn to operate VG software and make observations and quantitative measurements of interesting Earth features. On a deeper level, these exercises provide a context and tool enabling VG explorers to fly above Earth's surface, to see this surface megascopically as it heretofore has never been seen, and to play in the metaphorical geometric intertidal zone that resides between shallow, eyes-on-the-ground, normal perception and the deep-blue depths of the cosmos.

  10. Arsia Mons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 20 May 2002) The Science This THEMIS visible image shows a portion of the summit region of Arsia Mons, one of the four giant volcanoes in the Tharsis region of Mars. This volcano stands over 20 km above the surrounding plains, and is approximately 450 km in diameter at its base. A large volcanic crater known as a 'caldera' is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera alone is over 120 km in diameter, making it larger than many volcanoes on Earth. The THEMIS image shows a portion of the eastern wall of the caldera, revealing the steep walls and linear features associated with the collapse that formed the caldera. The ridge with linear faults that extends from the lower left toward the center right was formed at some stage during a collapse event. Several circular pits are present, and several of these pits appear to have coalesced into a long, unusual trough. These pits and troughs likely formed when lava was removed from beneath them and the overlying surface collapsed. Numerous lava flows can be seen on the floor of the caldera. Many of these flows occurred after the collapse that formed the caldera crater, and have buried many of the pre-existing features. The faulted, pitted ridge appears to have been partially flooded by these lava flows, indicating that the caldera of Arsia Mons has undergone a complex history of numerous events. The wispy bright features throughout the image are water-ice clouds that commonly form over the volcano summits during the early northern spring when this image was acquired. The Story When the Martian volcano Arsia Mons exploded long ago, it sent lava spewing out everywhere. With the removal of this molten material, the volcano then collapsed at its opening (the top of its cone) to form a sunken volcanic crater known as a caldera. You can see it more fully in the context image to the right. The eastern wall of the caldera is the pale white strip running diagonally across the bottom third of the image. By looking at this steep wall and the streaks running down its sides, you can imagine how all of the remaining material rushed down into the void left by expelled magma and ash to form the caldera depression. Numerous lava flows that occurred after the collapse texturize the floor of the caldera, and have buried many of its pre-existing features. These later lava flows might be a little harder to see, because wispy bright features blur this image slightly, giving it an almost marbled, hazy appearance. They are water-ice clouds that typically form over the volcano summits during the early northern spring. What they don't obscure very much is the raised ridge created during the collapse of the volcano's cone (running slightly north of the caldera wall along the same diagonal). Draped across the smoother caldera floor, this pitted ridge has been partially flooded by lava flows, indicating quite a complex history of geologic events has taken place here. Faults cut through the ridge, contributing to its streamer-like appearance. And, in a process somewhat like the formation of the caldera itself, all of the round and oblong pits and troughs in the ridge formed when lava was removed from underneath these areas, and the overlying surface then collapsed. Arsia Mons is one of the four giant Martian volcanoes found in a region called Tharsis. Arsia Mons is about 270 miles wide in diameter at its base, and rises 12 miles high above the surrounding plains. The caldera at its summit is more than 72 miles wide, making it larger than volcanoes on Earth. By comparison, the largest volcano on Earth is Mauna Loa on the island of Hawaii, which is about 6.3 miles high and 75 miles wide in diameter at its base.

  11. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls.

    PubMed

    Renaville, R; Gengler, N; Vrech, E; Prandi, A; Massart, S; Corradini, C; Bertozzi, C; Mortiaux, F; Burny, A; Portetelle, D

    1997-12-01

    The growth hormone factor-1/pituitary-specific transcription factor Pit-1 is responsible for the expression of growth hormone in mammals. Mutations in Pit-1 have been found in growth hormone disorders of mice and humans. We studied the eventual association between Pit-1 polymorphism using the HinfI enzyme and the milk yield and conformation traits of 89 Italian Holstein-Friesian bulls. A strategy employing polymerase chain reaction was used to amplify a 451-bp fragment from semen DNA. Digestion of polymerase chain reaction products with HinfI revealed two alleles: allele A was not digested (451-bp fragment), and allele B was cut at one restriction site, generating two fragments of 244 and 207 bp. Three patterns were observed; frequencies were 2.2, 31.5, and 66.3% for AA, AB, and BB, respectively. Fixed and mixed linear models were fitted on daughter yield deviations for milk yields and on deregressed proofs for conformation traits. Predictions were weighted using the inverse of the estimated variance of records. The models used contained mean and gene substitution effects for Pit-1 A allele as fixed effects and random sire effect for the mixed model. The A allele was found to be superior for milk and protein yields, inferior for fat percentage, and superior for body depth, angularity, and rear leg set, which is difficult to explain. A canonical transformation revealed that Pit-1 had three actions, one linked to milk yield traits and angularity, a second linked to body depth and rear leg set, and a third linked to lower fat yields and to higher angularity.

  12. A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features

    USGS Publications Warehouse

    Buratti, B.J.; Sotin, Christophe; Lawrence, K.; Brown, R.H.; Le, Mouelic S.; Soderblom, J.M.; Barnes, J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.

    2012-01-01

    Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4?? N and 341??W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120??10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mou??lic et al, 2008) and Selk (Soderblom et al, 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently. ?? 2011 Elsevier Ltd. All rights reserved.

  13. The Global Contribution of Secondary Craters on the Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters. Nonetheless, we confirm that secondary craters on Ganymede have narrow size-frequency distributions and that they correlate with primary crater diameter. From these data we will evaluate the contribution of secondary craters over a range of crater diameters.

  14. Northeast Hellas Landscape

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-446, 8 August 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image of pitted terrain northeast of Hellas Basin shows light-toned outcrops of layered, sedimentary rock, and a valley floor covered by large, dark ripples or small dunes. Similar light-toned sedimentary materials are found throughout the region immediately northeast of Hellas, and in the crater, Terby. The area shown is 3 km (1.9 mi) wide and located near 27.5oS, 281.7oW. Sunlight illuminates the scene from the upper left.

  15. Martian cave air-movement via Helmholtz resonance

    USGS Publications Warehouse

    Williams, Kaj; Titus, Timothy N.; Okubo, Chris; Cushing, Glen

    2017-01-01

    Infrasonic resonance has previously been measured in terrestrial caves by other researchers, where Helmholtz resonance has been suggested as the plausible mechanism resulting in periodic wind reversals within cave entrances. We extend this reasoning to possible Martian caves, where we examine the characteristics of four atypical pit craters (APCs) on Tharsis, suggested as candidate cave entrance locations. The results show that, for several possible cave air movement periods, we are able to infer the approximate cave volumes. The utility of inferring cave volumes for planetary cave exploration is discussed.

  16. Antibiotic resistance profiles of coagulase-positive and coagulase-negative staphylococci from pit latrine fecal sludge in a peri-urban South African community.

    PubMed

    Beukes, Lorika S; Schmidt, Stefan

    2018-04-16

    The aim of this study was to assess pit latrine samples from a peri-urban community in KwaZulu-Natal (South Africa) for the presence of multidrug-resistant (MDR) Staphylococcus spp. Standard procedures were used to isolate Staphylococcus spp. from pit latrine fecal sludge samples, with confirmation at genus level by polymerase chain reaction (PCR). Sixty-eight randomly selected pit latrine Staphylococcus spp. isolates were further characterized by using established disk diffusion procedures. An average Staphylococcus spp. count of 2.1 × 10 5  CFU per g fecal material was established using two randomly selected pit latrine samples. Of the 68-selected Staphylococcus spp. pit latrine isolates, 49% were identified as coagulase positive, 51% as coagulase negative and 65% (12 coagulase positive, 32 coagulase negative isolates) were categorized as MDR. The majority (66/68) of Staphylococcus spp. isolates displayed resistance to fusidic acid while only 5/68 isolates displayed resistance to chloramphenicol. The pit latrine samples analyzed in this study are a source of MDR Staphylococcus spp., highlighting the need for proper hygiene and sanitation regimes in rural communities using these facilities.

  17. Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon

    USGS Publications Warehouse

    Povilaitis, R Z; Robinson, M S; van der Bogert, C H; Hiesinger, Harald; Meyer, H M; Ostrach, Lillian

    2017-01-01

    The global population of lunar craters >20 km in diameter was analyzed by Head et al., (2010) to correlate crater distribution with resurfacing events and multiple impactor populations. The work presented here extends the global crater distribution analysis to smaller craters (5–20 km diameters, n = 22,746). Smaller craters form at a higher rate than larger craters and thus add granularity to age estimates of larger units and can reveal smaller and younger areas of resurfacing. An areal density difference map generated by comparing the new dataset with that of Head et al., (2010) shows local deficiencies of 5–20 km diameter craters, which we interpret to be caused by a combination of resurfacing by the Orientale basin, infilling of intercrater plains within the nearside highlands, and partial mare flooding of the Australe region. Chains of 5–30 km diameter secondaries northwest of Orientale and possible 8–22 km diameter basin secondaries within the farside highlands are also distinguishable. Analysis of the new database indicates that craters 57–160 km in diameter across much of the lunar highlands are at or exceed relative crater densities of R = 0.3 or 10% geometric saturation, but nonetheless appear to fit the lunar production function. Combined with the observation that small craters on old surfaces can reach saturation equilibrium at 1% geometric saturation (Xiao and Werner, 2015), this suggests that saturation equilibrium is a size-dependent process, where large craters persist because of their resistance to destruction, degradation, and resurfacing.

  18. Ceres' intriguing Occator crater and its faculae: formation and evolution

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Scully, J. E. C.; Bowling, T.; Bu, C.; Castillo, J. C.; Jaumann, R.; Longobardo, A.; Nathues, A.; Neesemann, A.; Palomba, E.; Platz, T.; Quick, L. C.; Raponi, A.; Raymond, C. A.; Ruesch, O.; Russell, C. T.; Schenk, P.; Stein, N.

    2017-12-01

    Since March 2015, the Dawn spacecraft has orbited and explored Ceres, which is a dwarf planet and the largest object in the asteroid belt (radius 470 km). One of the most intriguing features on Ceres' surface is Occator crater, a 92-km-diameter impact crater that contains distinctive bright spots, called faculae, within its floor (Nathues et al., 2015; Russell et al., 2016; Schenk et al., 2017). Occator crater has been dated to 20-30 million years old (Nathues et al., 2017; Neesemann et al., 2017). The single scattering albedo of Occator's faculae is 0.67-0.80, which is greater than Ceres' average single scattering albedo of 0.09-0.11 (Li et al., 2016). The central facula is named Cerealia Facula, and is located in a 9 km wide and 700 m deep pit. There are also multiple additional faculae in the eastern crater floor, which are named the Vinalia Faculae. The faculae are mostly composed of sodium carbonate, are distinct from Ceres' average surface composition and are proposed to be the solid residues of crystallized brines (De Sanctis et al., 2016). The presence of such bright, apparently fresh, material on the surface of a dwarf planet that is billions of years old is intriguing, and indicates that active processes involving brines occurred within the geologically recent past. The Dawn Science Team has investigated whether the processes that formed the crater and the faculae are entirely endogenic, entirely exogenic or a combination of both. For example, the extensive lobate materials within the crater floor have been proposed to be impact melt, mass wasting deposits or cryolava flows (e.g. Buczkowski et al., 2017; Jaumann et al., 2017; Nathues et al., 2017; Schenk et al., 2017). Each possibility has the potential to provide fascinating insights into Ceres' evolution, including the potential for liquids within Ceres' interior today. The team's in-depth investigation of Occator crater will be presented in an upcoming special issue of the journal Icarus. This special issue will include analyses of Occator and the faculae based on Dawn data, modeling studies, laboratory experiments, and studies comparing Occator and the faculae to other impact craters and bright deposits. In this presentation we will preview and summarize these results.

  19. Lava flow hazard at the new South-East Crater of Etna volcano

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Ganci, Gaetana; Bilotta, Giuseppe; Hérault, Alexis; Zago, Vito; Del Negro, Ciro

    2017-04-01

    The summit area of Mount Etna has frequently undergone major morphological changes due to its persistent eruptive activity. Since its creation during the 1971 eruption, the Southeast Crater (SEC) has been the most active of the summit craters of Etna. At first, it was a degassing pit located close to the southeast base of the Central Crater cone. During the first 40 years of activity, SEC erupted quite frequently producing almost one hundred of lava flows. Between 2011 and 2016, more than 50 lava fountains occurred, leading to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the SEC. All SEC eruptions are likely to give rise to lava flow, which is the greatest hazard presented to the tourist facilities on the south flank of Etna. For this reason, in 2011 we produced a lava flow hazard map for SEC eruptions using the 2005 DEM as topographic base, where the NSEC was not yet formed. Here we present the new 1-m DEM of Etna updated to 18 December 2015 obtained from high resolution stereo Pléiades images (0.5 m). Processing of Pléiades data was performed by using the DEM Extraction Module of ENVI through three steps: epipolar image creation, image matching, and DEM geocoding. This DEM was used as the new topographic base to produce the first hazard map from lava flow inundation in the NSEC area allowing key at-risk zones to be rapidly and appropriately identified.

  20. Vesta and Ceres as Seen by Dawn

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Nathues, A.; De Sanctis, M. C.; Prettyman, T. H.; Konopliv, A. S.; Park, R. S.; Jaumann, R.; McSween, H. Y., Jr.; Raymond, C. A.; Pieters, C. M.; McCord, T. B.; Marchi, S.; Schenk, P.; Buczkowski, D.

    2015-12-01

    Ceres and Vesta are the most massive bodies in the main asteroid belt. They have witnessed 4.6 Ga of solar system history. Dawn's objective is to interview these two witnesses. These bodies are relatively simple protoplanets, with a modest amount of thermal evolution and geochemical alteration. They are our best archetypes of the early building blocks of the terrestrial planets. In particular siderophile elements in the Earth's core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies. Vesta has provided copious meteorites for geochemical analysis. This knowledge was used to infer the constitution of the parent body. Dawn verified that Vesta was consistent with being that body, confirming the geochemical inferences from these samples on the formation and evolution of the solar system. Ceres has not revealed itself with a meteoritic record nor an asteroid family. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming events created little competent material from the icy crust and any such ejected material that reached Earth might have disintegrated upon entry into the Earth's atmosphere. Ceres' surface differs greatly from Vesta's. Plastic or fluidized mass wasting is apparent as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are many central-peak craters but are these due to rebound or pingo-like formation processes? Bright spots, possibly salt deposits, dot the landscape, evidence of fluvial processes beneath the crust. Observations of the largest region of bright spots may suggest sublimation from the surface of the bright area, consistent with Herschel water vapor observations. Ceres is not only the most massive body in the asteroid belt but also possibly the most active occupant of the main belt.

  1. Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany

    NASA Astrophysics Data System (ADS)

    Neumair, A.; Ernstson, K.

    2011-12-01

    Lots of rimmed crateriform structures with diameters of the order of meters and ten meters in young fluvial and moraine sediments in Southeast Germany have raised increased interest in the last decade although they have been known since longtime. An anthropogenic origin (for smelting or lime kiln purposes, as prospecting pits, bomb craters, etc) can in most cases be excluded, and the ring walls are speaking against a formation as simple sink holes. Some earlier geomagnetic field and soil susceptibility measurements found anomalies without giving them further enhanced consideration. In a new geomagnetic campaign we exemplarily investigated a few of these craters by fluxgate gradiometer surveys and by magnetic susceptibility measurements of the crater soil and of rock samples digged from the crater underground that also supplied remnant magnetization data. Conspicuously, the craters although morphologically similar, can be subdivided into structures with a clear magnetic signature and ones free of mentionable anomalies. The magnetic signature is expressed by soil susceptibilities up to one order of magnititude higher for the depression and rim area compared to outside the structure, and by an irregular cluster of short-wavelength magnetic anomalies in extreme cases exceding several 1000 nT/m amplitude. Excavations do not show any anthropogenic influence but highly magnetized, frequently strongly fractured cobbles and boulders as the cause. Susceptibilities up to more than 6000 x 10-5 SI and remnant magnetizations of the order of 10 A/m (Koenigsberger ratio Q up to 3.5) were measured. So far enigmatic are very high susceptibilities and remnant magnetizations of limestone clasts. While in general carbonate clasts of the region have susceptibilities of the order of 0.00005 x 10-5 SI and negligible remanence, we measured up to more than 1500 x 10-5 SI and remnant magnetizations of up to 2 A/m (Q up to 3) for limestone samples from the craters. Detailed rock-magnetic studies are ongoing, and, for the moment, we point to new ideas focusing on a formation of at least part of the craters as meteorite craters originating from the recently proposed large Holocene so-called Chiemgau impact event. The magnetic signature as described may prove as a characteristic attribute of identifying respective craters, and thermal effects implying a thermal remnant magnetization are discussed. On the other hand, the highly magnetized carbonate rocks do not show any significant thermal overprint, and a strong shock magnetization debated for some magnetic anomalies in impact craters must seriously be considered. The "magnetic" craters irrespective of their diameters show when appropriately scaled more or less identical diametral cross sections while the craters without magnetic signature have a different profile. Hence, two different processes are suggested to have produced "magnetic" meteorite craters and a second group of craters that may have an endogenetic origin possibly by soil liquefaction sand explosions in the course of the postulated impact event.

  2. The Splitting of the Dunes

    NASA Image and Video Library

    2017-03-27

    The mound in the center of this image appears to have blocked the path of the dunes as they marched south (north is to the left in this image) across the scene. Many of these transverse dunes have slipfaces that face south, although in some cases, it's hard to tell for certain. Smaller dunes run perpendicular to some of the larger-scale dunes, probably indicating a shift in wind directions in this area. Although it might be hard to tell, this group of dunes is very near the central pit of a 35-kilometer-wide impact crater. Data from other instruments indicate the presence of clay-like materials in the rock exposed in the central pit. The map is projected here at a scale of 50 centimeters (9.8 inches) per pixel. [The original image scale is 52 centimeters (20.5 inches) per pixel (with 2 x 2 binning); objects on the order of 156 centimeters (61.4 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21572

  3. Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography

    NASA Astrophysics Data System (ADS)

    He, Yang; Geng, Yanquan; Yan, Yongda; Luo, Xichun

    2017-09-01

    We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100 μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100 μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65-80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800-5800 pits can be obtained in 1 s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.

  4. Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography.

    PubMed

    He, Yang; Geng, Yanquan; Yan, Yongda; Luo, Xichun

    2017-09-22

    We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100 μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100 μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65-80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800-5800 pits can be obtained in 1 s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.

  5. Cratering efficiency on coarse-grain targets: Implications for the dynamical evolution of asteroid 25143 Itokawa

    NASA Astrophysics Data System (ADS)

    Tatsumi, Eri; Sugita, Seiji

    2018-01-01

    Remote sensing observations made by the spacecraft Hayabusa provided the first direct evidence of a rubble-pile asteroid: 25143 Itokawa. Itokawa was found to have a surface structure very different from other explored asteroids; covered with coarse pebbles and boulders ranging at least from cm to meter size. The cumulative size distribution of small circular depressions on Itokawa, most of which may be of impact origin, has a significantly shallower slope than that on the Moon; small craters are highly depleted on Itokawa compared to the Moon. This deficiency of small circular depressions and other features, such as clustered fragments and pits on boulders, suggest that the boulders on Itokawa might behave like armor, preventing crater formation: the ;armoring effect;. This might contribute to the low number density of small crater candidates. In this study, the cratering efficiency reduction due to coarse-grained targets was investigated based on impact experiments at velocities ranging from ∼ 70 m/s to ∼ 6 km/s using two vertical gas gun ranges. We propose a scaling law extended for cratering on coarse-grained targets (i.e., target grain size ≳ projectile size). We have found that the crater efficiency reduction is caused by energy dissipation at the collision site where momentum is transferred from the impactor to the first-contact target grain, and that the armoring effect can be classified into three regimes: (1) gravity scaled regime, (2) reduced size crater regime, or (3) no apparent crater regime, depending on the ratio of the impactor size to the target grain size and the ratio of the impactor kinetic energy to the disruption energy of a target grain. We found that the shallow slope of the circular depressions on Itokawa cannot be accounted for by this new scaling law, suggesting that obliteration processes, such as regolith convection and migration, play a greater role in the depletion of circular depressions on Itokawa. Based on the new extended scaling law, we found that the crater retention age on Itokawa is 3-33 Myr in the main belt, which is in good agreement with the cosmic-ray-exposure ages for returned samples from Itokawa which may reflect the age of material a few meters beneath the surface. These ages strongly suggest that the global resurfacing that reset the 1-10 m deep surface layer may have occurred in the main belt long after the possible catastrophic disruption of a rigid parent body of Itokawa suggested by Ar degassing age ( ∼ 1.3 Gyr).

  6. Paterae on Io: Volcanic Activity Observed by Galileo's NIMS and SSI

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly; Kamp, Lucas; Smythe, W. D.; Carlson, R.; Radebaugh, Jani; Gregg, Tracy K.

    2003-01-01

    Paterae are the most ubiquitous volcanic construct on Io s surface. Paterae are irregular craters, or complex craters with scalloped edges, interpreted as calderas or pit craters. Data from Galileo has shown that the activity of Ionian paterae is often confined to its interior and that generally lava flows are not seen spilling out over the edges. We use observations from Galileo s Near-Infrared Mapping Spectrometer (NIMS) to study the thermal emission from several Ionian paterae and compare them with images in visible wavelengths obtained by Galileo s Solid State Imaging System (SSI). Galileo s close fly-bys of Io from 1999 to 2001 have allowed NIMS to image the paterae at high spatial resolution (1-30 km pixel). At these scales, several of these features reveal greater thermal emission around the edges, which can be explained as the crust of a lava lake breaking up against the paterae walls. Comparisons with imaging data show that lower albedo areas (which are indicative of young lavas) coincide with higher thermal emission areas on NIMS data. Other paterae, however, show thermal emission and features in the visible that are more consistent with lava flows over a solid patera floor. Identifying eruption styles on Io is important for constraining eruption and interior models on Io.

  7. Yalode Crater on Ceres

    NASA Image and Video Library

    2017-06-28

    Yalode crater is so large -- at 162 miles, 260 kilometers in diameter -- that a variety of vantage points is necessary to understand its geological context. This view of the northern portion of Yalode is one of many images NASA's Dawn spacecraft has taken of this crater. The large impact that formed the crater likely involved a lot of heat, which explains the relatively smooth crater floor punctuated by smaller craters. A couple of larger craters in Yalode have polygonal shapes. This type of crater shape is frequently found on Ceres and may be indicative of extensive underground fractures. The larger crater to the right of center in this image is called Lono (12 miles, 20 kilometers in diameter) and the one below it is called Besua (11 miles, 17 kilometers). Some of the small craters are accompanied by ejecta blankets that are more reflective than their surroundings. The strange Nar Sulcus fractures can be seen in the bottom left corner of the picture. Linear features seen throughout the image may have formed when material collapsed above empty spaces underground. These linear features include linear chains of craters called catenae. Dawn took this image on September 27, 2015, from 915 miles (1,470 kilometers) altitude. The center coordinates of this image are 32 degrees south latitude and 300 degrees east longitude. Yalode gets its name from a goddess worshipped by women at the harvest rites in the Dahomey culture of western Africa. Besua takes its name from the Egyptian grain god, and Lono from the Hawaiian god of agriculture. https://photojournal.jpl.nasa.gov/catalog/PIA21410

  8. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  9. Ganymede Impact Crater Morphology as Revealed by Galileo

    NASA Astrophysics Data System (ADS)

    Weitz, C. M.; Head, J. W.; Pappalardo, R.; Chapman, C.; Greeley, R.; Helfenstein, P.; Neukum, G.; Galileo SSI Team

    1997-07-01

    We have used the Galileo G1, G2, G7, and G8 images to study the morpholo- gy and degradation of impact craters on Ganymede. Results from the G1 and G2 data showed three types of degradation states: pristine, partially degraded, and heavily degraded. With the more recent G7 and G8 images, there are now several other distinct crater morphologies that we have identified. Enki Catena is about 120 km in length and consists of 13 attached impact craters. The six craters in the chain that impacted onto the bright terrain have visible bright ejecta while those that impacted onto the dark terrain have barely visible ejecta. Kittu crater is about 15 km in diameter and it has a bright central peak surrounded by a bright floor and hummocky wall material. The crater rim in the north is linear in appearance at the location that corresponds to the boundary between the groove terrain and the adjacent dark terrain, indicating structural control by the underlying topography. The dark rays that are easily seen in the Voyager images are barely visible in the Galileo image. Neith crater has a central fractured dome surrounded by a jagged central ring, smoother outer ejecta facies, and less prominent outer rings. Achelous crater and its neighbor, which were imaged at low sun angle to show topography, have smooth floors and subdued pedestal ejecta. Nicholson Regio has tectonically disrupted craters on the groove and fractured terrains while the surrounding smoother dark terrain has numerous degrad- ed craters that may indicate burial by resurfacing or by regolith development.

  10. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    USGS Publications Warehouse

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  11. Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, P.; Whilldin, D.; Chouet, B.

    2004-01-01

    Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

  12. Escape from Mars

    NASA Image and Video Library

    2017-07-10

    This image from NASA's Mars Reconnaissance Orbiter shows one of millions of small (10s of meters in diameter) craters and their ejecta material that dot the Elysium Planitia region of Mars. The small craters were likely formed when high-speed blocks of rock were thrown out by a much larger impact (about 10-kilometers in diameter) and fell back to the ground. Some of these blocks may actually escape Mars, which is how we get samples in the form of meteorites that fall to Earth. Other ejected blocks have insufficient velocity, or the wrong trajectory, to escape the Red Planet. As such, when one of these high-speed blocks impacts the surface, it makes what is called a "secondary" crater. These secondaries can form dense "chains" or "rays," which are radial to the crater that formed them. https://photojournal.jpl.nasa.gov/catalog/PIA21769

  13. Wrinkle Ridges and Pit Craters

    NASA Image and Video Library

    2016-10-19

    Tectonic stresses highly modified this area of Ganges Catena, north of Valles Marineris. The long, skinny ridges (called "wrinkle ridges") are evidence of compressional stresses in Mars' crust that created a crack (fault) where one side was pushed on top of the other side, also known as a thrust fault. As shown by cross-cutting relationships, however, extensional stresses have more recently pulled the crust of Mars apart in this region. (HiRISE imaged this area in 2-by-2 binning mode, so a pixel represents a 50 x 50 square centimeter.) http://photojournal.jpl.nasa.gov/catalog/PIA21112

  14. Dawn HAMO Image 70

    NASA Image and Video Library

    2015-12-04

    This view from NASA's Dawn spacecraft shows different types of terrain located side by side on Ceres: a smooth terrain at right with numerous small impact craters, and a less-cratered, hummocky terrain at left. A huge crater chain crosses the scene diagonally from upper left to lower right. The smooth terrain, which is in the western part of Yalode impact basin, is interrupted by a set of roughly parallel furrows and ridges at upper right. These linear features are perpendicular to another set of smaller, fainter linear markings, which appear just below them. An impact into the hummocky terrain formed a crater, seen at left, 14 miles (22 kilometers) in diameter with a central peak. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. The image was taken during in Dawn's High Altitude Mapping Orbit (HAMO) phase from an altitude of 911 miles (1,466 kilometers) on Oct. 6, 2015. Image resolution is 394 feet (120 meters) per pixel. The image is centered at 37 degrees south latitude, 279 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20133

  15. Growth hormone and Pit-1 expression in bovine fetal lymphoid cells.

    PubMed

    Chen, H T; Schuler, L A; Schultz, R D

    1997-11-01

    Bovine fetal lymphoid cells were examined for growth hormone (GH) and the transcription factor Pit-1/GHF-1 mRNA. GH and Pit-1/GHF-1 transcripts were detected in thymocytes and splenocytes from fetuses at 60, 90, 120, and 270 d of gestation using reverse transcription-polymerase chain reaction (RT-PCR). Northern analysis indicated that the lymphoid GH mRNA was approximately 350 nucleotides larger than in the pituitary. RT-PCR analysis demonstrated that the coding regions as well as 3' untranslated region of the lymphocyte GH and pituitary transcripts were the same. Analysis of the 5'-untranslated region of the lymphocyte GH mRNA showed that transcription began upstream from the start site in the pituitary gland, suggesting differences in regulation in these tissues. Fetal thymocytes and splenocytes expressed Pit-1/GHF-1 mRNA; however, they contained only the 2.5-kb transcript. The GH and Pit-1/GHF-1 mRNA in fetal lymphoid cells supports the hypothesis that lymphocyte-derived GH may function as an autocrine and/or paracrine factor during the development and maturation of the bovine fetal immune system.

  16. An upper limit on Early Mars atmospheric pressure from small ancient craters

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.

  17. Shift from magmatic to phreatomagmatic explosion controlled by the evolution of lateral fissure eruption in Suoana Crater, Miyakejima

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Nemeth, Karoly; Noguchi, Rina; Oikawa, Teruki

    2016-04-01

    Combined analysis of the proximal deposit and exposed feeder-diatreme structure of the Suoana Crater of Miyakejima reveals the process of magma-water interaction controlled by the evolution of lateral fissure eruption in a stratovolcanic edifice. The Suoana Crater, an oval maar with 400 x 300 m across is one of the craters of the Suoana-Kazahaya crater chain which is formed during a fissure eruption in the 7th Century. The eruption fissure extends ~3 km from the summit area (~700 m asl) to the lower-flank area (~200m asl). The eruption fissure consists of upper maar-chain (>450 m asl) and lower scora-cone chain. As the wall of the 2000 AD caldera truncated at near the center of the Suoana Crater, the vertical section of the feeder dike - diatreme - maar system of the Suoana Crater is exposed in the caldera wall (Geshi et al., 2011). The ejected materials from the Suoana crater indicate the transition of eruption style from magmatic to phreatomagmatic. The juvenile clasts in the lower half of the deposit exhibit spatter-like shape, indicating the typical deposit from a vigorous fire fountain. Contrary, the juvenile clasts in the upper half are less vesiculated and exhibit cauliflower-shape, indicating the typical phreatomagmatic activity. This transition indicates that the magma-water interaction started at the middle of the eruption. Judging from the ratio of the thickness of the lower and upper parts, the contrast of the content of juvenile clasts, and bulk density of the deposit, the total ejected volume of magma is larger in the lower part compare to the upper part. The transition from magmatic to phreatomagmatic occurred only in the upper half of the eruption fissure, including the Suoana crater, whereas the lower half of the fissure continued dry magmatic eruption throughout their activity. The limited distribution of phreatomagmatic activity can be resulted by the magma extraction from the upper feeder dike system to the lower eruption fissure as it contributed to the general drop of magmatic pressure in the upper section of the fissure-fed conduit. The cross section of the Suoana diatreme indicates that the phreatomagmatic explosion occurred ~260 m below the original ground surface, corresponding to ~400 m above the present sea level. This elevation is clearly higher than that of the lower part of the eruption fissure which reached to the point ~ 200 m above sea level. The drop of magma flux and the general gravitational instability of the conduit resulted that ground water was able to access the still hot feeder dikes and initiate phreatomagmatic explosive eruptions (e.g., Geshi and Neri, 2014). The existence of buried summit caldera that can host large quantity of groundwater also contributes the limited distribution of phreatomagmatic activity in the summit area. We propose that this seemingly reversal trend from early magmatic to later phreatomagmatic explosive eruption style in top of large mafic caldera volcanoes in fissure fed volcanic islands is probably a far more common eruption mechanism and hence it needs to be considered in volcanic hazard scenario descriptions.

  18. ARC-1989-A89-7048

    NASA Image and Video Library

    1989-08-27

    P-34713 This Voyager image of Triton reveals two kinds of mid-latitude terrain. Near the center and the lower half of the frame is a gently rolling terrain pock-marked with a modest number of impact craters. The density of impact craters is somewhat similiar to that found on the mare surface of Earth's moon. Crossing this rolling surface are narrow rifts, one of which grades into a chain of craters that probably are of collapse origin. In the upper right part of the frame is a smooth terrain with very sparse impact craters. This terrain evidently has been formed by flooding of the surface by low-viscosity fluids rather late in geologic time. One of the vents from which these fluids erupted probably is represented by a deep, elongate crater near the middle of the right side of the image. Two slightly dark regions underlain by late eruptive material also occur in the left half of the image. Apparent vents for these eruptions are marked by shallow depressiions, which may have been formed by drain back of material at the end of the eruptive episode.

  19. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-07-19

    ISS013-E-54243 (19 July 2006) --- Crater Lake, Oregon is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. Crater Lake is formed from the caldera (collapsed magma chamber) of a former volcano known as Mount Mazama. Part of the Cascades volcanic chain, Mount Mazama is situated between the Three Sisters volcanoes to the north and Mount Shasta to the south. While considered a dormant volcano, Crater Lake is part of the United States Geological Survey Cascades Volcano Observatory seismic monitoring network. The dark blue water coloration is typical of the 592 meter (1943 feet) deep Crater Lake; light blue-green areas to the southeast of Wizard Island (along the southern crater rim) most probably correspond to particulates either on or just below the water surface. A light dusting of snow fills the summit cone of Wizard Island. Some of the older lava flows in the area are associated with Mount Scott to the east-southeast of the Lake. Water is lost only by evaporation and seepage, and is only replenished by rainwater and snowmelt from the surrounding crater walls. These processes help maintain minimal sediment input into the lake and exceptional water clarity. The Crater Lake ecosystem is of particular interest to ecologists because of its isolation from the regional landscape, and its overall pristine quality is important to recreational users of Crater Lake National Park (447,240 visitors in 2005). The United States National Park Service maintains programs to monitor changes (both natural and human impacts) to Crater Lake.

  20. The Phobos information system

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Oberst, J.; Zubarev, A. E.; Nadezhdina, I. E.; Kokhanov, A. A.; Garov, A. S.; Uchaev, D. V.; Uchaev, Dm. V.; Malinnikov, V. A.; Klimkin, N. D.

    2014-11-01

    We have developed a Geo-information system (GIS) for Phobos, based on data from the Mars Express and Viking Orbiter missions, which includes orthoimages, global maps, terrain- and gravity field models, all referenced to the Phobos coordinate system. The data are conveniently stored in the ArcGIS software system, which provides an environment for mapping and which allows us to carry out joint data analysis and miscellaneous data cross-comparisons. We have compiled catalogs of Phobos craters using manual and automated techniques, which includes about 5500 and 6400 craters correspondingly. While crater numbers are biased by available image data resolution and illumination, we estimate that our catalog of manually detected craters contains all Phobos craters with diameters D>250 m which is a total of 1072 and catalog of automated detected craters are complete for craters D>400 m (360 craters). Statistical analysis of these large craters reveals a surplus of craters on the anti-Mars hemisphere, whereas differences in crater abundance between leading and trailing hemisphere cannot be confirmed. This in contrast to previous papers, where no such asymmetry was found (Schmedemann et al., 2014). But we cannot rule out remaining biases due to resolution, viewing angles or illumination effects. Using digital terrain model (DTM) derived from photogrammetry image processing we estimate depths of 25 craters larger than 2 km using geometric and dynamic heights (for discussion of Phobos crater morphometry see Kokhanov et al., 2014). We also have compiled catalogs of lineaments, and boulders. In particular, we mapped 546 individual grooves or crater chains, which extend in length from 0.3 km to 16.2 km. We identified and determined the sizes and locations of 1379 boulders near crater Stickney. Cross-comparisons of gravity field models against distribution patterns of grooves and boulders are currently under way and may shed light on their possible origins. Finally, we have developed a Geo-portal, which allows the science community to conveniently search for, analyze, and download data of interest from our system. Additionally we provide access to color electronic maps (e-maps) with support for layers based on Phobos geodatabase and ArcGIS tools.

  1. Evolution of Occator Crater on (1) Ceres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathues, A.; Platz, T.; Thangjam, G.

    2017-03-01

    The dwarf planet Ceres (diameter 939 km) is the largest object in the main asteroid belt. Recent investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body which was never completely molten but possibly differentiated into a rocky core, an ice-rich mantle, and which may contain remnant internal liquid water. Thermal alteration and exogenic material infall contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of Occator crater derived from the Framing Camera and the Visible and Infrared Spectrometer onboard Dawn. We found that themore » central bright spot (Cerealia Facula) of Occator is ∼30 Myr younger than the crater itself. The central spot is located in a central pit which contains a dome that is spectrally homogenous, exhibiting absorption features that are consistent with carbonates. Multiple radial fractures across the dome indicate an extrusive formation process. Our results lead us to conclude that the floor region was subject to past endogenic activity. Dome and bright material in its vicinity formed likely due to a long-lasting, periodic, or episodic ascent of bright material from a subsurface reservoir rich in carbonates. Originally triggered by an impact event, gases, possibly dissolved from a subsurface water/brine layer, enabled material rich in carbonates to ascend through fractures and be deposited onto the surface.« less

  2. New morphological mapping and interpretation of ejecta deposits from Orientale Basin on the Moon

    NASA Astrophysics Data System (ADS)

    Morse, Zachary R.; Osinski, Gordon R.; Tornabene, Livio L.

    2018-01-01

    Orientale Basin is one of the youngest and best-preserved multi-ring impact basins in the Solar System. The structure is ∼950 km across and is located on the western edge of the nearside of the Moon. The interior of the basin, which possesses three distinct rings and a post-impact mare fill, has been studied extensively using modern high-resolution datasets. Exterior to these rings, Orientale has an extensive ejecta blanket that extends out radially for at least 800 km from the basin rim in all directions and covers portions of both the nearside and farside of the Moon. These deposits, known as the Hevelius Formation, were first mapped using photographic data from the Lunar Orbiter IV probe. In this study, we map in detail the morphology of each distinct facies observed within the Orientale ejecta blanket using high resolution Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images and Lunar Orbiter Laser Altimeter (LOLA) elevation data. We identified 5 unique facies within the ejecta blanket. Facies A is identified as a region of hummocky plains located in a low-lying topographic region between the Outer Rook and Cordillera rings. This facies is interpreted to be a mix of crater-derived impact melt and km-scale blocks of ballistic ejecta and host rock broken up during the modification stage and formation of the Cordillera ring. Facies B is an inner facies marked by radial grooves extending outward from the direction of the basin center. This facies is interpreted as the continuous ballistic ejecta blanket. Facies C consists of inner and outer groupings of flat smooth-surfaced deposits isolated in local topographic lows. Facies D displays characteristic sinuous ridges and lobate extensions. Facies C and D are interpreted to be impact melt-rich materials, which manifest as flows and ponds. Our observations suggest that these facies were emplaced subsequent to the ballistic ejecta blanket - most likely during the modification stage of crater formation - and flowed and ponded in topographically low-lying regions. Facies E consists of distinct crater chains emanating radially from the basin center and extending from ∼700 to ∼1000 km from the center of Orientale. This facies is considered to be chains of secondary craters formed from large blocks of ballistic ejecta. Our mapping effort shows that the individual ejecta facies were influenced and controlled to varying degrees by pre-existing slopes and topography. At the basin scale, the overall downslope direction toward the lunar lowlands to the east and southeast of the basin center resulted in large impact melt flows 100's of kilometers in length, while the regional upslope trends in the west and northwest inhibited the development of extensive impact melt flows. On a smaller scale it can be observed that ground-hugging ejecta collected behind and flowed around high topographic obstacles while diverting into topographic low regions (e.g., around uplifted pre-existing crater rims, but down into pre-existing crater floors). The dispersion of the various ejecta facies mapped here also indicates both a direction and an angle for the impact event that formed Orientale Basin. The bilateral distribution of both ballistic and impact melt-rich ejecta deposits across a line running northeast - southwest suggests the impact occurred from the northeast toward the southwest. Careful mapping of the secondary impact crater chains (Facies E) shows the development of a ;forbidden zone; lacking these impacts to the northeast as well as a concentration of the longest secondary crater chains to the northwest and southeast, perpendicular to the aforementioned line of bilateral ejecta distribution. This distribution of secondary impact craters contrasts with the circularity of the basin and suggests that Orientale Basin was formed by ∼ 25-45° impact from the northeast.

  3. Assessment of pit latrines in a peri-urban community in KwaZulu-Natal (South Africa) as a source of antibiotic resistant E. coli strains.

