Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation?
Plavcová, Lenka; Jansen, Steven; Klepsch, Matthias; Hacke, Uwe G.
2013-01-01
Recent studies have suggested that species-specific pit properties such as pit membrane thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth influence xylem vulnerability to cavitation. Despite the indisputable importance of using mean pit characteristics, considerable variability in pit structure within a single species or even within a single pit field should be acknowledged. According to the rare pit hypothesis, a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-seeding. Therefore, any irregularities or morphological abnormalities in pit structure allowing air-seeding should be associated with increased vulnerability to cavitation. Considering the currently proposed models of air-seeding, pit features such as rare, large pores in the pit membrane, torus extensions, and plasmodesmatal pores in a torus can represent potential glitches. These aberrations in pit structure could either result from inherent developmental flaws, or from damage caused to the pit membrane by chemical and physical agents. This suggests the existence of interesting feedbacks between abiotic and biotic stresses in xylem physiology. PMID:24273549
Choat, Brendan; Cobb, Alexander R; Jansen, Steven
2008-01-01
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.
Perforated Pit Membranes in Imperforate Tracheary Elements of Some Angiosperms
SANO, YUZOU; JANSEN, STEVEN
2006-01-01
• Background and Aims The structure of pit membranes in angiosperms has not been fully examined and our understanding about the structure is incomplete. Therefore, this study aims to illustrate the micromorphology of pit membranes in fibres and tracheids of woody species from various families. • Methods Specimens from ten species from ten genera and eight families were prepared using two techniques and examined by field-emission scanning electron microscopy. • Key Results Interfibre pit membranes with an average diameter of <4 µm were frequently perforated or appeared to be very porous. In contrast, pit membranes in imperforate tracheary elements with distinctly bordered pits and an average diameter of ≥4 µm were homogeneous and densely packed with microfibrils. These differences were observed consistently not only among species but also within a single species in which different types of imperforate tracheary elements were present. • Conclusions This study demonstrates that the structure of interfibre pit membranes differs among cell types and the differences are closely associated with the specialization of the fibre cells. It is suggested that perforated pit membranes between specialized fibres contribute to the dehydration of the fibre cells at or soon after maturation. PMID:16520339
Pereira, Luciano; Flores-Borges, Denisele; Bittencourt, Paulo; Mayer, Juliana; Kiyota, Eduardo; Araújo, Pedro; Jansen, Steven; Freitas, Raul; Oliveira, Rafael; Mazzafera, Paulo
2018-06-05
In the xylem of angiosperm plants, microscopic pits through the secondary cell walls connect the water-conducting vessels. Cellulosic meshes originated from primary walls and middle lamella between adjacent vessels, called pit membrane, separates one conduit from another. The intricate structure of the nano-sized pores in pit membranes enables the passage of water under negative pressure without hydraulic failure due to obstruction by gas bubbles (i.e., embolism) under normal conditions or mild drought stress. Since the chemical composition of pit membranes affects embolism formation and bubble behavior, we directly measured pit membrane composition in Populus nigra wood. Here, we characterized the chemical composition of cell wall structures by synchrotron infrared nanospectroscopy and atomic force microscopy-infrared nanospectroscopy with high spatial resolution. Characteristic peaks of cellulose, phenolic compounds, and proteins were found in the intervessel pit membrane of P. nigra wood. In addition, vessel to parenchyma pit membranes and developing cell walls of the vascular cambium showed clear signals of cellulose, proteins, and pectin. We did not find a distinct peak of lignin and other compounds in these structures. Our investigation of the complex chemical composition of intervessel pit membranes furthers our understanding of the flow of water and bubbles between neighboring conduits. The advances presented here pave the way for further label-free studies related to the nano-chemistry of plant cell components. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic
Kirchhausen, Tom; Owen, David; Harrison, Stephen C.
2014-01-01
Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820
Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko
2017-02-01
Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DELZON, SYLVAIN; DOUTHE, CYRIL; SALA, ANNA; COCHARD, HERVE
2010-01-01
Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from −2.9 to −11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. PMID:20636490
Delzon, Sylvain; Douthe, Cyril; Sala, Anna; Cochard, Herve
2010-12-01
Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P(50), a proxy for cavitation resistance) varied widely among species, from -2.9 to -11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. © 2010 Blackwell Publishing Ltd.
Sano, Yuzou; Morris, Hugh; Shimada, Hiroshi; Ronse De Craene, Louis P.; Jansen, Steven
2011-01-01
Background and Aims Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs. Methods Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy. Key Results ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping. Conclusions The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive. PMID:21385773
Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila
2014-01-01
Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347
Torus-margo pits help conifers compete with angiosperms.