    PubMed

    Beukes, Lorika S; King, Tracy L B; Schmidt, Stefan

    2017-11-01

    Due to the frequent use of antibiotics and recurring illnesses related to multidrug-resistant (MDR) bacteria in South Africa, we determined if MDR Escherichia coli were present in pit latrine fecal sludge samples obtained from a peri-urban community in KwaZulu-Natal, South Africa. The abundance of E. coli in pit latrine samples was established using a most probable number (MPN) method with species confirmation done using biochemical tests and polymerase chain reaction (PCR). Forty-four randomly selected E. coli pit latrine isolates were further characterized, using the European committee on antimicrobial susceptibility testing (EUCAST) disk diffusion method to establish antibiotic resistance profiles for these E. coli isolates. The resulting MPN values for E. coli ranged from one to 6.2 log 10 MPN per gram of fresh pit latrine fecal sludge. While only 3 out of 44 E. coli pit latrine isolates showed no resistance to any of the 12 tested antibiotics, most isolates were resistant to two or more antibiotics. The majority of isolates showed resistance to at least one of the two tested aminoglycosides, one isolate showed resistance to the carbapenem ertapenem, and although resistance was not detected for tigecycline four pit latrine E. coli isolates showed intermediate resistance to this antibiotic. However, about 14% of the E. coli pit latrine isolates were categorized as MDR, all of which showed resistance to four or more antibiotics. The presence of MDR E. coli strains in pit latrine samples demonstrates that these facilities are potential sources for MDR bacteria. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Vesta and Ceres by the light of Dawn

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.

    2015-11-01

    Ceres and Vesta are the most massive bodies in the main asteroid belt. They both appear to be intact protoplanets whose growth may have been drastically altered by the concomitant formation of Jupiter.. These two bodies have witnessed 4.6 Ga of solar system history, much, but not all, of which has been recorded in their surfaces. Dawn’s objective is to interview these two witnesses to learn as much as possible about the early epoch. These bodies are protoplanets, our best archetypes of the early building blocks of the terrestrial planets. In particular, siderophile elements in the Earth’s core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies.Many of the basaltic achondrites originated from a common parent body. Dawn verified that Vesta was consistent with that parent body. hence strengthening geochemical inferences from these samples on the formation and evolution of the solar system and supporting hypotheses for their delivery from Vesta to Earth. Ceres has not revealed itself with a meteoritic record. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming event created little competent material from the icy crust and any such ejected projectiles that reached Earth might have disintegrated upon entry into the Earth’s atmosphere.Ceres’ surface differs greatly from Vesta’s. Plastic or fluidized mass wasting is apparent, as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are also many central-peak craters, which were made by rebound or pingo-like formation processes. Bright deposits dot the landscape, which are possibly salt-rich, suggesting fluvial activity beneath the crust. Observations of the brightest spots on Ceres could suggest sublimation from the surface of the bright area, which may be water vapor driven, as Herschel observations suggest. Ceres is not only the most massive body in the asteroid belt but also possibly the most active.

  5. Dawn at Ceres: A Synopsis

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Raymond, Carol A.; DeSanctis, Maria Christina; Nathues, Andreas; Prettyman, Thomas; Castillo-Rogez, Julie C.; McSween, Harry Y.; Pieters, Carle M.; Jaumann, Ralf; Buczkowski, Debra; Ammannito, Eleonora; Hiesinger, Harald; Toplis, Michael J.; Li, Jian-Yang; Park, Ryan S.

    2017-04-01

    Dawn has now been in orbit about Ceres for over two years. In that time, it has spiraled down to the lowest altitudes and back to the highest altitudes and on its way, performed global mapping of Ceres' surface morphology, topography, gravity, mineralogy, and elemental composition. It found a water-rich body with a temporary atmosphere that was sufficiently strong to deflect the solar wind. This atmosphere appears after the Sun produces high fluxes of very energetic protons. This time-varying association explains why 1-AU observations previously had both detected and failed to detect a water or OH atmosphere at Ceres. At global scale, the surface typically consists of a layer of phyllosilicates, including ammoniated clays, Ca-Mg carbonates and a dark but spectrally neutral component. At local scale, the Cerealia facula in Occator crater was found to be the largest known extraterrestrial accumulation of Na-carbonates. The Ernutet crater was peppered with organic molecules, possibly of internal origin, while small km square-sized regions of exposed ice were found in several places on the surface. In broad regions at high latitude, ice is just beneath the surface, and the depth to the ice table varies with latitude. Fractured crater floors suggesting stresses produced by uplift of sub-surface material were found, and the dome in the center of Occator craters' central pit was also postulated to be fractured by localized upwelling material. Ahuna mons, a 4-km high isolated mountain, further indicates the recent occurrence of cryovolcanic activity likely driven by brines. The gravity and topography data and the crater-size frequency distribution have been interpreted in terms of a rigid ice-rock shell covering a less rigid interior. Elemental data are consistent with ice-rock fractionation. The data clearly demonstrate that Ceres is a small exotic water-rich world, deserving of much attention in the next wave of planetary exploration.

  6. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our experiments show that different sources of water form valleys of similar size in quite different timescales.

  7. Some inner satellites of giant planets are still outgassing: Triton, Enceladus, Io

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    Process of atmospheric formation in the Solar system continues. There are three celestial bodies (except Earth) still emitting considerable amounts of volatiles though these bodies' masses do not allow keeping appreciable amounts of emitted volatiles in their vicinity and creating real atmospheres. It was earlier shown that the wave oscillations in form of stationary waves more or less rapidly changing their phases (plus to minus and inversely) sweep out volatiles from planetary depths [1]. These stationary waves, proportional in their amplitudes to the radii of tectonic granules (Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2) and inversely proportional to orbital frequencies, form the planetary surface relief range of which increases with the solar distance [2]. In the opposite direction increases the sweeping out force of these waves and, consequently, atmospheric masses increase [3]. In the satellite systems of the outer giant planets this regularity is preserved in that the inner satellites (even small as Enceladus) surprisingly continue to push out volatiles. To do so, really very thorough washing out of entire body should be executed by very fine oscillations. Very fast orbits (Triton - 5.9 days; Enceladus - 1.37 d.; Io - 1.769 d.) secure this. Titan with rather fast orbit (16 d.) has enough mass and gravity to create and keep an atmosphere. Triton has a tenuous nitrogen atmosphere with small amounts of methane. A part of its crust (the southern "continental" segment) is dotted with geysers believed to erupt nitrogen with some admixture of dust entrained from beneath the surface. The geyser plumes are up to 8 km high. There are many streaks of dark material laid down by the geyser activity. Enceladus spews out icy material from the south pole region called "Tiger stripes". Some of the tiny ice particles go into Saturn orbit, forming the doughnut-shaped E ring ("detached Enceladus' atmosphere"). Io has at the moment more than 150 active volcanoes making plumes of sulfur and sulfur dioxide hundreds of kilometers high. It is admitted that Io's orbital eccentricity is a main reason for volcanism creating its patchy atmosphere and plasma tore ("detached atmosphere"). It is interesting that the latest MESSENGER data show that spacious volcanic effusions cover Mercury and one region appears to have experienced a high level of volcanic activity. Chains of small deep pits occur in the region along with the larger 30 km across crater. The innermost planet Mercury is deeply degassed and almost dry. Areal volcanic effusions, clear traces of contraction (escarps or lobate ledges), numerous chains of deep pits (craters) controlled by lineaments or weakness zones witness this. Not able to keep an atmosphere in the close vicinity to mighty Sun, Mercury still has traces of Na, K, Ca, Mg, and noble gases in its exosphere (but it seems that sputtering from the surface is a main reason for their appearance). References: [1] Kochemasov G.G. (2006) Venus, Earth, Mars, Titan: intensity of wiping out volatiles from celestial bodies and building atmospheres //36th COSPAR Scientific Assembly, Beijing, China, 16-23 July 2006, Abstr. COSPAR2006-A-00789, CD-ROM; [2] Kochemasov G.G. (2009) A regular row of planetary relief ranges connected with tectonic granulations of celestial bodies // New Concepts in Global Tectonics Newsletter, # 51, 58-61. [3] Kochemasov, G.G. (2006). Outgassing of planets in relation to their orbital frequencies // EUROPLANET-2006 Sci. Conference, Sept.22-26, 2006, Berlin, EPSC Abstracts, Vol. 1, EPSC2006-A-00043, CD-ROM.

  8. Quantifying Slope Effects and Variations in Crater Density across a Single Geologic Unit

    NASA Astrophysics Data System (ADS)

    Meyer, Heather; Mahanti, Prasun; Robinson, Mark; Povilaitis, Reinhold

    2016-10-01

    Steep underlying slopes (>~5°) significantly increase the rate of degradation of craters [1-3]. As a result, the density of craters is less on steeper slopes for terrains of the same age [2, 4]. Thus, when age-dating a planetary surface, an area encompassing one geologic unit of constant low slope is chosen. However, many key geologic units, such as ejecta blankets, lack sufficient area of constant slope to derive robust age estimates. Therefore, accurate age-dating of such units requires an accurate understanding of the effects of slope on age estimates. This work seeks to determine if the observed trend of decreasing crater density with increasing slopes [2] holds for craters >1 km and to quantify the effect of slope for craters of this size, focusing on the effect of slopes over the kilometer scale. Our study focuses on the continuous ejecta of Orientale basin, where we measure craters >1 km excluding secondaries that occur as chains or clusters. Age-dating via crater density measurements relies on uniform cratering across a single geologic unit. In the case of ejecta blankets and other impact related surfaces, this assumption may not hold due to the formation of auto- secondary craters. As such, we use LRO WAC mosaics [5], crater size-frequency distributions, absolute age estimates, a 3 km slope map derived from the WAC GLD100 [6], and density maps for various crater size ranges to look for evidence of non-uniform cratering across the continuous ejecta of Orientale and to determine the effect of slope on crater density. Preliminary results suggest that crater density does decrease with increasing slope for craters >1 km in diameter though at a slower rate than for smaller craters.References: [1] Trask N. J. and Rowan L. C. (1967) Science 158, 1529-1535. [2] Basilevsky (1976) Proc. Lunar Sci. Conf. 7th, p. 1005-1020. [3] Pohn and Offield (1970) USGS Prof. Pap., 153-162. [4] Xiao et al. (2013) Earth and Planet. Sci. Lett., 376, pgs. 1-11. doi:10.1016/j.epsl.2013.06.015. [5] Robinson M. S. et al. (2010) Space Sci. Rev. 150, 81 -124. [6] Scholten F. et al. (2011), JGR, 117, doi:10.1029/2011JE003926

  9. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada For Fiscal Year 2012 (October 2011–September 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2013-01-17

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): · CAU 90, Area 2 Bitcutter Containment · CAU 91, Area 3 U-3fi Injection Well · CAU 92, Area 6 Decon Pond Facility · CAU 110, Area 3 WMD U-3ax/bl Crater · CAU 111, Area 5 WMD Retired Mixed Waste Pits · CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2012 (October 2011–September 2012).

  10. THEMIS observes possible cave skylights on Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Wynne, J.J.; Christensen, P.R.

    2007-01-01

    Seven possible skylight entrances into Martian caves were observed on and around the flanks of Arsia Mons by the Mars Odyssey Thermal Emission Imaging System (THEMIS). Distinct from impact craters, collapse pits or any other surface feature on Mars, these candidates appear to be deep dark holes at visible wavelengths while infrared observations show their thermal behaviors to be consistent with subsurface materials. Diameters range from 100 m to 225 m, and derived minimum depths range between 68 m and 130 m. Most candidates seem directly related to pitcraters, and may have formed in a similar manner with overhanging ceilings that remain intact. Copyright 2007 by the American Geophysical Union.

  11. Ultrasonic cavitation erosion of high-velocity oxygen-fuel (HVOF) sprayed near-nanostructured WC-10Co-4Cr coating in NaCl solution.

    PubMed

    Hong, Sheng; Wu, Yuping; Zhang, Jianfeng; Zheng, Yugui; Qin, Yujiao; Lin, Jinran

    2015-09-01

    The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Investigating Mars: Moreux Crater

    NASA Image and Video Library

    2017-11-23

    This image of Moreux Crater shows the eastern side of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 12518 Latitude: 41.8223 Longitude: 44.7638 Instrument: VIS Captured: 2004-10-10 02:55 https://photojournal.jpl.nasa.gov/catalog/PIA22126

  13. Investigating Mars: Moreux Crater

    NASA Image and Video Library

    2017-11-24

    This image of Moreux Crater shows the highest elevations of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 46786 Latitude: 41.7667 Longitude: 44.3482 Instrument: VIS Captured: 2012-07-01 13:41 https://photojournal.jpl.nasa.gov/catalog/PIA22127

  14. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    USGS Publications Warehouse

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  15. Differentiation and volcanism in the lunar highlands: photogeologic evidence and Apollo 16 implications

    USGS Publications Warehouse

    Trask, N.J.; McCauley, J.F.

    1972-01-01

    Materials of possible volcanic origin in the lunar highlands include (1) highland plains materials, (2) materials forming closely spaced hills in which summit furrows and chains of craters are common and (3) materials forming closely spaced hills (some of which parallel the lunar grid) on which summit furrows and chain craters are rare. The highland plains materials probably are basaltic lavas with less Fe and Ti than the mare plains materials. The two hilly units appear to consist of materials that, if volcanic, were more viscous in the molten state than any of the lunar plains units; thus these materials may be significantly enriched in felsic components. Most of the highland materials of possible volcanic origin formed after the Imbrium multi-ring basin but before mare material completed flooding parts of the moon; they therefore postdate accretion of the moon and may represent several episodes of premare volcanism. ?? 1972.

  16. The June-July 2007 collapse and refilling of Puʻu ʻŌʻō Crater, Kilauea Volcano, Hawaiʻi

    USGS Publications Warehouse

    Orr, Tim R.

    2014-01-01

    Episode 57 of Kīlauea’s long-lived east rift zone eruption was characterized by lava effusion and spattering within the crater at Puʻu ʻŌʻō that lasted from July 1 to July 20, 2007. This eruptive episode represented a resumption of activity following a 12-day eruptive hiatus on Kīlauea associated with the episode 56 intrusion and eruption near Kāne Nui o Hamo cone, uprift from Puʻu ʻŌʻō, on June 17–19, 2007. The withdrawal of magma from beneath Puʻu ʻŌʻō led to the collapse of Puʻu ʻŌʻō’s crater floor, forming a concave depression ~85 m deep. After the hiatus, episode 57 lava began to erupt from two vents within Puʻu ʻŌʻō, quickly constructing a lava lake and filling the crater to within 5 m of the precollapse lava level (25 m of the pre-collapse crater floor). Starting July 8, effusion waned as the crater floor began to rise. As uplift progressed, new vents opened along a circumferential fracture that accommodated the displacement. The bulk volume of filling within the Puʻu ʻŌʻō crater and flank pits during episode 57, including both surficial lava accumulation and endogenous growth, is estimated at 1.3×106 m3. This volume equates to a time-averaged dense rock equivalent accumulation rate of 0.6 m3 s-1, which is an order of magnitude less than the supply rate to the volcano at that time, suggesting that most of the magma entering the volcano was being stored. Eruptive activity in Puʻu ʻŌʻō ended late on July 20, and the floor of the crater began to subside rapidly. Shortly afterward, early on July 21, a new fissure eruption started on the northeast flank of Puʻu ʻŌʻō, marking the onset of episode 58. The June–July 2007 collapse and refilling of the Puʻu ʻŌʻō crater, culminating in a new breakout outside of Puʻu ʻŌʻō, illustrates the response of a long-lived eruptive center in Kīlauea’s East Rift Zone to an uprift intrusion. Variations of this pattern occurred several times at Puʻu ʻŌʻō before 2007 and have occurred again since. Recognition of this pattern has improved the monitoring capability of the Hawaiian Volcano Observatory and will aid in future eruption response efforts.

  17. Late Pleistocene eruptive history of the Mono Craters rhyolites, eastern California, from U-Th dating of explosive and effusive products

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.; Calvert, A. T.; Miller, J. S.

    2016-12-01

    During late Pleistocene-Holocene time, repeated explosive and effusive eruptions of high-silica rhyolite magma south of Mono Lake, California, have produced a chain of massive domes known as the Mono Craters and a time-series of tephra deposits preserved in sediments of the Wilson Creek formation of ancestral Mono Lake. The record of late Holocene volcanism at Mono Craters is relatively well constrained by tephrostratigraphy and 14C dating, and the timing of late Pleistocene eruptions is similarly well constrained by tephrochronology and magnetostratigraphy of the Wilson Creek formation. However, the chronology of eruptions for the Mono Craters chain, comprising at least 28 individual domes, has thus far been based on age estimates from hydration rind dating of obsidian that is highly dependent on local calibration. We constrain the timing of late Pleistocene dome emplacement by linking independently dated Wilson Creek tephras to their dome equivalents in the Mono Craters using combined titanomagnetite geochemistry and U-Th geochronology. Ion microprobe 238U-230Th dating of unpolished allanite and zircon rims gives isochron dates of ca. 42 ka, ca. 38 ka, ca. 26 ka, and ca. 20 ka for domes 19, 24, 31 (newly recognized), and 11 of the Mono Craters, respectively. These domes are biotite-bearing rhyolites with titanomagnetites that are compositionally identical to those from several Wilson Creek tephras. Specifically, we correlate Ash 15, Ash 7, and Ash 3 of the Wilson Creek formation to domes 19, 31, and 11 of the Mono Craters, respectively, based on matching titanomagnetite compositions and indistinguishable U-Th ages. 40Ar/39Ar dating of single sanidines from domes 19 and 31 yield mean dates that are 10 k.y. older than their corresponding U-Th dates, likely due to excess argon from melt inclusions and/or incompletely re-equilibrated antecrysts. Based on our new U-Th isochron date of ca. 34 ka for allanite-zircon from Ash 8 pumice and the ca. 26-27 ka age of Ash 7 and its extrusive equivalent dome 31, we infer that the stratigraphic position of the ca. 32 ka Auckland/Mono Lake geomagnetic excursion, if recorded in beds of the Wilson Creek formation, is between Ashes 7 and 8. Accordingly, the prominent geomagnetic excursion bisected by Ash 15 lower in the section is the ca. 41 ka global Laschamp event.

  18. Significant results from Apollo 14 lunar orbital photography.

    NASA Technical Reports Server (NTRS)

    El-Baz, F.; Roosa, S. A.

    1972-01-01

    Apollo 14 obtained 950 photographs from lunar orbit using the Hasselblad and Hycon cameras. The photographs reveal a number of new geologic features as well as previously unrecognized details of the morphology, structure, and stratigraphy of lunar surface units. The primary result is the verification of the extensive role of volcanism in the formation and modification of the lunar highlands, especially on the far side. Terra volcanism appears to be manifest in the formation of (1) constructional units of hilly and furrowed materials of regional extent as in the Kant Plateau in the central near-side highlands and northwest of the crater Pasteur near the eastern limb of the moon; (2) somewhat viscous lava flows and pools associated with fracture systems and/or what appear to be volcanic craters; (3) craters, crater chains, and irregular depressions, particularly on the lunar far side. The first photographs of a flow channel, a leveed sinuous rille that apparently originated by lava flowage on the surface, were obtained by Apollo 14. Another first is a high-resolution photograph of the interior of what appears to be the youngest lunar crater yet photographed in the 20- 40-km size range.

  19. Effect of polymorphic variants of GH, Pit-1, and beta-LG genes on milk production of Holstein cows.

    PubMed

    Heidari, M; Azari, M A; Hasani, S; Khanahmadi, A; Zerehdaran, S

    2012-04-01

    Effect of polymorphic variants of growth hormone (GH), beta-lactoglobulin (beta-LG), and Pit-1 genes on milk yield was analyzed in a Holstein herd. Genotypes of the cows for these genes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Allele frequencies were 0.884 and 0.116 for L and V variants of GH, 0.170 and 0.830 for A and B variants of Pit-1, and 0.529 and 0.471 for A and B variants of beta-LG, respectively. GLM procedure of SAS software was used to test the effects of these genes on milk yield. Results indicated significant effects of these genes on milk yield (P < 0.05). Cows with LL genotype of GH produced more milk than cows with LVgenotype (P < 0.05). Also, for Pit-1 gene, animals with AB genotype produced more milk than BB genotype (P < 0.05). In the case of beta-LG gene, milk yield of animals with AA genotype was more than BB genotype (P < 0.01). Therefore, it might be concluded that homozygote genotypes of GH (LL) and beta-LG (AA) were superior compared to heterozygote genotypes, whereas, the heterozygote genotype of Pit-1 gene (AB) was desirable.

  20. Observation of Possible Lava Tube Skylights by SELENE cameras

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn

    We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.

  1. Developing a Relationship Between LIBS Ablation and Pit Volume for In Situ Dating of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Devismes, D.; Cohen, B. A.; Gillot, P.-Y.

    2015-01-01

    In planetary exploration, in situ absolute geochronology is an important measurement. Thus far, on Mars, the age of the surface has largely been determined by crater density counting, which gives relative ages. These ages can have significant uncertainty as they depend on many poorly constrained parameters. More than that, the curves must be tied to absolute ages to relate geologic timescales on Mars to the rest of the solar system. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible (Reference Farley here) and should be strongly encouraged for future flight.

  2. Island of Hawaii, State of Hawaii seen from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A vertical view of the Island of Hawaii, State of Hawaii (19.5N, 155.5W), as photographed from the Skylab space station in Earth orbit by a Skylab 4 crewman. This photograph, taken on January 8, 1974, is very useful in studies of volcanic areas. Prominent volcanic features such as the summit caldera on Mauna Loa, the extinct volcano Mauna Kea, the Kilauea caldera, and the pit crater at Halo Mau Mau within the caldera are easily identified. Kilauea was undergoing frequent eruption during the mission. Detailed features such as the extent and delineation of historic lava flows on Mauna Loa can be determined and are important parameters in volcanic studies.

  3. Folding and trimerization of clathrin subunits at the triskelion hub.

    PubMed

    Näthke, I S; Heuser, J; Lupas, A; Stock, J; Turck, C W; Brodsky, F M

    1992-03-06

    The triskelion shape of the clathrin molecule enables it to form the polyhedral protein network that covers clathrin-coated pits and vesicles. Domains within the clathrin heavy chain that are responsible for maintaining triskelion shape and function were identified and localized. Sequences that mediate trimerization are distal to the carboxyl terminus and are adjacent to a domain that mediates both light chain binding and clathrin assembly. Structural modeling predicts that within this domain, the region of heavy chain-light chain interaction is a bundle of three or four alpha helices. These studies establish a low resolution model of clathrin subunit folding in the central portion (hub) of the triskelion, thus providing a basis for future mutagenesis experiments.

  4. Visible and Near-Infrared Spectroscopy of Hephaestus Fossae Cratered Cones, Mars

    NASA Astrophysics Data System (ADS)

    Dapremont, A.; Wray, J. J.

    2017-12-01

    Hephaestus Fossae are a system of sub-parallel fractures on Mars (> 500 km long) interpreted as near-surface tensional cracks [1]. Images of the Martian surface from the High Resolution Imaging Science Experiment have revealed cratered cones within the Hephaestus Fossae region. A volcanic origin (cinder/tuff cones) has been proposed for these features based on morphometric measurements and fine-scale surface characteristics [2]. In an effort to further constrain the origin of these cones as the products of igneous or sedimentary volcanism, we use data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We take advantage of CRISM's S (0.4 - 1.0 microns) and L (1.0 - 3.9 microns) detector wavelength ranges to investigate the presence or absence of spectral signatures consistent with previous identifications of igneous and mud volcanism products on Mars [3,4]. Hephaestus Fossae cratered cone rims exhibit a consistent nanophase ferric oxide signature. We also identify ferrous phases and 3-micron absorptions (attributed to fundamental vibrational stretch frequencies in H2O) on the crater rims of several cones. Mafic signatures on cratered cone rims support an igneous provenance for these features. The 3-micron absorptions are consistent with the presence of structurally bound or adsorbed water. Our CRISM observations are similar to those of small edifice features in Chryse Planitia, which were interpreted as mud volcanism products based on their enrichment of nanophase ferric minerals and 3-micron absorptions on summit crater rims [3]. Hydrothermal activity was invoked for a Coprates Chasma pitted cone (scoria/tuff cone) based on CRISM identification of partially dehydrated opaline silica, which we do not observe in Hephaestus Fossae [4]. Our spectral observations are more consistent with mud volcanism, but we do not definitively rule out an igneous volcanic origin for the cones in our study region. We demonstrate that VNIR spectroscopy is a valuable tool in developing criteria to determine the origin (igneous/sedimentary/periglacial) of cone features on Mars. [1] Skinner and Tanaka (2007) Icarus 186: 41-59. [2] Dundas et al (2007) LPSC XXXVIII Abs #2116. [3] Komatsu et al (2016) Icarus 268: 56-75. [4] Brož et al (2017) Earth and Planetary Sci Letters 473: 122-130.

  5. Historical review of a long-overlooked paper by R. A. Daly concerning the origin and early history of the Moon

    NASA Astrophysics Data System (ADS)

    Baldwin, Ralph B.; Wilhelms, Don E.

    1992-03-01

    In 1946 the great geologist R. A. Daly published an important paper in which he discussed a great many problems concerning the Moon and its features and origin. His paper was almost completely ignored by the scientists of the day and was ``lost'' for nearly half a century. The present paper marks an attempt to outline Daly's contributions to the interpretation of these lunar problems, in particular the origin of the Moon. One of the major ideas, which probably was the incentive for him to write the paper, was that the Moon was born as a result of a very early glancing collision of the Earth and a planet-sized body. Other subjects covered are the origin of the craters from Earth fragments, although meteoritic impact is also presented; the nature of the maria as lava from the body of the Moon; and origin of the lines of small craters as produced by gas escaping from the Moon. Daly rejected all non impact models for crater origin except for the tiny gas-made aligned pits. He vigorously stated that the Moon was largely created from the body of the Earth and discussed three methods by which this could be accomplished, one internal and two external, before settling on the glancing collision model. Daly clearly was the pioneer in presenting the impact model of the origin of the Moon. Much later, works by others have modified the hypothesis, but this is only natural evolution. Two other ``lost'' papers will be mentioned to show that this is an all too frequent occurrence. In 1893 Gilbert wrote a milestone paper that was generally unrecognized for more than 50 years. He espoused the impact theory of the origin of lunar basins and craters. He was wrong about the mechanism involved, but he was right about the impact idea. Similarly, Öpik in 1916 showed that impact craters must be formed by explosions due to the high energies of striking meteorites. He showed that such impacts, even at low angles of fall would result in circular craters, thus correcting Gilbert, whom he did not mention. His paper also ``disappeared'' for many years. Early recognition and understanding of these three papers would have advanced lunar studies by many years.

  6. Three dimensional perspective view of false-color image of eastern Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three dimensional perspective view of false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies C-Band and L-Band. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The image was acquired on April 12, 1994 during the 52nd orbit of the Shuttle Endeavour by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The area shown is approximately 34 by 57 kilomters with the top of the image pointing toward north-west. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. Visible in the center of the image in blue are the summit crater (Kilauea Caidera) which contains the smaller Halemaumau Crater, and the line of collapsed craters below them that form the Chain of Craters Road. The rain forest appears bright in the image while green areas correspond to lower vegetation. The lava flows have differen

  7. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  8. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada Test Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Krauss

    2010-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mudmore » Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530–535), 14 mud pits have been identified that • are either a single mud pit or a system of mud pits, • are not located in a radiologically posted area, and • have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation for closure of the remaining CASs in CAU 544. This will be presented in a closure report (CR) that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 27, 2010, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 544. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs) leading to an NFA declaration, (2) characterization of the nature and extent of contamination leading to closure in place with use restrictions, (3) clean closure by remediation and verification, (4) closure in place with use restrictions with no investigation if CASs are in crater areas that have been determined to be unsafe to enter, or (5) NFA if the mud pit CAS meets the criteria established during the CAUs 530–535 SAFER investigation. The following summarizes the SAFER activities that will support the closure of CAU 544: • Perform visual inspection of all CASs. • Perform site preparation activities (e.g., utilities clearances, construction of temporary site exclusion zones). • Removal of easily managed, nonhazardous, and nonradioactive debris, including vegetation (e.g., tumbleweeds), at various CASs that interfere with sampling, if required to inspect soil surface or collect soil sample. • Collect environmental samples from designated target populations (e.g., mud pits, cellars, stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish NFA as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC is present at a CAS, either - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the preferred closure option is sufficient to protect human health and the environment.« less

  9. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  10. Investigation of Volcanic Seismo-Acoustic Signals: Applying Subspace Detection to Lava Fountain Activity at Etna Volcano

    NASA Astrophysics Data System (ADS)

    Sciotto, M.; Rowe, C. A.; Cannata, A.; Arrowsmith, S.; Privitera, E.; Gresta, S.

    2011-12-01

    The current eruption of Mount Etna, which began in January, 2011, has produced numerous energetic episodes of lava fountaining, which have bee recorded by the INGV seismic and acoustic sensors located on and around the volcano. The source of these events was the pit crater on the east flank of the Southeast crater of Etna. Simultaneously, small levels of activity were noted in the Bocca Nuova as well, prior to its lava fountaining activity. We will present an analysis of seismic and acoustic signals related to the 2011 activity wherein we apply the method of subspace detection to determine whether the source exhibits a temporal evolution within or between fountaining events, or otherwise produces repeating, classifiable events occurring through the continuous explosive degassing. We will examine not only the raw waveforms, but also spectral variations in time as well as time-varying statistical functions such as signal skewness and kurtosis. These results will be compared to straightforward cross-correlation analysis. In addition to classification performance, the subspace method has promise to outperform standard STA/LTA methods for real-time event detection in cases where similar events can be expected.

  11. Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Beauducel, François; Coutant, Olivier; Delacourt, Christophe; Richon, Patrick; de Chabalier, Jean-Bernard; Hammouya, Gilbert

    2016-06-01

    La Soufrière of Guadeloupe is an active volcano of Lesser Antilles that is closely monitored due to a high eruptive hazard potential. Since 1992 it exhibits a medium-level but sustained background hydrothermal activity with low-energy and shallow seismicity, hot springs temperature increase and high flux acidic gas fumaroles at the summit. The problem of estimating the heat balance and quantifying the evolution of hydrothermal activity has become a key challenge for surveillance. This work is the first attempt of a global mapping and quantification of La Soufrière thermal activity performed in February 2010 using aerial thermal infrared imagery. After instrument calibration and data processing, we present a global map of thermal anomalies allowing to spot the main active sites: the summit area (including the fumaroles of Tarissan Pit and South Crater), the Ty Fault fumarolic zone, and the hot springs located at the vicinity of the dome. In a second step, we deduce the mass and the energy fluxes released by the volcano. In particular, we propose a simple model of energy balance to estimate the mass flux of the summit fumaroles from their brightness temperature and size. In February 2010, Tarissan Pit had a 22.8 ± 8.1 kg s -1 flux (1970 ± 704 tons day -1), while South Crater vents had a total of 19.5 ± 4.0 kg s -1 (1687 ± 348 tons day -1). Once converted into energy flux, summit fumaroles represent 98% of the 106 ± 30 MW released by the volcano, the 2% remaining being split between the hot springs and the thermal anomalies at the summit and at the Ty Fault fumarolic zone. These values are in the high range of the previous estimations, highlighting the short-term variability of the expelled fluxes. Such a heat flux requires the cooling of 1500 m 3 of magma per day, in good agreement with previous geochemical studies.

  12. Mapping the northern plains of Mars: origins, evolution and response to climate change - a new overview of the recent ice-related landforms in Utopia Planitia

    NASA Astrophysics Data System (ADS)

    Costard, Francois; Sejourne, Antoine; Losiak, Ania; Swirad, Zusanna; Balm, Matthew; Conway, Susan; Gallagher, Colman; van-Gassel, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Skinner, James

    2015-04-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains of Mars are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The western Utopia Planitia contains numerous relatively young ice-related landforms (< 10 Ma). Among them, there are scalloped depressions, spatially-associated polygons and polygon-junction pits. There is an agreement within the community that they are periglacial in origin and, derivatively, indicate the presence of an ice-rich permafrost. However, these landforms were studied individually and, many questions remain about their formation-evolution and climatic significance. In contrast, we conducted a geomorphological study of all landforms in Utopia Planitia along a long strip from ~30N to ~80N latitude and about 250km wide. The goals are to: (i) map the geographical distribution of the ice-related landforms; (ii) identify their association with subtly-expressed geological units and; (iii) discuss the climatic modifications of the ice-rich permafrost in UP. Our work combines a study with CTX (5-6 m/pixel) and HRSC (~12.5-50 m/pixel) images, supported by higher resolution HiRISE (25 cm/pixel) and MOC (~2 m/pixel) and a comparison with analogous landforms on Earth.

  13. The eruptive history of the Trous Blancs pit craters, La Réunion Island: The origin of a 24 km long lava flow

    NASA Astrophysics Data System (ADS)

    Walther, Georg; Frese, Ingmar; Di Muro, Andrea; Kueppers, Ulrich; Michon, Laurent; Métrich, Nicole

    2015-04-01

    The assessment of volcanic hazards is strongly based on the past eruptive behaviour of volcanoes and its morphological parameters. Since past eruption characteristics and their frequency provide the best probabilities of such eruptions for the future, understanding the complete eruptive history of a volcano is one of the most powerful tools in assessing the potential hazards or eruptions. At Piton de la Fournaise (PdF) volcano (La Réunion, Indian Ocean), the most frequent style of activity is the effusion of lava flows, which pose the greatest hazard by invasion of inhabited areas and destruction of human property. Here we examined the eruptive history of a previously uninvestigated area, believed to be the origin of a 24 km long lava flow. The eruptions recurrence time of PdF is about one eruption every 9 months in the central caldera. Besides this central activity, eruptive vents have been built along three main rift zones cutting the edifice during the last 50 kyrs. In this study we focused on the largest rift zone of about 15 km width and 20 km length, which extends in a north westerly direction between PdF and the nearby Piton des Neiges volcanic complex. This rift zone is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, indicative of high fluid pressures (up to 5 kbar) and large volume eruptions. Our area of investigation focused on four consecutively aligned pit craters called the Trous Blancs. These have been identified [1] as the source area of one of the youngest (ca. 6 kyrs) and largest lava field, which extends for 24 km from a height of 1800m asl, passing Le Tampon and Saint Pierre city, until it reaches the coast. To gain insight into the development of this eruption and possible future similar activity, we collected new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruptive products). Fieldwork revealed that the eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part. It was followed by an alternation of volume rich lava effusions and strombolian activity and deposition of meter-thick massive units of olivine basalt, alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm sized bed of glassy, dense scoria and a stratified lithic breccia, marking the pit crater formation. Preliminary dating suggested that this type of eruption could have a millennial recurrence time at PdF. Reoccurring similar activity on the NW rift represents a major source of risk for this now densely populated region (more than 150,000 people living in the affected area). [1] Villeneuve, N., and P. Bachélery (2006),Revue de la typologie des eruptions au Piton de La Fournaise, processus et risqué volcaniques associés, Cybergeo: European Journal of Geography, 330,1-26

  14. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.

  15. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Ralf, Jaumann; Russell, C. T.; Raymond, C. A.; Pieters, C. M.; Yingst, R. A.; Williams, D. A.; Buczkowski, D. L.; Schenk, P.; Denevi, B.; Krohn, K.; Stephan, K.; Roatsch, T.; Preusker, F.; Otto, K.; Mest, S. C.; Ammannito, E.; Blewett, D.; Carsenty, U.; DeSanctis, C. M.; Garry, W.; Hiesinger, H.; Keller, H. U.; Kersten, E.; Marchi, S.; Matz, K. D.; McCord, T. B.; McSween, H. Y.; Mottola, S.; Nathues, A.; Neukum, G.; O'Brien, D. P.; Schmedemann, N.; Scully, J. E. C.; Sykes, M. V.; Zuber, M. T.

    2012-10-01

    The Dawn spacecraft has collected over 28,000 images and a wealth of spectral data providing nearly complete coverage of Vesta’s surface with multiple views. These data enable analysis of Vesta’s diverse geology including impact craters of all sizes and unusual shapes, a variety of ejecta blankets, large troughs extending around the equatorial region, impact basins, enigmatic dark material, and considerable evidence for mass wasting and surface alteration features (1). Two large impact basins, Veneneia (400km) underlying the larger Rheasilvia basin (500km) dominate the south pole (1,2). Rheasilvia exhibits a huge central peak, with total relief of -22km to 19km, and steep scarps with mass wasting features. Vesta’s global tectonic patterns (two distinct sets of large troughs almost parallel to the equator) strongly correlate with the locations of the two south polar impact basins, and were likely created by their formation (1,3). Numerous unusual asymmetric impact craters and ejecta indicate the strong role of topographic slope in cratering processes on Vesta (1). Such very steep topographic slopes are near to the angle of repose; slope failures make resurfacing due to impacts and their associated gravitational slumping and seismic effects an important geologic process on Vesta (1). Outcrops in crater walls indicate reworked crustal material and impact melt in combination with clusters of pits that show thermal surface processes (4). Relatively dark material of still unknown origin is intermixed in the regolith layers and partially excavated by younger impacts yielding dark outcrops, rays and ejecta (1,5). Finally, Vesta’s surface is younger than expected (6). (1) Jaumann, et al., 2012, Science 336, 687-690; (2) Schenk et al., 2012, Science 336, 964-967; (3) Buczkowski, et al., 2012, GRL, submitted; (4) Denevi, et al., 2012, Science, submitted; (5) McCord, et al., 2012, Nature, submitted; (6) Marchi, et al., 2012, Science 336, 690-694.

  16. Geomorphological Mapping of Sputnik Planum and Surrounding Terrain on Pluto

    NASA Astrophysics Data System (ADS)

    White, O. L.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Moore, J. M.; Cheng, A. F.

    2015-12-01

    The New Horizons flyby of Pluto in July 2015 has provided the first few close-up images of the Kuiper belt object, which reveal it to have a highly diverse range of terrains, implying a complex geological history. The highest resolution images that have yet been returned are seven lossy 400 m/pixel frames that cover the majority of the prominent Plutonian feature informally named Sputnik Planum (all feature names are currently informal), and its surroundings. This resolution is sufficient to allow detailed geomorphological mapping of this area to commence. Lossless versions of all 15 frames that make up the mosaic will be returned in September 2015, and the map presented at AGU will incorporate the total area covered by these frames. Sputnik Planum, with an area of ~650,000 km2, is notable for its smooth appearance and apparent total lack of impact craters at 400 m/pixel resolution. The Planum actually displays a wide variety of textures across its expanse, which includes smooth and pitted plains to the south, polygonal terrain at its center (the polygons can reach tens of kilometers in size and are bounded by troughs that sometimes feature central ridges), and, to the north, darker polygonal terrain displaying patterns indicative of glacial flow. Within these plains there exist several well-defined outcrops of a mottled, light/dark unit that reach from several to tens of kilometers across. Separating Sputnik Planum from the dark, cratered equatorial terrain of Cthulhu Regio on its south-western margin is a unit of chaotically arranged mountains; similar mountainous units exist on the south and western margins. The northern margin is bounded by rugged, hilly, cratered terrain into which ice of Sputnik Planum appears to be intruding in places. Terrain of similar relief exists to the east, but is much brighter than that to the north. The southernmost extent of the mosaic features a unit of rough, undulating terrain that displays very few impact craters at 400 m/pixel resolution.

  17. An analysis of three new infrasound arrays around Kīlauea Volcano

    USGS Publications Warehouse

    Thelen, Weston A.; Cooper, Jennifer

    2015-01-01

    A network of three new infrasound station arrays was installed around Kīlauea Volcano between July 2012 and September 2012, and a preliminary analysis of open-vent monitoring has been completed by Hawaiian Volcano Observatory (HVO). Infrasound is an emerging monitoring method in volcanology that detects perturbations in atmospheric pressure at frequencies below 20 Hz, which can result from volcanic events that are not always observed optically or thermally. Each array has the capability to detect various infrasound events as small as 0.05 Pa as measured at the array site. The infrasound monitoring network capabilities are demonstrated through case studies of rockfalls, pit collapses, and rise-fall cycles at Halema'uma'u Crater and Pu'u 'Ōʻō.

  18. Some electrical and magnetic studies of Kilauea Iki lava lake, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zablocki, C.J.

    1976-01-01

    In recent years, the U.S. Geological Survey has been applying various electrical-magnetic (E-M) geophysical techniques to the study of volcanologic processes at Kilauea Volcano, Hawaii. Some of these studies have been directed towards determining the responses of these E-M methods on the cooling and crystallizing lava lake that formed in Kilauea Iki pit crater in 1959. Over the years, this 111 meter-deep ponded body of basaltic magma has served as a natural laboratory for petrologic, geochemical, and geophysical investigations, and hence, has yielded some control for interpreting the resulting E-M data gathered in these studies. A brief discussion of themore » application results, and some tentative conclusions of these studies are presented.« less

  19. Variations in Surface Texture of the North Polar Residual Cap of Mars

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Byrne, S.; Russell, P. S.

    2011-01-01

    The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.