Pittermann, Jarmila; Sperry, John S; Hacke, Uwe G; Wheeler, James K; Sikkema, Elzard H
2005-12-23
The unicellular conifer tracheid should have greater flow resistance per length (resistivity) than the multicellular angiosperm vessel, because its high-resistance end-walls are closer together. However, tracheids and vessels had comparable resistivities for the same diameter, despite tracheids being over 10 times shorter. End-wall pits of tracheids averaged 59 times lower flow resistance on an area basis than vessel pits, owing to the unique torus-margo structure of the conifer pit membrane. The evolution of this membrane was as hydraulically important as that of vessels. Without their specialized pits, conifers would have 38 times the flow resistance, making conifer-dominated ecosystems improbable in an angiosperm world.
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow.
Schulte, Paul J
2012-02-01
• The flow of xylem sap through conifer bordered pits, particularly through the pores in the pit membrane, is not well understood, but is critical for an understanding of water transport through trees. • Models solving the Navier-Stokes equation governing fluid flow were based on the geometry of bordered pits in black spruce (Picea mariana) and scanning electron microscopy images showing details of the pores in the margo of the pit membrane. • Solutions showed that the pit canals contributed a relatively small fraction of resistance to flow, whereas the torus and margo pores formed a large fraction, which depended on the structure of the individual pit. The flow through individual pores in the margo was strongly dependent on pore area, but also on the radial location of the pore with respect to the edge of the torus. • Model results suggest that only a few per cent of the pores in the margo account for nearly half of the flow and these pores tend to be located in the inner region of the margo where their contribution will be maximized. A high density of strands in outer portions of the margo (hence narrower pores) may be more significant for mechanical support of the torus. © 2011 The Author. New Phytologist © 2011 New Phytologist Trust.
Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.
Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C
2015-10-01
The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
STRUCTURE OF MEMBRANE HOLES IN OSMOTIC AND SAPONIN HEMOLYSIS
Seeman, P.; Cheng, D.; Iles, G. H.
1973-01-01
Serial section electron microscopy of hemolysing erythrocytes (fixed at 12 s after the onset of osmotic hemolysis) revealed long slits and holes in the membrane, extending to around 1 µm in length. Many but not all of the slits and holes (about 100–1000 Å wide) were confluent with one another. Ferritin and colloidal gold (added after fixation) only permeated those cells containing membrane defects. No such large holes or slits were seen in saponin-treated erythrocytes, and the membrane was highly invaginated, giving the ghost a scalloped outline. Freeze-etch electron microscopy of saponin-treated membranes revealed 40–50 Å-wide pits in the extracellular surface of the membrane. If these pits represent regions from which cholesterol was extracted, then cholesterol is uniformly distributed over the entire erythrocyte membrane. PMID:4566525
Parton, Robert G; Tillu, Vikas A; Collins, Brett M
2018-04-23
Caveolae are one of the most abundant and striking features of the plasma membrane of many mammalian cell types. These surface pits have fascinated biologists since their discovery by the pioneers of electron microscopy in the middle of the last century, but we are only just starting to understand their multiple functions. Molecular understanding of caveolar formation is advancing rapidly and we now know that sculpting the membrane to generate the characteristic bulb-shaped caveolar pit involves the coordinated action of integral membrane proteins and peripheral membrane coat proteins in a process dependent on their multiple interactions with membrane lipids. The resulting structure is further stabilised by protein complexes at the caveolar neck. Caveolae can bud to generate an endocytic carrier but can also be disassembled in response to specific stimuli to function as a mechanoprotective device. These structures have also been linked to numerous signalling pathways. Here, we will briefly summarise the current molecular and structural understanding of caveolar formation and dynamics, discuss how the crucial structural components of caveolae work together to generate a dynamic sensing domain, and discuss the implications of recent studies on the diverse roles proposed for caveolae in different cells and tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Force-displacement measurements of earlywood bordered pits using a mesomechanical tester
Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft
2015-01-01
The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present forceâdisplacement measurements for pit membranes of circular bordered pits, collected on a...
Yue, Yinling; Zhang, Lan; Ling, Bo
2011-11-01
To investigate the phenomenon of bacteria exceeding standards in rural pit water, which was intermittently operated by water pump equipped with ultrafiltration membrane, and to explore the solutions. Polyvinyl chloride (PVC) alloy capillary membranes combined with UV, disinfectant, one-way valve, water-seal, high water level-water tank and direct outlet were tested. The operation on water treatment was intermittent, simulating the ways of treating pit water in the rural. The combination modes of ultrafiltration membrane with UV, disinfectant and high water level-water tank are valid in solving the problem of high turbidity and microorganism of pit water stored in cellars, the quality of effluents was consistent with the requirements of the national standards. While the combination modes of ultrafiltration membrane with one-way valve or water-seal were less desirable, more bacteria in treated water than raw water were observed because of bacteria breeding on the membrane component. In order to avoid excessive bacteria in filtered pit water caused by intermittent operation, it is recommended that for the pit water in high water level water tanks, the ultrafiltration membranes should be cleaned with disinfectants on a regular basis. The effluent pit water from underground cellars should be disinfected with UV after ultrafiltration.
Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics.
Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Tixier, Aude; Cochard, Hervé; Herbette, Stéphane
2014-03-01
Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency. © 2013 Scandinavian Plant Physiology Society.
Prototyping Energy Storage Components for Hybrid Power Source
2009-12-11
from suitable nanoporous ceramic ( anodized aluminum oxide – AAO ) and polymer (polycarbonate - PC, polyethylene terephtalate - PET) membranes . Metal...of NUC technology: a) sketch of structure, b) SEM image of membrane . The alumina membranes can be easily and inexpensively fabricated via anodization ...of aluminum foil. The pores are formed by self-assembly via pitting and reprecipation of metal oxide . Motivation The work is motivated by the
Fire, E; Zwart, D E; Roth, M G; Henis, Y I
1991-12-01
Replacement of cysteine at position 543 by tyrosine in the influenza virus hemagglutinin (HA) protein enables the endocytosis of the mutant protein (Tyr 543) through coated pits (Lazarovits, J., and M. G. Roth. 1988. Cell. 53:743-752). To investigate the interactions between Tyr 543 and the clathrin coats in the plasma membrane of live cells, we performed fluorescence photobleaching recovery measurements comparing the lateral mobilities of Tyr 543 (which enters coated pits) and wild-type HA (HA wt, which is excluded from coated pits), following their expression in CV-1 cells by SV-40 vectors. While both proteins exhibited the same high mobile fractions, the lateral diffusion rate of Tyr 543 was significantly slower than that of HA wt. Incubation of the cells in a sucrose-containing hypertonic medium, a treatment that disperses the membrane-associated coated pits, resulted in similar lateral mobilities for Tyr 543 and HA wt. These findings indicate that the lateral motion of Tyr 543 (but not of HA wt) is inhibited by transient interactions with coated pits (which are essentially immobile on the time scale of the lateral mobility measurements). Acidification of the cytoplasm by prepulsing the cells with NH4Cl (a treatment that arrests the pinching-off of coated vesicles from the plasma membrane and alters the clathrin lattice morphology) led to immobilization of a significant part of the Tyr 543 molecules, presumably due to their entrapment in coated pits for the entire duration of the lateral mobility measurement. Furthermore, in both untreated and cytosol-acidified cells, the restrictions on Tyr 543 mobility were less pronounced in the cold, suggesting that the mobility-restricting interactions are temperature dependent and become weaker at low temperatures. From these studies we conclude the following. (a) Lateral mobility measurements are capable of detecting interactions of transmembrane proteins with coated pits in intact cells. (b) The interactions of Tyr 543 with coated pits are dynamic, involving multiple entries of Tyr 543 molecules into and out of coated pits. (c) Alterations in the clathrin lattice structure can modulate the above interactions.
An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan
2014-03-28
Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less
2011-01-01
Background The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na+- or H+-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na+-dependent Pi (NaPi) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. Results We show that the human PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic for all PiT family members. A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR254-V483), was found to be a fully functional Pi transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL183-V483) did also support Pi transport albeit at very low levels. Conclusions The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. PMID:21586110
Bøttger, Pernille; Pedersen, Lene
2011-05-17
The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na(+)- or H(+)-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na(+)-dependent P(i) (NaP(i)) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. We show that the human PiT2 histidine, H(502), and the human PiT1 glutamate, E(70),--both conserved in eukaryotic PiT family members--are critical for P(i) transport function. Noticeably, human PiT2 H(502) is located in the C-terminal PiT family signature sequence, and human PiT1 E(70) is located in ProDom domains characteristic for all PiT family members.A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR(254)-V(483)), was found to be a fully functional P(i) transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL(183)-V(483)) did also support P(i) transport albeit at very low levels. The results suggest that the overall structure of the P(i)-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. © 2011 Bøttger and Pedersen; licensee BioMed Central Ltd.
Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven
2016-01-01
Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661
Pit membranes of Ephedra resemble gymnosperms more than angiosperms
Roland Dute; Lauren Bowen; Sarah Schier; Alexa Vevon; Troy Best; Maria Auad; Thomas Elder; Pauline Bouche; Steven Jansen
2014-01-01
Bordered pit pairs of Ephedra species were characterized using different types of microscopy. Pit membranes contained tori that did not stain for lignin. SEM and AFM views of the torus surface showed no plasmodesmatal openings, but branched, secondary plasmodesmata were occasionally noted using TEM in conjunction with ultrathin sections. The margo consisted of radial...
Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis
Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Imaoka, Yuka; Itagaki, Yoshitsuna; Suzuki, Yuki
2018-01-01
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. PMID:29723197
Kamal, A; Ying, Y; Anderson, R G
1998-08-24
Previously we reported that annexin VI is required for the budding of clathrin-coated pits from human fibroblast plasma membranes in vitro. Here we show that annexin VI bound to the NH2-terminal 28-kD portion of membrane spectrin is as effective as cytosolic annexin VI in supporting coated pit budding. Annexin VI-dependent budding is accompanied by the loss of approximately 50% of the spectrin from the membrane and is blocked by the cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Incubation of fibroblasts in the presence of ALLN initially blocks the uptake of low density lipoprotein (LDL), but the cells recover after 1 h and internalize LDL with normal kinetics. The LDL internalized under these conditions, however, fails to migrate to the center of the cell and is not degraded. ALLN-treated cells have twice as many coated pits and twofold more membrane clathrin, suggesting that new coated pits have assembled. Annexin VI is not required for the budding of these new coated pits and ALLN does not inhibit. Finally, microinjection of a truncated annexin VI that inhibits budding in vitro has the same effect on LDL internalization as ALLN. These findings suggest that fibroblasts are able to make at least two types of coated pits, one of which requires the annexin VI-dependent activation of a cysteine protease to disconnect the clathrin lattice from the spectrin membrane cytoskeleton during the final stages of budding.
Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven
2008-11-01
Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.
Scholz, Alexander; Rabaey, David; Stein, Anke; Cochard, Hervé; Smets, Erik; Jansen, Steven
2013-07-01
Various structure-function relationships regarding drought-induced cavitation resistance of secondary xylem have been postulated. These hypotheses were tested on wood of 10 Prunus species showing a range in P50 (i.e., the pressure corresponding to 50% loss of hydraulic conductivity) from -3.54 to -6.27 MPa. Hydraulically relevant wood characters were quantified using light and electron microscopy. A phylogenetic tree was constructed to investigate evolutionary correlations using a phylogenetically independent contrast (PIC) analysis. Vessel-grouping characters were found to be most informative in explaining interspecific variation in P50, with cavitation-resistant species showing more solitary vessels than less resistant species. Co-evolution between vessel-grouping indices and P50 was reported. P50 was weakly correlated with the shape of the intervessel pit aperture, but not with the total intervessel pit membrane area per vessel. A negative correlation was found between P50 and intervessel pit membrane thickness, but this relationship was not supported by the PIC analysis. Cavitation resistance has co-evolved with vessel grouping within Prunus and was mainly influenced by the spatial distribution of the vessel network.
Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C
2015-08-01
Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.
Katzir, Z; Nardi, N; Geffen, I; Fuhrer, C; Henis, Y I
1994-08-26
Lateral mobility studies comparing native and mutated membrane proteins, combined with treatments that alter clathrin lattice structure, can measure membrane protein-coated pit interactions in intact cells (Fire, E., Zwart, D., Roth, M. G., and Henis, Y. I. (1991) J. Cell Biol. 115, 1585-1594). We applied this approach to study the interactions of the H1 and H2 human asialoglycoprotein receptor subunits with coated pits. The lateral mobilities of singly expressed and coexpressed H1 and H2B (the H2 species that reaches the cell surface) were measured by fluorescence photobleaching recovery. They were compared with mutant proteins, H1(5A) (Tyr-5 replaced by Ala) and H2(5A) (Phe-5 replaced by Ala). While the mobile fractions of H1, H2B, and their mutants were similar, the lateral diffusion rate (measured by D, the lateral diffusion coefficient) was significantly slower for H1, whether expressed alone or with H2B. Coexpression with H1 reduced D of H2B to that of H1. Disruption of the clathrin lattices by hypertonic medium elevated D of H1, H1(5A), H2B, and H2(5A) to the same final level, without affecting their mobile fractions. Cytosol acidification, which retains altered clathrin lattices attached to the membrane and prevents coated vesicle formation, immobilized part of the H1 molecules, reflecting stable entrapment in "frozen" coated pits. H1(5A), H2B, and H2(5A) were not affected; however, coexpression of H2B with H1 conferred the sensitivity to cytosol acidification on H2B. Our results suggest that H1 lateral mobility is inhibited by dynamic interactions with coated pits in which Tyr-5 is involved. H2B resembles H1(5A) rather than H1, and its interactions with coated pits are weaker; efficient interaction of H2B with coated pits depends on complex formation with H1.