  20. Layered Deposits and Pitted Terrain in the Circum Hellas Region

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2005-01-01

    Much of the southern highlands has been mantled since the Noachian, including a general blanket of possibly airfall-derived sediment that softens the landscape, the Electris mantle including knobby chaos in several basins, and a variety of deposits that are the subject of this study that share the common characteristics of being generally confined to basins and crater floors and that manifest irregular interior depressions. Many of these features occur in a zone surrounding Hellas. These deposits share the general characteristics of having fairly smooth, nearly planar surfaces and abrupt scarps bordering interior and marginal depressions. Despite these common characteristics, a wide range of morphologies occurs. Several end-members are discussed below. Additional information is included in the original extended abstract.

  1. Monitoring very-long-period seismicity at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, Phillip B.; Benítez, M. C.; Chouet, Bernard A.; Wilson, David; Okubo, Paul G.

    2010-01-01

    On 19 March, 2008 eruptive activity returned to the summit of Kilauea Volcano, Hawaii with the formation of a new vent within the Halemaumau pit crater. The new vent has been gradually increasing in size, and exhibiting sustained degassing and the episodic bursting of gas slugs at the surface of a lava pond ∼200 m below the floor of Halemaumau. The spectral characteristics, source location obtained by radial semblance, and Hidden Markov Model pattern recognition of the degassing burst signals are consistent with an increase in gas content in the magma transport system beginning in October, 2007. This increase plateaus between March – September 2008, and exhibits a fluctuating pattern until 31 January, 2010, suggesting that the release of gas is slowly diminishing over time.

  2. Wear and corrosion resistance of electroforming layer after WEDM for 7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xu, Jinkai; Qiu, Rongxian; Lian, Zhongxu; Yu, Zhanjiang; Yu, Peng; Ren, Wanfei; Yu, Huadong

    2018-06-01

    In order to investigate the influence of the recast layer obtained by wire electrical discharge machining (WEDM) for 7075 aluminum alloy on the mechanical physical properties of the workpiece, we carried out research on the geometry parameters, microstructure, adhesion, wear resistance and corrosion resistance of the recast layer. The results show that the unit thermal power density decreases, the surface roughness Ra value increases, and the amount of the electric erosion craters and the micro/nano pits decrease with the increase of current and voltage. In the meantime, the thickness and hardness of the recast layer are increased, so the wear resistance and corrosion resistance are significantly improved. In addition, the surface hardness plays a major role in increasing wear resistance.

  3. Lava Tubes as Martian Analog sites on Hawaii Island

    NASA Astrophysics Data System (ADS)

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  4. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics

    NASA Astrophysics Data System (ADS)

    Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan

    2017-12-01

    A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.

  5. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous sedimentary material that can originate both from drainage of the regional subsurface aquifer, and/or from surface flood. The central deposit shows three main levels: (a) the current crater floor (north of Gale), (b) an ancient level about 200 rn higher (south of Gale), and (c) the massive terraced deposits. A crater statistics on the 15,400 kM2 area of the crater floor and deposit [3,41 gave: 259+/-112.4 craters, most of them partly embayed in the sedimentary deposit, and all inferior to 5-km diameter. For superimposed crater population only, the result is 194+/-112. The deduced relative ages ranges from Early to Middle Amazonian. The population of craters are comparable for the three levels, implying that the last sedimentation/erosion episode on Gale was recent and affected the whole crater. The streamlined morphology of the border of the deposit, the layering, the channels, and the terraces are compatible with a significant fluvio-lacustrine history of the site. Multiple levels may suggest different episodes, but the common statistical age of the three levels shows that the last episode involved the whole crater. The origin of the lake water in Gale may have varied in time. Three major contributions have been proposed: (a) the drainage of the regional underground aquifer by Gale crater over an area of 110-km radius around the crater which would have provided approximately 1,600 cubic km of water, (b), surface drainage entering Gale by the south and north rims. In the south, a 250-km long system originates in the cratered uplands in a Noachian crater material plain (Nc), and crosses Hesperian and Amazonian crater material plains (AHc) northward [1]. Several fluvial systems originate in the Aeolis Mensae, east of Gale. They may had two functions in time: to recharge, the underground aquifer in the region of Gale, and to supply surface water in the crater by overspilling the northern rim, and (c) surface floods that originated from the rising of the water level in the Elysium Basin. According to the Amazonian age of Gale's floor, and the erosion direction in the crater, a flood from Elysium Basin is the most likely event to explain the material observed in Gale, and the formation of the last lake. This last flood may have been important enough to flood the central deposit up to about 1400 m above the crater floor, leaving two islands (non stream lined features) at the center of the deposit. Terrace spacing suggests a regular drop of the lake level in time. Fractures in terraces perpendicular to the shoreline can be interpreted either as: (a) the result of the drainage systems during the waning of the lake, or (b) traces of the pressure of an ice-covered sheet associated with subglacial drainage. The presence of a lake of such volume during the Amazonian period is one more evidence that water was still active on Mars relatively recently. Gale crater offers the rare opportunity to unveil a key-period of the martian history. The Amazonian might proved not as cold and dry as previously thought. The presence of large lakes and basins (Elysium Basin is large as the Mediterranean Sea), reinforces the model of an extensive water activity during the Amazonian that has still to be understood in the context of an assumed cooling and drying planet. The sediments and rocks that were left of this period in Gale keep the record of the climatic conditions of the Amazonian and the clues that are missing to understand the climatic evolution of Mars. In addition, Gale crater presents the advantage to be located at the plateau/plain boundary, which has never been studied and contains information about the two main martian geological units. As a conclusion, we propose a table that summarizes the worthiness of a mission in Gale crater, and the expected science return relative to the objectives to be met by the Surveyor Program. Additional information contained in the original.

  6. Planetary Crater Detection and Registration Using Marked Point Processes, Multiple Birth and Death Algorithms, and Region-Based Analysis

    NASA Technical Reports Server (NTRS)

    Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.

    2017-01-01

    Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.

  7. Martian lineaments from Mariner 6 and 7 photographs

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Ingerson, F. E.

    1973-01-01

    Mariner 6 and 7 photographs were used to investigate the nature and importance of linear surface trends on Mars. Cross correlations of frequency-azimuth distributions of linear trends from different Mariner frames indicate that lineations not recognized as topographic features have a component of pseudoforms, probably introduced during digital reconstruction of the pictures. Similar statistical tests may aid in the analysis of surface trends from future satellites and space probes. The most reliable data were separated into photometrically defined provinces. Meridiani Sinus and Margaritifer Sinus display five major trends in common, which are interpreted as extensions of crustal weaknesses related to the enormous equatorial canyon revealed in Mariner 6 and 9 pictures. Alignments of crater wall segments generally match these trends and suggest structural control of crater plan. Crater chains, however, do not match these trends and are interpreted as secondary impacts. Rose diagrams of lineations in Deucalionis Regio exhibit much more complexity and are believed to reflect a better preserved or more complex geologic history.

  8. Rayed Gratteri Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger version

    This HiRISE image covers the western portion of the primary cavity of Gratteri crater situated in the Memnonia Fossae region. Gratteri crater is one of five definitive large rayed craters on Mars. Gratteri crater has a diameter of approximately 6.9 kilometers. Crater rays are long, linear features formed from the high-velocity ejection of blocks of material that re-impact the surface in linear clusters or chains that appear to emanate from the main or primary cavity. Such craters have been long recognized as the 'brightest' and 'freshest' craters on the Moon. However, Martian rays differ from lunar rays in that they are not 'bright,' but best recognized by their thermal signature (at night) in 100 meter/pixel THEMIS thermal infrared images. The HiRISE image shows that Gratteri crater has well-developed and sharp crater morphologic features with no discernable superimposed impact craters. The HiRISE sub-image shows that this is true for the ejecta and crater floor up to the full resolution of the image. Massive slumped blocks of materials on the crater floor and the 'spur and gully' morphology with the crater wall may suggest that the subsurface in this area may be thick and homogenous. Gratteri crater's ejecta blanket (as seen in THEMIS images) can be described as 'fluidized,' which may be suggestive of the presence of ground-ice that may have helped to 'liquefy' the ejecta as it was deposited near the crater. Gratteri's ejecta can be observed to have flowed in and around obstacles including an older, degraded crater lying immediately to the SW of Gratteri's primary cavity.

    Image PSP_001367_1620 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 10, 2006. The complete image is centered at -17.7 degrees latitude, 199.9 degrees East longitude. The range to the target site was 257.1 km (160.7 miles). At this distance the image scale ranges from 25.7 cm/pixel (with 1 x 1 binning) to 102.9 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:33 PM and the scene is illuminated from the west with a solar incidence angle of 64 degrees, thus the sun was about 26 degrees above the horizon. At a solar longitude of 133.6 degrees, the season on Mars is Northern Summer.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  9. ARC-1979-A79-7087

    NASA Image and Video Library

    1979-07-09

    P-21758 BW Range: 246,000 kilometers (152,000 miles) This picture by Voyager 2 is the first close look ever obtained of Jupiter's satellite, Europa. The linear crack-like features had been seen from a much greater distance by Voyager 1 but this image provides a resolution of about four kilometers (2.5 miles). The complicated linear features appear even more like cracks or huge fractures in these images. Also seen are somewhat darker mottled regions which appear to have a slightly pitted appearance, perhaps due to small scale craters. No large craters (more than five kilometers in diameter) are easily identifiable in the Europa photographs to date, suggesting that this satellite has a young surface relative to Ganymede and Callisto, although not perhaps as young as Io's. Various models for Europa's structure will be tested during analysis of these images, including the possibility that the surface is a thin ice crust overlying water or softer ice and that the fracture systems seen are breaks in that crust. Resurfacing mechanisms such as production of fresh ice or snow along the cracks and cold glacier-like flows are being considered as possibilities for removing evidence of impact events. Europa thus appears to truly be a satellite with many properties intermediate between Ganymede and Io.

  10. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole.

    PubMed

    Flamini, D O; Saidman, S B

    2014-11-01

    Nitinol (equiatomic Ni and Ti alloy (NiTi)) substrate was modified using a coating system formed by a self-assembled film of alkylsilane compounds (propyltrichlorosilane (C3H7SiCl3) or octadecyltrichlorosilane (C18H37SiCl3)) and polypyrrole (PPy) doped with sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT). The combination of alkylsilanes and the presence of a voluminous molecule like AOT entrapped into the PPy films improve the pitting corrosion resistance of the substrate in chloride solution. The best performance was achieved with the longest alkylsilane chains, where the PPy film remains adhered to the underlying coating after a pitting corrosion test. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery

    NASA Astrophysics Data System (ADS)

    Tzanakis, I.; Bolzoni, L.; Eskin, D. G.; Hadfield, M.

    2017-05-01

    The erosion response under cavitation of different steel grades was assessed by studying the erosion rate, the volume removal, the roughness evolution, and the accumulated strain energy. A 20 kHz ultrasonic transducer with a probe diameter of 5 mm and peak-to-peak amplitude of 50 μm was deployed in distilled water to induce damage on the surface of commercial chromium and carbon steel samples. After a relatively short incubation period, cavitation induced the formation of pits, cracks, and craters whose features strongly depended on the hardness and composition of the tested steel. AISI 52100 chromium steel showed the best performance and is, therefore, a promising design candidate for replacing the existing fluid machinery materials that operate within potential cavitating environments.

  12. Island of Hawaii, State of Hawaii seen from Skylab

    NASA Image and Video Library

    1974-01-08

    SL4-139-3997 (8 Jan. 1974) --- A vertical view of the Island of Hawaii, State of Hawaii, as photographed from the Skylab space station in Earth orbit by a Skylab 4 crewman. The camera used was a hand-held Hasselblad camera, with SO-368 medium-speed Ektachrome film. This photograph, taken on Jan. 8, 1974, is very useful in studies of volcanic areas. Prominent volcanic features such as the summit caldera on Mauna Loa, the extinct volcano Mauna Kea, the Kilauea caldera, and the pit crater at Halo mau mau within the caldera are easily identified. (Kilauea was undergoing frequent eruption during the mission). Detailed features such as the extent and delineation of historic lava flows on Mauna Loa can be determined and are important parameters in volcanic studies. Photo credit: NASA

  13. Preliminary geological mapping of Io

    NASA Technical Reports Server (NTRS)

    Masursky, H.; Schaber, G. G.; Soderblom, L. A.; Strom, R. G.

    1979-01-01

    A preliminary summary of information gained by Voyager 1 on the colored, terrain and landform surface units of Io and their global distribution is presented. Colored units are classified as white to bluish-white regions which may be sulfur or sulfur dioxide deposits, red, orange, or yellow regions thought to contain various sublimates or alterations of sulfur, brownish regions limited to the polar areas and dark brown areas surrounding some vents. Terrain features observed include plains broken by scarps, isolated mountainous regions and volcanic vents resembling terrestrial caldera or pit craters. Maps of the distribution of these features, compiled by photogeological mapping techniques developed for terrestrial volcanic mapping, are presented, and the implications of the surface unit distributions for the volcanology, crustal composition, internal convection patterns and surface age of Io are discussed.

  14. Vesta in the Light of Dawn: A Nuanced Confirmation of Expectations

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    The ion-engine propelled Discovery-class mission Dawn was launched on its near decade-long odyssey to explore the two most massive asteroids in the main belt, 4 Vesta and 1 Ceres, in September 2007. Based on its mass and volume, its basaltic crust, and the chemistry of the associated HED meteorites, Vesta was expected to consist of a completely differentiated dry silicate body with an iron core in contrast to Ceres, whose much smaller density implied a much wetter body, perhaps with liquid water beneath the crust. Upon entering vestan orbit in July 2001, Dawn discovered that indeed the surface resembled the HED meteorites and the gravity data were consistent with a differentiated body with a 110-km radius core. The large southern basin seen from HST was studied and found to consist of two ancient impact basins with associated planetary rings of graben-like fossae. The water that had been hinted at in reflectance spectra observed by terrestrial telescopes was seen more broadly over the surface as was hydrogen detected with the GRaND gamma ray and neutron spectrometer. Moreover, some craters showed evidence for both running and standing water: gullies in the crater walls and pits in the crater floors. Furthermore, the expected exposure of olivine in the southern basin was not found. The presence of water, even if only transient, on the surface of Vesta, and the apparent lack of an olivine mantle were unexpected results. While these observations do not negate the earlier work based on the HED meteorites, they do add important new insight into the conditions under which Vesta formed and evolved.

  15. Rough and Tumble Hyperion Movie

    NASA Image and Video Library

    2006-02-03

    The tumbling and irregularly shaped moon Hyperion rotates away from the Cassini spacecraft in this movie taken during a distant encounter in Dec. 2005. A shadow closes over the large crater at bottom as the movie progresses. Hyperion (280 kilometers, or 174 miles across) is covered with closely packed and deeply etched pits. The warming action of the Sun on water ice lying beneath a darkened layer of surface material apparently has deepened and exaggerated the depressions already created by impacts. Cassini scientists now think that Hyperion’s unusual appearance can be attributed to the fact that it has an unusually low density for such a large object, giving it weak surface gravity and high porosity. These characteristics help preserve the original shapes of Hyperion’s craters by limiting the amount of impact ejecta coating the moon’s surface. Impactors tend to make craters by compressing the surface material, rather than blasting it out. Further, Hyperion’s weak gravity, and correspondingly low escape velocity, means that what little ejecta is produced has a good chance of escaping the moon altogether. The images were taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 23, 2005 at distances ranging from 228,000 kilometers (142,000 miles) to 238,000 kilometers (148,000 miles) from Hyperion and at a Sun-Hyperion-spacecraft, or phase, angle ranging from 77 to 86 degrees. Resolution in the original images was about 1.4 kilometers (0.9 mile) per pixel. The images have been magnified by a factor of two and contrast-enhanced to aid visibility. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA07683

  16. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    NASA Astrophysics Data System (ADS)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  17. Asteroid 243 IDA and its satellite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Klaasen, K.; Belton, M. J. S.; Veverka, J.

    1994-01-01

    A high-resolution mosaic of Ida shows a highly irregular body (roughly 56 km long), heavily covered with craters, with many interesting geological features, including grooves, blocks, chutes, dark-floored craters, and crater chains. A satellite of Ida, with a preliminary designation of 1993 (243) 1, was discovered in orbit around Ida. It is approximately 1.5 km in diameter, has an albedo and spectral reflectance not grossly different from Ida, and orbits Ida in a prograde direction with a period of roughly 20 hr. No other comparable-sized satellites have been found near Ida. New pictures of the opposite side of Ida reveal an irregular, dog-bone shape, with a prominent gouge that seems to separate Ida into two chief components. A V-shaped valley, well shown in the highest-resolution view of Ida returned in April, may mark a modest expression on the September face of the more dramatic feature on the back side. Ida's dense population of craters shows a wide diversity of morphologies, consistent with the surface having been subjected to saturated bombardment by smaller projectiles. Assuming the same projectile flux applies to Ida was used in deriving Gaspra's cratering age of about 200 m.y., and assuming that Gaspra and Ida both have the same impact strength, then the age of Ida's surface is calculated to be 1-2 b.y. This is considerably older than expected from other evidence concerning the Koronis family. Our favored explanation of Ida's satellite is that it (or a precursor satellite from which the present satellite was derived) formed during the catastrophic disruption event that formed Ida itself and formed the Koronis family of asteroids. Perhaps, instead, the satellite is a block ejected from a cratering impact. In any case, smaller blocks visible on some parts of Ida are more certain to be crater ejecta, whether or not they were ever temporary satellites.

  18. Three dimensional perspective view of false-color image of eastern Hawaii

    NASA Image and Video Library

    1994-04-18

    This is a three dimensional perspective view of false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies C-Band and L-Band. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The image was acquired on April 12, 1994 during the 52nd orbit of the Shuttle Endeavour by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The area shown is approximately 34 by 57 kilomters with the top of the image pointing toward north-west. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. Visible in the center of the image in blue are the summit crater (Kilauea Caidera) which contains the smaller Halemaumau Crater, and the line of collapsed craters below them that form the Chain of Craters Road. The rain forest appears bright in the image while green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Muana Loa volcano. The Jet Propulsion Laboratory alternative photo number is P-43932.

  19. Numerical modeling of Stickney crater and its aftermath

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen R.; Michel, Patrick; Bruck Syal, Megan; Owen, J. Michael; Miller, Paul L.; Richardson, Derek C.; Zhang, Yun

    2016-10-01

    Phobos is characterized by a large crater called Stickney. Its collisional formation and its aftermath have important implications on the final structure, morphology, and surface properties of Phobos that still need further clarification. This is particularly important in the current environment, with space mission concepts to Phobos under active study by several space agencies. SPH hydrocode simulations of the impact that formed Stickney crater [1] have been performed. Using the Soft-Sphere Discrete Element Method (SSDEM) collisional routine of the N-body code pkdgrav [2], we take the outcome of SPH simulations as inputs and model the ensuing phase of the crater formation process and its ejecta evolution under the gravitational influence of Phobos and Mars. In our simulations, about 9 million particles comprise Phobos' shape [3], and the evolution of particles that are expected to form or leave the crater is followed using multiple plausible orbits for Phobos around Mars. We track the immediate fate of low-speed ejecta (~3-8 m/s), allowing us to test an hypothesis [4] that they may scour certain groove marks that have been observed on Phobos' surface and to quantify the amounts and locations of re-impacting ejecta. We also compute the orbital fate of ejecta whose speed is below the system escape speed (about 3 km/s). This allows us to estimate the thickness and distribution of the final ejecta blanket and to check whether crater chains may form. Finally, particles forming the crater walls are followed until achieving stability, allowing us to estimate the final crater depth and diameter. We will show examples of these simulations from a set of SPH initial conditions and over a range of parameters (e.g., material friction coefficients). Work ongoing to cover a larger range of plausible impact conditions, allowing us to explore different scenarios to explain Phobos' observed properties and to infer more, giving useful constraints to space mission studies. [1] Bruck Syal, M. et al. (this meeting); [2] Schwartz, S.R. et al. 2012, Granul. Matter 14, 363; [3] Willner, K. et al. 2010, E. Earth Planet. Sci. Lett. 294, 541; [4] Wilson, L. & Head, J.W. 2015, Planet. Space Sci. 105, 26.

  20. Hydrogeothermal Convective Circulation Model for the Formation of the Chicxulub Ring of Cenotes in the Yucatan Peninsula, Mexico.

    NASA Astrophysics Data System (ADS)

    Monroy-Rios, E.; Beddows, P. A.

    2015-12-01

    Despite being deeply buried, the topography and geophysical characteristics of the multi-ring Chicxulub impact structure are reflected on the now subaerial Yucatan Peninsula with aligned arcs of cenotes (sinkholes), forming the "Ring of Cenotes". A pending question is the determination of the geological, geochemical, structural features and associated processes that have led to void development, and the upwards propagation of the voids, cross cutting over 1000 m of super-deposited carbonate sequences. Drawing from the published literature on drill core and geophysical surveys undertaken by Pemex, UNAM, and IODP/ICDP, numerical modeling, and general carbonate platform hydrothermal reactive transport models, we provide a conceptual model for the genesis of the Ring of Cenotes. In horizontally bedded carbonate platforms, geothermal gradients will drive convective flow, with strong vertical components specifically in the platform center. In the Yucatan Platform, a high occurrence of anhydrite and dolomite at depth evokes early burial dolomitization and anhydritization, sourcing Mg from seawater. The Chicxulub impact near the center of the platform produced a low permeability and high thermal conductivity melt rock that arguably extends to the basement rock at 3.5 km below surface. Heat of impact enforced the pre-existing geothermal circulation pattern, and even with depletion of the heat of impact, the high thermal conductivity of the crystalline melt would lead to enhanced geothermal gradients in the center of the platform. The cenotes overlying the crater are deep (150+ m) vertical shafts with most (but not all) breaching the surface. The pit geomorphology suggests a bottom-up formation. Excess Si in the shallow groundwater points to a convective circulation with strong vertical components geochemically linking the granodioritic basement rock to the surface. Water temperature and conductivity profiles support ongoing vertical flux in some deep pit cenotes. Within this framework, we argue for the formation of the Ring of Cenotes by hydrogeothermal convective circulation in the post-impact carbonate sequences, leading to spatially focused dissolution at depth, with voids initiated along the crater edge effectively propagating upwards, often breaching the surface.

  1. Mid-wave Infrared Hyperspectral Imaging of Kilauea's Active Halema'uma'u Pit Crater

    NASA Astrophysics Data System (ADS)

    Honniball, C. I.; Wright, R.; Lucey, P. G.

    2017-12-01

    The Mid-Wave InfraRed (MWIR) from 3 to 5 microns carries a wealth of information for both earth and planetary science applications. Molecules like methane and carbon dioxide exhibit prominent spectral features in the MWIR allowing us to detect their presences in the atmosphere after being released from volcanic vents, industrial gas leaks or biomass burning events. Energy released by wildfires at 4 μm is an important measurement for quantifying fire radiative power (FRP); an important climate variable that allows estimates of the amount of carbon liberated into the Earth's atmosphere during a burning event. FRP can also be used to estimate lava flow cooling rates and forecasting lava flow hazards. This spectral region also allows the derivation of temperatures from hot spots like the ones on Jupiter's moon Io, which provide important insights into the formation and evolution of Io. In the MWIR region there is limited signal available to measure for low temperature targets. This presents technical challenges on achieving high signal-to-noise ratios (SNR); therefore, acquiring adequate data in the MWIR is difficult without cryogenically cooling the instrument. Recent improvements to microbolometer technology and emerging interferometric techniques have allowed us to acquire good thermal infrared (TIR) data without the need for cooling. By coupling an uncooled microbolometer with a Sagnac interferometer we have demonstrated in the TIR that high SNR's can be obtained for hyperspectral imaging. To explore if this imaging technique holds in the MWIR, with funding from NASA, we have built, tested and compared two MWIR hyperspectral instruments, an uncooled microbolometer version and a liquid nitrogen cooled photon detector version with the same optical design. We demonstrate that using the aforementioned imaging technique we can achieve good SNR's for hyperspectral MWIR imaging using an uncooled instrument for targets 20°C above ambient. In late July 2017, we field tested the uncooled imager at Kilauea's Halema'uma'u pit crater which has an active lava lake and gas plume. Using the lava lake as the hot background source we present MWIR gas analysis of the Kilauea volcanic plume.

  2. Implications of Surface Morphologies for the Distribution of Shallow Subsurface Ice in Arcadia Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Hibbard, S. M.; Golombek, M. P.

    2017-12-01

    The plains of Arcadia Planitia on Mars at 40°N and 200°E straddle the southern boundary of a latitude-dependent mantle (LDM) of shallow water-ice that holds key records for the planet's climate. Ice is not stable at mid-latitude surfaces today, but is expected to have precipitated in the past during different obliquities and climatic conditions with remnant excess ice preserved in the subsurface under a veneer of soil partially isolating it from the atmosphere. Previous work has documented evidence for substantial ice in Arcadia using gamma ray spectrometry; ground-penetrating radar reflections and dielectric constants; and surface morphologies of lobate debris aprons, expanded secondary craters, terraced craters, and surface polygons. New high-resolution orbital images have been acquired that resolve meter-scale ice-related morphologies. In particular, Arcadia exhibits widespread polygonal patterned ground created by cryoturbation, and large areas of crenulated "brain coral" terrain for which the sinuous troughs have already undergone sublimation while the sinuous ridges are still ice-rich. We examined over 200 High Resolution Imaging Science Experiment (HiRISE) 25 cm/pixel images that resolve these morphologies indicating a complex transition of progressive ice loss at the edge of the LDM. HiRISE coverage is sparse across Arcadia; however, 6 m/pixel Context Camera (CTX) image coverage is nearly complete and fills in the gaps for terrain units with distinct textures. We find that crenulated terrain is restricted to a narrow latitude band at 38°N-43°N. Isolated shallow pits also occur northward of 40°N, and in many cases interconnect to form crenulations as part of a transitional morphologic continuum. Polygonal surface morphologies are ubiquitous farther north, but become increasingly sparse and more degraded farther south. These pits, crenulations, and polygons are sensitive to ice at depths of centimeters to a few meters, which could be easily accessible for future in-situ resource utilization. The latitude band of 38°N-43°N where these fine-scale morphologies occur represents the southern edge of the LDM where significant remnant ice is stored in the shallow subsurface.

  3. Pluto’s Puzzling Patterns and Pits

    NASA Image and Video Library

    2017-12-08

    This image was taken by the Long Range Reconnaissance Imager (LORRI) on NASA's New Horizons spacecraft shortly before closest approach to Pluto on July 14, 2015; it resolves details as small as 270 yards (250 meters). The scene shown is about 130 miles (210 kilometers) across. The sun illuminates the scene from the left, and north is to the upper left. Credits: NASA/JHUAPL/SwRI It seems that the more we see of Pluto, the more fascinating it gets. With its prominent heart-shaped feature, icy mountains, and “snakeskin” terrain, Pluto has already surprised New Horizons scientists with the variety and complexity of its surface features. Now this latest image, from the heart of Pluto’s heart feature, show the plains’ enigmatic cellular pattern (at left) as well as unusual clusters of small pits and troughs (from lower left to upper right). Scientists believe that this area, informally known as Sputnik Planum, is composed of volatile ices such as solid nitrogen. They theorize that the pits and troughs – typically hundreds of meters across and tens of meters deep – are possibly formed by sublimation or evaporation of these ices. However, the reasons for the striking shapes and alignments of these features are a mystery. Adding to the intrigue is that even at this resolution, no impact craters are seen, testifying to the extreme geologic youth of Sputnik Planum. “Pluto is weird, in a good way,” said Hal Weaver, New Horizons project scientist with Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “The pits, and the way they’re aligned, provide clues about the ice flow and the exchange of volatiles between the surface and atmosphere, and the science team is working hard to understand what physical processes are at play here.” NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Structure and Evolution of Hawaii's Loihi Seamount from High-resolution Mapping

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Moyer, C. L.; Glazer, B. T.; Caress, D. W.; Yoerger, D.; Kaiser, C. L.

    2016-12-01

    Loihi Seamount has been mapped repeatedly using shipboard multibeam sonars with improving resolution over time. Simrad EM302 data with 25m resolution at the 950m summit and 90m at the 5000m base of the volcano were collected from Schmidt Ocean Institute's R/V Falkor in 2014. A contracted multibeam survey in 1997 employing a deep-towed vehicle has 7m resolution for the summit and upper north and south rift zones, but suffered from poor navigation. Woods Hole Oceanographic Institution's AUV Sentry surveyed most of the summit and low-T hydrothermal vents on the base of the south rift in 2013 and 2014. The 2m resolution of most data is more precise than the navigation. The 6 summit surveys were reprocessed using MB-System to remove abundant bad bottom picks and adjust the navigation to produce a spatially accurate map. The 3 summit pits, including Pele's Pit that formed in 1996, are complex collapse structures and nested inside a larger caldera that was modified by large landslides on the east and west summit flanks. The pits cut low shields that once formed a complex of overlapping summit shields, similar to Kilauea before the current caldera formed 1500 to 1790 CE. An 11m section of ash deposits crops out on the east rim of the summit along a caldera-bounding fault and is analogous to Kilauea where the caldera-bounding faults expose ash erupted as the present caldera formed. Most of the Loihi ash section is 3300 to 5880 yr BP, indicating that the larger caldera structure at Loihi is younger than 3300 yr BP. The landslides on the east and west edges of the summit are therefore younger 3300 yr BP. The uppermost south rift has several small pit craters between cones and pillow ridges, also analogous to Kilauea. Two cones near the deep low-T vents are steep pillow mounds with slopes of talus. High-resolution mapping reveals, for the first time, the many similarities between the structure and evolution of submarine Loihi Seamount and subaerial Kilauea Volcano.

  5. Dating Kaali Crater (Estonia) based on charcoal emplaced within proximal ejecta blanket

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Huber, Matthew S.; Wisniowski, Tomasz; Paavel, Kristiina; Jõeleht, Argo; Välja, Rudolf; Plado, Jüri; Kriiska, Aivar; Wilk, Jakob; Zanetti, Michael; Geppert, Wolf D.; Kulkov, Alexander; Steier, Peter; Pirkovic, Irena

    2015-04-01

    The Kaali impact field consists of nine identified craters located on the Saaremaa Island in Estonia. The largest crater is 110 m in diameter (centered around 58°22'21.94"N, 22°40'09.91" E). It was formed by impact of an IAB iron meteoroid into Silurian dolomite target rocks covered by up to a few meters of glacial till (Veski et al. 2007). The age of the Kaali impact structure is still a matter of debate, and the estimates provided by different authors vary considerably between ~6400 BC (Raukas et al. 1995, Moora et al. 2012) and ~400 BC (Rasmussen et al. 2000, Veski et al. 2001). These ages were derived by 14C dating of marker horizons, characterized by a slightly elevated iridium content within the nearby Piila bog yielding a calibrated age of 800-400 BC (Rasmussen et al. 2000, Veski et al. 2001) and occurrences of glassy siliceous material in the Piila bog (~6400 BC: Raukas et al. 1995) or iron microspherules in an organic-rich layer of the Reo gravel pit (6400 BC: Moora et al. 2012). However, the source of the foreign material within those layers was never unequivocally connected with the Kaali crater. 14C dating of material from post-impact organic sediments within Kaali impact craters yielded ages between 1800-1500 BC (Saarse et al. 1991, Veski et al. 2004) and 1450-400 BC (Aaloe et al. 1963). These dates underestimate the age of impact as organic sediments within the crater started to form at unknown period after the impact. On the other hand, Veski et al. (2004) suggested a reservoir effect that might have caused artificially "aging" of the organic matter because the crater was emplaced within Silurian dolomite which is rich in old carbon. The aim of this study is to determine the age of the Kaali crater by 14C dating of organic material covered by the continuous layer of proximal ejecta. This research was conducted in conjunction with a new structural investigation of Kaali Main (Zanetti et al. 2015). Ten samples collected from different locations within the trench (located ~12 meters to the SW from the rim crest of the main crater) and at different depths in respect to the ejecta-till boundary were processed separately. 14C dating was per-formed at the Vienna Environmental Research Accelerator at the University of Vienna (Austria). The calibrated (95,4% probability) time ranges of eight out of ten samples span the time interval from ~1650 BC to ~1400 BC. This age is based on dating charcoal within the ejecta blanket which makes it directly linked with the impact structure, and not susceptible to potential reservoir effects. References: Aaloe et al. 1963. Eesti Loodus 6:262-265. Moora et al. 2012. Geochronometria 39: 262-267. Raukas et al. 1995. Proc. Estonian Acad. Sci., Geology 44:177-183. Rasmussen et al. 2000. MAPS 35:1067-1071. Saarse et al. 1991. Bull. Geol. Soc. Finland 63:129-139. Veski et al. 2007. Comet/Asteroid Impacts and Hu-man Society:265-275. Veski et al. 2001. MAPS 36:1367-1376. Veski et al. 2004. Veg Hist Archaeobot 13:197-206. Zanetti et al. 2015. 46th LPSC.

  6. Syn- and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia, and implications for the emplacement of South African-style kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Kurszlaukis, S.; Mahotkin, I.; Rotman, A. Y.; Kolesnikov, G. V.; Makovchuk, I. V.

    2009-11-01

    The Yubileinaya kimberlite pipe, with a surface area of 59 ha, is one of the largest pipes in the Yakutian kimberlite province. The Devonian pipe was emplaced under structural control into Lower Paleozoic karstic limestone. The pipe complex consists of several smaller precursor pipes which are cut by the large, round Main pipe. While the precursor pipes show many features typical for root zones, Main pipe is younger, cuts into the precursor pipes and exposes well-bedded volcaniclastic sediments. The maximum estimated erosion since emplacement is 250 m. Open pit mapping of a 180 m thick kimberlite sequence documents the waning phases of the volcanic activity in the kimberlite pipe and the onset of its crater infill by resedimentation. Three volcanic lithofacies types can be differentiated. The deepest and oldest facies type is a massive volcaniclastic rock ("AKB") only accessible in drill core. It is equivalent to Tuffisitic Kimberlite in South African pipes and thought to be related to the main volcanic phase which was characterized by violent explosions. The overlying lithofacies type comprises primary and resedimented volcaniclastic sediments as well as rock avalanche deposits sourced from the exposed maar crater collar. It represents the onset of sedimentation onto the crater floor during the waning phase of volcanic eruptions, where primary pyroclastic deposition was contemporaneous with resedimentation from the tephra wall and the widening maar crater. Ongoing volcanic activity is also testified by the presence of a vertical feeder conduit marking the area of the last volcanic eruption clouds piercing through the diatreme. This feeder conduit is overlain by the third and youngest lithofacies type which consists mainly of resedimented volcaniclastic material and lake beds. During the sedimentation of this facies, primary volcanic activity was only minor and finally absent and resedimentation processes dominated the crater infill. The Yubileinaya pipe complex exposes root zones, contact breccias as well as diatreme and crater infill sediments. It has all features typical of large South African-style pipes and much can be learned from Yubileinaya about the emplacement sequence and behaviour of these pipes. Emplacement of the pipe occurred over an extended time span with intermittent phases of volcanic quiescence and consolidation. The AKB reveals little direct evidence of what sort of emplacement process was dominant during the main period of volcanic activity. There is neither textural evidence that violent degassing of a juvenile gas phase has caused pipe excavation, nor that external water was present during the main phase of volcanic eruptions. However, there is clear evidence in rock textures that meteoric surface water was present during crater infill. Base surge deposits forming part of the bedded crater infill sequence indicate that water was present in the eruption clouds and, hence, the root zone of the pipe. There is no reason to assume that groundwater did not also have access to the ascending magma during the main phase of volcanic activity that excavated the pipe and formed the AKB.

  7. Geomorphological Mapping of Sputnik Planum and Surrounding Terrain on Pluto

    NASA Astrophysics Data System (ADS)

    White, Oliver; Stern, Alan; Weaver, Hal; Olkin, Cathy; Ennico, Kimberly; Young, Leslie; Moore, Jeff

    2015-11-01

    The New Horizons flyby of Pluto in July 2015 has provided the first few close-up images of the Kuiper belt object, which reveal it to have a highly diverse range of terrains, implying a complex geological history. The highest resolution images that have yet been returned are seven lossy 400 m/pixel frames that cover the majority of the prominent Plutonian feature informally named Sputnik Planum (all feature names are currently informal), and its surroundings. This resolution is sufficient to allow detailed geomorphological mapping of this area to commence. Lossless versions of all 15 frames that make up the mosaic will be returned in September 2015, and the map presented at DPS will incorporate the total area covered by these frames.Sputnik Planum, with an area of ~650,000 km2, is notable for its smooth appearance and apparent total lack of impact craters at 400 m/pixel resolution. The Planum actually displays a wide variety of textures across its expanse, which includes smooth and pitted plains to the south, polygonal terrain at its center (the polygons can reach tens of kilometers in size and are bounded by troughs that sometimes feature central ridges), and, to the north, darker polygonal terrain displaying patterns indicative of glacial flow. Within these plains there exist several well-defined outcrops of a mottled, light/dark unit that reach from several to tens of kilometers across. Separating Sputnik Planum from the dark, cratered equatorial terrain of Cthulhu Regio on its south-western margin is a unit of chaotically arranged mountains (Hillary Montes); similar mountainous units exist on the south and western margins. The northern margin is bounded by rugged, hilly, cratered terrain (Cousteau Rupes) into which ice of Sputnik Planum appears to be intruding in places. Terrain of similar relief exists to the east, but is much brighter than that to the north. The southernmost extent of the mosaic features a unit of rough, undulating terrain (Pandemonium Dorsa) that displays very few impact craters at 400 m/pixel resolution.This work was supported by the NASA New Horizons project.

  8. Topography within Europa's Mannann'an crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This three dimensional effect is created by superimposing images of Jupiter's icy moon, Europa, which were taken from slightly different perspectives. When viewed through red (left eye) and blue (right eye) filters, this product, a stereo anaglyph, shows variations in height of surface features.

    This view shows the rim and interior of the impact crater Mannann'an, on Jupiter's moon Europa. The stereo image reveals the rim of the crater which appears as a tall ridge near the left edge of the image, as well as and numerous small hills on the bottom of the crater. One of the most striking features is the large pit surrounded by circular cracks on the right side of the image, with dark radiating fractures in its center.

    The right (blue) image is a high resolution image (20 meters per picture element) taken through a clear filter. The left (red) image is composed of lower resolution (80 meters per picture element) color images taken through violet, green, and near-infrared filters and averaged to approximate an unfiltered view.

    North is to the top of the picture and the sun illuminates the scene from the east (right). The image, centered at 3 degrees north latitude and 120 degrees west longitude, covers an area approximately 18 by 4 kilometers (11 by 2.5 miles). The finest details that can be discerned in this picture are about 40 meters (44 yards) across. The images were taken on March 29th, 1998 at 13 hours, 17 minutes, 29 seconds Universal Time at a range of 1934 kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  9. Highest Resolution Gaspra Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991. The Sun is shining from the right; phase angle is 50 degrees. The resolution, about 54 meters/pixel, is the highest for the Gaspra encounter and is about three times better than that in the view released in November 1991. Additional images of Gaspra remain stored on Galileo's tape recorder, awaiting playback in November. Gaspra is an irregular body with dimensions about 19 x 12 x 11 kilometers (12 x 7.5 x 7 miles). The portion illuminated in this view is about 18 kilometers (11 miles) from lower left to upper right. The north pole is located at upper left; Gaspra rotates counterclockwise every 7 hours. The large concavity on the lower right limb is about 6 kilometers (3.7 miles) across, the prominent crater on the terminator, center left, about 1.5 kilometers (1 mile). A striking feature of Gaspra's surface is the abundance of small craters. More than 600 craters, 100-500 meters (330-1650 feet) in diameter are visible here. The number of such small craters compared to larger ones is much greater for Gaspra than for previously studied bodies of comparable size such as the satellites of Mars. Gaspra's very irregular shape suggests that the asteroid was derived from a larger body by nearly catastrophic collisions. Consistent with such a history is the prominence of groove-like linear features, believed to be related to fractures. These linear depressions, 100-300 meters wide and tens of meters deep, are in two crossing groups with slightly different morphology, one group wider and more pitted than the other. Grooves had previously been seen only on Mars's moon Phobos, but were predicted for asteroids as well. Gaspra also shows a variety of enigmatic curved depressions and ridges in the terminator region at left. The Galileo project, whose primary mission is the exploration of the Jupiter system in 1995-97, is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory.

  10. Gaspra - Highest Resolution Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991. The Sun is shining from the right; phase angle is 50 degrees. The resolution, about 54 meters/pixel, is the highest for the Gaspra encounter and is about three times better than that in the view released in November 1991. Additional images of Gaspra remain stored on Galileo's tape recorder, awaiting playback in November. Gaspra is an irregular body with dimensions about 19 x 12 x 11 kilometers (12 x 7.5 x 7 miles). The portion illuminated in this view is about 18 kilometers (11 miles) from lower left to upper right. The north pole is located at upper left; Gaspra rotates counterclockwise every 7 hours. The large concavity on the lower right limb is about 6 kilometers (3.7 miles) across, the prominent crater on the terminator, center left, about 1.5 kilometers (1 mile). A striking feature of Gaspra's surface is the abundance of small craters. More than 600 craters, 100-500 meters (330-1650 feet) in diameter are visible here. The number of such small craters compared to larger ones is much greater for Gaspra than for previously studied bodies of comparable size such as the satellites of Mars. Gaspra's very irregular shape suggests that the asteroid was derived from a larger body by nearly catastrophic collisions. Consistent with such a history is the prominence of groove-like linear features, believed to be related to fractures. These linear depressions, 100-300 meters wide and tens of meters deep, are in two crossing groups with slightly different morphology, one group wider and more pitted than the other. Grooves had previously been seen only on Mars's moon Phobos, but were predicted for asteroids as well. Gaspra also shows a variety of enigmatic curved depressions and ridges in the terminator region at left. The Galileo project, whose primary mission is the exploration of the Jupiter system in 1995-97, is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory.

  11. Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA

    NASA Astrophysics Data System (ADS)

    Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.

    2010-12-01

    The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run-out distance of the Panum BAF is smaller than previously reported. Thus, there are multiple, coarse pyroclastic flow-like deposits at the northern end of the Mono-Inyo Craters, reflecting multiple phases of dome destruction. The lower blast deposit is proposed to be a blast event predating the Panum eruption, possibly originating from Pumice Pit. The Panum BAF consists of three main facies, formed by three separate, sequential events. A debris avalanche deposited a train of jigsaw clasts along a narrow path, followed by a block and ash flow that spread material over a wider region. Finally, molten rhyolite was exposed by the earlier events, resulting in rapid foam expansion and creation of a bread crusted reticulite-bearing facies.

  12. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    PubMed

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Tidal Disruption of Strengthless Rubble Piles: A Dimensional Analysis

    NASA Technical Reports Server (NTRS)

    Hahn, Joseph M.; Rettig, Terrence W.

    1998-01-01

    A relatively simple prescription for estimating the number of debris clumps (n) that form after a catastrophic tidal disruption event is presented. Following the breakup event, it is assumed that the individual debris particles follow keplerian orbits about the planet until the debris' gravitational contraction timescale (t(sub c)) becomes shorter than its orbital spreading timescale (t(sub s)). When the two timescales become comparable, self-gravity breaks up the debris train into n = L/D clumps, which is the debris length/diameter ratio at that instant. The clumps subsequently orbit the planet independent of each other. The predicted number of clumps n is in good agreement with more sophisticated N-body treatments of tidal breakup for parabolic encounters, and the dependence of n upon the progenitor's density as well as its orbit is also mapped out for hyperbolic encounters. These findings may be used to further constrain both the orbits and densities of the tidally disrupted bodies that struck Callisto and Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains on Callisto, which have the greatest number of craters among the known chains, were formed by projectiles having comet-like densities estimated at rho(sub o) < 1 gm/cc.

  14. Evaporite karst in the light toned deposits (LTDs) within a trought of Noctis Labyrinthus, Mars.

    NASA Astrophysics Data System (ADS)

    Baioni, Davide; Tramontana, Mario

    2016-04-01

    Noctis Labyrinthus, is located on the eastern edge of the Tharsis Plateau in the equatorial region of Mars, and consists of a network of intersecting valleys that merge and coalesce with pit chains and larger troughs. In this area several studies showed the presence of units that were identified and classified as light toned deposits (LTDs) with spectral signatures of monohydrated and polyhydrated sulfate. In this work we investigate the LTDs located within a trought that is centered at 6.8° S, 261.1°E and is approximately 50 x 60 km in dimension with a depth of about 5 km below the surrounding plateau. Here, in the southern part of the trought floor, LTDs that display clear spectral signature of gypsum have been discovered through the anaysis of CRISM data. We have analyzed in great detail the MRO HiRISE images of these gypsum deposits, focusing our investigation on the features that we interpreted as karst landforms, studying the possible processes involved in their formation and shaping. In particular, our investigation highlights the presence of rounded and elongate depressions of different sizes, which we interpreted as sinkholes of polygenetic origin, that can be observed in the whole study study area. These landforms display similarities with the terrestrial sinkholes that commonly develop in all kinds of evaporite terrains in arid or cold regions on Earth. Moreover, they strongly resembled the evaporite sinkholes described in other regions of Mars. The detailed analysis of the landforms clearly indicates the presence of karst processes, inconsistent with other processes such as wind erosion, volcanic, tectonic and thermokarst processes, or with impact craters heavily eroded or reworked by geomorphic processes.

  15. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact crater chains - have been mapped. The Toharu Quadrangle predominantly displays impact craters that exhibit a range of sizes - from the limits of resolution to part of the Kerwan basin (280 km diameter) - and preservation styles. The quad also contains a number large (>20 km across) depressions that are only observable in the topographic data. Smaller craters (<40 km) generally appear morphologically "fresh", and their rims are nearly circular and raised above the surrounding terrain. Larger craters, such as Toharu, appear more degraded, exhibiting irregularly shaped, sometimes scalloped, rim structures, and debris lobes on their floors. Numerous craters (> 20 km) contain central mounds; at current FC resolution, it is difficult to discern if these are primary structures (i.e., central peaks) or secondary features. Support of the Dawn Instrument, Operations, & Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23.

  16. Photographer: JPL P-21758 BW Range: 246,000 kilometers (152,000 miles) This picture by Voyager 2 is

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer: JPL P-21758 BW Range: 246,000 kilometers (152,000 miles) This picture by Voyager 2 is the first close look ever obtained of Jupiter's satellite, Europa. The linear crack-like features had been seen from a much greater distance by Voyager 1 but this image provides a resolution of about four kilometers (2.5 miles). The complicated linear features appear even more like cracks or huge fractures in these images. Also seen are somewhat darker mottled regions which appear to have a slightly pitted appearance, perhaps due to small scale craters. No large craters (more than five kilometers in diameter) are easily identifiable in the Europa photographs to date, suggesting that this satellite has a young surface relative to Ganymede and Callisto, although not perhaps as young as Io's. Various models for Europa's structure will be tested during analysis of these images, including the possibility that the surface is a thin ice crust overlying water or softer ice and that the fracture systems seen are breaks in that crust. Resurfacing mechanisms such as production of fresh ice or snow along the cracks and cold glacier-like flows are being considered as possibilities for removing evidence of impact events. Europa thus appears to truly be a satellite with many properties intermediate between Ganymede and Io.

  17. Europa Linear Features from 246,000 kilometers

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The first close look ever obtained of Jupiter's satellite, Europa, was taken today, July 9, by Voyager 2 as the spacecraft approached the planet. The linear crack-like features had been seen from a much greater distance last March by Voyager 1. This picture was made at a range of 246,000 kilometers (152,000 miles) and provides a resolution of about four kilometers (2.5 miles). The complicated linear features appear even more like cracks or huge fractures in these images. Also seen are somewhat darker mottled regions which appear to have a slightly pitted appearance, perhaps due to small scale craters. No large craters (more than five kilometers in diameter) are easily identifiable in the Europa photographs to date, suggesting that this satellite has a young surface relative to Ganymede and Callisto, although not perhaps as young as Io's. Various models for Europa's structure will be tested during analysis of these images, including the possibility that the surface is a thin ice crust overlying water or softer ice and that the fracture systems seen are breaks in that crust. Resurfacing mechanisms such as production of fresh ice or snow along the cracks and cold glacier-like flows are being considered as possibilities for removing evidence of impact events. Europa thus appears to truly be a satellite with many properties intermediate between Ganymede and Io.

  18. The Martian Story Ares 4 Landing Site

    NASA Image and Video Library

    2015-10-05

    This image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter shows a location on Mars associated with the best-selling novel and Hollywood movie, "The Martian." It is the science-fiction tale's planned landing site for the Ares 4 mission. The novel placed the Ares 4 site on the floor of a very shallow crater in the southwestern corner of Schiaparelli Crater. This HiRISE image shows a flat region there entirely mantled by bright Martian dust. There are no color variations, just uniform reddish dust. A pervasive, pitted texture visible at full resolution is characteristic of many dust deposits on Mars. No boulders are visible, so the dust is probably at least a meter thick. Past Martian rover and lander missions from NASA have avoided such pervasively dust-covered regions for two reasons. First, the dust has a low thermal inertia, meaning that it gets extra warm in the daytime and extra cold at night, a thermal challenge to survival of the landers and rovers (and people). Second, the dust hides the bedrock, so little is known about the bedrock composition and whether it is of scientific interest. This view is one image product from HiRISE observation ESP_042014_1760, taken July 14, 2015, at 3.9 degrees south latitude, 15.2 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA19914

  19. Preliminary geological assessment of the Northern edge of ultimi lobe, Mars South Polar layered deposits

    USGS Publications Warehouse

    Murray, B.; Koutnik, M.; Byrne, S.; Soderblom, L.; Herkenhoff, K.; Tanaka, K.L.

    2001-01-01

    We have examined the local base of the south polar layered deposits (SPLD) exposed in the bounding scarp near 72??-74??S, 215??- 230??W where there is a clear unconformable contact with older units. Sections of layering up to a kilometer thick were examined along the bounding scarp, permitting an estimate of the thinnest individual layers yet reported in the SPLD. Rhythmic layering is also present locally, suggesting a similarly rhythmic variation in environmental conditions and a recorded climate signal at least in some SPLD strata. Locally, angular unconformities may be present, as has been reported for the north polar layered deposits (NPLD) and may likewise imply intervals of subaerial erosion in the SPLD. The outcropping layers display a broad range of weathering styles and may reflect more diverse conditions of depositions, erosion, and diagenesis than might have been expected from simple aeolian depostion modulated only by astronomically driven climatic fluctuations. An unexpected finding of our study is the presence of locally abundant small pits close to the bounding scarp. These quasi-circular, negative, rimless features probably originated as impact craters and were modified to varying degrees by local endogenic processes, as well as locally variable blanketing. A nominal exposure age for the most heavily cratered region in our study area is about 2 million years, and the crater statistics appear consistent with those for the overall SPLD, although there are large uncertainties in the absolute ages implied by the crater size-frequency statistics, as in all martian crater ages. Another new finding is the presence of mass wasting features along the steepest portion of the retreating bounding scarp as well as a number of examples of brittle fracture, consistent with large-scale slumping along the bounding scarp and probably also ancient basal sliding. Both subhorizontal and high angle faults appear to be exposed in the bounding scarp, but the dips of the faults are poorly constrained. These fractures, along with the relatively undeformed layers between them, suggest to us that whatever horizontal motion may have taken place outward from the central cap region was accomplished by ancient basal sliding rather than large-scale glacial-like flow or ice migration by differential ablation, as proposed recently for the northern permanent cap and underlying NPLD. We have also obtained the, first direct estimate of the regional dip of the SPLD, around 2-3* outward (northward) in one area. ?? 2001 Elsevier Science.

  20. Hollow Nodules Gas Escape Sedimentary Structures in Lacustrine Deposits on Earth and Gale Crater

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Willson, D.; Fairen, A. G.; Baker, L.; McKay, C.; Zent, A.; Mahaffy, P. R.

    2015-12-01

    Curiosity's Mastcam and MAHLI instruments in Gale Crater (GC) imaged mm-sized circular rimmed hollow nodules (HNs) (Figure 1A), pitting the Sheepbed mudstone of Yellowknife Bay Formation [1,2]. HNs are significantly smaller than the solid nodules within the outcrop, with an external mean diameter of 1.2 mm and an interior one of 0.7 mm [2] Several formation mechanisms of HNs have been discussed, such as: (1) Diagenetic dissolution of soluble mineral phases; or, (2) Gas bubbles released shortly after sediment deposition [1-3]. In an ephemeral pond in Ubehebe Crater (Death Valley, CA) we observed the formation of hollow nodule sedimentary structures produced by gas bubbles (Figure 1C) preserved in smectite-rich mud that are strikingly similar to those imaged in GC (Figure 1A). This finding supports the gas bubble hypothesis [2]. Ubehebe Crater (UC) surface sediment hollow nodules were sampled, imaged, and their internal diameter measured (200 hollow structures) showing similar shape, distribution, and composition to those imaged by Curiosity in GC. UC in-situ observations suggest the gas bubbles were generated within the slightly reducing ephemerally submerged mud. These intra-crater deposits remain otherwise extremely dry year round, i.e., Air_rH ~2-5%; ground H2O wt%: 1-2%; Summer air/ground T: 45-48ºC/67-70ºC [4-5]. Data from the Sample Analysis at Mars (SAM), CheMin, and ChemCam instruments onboard the rover revealed that HNs-bearing mudstone are rich in smectite clay e.g., ~18-20% [6,7] deposited in a neutral to mildly alkaline environment, capturing a period when the surface was potentially habitable [1]. The UC HNs-hosting deposits are also rich in smectite clays (~30%) and occur in an ephemeral shallow freshwater setting [4-5]. If present, surface hollow nodules are easy to find in dry clay-rich mud in lacustrine sediments, so they could represent a new indicator of ephemeral but habitable/inhabited environments on both Earth and early Mars. References: [1] Grotzinger J.P. et al. (2014), Science 343, 124277. [2] Stack et al. (2014) JGR,Planets 119343. [4] Bonaccorsi R. et al. (2012) AGU Fall Meeting, Abstract #P11B-1839. [5] Bonaccorsi, R. et al. (2014) AGU Fall Meeting, Paper #EP53A-3632. [6] McLennan, S.M. et al. (2014) Science 343, 1244734. [7] Ming D.W. et al. (2014) Science, 343, 1245267.

  1. A new node on the SE Asian paleoclimate map: the alkaline crater lakes of central Myanmar

    NASA Astrophysics Data System (ADS)

    Smittenberg, Rienk H.; Chabangborn, Akkaneewut; Thu Aung, Lin; Fritz, Sherilyn; Wohlfarth, Barbara

    2014-05-01

    SE Asia is climatically a key region where the Asian monsoon system connects with the Indo-Pacific warm pool and from where much (latent) heat gets transported to higher latitudes. We recently obtained sediment cores from four crater lakes located in Central Myanmar, with the aim to further colour the still largely white space on the SE Asian paleoclimate map. The chain of volcanic craters extending northeast to southwest in the vicinity of the lower Chindwin River in central Myanmar have been known for a long time. These craters are aligned west of the Sagaing Fault, which is a continental transform fault between the Indian and Sunda continental plates. Four of the craters still contain lakes, while several of the smaller craters are drained and used for agriculture. The region has a tropical Savannah climate, with warm temperatures throughout the year. Precipitation is almost absent during the dry season but increases to an average monthly precipitation of 100-134 mm per month during the monsoon season (May through October). Three of the four lakes, named Twin Ywa (30 m depth), Twin Taung (60 m), and Twin Pyauk (8m), are highly alkaline (pH 10-11), support extensive cyanobacterial blooms and are anoxic below a few meters water depth. Their sediments are composed of highly organic and laminated algae gyttjas. The shallower (2m), oxic and more neutral (pH 7.5) Lake Leshe contains organic-lean clays but with clear variations in colour and bulk density that likely mark changes in humidity though time. The lake levels of the relatively small crater lakes are solely regulated by precipitation and evaporation, and their limnology and water isotope compositions are therefore sensitive to changes in monsoon intensity. We will present limnological data including water isotopic compositions, and initial bulk sedimentary data as well as preliminary age determinations. These will form the basis for more extensive multi-proxy analyses that should result in an improved insight in SE Asian paleoclimate variability, particular from a paleo-hydrological perspective.

  2. Multiple Episodes of Recent Gully Activity Indicated by Gully Fan Stratigraphy in Eastern Promethei Terra, Mars.

    NASA Astrophysics Data System (ADS)

    Schon, S.; Head, J.; Fassett, C.

    2008-09-01

    Introduction Gullies are considered among the youngest geomorphic features on Mars based upon their stratigraphic relationships, superposition on steep slopes and distinctive morphology in unconsolidated sediment. Multiple formation hypotheses have been proposed, which can be divided into three broad classes: entirely dry mechanisms (e.g., [1,2]), wet mechanisms invoking groundwater or ground ice (e.g., [3,4]) and wet mechanisms invoking surficial meltwater (e.g., [5,6,7,8]). It has been difficult to differentiate between these hypotheses based upon past observations and it remains possible that gullies are polygenetic landforms. This study presents stratigraphic relationships in the depositional fan of a crater wall gully system that suggest: (1) multiple episodes of alluvial fan-style deposition, (2) very recent depositional activity that is younger than a newly recognized rayed crater, and (3) surficial snowmelt as the most likely source of these multiple episodes of recent gully activity. Gully-Fan Stratigraphy In Eastern Promethei Terra an ~5 km-diameter crater is observed with a well-developed gully system (Fig. 1) and several smaller gullies in its northnortheast wall. The large gully system (composed of a small western gully and larger eastern gully) shows evidence for incision into the crater wall country rock and has multiple contributory sub-alcoves and channels. The depositional fan associated with this gully system is bounded on its western side by a small arcuate ridge swell that is not observed on the eastern side of the fan. This ridge is interpreted as a moraine-like structure that may have bounded a glacially-formed depression into which the fan is deposited [8]. Similar depressions with bounding ridges are commonly observed in this latitude band (~30-50°S) in association with deeply incised gully alcoves [9,10,11]. This gully fan is composed of multiple lobes with distinct lobe contacts, incised channels, and cut-andfill deposits - all features similar to those seen in terrestrial alluvial fans [12,13]. The western portion of the fan is contained within the depression, while the younger eastern portion overlies and obscures any potential evidence of the ridge structure. A very striking and unusual feature of this gully fan is the large number of superposed impact craters; due to their density and similar diameter, we interpret these to be secondary craters from a large nearby primary impact crater. The depositional lobes of the fan can be divided into two groups: 1) those that predate the secondary crater population and 2) younger lobes that are superposed on the secondary craters. Numerous secondary craters (~1-25 m-diameter) superpose the lowermost stratigraphic lobe (Fig. 1, A), while at least three younger lobes (Fig. 1, C1, D1, and D2) directly superpose the cratered lobe. The emplacement date of these secondaries provides a robust maximum age for the youngest lobes of this fan, and therefore the most recent fluvial activity of the gully. Most gullies either have no superposed impact craters [3,7] or are too small to date with any certainty using crater counts [14]. Therefore, locating and dating the parent impact crater of these secondaries is critical to constrain the chronology and origin of gully systems. Rayed-Crater Source of the Secondary Craters Regional reconnaissance for the origin of the secondary craters led to the discovery of a previously unidentified rayed crater complex (consisting of an ~18 km-diameter outer crater and an ~7 km-diameter inner crater) approximately 175 km southwest of the gully system. Distinctive rays are observed in THEMIS nighttime thermal inertia data, but are not observable as albedo contrasts in THEMIS visible data, consistent with other identifications of young rayed craters on Mars [15,16]. The rims of both craters are distinct and consistent with the morphology of very young impact craters on Mars. The inner crater has a greater depth to diameter ratio than the outer crater (0.121 compared to 0.073), consistent with young Martian craters [17]. Both the outer and inner craters have classically-defined gullies, preferentially developed on their pole-facing walls. Polygons are observed in gully alcoves of the outer crater, but not in alcoves of the inner crater, implying a difference in substrate or thermal cycling time [18]. The outer crater is floored by ejecta from the inner crater and mantling deposits. There is no evidence of an underlying concentric crater fill deposit or other altered fill unit typical of older Amazonian altered craters [19]. The inner crater is floored by unconsolidated sediment and contains a small collection of dunes. No evidence of pits, hummocky texture or other sublimation features are observed indicating that the crater interior is not a periglacial terrain. We interpret the inner crater as younger than the most recent episode of mantling deposition (~0.4Ma) [20] due to the exposed spur and talus slope development on the equator-facing wall, a slope and orientation that preferentially preserves smooth mantle texture in this latitude regime [21]. One superposed crater (~45 mdiameter) is observed in HiRISE coverage. Using the technique of Hartmann and Quantin-Nataf [22], who dated Gratteri crater by counting small craters superposed on the floor, the inner crater is on the order of 100Ka. Based upon these observations and the relative proximity of secondary craters to the outer crater rim (making it unlikely they originated from the outer crater), the 7 km-diameter inner crater is the likely source of the rays and secondary craters of interest on the gully fan lobe. Acknowledgments: Special thanks to the Mars Recognisance Orbiter and HiRISE teams as well as the Odyssey and THEMIS teams. This research was funded by NASA. Conclusions This study has identified a gully system fan in Eastern Promethei Terra with morphology requiring multiple periods of activity for its construction. At least one lobe of the fan has retained a dense secondary crater population, while at least two episodes of activity post-date emplacement of the secondary craters. Approximately 175 km to the southwest, the likely parent rayed crater was discovered using THEMIS thermal inertia data. This 7 km-diameter crater is located within a morphologically older 18 km-diameter crater. We interpret the source crater as younger than the most recent obliquity-controlled glacial period (~0.4Ma), which is consistent with crater age dating of the floor as well. The multiple episodes of alluvial fan activity mapped in this study imply that gullies are not catastrophic landforms that formed in single events. Rather, multiple episodes of fluvial activity in the gully system are required to deposit and rework the alluvial fan that is observed. The alluvial fan morphology [10, 11] and sedimentary channel structures make dry mass-wasting processes implausible for the formation of this gully system. The multiple episodes of activity required by the fan stratigraphy documented here cast serious doubt on catastrophic groundwater discharge scenarios that are unlikely to generate episodic releases. Small amounts of surficial meltwater derived from snow and ice accumulation is suggested by the insolation geometries of gully systems and most plausibly can account for multiple periods of recent (<0.4Ma) activity required by these observations. This chronology is consistent with other evidence [11] that places gully formation in the waning stages of the ice ages that produced the latiduedependent mantles. References [1] Treiman, A. (2003) JGR 108, doi: 10.1029/2002JE001900. [2] Shinbrot, T. et al. (2004) PNAS 101, doi: 10.1073/mnas.03082511 01. [3] Malin, M. and Edgett, K. (2000) Science 288, doi: 10.1126/ science.288.5475.2330. [4] Heldmann, J. et al. (2007) Icarus 188, doi: 10.1016/j.icarus.2006.12.010. [5] Costard, F. et al. (2001) Science 295, doi: 10.1126/science.1066698. [6] Christensen, P. (2003) Nature 422, doi: 10.1038/nature01436. [7] Dickson, J. et al. (2007) Icarus 188, doi: 10/1016/j.icarus.2006.11.020. [8] Head, J. et al. (2008) Workshop on Martian Gullies: Theories and Tests, LPI #1301. [9] Hartmann, W. et al. (2003) Icarus 162, doi: 10.1016/S00 19-1035(02)00065-9. [10] Berman, D. et al. (2005), Icarus 178, doi: 10.1016/j.icarus.2005.05.011. [11] Head, J. et al. (2008) PNAS, in revision: 16 April 2008. [12] Blissenbach, E. (1954) GSA Bulletin 65, 175-190. [13] Blair, T. and McPherson, J. (1994) JSR 64, (3A) 450-489. [14] Hartmann, W. (2005), Icarus 174, doi: 10.1016/j.icar us.2004.11.023. [15] McEwen, A. et al. (2005) Icarus 176 doi: 10.1016/j.icarus.2005.02.009. [16] Tornabene, L. et al. (2006) JGR 111, doi: 10.1029/2005JE002600. [17] Garvin, J. et al. (2003) 6th International Conference on Mars, Abstract 3277. [18] Levy, J. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1171. [19] Kreslavsky, M. and Head, J. (2006) Meteoritics & Plan. Sci. 41, 1633-1646. [20] Head, J. et al. (2003) Nature 426, 797-802. [21] Schon, S. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1873. [22] Hartmann, W. and Quantin-Nataf, C. (2008) LPSC [CD-ROM], XXXIX, abstract 1844.

  3. Pluto and Charon Seen with the New Horizons Spacecraft

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.

    2016-01-01

    After nearly a decade en route, New Horizons flew through the Pluto system in July 2015. The encounter hemisphere of Pluto shows ongoing surface geological activity centered on a vast basin (Sputnik Planum [SP]*) containing a thick layer of volatile ices with a crater retention age no greater than approximately 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, likely by sublimation erosion and/or collapse. Also seen are constructional mounds with central depressions, and ridges with complex bladed textures. Pluto has ancient cratered terrains up to approximately 4 Ga old that are fractured and mantled, and perhaps eroded by glacial processes. Charon does not appear to be currently active, but experienced major tectonism and resurfacing nearly 4 Ga ago. Imaging spectrometer observations of Pluto reveal the encounter hemisphere to be dominated by volatile ices of N2, CO, and CH4, along with non-volatile components that include H2O and tholins. The most volatile of Pluto's ices (N2 and CO) are especially prevalent in the western half of Tombaugh Regio (TR), and the strikingly flat Sputnik Planum basin, which lies a few km below surrounding elevations. The high mobility of N2 and CO ices enables SP's surface to refresh itself sufficiently rapidly that no impact craters are seen there. This likely occurs through a combination of solid state convective overturning and sublimation/ condensation that produces regular patterns of pits and ridges on scales of 102 to 103 m. In many areas, CH4 appears to favor topographically high regions. Its propensity to condense on ridges could play a role in forming the bladed terrain seen in Tartarus Dorsa. H2O can be discerned across much of Cthulhu Regio, and also in a few isolated spots. In many regions, H2O ice is associated with reddish tholin coloration. Pluto's atmosphere was probed with the radio science experiment (REX) and the Alice UV spectrometer, as well as imaging at high phase angles. The surface pressure, due mostly to N2, is approximately 11 microbars. Extensive multiple haze layers are seen in the images. Alice has detected hydrocarbons in addition to CH4 in the atmosphere. Since both are inert, H2O ice and tholin could have similar geological behaviors on Pluto, possibly including aeolian transport or mobilization by volatile ice glaciation. While Pluto's H2O ice is sculpted and at least partially veiled by more volatile ices, Charon's heavily cratered H2O ice is exposed globally. H2O ice spectral bands characteristic of crystalline ice are seen everywhere on the encounter hemisphere. Charon's north polar region is strikingly red, possibly the result of the unique thermal environment of Charon's poles, which become exceptionally cold during the long, dark winters. Extremely cold regions on Charon' could cold trap gases expanding outward from Pluto as ices, and thereby subject them to rapid radiolytic processing. Charon also exhibits a weak NH3 absorption band over most or all of its surface, with small local concentrations. Detailed results of the radio science, small satellite, particles and plasma, and atmosphere investigations are in press.

  4. Tidal Distortion and Disruption of Earth-Crossing Asteroids

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.; Bottke, W. F.

    1996-09-01

    There is mounting evidence that most km-sized objects in the solar system are ``rubble-piles'', fragile objects composed of loose collections of smaller components all held together by self-gravity rather than tensile strength. The evidence includes: (a) the paucity of fast rotating km-sized asteroids (Harris, 1996, LPSC 27, 977); (b) the tidal disruption of Comet Shoemaker-Levy 9 (SL9) and observations of crater chains on the Moon and Galilean satellites (Schenk et al., 1996, Icarus 121, 149); (c) observations of extremely large craters on Phobos, Gaspra, and Ida; and (d) hydrocode models that realistically treat asteroid impacts (Love and Ahrens, 1996, Icarus, in press). Accordingly, we predict that Earth's tidal forces play a major role in the evolution of rubble-pile Earth-crossing objects (ECOs). By modeling close encounters between the Earth and our rubble-piles (for details, see Bottke et al., this issue), we found that Earth's tidal forces can make the progenitors undergo: (a) ``SL9-type'' disruption (formation of clumps of roughly equal size along the fragment train; this outcome may explain specific crater chains seen on the Moon); (b) mass shedding (over half of the primary remains intact; in many cases, the shed fragments go into orbit around the progenitor, producing binary asteroids, which could explain the population of doublet craters seen on the terrestrial planets (Bottke and Melosh, 1996, Nature 381, 51)); (c) reshaping accompanied by spin-up or spin-down (this mechanism could explain the large aspect ratio (2.76), unusual shape, and short rotation period (5.2 hours) of 1620 Geographos as well as the short rotation periods of many other ECOs). Mass shedding events for ECOs occur more frequently at low velocities relative to Earth than at high velocities, corresponding to low (e, i) values. Thus, Earth's tidal forces should be most effective at disrupting large ECOs (and producing small bodies) in this region. This localized disruption mechanism may explain observations by Rabinowitz et al. (1993, Nature 363, 704), who claim to see an ``excess'' number of small ECOs (D < 50 m) at low (e, i) relative to their expectation based on the number of large ECOs seen elsewhere.

  5. Giant Icebergs and Biological Productivity on Early Mars

    NASA Astrophysics Data System (ADS)

    Uceda, E.; Fairen, A. G.; Woodworth-Lynas, C.

    2016-12-01

    We have previously presented evidence for furrows, dump structures and chains of craters that we interpret as indication for giant iceberg transport and grounding on very cold oceans on early Mars, both in the northern plains and in the Hellas basin. Structures include: 1. Furrows: The furrows are located in elevated areas or on local topographic highs, particularly on the Hellas basin. We interpret these features in terms of iceberg rafting and grounding. 2. Chains of craters: High-resolution images of Utopia and Isidis Basins reveal chains of crater-like structures several hundred meters wide and 1 to 5 km long. 3. Dump structures: Dark boulder clusters are revealed at large scales by their slightly darker tonality with respect to the surrounding terrain. These clusters have sizes ranging from several hundred meters to 1-2 km. On Earth's oceans, giant icebergs release melting water containing nanoparticulate iron and other micronutrients, which support biological metabolism and growth to the near-coastal euphotic ecosystems, many of which are iron limited. This iron limitation of primary producers has been documented in large regions of the Earth's oceans, most notably in polar areas proximal to significant glacial activity, and is counterbalanced by the substantial enrichment of terrigenous material supplied by icebergs. The biological productivity extends hundreds of kilometres from the giant icebergs, and persists for over one month after the iceberg passes. Here we propose that giant iceberg activity on early Mars could have promoted a similar enhancing of biological productivity on the planet's oceans. The identification of specific biosignatures in icebergs trails on Earth could give clues as to what kind of biosignatures could be expected on the ancient Mars ocean floors, and where to look for them. In particular, assuming that life existed on Mars coeval to glacial activity, enhanced concentrations of organic carbon could be anticipated near giant iceberg trails, analogous to what is observed in polar oceans on Earth. Acknowledgements: The research leading to these results is a contribution from the Project "icyMARS", funded by the European Research Council, Starting Grant no 307496.

  6. Cruise report R/V Surf Surveyor cruise S1-00-CL, mapping the bathymetry of Crater Lake, Oregon

    USGS Publications Warehouse

    Gardner, James V.; Mayer, Larry A.; Buktenica, Mark W.

    2000-01-01

    During the Spring of 1999, the US Geological Survey (USGS) Pacific Seafloor Mapping Project (PSMP) was contacted by the US National Park Service Crater Lake National Park (CLNP) to inquire about the plausibility of producing a high-resolution multibeam bathymetric map of Crater Lake. The purpose was to generate a much higher-resolution and more geographically accurate bathymetric map than was produced in 1959, the last time the lake had been surveyed. Scientific interest in various aspects of Crater Lake (aquatic biology, geochemistry, volcanic processes, etc.) has increased during the past decade but the basemap of bathymetry was woefully inadequate. Funds were gathered during the early part of 2000 and the mapping began in late July, 2000. Crater Lake (see fig. 1 in report) is located in south central Oregon (see fig. 2 in report) within the Cascades Range, a chain of volcanoes that stretches from northern California to southern British Columbia. Crater Lake is the collapsed caldera of Mt. Mazama from a climatic eruption about 7700-yr ago (Nelson et al., 1988; Bacon and Lanphere, 1990; Bacon et al., 1997). The floor of Crater Lake has only been mapped three times since the lake was first stumbled upon by gold prospectors in the 1853. The first survey was carried by out by William G. Steel during a joint USGS-US Army expedition under the direction of Maj. Clarence E. Dutton in 1886 (Dutton, 1889). Steel�s mapping survey collected 186 soundings using a Millers lead-line sounding machine (see fig.3 in report). The resulting map (see fig.4 in report) shows only soundings and no attempts were made to generate contours. The second survey, conducted in 1959 by the US Coast and Geodetic Survey, mapped the bathymetry of Crater Lake with an acoustic echo sounder using radar navigation and collected 4000 soundings. The data were contoured by Williams (1961) and Byrne (1962) and the result is a fairly detailed map of the large-scale features of Crater Lake (see fig. 5 in report). The third mapping survey, the one of this report, was a joint USGS-NPS project carried out under a Cooperative Agreement with the Center for Coastal and Ocean Mapping, University of New Hampshire. The 2000 survey used a Kongsberg Simrad EM1002 high-resolution multibeam mapping system owned and operated by C&C Technologies, Inc. of Lafayette, LA.

  7. Discovery of Grooves on Gaspra

    USGS Publications Warehouse

    Veverka, J.; Thomas, P.; Simonelli, D.; Belton, M.J.S.; Carr, M.; Chapman, C.; Davies, M.E.; Greeley, R.; Greenberg, R.; Head, J.; Klaasen, K.; Johnson, T.V.; Morrison, D.; Neukum, G.

    1994-01-01

    We report the discovery of grooves in Galileo high-resolution images of Gaspra. These features, previously seen only on Mars' satellite Phobos, are most likely related to severe impacts. Grooves on Gaspra occur as linear and pitted depressions, typically 100-200 m wide, 0.8 to 2.5 km long, and 10-20 m deep. Most occur in two major groups, one of which trends approximately parallel to the asteroid's long axis, but is offset by some 15??; the other is approximately perpendicular to this trend. The first of these directions falls along a family of planes which parallel three extensive flat facets identified by Thomas et al., Icarus 107. The occurrence of grooves on Gaspra is consistent with other indications (irregular shape, cratering record) that this asteroid has evolved through a violent collisional history. The bodywide congruence of major groove directions and other structural elements suggests that present-day Gaspra is a globally coherent body. ?? 1994 Academic Press. All rights reserved.

  8. Seismic effects from major basin formation on the Moon and Mercury

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1974-01-01

    Grooved and hilly terrains are reported which occur at the antipode of major basins on the Moon (Imbrium, Orientale) and Mercury (Caloris). Order-of-magnitude calculations, for an Imbrium-size impact on the Moon, indicate P-wave-induced surface displacements of 10 m at the basin antipode that would arrive prior to secondary ejecta. Comparable surface waves are reported which would arrive subsequent to secondary ejecta impacts and would increase in magnitude as they converge at the antipode. Other seismically induced surface features include: subdued, furrowed crater walls produced by landslides and concomitant secondary impacts; emplacement and leveling of light plains units owing to seismically induced "fluidization" of slide material; knobby, pitted terrain around old basins from enhancement of seismic waves in ancient ejecta blankets; and the production and enhancement of deep-seated fractures that led to the concentration of farside lunar maria in the Apollo-Ingenii region.

  9. Intimations of water on Mars.

    PubMed

    2000-08-01

    This photo essay contains images of Mars that propose evidence of the possible present or past existence of liquid water on Mars. Images were taken by the Mars Global Surveyor Mars Orbiter Camera. Images presented include: Polar Wall Pit region, consisting of gully landforms possibly caused by seepage and runoff of liquid water; Noachis Terra region, an area of gullies eroded into the wall of a meteor impact crater, where channels and related debris are seen, possibly formed by seepage, runoff, and debris flow; two images of Gorgonum Chaos region, one a series of troughs and layers of gullies and the other of gullies in a specific layer forming an alcove similar to an aquifer; Sirenum Fossae/Gorgonum Chaos mosaic of two images from this region of the southern hemisphere of Mars, showing 20 different channels coming down from a trough and their associated debris fans. Images and their enhancements are from NASA/JPL/Malin Space Science System.

  10. Vesta surface thermal properties map

    USGS Publications Warehouse

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  11. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon - Implications for deposition and surface modification

    NASA Astrophysics Data System (ADS)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-08-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The 7700 calendar year B.P. climactic eruption of Mount Manama, USA, vented 50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Manama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ± 1 m lateral and ± 4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow-parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of closely spaced pits caused by phreatic explosions, fractures and cracks due to extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.

  12. Controls of Plume Dispersal at the Slow Spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Walter, M.; Mertens, C.; Koehler, J.; Sueltenfuss, J.; Rhein, M.; Keir, R. S.; Schmale, O.; Schneider v. Deimling, J.; German, C. R.; Yoerger, D. R.; Baker, E. T.

    2011-12-01

    The slow-spreading Mid-Atlantic Ridges hosts a multitude of different types of hydrothermal systems. Here, we compare the fluxes and the plume dispersal at three high temperature sites located in very diverse settings at comparable depths (~3000m): The recently discovered sites Turtle Pits, and Nibelungen on the southern MAR, and the Logatchev field in the North Atlantic. Plume mapping for these sites on cruises between 2004 and 2009 consisted of CTD Towyo-, Yoyo,- and station work, including velocity profiling, as well as water sampling for analysis of trace gases (CH4, H2, 3He/4He) and metals; temperature measurements and fluid sampling at the vent sites were carried out with an ROV. The aim of this work is to gain a better understanding of how the setting of a vent site affects the dispersal of the particle plume, and what means can be used to infer possible locations of vent sites based on the hydrographic properties and plume observations, using high resolution bathymetric mapping and hydrographic information. The ultramafic-hosted Nibelungen site (8°18'S) consists of a single active smoking crater, along with several extinct smokers, which is located off-axis south of a non-transform offset. The setting is characterized by rugged topography, favorable for the generation of internal tides, internal wave breaking, and vertical mixing. Elevated mixing with turbulent diffusivities Kρ up to 0.1 m2 s-1, 3 to 4 orders of magnitude higher than open ocean values, was observed close to the vent site. The mixing as well as the flow field exhibited a strong tidal cycle; the plume dispersal is thus dominated by the fast and intermittent vertical exchange and characterized by small scale spatial and temporal variability. The Turtle Pits vent fields (4°48'S) are located on a sill in a north-south orientated rift valley. The site consists of three (known) high temperature fields: Turtle Pits, Comfortless Cove, and Red Lion. The particle plume is confined to the rift valley since the depth of the valley exceeds the rise height of the plume. Velocities observed with a Lowered Acoustic Doppler Current Profiler (LADCP), and the gradient of the stratification across the sill show a hydraulic control of the background flow over the sill, resulting in a northward advection of plume material. Downstream, the particle plume is modified by a dominant across-valley tide, and strong vertical mixing in the wake of the hydraulic jump. The Logatchev hydrothermal field (14°45'N) consists of seven vent sites, mostly smoking craters, located up on the eastern flank of the axial graben. The current field as observed with LADCP is irregular, but follows to some extent the topography in the range of the particle plume. This plume is sheared in the vertical, indicating the influence of the local tides.

  13. Topography of closed depressions, scarps, and grabens in the north Tharsis region of Mars: Implications for shallow crustal discontinuities and Graben formation

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.

    1995-01-01

    Using Viking Orbiter images, detailed photoclinometric profiles were obtained across 10 irregular depressions, 32 fretted fractures, 40 troughs and pits, 124 solitary scarps, and 370 simple grabens in the north Tharsis region of Mars. These data allow inferences to be made on the shallow crustal structure of this region. The frequency modes of measured scarp heights correspond with previous general thickness estimates of the heavily cratered and rigded plains units. The depths of the flat-floored irregular depressions (55-175 m), fretted fractures (85-890 m), and troughs and pits (60-1620 m) are also similar to scarp heights (thicknesses) of the geologic units in which these depressions occur, which suggests that the depths of these flat-floored features were controlled by erosional base levels created by lithologic contacts. Although the features have a similar age, both their depths and their observed local structural control increase in the order listed above, which suggests that the more advanced stages of associated fracturing facilitated the development of these depressions by increasing permeability. If a ground-ice zone is a factor in development of these features, as has been suggested, our observation that the depths of these features decrease with increasing latitude suggests that either the thickness of the ground-ice zone does not increase poleward or the depths of the depressions were controlled by the top of the ground-ice zone whose depth may decrease with latitude.