NASA Astrophysics Data System (ADS)
Ogawa, Mikako; Yamauchi, Toyohiko; Iwai, Hidenao; Magata, Yasuhiro; Choyke, Peter L.; Kobayashi, Hisataka
2014-03-01
We have reported a new molecular-targeted cancer phototherapy, photoimmunotherapy (PIT), which killed implanted tumors in mice without side-effects. To understand the mechanism of cell killing with PIT, three-dimentional dynamic low-coherence quantitative phase microscopy (3D LC-QPM), a device developed by Hamamatsu Photonics K.K, was used to detect morphologic changes in cancer cells during PIT. 3T3/HER2 cells were incubated with anti-HER2 trastuzumab-IR700 (10 μg/mL, 0.1 μM as IR700) for 24 hours, then, three-dimensionally imaged with the LC-QPM during the exposure of two different optically filtered lights for excitation of IR700 (500-780 nm) and imaging (780-950 nm). For comparison with traditional PDT, the same experiments were performed with Photofrin (10 and 1 μM). Serial changes in the cell membrane were readily visualized on 3D LC-QPM. 3T3/HER2 cells began to swell rapidly after exposure to 500-780 nm light excitation. The cell volume reached a maximum within 1 min after continuous exposure, and then the cells appeared to burst. This finding suggests that PIT damages the cell membrane by photo-reaction inducing an influx of water into the cell causing swelling and bursting of the cells. Interestingly, even after only 5 seconds of light exposure, the cells demonstrated swelling and bursting albeit more slowly, implying that sufficient cumulative damage occurs on the cell membrane to induce lethal damage to cells even at minimal light exposure. Similar but non-selective membrane damage was shown in PDT-treated cells Photofrin. Thus, PIT induces sufficient damage to the cell membrane within 5 seconds to induce rapid necrotic cell death which can be observed directly with 3D LC-QPM. Further investigation is needed to evaluate the biochemical mechanisms underlying PIT-induced cellular membrane damage.
Caveolae as plasma membrane sensors, protectors and organizers.
Parton, Robert G; del Pozo, Miguel A
2013-02-01
Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.
Pfautsch, Sebastian; Aspinwall, Michael J; Drake, John E; Chacon-Doria, Larissa; Langelaan, Rob J A; Tissue, David T; Tjoelker, Mark G; Lens, Frederic
2018-01-25
Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gas flow in plant microfluidic networks controlled by capillary valves
NASA Astrophysics Data System (ADS)
Capron, M.; Tordjeman, Ph.; Charru, F.; Badel, E.; Cochard, H.
2014-03-01
The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ˜102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP ⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP =ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.
Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.
Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi
2014-10-01
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the American Physiological Society.
Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit.
Cocucci, Emanuele; Gaudin, Raphaël; Kirchhausen, Tom
2014-11-05
Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution, we detected the arrival of dynamin at coated pits and defined dynamin dimers as the preferred assembly unit. We also used live-cell spinning-disk confocal microscopy calibrated by single-molecule EGFP detection to determine the number of dynamins recruited to the coated pits. A large fraction of budding coated pits recruit between 26 and 40 dynamins (between 1 and 1.5 helical turns of a dynamin collar) during the recruitment phase associated with neck fission; 26 are enough for coated vesicle release in cells partially depleted of dynamin by RNA interference. We discuss how these results restrict models for the mechanism of dynamin-mediated membrane scission. © 2014 Cocucci et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Membrane-assisted growth of DNA origami nanostructure arrays.
Kocabey, Samet; Kempter, Susanne; List, Jonathan; Xing, Yongzheng; Bae, Wooli; Schiffels, Daniel; Shih, William M; Simmel, Friedrich C; Liedl, Tim
2015-01-01
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors--a three-layered rectangular block and a Y-shaped DNA structure--to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes.
Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo
2010-07-13
Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.
Kozai, Toshiya; Yang, Huiran; Ishikuro, Daiki; Seyama, Kaho; Kumagai, Yusuke; Abe, Tadashi; Yamada, Hiroshi; Uchihashi, Takayuki
2018-01-01
Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. PMID:29357276
Mechanoprotection by skeletal muscle caveolae.
Lo, Harriet P; Hall, Thomas E; Parton, Robert G
2016-01-01
Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al. (1) investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components.
Mechanoprotection by skeletal muscle caveolae
Lo, Harriet P; Hall, Thomas E; Parton, Robert G
2016-01-01
abstract Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al.1 investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components. PMID:26760312
Microvasculature of crotaline snake pit organs: possible function as a heat exchange mechanism.