  14. Mapping the northern plains of Mars: origins, evolution and response to climate change

    NASA Astrophysics Data System (ADS)

    Balme, Matthew; Conway, Susan; Costard, François; Gallagher, Colman; van Gasselt, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna

    2014-05-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material near, beneath, or at the surface. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The northern plains comprise three linked zones: Acidalia Planitia, Utopia Planitia and Arcadia Planitia. Each region consists of a shallow basin, with the three areas are separated by low topographic divides. Our aim is to study the ice-related geomorphology of each region in order to understand the origins, evolution and response to climate change of ice on Mars. In particular, by comparing and contrasting the three separate basins we hope to determine if the processes that created the ice-related terrains are regional (perhaps basin limited) or global in scope, and whether the differing geology of each basin has an effect on the ice-related features observed there. The ISSI team is using planetary geomorphological mapping to meet this aim. Three long strips, each about 250 km wide and spanning the ~30N to ~80N latitude range have been defined and sub-teams are each mapping a single area. The group contains experts in mapping, GIS and crater counting (details in the size-frequency distribution of impact craters on a planetary surface can reveal information about when terrains were emplaced, modified, eroded or exhumed). The first meeting of this group was held in December 2013. Here, we give an overview of the science aims of the project, describe the main difference between the three strips and report on mapping work done so far.

  15. The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars

    NASA Astrophysics Data System (ADS)

    Le Mouélic, S.; Gasnault, O.; Herkenhoff, K. E.; Bridges, N. T.; Langevin, Y.; Mangold, N.; Maurice, S.; Wiens, R. C.; Pinet, P.; Newsom, H. E.; Deen, R. G.; Bell, J. F.; Johnson, J. R.; Rapin, W.; Barraclough, B.; Blaney, D. L.; Deflores, L.; Maki, J.; Malin, M. C.; Pérez, R.; Saccoccio, M.

    2015-03-01

    The Mars Science Laboratory rover, "Curiosity" landed near the base of a 5 km-high mound of layered material in Gale crater. Mounted on the rover mast, the ChemCam instrument is designed to remotely determine the composition of soils and rocks located a few meters from the rover, using a Laser-Induced Breakdown Spectrometer (LIBS) coupled to a Remote Micro-Imager (RMI). We provide an overview of the diverse imaging investigations that were carried out by ChemCam's RMI during the first year of operation on Mars. 1182 individual panchromatic RMI images were acquired from Sol 10 to Sol 360 to document the ChemCam LIBS measurements and to characterize soils, rocks and rover hardware. We show several types of derived imaging products, including mosaics of images taken before and after laser shots, difference images to enhance the most subtle laser pits, merges with color Mastcam-100 images, micro-topography using the Z-stack technique, and time lapse movies. The very high spatial resolution of RMI is able to resolve rock textures at sub-mm scales, which provides clues regarding the origin (igneous versus sedimentary) of rocks, and to reveal information about their diagenetic and weathering evolution. In addition to its scientific value over the range accessible by LIBS (1-7 m), we also show that RMI can also serve as a powerful long distance reconnaissance tool to characterize the landscape at distances up to several kilometers from the rover.

  16. Sublimation in bright spots on (1) Ceres.

    PubMed

    Nathues, A; Hoffmann, M; Schaefer, M; Le Corre, L; Reddy, V; Platz, T; Cloutis, E A; Christensen, U; Kneissl, T; Li, J-Y; Mengel, K; Schmedemann, N; Schaefer, T; Russell, C T; Applin, D M; Buczkowski, D L; Izawa, M R M; Keller, H U; O'Brien, D P; Pieters, C M; Raymond, C A; Ripken, J; Schenk, P M; Schmidt, B E; Sierks, H; Sykes, M V; Thangjam, G S; Vincent, J-B

    2015-12-10

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense.

  17. Digestion of Starch Granules from Maize, Potato and Wheat by Larvae of the the Yellow Mealworm, Tenebrio molitor and the Mexican Bean Weevil, Zabrotes subfasciatus

    PubMed Central

    Meireles, Elaine A.; Carneiro, Cíntia N. B.; DaMatta, Renato A.; Samuels, Richard I.; Silva, Carlos P.

    2009-01-01

    Scanning electron microscopy images were taken of starch granules from different sources following exposure in vivo and in vitro to gut α-amylases isolated from Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). One α-amylase was isolated from whole larval midguts of T. molitor using non-denaturing SDS-PAGE, while two other α-amylase fractions were isolated from whole larval midguts of Z. subfasciatus using hydrophobic interaction chromatography., Digested starch granules from larvae fed on maize, potato or wheat were isolated from midgut contents. Combinations of starch granules with isolated α-amylases from both species showed similar patterns of granule degradation. In vitro enzymatic degradation of maize starch granules by the three different α-amylase fractions began by creating small holes and crater-like areas on the surface of the granules. Over time, these holes increased in number and area resulting in extensive degradation of the granule structure. Granules from potato did not show formation of pits and craters on their surface, but presented extensive erosion in their interior. For all types of starch, as soon as the interior of the starch granule was reached, the inner layers of amylose and amylopectin were differentially hydrolyzed, resulting in a striated pattern. These data support the hypothesis that the pattern of starch degradation depends more on the granule type than on the α-amylase involved. PMID:19619014

  18. Expression levels of the PiT-2 receptor explain, in part, the gestational age-dependent alterations in transduction efficiency after in utero retroviral-mediated gene transfer

    PubMed Central

    Ozturk, Ferhat; Park, Paul J.; Tellez, Joseph; Colletti, Evan; Eiden, Maribeth V.; Almeida-Porada, Graça; Porada, Christopher D.

    2014-01-01

    Background A fundamental obstacle to using retroviral-mediated gene transfer (GT) to treat human diseases is the relatively low transduction levels that have been achieved in clinically relevant human cells. We previously showed that performing GT in utero overcomes this obstacle and results in significant levels of transduction within multiple fetal organs, with different tissues exhibiting optimal transduction at different developmental stages. We undertook the present study aiming to elucidate the mechanism for this age-dependent transduction, testing the two factors that we hypothesized could be responsible: (i) the proliferative status of the tissue at the time of GT and (ii) the expression level of the amphotropic PiT-2 receptor. Methods Immunofluorescence was performed on tissues from sheep of varying developmental stages to assess the proliferative status of the predominant cells within each organ as a function of age. After developing an enzyme-linked immunosorbent assay (ELISA) and a quantitative reverse transcription chain reaction (qRT-PCR) assay, we then quantified PiT-2 expression at the protein and mRNA levels, respectively. Results The results obtained indicate that the proliferative status of organs at the time of fetal GT is not the major determinant governing transduction efficiency. By contrast, our ELISA and qRT-PCR analyses demonstrated that PiT-2 mRNA and protein levels vary with gestational age, correlating with the observed differences in transduction efficiency. Conclusions The findings of the present study explain the age-related differences that we previously observed in transduction efficiency after in utero GT. They also suggest it may be possible to achieve relatively selective GT to specific tissues by performing in utero GT when levels of PiT-2 are maximal in the desired target organ. PMID:22262359

  19. Structure-interfacial properties relationship and quantification of the amphiphilicity of well-defined ionic and non-ionic surfactants using the PIT-slope method.

    PubMed

    Ontiveros, Jesús F; Pierlot, Christel; Catté, Marianne; Molinier, Valérie; Salager, Jean-Louis; Aubry, Jean-Marie

    2015-06-15

    The Phase Inversion Temperature of a reference C10E4/n-Octane/Water system exhibits a quasi-linear variation versus the mole fraction of a second surfactant S2 added in the mixture. This variation was recently proposed as a classification tool to quantify the Hydrophilic-Lipophilic Balance (HLB) of commercial surfactants. The feasibility of the so-called PIT-slope method for a wide range of well-defined non-ionic and ionic surfactants is investigated. The comparison of various surfactants having the same dodecyl chain tail allows to rank the polar head hydrophilicity as: SO3Na⩾SO4Na⩾NMe3Br>E2SO3Na≈CO2Na⩾E1SO3Na⩾PhSO3Na>Isosorbide(exo)SO4Na≫IsosorbideendoSO4Na≫E8⩾NMe2O>E7>E6⩾Glucosyl>E5⩾Diglyceryl⩾E4>E3>E2≈Isosorbide(exo)>Glyceryl>Isosorbide(endo). The influence on the surfactant HLB of other structural parameters, i.e. hydrophobic chain length, unsaturation, replacement of Na(+) by K(+) counterion, and isomerism is also investigated. Finally, the method is successfully used to predict the optimal formulation of a new bio-based surfactant, 1-O-dodecyldiglycerol, when performing an oil scan at 25 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes

    NASA Astrophysics Data System (ADS)

    Wilson, Sharon A.; Howard, Alan D.; Moore, Jeffrey M.; Grant, John A.

    2016-09-01

    The growing inventory of post-Noachian fluvial valleys may represent a late, widespread episode of aqueous activity on Mars, contrary to the paradigm that fluvial activity largely ceased around the Noachian-Hesperian boundary. Fresh shallow valleys (FSVs) are widespread from ~30 to 45° in both hemispheres with a high concentration in northern Arabia Terra. Valleys in northern Arabia Terra characteristically start abruptly on steeper slopes and terminate in topographic depressions at elevations corresponding to model-predicted lake levels. Longer valley systems flowed into and out of chains of paleolakes. Minimum discharges based on the dimensions of the incised channel assuming medium to coarse sand-size grains ranges from tens to hundreds of m3 s-1, respectively, consistent with formation via snowmelt from surface or sub-ice flows. Hydrologic calculations indicate the valleys likely formed in hundreds of years or less, and crater statistics constrain the timing of fluvial activity to between the Hesperian and middle Amazonian. Several craters with channels extending radially outward supports evidence for overflow of interior crater lakes possibly fed by groundwater. Most FSVs occur away from young impact craters which make an association with impact processes improbable. The widespread occurrence of FSVs along with their similar morphology and shared modest state of degradation is consistent with most forming during a global interval of favorable climate, perhaps contemporaneous with alluvial fan formation in equatorial and midlatitudes. Evidence for a snowmelt-based hydrology and considerable depths of water on the landscape in Arabia supports a cold, wet, and possibly habitable environment late in Martian history.

  1. Pongal Catena on Ceres

    NASA Image and Video Library

    2017-06-08

    This image from NASA's Dawn spacecraft shows the northeastern rim of Urvara Crater on Ceres at lower left. To the right of the crater, the long, narrow feature that appears to jut out toward the north is called Pongal Catena, which is about 60 miles (96 km) long. Catenae are large grooves or troughs that can have various origins. They refer to chains of closely connected craters formed by a series of impacts, as found on Jupiter's moon Ganymede. They can also represent large faults created by internal forces, for example in this example found on Mars. The mechanism that formed Pongal Catena is not understood yet, but it likely formed as a consequence of the stresses generated by the large impacts that resulted in the formation of the Urvara and Yalode craters. Pongal catena is one of several types of fractures found in this region that reflect a complex history. A feature called Nar Sulcus is another example. Studying the geometry of these features and their relationships can help shed light on the nature of Ceres' subsurface. This image was obtained on September 28, 2015, from an altitude of about 915 miles (1,470 kilometers). Pongal Catena is centered at 37.4 degrees south latitude, 267.7 degrees east longitude. This feature gets its name from the Tamil (Sri Lanka and southern India) harvest festival observed in mid-January. It is a time for giving thanks to nature, and we thank Ceres for all the wonders it has offered us so far. https://photojournal.jpl.nasa.gov/catalog/PIA21408

  2. Unsupervised Detection of Planetary Craters by a Marked Point Process

    NASA Technical Reports Server (NTRS)

    Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.

    2011-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.

  3. Detachable microsphere scalpel tips for potential use in ophthalmic surgery with the erbium:YAG laser.

    PubMed

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2014-01-01

    Vitreoretinal surgery is performed using mechanical dissection that sometimes results in iatrogenic complications, including vitreous hemorrhage, retinal breaks, incomplete membrane delamination, retinal distortion, microscopic damage, etc. An ultraprecise laser probe would be an ideal tool for cutting away pathologic membranes; however, the depth of surgery should be precisely controlled to protect the sensitive underlying retina. The ultraprecise surgical microprobe formed by chains of dielectric spheres for use with the erbium:YAG laser source (λ=2940  nm), with extremely short optical penetration depth in tissue, was optimized. Numerical modeling demonstrated a potential advantage of five-sphere focusing chains of sapphire spheres with index n=1.71 for ablating the tissue with self-limited depth around 10 to 20 μm. Novel detachable microsphere scalpel tips formed by chains of 300 μm sapphire (or ruby) spheres were tested on ophthalmic tissues, ex vivo. Detachable scalpel tips could allow for reusability of expensive mid-infrared trunk fibers between procedures, and offer more surgical customization by interchanging various scalpel tip configurations. An innovative method for aiming beam integration into the microsphere scalpel to improve the illumination of the surgical site was also shown. Single Er:YAG pulses of 0.2 mJ and 75-μs duration produced ablation craters in cornea epithelium for one, three, and five sphere structures with the latter generating the smallest crater depth (10 μm) with the least amount of thermal damage depth (30 μm). Detachable microsphere laser scalpel tips may allow surgeons better precision and safety compared to mechanical scalpels when operating on delicate or sensitive areas like the retina.

  4. Geologic Mapping of the Av-11 Pinaria Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Hoogenboom, T.; Williams, D.; Yingst, R. A.; Jaumann, R.; Gaskell, R.; Preusker, F.; Nathues, A.; Roatsch, T.

    2012-04-01

    As part of the Dawn's orbital mapping investigation of Vesta, the Science Team is conducting geologic mapping of the surface in the form of 15 quadrangle maps, including quadrangle Av-11 (Pinaria). The base map is a monochrome Framing Camera (FC) mosaic at ~70 m/pixel, supplemented by Digital Terrain Models (DTM) and FC color ratio images, both at ~250 m/pixel, slope and contour maps, and Visible and Infrared (VIR) hyperspectral images. Av-11 straddles the 45-degree longitude in the South Polar Region, and is dominated by the rim of the ~505 km south polar topographic feature, Rheasilvia. Sparsely cratered (relatively), Av-11 is dominated by a 20 km high rim scarp (Matronalia Rupes) and by arcuate ridges and troughs forming a radial to spiral pattern across the basin floor. Primary geologic features of Av-11 include the following. Ridge-and-groove terrain radiating arcuately from the central mound unit, interpreted to be structural disruption of the basin floor associated with basin formation. The largest crater in Av-11 is Pinaria (37 km). Mass wasting deposits are observed on its floor. Secondary crater chains and fields are also evident. Mass wasting observed along Rheasilvia rim scarp and in the largest craters indicates scarp failure is a significant process. Parallel fault scarps mark this deposit of slumped debris at the base of 20 km high Matronalia Rupes, which may have formed during or shortly after basin excavation. We interpret most of these deposits as slump material emplaced as a result of the effects of basin formation and collapse. Lobate materials are characterized by lineations and lobate scarps and interpreted as Rheasilvia ejecta deposit outside Rheasilvia rim (the smoothest terrain on Vesta), and are consistent with formation by ejecta. Partial burial of older craters near the edge of these deposits are also observed.

  5. Quaternary Eruptions of the Mono-Inyo Craters, California

    NASA Astrophysics Data System (ADS)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  6. Pu'u 'Ō'ō-Kūpaianaha eruption of Kilauea, November 1991-February 1994; field data and flow maps

    USGS Publications Warehouse

    Heliker, C. Christina; Mangan, Margaret T.; Mattox, Tari N.; Kauahikaua, James P.

    1998-01-01

    The Pu'u 'Ō'ō-Kūpaianaha eruption on the east rift zone of Kīlauea, which began in January 1983, is the longest-lived rift zone eruption of the last two centuries. By 1994, a broad field of lava, nearly 1 km3 in volume and 12 km wide at the coast, had buried 87 km2 of the volcano's south flank. The initial six months of fissure eruptions (episodes 1-3) were followed by three years of episodic lava fountaining from the Pu'u 'Ō'ō vent (episodes 4–47). In July 1986, after two days of fissure eruptions up- and downrift from Pu'u 'Ō'ō (episodes 48a and 48b), the eruption shifted to a new vent, Kūpaianaha, 3.5 km downrift. For the next five-and-a-half years (episode 48), Kūpaianaha was the site of nearly continuous low-level effusion. The 49th episode occurred in November 1991, when several fissures opened between Pu'u 'Ō'ō and Kūpaianaha (see Mangan and others, 1995, Bulletin of Volcanology, v. 57, p. 127-135). This three-week-long outburst was the result of the waning output of the Kūpaianaha vent, which finally died in February 1992 (see Kauahikaua and others, 1996, Bulletin of Volcanology, v. 57, p. 641-648). The third epoch of the eruption began ten days later, when vents opened on the uprift slope of the Pu'u 'Ō'ō cone. Several flank vents erupted over the next two years (episodes 50-53). In the first year, from February 1992 through February 1993, the low-level effusion was interrupted by 21 brief pauses. These ended with the beginning of episode 53 in February 1993, and for the next year, lava effusion was continuous. Episode 53 was ongoing at the end of the interval covered by this report. During the years that Kūpaianaha was active, the Pu'u 'Ō'ō conduit gradually evolved into a crater 300 m in diameter as the conduit walls collapsed. Beginning in 1987, an active lava pond was intermittently visible in the bottom of the crater; from 1990 on, the pond was almost continuously present. The Pu'u 'Ō‘ō pond drained at the beginning of episode 49 in November 1991, and the crater floor collapsed. Lava was visible in the crater by early December, and pond overflows resurfaced the crater floor, raising it to its former level of 35 m below the rim by the end of January 1992. This report includes flow-field maps and a table giving a) start and stop times of the eruptive episodes and of pauses in the eruption, b) Pu'u 'Ō'ō lava pond and crater-floor elevations, and c) elevations of the episode 50-53 vents and of the floors of the collapse pits that subsequently formed over these vents. A chronology of this interval of the eruption and an interpretation of the data included in this report can be found in Heliker and others (1998, Bulletin of Volcanology, v. 59, p. 381-393).

  7. Identification of possible recent water/lava source vents in the Cerberus plains: Stratigraphic andcrater count age constraints

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.

    2013-04-01

    In order to investigate sources of lava and water to the Cerberus plains of Mars, geomorphological mapping on High Resolution Imaging Science Experiment (HiRISE) images was carried out to reveal the history of activity of fissures and pits which lie upstream of channels and deposits associated with a wrinkle ridge near Cerberus Fossae. The fissures and pits are superbly exposed and imaged, and flows and channels emanate directly from them, interpreted as clear evidence that these are vents. The mapping establishes stratigraphic relationships between the plains and the channels and deposits originating from the vents, establishing the vent history. For example, to the south of the wrinkle ridge, both incised channels and leveed flows extend onto the southern plain and are clearly the final phase of plains-forming activity. Conversely, to the north, vent-sourced channels only incise the plain close to the ridge—beyond that, they are overlain by large-scale regional flows that appear to have originated from the direction of Athabasca Valles. In the southeast, there is evidence of contemporaneity between vent-sourced activity and large-scale plains-forming flow that was not sourced from the vents, indicating that activity here was part of a broader process of Cerberus plains formation from multiple sources. Crater counts show all the activity to be Late Amazonian, with the latest activity tentatively dating to circa 11 Ma. Thus, this study implies that very recent outflows from these vents contributed to the formation of the Cerberus plains and constrains the timing and local flow direction of plains-forming deposits from other sources.

  8. Periodic climate change on Mars: Review of evidence and effects on distribution of volatiles

    USGS Publications Warehouse

    Carr, M.H.

    1982-01-01

    The polar regions of Mars preserve, in both their layering and their topography, a record of recent climate changes. Because of the coincidence of the growth of the northern seasonal cap with global dust storms, dust may be currently accumulating on the northern cap, but conditions at the poles will alternate with the precessional cycle. Deposition is also modulated by changes in eccentricity and obliquity, which interact complexly, affecting initiation of global dust storms, the stability of volatiles at the surface, and global wind regimes. Formation of spiral valleys and low undulations on the surface of the layered deposits may result from prefential sublimation of volatiles on sunward-facing slopes and condensation on the adjacent flats, with the rates also modulated by astronomically caused insolation variations. Lack of impact craters on the surface and lack of interruption of the layers by impact scars suggest that the polar deposits are no more than a few million years old. Older deposits may have been periodically removed, as indicated by etch-pitted terrain at the south pole and by superposition relations around the periphery of the present layered deposits. Evidence of ancient periodic climate changes that occurred before formation of the present layered terrain is fragmentary but includes pedestal craters, parallel moraine-like ridges, and etched ground at high latitudes. Perturbation of the orbital motions also results in adsorption and desorption of volatiles in the regolith, which leads to variations in atmospheric pressure and partial dehydration of the equatorial near-surface materials. ?? 1982.

  9. Caldera collapse: Perspectives from comparing Galápagos volcanoes, nuclear-test sinks, sandbox models, and volcanoes on Mars

    USGS Publications Warehouse

    Howard, K.A.

    2010-01-01

    The 1968 trapdoor collapse (1.5 km3) of Fernandina caldera in the Galapágos Islands developed the same kinds of structures as found in small sandbox-collapse models and in concentrically zoned sinks formed in desert alluvium by fault subsidence into underground nuclear-explosion cavities. Fernandina’s collapse developed through shear failure in which the roof above the evacuating chamber was lowered mostly intact. This coherent subsidence contrasts to chaotic piecemeal collapse at small, rocky pit craters, underscoring the role of rock strength relative to subsidence size. The zoning at Fernandina implies that the deflated magma chamber underlay a central basin and a bordering inward-dipping monocline, which separates a blind inner reverse fault from an outer zone of normal faulting. Similar concentric zoning patterns can be recognized in coherent subsidence structures ranging over 16 orders of magnitude in size, from sandbox experiments to the giant Olympus Mons caldera on Mars.

  10. Sketching the Moon

    NASA Astrophysics Data System (ADS)

    Handy, Richard

    If you have had the opportunity to observe the Earth's sister world through a small telescope or even a pair of binoculars, you probably already understand several aspects that make sketching her a delight. One of the most compelling is the excitement of creating a personal record of the astonishingly wide variety of terrains you observe. The Moon's face reveals a gold mine of impact-and volcanic-related processes: vast, basaltic lava-flooded basins, collapsed lava tubes snaking across its surface, long semicircular scarps that trace the shock from some of the most energetic collisions with ancient impactors, lofty mountain ranges that surround these basins, prominent isolated massifs, bright rays of pulverized rock that are flung hundreds of miles across the surface, and rugged highlands pitted by craters of all sizes. These are among some of the many treasures awaiting your discovery, and sketching these features is not only an education in observation, but it may also be a deeply rewarding personal record of the experience.

  11. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014–September 2015), Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section inmore » Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.« less

  12. Mapping of major volcanic structures on Pavonis Mons in Tharsis, Mars

    NASA Astrophysics Data System (ADS)

    Orlandi, Diana; Mazzarini, Francesco; Pagli, Carolina; Pozzobon, Riccardo

    2017-04-01

    Pavonis Mons, with its 300 km of diameter and 14 km of height, is one of the largest volcanoes of Mars. It rests on a topographic high called Tharsis rise and it is located in the centre of a SW-NE trending row of volcanoes, including Arsia and Ascraeus Montes. In this study we mapped and analyzed the volcanic and tectonic structures of Pavonis Mons in order to understand its formation and the relationship between magmatic and tectonic activity. We use the mapping ArcGIS software and vast set of high resolution topographic and multi-spectral images including CTX (6 m/pixel) as well as HRSC (12.5 m/pixel) and HiRiSE ( 0.25 m/pixel) mosaic images. Furthemore, we used MOLA ( 463 m/pixel in the MOLA MEGDR gridded topographic data), THEMIS thermal inertia (IR-day, 100 m/pixel) and THEMIS (IR-night, 100 m/pixel) images global mosaic to map structures at the regional scale. We found a wide range of structures including ring dykes, wrinkle ridges, pit chains, lava flows, lava channels, fissures and depressions that we preliminary interpreted as coalescent lava tubes. Many sinuous rilles have eroded Pavonis' slopes and culminate with lava aprons, similar to alluvial fans. South of Pavonis Mons we also identify a series of volcanic vents mainly aligned along a SW-NE trend. Displacements across recent crater rim and volcanic deposits (strike slip faults and wrinkle ridges) have been documented suggesting that, at least during the most recent volcanic phases, the regional tectonics has contributed in shaping the morphology of Pavonis. The kinematics of the mapped structures is consistent with a ENE-SSW direction of the maximum horizontal stress suggesting a possible interaction with nearby Valles Marineris. Our study provides new morphometric analysis of volcano-tectonic features that can be used to depict an evolutionary history for the Pavonis Volcano.

  13. Exploring Formation Models for Ceres Tholi and Montes

    NASA Astrophysics Data System (ADS)

    Ruesch, O.; Platz, T.; McFadden, L. A.; Hiesinger, H.; Schenk, P.; Sykes, M. V.; Schmidt, B. E.; Buczkowski, D.; Thangjam, G.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Dawn Framing Camera (FC) images of Ceres surface revealed tholi and mons, i.e., positive relief features with sub-circular to irregular basal shapes and varying height to diameter ratios and flank slopes. These domes and mounts are tentatively interpreted as volcanic constructs [1]. Alternative formation mechanisms, e.g., uplifting by diapirism or shallow intrusions [e.g., 2], could have also led to the observed features with different geological implications. FC images derived local digital elevation models reveal that the largest dome on Ceres (near Rongo crater) has a ~100 km wide base, concave downward margins with slopes of 10°-20°, a relatively flat top reaching altitudes of ~5 km relative to surrounding, and a summit pit chain of putative endogenic origin. A relevant mons on Ceres is a cone-shaped relief (10°S/316°E) with a ~30x20 km base, reaching a high of ~5 km relative to surroundings. Flank slopes approach a concave upward shape. These constructs are located in a complex geological area having resurfaced units with onlap contacts. Because of the varying morphometries of the reliefs, we explore several physical models of volcanic constructs, e.g., steep-sided dome and shield volcano. Physical models are based on radially spreading viscous gravity currents with a free upper surface [e.g., 3, 4]. Testing formation scenarios will exploit recently developed methods, such as time-variable viscosity and fixed-volume models [5], and constant flow rate models [6]. We aim to provide constraints on viable emplacement mechanisms for the different reliefs. [1] Platz et al. (2015), EPSC abstract 915, vol. 10; [2] Fagents, S.A. (2003), JGR, vol. 108, E12, 5139; [3] Huppert, H. (1982), J. Fluid Mech., vol. 121, pp. 43-58; [4] Lacey et al. (1981), EPSL, vol. 54, pp. 139-143; [5] Glaze et al. (2012), LPSC abstract 1074 ; [6] Glaze et al. (2015), LPSC abstract 1326.

  14. The Comet Radar Explorer Mission

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and texture, probing surface materials attainable by future robotic excavation missions. Thermal images will reveal areas of sublimation cooling around vents and pits, and the secular response of the outer meters as the nucleus moves farther from the Sun.

  15. Age of large volcanism to originate the Vallis Schroteri on the Moon

    NASA Astrophysics Data System (ADS)

    Honda, Chikatoshi; Toguchi, Masashi; Morota, Tomokatsu; Hirata, Naru; Demura, Hirohide; Asada, Noriaki; Kitazato, Kohei; Ogawa, Yoshiko; Terazono, Jun-Ya; Haruyama, Junichi

    The Vallis Schrüteri on the Aristarchus Plateau of the Moon is a meandering negative depres-o sion, as called a sinuous rille. The sinuous rille is located at 26.2 N deg. in latitude and 50.8 W deg. in longitude. This is the largest sinuous rille on the moon, which is 168 km in length, 6 km in width, and 500 m on average in depth (less than 1 km) [Honda et al., 2009]. The sinuous rille has been suggested that the negative depression was produced by an ancient huge lava flow which eroded into the substrate ground. The volume of lava flow to produce the negative depression seemed to be the largest among volcanisms on the Moon. However, an age of this volcanic event is not estimated yet. Therefore, it is important to estimate the formation age of the Vallis Schrüteri for understanding of thermal evolution of the Moon. We utilize the crater chronology method using the crater size-frequency distribution for the age estimation of the sinuous rille, because the ability of suitable high resolution images of Kaguya/TC lead us to measure an accurate diameter of small craters in the sinuous rille. We should remove secondary craters from our measurements to acquire more accurate age estimation. There is the Aristarchus crater, 40 km in diameter, nearby the Vallis Schrüteri, so we eliminated the area blanketed by ejecta from the crater by using the Clementine and Kaguya/MI data and carefully remove the secondary craters showing the herringbone, cluster, chains, and elongated characteristics. We examined areas of the floor of the Vallis Schrüteri, and of southwestern outside of the Aristarchus Plateau which is suspected as the lava pond to produce the Vallis Schrüteri by spectral data. If these areas are originated by same lava flow, no difference of the results of age estimation among the areas. As a result, we estimated the formation age of the floor part of the Vallis Schrüteri, as 2.5 (+0.4, -0.4) Ga, and the age of the lava pond, as 3.1 (+0.3, -0.7) Ga. The results show us that the possibility of lava pond to originate the Vallis Schrüteri suspicious. And, the formation age of the Vallis Schrüteri lead us to know an occurrence of large volcanism in the Eratosthenian which is fade-out period of more active volcanisms (Imbrian) on the Moon.

  16. Recent shallow moonquake and impact-triggered boulder falls on the Moon: New insights from the Schrödinger basin

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, P.; Sruthi, U.; Krishna, N.; Lakshmi, K. J. P.; Menon, Rajeev; Amitabh; Gopala Krishna, B.; Kring, David A.; Head, James W.; Goswami, J. N.; Kiran Kumar, A. S.

    2016-02-01

    Shallow moonquakes are thought to be of tectonic origin. However, the geologic structures responsible for these moonquakes are unknown. Here we report sites where moonquakes possibly occurred along young lobate scarps in the Schrödinger basin. Our analysis of Lunar Reconnaissance Orbiter and Chandrayaan-1 images revealed four lobate scarps in different parts of the Schrödinger basin. The scarps crosscut small fresh impact craters (<10-30 m) suggesting a young age for the scarps. A 28 km long scarp (Scarp 1) yields a minimum age of 11 Ma based on buffered crater counting, while others are 35-82 Ma old. The topography of Scarp 1 suggests a range of horizontal shortening (10-30 m) across the fault. Two scarps are associated with boulder falls in which several boulders rolled and bounced on nearby slopes. A cluster of a large number of boulder falls near Scarp 1 indicates that the scarp was seismically active recently. A low runout efficiency of the boulders (~2.5) indicates low to moderate levels of ground shaking, which we interpret to be related to low-magnitude moonquakes in the scarp. Boulder falls are also observed in other parts of the basin, where we mapped >1500 boulders associated with trails and bouncing marks. Their origins are largely controlled by recent impact events. Ejecta rays and secondary crater chains from a 14 km diameter impact crater traversed Schrödinger and triggered significant boulder falls about 17 Ma. Therefore, a combination of recent shallow moonquakes and impact events triggered the boulder falls in the Schrödinger basin.

  17. Latest Results from and Plans for the New Horizons Pluto-Kuiper Belt Mission

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Stern, Alan

    2016-07-01

    On 2015 July 14 NASA's New Horizons spacecraft flew 12,500 km above the surface of Pluto revealing a world of remarkable complexity and diversity. A giant basin filled with nitrogen ice dominated the encounter hemisphere and is the site of vigorous ongoing solid state convection that generates glacier-like transport along the surface. Giant mountains of water ice appear to be floating in the nitrogen ice. The periphery of the basin has a wide variety of landforms, including ice flow channels and chaotically arranged blocks of water ice. Extensive sublimation pitting is observed within the nitrogen ice sheet, testifying to active volatile transport. Peculiar bladed terrain to the east of the nitrogen ice sheet appears to be coated by methane ice. Pluto's equatorial region is dominated by an ancient dark red belt of material, probably tholins created either by irradiation of surface ices or by haze precipitation from the atmosphere. Pluto sports a wide variety of surface craters with some terrains dating back approximately 4 billion years while some terrains are geologically young. New Horizons discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Charon, Pluto's largest moon, displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. All of Pluto's four small moons (Styx, Nix, Kerberos, and Hydra) have high albedos, highly elongated shapes, and are rotating much faster then synchronous with their orbital periods, with rotational poles clustered near the Pluto-Charon orbital plane. The surfaces of Nix and Hydra are coated with nearly pristine crystalline water ice, despite having crater retention ages greater than 4 billion years. The New Horizons spacecraft remains healthy and was targeted toward the flyby of a small (~30-40 km) KBO in late-2015, enabling the study of an object (2014 MU69) in a completely different dynamical class (cold classical) than Pluto, if NASA approves an Extended Mission phase. In addition to the flyby of 2014 MU69 on 2019-Jan-01, the proposed Extended Mission would also include observations of more than 20 other KBOs at resolutions and geometries not feasible from Earth, and studies of the heliospheric plasma, neutral H and He, and the dust environment out to 50 AU from the Sun.

  18. Storm-generated bedforms and relict dissolution pits and channels on the Yucatan carbonate platform

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Goff, J. A.; Stewart, H. A.; Perez-Cruz, L. L.; Davis, M. B.; Duncan, D.; Saustrup, S.; Sanford, J. C.; Fucugauchi, J. U.

    2013-12-01

    The Yucatan 2013 (cruise number 2013/4_ECORD) geophysical and geotechnical hazard site survey took place aboard the R/V Justo Sierra in April 2013. Our study was conducted within the Chicxulub impact crater, encompassing three potential IODP drilling sites. The survey was located ~32 km northwest of Progreso, Mexico; data acquired included ~15.6 km2 of complete multibeam bathymetry coverage, ~435 line km of side scan sonar and CHIRP data, 204 line kilometers of magnetometer data, and 194 line kilometers of surface tow boomer profiles. Based on these data, this portion of the Yucatan Shelf consists of flat-lying, hard limestone rock overlain by isolated ribbons of carbonate sand <1.0 m thick. These ribbons are oriented along NE-SW trends and have smaller scale orthogonal sand-waves (~20-100 m wavelengths and relief of ~0.2-0.6 m) on them. The sand waves are anisotropic with steeper slopes facing the NE. The larger scale morphology can be classified as longitudinal bedforms (ribbons), and the smaller scale transverse bedforms formed in response to a NE-directed flow. This flow direction is inconsistent with the ambient west-directed current conditions, and may therefore be indicative of storm-driven currents. Numerous dissolution pits, ~5-50m in diameter, ~0.2-0.5 m deep with steep (0.1-0.5 gradient) walls, are present in the bare rock regions of most of the study area. These occasionally are floored by rippled, highly reflective (coarse) sediments. We interpret these pits as representing karstic morphology formed during the last sub-aerial exposure of the study area interpreted to have occurred during Holocene times given the present day ~17 m average water depth. A sub-surface reflector imaged on the surface tow boomer data lies 1-3 m below the hard seafloor reflection (sand ribbons are below the vertical resolution of the surface tow boomer), which we interpret as a layer within the limestone bedrock. This reflector is flat-lying and undisturbed throughout the survey area. Therefore, none of these dissolution pits appear to be underlain by a cenote or sink hole. The NW sector of the survey area exhibits a more complex morphology than the alternating ribbon/bare rock morphology elsewhere, including linear scarps (up to ~1 m relief), deeper pitting (up to ~1 m relief), and sinuous, dendritic channeling (up to ~2 m relief). The geologic origin of these features will require further investigation. Sand drifts are present in this region, but are thinner and cover less area. These observations show the dominant modern sediment formation and transport processes on this starved platform are from large storms and hurricanes that place large regions of the platform at wave base. Remaining observed features were generated during times of lower sea level.

  19. Various Landscapes and Features on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These 15 frames show the great variety of surface features on Jupiter's icy moon, Europa, which have been revealed by the Galileo spacecraft Solid State Imaging (CCD) system during its first six orbits around Jupiter from June 1996 to February 1997. North is to the top of each of the images. The features seen on Europa's surface document both internal and external processes shaping the icy crust. Internal processes and the possible presence of liquid water beneath the ice are indicated by features such as 'dark spots', lobe-shaped flow features, 'puddles','mottled terrain', knobs, pits, and the darker areas along ridges and triple bands.

    Europa is subjected to constant tugging from the giant planet, Jupiter, as well as from its neighboring moons, Io and Ganymede. This causes 'tidal' forces that affect Europa's interior and surface. Evidence for such forces includes ridges, fractures, wedge-shaped bands, and areas of 'chaos'. Some of these features result from alternate extension and compression buckling and pulling apart Europa's icy shell.

    Impact craters document external effects on a planet's surface. Although present on Europa, impact craters are relatively scarce compared to the number seen on Ganymede, Callisto, and on the surfaces of most other 'rocky' planets and moons in our solar system. This scarcity of craters suggests that the surface of Europa is very young. 'Maculae' on Europa may be the scars from large impact events.

    These images have resolutions from 27 meters (89 feet) to 7 kilometers (4.3 miles) per picture element (pixel) and were taken by Galileo at ranges of 2,500 kilometers (1,525 miles) to 677,000 kilometers (413,000 miles) from Europa.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Impact simulations on the rubble pile asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Lowry, Stephen; Snodgrass, Colin; Price, Mark; Sierks, Holger

    2015-04-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) have revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a 'rubble pile', created from the gravitational aggregation of spherical 'pebbles' that represent fragments from a major disruption event. These 'pebbles' follow a power-law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main-belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in LS-DYNA. We show that this approach allows us to explicitly follow the behavior of a single 'pebble', while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to relate surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, to the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater. We show that while it is not straightforward to explain the formation of the hill-like structure, the formation of cracks possibly leading to depletion zones can be observed. References: Keller et al., 2010, Science, 327(5962), pp. 190-193; Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.

  1. Impact Simulations on the Rubble Pile Asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Snodgrass, Colin; Lowry, Stephen C.; Price, Mark C.; Sierks, Holger

    2014-11-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) has revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a ‘rubble pile’, created from the gravitational aggregation of spherical ‘pebbles’ that represent fragments from a major disruption event. These ‘pebbles’ follow a power law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in Autodyn. We show that this approach allows us to explicitly follow the behavior of a single ‘pebble’, while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to investigate if surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, can be explained by the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater.Acknowledgements: Jakob Deller thanks the Planetary Science Institute for a Pierazzo International Student Travel Award that funds his attendance at this conference. References: Keller et al., 2010, Science, 327(5962), pp. 190-193 Jorda et al., 2012, Icarus, vol. 221 (2) pp. 1089-1100; Holsapple, 2009, PSS, 57(2), 127-141.

  2. The Distribution of Subsurface Water at Hadriaca and Tyrrhena Paterae and Surrounding Areas on Mars from Impact Crater Morphology

    NASA Astrophysics Data System (ADS)

    Lancaster, M. G.; Guest, J. E.

    1996-03-01

    It is well established that the surface of Mars exhibits abundant evidence for the presence of either liquid or frozen water during the course of Martian history. The origin, location, extent and transport of this water is of critical importance in the understanding of Martian geology and climate. In particular, the fluid appearance of rampart crater ejecta has been cited as evidence for subsurface ice at the time of impact. Ejecta morphology has proven to be a useful tool for studying the distribution of subsurface ice on Mars. It is possible that in some regions the concentration and distribution of subsurface ice has been affected by volcanic processes, either in the melting and/or mobilisation of existing subsurface water, and/or in the injection of juvenile water into the martian crust. The presence of water may also have affected the style of volcanic eruptions on Mars, increasing the volatile content of rising magmas and generating explosive activity. We are currently investigating the abundance and role of water in the evolution of the volcanoes Hadriaca and Tyrrhena Patera and surrounding highlands northeast of the Hellas Basin. The morphology of these volcanoes has been attributed to explosive volcanism, and to the presence of substantial amounts of water in the regolith at the time of their eruption. The location of Hadriaca Patera in a region containing channelled plains, debris flows, and pitted plains, together with the style of erosion of the volcano flanks suggests presence of volatile-rich surface materials or fluvial or periglacial activity. This work is a continuation of research undertaken by Cave in the Elysium Mons Region, where ice was found to be enriched at depth in the Elysium Lavas. We are performing a similar analysis for the volcanics of Hadriaca and Tyrrhena Paterae. A database containing information on the location, size, morphology, ejecta characteristics and degradation state of several hundred impact craters displaying ejecta in the region of Mars between the equator and 40 degrees S, and from 225 degrees to 275 degrees W is therefore being compiled.