Amemiya, F; Nakano, M; Goris, R C; Kadota, T; Atobe, Y; Funakoshi, K; Hibiya, K; Kishida, R
1999-01-01
The infrared sensory membranes of the pit organs of pit vipers have an extremely rich capillary vasculature, which has been noted passim in the literature, but never illustrated or studied in detail. We rendered the pit vasculature visible in various ways, namely, by microinjection of India ink, by a combination of ink and succinate dehydrogenase staining, and by making resin casts for scanning electron microscope study. We also used transmission electron microscopy for identifying the types (arterioles, venules, capillaries) of blood vessels. Then we compared the pit vasculature with that of the retina and the dermis. Good visualization of the vasculature was obtained with both ink and resin injection. Arterioles, venules, and capillaries could be distinguished with all methods used. The monolayer vasculature was denser in the pit membrane than in the retina or skin. Each loop of the network enclosed a small number of infrared receptors so that all receptors were in contact with a capillary on at least one side. The forward-looking areas of the pit had a denser network than side-looking areas. Since infrared rays cause nerve impulses by raising the temperature of individual receptors, the capillary network functions not only as a supplier of energy but also as a cooling mechanism to reduce afterimages. Thus the denser network in the forward-looking areas causes these areas to be more sensitive and have better image resolution than the rest of the membrane.
Membrane-Assisted Growth of DNA Origami Nanostructure Arrays
2015-01-01
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. PMID:25734977
Thomas C. Pesacreta; Leslie H. Groom; Timothy G. Rials
2005-01-01
Sapwood and juvenile wood of Sapium sebiferum (Euphorbiacea) was collected during 2000-2002. In air-dried vessel elements, the surface of pit membranes (PMs) in the outermost growth ring was coated with plaque-like or interstitial material that was 2-5 nm thick. This coating was phase dark and overlaid a phase bright layer of globules and...
VITRECTOMY FOR MACULAR RETINOSCHISIS WITHOUT A DETECTABLE OPTIC DISK PIT.
Haruta, Masatoshi; Yamakawa, Ryoji
2017-05-01
To evaluate the efficacy of vitrectomy in the treatment of macular retinoschisis without a detectable optic disk pit. This retrospective interventional case series included eight patients with acquired, unilateral macular retinoschisis with or without foveal detachment. Patients with an optic disk pit, vitreomacular traction, or high myopia were excluded. Six of the eight patients underwent vitrectomy with internal limiting membrane peeling and fluid-air exchange. The surgical outcome was evaluated in terms of the improvement in the macular anatomy and the best-corrected visual acuity. During vitrectomy, all the six eyes were confirmed to have preexisting posterior vitreous detachment. Macular retinoschisis was resolved or reduced in all the six eyes after vitrectomy. The mean central foveal thickness showed significant improvement at the time of the patient's final visit after vitrectomy. The mean best-corrected visual acuity was 20/52 before surgery and 20/31 at the final visit. Vitrectomy might be effective for the treatment of macular retinoschisis without an optic disk pit. Although clinically similar to optic pit maculopathy except for the absence of pit, our intraoperative observations of the posterior hyaloid membrane suggest that maculopathy without optic disk pit has a distinct pathogenesis.
HIP1 exhibits an early recruitment and a late stage function in the maturation of coated pits.
Gottfried, Irit; Ehrlich, Marcelo; Ashery, Uri
2009-09-01
Huntingtin interacting protein 1 (HIP1) is an accessory protein of the clathrin-mediated endocytosis (CME) pathway, yet its precise role and the step at which it becomes involved are unclear. We employed live-cell imaging techniques to focus on the early steps of CME and characterize HIP1 dynamics. We show that HIP1 is highly colocalized with clathrin at the plasma membrane and shares similar dynamics with a subpopulation of clathrin assemblies. Employing transferrin receptor fused to pHluorin, we distinguished between open pits to which HIP1 localizes and newly internalized vesicles that are devoid of HIP1. Moreover, shRNA knockdown of clathrin compromised HIP1 membranal localization, unlike the reported behavior of Sla2p. HIP1 fragment, lacking its ANTH and Talin-like domains, inhibits internalization of transferrin, but retains colocalization with membranal clathrin assemblies. These data demonstrate HIP1's role in pits maturation and formation of the coated vesicle, and its strong dependence on clathrin for membranal localization.
Scaling of angiosperm xylem structure with safety and efficiency.
Hacke, Uwe G; Sperry, John S; Wheeler, James K; Castro, Laura
2006-06-01
We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per vessel (the pit area hypothesis) and evaluated a trade-off between cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse-porous tree, shrub) and family affinity were added to published data predominately from the Rosaceae (29 species total). Two types of vulnerability-to-cavitation curves were found. Ring-porous trees and vines showed an abrupt drop in hydraulic conductivity with increasing negative pressure, whereas hydraulic conductivity in diffuse-porous species generally decreased gradually. The ring-porous type curve was not an artifact of the centrifuge method because it was obtained also with the air-injection technique. A safety versus efficiency trade-off was evident when curves were compared across species: for a given pressure, there was a limited range of optimal vulnerability curves. The pit area hypothesis was supported by a strong relationship (r2 = 0.77) between increasing cavitation resistance and diminishing pit membrane area per vessel (A(P)). Small A(P) was associated with small vessel surface area and hence narrow vessel diameter (D) and short vessel length (L)--consistent with an increase in vessel flow resistance with cavitation resistance. This trade-off was amplified at the tissue level by an increase in xylem/vessel area ratio with cavitation resistance. Ring-porous species were more efficient than diffuse-porous species on a vessel basis but not on a xylem basis owing to higher xylem/vessel area ratios in ring-porous anatomy. Across four orders of magnitude, lumen and end-wall resistivities maintained a relatively tight proportionality with a near-optimal mean of 56% of the total vessel resistivity residing in the end-wall. This was consistent with an underlying scaling of L to D(3/2) across species. Pit flow resistance did not increase with cavitation safety, suggesting that cavitation pressure was not related to mean pit membrane porosity.
Bolívar-G, Wilmar; Antoniazzi, Marta M; Grant, Taran; Jared, Carlos
2014-01-01
The facial pits of rattlesnakes, copperheads, lanceheads, bushmasters and other American and Asian pitvipers (Crotalinae) are highly innervated and densely vascularized infrared (IR) receptor organs. For over a century, studies have focused on a small sample of model species from North America and Asia. Based on an expanded survey of Central and South American crotalines, we report a conspicuous accessory structure composed of well-defined papillae that project from the anterior orbital adnexa. The papillae are continuous with the inner chamber of the IR receptor organ and our histological and ultrastructural data suggest that they possess a well-developed nervous network and extensive vascularization; however, they lack the characteristic IR-sensitive terminal nerve masses found in the IR-receptive pit membrane. The function of the IR receptor organ papillae is unknown.
Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development
NASA Technical Reports Server (NTRS)
Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.
2003-01-01
This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.
Clathrin-independent pathways do not contribute significantly to endocytic flux.
Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J
2014-09-17
Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells.
Johnson, Daniel M.; Brodersen, Craig R.; Reed, Mary; Domec, Jean-Christophe; Jackson, Robert B.
2014-01-01
Background and Aims Despite the importance of vessels in angiosperm roots for plant water transport, there is little research on the microanatomy of woody plant roots. Vessels in roots can be interconnected networks or nearly solitary, with few vessel–vessel connections. Species with few connections are common in arid habitats, presumably to isolate embolisms. In this study, measurements were made of root vessel pit sizes, vessel air-seeding pressures, pit membrane thicknesses and the degree of vessel interconnectedness in deep (approx. 20 m) and shallow (<10 cm) roots of two co-occurring species, Sideroxylon lanuginosum and Quercus fusiformis. Methods Scanning electron microscopy was used to image pit dimensions and to measure the distance between connected vessels. The number of connected vessels in larger samples was determined by using high-resolution computed tomography and three-dimensional (3-D) image analysis. Individual vessel air-seeding pressures were measured using a microcapillary method. The thickness of pit membranes was measured using transmission electron microscopy. Key Results Vessel pit size varied across both species and rooting depths. Deep Q. fusiformis roots had the largest pits overall (>500 µm) and more large pits than either shallow Q. fusiformis roots or S. lanuginosum roots. Vessel air-seeding pressures were approximately four times greater in Q. fusiformis than in S. lanuginosum and 1·3–1·9 times greater in shallow roots than in deep roots. Sideroxylon lanuginosum had 34–44 % of its vessels interconnected, whereas Q. fusiformis only had 1–6 % of its vessels connected. Vessel air-seeding pressures were unrelated to pit membrane thickness but showed a positive relationship with vessel interconnectedness. Conclusions These data support the hypothesis that species with more vessel–vessel integration are often less resistant to embolism than species with isolated vessels. This study also highlights the usefulness of tomography for vessel network analysis and the important role of 3-D xylem organization in plant hydraulic function. PMID:24363350
Zhou, Li Hong; Weizbauer, Renate A.; Singamaneni, Srikanth; Xu, Feng; Genin, Guy M.; Pickard, Barbara G.