  3. The thermal signature of Aso Volcano during unrest episodes detected from space and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Cigolini, Corrado; Coppola, Diego; Yokoo, Akihiko; Laiolo, Marco

    2018-04-01

    The thermal signature of Aso Volcano (Nakadake) during unrest episodes has been analyzed by combining the MODIS-MIROVA data set (2000-2017) with high-resolution images (LANDSAT 8 OLI and Sentinel 2) and ground-based thermal observations (2013-2017). The site of major activity (crater 1) is located at the summit of the volcano and is composed by a fumarole field (located in the South Area) and an acidic lake (replaced by a Central Pit during Strombolian phases). The volcanic radiative power (VRP) obtained by nighttime satellite data during the reference period was mainly below 3 MW. This thermal threshold marks the transition from high fumarole activity (HFA) to Strombolian eruptions (SE). However, periods characterized by sporadic phreatic eruptions (PE, eventually bearing phreatomagmatic episodes), which is the prevalent phase during unrest episodes, exhibit very low VRP values, being around 0.5 MW, or below. The statistical analysis of satellite data shows that the transition from HFA to Strombolian activity (which started on August 2014 and ceased in May 2015) occurs when VRP values are above the cited 3 MW threshold. In particular during marked Strombolian phases (November-December 2014), the radiative power was higher than 4 MW, reaching peak values up to 15.6 MW (on December 7, 2014, i.e., 10 days after the major Strombolian explosion of November 27). Conversely, ground-based measurements show that heat fluxes recorded by FLIR T440 Thermo-camera on the fumarole field of the South Area has been relatively stable around 2 MW until February 2015. Their apparent temperatures were fluctuating around 490-575 °C before the major Strombolian explosive event, whereas those recorded at the active vent, named Central Pit, reached their maxima slightly above 600 °C; then both exhibited a decreasing trend in the following days. During the Strombolian activity, the crater lake dried out and was then replenished by early July, 2016. Then, volcanic activity shifted back to phreatic-phreatomagmatic and the eruptive cycle was completed. During this period, the MIROVA system detected very few thermal alerts and the ground-based measurements were fluctuating around 1 MW. The most violent explosion occurred on October 8, 2016, and within the following weeks measured VRP were moderately above 2 MW. This is coeval with a thermal increase at the fumarole field of the South Area, with temperatures well above 300 °C. Thermal monitoring at Aso Volcano is an additional tool in volcano surveillance that may contribute to near-real-time hazard assessment.[Figure not available: see fulltext.

  4. Gastric form of alpha chain disease.

    PubMed Central

    Coulbois, J; Galian, P; Galian, A; Couteaux, B; Danon, F; Rambaud, J

    1986-01-01

    A case of alpha chain disease, involving the stomach only, is reported in an Algerian man suffering from epigastric pains. Upper digestive tract fibreoptic endoscopy showed two antral ulcers and an ulcerative gastritis pattern, which promptly disappeared with cimetidine treatment. Antral biopsies at a distance from the ulcers, but not of the ulcer crater itself, disclosed a dense infiltration of antral lamina propria by mature or sometimes atypical plasma cells. On transmural surgical antral biopsy, the infiltrate spread to the superficial part of the submucosa. No other localisation of the disease was found in spite of multiple biopsies obtained by endoscopy, with a peroral capsule and during staging laparotomy. The alpha chain disease protein was absent from serum and urine, but found in the gastric juice and in the cytoplasma of the cellular infiltrate (alpha 1 subclass). A complete clinical, endoscopic, histological and immunological remission was observed after a six months' course of oral tetracycline. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:3087826

  5. Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: Redundant roles for PiT-1 and PiT-2

    PubMed Central

    Crouthamel, Matthew H.; Lau, Wei Ling; Leaf, Elizabeth M.; Chavkin, Nick; Wallingford, Mary C.; Peterson, Danielle F.; Li, Xianwu; Liu, Yonggang; Chin, Michael T.; Levi, Moshe; Giachelli, Cecilia M.

    2014-01-01

    Objective Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human VSMCs, but its importance in vascular calcification in vivo, as well as the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease, and the potential compensatory role of PiT-2 using in vitro knockdown and over-expression strategies. Approach and Results Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1Δsm). PiT-1 mRNA levels were undetectable whereas PiT-2 mRNA levels were increased 2 fold in the vascular aortic media of PiT-1Δsm compared to PiT-1flox/flox control. When arterial medial calcification was induced in PiT-1Δsm and PiT-1flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1Δsm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared to PiT-1flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1Δsm VSMCs. Furthermore, over-expression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. Conclusions PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 appear to serve redundant roles in phosphate-induced calcification of vascular smooth muscle cells. PMID:23968976

  6. Preliminary Geological Map of the Ac-H-14 Yalode Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Crown, D. A.; Yingst, R. A.; Mest, S. C.; Platz, T.; Williams, D. A.; Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Marchi, S.; De Sanctis, M. C.; Russell, C.; Raymond, C. A.

    2015-12-01

    We are conducting a geologic mapping investigation of the Ac-H-14 Yalode Quadrangle (21-66°S, 270-360°E) of Ceres to examine its surface geology and geologic history. At the time of this writing, geologic mapping has been performed on Dawn Framing Camera (FC) mosaics from the late Approach phase (up to 1.3 km/px) and Survey orbit (415 m/px), including clear filter and color images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by the Low Altitude Mapping Orbit (35 m/px) starting in December 2015. The Yalode Quadrangle is dominated by the ~300-km diameter impact basin Yalode and includes rugged and smooth terrains to the east. Yalode basin has a variably preserved rim, which is continuous and sharply defined to the north/northwest and is irregular or degraded elsewhere, and may have an interior ring structure. The basin floor includes hummocky and smooth areas (some bounded by scarps), crater chains, and a lineated zone. High-resolution images will be used to search for volcanic features on the basin floor and in association with basin structures. Yalode basin and its floor deposits appear to have been strongly affected by the Urvara impact to the west. Impact craters in Yalode Quadrangle display a range of preservation states. Degraded features, including Yalode basin and numerous smaller craters, exhibit subdued rims, lack discrete ejecta deposits, and have infilled interiors. More pristine features (including the large unnamed basin in the SE corner of the quadrangle and craters on Yalode basin floor) have well-defined, quasi-circular forms with prominent rims and in some cases discernible ejecta. Some of these craters have bowl-shaped interiors and others contain hills or mounds on their floors. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, MPG, and DLR.

  7. Vesta and low gravity impact mixing

    NASA Astrophysics Data System (ADS)

    Hoffmann, Martin; Nathues, Andreas; Vincent, Jean-Baptiste; Sierks, Holger

    2013-04-01

    Re-impacting material in the velocity range of a few meters per second to a couple of hundred meters per second encounters the surface of Vesta. Studying Vesta's ejecta blankets, this specific constraint has to be taken into account. As on other planetary bodies, young craters are characterized by ray patterns. Combining this information with the evidence of Vesta's unique compaction patterns, the kinematics of the deposition process and its consequences for the spectral properties can be studied. We attempt to tackle the following questions: From which depth of a primary crater and to which extent does ejected material contribute to the mixing of surface material? What are the consequences for the local morphology and a global layer of regolith? Experiments of slow impacts into granular material resulted in the following significant effects: 1) Different depth to diameter ratios, and different profiles of the impact crater have been found, indicating transition from three dimensional interaction to surface effects. 2) The inner surfaces as well as their ejecta blanket showed quite different mixtures of material from different depths of the target area. These are interpreted as the result of pattern formation, slope and boundary effects. 3) At sufficiently low velocity and suitable projectile density the transition from inelastic to elastic interaction has been observed. 4) Between the elastic response of very slow impacts and a violent irregular agitation of the material by faster impacts, a regime of de-voiding and hence of compaction has been observed. 5) The action of force chains (Daniels et al. 2004, Rivas et al. 2011) became apparent inside the granular material, which efficiently trap energy (Daraio et al. 2006) and lead to the ray system. These results confirm and expand previous experimental, simulated and theoretically investigated evidence on the behavior of mobilized granular material. As already demonstrated by Cook and Mortensen (1967), low velocity impacts into granular material lead to anything but a simple crater morphology. Unusual scaling laws (Uehara et al. 2003) and much more diverse phase patterns than in ordinary solid media have to be taken into account, if a consistent interpretation of the formation of a crater in very deep regolith is attempted (e.g. Opsomer et al. 2011). Additional effects are due to the low gravity environment on a small planetary body like Vesta (Tancredi et al. 2012). On Vesta many apparent counterparts to the results of the experiments can be found, as demonstrated by some examples. On a global scale, the multitude of small, unresolved primary and secondary impacts into the granular regolith contributes to the observed maturity on Vesta even after short time scales. References Cook, M. A., Mortensen, K. S. 1967. Impact cratering in granular materials. J. Appl. Phys. 38, 5125-5128. Daniels, K. E., Coppock, J. E., Behringer, R. P. 2004. Dynamics of meteor impacts. Chaos 14, 84. Daraio, C., Nesterenko, V. F., Herbold, E. B., Jin S. 2006. Energy trapping and shock desintegration in a composite granular medium. Phys. Rev. Lett. 96, 058002, 1-4. Opsomer, E., Ludewig, F., Vandewalle, N. 2011. Phase transitions in vibrated granular systems in microgravity. Phys. Rev. E84, 051306, 1-5. Rivas, N., Ponce, S., Gellet, B., Risso, D., Soto, R., Cordero, P. 2011. Sudden chain energy transfer events in vibrated granular media. Phys. Rev. Lett. 106, 088001, 1-4. Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S. 2012. Granular physics in low-gravity environments using discrete element method. Monthly Not. Royal Astron. Soc. 420, 3368-3380. Uehara, J. S., Ambroso, M. A., Ojha, R. J., Durian, D. J. 2003. Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301, 1-4.

  8. Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation?

    PubMed Central

    Plavcová, Lenka; Jansen, Steven; Klepsch, Matthias; Hacke, Uwe G.

    2013-01-01

    Recent studies have suggested that species-specific pit properties such as pit membrane thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth influence xylem vulnerability to cavitation. Despite the indisputable importance of using mean pit characteristics, considerable variability in pit structure within a single species or even within a single pit field should be acknowledged. According to the rare pit hypothesis, a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-seeding. Therefore, any irregularities or morphological abnormalities in pit structure allowing air-seeding should be associated with increased vulnerability to cavitation. Considering the currently proposed models of air-seeding, pit features such as rare, large pores in the pit membrane, torus extensions, and plasmodesmatal pores in a torus can represent potential glitches. These aberrations in pit structure could either result from inherent developmental flaws, or from damage caused to the pit membrane by chemical and physical agents. This suggests the existence of interesting feedbacks between abiotic and biotic stresses in xylem physiology. PMID:24273549

  9. Microbial contents of soil from fire pits

    NASA Astrophysics Data System (ADS)

    Moon, K.; Esparza, V.; de Sandre, J.; Cheney, S.; Anderson, A.; White, M. A.

    2006-12-01

    Forest fires generate polycylic aromatic hydrocarbons (PAHs) that can lead to carcinogenic compounds, which are potential health risks. PAHs can be degraded to water and carbon dioxide by certain soil microbes. Thus, during participation in a NASA-funded summer research experience at Utah State University, our high school student team sampled soils from a month-old fire pit in which plant materials had been burnt. We detected in soil samples, from surface, 10 and 20 cm depths, microbes that would grow on a defined minimal medium source. Other microbes were cultured from the roots of plants that had established at the fire pit. A diversity of microbes was present in all samples based on visible differences in cell shape and color. It was surprising that the surface ash, although exposed to sunlight over the month interval, had culturable colonies. Many of these culturable bacteria were pigmented perhaps as a protection against UV radiation from the sun. We searched for genes in the microbes that encoded enzymes called dioxygenases that in other bacteria are involved in degradation of PAHs. This test involved using polymerase chain reactions to detect the genes. PCR products were found in two of the fifteen isolates tested although their sizes differed from the control gene product from a PAH-degrading mycobacterium isolate. These results suggest that the soils did contain microbes with the possible potential to alter the PAH compounds generated from vegetation fires. Our findings serve as a starting point for future studies looking at recovery and remediation of fired acreages.

  10. Detection of surface carbon and hydrocarbons in hot spot regions of niobium superconducting rf cavities by Raman spectroscopy

    DOE PAGES

    Cao, C.; Argonne National Lab.; Ford, D.; ...

    2013-06-26

    Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH 2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons.more » Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. Finally, the origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.« less

  11. Detection of surface carbon and hydrocarbons in hot spot regions of niobium superconducting rf cavities by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, C.; Argonne National Lab.; Ford, D.

    Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH 2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons.more » Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. Finally, the origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.« less

  12. Evidence of ancient microbial activity on Mars

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    We report for the first time in situ observations of a relatively rare secondary iron arsenate-sulphate mineral named bukovskýite - Fe3+ 2(As5+O4)(S6+O4)(OH)•7(H2O) - found in a shock melt vein of the Tissint Martian meteorite. It is hypothesised that the mineral formed when high concentrations of aqueous H+, Fe(III), SO4 and AsO4 were maintained for long periods of time in microenvironments created within wet subsurface Martian clays. The aqueous H+, Fe(III), SO4 and AsO4 species arose from the microbial oxidation of FeS2 with concurrent release of sequestrated As. The availability of aqueous AsO4 would also be complemented by dissolution by-products of the microbial reduction of Feoxides influenced by dissolved organic matter that alters the redox state and the complexation of As, thus shifting As partitioning in favour of the solute phase. This hypothesis is substantially supported by SEM analysis of a 15μm spherical structure comprising of a carbonaceous outer coating with a inner core of FeS2 (pyrite) that showed the pyrite surface with spherical pits, and chains of pits, with morphologies distinct from abiotic alteration features. The pits and channels have a clustered, geometric distribution, typical of microbial activity, and are closely comparable to biologically mediated microstructures created by Fe- and S-oxidising microbes in the laboratory. These microstructures are interpreted as trace fossils resulting from the attachment of bacteria to the pyrite surfaces.

  13. Discovery of araneiforms outside of the South Polar Layered Deposits

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Aye, K.-Michael; Portyankina, Ganna; Hansen, Candice; Lintott, Chris J.; Allen, Campbell; Allen, Sarah; Calef, Fred J.; Duca, Simone; McMaster, Adam; R. M Miller, Grant

    2017-10-01

    Mars' south polar region is sculpted by the seasonal cycle of freezing and thawing of exposed carbon dioxide (CO2) ice. In the Southern Spring, CO2 jets loft dust and dirt through cracks in the sublimating CO2 ice sheet to the surface where winds blow the material into the hundreds of thousands of dark fans observed from orbit. During this seasonal process, it is thought that the CO2 gas also exploits weaknesses in the surface below the ice sheet to carve dendritic channels known as araneiforms. Planet Four: Terrains (http://terrains.planetfour.org) is a citizen science project enlisting the general public to review ~6 m/pixel resolution Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) subimages to identify: (1) araneiforms (including features with a central pit and radiating channels known as ‘spiders’) (2) erosional depressions, troughs, mesas, ridges, and quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which we collectively refer to as ‘Swiss cheese terrain’, and (3) craters.We provide an overview of Planet Four: Terrains and discuss the distributions of our high confidence classic spider araneiforms and Swiss cheese terrain identifications in CTX images covering 11% of the South polar regions at latitudes ≤ -75 degrees N. Previously spiders were reported as being confined to the South Polar Layered Deposits (SPLD). We present the first identification of araneiforms at locations outside of the SPLD and discuss the implications for the CO2 jet hypothesis.Acknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation. We also thank the HIRSE and MRO Teams for their help in scheduling and acquiring our requested observations.

  14. Tectonic history of the Syria Planum province of Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Davis, P.A.

    1988-01-01

    We attribute most of the development of extensive fractures in the Tharsis region to discrete tectonic provinces within the region, rather than to Tharsis as a single entity. One of these provinces is in Syria Planum. Faults and collapse structures in the Syria Planum tectonic province on Mars are grouped into 13 sets based on relative age, areal distribution, and morphology. According to superposition and fault crosscutting relations and crater counts we designate six distinct episodes of tectonic activity. Photoclinometric topographic profiles across 132 grabens and fault scarps show that Syria Planum grabens have widths (average of 2.5 km, and most range from 1 to 6 km) similar to lunar grabens, but the Martian grabens have slightly higher side walls (average abour 132 m) and gentler wall slopes (average of 9?? and range of 2??-25??) than lunar grabens (93 m high and 18?? slopes). Estimates of the amount of extension for individual grabens range from 20 to 350 m; most estimates of the thickness of the faulted layer range from 0.5 to 4.5 km (average is 1.5 km). This thickness range corresponds closely to the 0.8- to 3.6-km range in depth for pits, troughs, and canyons in Noctis Labyrinthus and along the walls of Valles Marineris. We propose that the predominant 1- to 1.5-km values obtained for both the thickness of the faulted layer and the depths of the pits, troughs, and theater heads of the canyons reflect the initial depth to the water table in this region, as governed by the depth to the base of ground ice. Maximum depths for these features may indicate lowered groundwater table depths and the base of ejecta material. -from Authors

  15. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the volcanic hazard and geothermal resource potential of the Mono-Inyo volcanic chain and Long Valley Caldera region.

  16. View of Oahu, Hawaii from STS-67 Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an unusually full view of the island of Oahu in the Hawaiian chain of islands. Oahu's volcanic origins are hinted at by the volcanic crater at Diamond Head, clearly visible on the southern shore. The city of Honolulu stretches from Diamond Head to the inlet of Pearl Harbor. Honolulu's large international airport can be seen off the shore. The dense forestation of the highlands is visible below the cloud cover, and waves can be seen breaking along the northern shore where famous surfing beaches, such as Pipeline, are found.

  17. Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.

    2006-12-01

    Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'

  18. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    USGS Publications Warehouse

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  19. Secondary Craters

    NASA Image and Video Library

    2016-12-21

    This image of a southern mid-latitude crater was intended to investigate the lineated material on the crater floor. At the higher resolution of HiRISE, the image reveals a landscape peppered by small impact craters. These craters range from about 30 meters in diameter down to the resolution limit (about 2 meter diameter in this image acquired by averaging 2x2 picture elements). Such dense clusters of small craters are frequently formed by secondary craters, caused by the impact of material that was excavated and ejected from the surface of Mars during the creation of a larger nearby crater by the impact of a comet or an asteroid. Secondary impact craters are both interesting and vexing. They are interesting because they show the trajectories of the material that was ejected from the primary impact with the greatest speeds, typically material from near the surface of the blast zone. Secondary craters are often found along the traces of crater rays, linear features that extend radially from fresh impact craters and can reach many crater diameters in length. Secondary craters can be useful when crater rays are visible and the small craters can be associated with a particular primary impact crater. They can be used to constrain the age of the surface where they fell, since the surface must be older than the impact event. The age of the crater can be approximately estimated from the probability of an impact that produced a crater of such a size within a given area of Mars over a given time period. But these secondary craters can also be perplexing when no crater rays are preserved and a source crater is not easily identifiable, as is the case here. The impact that formed these secondary craters took place long enough ago that their association with a particular crater has been erased. They do not appear along the trace of a crater ray that is still apparent in visible or thermal infrared observations. These secondary craters complicate the task of estimating the age of the lineated material on the crater floor. It is necessary to distinguish secondary craters from the primary impacts that we rely upon to estimate the ages of Martian surfaces. The large number of small craters clustered together here is typical of crater rays elsewhere on Mars and suggests that these are indeed, secondary impact craters. http://photojournal.jpl.nasa.gov/catalog/PIA14450

  20. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  1. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  2. Wherefore Stoppt Thou Me?

    NASA Image and Video Library

    2015-03-11

    Like the Wedding Guest in the thrall of the Ancient Mariner, we are transfixed by the stunning landscape of today's image and the dramatic story it tells. The large degraded impact crater near the center is Coleridge. It has been pummeled by later impacts, crumpled by the formation of lobate scarps, deeply incised by secondary crater chains, and much of the interior and low-lying portions of the exterior have been infilled by plains volcanism. Samuel Taylor Coleridge (1772-1834) was an English poet, known for The Rime of the Ancient Mariner and Kubla Khan. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19238

  3. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life

    PubMed Central

    2011-01-01

    Background The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na+- or H+-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na+-dependent Pi (NaPi) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. Results We show that the human PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic for all PiT family members. A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR254-V483), was found to be a fully functional Pi transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL183-V483) did also support Pi transport albeit at very low levels. Conclusions The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. PMID:21586110

  4. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.

    PubMed

    Bøttger, Pernille; Pedersen, Lene

    2011-05-17

    The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na(+)- or H(+)-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na(+)-dependent P(i) (NaP(i)) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. We show that the human PiT2 histidine, H(502), and the human PiT1 glutamate, E(70),--both conserved in eukaryotic PiT family members--are critical for P(i) transport function. Noticeably, human PiT2 H(502) is located in the C-terminal PiT family signature sequence, and human PiT1 E(70) is located in ProDom domains characteristic for all PiT family members.A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR(254)-V(483)), was found to be a fully functional P(i) transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL(183)-V(483)) did also support P(i) transport albeit at very low levels. The results suggest that the overall structure of the P(i)-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. © 2011 Bøttger and Pedersen; licensee BioMed Central Ltd.

  5. Degradation studies of Martian impact craters

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1991-01-01

    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.

  6. Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long-period signals

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Bond, T.

    2002-01-01

    We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at Kilauca Volcano during the period September 9-26, 1999. Two distinct types of event are identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay pattern and particle motion. We locate the VLP signals with a method based on analyses of semblance and particle motion. Different source regions are identified for the two event types. One source region is located at depths of ~1 km beneath the northeast edge of the Halemaumau pit crater. A second region is located at depths of ~8 km below the northwest quadrant of Kilauea caldera. Our study represents the first time that such deep sources have been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a detailed image of the location and geometry of the magma plumbing system beneath this volcano based on source locations and moment tensor inversions of VLP signals recorded by a permanent, large-aperture broad-band network.

  7. Geological evidence for solid-state convection in Europa's ice shell.

    PubMed

    Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L

    1998-01-22

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  8. Geological evidence for solid-state convection in Europa's ice shell

    USGS Publications Warehouse

    Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.

    1998-01-01

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  9. Ceres' Yellow Spots - Observations with Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Schäfer, Michael; Schäfer, Tanja; Cloutis, Edward A.; Izawa, Matthew R. M.; Platz, Thomas; Castillo-Rogez, Julie C.; Hoffmann, Martin; Thangjam, Guneshwar S.; Kneissl, Thomas; Nathues, Andreas; Mengel, Kurt; Williams, David A.; Kallisch, Jan; Ripken, Joachim; Russell, Christopher T.

    2016-04-01

    The Framing Camera (FC) onboard the Dawn spacecraft acquired several spectral data sets of (1) Ceres with increasing spatial resolution (up to 135 m/pixel with nearly global coverage). The FC is equipped with seven color filters (0.4-1.0 μm) plus one panchromatic ('clear') filter [1]. We produced spectral mosaics using photometrically corrected FC color filter images as described in [2]. Even early FC color mosaics obtained during Dawn's approach unexpectedly exhibited quite a diversity of surface materials on Ceres. Besides the ordinary cerean surface material, potentially composed of ammoniated phyllosilicates [3] or some other alteration product of carbonaceous chondrites [4], a large number of bright spots were found on Ceres [5]. These spots are substantially brighter than the average surface (exceeding its triple standard deviation), with the spots within Occator crater being the brightest and most prominent examples (reflectance more than 10 times the average of Ceres). We observed bright spots which are different by their obvious yellow color. This yellow color appears both in a 'true color' RGB display (R=0.65, G=0.55, B=0.44 μm) as well as in a false color display (R=0.97, G=0.75, B=0.44 μm) using a linear 2% stretch. Their spectra show a steep red slope between 0.44 and 0.55 μm (UV drop-off). On the contrary to these yellow spots, the vast majority of bright spots appears white in the aforementioned color displays and exhibit blue sloped spectra, except for a shallow UV drop-off. Thus, yellow spots are easily distinguishable from white spots and the remaining cerean surface by their high values in the ratio 0.55/0.44 μm. We found 8 occurrences of yellow spots on Ceres. Most of them (>70 individual spots) occur both inside and outside crater Dantu, where white spots are also found in the immediate vicinity. Besides Dantu, further occurrences with only a few yellow spots were found at craters Ikapati and Gaue. Less definite occurrences are found at 97°E/24°N, 205°E/22°S, 244°E/31°S, 213°E/37.5°S, and at Azacca crater. Often, the yellow spots exhibit well-defined boundaries, but sometimes we found a fainter diffuse yellow tinge around them, enclosing several individual yellow spots. Rarely, they are associated with mass wasting on steep slopes, most notably on the SE crater wall of Dantu. Recently acquired clear filter images with 35 m/pixel resolution indicate only a small number of yellow spots to be situated nearby craters. These craters could also be interpreted as pits probably formed by exhalation vents. More frequently, we found yellow spots linked to small positive landforms. Only a few of the yellow spots seem to be interrelated with crater floor fractures. As with white bright spots, which were interpreted as evaporite deposits of magnesium-sulfate salts [5], the yellow spots appear to emerge from the sub-surface as a result of material transport, possibly driven by sublimation of ice [5], where vents or cracks penetrate the insulating lag deposits. However, in contrast to the white spots, a different mineralogy seems to have emerged at yellow spots. First comparisons of FC spectra with laboratory spectra indicate pyrite/marcasite as a possible component. The relatively strong UV drop-off may at least indicate some kind of sulfide- or sulfur-bearing mixture. As identifications of minerals based on FC spectra are often ambiguous, further investigations by high-resolution data yet to come from Dawn's VIR spectrometer may shed light into the compositional differences between yellow and white bright spots. References: [1] Sierks, H. et al., Space Sci. Rev., 163, 263-327, 2011. [2] Schäfer, M. et al., EPSC, Vol. 10, #488, 2015. [3] De Sanctis, M. C. et al., Nature 528, 241-244, 2015. [4] Schäfer, T. et al., EGU, #12370, 2016. [5] Nathues, A. et al., Nature 528, 237-240, 2015.

  10. The three principles of action: a Pavlovian-instrumental transfer hypothesis

    PubMed Central

    Cartoni, Emilio; Puglisi-Allegra, Stefano; Baldassarre, Gianluca

    2013-01-01

    Pavlovian conditioned stimuli can influence instrumental responding, an effect called Pavlovian-instrumental transfer (PIT). During the last decade, PIT has been subdivided into two types: specific PIT and general PIT, each having its own neural substrates. Specific PIT happens when a conditioned stimulus (CS) associated with a reward enhances an instrumental response directed to the same reward. Under general PIT, instead, the CS enhances a response directed to a different reward. While important progress has been made into identifying the neural substrates, the function of specific and general PIT and how they interact with instrumental responses are still not clear. In the experimental paradigm that distinguishes specific and general PIT an effect of PIT inhibition has also been observed and is waiting for an explanation. Here we propose an hypothesis that links these three PIT effects (specific PIT, general PIT and PIT inhibition) to three aspects of action evaluation. These three aspects, which we call “principles of action”, are: context, efficacy, and utility. In goal-directed behavior, an agent has to evaluate if the context is suitable to accomplish the goal, the efficacy of his action in getting the goal, and the utility of the goal itself: we suggest that each of the three PIT effects is related to one of these aspects of action evaluation. In particular, we link specific PIT with the estimation of efficacy, general PIT with the evaluation of utility, and PIT inhibition with the adequacy of context. We also provide a latent cause Bayesian computational model that exemplifies this hypothesis. This hypothesis and the model provide a new framework and new predictions to advance knowledge about PIT functioning and its role in animal adaptation. PMID:24312025

  11. Plume composition and volatile flux from Nyamulagira volcano

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Bobrowski, Nicole; Giuffrida, Giovanni Bruno; Scaglione, Sarah; Liotta, Marcello; Brusca, Lorenzo; D'Alessandro, Walter; Arellano, Santiago; Yalire, Matiew; Galle, Bo; Tedesco, Dario

    2015-04-01

    Nyamulagira, in the Virunga volcanic province (VVP), Democratic Republic of Congo, is one of the most active volcanoes in Africa. The volcano is located about 25 km north-northwest of Lake Kivu in the Western Branch of the East African Rift System (EARS). The activity is characterized by frequent eruptions (on average, one eruption every 2-4 years) which occur both from the summit crater and from the flanks (31 flank eruptions over the last 110 years). Due to the peculiar low viscosity of its lava and its location in the floor of the rift, Nyamulagira morphology is characterized by a wide lava field that covers over 1100 km2 and contains more than 100 flank cones. Indeed, Nyamulagira is a SiO2- undersaturated and alkali-rich basaltic shield volcano with a 3058 m high summit caldera with an extension of about 2 km in diameter. In November 2014 a field expedition was carried out at Nyamulagira volcano and we report here the first assessment of the plume composition and volatile flux from Nyamulagira volcano. Helicopter flights and field observations allowed us to recognize the presence of lava fountains inside an about 350-meter wide pit crater. The lava fountains originated from an extended area of about 20 to 40 m2, in the northeast sector of the central caldera. A second smaller source, close to the previous described one, was clearly visible with vigorous spattering activity. There was no evidence of a lave lake but the persistence of intense activity and the geometry of the bottom of the caldera might evolve in a new lava lake. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles, halogens and trace elements. We deployed a portable MultiGAS station at the rim of Nyamulagira crater, measuring (at 0.5 Hz for about 3 hours) the concentrations of major volcanogenic gas species in the plume (H2O, CO2, SO2, H2S). Simultaneously, scanning differential optical absorption spectroscopy instruments were applied inside the crater as well as downwind the volcano and active alkaline traps (Raschig-Tube and Drechsel bottle) were exposed. The alkaline solution traps acidic species (CO2, SO2, H2S, HCl, HF, HBr, HI) due to the acid-base reactions. Moreover, filter packs technique have also been used to collect both the volatile phase of the plume (sulphur and halogen species) and the particulate phase (major and trace metals) emitted from the volcano. These new results will add to our lacking knowledge of volcanic degassing in VVP, and will increase constraints on the abundances and origins of volatiles from the mantle source which feeds volcanism in the western branch of the EARS.

  12. Geology and landscape evolution of the Hellas region of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Leonard, Gregory J.

    1995-01-01

    Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S 60 deg E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (>1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topography, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approx. 1- to 2-km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approx. 100-200 m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands. Their subsequent erosion resulted in pitted and etched plains and crater fill, irregular mesas, and pedestal craters. Local evidence occurs for the possible former presence of ground ice or ice sheets approx. 100 km across; however, we disagree with a hypothesis that suggests that the entire south rim and much of the floor of Hellas have been glaciated. Orientations of dune fields and yardangs in lower parts of Hellas basin follow directions of the strongest winds predicted by a recently published general circulation model (GCM). Transient frost and dust splotches in the region are, by contrast, related to the GCM prediction for the season in which the images they appear in were taken.

  13. Geology and landscape evolution of the Hellas region of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Leonard, Gregory J.

    1995-01-01

    Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S60E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (greater than 1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topology, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approximately 1-to 2km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approximately 100-200m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands. Their subsequent erosion resulted in pitted and etched plains and crater fill, irregular mesas, and pedestal craters. Local evidence occurs for the possible former presence of ground ice or ice sheets approximately 100 km across; however, we disagree with a hypothesis that suggest that the entire south rim and much of the floor of Hellas have been glaciated. Orientations of dune fields and yardangs in lower parts of Hellas basin follow directions of the strongest winds predicted by a recently published general circulation model (GCM). Transient frost and dust splotches in the region are, by contrast, related to the GCM prediction for the season in which the images they appear in were taken.

  14. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Stadermann, A.; Jolliff, B.; Hiesinger, H.; van der Bogert, C. H.; Plescia, J.

    2017-12-01

    Crater size-frequency distributions on the ejecta blankets of Aristarchus and Tycho Craters are highly variable, resulting in apparent absolute model age differences despite ejecta being emplaced in a geologic instant. Crater populations on impact melt ponds are a factor of 4 less than on the ejecta, and crater density increases with distance from the parent crater rim. Although target material properties may affect crater diameters and in turn crater size-frequency distribution (CSFD) results, they cannot completely reconcile crater density and population differences observed within the ejecta blanket. We infer from the data that self-secondary cratering, the formation of impact craters immediately following the emplacement of the continuous ejecta blanket by ejecta from the parent crater, contributed to the population of small craters (< 300 m diameter) on ejecta blankets and must be taken into account if small craters and small count areas are to be used for relative and absolute model age determinations on the Moon. Our results indicate that the cumulative number of craters larger than 1 km in diameter per unit area, N(1), on the continuous ejecta blanket at Tycho Crater, ranges between 2.17 × 10-5 and 1.0 × 10-4, with impact melt ponds most accurately reflecting the primary crater flux (N(1) = 3.4 × 10-5). Using the cratering flux recorded on Tycho impact melt deposits calibrated to accepted exposure age (109 ± 1.5 Ma) as ground truth, and using similar crater distribution analyses on impact melt at Aristarchus Crater, we infer the age of Aristarchus Crater to be ∼280 Ma. The broader implications of this work suggest that the measured cratering rate on ejecta blankets throughout the Solar System may be overestimated, and caution should be exercised when using small crater diameters (i.e. < 300 m on the Moon) for absolute model age determination.

  15. Moon-Mercury: Relative preservation states of secondary craters

    USGS Publications Warehouse

    Scott, D.H.

    1977-01-01

    Geologic mapping of the Kuiper quadrangle of Mercury and other geologic studies of the planet indicate that secondary craters are much better preserved than those on the moon around primary craters of similar size and morphology. Among the oldest recognized secondary craters on the moon associated with craters 100 km across or less are those of Posidonius, Atlas and Plato; these craters have been dated as middle to late Imbrian in age. Many craters on Mercury with dimensions, morphologies and superposed crater densities similar to these lunar craters have fields and clusters of fresher appearing secondary craters. The apparent differences between secondary-crater morphology and parent crater may be due in part to: (1) rapid isostatic adjustment of the parent crater; (2) different impact fluxes between the two planets; and (or) (3) to the greater concentration of Mercurian secondaries around impact areas, thereby accentuating crater forms. Another factor which may contribute to the better state of preservation of Mercurian secondaries relative to the moon is the difference in crater ejecta velocities on both bodies. These velocities have been calculated for fields of secondary craters at about equal ranges from lunar and Mercurian parent craters. Results show that ejection velocities of material producing most of the secondary craters are rather low (<1 km/s) but velocities on Mercury are about 50% greater than those on the moon for equivalent ranges. Higher velocities may produce morphologically enhanced secondary craters which may account for their better preservation with time. ?? 1977.

  16. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  17. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  18. Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages

    NASA Astrophysics Data System (ADS)

    Trang, D.; Gillis-Davis, J.; Boyce, J. M.

    2013-12-01

    The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of freshness for craters <8 km in diameter. We convert this graphical solution to a single function of two independent variables, observed degree of freshness and crater diameter. This function, which results in a corrected degree of freshness is found through a curve-fitting routine and corrects the degree of freshness for craters <8 km in diameter. As a result, we are able to derive absolute ages from the degree of freshness of craters with diameters from about ≤20 km down to a 1 km in diameter with a precision of ×230 million years.

  19. Craters on Crater

    NASA Image and Video Library

    2006-10-10

    Several craters were formed on the rim of this large crater. The movement of material downhill toward the floor of the large crater has formed interesting patterns on the floors of the smaller craters

  20. Using THEMIS thermal infrared observations of rays from Corinto crater to study secondary crater formation on Mars

    NASA Astrophysics Data System (ADS)

    Williams, J. P.

    2017-12-01

    Corinto crater (16.95°N, 141.72°E), a 13.8 km diameter crater in Elysium Planitia, displays dramatic rays in Mars Odyssey's Thermal Emission Imaging System (THEMIS) nighttime infrared imagery where high concentrations of secondary craters have altered the thermophysical properties of the martian surface. The THEMIS observations provide a record of secondary crater formation in the region and ray segments are identified up to 2000 km ( 145 crater radii) distance [1][2]. Secondary craters are likely to have the largest influence on model surfaces ages between 0.1 to a few Myr as there is the potential for one or two sizeable craters to project secondary craters onto those surfaces and thus alter the crater size-frequency distribution (CSFD) with an instantaneous spike in crater production [3]. Corinto crater is estimated to be less than a few Ma [4] placing the formation of its secondaries within this formative time period. Secondary craters superposed on relatively young impact craters that predate Corinto provide observations of the secondary crater populations. Crater counts at 520 and 660 km distance from Corinto (38 and 48 crater radii respectively), were conducted. Higher crater densities were observed within ray segments, however secondary craters still influenced the CSFD where ray segments were not apparent, resulting in steepening in the CSFD. Randomness analysis confirms an increase in clustering as diameters decrease suggesting an increasing fraction of secondary craters at smaller diameters, both within the ray and outside. The counts demonstrate that even at nearly 50 crater radii, Corinto secondaries still influence the observed CSFD, even outside of any obvious rays. Crater populations used to derive model ages on many geologically young regions on Mars, such as glacial and periglacial landforms related to obliquity excursions that occur on 106 - 107 yr cycles, should be used cautiously and analyzed for any evidence, either morphologic or statistical, for secondary cratering that may potentially influence the derived age. [1] Williams et al. (2017) MAPS, in press. [2] Bloom et al. (2014) Mars 8th, #1289. [3] Hartmann and Daubar (2017), MAPS, 52, 493- 510. [4] Hundal et al. (2017), LPSC, #1726.

  1. Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland-lowland boundary plain, Mars

    USGS Publications Warehouse

    Skinner, J.A.; Tanaka, K.L.

    2007-01-01

    Several types of spatially associated landforms in the southern Utopia Planitia highland-lowland boundary (HLB) plain appear to have resulted from localized geologic activity, including (1) fractured rises, (2) elliptical mounds, (3) pitted cones with emanating lobate materials, and (4) isolated and coalesced cavi (depressions). Stratigraphic analysis indicates these features are Hesperian or younger and may be associated with resurfacing that preferentially destroyed smaller (< 8 ?? km diameter) impact craters. Based on landform geomorphologies and spatial distributions, the documented features do not appear to be specifically related to igneous or periglacial processes or the back-wasting and erosion of the HLB scarp. We propose that these features are genetically related to and formed by sedimentary (mud) diapirs that ascended from zones of regionally confined, poorly consolidated, and mechanically weak material. We note morphologic similarities between the mounds and pitted cones of the southern Utopia boundary plain and terrestrial mud volcanoes in the Absheron Peninsula, Azerbaijan. These analogs provide a context for understanding the geological environments and processes that supported mud diapir-related modification of the HLB. In southern Utopia, mud diapirs near the Elysium volcanic edifice may have resulted in laccolith-like intrusions that produced the fractured rises, while in the central boundary plain mud diapirs could have extruded to form pitted cones, mounds, and lobate flows, perhaps related to compressional stresses that account for wrinkle ridges. The removal of material a few kilometers deep by diapiric processes may have resulted in subsidence and deformation of surface materials to form widespread cavi. Collectively, these inferences suggest that sedimentary diapirism and mud volcanism as well as related surface deformations could have been the dominant Hesperian mechanisms that altered the regional boundary plain. We discuss a model in which detritus would have accumulated thickly in the annular spaces between impact-generated structural rings of Utopia basin. We envision that these materials, and perhaps buried ejecta of Utopia basin, contained volatile-rich, low-density material that could provide the source material for the postulated sedimentary diapirs. Thick, water-rich, low-density sediments buried elsewhere along the HLB and within the lowland plains may account for similar landforms and resurfacing histories. ?? 2006 Elsevier Inc. All rights reserved.

  2. NIR detection of pits and pit fragments in fresh cherries (abstract)

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using near infrared (NIR) diffuse reflectance spectroscopy for the detection of pits and pit fragments in cherries was demonstrated. For detection of whole pits, 300 cherries were obtained locally and pits were removed from half. NIR reflectance spectra were obtained in triplicate...

  3. 7 CFR 52.779 - Freedom from pits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Freedom from pits. 52.779 Section 52.779 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  4. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  5. A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Gou, Sheng; Yue, Zongyu; Di, Kaichang; Liu, Zhaoqin

    2018-03-01

    The orbital data products of Ceres, including global LAMO image mosaic and global HAMO DTM with a resolution of 35 m/pixel and 135 m/pixel respectively, are utilized in this research to create a global catalogue of impact craters with diameter ≥ 1 km, and their morphometric parameters are calculated. Statistics shows: (1) There are 29,219 craters in the catalogue, and the craters have a various morphologies, e.g., polygonal crater, floor fractured crater, complex crater with central peak, etc.; (2) The identifiable smallest crater size is extended to 1 km and the crater numbers have been updated when compared with the crater catalogue (D ≥ 20 km) released by the Dawn Science Team; (3) The d/D ratios for fresh simple craters, obviously degraded simple crater and polygonal simple crater are 0.11 ± 0.04, 0.05 ± 0.04 and 0.14 ± 0.02 respectively. (4) The d/D ratios for non-polygonal complex crater and polygonal complex crater are 0.08 ± 0.04 and 0.09 ± 0.03. The global crater catalogue created in this work can be further applied to many other scientific researches, such as comparing d/D with other bodies, inferring subsurface properties, determining surface age, and estimating average erosion rate.

  6. Crater Mound Formation by Wind Erosion on Mars

    NASA Astrophysics Data System (ADS)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  7. Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.

    2018-04-01

    The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters < 1 km in diameter is applicable to the larger craters. The work presents the rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.

  8. A Comparison of the Size Frequency Distributions of the Quasi-circular Flat-floor Depression Structures on Comet 67P/Churyumov-Gerasimenko and Comet Wild 2

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Li, Yuan; Lin, Zhong-Yi; Lee, Jui-chi; Besse, Sebastien; Vincent, Jean-Baptiste; Pajola, Maurizio; Gabriele, Cremonese; Alice, Lucchetti

    2015-04-01

    The close-up views of comet 67P/Churyumov-Gerasimenko by the OSIRIS camera system on board Rosetta have shown that the nucleus structure can be broadly divided into three parts: head, body and neck (Sierks et al., 2015; Thomas et al., 2015). The surfaces of the head and body are covered by near-circular flat-floor depression structures (or pits). The relatively large diameter-to-depth ratios do not follow the pattern of impact craters. Some of these structures are embedded with sinkholes characterized by active outgassing in the form of dust jets (Vincent et al., 2015). The largest structure with a diameter of about one km - if of the same physical nature - is located at the tip of the head in Hamehit. Such steep-walled and flat-floored depressions have also been found on comet 81P/Wild 2 by Stardust in the 2004 encounter (Brownlee et al., 2004). The size frequency distributions of these surface structures are similar even though they have different power-law behaviors. This comparative study suggests the interesting possibility that the flat-floored depressions on both comets could have similar origin and evolutionary history. From a comparison of the size frequency distributions of the impact craters on the Martian moons, Phobos and Deimos, and the Saturnian icy moon, Phoebe, with that of comet Wild 2, Cheng et al. (2013) proposed that erosion/subsidence process of impact craters due to active outgassing could be at play in the modification of the original diameter-depth relation to the present flat-floored structure. Floor collapse of a deep-seated cavity filled with volatile ice is another alternative mechanism (Vincent et al., 2015). Because the bulk density of comet 67P is only 470+/-45 kg/m3, its interior must be highly porous. It remains to be investigated how would such porous structure be related to the quasi-circular depression features (Marchi et al., 2015). References: Brownlee, D. et al., (2004), Science,304, 1764-1769. Cheng, A.F. et al. (2013) Icarus, 222, 808-817. Machi, S. et al. (2015) LPSC abstract, in press. Sierks, H. et al. (2015) Science, in press. Thomas, N. et al. (2015) Science, in press. Vincent, J.-B. et al. (2015) Science, submitted.

  9. Analog experimental models of solidification of crystal-laden Kīlauea Iki lava lake, Hawai`i and implications for cumulate development.

    NASA Astrophysics Data System (ADS)

    Burnett, C. T.; Patwardhan, K.

    2016-12-01

    We present results from experimental models of Kīlauea Iki lava lake with the goal of reproducing the S-shaped vertical distribution profile of phenocrysts in the solidifying lava lake. In November-December 1959, lava from a two-week long eruption at the summit of Kīlauea Volcano flowed into the adjoining Kīlauea Iki crater filling it with a lake of lava approximately 640 m across and 135 m deep. The erupted picritic lava contained approximately 17 modal % olivine phenocrysts (Garcia, 2003). As the lava lake filled most of the phenocrysts sank towards the lower parts of the lake while some were captured in the upper crust. This resulted in an S-shaped vertical profile with an olivine-depleted (1-3 % olivine) upper part and an olivine-enriched (up to 40 % olivine) lower part (Helz, 1989). In our experiments, molten paraffin wax, extra-fine craft glitter, and aluminum foil pans/bowls are used as analogs for magma, olivine phenocrysts, and Kīlauea Iki pit crater respectively. A molten paraffin-glitter mixture at approximately 54°C is stirred/poured into the crater to create the lake, and then frozen. Cross-sections of the solidified lake are photographed and imported into ImageJ to analyze the final distribution of glitter particles at various depths. This distribution depends primarily upon the competition between settling rate vs. solidification time. Particle settling rate is controlled by glitter-paraffin density difference and paraffin viscosity. Solidification time varies with initial paraffin temperature, aspect ratio of the model lake, and ambient temperature. Vertical profiles of several solidified lava lake models reveal a glitter particle (phenocryst) distribution similar to the S-shaped characteristic profile recorded at Kīlauea Iki. In effect, our lava lake models recreate the dynamic process of emplacement of crystal-laden magma with subsequent settling of these crystals to produce a phenocryst-enriched layer near the bottom. A similar process occurring in intrusions formed by emplacement of one or more crystal-laden magma batches may result in the development of cumulate layers. Our experimental methods and efforts in recreating the S-shaped profile in Kīlauea Iki may be used as a starting point to model more complex cumulate intrusions. (Special thanks to Prof. Shafiul Chowdhury)

  10. Successive Formation of Impact Craters

    NASA Image and Video Library

    2012-02-16

    This image from NASA Dawn spacecraft shows two overlapping impact craters on asteroid Vesta. The rims of the craters are both reasonably fresh but the larger crater must be older because the smaller crater cuts across the larger crater rim.

  11. The self-secondary crater population of the Hokusai crater on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  12. Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis

    PubMed Central

    Jullien, Nicolas; Roche, Catherine; Brue, Thierry; Figarella-Branger, Dominique; Graillon, Thomas; Barlier, Anne; Herman, Jean-Paul

    2015-01-01

    To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1. PMID:25822178

  13. Shallow conduit system at Kilauea Volcano, Hawaii, revealed by seismic signals associated with degassing bursts

    USGS Publications Warehouse

    Chouet, Bernard; Dawson, Phillip

    2011-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in March, 2008 and continuing to the present time is characterized by episodic explosive bursts of gas and ash from a vent within Halemaumau Pit Crater. These bursts are accompanied by seismic signals that are well recorded by a broadband network deployed in the summit caldera. We investigate in detail the dimensions and oscillation modes of the source of a representative burst in the 1−10 s band. An extended source is realized by a set of point sources distributed on a grid surrounding the source centroid, where the centroid position and source geometry are fixed from previous modeling of very-long-period (VLP) data in the 10–50 s band. The source time histories of all point sources are obtained simultaneously through waveform inversion carried out in the frequency domain. Short-scale noisy fluctuations of the source time histories between adjacent sources are suppressed with a smoothing constraint, whose strength is determined through a minimization of the Akaike Bayesian Information Criterion (ABIC). Waveform inversions carried out for homogeneous and heterogeneous velocity structures both image a dominant source component in the form of an east trending dike with dimensions of 2.9 × 2.9 km. The dike extends ∼2 km west and ∼0.9 km east of the VLP centroid and spans the depth range 0.2–3.1 km. The source model for a homogeneous velocity structure suggests the dike is hinged at the source centroid where it bends from a strike E 27°N with northern dip of 85° west of the centroid, to a strike E 7°N with northern dip of 80° east of the centroid. The oscillating behavior of the dike is dominated by simple harmonic modes with frequencies ∼0.2 Hz and ∼0.5 Hz, representing the fundamental mode ν11 and first degenerate mode ν12 = ν21 of the dike. Although not strongly supported by data in the 1–10 s band, a north striking dike segment is required for enhanced compatibility with the model elaborated in the 10–50 s band. This dike provides connectivity between the east trending dike and the new vent within Halemaumau Pit Crater. Waveform inversions with a dual-dike model suggest dimensions of 0.7 × 0.7 km to 2.6 × 2.6 km for this segment. Further elaboration of the complex dike system under Halemaumau does not appear to be feasible with presently available data.

  14. Simultaneous impact and lunar craters

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1972-01-01

    The existence of large terrestrial impact crater doublets and crater doublets that have been inferred to be impact craters on Mars suggests that simultaneous impact of two or more bodies can occur at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.

  15. Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of Modification

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).

  16. Digital database of the Holocene tephras of the Mono-Inyo Craters, California

    USGS Publications Warehouse

    Bursik, Marcus; Sieh, Kerry

    2013-01-01

    This digital product comprises a collection of age and isopach data for the Holocene tephras of the Mono-Inyo Craters, California. Data on the most recent eruptions from this volcanic chain are relatively comprehensive, getting less so the further back in time. For the most recent eruptions to about 1,500 years ago, tephra beds within separate eruptive sequences have been studied and isopached. Before this, from about 2,000 years ago to about 5,000 years ago, there are insufficient data for isopaching. However, one isolated tephra of about 9,000 years ago was studied and isopached in detail. Regarding ages, there are many tens of radiocarbon ages that have been obtained on the Holocene Mono-Inyo volcanic products. The vast majority of these radiocarbon dates are associated with tephras at locales that can be considered distal (basically where the primary tephra is less than several centimeters (cm) thick). These dates represent carbon that was sequestered perhaps within several hundred years of the eruption but do not represent the ages of separate eruptive pulses. There are two reasons for this. In some cases, it is clear that the dated material is not associated with the eruption products. This is the case in some lake strata where carbon is either not physically close to a given tephra layer or where an age for a tephra layer was obtained by interpolation assuming a sedimentation rate. In other cases, it is not clear that a given tephra layer represents a primary tephra; in such cases the layer could instead be redeposited. At most distal localities (beyond about 5 kilometers (km) from the chain), there was no record made of whether tephra was primary or redeposited, and at these distances where tephra is thin, it is generally redeposited during later events such as fires or thunderstorms. These age data are not appropriate for use in dating the eruptive history of the volcanic chain, and are therefore not included in the present contribution. The carbon age data in the present contribution were obtained by careful consideration of the material being collected. In the best instances, carbon was collected from new growth on plants that were probably killed by an eruption event through burning and burial. Slightly poorer data were collected from burned and buried forest duff that is renewed frequently. Finally, some dates for older Holocene tephra layers at Black Lake, Nevada, downwind of the Mono-Inyo Craters, appear to allow correlation of the layers to proximal occurrences. In cases where these poorer data were collected but yielded ages statistically indistinguishable from better data, the poorer data were included in the analysis. In the most difficult cases, usually the furthest back in time, poorer data that were nevertheless statistically indistinguishable were weighted together to generate the age estimate. There are some known Holocene eruptions from the Mono-Inyo Craters that are not included in this tabulation, as so far a tephra has not been associated with the eruptions. A good example of this is the Java blocks. The Java block eruption, from a vent underlying the northwestern corner of Negit Island in Mono Lake, expelled numerous blocks that were rafted within the lake and that are mostly deposited on the southwestern and northern lakeshore. No tephra that can be correlated to this deposit has been found, and therefore the eruption is not included in this tabulation.

  17. Crater dimensions from apollo data and supplemental sources

    USGS Publications Warehouse

    Pike, R.J.

    1976-01-01

    A catalog of crater dimensions that were compiled mostly from the new Apollo-based Lunar Topographic Orthophotomaps is presented in its entirety. Values of crater diameter, depth, rim height, flank width, circularity, and floor diameter (where applicable) are tabulated for a sample of 484 craters on the Moon and 22 craters on Earth. Systematic techniques of mensuration are detailed. The lunar craters range in size from 400 m to 300 km across and include primary impact craters of the main sequence, secondary impact craters, craterlets atop domes and cones, and dark-halo craters. The terrestrial craters are between 10 m and 22.5 km in diameter and were formed by meteorite impact. ?? 1976 D. Reidel Publishing Company.

  18. Methods of Estimating Initial Crater Depths on Icy Satellites using Stereo Topography

    NASA Astrophysics Data System (ADS)

    Persaud, D. M.; Phillips, C. B.

    2014-12-01

    Stereo topography, combined with models of viscous relaxation of impact craters, allows for the study of the rheology and thermal history of icy satellites. An important step in calculating relaxation of craters is determining the initial depths of craters before viscous relaxation. Two methods for estimating initial crater depths on the icy satellites of Saturn have been previously discussed. White and Schenk (2013) present the craters of Iapetus as relatively unrelaxed in modeling the relaxation of craters of Rhea. Phillips et al. (2013) assume that Herschel crater on Saturn's satellite Mimas is unrelaxed in relaxation calculations and models of Rhea and Dione. In the second method, the depth of Herschel crater is scaled based on the different crater diameters and the difference in surface gravity on the large moons to predict the initial crater depths for Rhea and Dione. In the first method, since Iapetus is of similar size to Dione and Rhea, no gravity scaling is necessary; craters of similar size on Iapetus were chosen and their depths measured to determine the appropriate initial crater depths for Rhea. We test these methods by first extracting topographic profiles of impact craters on Iapetus from digital elevation models (DEMs) constructed from stereo images from the Cassini ISS instrument. We determined depths from these profiles and used them to calculate initial crater depths and relaxation percentages for Rhea and Dione craters using the methods described above. We first assumed that craters on Iapetus were relaxed, and compared the results to previously calculated relaxation percentages for Rhea and Dione relative to Herschel crater (with appropriate scaling for gravity and crater diameter). We then tested the assumption that craters on Iapetus were unrelaxed and used our new measurements of crater depth to determine relaxation percentages for Dione and Rhea. We will present results and conclusions from both methods and discuss their efficacy for determining initial crater depth. References: Phillips, C.B., et al. (2013). Lunar Planet Sci. XLIV, abstract 2766. White, O.L., and P.L. Schenk. Icarus 23, 699-709, 2013. This work was supported by the NASA Outer Planets Research Program grant NNX10AQ09G and by the NSF REU Program.

  19. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake.

    PubMed

    Bon, Nina; Couasnay, Greig; Bourgine, Annabelle; Sourice, Sophie; Beck-Cormier, Sarah; Guicheux, Jérôme; Beck, Laurent

    2018-02-09

    Extracellular phosphate (P i ) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular P i levels implies the existence of a P i -sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in P i sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent P i transporters PiT1 and PiT2 in mediating P i signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the P i -dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for P i signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing P i transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and P i -regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent P i transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular P i levels. Of note, when two putative P i -binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular P i These observations suggested that P i binding rather than P i uptake may be the key factor in mediating P i signaling through the PiT proteins. Taken together, these results demonstrate that P i -regulated PiT1-PiT2 heterodimerization mediates P i sensing independently of P i uptake. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery.

    PubMed

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  1. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.

    PubMed

    Choat, Brendan; Cobb, Alexander R; Jansen, Steven

    2008-01-01

    Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.

  2. Elevation and igneous crater modification on Venus: Implications for magmatic volatile content

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.

    1993-01-01

    Although most impact craters on Venus preserve nearly pristine crater rim and ejecta features, a small number of craters have been identified showing clear evidence of either igneous intrusion emplacement (floor-fracturing) beneath the crater floor or of volcanically embayed exterior ejecta deposits. Since the volcanically embayed craters consistently occur at higher elevations than the identified floor-fractured craters, this report proposes that igneous crater modification on Venus is elevation dependent. This report describes how regional variations in magmatic neutral buoyancy could produce such elevation dependent crater modification and considers the implications for typical magmatic volatile contents on Venus.

  3. Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime

    NASA Astrophysics Data System (ADS)

    Ivanov, B. A.

    2018-01-01

    The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.

  4. Physical properties of lunar craters

    NASA Astrophysics Data System (ADS)

    Joshi, Maitri P.; Bhatt, Kushal P.; Jain, Rajmal

    2017-02-01

    The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera (LROC). Out of these 339 craters, 214 craters are known (named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown (craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth (d) and diameter (D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter (conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth (d) and diameter (D) but 47 craters do not follow the linear relationship. We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100 (29.5%) craters exist near the equator, 131 (38.6%) are in the northern hemisphere and 108 (31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.

  5. Operation Sun Beam, Shot Small Boy. Project Officers report. Project 1. 9. Crater measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooke, A.D.; Davis, L.K.; Strange, J.N.

    1985-09-01

    The objectives of Project 1.9 were to obtain the dimensions of the apparent and true craters formed by the Small Boy event and to measure the permanent earth deformation occurring beyond the true crater boundary. Measurements were made of the apparent crater by aerial stereophotography and ground survey and of the true crater and subsurface zones of residual deformation by the excavation and mapping of an array of vertical, colored sand columns which were placed along one crater diameter prior to the shot. The results of the crater exploration are discussed, particularly the permanent compression of the medium beneath themore » true crater which was responsible for the major portion of the apparent and true crater volumes. Apparent and true crater dimensions are compared with those of previous cratering events.« less

  6. Cratering on Ceres: Implications for its crust and evolution

    USGS Publications Warehouse

    Hiesinger, H.; Marchi, S.; Schmedemann, N.; Schenk, P.; Pasckert, J. H.; Neesemann, A.; O'Brien, D. P.; Kneissl, T.; Ermakov, A.; Fu, R.R.; Bland, M. T.; Nathues, A.; Platz, T.; Williams, D.A.; Jaumann, R.; Castillo-Rogez, J. C.; Ruesch, O.; Schmidt, B.; Park, R.S.; Preusker, F.; Buczkowski, D.L.; Russell, C.T.; Raymond, C.A.

    2016-01-01

    Thermochemical models have predicted that Ceres, is to some extent, differentiated and should have an icy crust with few or no impact craters. We present observations by the Dawn spacecraft that reveal a heavily cratered surface, a heterogeneous crater distribution, and an apparent absence of large craters. The morphology of some impact craters is consistent with ice in the subsurface, which might have favored relaxation, yet large unrelaxed craters are also present. Numerous craters exhibit polygonal shapes, terraces, flowlike features, slumping, smooth deposits, and bright spots. Crater morphology and simple-to-complex crater transition diameters indicate that the crust of Ceres is neither purely icy nor rocky. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages (AMAs) of 550 million and 720 million years, depending on the applied chronology model.

  7. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    PubMed

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  9. PitScan: Computer-Assisted Feature Detection

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Robinson, M. S.

    2018-04-01

    We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.

  10. Quantitative Correlation of 7B04 Aluminum Alloys Pitting Corrosion Morphology Characteristics with Stress Concentration Factor

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong

    2018-01-01

    The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.

  11. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  12. Spatial distribution of impact craters on Deimos

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  13. Cratering history of Miranda: Implications for geologic processes

    USGS Publications Warehouse

    Plescia, J.B.

    1988-01-01

    Miranda's surface is divisible into cratered terrain and coronae. The cratered terrain is the most heavily cratered of the terrains and presumably is the oldest. The frequency of craters in the cratered terrain is variable and related to position on the satellite. The coronae are also variably cratered. Elsinore and Arden Coronae have similar crater frequencies and may have formed simultaneously. They are of intermediate agompared to the cratered terrain and to Inverness Corona, which is the youngest major terrain. Graben formation appears to have occured both before and after the formation of the coronae reflecting periods of global expansion. Miranda's surfaces are, in general, the least cratered and therefore inferred to be the youngest within the Uranian system. ?? 1988.

  14. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    PubMed

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Impact craters on Venus: An overview from Magellan observations

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Strom, R. G.; Moore, H. J.; Soderblom, L. A.; Kirk, R. L.; Chadwick, D. J.; Dawson, D. D.; Gaddis, L. R.; Boyce, J. M.; Russell, J.

    1992-01-01

    Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta.

  16. Tabular comparisons of the Flynn Creek impact crater, United States, Steinheim impact crater, Germany and Snowball explosion crater, Canada

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.

    1977-01-01

    A tabular outline of comparative data is presented for 340 basic dimensional, morphological, and structural parameters and related aspects for three craters of the flat-floored, central uplift type, two of which are natural terrestrial impact craters and one is a large-scale experimental explosion crater. The three craters are part of a general class, in terms of their morphology and structural deformation that is represented on each of the terrestrial planets including the moon. One of the considered craters, the Flynn Creek Crater, was formed by a hypervelocity impact event approximately 360 m.y. ago in what is now north central Tennessee. The impacting body appears to have been a carbonaceous chondrite or a cometary mass. The second crater, the Steinheim Crater, was formed by an impact event approximately 14.7 m.y. ago in what is now southwestern Germany. The Snowball Crater was formed by the detonation of a 500-ton TNT hemisphere on flat-lying, unconsolidated alluvium in Alberta, Canada.

  17. Experimental simulation of impact cratering on icy satellites

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.

    1982-01-01

    Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.

  18. Terrace width variations in complex Mercurian craters and the transient strength of cratered Mercurian and lunar crust

    NASA Technical Reports Server (NTRS)

    Leith, Andrew C.; Mckinnon, William B.

    1991-01-01

    The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.

  19. Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin

    USGS Publications Warehouse

    Pike, R.J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.

  20. Acquired pit of the optic nerve: a risk factor for progression of glaucoma.

    PubMed

    Ugurlu, S; Weitzman, M; Nduaguba, C; Caprioli, J

    1998-04-01

    To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.

  1. Parturition pit: the bony imprint of vaginal birth.

    PubMed

    McArthur, Tatum A; Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J; Larrison, Matthew C

    2016-09-01

    To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p < 0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p < 0.0001). No males had pits. Our study indicates that parturition pits are associated with prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists.

  2. Parturition Pit: The Bony Imprint of Vaginal Birth

    PubMed Central

    Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J.; Larrison, Matthew C.

    2017-01-01

    Purpose To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. Materials and Methods We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. Results 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p<0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p<0.0001). No males had pits. Conclusion Our study indicates that parturition pits are associated prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists. PMID:27270921

  3. The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth.

    PubMed

    Bahar, A; Tagomori, S

    1994-01-01

    The effects of normal pulsed Nd-YAG laser irradiation on the acid resistance of human dental enamel of pits and fissures, the cleaning of the pit and fissure contents and fluoride uptake into deep pits and fissures were examined. The acid resistance of the pit and fissure enamel was evaluated by the amount of dissolved calcium per square millimeter of the surface area. The pit and fissure enamel treated with laser irradiation obtained an acid resistance 30% higher than that of the unlased controls. The cleaning effect of laser irradiation on the pit and fissure contents was compared with chemicomechanical and mechanical methods. The laser irradiation was found to clean the pits and fissures to a greater depth without alterating the shape of pits and fissures, compared with the other two methods. The distribution of calcium, phosphorus and fluoride in the enamel of the pits and fissures was then measured by electron probe microanalyzer. At the entrance and in the deep part of the pits and fissures, the fluoride content of the enamel treated with acidulated phosphate fluoride after laser irradiation was higher than that of the enamel treated with acidulated phosphate fluoride alone. These results thus suggest that Nd-YAG laser irradiation might be effective in increasing the acid resistance of the pit and fissure enamel, while removing the pit and fissure debris contents and increasing the fluoride uptake into the pit and fissure enamel.

  4. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  5. Peleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: Implications for the formation of hematite deposits on Mars

    USGS Publications Warehouse

    Newsom, Horton E.; Barber, C.A.; Hare, T.M.; Schelble, R.T.; Sutherland, V.A.; Feldman, W.C.

    2003-01-01

    The hematite deposit in Meridiani Planum was selected for a Mars Exploration Rover (MER) landing site because water could be involved in the formation of hematite, and water is a key ingredient in the search for life. Our discovery of a chain of paleolake basins and channels along the southern margin of the hematite deposits in Meridiani Planum with the presence of the strongest hematite signature adjacent to a paleolake basin, supports the possible role of water in the formation of the hematite and the deposition of other layered materials in the region. The hematite may have formed by direct precipitation from lake water, as coatings precipitated from groundwater, or by oxidation of preexisting iron oxide minerals. The paleolake basins were fed by an extensive channel system, originating from an area larger than Texas and located south of the Schiaparelli impact basin. On the basis of stratigraphic relationships, the formation of channels in the region occurred over much of Mars' history, from before the layered materials in Meridiani Planum were deposited until recently. The location of the paleolake basins and channels is connected with the impact cratering history of the region. The earliest structure identified in this study is an ancient circular multiringed basin (800-1600 km diameter) that underlies the entire Meridiani Planum region. The MER landing site is located on the buried northern rim of a later 150 km diameter crater. This crater is partially filled with layered deposits that contained a paleolake in its southern portion. Copyright 2003 by the American Geophysical Union.

  6. Bromine, chlorine and sulfur emission into the free troposphere from a Rift volcano

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Tedeso, D.; Yalire, M. M.; Galle, B.

    2007-12-01

    In June 2007 spectroscopic measurements were carried out at the crater rim of the Niyragongo volcano located 15 km north of the city Goma, North Kivu region (DRC). Niyragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Niyragongo is caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Niyragongo is a 3470 m high stratovolcano, which a large summit crater usually containing a lava lake inside and it is considered one of the most active volcanoes in Africa. Satellite measurements show an extremely large sulphur dioxide plume since May 2002, and it is considered one of the biggest sulphur dioxide sources on Earth. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight has been applied during a one week field trip on top of the crater rim of Niyragongo volcano to measure nitrogen oxide, halogen oxides and sulphur dioxide. The used Mini-MAX-DOAS is a lightweight, compact, robust instrument and has very low power consumption which allows to be deployed over several days with some small lead batteries. The measurements provide valuable information of the chemical composition as well its variability within the volcanic plume of the lava lake and allowed also studying chemical transformation processes of the halogens inside the plume. Bromine-sulphur and chlorine-sulphur ratios were investigated and a minimal bromine and chlorine emission flux estimation will be presented.

  7. Pitting Corrosion Behaviour of New Corrosion-Resistant Reinforcement Bars in Chloride-Containing Concrete Pore Solution

    PubMed Central

    Liu, Yao; Chu, Hong-yan; Wang, Danqian; Ma, Han; Sun, Wei

    2017-01-01

    In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state. PMID:28777327

  8. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    NASA Astrophysics Data System (ADS)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  9. Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang

    2013-05-01

    In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.

  10. Paradigm lost: Venus crater depths and the role of gravity in crater modification

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.

    1992-01-01

    Previous to Magellan, a convincing case had been assembled that predicted that complex impact craters on Venus were considerably shallower than their counterparts on Mars, Mercury, the Moon, and perhaps even Earth. This was fueled primarily by the morphometric observation that, for a given diameter (D), crater depth (d) seems to scale inversely with surface gravity for the other planets in the inner solar system. The unpredicted depth of fresh impact craters on Venus argues against a simple inverse relationship between surface gravity and crater depth. Factors that could contribute to deep craters on Venus include (1) more efficient excavation on Venus, possibly reflecting rheological effects of the hot venusian environment; (2) more melting and efficient removal of melt from the crater cavity; and (3) enhanced ejection of material out of the crater, possibly as a result of entrainment in an atmosphere set in motion by the passage of the projectile. The broader issue raised by the venusian crater depths is whether surface gravity is the predominant influence on crater depths on any planet. While inverse gravity scaling of crater depths has been a useful paradigm in planetary cratering, the venusian data do not support this model and the terrestrial data are equivocal at best. The hypothesis that planetary gravity is the primary influence over crater depths and the paradigm that terrestrial craters are shallow should be reevaluated.

  11. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08,more » Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.« less

  12. Corrosion behavior of binary titanium aluminide intermetallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffarian, H.M.; Gan, Q.; Hadkar, R.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit}more » decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.« less

  13. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    NASA Astrophysics Data System (ADS)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  14. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin

    2014-09-01

    Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.

  15. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  16. Variations in interior morphology of 15-20 km lunar craters - Implications for a major subsurface discontinuity

    NASA Technical Reports Server (NTRS)

    De Hon, R. A.

    1980-01-01

    Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.

  17. Relative depths of simple craters and the nature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.

    2017-12-01

    We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.

  18. Marine-target craters on Mars? An assessment study

    USGS Publications Warehouse

    Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.

    2004-01-01

    Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions. ?? Meteoritical Society, 2004.

  19. Morphology and Evolution of Sublimation Pits on Pluto

    NASA Astrophysics Data System (ADS)

    Abu-Hashmeh, N.; Conrad, J. W.; Nimmo, F.; Moore, J. M.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Ennico Smith, K.; Young, L. A.

    2017-12-01

    Pluto's Sputnik Planitia region hosts a geologically young surface of nitrogen ice that exhibits striking pitted terrain (Moore et al., Science 351, 2016). These pits are most likely formed by sublimation due to incident sunlight, similar to the southern polar cap of Mars (Byrne and Ingersoll, Science 299, 2003); however, their evolution over time has resulted in unique morphological characteristics. Motivated by this, we used the high-resolution mosaic strips captured by New Horizons' Long Range Reconnaissance Imager (LORRI) to map sublimation pits in the southernmost region of Sputnik Planitia. Statistical data shows pit orientations appearing North-South dominant; their morphology also indicates extensional evolution along the major axis caused by further sublimation and contact-coalescence processes. Qualitative analysis of the region yielded indications of an evolutionary path for individual pits that coalesce into each other and exhibit an elongated end-stage. Additionally, densely-pitted regions generally appear to correlate with regions containing longer pits, implying that coalescence may be an important process for elongation. We also model the evolution geometry through competing effects of diffusion (viscous relaxation) and retreat (sublimation) (Buhler and Ingersoll, LPSC Abstract #1746, 2017). The model demonstrates single-pit and coalescing-pit evolutions that influence overall length, as well as a potential ability for the pit center to move in space while the pit morphology evolves.

  20. Occurrence and mechanisms of impact melt emplacement at small lunar craters

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.

    2014-11-01

    Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We infer that the distributions and occurrences of impact melt are strongly influenced by impact velocity and angle, target porosity, pre-existing topography, and degradation. Additionally, areally small and volumetrically thin melt deposits are sensitive to mixing with solid debris and/or burial during the modification stage of impact cratering as well as post-cratering degradation. Thus, the production of melt at craters less than ∼800 m in diameter is likely greater than inferred from the present occurrence of melt deposits, which is rapidly affected by ongoing degradation processes.

  1. Apollo 12 Mission image - High oblique view of crater Copernicus and Carpathian Mt. range

    NASA Image and Video Library

    1969-11-19

    AS12-47-6876 (November 1969) --- An Apollo 12 high-oblique view of the lunar nearside looking northeast toward the crater Copernicus (in center near horizon), as photographed from lunar orbit. The shaded crater in the foreground is Reinhold. Reinhold B is the crater next to Reinhold which as the small crater in the center of it. Also, visible is the keyhole-shaped crater Fauth near the crater Copernicus.

  2. An assessment of crater erosional histories on the Earth and Mars using digital terrain models.

    NASA Astrophysics Data System (ADS)

    Paul, R. L.; Muller, J.-P.; Murray, J. B.

    The research will examine quantitatively the geomorphology of both Terrestrial and Martian craters. The erosional and sub-surface processes will be investigated to understand how these affect a crater's morphology. For example, the Barringer crater in Arizona has an unusual shape. The Earth has a very high percentage of water both in the atmosphere as clouds or rain and under the surface. The presence of water will therefore affect a crater's formation and its subsequent erosional modification. On Mars there is little or no water present currently, though recent observations suggest there may be near-surface ice in some areas. How do craters formed in the Martian environment therefore differ from Terrestrial ones? How has the structure of Martian craters changed in areas of possible fluvial activity? How does the surface material affect crater formation? How does the Earth's fluvial activity affect a crater's evolution? At present, four measurements of circularity have been used to describe a crater (Murray & Guest, 1972). These parameters will be re-examined to see how effectively they describe Terrestrial and Martian craters using high resolution DTMs which were not available at the time of the original study. The model described by Forsberg-Taylor et al. 2004, and others will also be applied to results obtained from the chosen craters to assess how effectively these craters are described. Both hypsometric curves and hydrological analysis will be used to assess crater evolution. A suitable criterion for the selection of Terrestrial and Martian craters is essential for this type of research. Terrestrial craters have been selected in arid or semi-arid terrain with crater diameters larger than one kilometre. Craters less than five million years old would be ideal. However, this was too restrictive and so a variety of crater ages have had to be used. Eight terrestrial craters have been selected in arid or semi-arid areas for study, using the Earth Impact Database and ICEDS. These are: Barringer, Arizona, U.S.A; Goat Paddock, West Australia; Ouarkziz, Algeria; Roter Kamm, Namibia; Talemzane, Algeria; Tenoumer, Mauritania; Tswaing, South Africa 1 and Upheaval Dome, Utah, U.S.A. Comparable Martian craters are in the process of being chosen using the USGS PIGWAD database and the Morphological Catalogue of the Craters of Mars. Digital Terrain Models of each crater using SRTM DEMs and data from the recent Mars Express HRSC will be used at various resolutions (30m upwards) to provide three dimensional models to assess the capabilities of measuring erosional effects. There is also available ASTER DEMs and ASTER Level 1A for terrestrial craters and MOLA tracks for Martian craters. Both laboratory and theoretical models of crater shape and erosion features will provide a better understanding of the processes observed. This will enable us to develop a better explanation of why craters are the shape they are. References. Barlow N., 1987, Crater Size-Frequency Distribution and a Revised Martian Relative Chronology, Icarus, 75, 285-305. Barlow, N., 1995, The degradation of impact craters in Maja Valles and Arabia Mars, Journal GeoPhys. Res., 100, 23307-23316. Earth Impact Database http://www.unb.ca/passc/ImpactDatabase/ Earth PIGWAD database http://webgis.wr.usgs.gov/website/mars%5Fcrater%5Fhtml/viewer.htm ICEDS http://iceds.ge.ucl.ac.uk/ Morphology Catalogue of the Craters of Mars http://selena.sai.msu.ru/Home/Mars_Cat/Mars_Cat.htm Murray J.B, Guest J.E, 1970, Circularities of craters and related structures on Earth and Moon, Modern Geology, 1, 149-159. Forsberg-Taylor N., Howard A.D., 2004, Crater degradation in the Martian Highlands: Morphometric Analysis of the Sinus Sabaeus region and simulation modelling suggest fluvial processes, Journal GeoPhys Res., 109, E05002. 2

  3. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  4. Regional variations in degradation and density of Martian craters.

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Wise, D. U.

    1972-01-01

    Martian craters visible on Mariner 6 and 7 imagery show a spectrum of topographic types from very fresh to highly degraded. A method of numerical scoring of rim, wall, and floor is proposed to yield a degradation number to classify each crater. Plots of degradation class vs density of large craters are similar for all four regions studied, whereas similar plots for small craters show marked differences between regions. The data suggest general continuity of crater formation and degradation, along with locally sporadic formation and/or degradation of the smallest craters classified. Deucalionis Regio, with an excess of fresh, small craters, experienced an episode of small crater formation (or nondegradation) most recently; Margaritifer Sinus was similarly disturbed at some more remote time. Meridiani Sinus and Hellespontus-Noachis show little or no sign of excess fresh, small craters.

  5. Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement

    NASA Astrophysics Data System (ADS)

    Boyce, Joseph; Barlow, Nadine; Mouginis-Mark, Peter; Stewart, Sarah

    2010-04-01

    Some fresh impact craters on Ganymede have the overall ejecta morphology similar to Martian double-layer ejecta (DLE), with the exception of the crater Nergal that is most like Martian single layer ejecta (SLE) craters (as is the terrestrial crater Lonar). Similar craters also have been identified on Europa, but no outer ejecta layer has been found on these craters. The morphometry of these craters suggests that the types of layered ejecta craters identified by Barlow et al. (2000) are fundamental. In addition, the mere existence of these craters on Ganymede and Europa suggests that an atmosphere is not required for ejecta fluidization, nor can ejecta fluidization be explained by the flow of dry ejecta. Moreover, the absence of fluidized ejecta on other icy bodies suggests that abundant volatiles in the target also may not be the sole cause of ejecta fluidization. The restriction of these craters to the grooved terrain of Ganymede and the concentration of Martian DLE craters on the northern lowlands suggests that these terrains may share key characteristics that control the development of the ejecta of these craters. In addition, average ejecta mobility (EM) ratios indicate that the ejecta of these bodies are self-similar with crater size, but are systematically smaller on Ganymede and Europa. This may be due to the effects of the abundant ice in the crusts of these satellites that results in increased ejection angle causing ejecta to impact closer to the crater and with lower horizontal velocity.

  6. Impact Craters: Size-Dependent Degration Rates

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Mahanti, P.; Meyer, H. M.; Robinson, M. S.

    2017-12-01

    From superposition relations, Shoemaker and Hackman (1) devised the lunar geologic timescale with Copernican and Eratosthenian as the most recent periods. Classifying craters into the two periods is key to understanding impactor flux and regolith maturation rates over the last 3 Ga. Both Copernican and Eratosthenian craters exhibit crisp morphologies (sharp rims, steep slopes), however, only the former exhibit high reflectance rays and ejecta (1). Based on the Optical Maturity Parameter (OMAT; 2), Grier et al. (3) classified 50 fresh craters (D >20 km) into 3 categories - young (OMAT >0.22), intermediate, and old (OMAT <0.16). In our previous work, Copernican craters (D > 10) were identified (4) from a catalogue of 11,875 craters (5). In this work; we compare two size ranges (D: 5 km - 10 km and 10 km to 15 km) of 177 Copernican craters based on the average OMAT, measured near the crater rim (3). OMAT is measured at the crater rim (as opposed to further away from the crater) to minimize the influence of spatial variation of OMAT (6) in our investigation. We found that OMAT values are typically lower for smaller craters (5km < D < 10km) in comparison to larger craters (10km < D < 15km). However, when compared against morphological freshness (as determined by d/D for simpler craters), the smaller craters were fresher (higher d/D value). Since the OMAT value decreases with age, craters with higher d/D value (morphologically fresher) should have higher OMAT, but this is not the case. We propose that quicker loss of OMAT (over time) for smaller craters compared to decrease in d/D with crater ageing, is responsible for the observed decreased OMAT for smaller craters. (1) Shoemaker and Hackman, 1962 (2) Lucey et al., 2000 (3) Grier et al., 2001 (4) Ravi et al., 2016 (5) Reinhold et al., 2015 (6) Mahanti et al., 2016

  7. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  8. Burn Pit Emissions Exposure and Respiratory and Cardiovascular Conditions Among Airborne Hazards and Open Burn Pit Registry Participants.

    PubMed

    Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul

    2016-07-01

    The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.

  9. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    PubMed

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Ancient fluvial processes in the equatorial highlands of Mars

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Maxwell, Ted A.

    1991-01-01

    Martian highland craters typically lack ejecta deposits, have no noticeable rim, and are flat floored. In addition, crater size frequency distribution curves show that highland craters have depleted populations less than 20 km in diameter. A variety of processes have been suggested to explain these observations including deposition of aeolian or volcanic materials up to the crater rim crests, thermal creep, terrain softening, and mass wasting. However, none of these processes adequately explains both the crater morphology and population distribution. In order to explain both the Martian highland crater morphology and population distribution, a fluvial process is proposed which is capable of removing the loose crater rim material. The resulting effect is to decrease the crater diameter, thereby causing the population curves to bendover. The eroded material is redistributed, burying or partially burying smaller diameter craters before complete erosion. This material may also be deposited into local topographic lows, creating the depositional basins observed. A fluvial process explains both sets of observations: crater morphology and crater population distribution curves.

  11. Multivariate analyses of crater parameters and the classification of craters

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  12. Phobos - Surface density of impact craters

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.

    1977-01-01

    Revised crater counts for Phobos are presented which are based on uniform Mariner 9 imagery and Duxbury's (1974) map of the satellite. The contiguous portion of the satellite's surface on which all craters down to the limiting resolution of 0.2 to 0.3 km in diameter would be expected to be identified is delineated and found to contain 87 identifiable craters larger than 0.2 km in diameter. Analysis of the crater size distribution shows that the surface appears to be saturated for craters exceeding 1 km in diameter but the crater counts definitely fall below the saturation curve for smaller craters. Reasons for this fall-off are considered, and it is noted that too few craters are visible in Mariner 9 images of Deimos to permit meaningful crater counts on that satellite's surface. It is concluded that, contrary to a previous assertion, the surfaces of Phobos and Deimos are not known to be saturated with craters larger than 0.2 km in diameter.

  13. On the usefulness of optical maturity for relative age classification of fresh craters

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Meyer, H. M.; Mahanti, P.; Robinson, M. S.

    2016-12-01

    Copernican and Eratosthenian craters represent the two most recent geologic periods in the lunar timescale, and their characterization is essential for understanding impact crater flux over the last 3 Gy. Craters from both periods exhibit crisp morphologies, but Copernican craters are 'rayed craters' per Wilhelms (1) classification scheme. Distinguishing compositional from maturity rays is possible using compositional estimates and the optical maturity parameter (OMAT; 2). From OMAT estimates, Grier et al. (3) classified 50 fresh craters (diameter (D) > 20 km) into young (OMAT > 0.22), intermediate, and old (OMAT < 0.16) classes. In this work we analyze morphology and optical maturity for a population of 12,000 craters (D> 10 km; 60 to investigate the applicability of OMAT for relative age classification among Copernican craters. Craters obtained from (4,5) were initially classified based on crispness of morphology (LROC WAC observations (6)) and then were then analyzed based on OMAT values averaged from rim out to one crater radius (n=2000). We found that typically craters larger than Copernicus (D = 95 km) were had lower OMAT values than Copernicus (OMAT = 0.17) except for Vavilov, Pythagorus, Fizeau and Moretus which had OMAT > 0.17. These large craters are clearly affected by rays from small, nearby craters. We estimate that at least 250 craters (D > 10 km; OMAT > 0.22) on the Moon are Copernican (> 2% of all craters analyzed) and of these at least 100 are as optically immature (or more so) than Tycho crater (OMAT >= 0.24). A calibration curve (OMAT vs Absolute Model Age) obtained for craters with known ages showed that OMAT <=0.15 displays little change with AMA and are thus unsuitable for estimating relative ages. Normalization by crater size was found to reduce the uncertainty associated with the relation between AMA and OMAT. 1) Wilhelms (1987), The Geologic History of the Moon, USGS, pp. 1348. 2) Lucey et al (2000), JGR, 105, 20377-20386. 3) Grier et al. (2001), JGR, 106, 847-862. 4) Povilaitis et al. (2013), NLSI, Session 5B. 5) Head et al. (2010), Science, 239, 1504-1506. 6) Boyd et al. (2013), AGU, P13B-1744.

  14. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff and selective discharge through fractures on the crater wall. Similar relationships are seen at Lonar Crater, India. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift similar in direction to that inferred for Mars.

  15. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  16. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  17. An investigation of the cratering-induced motions occurring during the formation of bowl-shaped craters. [using high explosive charges as the cratering source

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.

    1980-01-01

    The effects of the dynamic processes which occur during crater formation were examined using small hemispherical high-explosive charges detonated in a tank which had one wall constructed of a thick piece of clear plexiglas. Crater formation and the motions of numerous tracer particles installed in the cratering medium at the medium-wall interface were viewed through the wall of this quarter-space tank and recorded with high-speed cameras. Subsequent study and analysis of particle motions and events recorded on the film provide data needed to develop a time-sequence description of the formation of a bowl-shaped crater. Tables show the dimensions of craters produced in a quarter-space tank compared with dimensions of craters produced in normal half-space tanks. Crater growth rate summaries are also tabulated.

  18. The Lord of the Rings - Deep Learning Craters on the Moon and Other Bodies

    NASA Astrophysics Data System (ADS)

    Silburt, Ari; Ali-Dib, Mohamad; Zhu, Chenchong; Jackson, Alan; Valencia, Diana; Kissin, Yevgeni; Tamayo, Daniel; Menou, Kristen

    2018-01-01

    Crater detection has traditionally been done via manual inspection of images, leading to statistically significant disagreements between scientists for the Moon's crater distribution. In addition, there are millions of uncategorized craters on the Moon and other Solar System bodies that will never be classified by humans due to the time required to manually detect craters. I will show that a deep learning model trained on the near-side of the Moon can successfully reproduce the crater distribution on the far-side, as well as detect thousands of small, new craters that were previously uncharacterized. In addition, this Moon-trained model can be transferred to accurately classify craters on Mercury. It is therefore likely that this model can be extended to classify craters on all Solar System bodies with Digital Elevation Maps. This will facilitate, for the first time ever, a systematic, accurate, and reproducible study of the crater records throughout the Solar System.

  19. Ceres and the terrestrial planets impact cratering record

    NASA Astrophysics Data System (ADS)

    Strom, R. G.; Marchi, S.; Malhotra, R.

    2018-03-01

    Dwarf planet Ceres, the largest object in the Main Asteroid Belt, has a surface that exhibits a range of crater densities for a crater diameter range of 5-300 km. In all areas the shape of the craters' size-frequency distribution is very similar to those of the most ancient heavily cratered surfaces on the terrestrial planets. The most heavily cratered terrain on Ceres covers ∼15% of its surface and has a crater density similar to the highest crater density on <1% of the lunar highlands. This region of higher crater density on Ceres probably records the high impact rate at early times and indicates that the other 85% of Ceres was partly resurfaced after the Late Heavy Bombardment (LHB) at ∼4 Ga. The Ceres cratering record strongly indicates that the period of Late Heavy Bombardment originated from an impactor population whose size-frequency distribution resembles that of the Main Belt Asteroids.

  20. Least tern and piping plover nesting at sand pits in Nebraska

    USGS Publications Warehouse

    Sidle, John G.; Kirsch, E.M.

    1993-01-01

    Endangered Least Terns (Sterna antillarum) and threatened Piping Plovers (Charadrius melodus) nest at commercial sand and gravel mining operations (sand pits) along the Platte River system in Nebraska. Sandbar habitat has been disappearing since the early 1900's along the Platte River system, but numbers of sand pits have increased. We hypothesized that birds would more fully utilize sand pits where suitable sandbar habitat was limited. We inventoried sand pits and censused terns and plovers on both habitats along the Loup River, part of the North Loup River, and most of the Platte River during 1988-1991. Using aircraft, we also quantified features of suitable sand pits present on the central Platte in 1988 and lower Platte in 1990, and related features to abundance and presence of birds. We found 225 sand pits of which 78 were suitable and 187 were unsuitable for nesting. Along the central Platte, where sandbar habitat is severely degraded, birds nested at 81% of the suitable sand pits (N = 32) at least once during 1988-1991, and most birds (61-94%) nested on sand pits. Along the lower Platte, where both sandbar and sand pit habitat are plentiful, birds nested at 60% of the suitable sand pits (N = 35) at least once during 1988-1991, and most birds (60-86%) nested on sandbars. Numbers of terns and plovers were more weakly correlated with features of sand pits on the central Platte than on the lower Platte. Least Terns and Piping Plovers seem to use more of the suitable sand pit habitat on the central Platte than on the lower Platte. Sand pits probably have influenced the birds' distribution by providing alternative nesting habitat along rivers where suitable sandbars are rare or absent.

  1. Efficacy of UV-Pit-light traps for discerning micro-habitat-specific beetle and ant species related with different oil palm age stands and tropical annual seasons for accurate ecology and diversity interpretations

    NASA Astrophysics Data System (ADS)

    Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.

    2015-09-01

    A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.

  2. A first-order model for impact crater degradation on Venus

    NASA Technical Reports Server (NTRS)

    Izenberg, Noam R.; Arvidson, Raymond E.; Phillips, Roger J.

    1993-01-01

    A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors.

  3. One dimensional Linescan x-ray detection of pits in fresh cherries

    USDA-ARS?s Scientific Manuscript database

    The presence of pits in processed cherries is a concern for both processors and consumers, in many cases causing injury and potential lawsuits. While machines used for pitting cherries are extremely efficient, if one or more plungers in a pitting head become misaligned, a large number of pits may p...

  4. Why do complex impact craters have elevated crater rims?

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim

    2014-05-01

    Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that reverse faulting induced by radially outward directed maximum stresses during the excavation flow may be responsible for the elevation of complex crater rims. This hypothesis is tested at terrestrial craters whose apparent crater rims are often confined by circumferential faults [7]. References:[1] Shoemaker, E. M. (1963) The Solar System, 4, 301-336. [2] Poelchau M.H. et al. (2009), JGR, 114, E01006. [3] Settle, M., and Head, J.W., (1977), Icarus, 31, 123. [4] McGetchin, T. R., et al., (1973), EPSL, 20, 226.[5] Krüger T. et al. (2014), LPSC 45, #1834. [6] Sturm, S. et al. (2014), LPSC 45, 1801. [7] Turtle, E. et al. (2005), GSA-SP. 384, 1.

  5. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages.

    USGS Publications Warehouse

    Croft, S.K.; Kieffer, S.W.; Ahrens, T.J.

    1979-01-01

    We produced a series of decimeter-sized impact craters in blocks of ice near 0oC and -70oC and in ice-saturated sand near -70oC as a preliminary investigation of cratering in materials analogous to those found on Mars and the outer solar satellites. Crater diameters in the ice-saturated sand were 2 times larger than craters in the same energy and velocity range in competent blocks of granite, basalt and cement. Craters in ice were c.3 times larger. Martian impact crater energy versus diameter scaling may thus be a function of latitude. -from Authors

  6. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  7. Shallow and deep fresh impact craters in Hesperia Planum, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1993-01-01

    The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.

  8. Lunar and Venusian radar bright rings

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Saunders, R. S.; Weissman, D. E.

    1986-01-01

    Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.

  9. The Explorer's Guide to Impact Craters

    NASA Technical Reports Server (NTRS)

    Chuang, F.; Pierazzo, E.; Osinski, G.

    2005-01-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.

  10. The phanerozoic impact cratering rate: Evidence from the farside of the Moon

    USGS Publications Warehouse

    McEwen, A.S.; Moore, Johnnie N.; Shoemaker, E.M.

    1997-01-01

    The relatively recent (< 1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moon's farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than ???3.2 b.y. old is ???3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is ???1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800-850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was ???35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters (??? 120 m.y.) and from present-day astronomical observations, and (3) the Proterozoic rate suggested by the crater record of Australia. The hypothesis most consistent with several key observations is that the cratering rate has increased by ???2x during the past ???300 m.y. Copyright 1997 by the American Geophysical Union.

  11. Light scattering from laser induced pit ensembles on high power laser optics

    DOE PAGES

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

  12. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel.

    PubMed

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing

    2017-11-14

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  13. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    PubMed Central

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912

  14. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  15. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  16. Advantages and limitations for users of double pit pour-flush latrines: a qualitative study in rural Bangladesh.

    PubMed

    Hussain, Faruqe; Clasen, Thomas; Akter, Shahinoor; Bawel, Victoria; Luby, Stephen P; Leontsini, Elli; Unicomb, Leanne; Barua, Milan Kanti; Thomas, Brittany; Winch, Peter J

    2017-05-25

    In rural Bangladesh, India and elsewhere, pour-flush pit latrines are the most common sanitation system. When a single pit latrine becomes full, users must empty it themselves and risk exposure to fresh feces, pay an emptying service to remove pit contents or build a new latrine. Double pit pour-flush latrines may serve as a long-term sanitation option including high water table areas because the pits do not need to be emptied immediately and the excreta decomposes into reusable soil. Double pit pour-flush latrines were implemented in rural Bangladesh for 'hardcore poor' households by a national NGO, BRAC. We conducted interviews, focus groups, and spot checks in two low-income, rural areas of Bangladesh to explore the advantages and limitations of using double pit latrines compared to single pit latrines. The rural households accepted the double pit pour-flush latrine model and considered it feasible to use and maintain. This latrine design increased accessibility of a sanitation facility for these low-income residents and provided privacy, convenience and comfort, compared to open defecation. Although a double pit latrine is more costly and requires more space than a single pit latrine the households perceived this sanitation system to save resources, because households did not need to hire service workers to empty pits or remove decomposed contents themselves. In addition, the excreta decomposition process produced a reusable soil product that some households used in homestead gardening. The durability of the latrine superstructures was a problem, as most of the bamboo-pole superstructure broke after 6-18 months of use. Double pit pour-flush latrines are a long-term improved sanitation option that offers users several important advantages over single pit pour-flush latrines like in rural Bangladesh which can also be used in areas with high water table. Further research can provide an understanding of the comparative health impacts and effectiveness of the model in preventing human excreta from entering the environment.

  17. Spatial distribution of bacterial communities and related biochemical properties in Luzhou-flavor liquor-fermented grains.

    PubMed

    Zheng, Jia; Wu, Chongde; Huang, Jun; Zhou, Rongqing; Liao, Xuepin

    2014-12-01

    Grain fermenting with separate layers in a fermentation pit is the typical and experiential brewing technology for Chinese Luzhou-flavor liquor. However, it is still unclear to what extent the bacterial communities in the different layers of fermented grains (FG) effects the liquor's quality. In this study, the spatial distributions of bacterial communities in Luzhou-flavor liquor FG (top, middle, and bottom layers) from 2 distinctive factories (Jiannanchun and Fenggu) were investigated using culture-independent approaches (phospholipid fatty acid [PLFA] and polymerase chain reaction-denaturing gel electrophoresis [DGGE]). The relationship between bacterial community and biochemical properties was also assessed by Canonical correspondence analysis (CCA). No significant variation in moisture was observed in spatial samples, and the highest content of acidity and total ester was detected in the bottom layer (P < 0.05). A high level of ethanol was observed in the top and middle layers of Fenggu and Jiannanchun, respectively. Significant spatial distribution of the total PLFA was only shown in the 50-y-old pits (P < 0.05), and Gram negative bacteria was the prominent community. Bacterial 16S rDNA DGGE analysis revealed that the most abundant bacterial community was in the top layers of the FG both from Fenggu and Jiannanchun, with Lactobacillaceae accounting for 30% of the total DGGE bands and Lactobacillus acetotolerans was the dominant species. FG samples from the same pit had a highly similar bacterial community structure according to the hierarchal cluster tree. CCA suggested that the moisture, acidity, ethanol, and reducing sugar were the main factors affecting the distribution of L. acetotolerans. Our results will facilitate the knowledge about the spatial distribution of bacterial communities and the relationship with their living environment. © 2014 Institute of Food Technologists®

  18. Styles of crater gradation in Southern Ismenius Lacus, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Preserved morphology around selected impact craters together with results from study of long term gradational evolution are used to assess processes responsible for crater modification in southern Ismenius Lacus. Results are compared with the gradational styles of selected terrestrial craters. Although most craters in the region display complex primary morphologies, some first order comparisons with the gradational styles around simple terrestrial craters may be valid. Nearly complete high resolution coverage provides a basis for studying morphologic features at scales comparable to those observed in LANDSAT TM images of terrestrial craters. It is concluded that the relative importance of gradational processes differs around the terrestrial and Martian craters considered here: Martian rimless morphologies are produced by mass wasting, eolian deposition/erosion, and limited fluvial incisement resulting in downwasting and significant backwasting of crater walls.

  19. Crater Age and Hydrogen Content in Lunar Regolith from LEND Neutron Data

    NASA Astrophysics Data System (ADS)

    Sanin, Anton; Starr, Richard; Litvak, Maxim; Petro, Noah; Mitrofanov, Igor

    2017-04-01

    We are presenting an analysis of Lunar Exploration Neutron Detector (LEND) epithermal neutron count rates for a large set of mid-latitude craters. Epithermal neutron count rates for crater interiors measured by the LEND Sensor for Epithermal Neutrons (SETN) were compared to crater exteriors for 322 craters. An increase in relative count rate at about 9-sigma confidence level was found, consistent with a lower hydrogen content. A smaller subset of 31 craters, all located near three Copernican era craters, Jackson, Tycho, and Necho, also shows a significant increase in Optical Maturity parameter implying an immature regolith. The increase in SETN count rate for these craters is greater than the increase for the full set of craters by more than a factor of two.

  20. Crater Age and Hydrogen Content in Lunar Regolith from LEND Neutron Data

    NASA Technical Reports Server (NTRS)

    Starr, Richard D.; Litvak, Maxim L.; Petro, Noah E.; Mitrofanov, Igor G.; Boynton, William V.; Chin, Gordon; Livengood, Timothy A.; McClanahan, Timothy P.; Sanin, Anton B.; Sagdeev, Roald Z.; hide

    2017-01-01

    Analysis of Lunar Exploration Neutron Detector (LEND) neutron count rates for a large set of mid-latitude craters provides evidence for lower hydrogen content in the crater interiors compared to typical highland values. Epithermal neutron count rates for crater interiors measured by the LEND Sensor for Epithermal Neutrons (SETN) were compared to crater exteriors for 301 craters and displayed an increase in mean count rate at the approx. 9-sigma confidence level, consistent with a lower hydrogen content. A smaller subset of 31 craters also shows a significant increase in Optical Maturity parameter implying an immature regolith. The increase in SETN count rate for these craters is greater than the increase for the full set of craters by more than a factor of two.

  1. Crater gradation in Gusev crater and Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.

    2006-01-01

    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.

  2. Involvement of the pituitary-specific transcription factor pit-1 in somatolactotrope cell growth and death: an approach using dominant-negative pit-1 mutants.

    PubMed

    Pellegrini, Isabelle; Roche, Cathy; Quentien, Marie-Helene; Ferrand, Mireille; Gunz, Ginette; Thirion, Sylvie; Bagnis, Claude; Enjalbert, Alain; Franc, Jean-Louis

    2006-12-01

    The anterior pituitary-specific transcription factor Pit-1 was initially identified and cloned as a transactivator of the prolactin (PRL) and GH genes and later as a regulator of the TSHb gene. It was found to be a major developmental regulator, because natural Pit-1 gene mutations cause a dwarf phenotype in mice and cause combined pituitary hormone deficiency associated with pituitary hypoplasia in humans. To further investigate the growth-promoting effects of Pit-1, we used a strategy based on the use of dominant-negative Pit-1 mutants as an alternative means of inactivating endogenous Pit-1 functions. R271W, a Pit-1 mutant identified in one allele in patients with severe combined pituitary hormone deficiency, and Pit-1Delta1-123, a deletion mutant in which only the DNA binding domain of Pit-1 is conserved, were generated, and their ability to abolish the effects of the endogenous native Pit-1 in the differentiated proliferating somatolactotrope GH4C1 cell line was investigated. Enforced expression of the dominant-negative mutants in GH4C1 cells using recombinant lentiviral vectors decreased the levels of expression of known Pit-1 target genes such as PRL and GH, abolished the hormone release, and reduced cell viability by decreasing the growth rate and inducing apoptosis via a caspase-independent pathway. These results show for the first time that the growth-promoting effects of Pit-1 are at least partly due to the fact that this transcription factor prevents apoptotic cell death.

  3. Control of the geomorphic evolution of an active crater: Popocatpetl (Mexico) 1994-2003.

    NASA Astrophysics Data System (ADS)

    Andrés, N.; Zamorano, J. J.; Palacios, D.; Macias, J. L.; Sanjosé, J. J.

    2009-04-01

    Volcanic activity often causes intense and successive geomorphic changes to occur inside a crater. In terms of hazard mitigation, it is important to understand the cause of these changes whether they be exterior lava spills, sequences of explosions or massive glacier melt. Access to an active crater, however, is very difficult and dangerous, so analytical approaches involving remote study must substitute actual fieldwork. Several studies done at Popocatepetl volcano during its most recent eruptive phase that began in December 1994, use remote techniques and are described in Cruz-Reyna et al. (1998), Wright et al. (2002), Martín-Del Pozo et al. (2003), Tanarro et al. (2005), Matiella et al. (2008), and Zamorano et al. (1996,1998), among others. The compendium of results reveals that recent volcanic activity on Popocatépetl is characterized by successive dome growth and destruction inside the crater. Macias and Siebe (2005) even suggest that the walls of the crater may no longer withstand future dome growth. The purpose of this study is to understand the morphologic evolution of the interior of the crater during the most active period of the present eruptive phase on Popocatepetl from 1994 to 2003. The methodology is based on photogrammetry techniques that have been used successfully at volcanic sites by Donnadieu et al. (2003), and on a GIS to organize information, draft maps and 3-D images, and to calculate spatial variations in landforms (Procter et al., 2006; Schilling et al., 2006). Traditional aerial photo interpretation was used for 22 triplets selected from a collection of photos taken by the Mexican Highway and Transport Secretariat, from 1982 to 2003, and enabled us to draft geomorphic maps of the interior of the crater. The photos and maps were rectified and georeferenced with ArcGis software, and then the maps were digitized. The areas containing morphologic units associated with a date (exterior crater walls, colluvial ramps and recent volcanic complex features such as craters, cones and domes) were uploaded to a temporal database. Next, we linked the morphologic description of the craters and the surface variations occupied by each of the landforms with the volcanic activity. Topographic restitution for 7 of the 22 pairs of selected aerial photos was performed and the Digital Elevations Models (DEMs) for each date were imported to ArcGis to analyze the variations in elevation at the base of the crater and changes on the slopes. Finally, we calculated the free space inside the crater for each date. The results from the data processing showed a sequence of transformations in the crater, each of which was identified with a specific type and intensity of volcanic activity. In the pre-eruptive stage prior to 1994, the growth of the outer walls and the colluvial ramp of the crater (90% of the crater) was attributed primarily to non-volcanic activity. The period from 1994 to June 1999, was marked by dome growth and destruction, which expanded the surface area of the complex (34.5% in April 1998), but reduced the colluvial ramp and the wall. Explosions ejected material from inside the crater, increasing its width and depth (48m). Free space occupied 17.3x106 m3 in June1999, but after an interval of relative calm, dome growth resumed in 2000. Larger forms were produced and were not immediately destroyed, so the dome complex increased to 45.219 m2 by September 2001. This chain of events marked by the overlapping of domes and materials, gave the recent volcanic complex an intricate morphology. During this time, the depth of the crater in February 2003 was 66 m with 11.2x106 m3 of free space. The July-August 2003 photograms reveal a morphology of craters created by a succession of phreatomagmatic explosions that inhibited the formation of lava bodies. Judging from descriptions by volcanologists in February 2004 (Macias and Siebe, 2005), the amount of material ejected from the crater by these explosions was not substantial. References.- Cruz-Reyna, S. de la; Meli, R.; Macías, J.L.; Castillo, F.; & Cabrera, B., 1998. Cyclical dome extrusions that by late 1997 filled one-third of crater capacity, In Smithsonian-GVP Monthly Reports, Popocatépetl, Smithsonian Institution. Bull. Glob. Volcanism Netw, (GVN) 23 (2), 2 - 4. Donnadieu, F.; Kelfoun, K.; Van Wyk de Vries, B.; Decchi, E.; & Merle, O., 2003. Digital photogrammetry as a tool in analogue modelling: applications to volcano instability, Journal of Volcanology and Geothermal Research, 123 (1-2), 161-180. Macías, J.L. & Siebe, C., 2005. Popocatépetl crater filled to the brim: significance for hazard evaluation, Journal of Volcanology and Geothermal Research (141) 327-330. Martín-Del Pozzo, A.L.; Cifuentes-Nava, G.; Cabral-Cano, E.; Bonifaz, F.; Correa, I.; & Mendiola, I.F., 2003. Timing magma ascent at Popocatepetl Volcano, Mexico, 2000-2001, Journal of Volcanology and Geothermal Research ,125, 107-120. Matiella, M.A.; Watson, I.M.; Delgado, H.; Rose, W.I.; , Cárdenas, L.; & Realmuro, V.J., 2008, Volcanic emissions from Popocatépetl volcano, Mexico, quantified using Moderate Resolution Imaging Spectroradiometer (MODIS) infrared data: A case study of the December 2000-January 2001 emissions, Journal of Volcanology and Geothermal Research, 170, 1-2, 76-85. Procter, J.N.; Platz, T.; & Cronin, S.J., 2006. A remnant summit lava dome and its influence on future eruptive hazards, Geophysical Research Abstracts, Vol. 8, 10211. Schilling, S.P.; Ramsey, D.W.; Messerich, J.A.; & Thompson, R.A., 2006. Map: Rebuilding Mount St. Helens. U.S. Geological Survey Scientific Investigations Map 2928. Tanarro, L. M.; Zamorano, J.J.; & Palacios, D., 2005. Glacier degradation and lahar formation on the Popocatépetl volcano (Mexico) during the last eruptive period (1994-2003), Zeitschrift Geomorphologie (140) 73-92. Zamorano, J.J., Gómez, A. 1996 "Análisis geomorfoloógico a detalle,1:10 000 del cráter del volcán Popocatépetl (1989-1996)" IV Reunión Nacional de Geomorfología. Pátzcuaro, Michoacán. México. Zamorano, JJ. Goméz, A. y Martín del Pozo, A. L. 1998 "Cartografía geomorfológica del cráter del volcán Popocatépetl (Esc. 1:10 000): mayo 1989-abril 1998" Primera Reunión Nacional de Ciencias de la Tierra. D.F. México. Wright, R.; Cruz-Reyna, S. de la; Harris, A.; Flynn, L.; & Gomez-Palacios, J.J., 2002. Infrared satellite monitoring at Popocatépetl: Explosions, exhalations, and cycles of dome growth, Journal of Geophysical Research, 107(B8), 2153.

  4. Transtensional deformation and structural control of contiguous but independent magmatic systems: Mono-Inyo Craters, Mammoth Mountain, and Long Valley Caldera, California

    USGS Publications Warehouse

    Riley, P.; Tikoff, B.; Hildreth, Wes

    2012-01-01

    The Long Valley region of eastern California (United States) is the site of abundant late Tertiary–present magmatism, including three geochemically distinct stages of magmatism since ca. 3 Ma: Mammoth Mountain, the Mono-Inyo volcanic chain, and Long Valley Caldera. We propose two tectonic models, one explaining the Mammoth Mountain–Mono-Inyo magmatism and the other explaining the presence of Long Valley Caldera. First, the ongoing Mammoth Mountain–Mono-Inyo volcanic chain magmatism is explained by a ridge-transform-ridge system, with the Mono-Inyo volcanic chain acting as one ridge segment and the South Moat fault acting as a transform fault. Implicit in this first model is that this region of eastern California is beginning to act as an incipient plate boundary. Second, the older Long Valley Caldera system is hypothesized to occur in a region of enhanced extension resulting from regional fault block rotation, specifically involving activation of the sinistral faults of the Mina deflection. The tectonic models are consistent with observed spatial and temporal differences in the geochemistry of the regional magmas, and the westward progression of magmatism since ca. 12 Ma.

  5. Possible Rootless Cones or Pseudo craters on Mars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    High-resolution images from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) have revealed small cone-shaped structures on lava flows in southern Elysium Planitia, Marte Valles, and northwestern Amazonis Planitia in the northern hemisphere of the red planet. The most likely interpretation of these cones is that they may be volcanic features known as 'pseudo craters' or 'rootless cones.' They share several key characteristics with pseudo craters on Earth: they are distributed in small clusters independent of structural patterns, are superimposed on fresh lava flows, and they do not appear to have erupted lavas themselves. The white box in the picture above left shows the location of one of the MOC images of possible pseudocraters on Mars. The white box is drawn upon a MOC red wide angle context image acquired at the same time as the high resolution view, shown on the right above. Located in northwestern Amazonis Planitia near 24.8oN, 171.3oW, both the context image and high-resolution view are illuminated from the lower left. The high resolution view shows several possible pseudocraters (cone-shaped features with holes or pits at their summits) that occur on top of a rough-textured lava plain. The context frame covers an area 115 km (71 mi) across, the high-resolution view is 3 km (1.9 mi) across. Pseudocraters form by explosions due to the interaction of molten lava with a water-rich surface. Possible martian pseudocraters are of interest because they may mark the locations of shallow water or ice at the time the lava was emplaced. Viking Orbiter images have shown structures in other regions of Mars that were interpreted to be pseudocraters, but the interpretations were uncertain because the morphology was poorly resolved, it was unclear if they occurred on volcanic surfaces, and they have diameters as much as a factor of 3 larger than terrestrial pseudocraters. The cone-shaped morphology is well resolved in the cones imaged by MOC, and they have basal diameters of less than 250 m (273 yards), consistent with terrestrial examples. The cones rest on a surface with a distinctive morphology consisting of ridged plates that have rafted apart, which MOC team members have interpreted as the surface of voluminous lava flows. The surface shown here (above right) looks relatively fresh and has very few impact craters on it, which suggests that the lava flows and the cones are both geologically young. However, MOC images in other areas reveal such apparently young surfaces being exhumed (presumably by wind erosion) from beneath a blanket of overlying material. Impact processes may harden the blanket, or cover it with materials that cannot be removed by wind, so the wind erosion leaves behind elevated 'pedestalcraters.' The cones shown here are not typical of pedestal craters, but it is important to consider this alternative interpretation. MGS MOC first began taking pictures of Mars in mid-September 1997. The planet that has been revealed by this camera is often strange, new, and exciting. The possibility that lava and water or ice have interacted to create features like pseudocraters indicates that Mars has had a diverse and complex past that researchers are only just beginning to understand.

  6. Primary intestinal lymphangiectasia: Minireview

    PubMed Central

    Ingle, Sachin B; Hinge (Ingle), Chitra R

    2014-01-01

    Primary idiopathic intestinal lymphangiectasia is an unusual disease featured by the presence of dilated lymphatic channels which are located in the mucosa, submucosa or subserosa leading to protein loosing enteropathy.Most often affected were children and generally diagnosed before third year of life but may be rarely seen in adults too. Bilateral pitting oedema of lower limb is the main clinical manifestation mimicking the systemic disease and posing a real diagnostic dilemma to the clinicians to differentiate it from other common systemic diseases like Congestive cardiac failure, Nephrotic Syndrome, Protein Energy Malnutrition, etc. Diagnosis can be made on capsule endoscopy which can localise the lesion but unable to take biopsy samples. Thus, recently double-balloon enteroscopy and biopsy in combination can be used as an effective diagnostic tool to hit the correct diagnosis. Patients respond dramatically to diet constituting low long chain triglycerides and high protein content with supplements of medium chain triglyceride. So early diagnosis is important to prevent untoward complications related to disease or treatment for the sake of accurate pathological diagnosis. PMID:25325063

  7. Setting of the Father's Day Eruption at Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.

    2007-12-01

    The Father's Day eruption and associated intrusion took place within a 10-km segment of Kilauea's east rift zone between Hi`iaka and Napau Craters--a segment that has had more numerous eruptions and intrusions than any other of comparable length during the past 200, probably the past 1000, years. Fifteen known eruptions started in this area in the past 200 years: 1840, 1922, 1923, 1962, August and October 1963, March and December 1965, August and October 1968, February and May 1969, May and November 1973, and March 1980 (only 3 cubic meters!). Three others, not previously designated as distinct eruptions despite having all the appropriate characteristics, took place during on-going eruptions: two in `Alo`i Crater in 1970 and 1972, and one in Napau Crater in 1997. Two of the largest shields on the east rift zone formed during long-lasting eruptions within this area--Kane Nui o Hamo at an unknown date, perhaps the 11-12th century, and Mauna Ulu (1969-1974). In addition, many small intrusions without eruptions are known. Seven short eruptions punctuated a prolonged eruption: four within the segment during the Mauna Ulu eruption, two at the summit and southwest rift zone during that same eruption, and one in Napau Crater in 1997 during the Pu`u `O`o eruption. Thus the Father's Day eruption is not unique by virtue of taking place during an ongoing eruption elsewhere along the rift zone. The increased frequency of activity in the segment during the 20th century is obvious, particularly after 1962. For most of the past 1,000 years, eruptions were centered at Kilauea's summit, with significant but lesser activity along the rift zones. A large summit deflation in 1924 ended the nearly continuous lava lake in Halemaumau, eventually leading to the past 5 decades of dominantly east rift zone activity. This segment of the rift zone contains most of the pit craters on Kilauea and gradually changes from a SE trend near the caldera to an ENE trend that characterizes the rest of the zone. The Koa`e fault system joins the east rift zone at the curve. The complex structural setting likely affects the frequency of magmatic activity in the segment. All of the eruptive and intrusive activity results in storage of isolated magma bodies. Not surprisingly, petrologists find evidence that summit magma mixes with stored, fractionated magma. The area near Makaopuhi Crater and Kane Nui o Hamo is a particular focus, inferred since the mid-1960s to harbor a shallow magma reservoir. All of the eruptions and intrusions are accompanied by sharp deflation and shallow seismicity at the summit and shallow seismicity and uplift along the intrusion or eruptive fissures. Most often, no seismicity occurs between the summit and the area of intrusion or eruption. Within that area, seismicity commonly migrates downrift but occasionally uprift. Similarly, crack opening generally progresses downrift, with a few exceptions. Cracks generally trend about 65 degrees and can be either left- or right-stepping. Cracks open along azimuths of 155-175, with local exceptions. There is no structural difference between eruptive cracks (fissures) and non- eruptive cracks. Single eruptive fissures rarely exceed 200 m in length, instead stepping within en echelon zones above a presumably linear dike. Since the late 1960s, widening has been measured across the active area during eruptions and intrusions, first by EDM and then by satellite-based systems. The opening is nearly symmetrical within the rift zone, but farther out the north flank barely responds whereas the south flank moves seaward. Available leveling data show uplift on either side of the dike and subsidence along the crest. Examples of deformation in the 1960s and 1970s will be presented, and bibliographic references to past activity will be available.

  8. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Treesearch

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  9. Moon-Mercury: Large impact structures, isostasy and average crustal viscosity

    USGS Publications Warehouse

    Schaber, G.G.; Boyce, J.M.; Trask, N.J.

    1977-01-01

    Thirty-five craters and basins larger than 200 km in diameter are recognized on the imaged portion (45%) of Mercury. If the unimaged portion of the planet is similarly cratered, a total of 78 such impact features may be present. Sixty-two craters and basins 200 km in diameter are recognized on the moon, a body with only half the cross-sectional area of Mercury. If surface areas are considered, however, Mercury is cratered only 70% as densely as the moon. The density of impact craters with diameters greater than 400 km on Mercury is only 30% of that on the moon, and for craters with diameters between 400 and 700 km, the density on Mercury is only 21% of the lunar crater density. The size-frequency distribution curve for the large Mercurian craters follows the same cumulative -2 slope as the lunar curve but lies well below the 10% surface saturation level characteristic of the lunar curve. This is taken as evidence that the old heavily cratered terrain on Mercury is, at least presently, not in a state of cratering equilibrium. The reduced density of large craters and basins on Mercury relative to the moon could be either a function of the crater-production rates on these bodies or an effect of different crustal histories. Resurfacing of the planet after the basin-forming period is ruled out by the presence of 54 craters and basins 100 km in diameter and larger (on the imaged portion of Mercury) that have either well-defined or poorly-defined secondary-crater fields. Total isostatic compensation of impact craters ???800 km in diameter indicates that the average viscosity of the Mercurian crust over the past 4+ aeons was the same as that for the moon (???1026.5 P). This calculated viscosity and the distribution of large craters and basins suggest that either the very early crustal viscosity on Mercury was less than that of the moon and the present viscosity greater, or the differences in large crater populations on the two bodies is indeed the result of variations in rates of crater production. ?? 1977.

  10. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  11. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-04-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).

  12. What Dominates a Craters Size, the Largest Single Explosion of the Formation Process or the Cumulative Energy of Many? Results of Multiblast Crater Evolution Experiments

    NASA Astrophysics Data System (ADS)

    Sonder, I.; Graettinger, A. H.; Valentine, G. A.

    2015-12-01

    Craters of explosive volcanic eruptions are products of many explosions. Such craters are different than products of single events such as meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. We analyzed the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. A method to calculate an effective explosion depth for non-flat topography (e.g. for explosions below existing craters) is derived, showing how multi-blast crater sizes differ from the single blast case. It is shown that sizes of natural caters (radii, volumes) are not characteristic of the number of explosions, and therefore not characteristic for the total acting energy, that formed a crater. Also the crater size is not simply related to the largest explosion in a sequence, but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed the crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multi-blast crater size evolution implies that it is not correct to estimate explosion energy of volcanic events from crater size using previously published relationships that were derived for single blast cases.

  13. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less

  14. Lonar Lake, India: An impact Crater in basalt

    USGS Publications Warehouse

    Fredriksson, K.; Dube, A.; Milton, D.J.; Balasundaram, M.S.

    1973-01-01

    Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.

  15. Cratering on Mars. I - Cratering and obliteration history. II Implications for future cratering studies from Mariner 4 reanalysis

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1974-01-01

    It is pointed out that Mars is especially well adapted to statistical studies of crater morphologies for deciphering its geological history. A framework for understanding planetary geomorphological histories from the diameter-frequency relations of different morphological classes of craters described by Chapmam et al. (1970) is extended in order to understand Martian cratering, erosional, and depositional history. The cratering-obliteration history derived is compared with global interpretations considered by Hartman (1973) and Soderblom et al. (1974). An idealized dust-filling model is employed.

  16. Impact Craters of Venus with D Greater Than 5 km Classified Based on Degree of Preservation of the Associated Radar-Dark Deposits

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, J. W.; Setyaeva, I. V.

    2003-01-01

    This is a further continuation of work, which studied craters greater than or equal to 30 km in diameter. That work subdivided craters based on character of the associated radar dark deposits. It was suggested and then confirmed that the most pristine deposits of that sort are radar-dark parabolas. Non-parabolic radar-dark halos represent the next stage of the deposit evolution and then with time they disappear. So presence and character of crater-associated dark deposit can be used for estimates of the crater age and then for dating other features. Previous work classified craters into: 1) craters with dark parabola (DP), 2) with clear dark halo (CH), 3) with faint halo (FH) and 4) with no dark halo (NH). It was found that abundances of craters superposed on regional plains (whose mean age is close to the planet mean surface age T) and belonging to DP, CH, FH and NH classes were correspondingly 15, 30, 30 and 25%. From that it was concluded that DP craters are not older than 0.1-0.15T; CH craters formed during the time interval from approx. 0.5T until 0.1-0.15T ago, and the FH and NH craters formed prior to approx. 0.5T ago. It was shown that the DP, CH, FH and NH percentages show only slight apparent dependence on the crater geographic latitudes and no noticeable dependence on the crater size. The present study analyzes a much larger population (all D greater than or equal to 5 km craters) to investigate better the latitude effect and to study if within this larger crater population the size effect exists.

  17. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047195','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047195"><span>Crater-based dating of geological units on Mars: methods and application for the new global geological map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Platz, Thomas; Michael, Gregory; Tanaka, Kenneth L.; Skinner, James A.; Fortezzo, Corey M.</p> <p>2013-01-01</p> <p>The new, post-Viking generation of Mars orbital imaging and topographical data provide significant higher-resolution details of surface morphologies, which induced a new effort to photo-geologically map the surface of Mars at 1:20,000,000 scale. Although from unit superposition relations a relative stratigraphical framework can be compiled, it was the ambition of this mapping project to provide absolute unit age constraints through crater statistics. In this study, the crater counting method is described in detail, starting with the selection of image data, type locations (both from the mapper’s and crater counter’s perspectives) and the identification of impact craters. We describe the criteria used to validate and analyse measured crater populations, and to derive and interpret crater model ages. We provide examples of how geological information about the unit’s resurfacing history can be retrieved from crater size–frequency distributions. Three cases illustrate short-, intermediate, and long-term resurfacing histories. In addition, we introduce an interpretation-independent visualisation of the crater resurfacing history that uses the reduction of the crater population in a given size range relative to the expected population given the observed crater density at larger sizes. From a set of potential type locations, 48 areas from 22 globally mapped units were deemed suitable for crater counting. Because resurfacing ages were derived from crater statistics, these secondary ages were used to define the unit age rather than the base age. Using the methods described herein, we modelled ages that are consistent with the interpreted stratigraphy. Our derived model ages allow age assignments to be included in unit names. We discuss the limitations of using the crater dating technique for global-scale geological mapping. Finally, we present recommendations for the documentation and presentation of crater statistics in publications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011922','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011922"><span>Galileo SSI lunar observations: Copernican craters and soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcewen, A. S.; Greeley, R.; Head, James W.; Pieters, C. M.; Fischer, E. M.; Johnson, T. V.; Neukum, G.</p> <p>1993-01-01</p> <p>The Galileo spacecraft completed its first Earth-Moon flyby (EMI) in December 1990 and its second flyby (EM2) in December 1992. Copernican-age craters are among the most prominent features seen in the SSI (Solid-State Imaging) multispectral images of the Moon. The interiors, rays, and continuous ejecta deposits of these youngest craters stand out as the brightest features in images of albedo and visible/1-micron color ratios (except where impact melts are abundant). Crater colors and albedos (away from impact melts) are correlated with their geologic emplacement ages as determined from counts of superposed craters; these age-color relations can be used to estimate the emplacement age (time since impact event) for many Copernican-age craters on the near and far sides of the Moon. The spectral reflectivities of lunar soils are controlled primarily by (1) soil maturity, resulting from the soil's cumulative age of exposure to the space environment; (2) steady-state horizontal and vertical mixing of fresh crystalline materials ; and (3) the mineralogy of the underlying bedrock or megaregolith. Improved understanding of items (1) and (2) above will improve our ability to interpret item (3), especially for the use of crater compositions as probes of crustal stratigraphy. We have examined the multispectral and superposed crater frequencies of large isolated craters, mostly of Eratosthenian and Copernican ages, to avoid complications due to (1) secondaries (as they affect superposed crater counts) and (2) spatially and temporally nonuniform regolith mixing from younger, large, and nearby impacts. Crater counts are available for 11 mare craters and 9 highlands craters within the region of the Moon imaged during EM1. The EM2 coverage provides multispectral data for 10 additional craters with superposed crater counts. Also, the EM2 data provide improved spatial resolution and signal-to-noise ratios over the western nearside.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..308..209W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..308..209W"><span>Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.</p> <p>2018-07-01</p> <p>Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>