2014-01-01
Background Certain membrane-associated arabinogalactan-proteins (AGPs) with lysine-rich sub-domains participate in plant growth, development and resistance to stress. To complement fluorescence imaging of such molecules when tagged and introduced transgenically to the cell periphery and to extend the groundwork for assessing molecular structure, some behaviours of surface-spread AGPs were visualized at the nanometre scale in a simplified electrostatic environment. Methods Enhanced green fluorescent protein (EGFP)-labelled LeAGP1 was isolated from Arabidopsis thaliana leaves using antibody-coated magnetic beads, deposited on graphite or mica, and examined with atomic force microscopy (AFM). Key Results When deposited at low concentration on graphite, LeAGP can form independent clusters and rings a few nanometres in diameter, often defining deep pits; the aperture of the rings depends on plating parameters. On mica, intermediate and high concentrations, respectively, yielded lacy meshes and solid sheets that could dynamically evolve arcs, rings, ‘pores’ and ‘co-pores’, and pits. Glucosyl Yariv reagent combined with the AGP to make very large and distinctive rings. Conclusions Diverse cell-specific nano-patterns of native lysine-rich AGPs are expected at the wall–membrane interface and, while there will not be an identical patterning in different environmental settings, AFM imaging suggests protein tendencies for surficial organization and thus opens new avenues for experimentation. Nanopore formation with Yariv reagents suggests how the reagent might bind with AGP to admit Ca2+ to cells and hints at ways in which AGP might be structured at some cell surfaces. PMID:25164699
Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa
2017-08-21
Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method of fabricating a scalable nanoporous membrane filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem
A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less
Detection of molecular particles in live cells via machine learning.
Jiang, Shan; Zhou, Xiaobo; Kirchhausen, Tom; Wong, Stephen T C
2007-08-01
Clathrin-coated pits play an important role in removing proteins and lipids from the plasma membrane and transporting them to the endosomal compartment. It is, however, still unclear whether there exist "hot spots" for the formation of Clathrin-coated pits or the pits and arrays formed randomly on the plasma membrane. To answer this question, first of all, many hundreds of individual pits need to be detected accurately and separated in live-cell microscope movies to capture and monitor how pits and vesicles were formed. Because of the noisy background and the low contrast of the live-cell movies, the existing image analysis methods, such as single threshold, edge detection, and morphological operation, cannot be used. Thus, this paper proposes a machine learning method, which is based on Haar features, to detect the particle's position. Results show that this method can successfully detect most of particles in the image. In order to get the accurate boundaries of these particles, several post-processing methods are applied and signal-to-noise ratio analysis is also performed to rule out the weak spots. Copyright 2007 International Society for Analytical Cytology.
New insights into the mechanisms of water-stress-induced cavitation in conifers.
Cochard, Hervé; Hölttä, Teemu; Herbette, Stéphane; Delzon, Sylvain; Mencuccini, Maurizio
2009-10-01
Cavitation resistance is a key parameter to understand tree drought tolerance but little is known about the mechanisms of air entry into xylem conduits. For conifers three mechanisms have been proposed: (1) a rupture of pit margo microfibrils, (2) a displacement of the pit torus from its normal sealing position over the pit aperture, and (3) a rupture of an air-water menisci in a pore of the pit margo. In this article, we report experimental results on three coniferous species suggesting additional mechanisms. First, when xylem segments were injected with a fluid at a pressure sufficient to aspirate pit tori and well above the pressure for cavitation induction we failed to detect the increase in sample conductance that should have been caused by torus displacement from blocking the pit aperture or by membrane rupture. Second, by injecting xylem samples with different surfactant solutions, we found a linear relation between sample vulnerability to cavitation and fluid surface tension. This suggests that cavitation in conifers could also be provoked by the capillary failure of an air-water meniscus in coherence with the prediction of Young-Laplace's equation. Within the bordered pit membrane, the exact position of this capillary seeding is unknown. The possible Achilles' heel could be the seal between tori and pit walls or holes in the torus. The mechanism of water-stress-induced cavitation in conifers could then be relatively similar to the one currently proposed for angiosperms.
Early stages of clathrin aggregation at a membrane in coarse-grained simulations
NASA Astrophysics Data System (ADS)
Giani, M.; den Otter, W. K.; Briels, W. J.
2017-04-01
The self-assembly process of clathrin coated pits during endocytosis has been simulated by combining and extending coarse grained models of the clathrin triskelion, the adaptor protein AP2, and a flexible network membrane. The AP2's core, upon binding to membrane and cargo, releases a motif that can bind clathrin. In conditions where the core-membrane-cargo binding is weak, the binding of this motif to clathrin can result in a stable complex. We characterize the conditions and mechanisms resulting in the formation of clathrin lattices that curve the membrane, i.e., clathrin coated pits. The mechanical properties of the AP2 β linker appear crucial to the orientation of the curved clathrin lattice relative to the membrane, with wild-type short linkers giving rise to the inward curving buds enabling endocytosis while long linkers produce upside-down cages and outward curving bulges.
[The structure of the gastric mucosa of the llamas (Lama guanocoe and Lama lamae). I. Forestomach].
Luciano, L; Voss-Wermbter, G; Behnke, M; von Engelhardt, W; Reale, E
1979-01-01
The mucous membrane of the first and second compartments (ventral regions) as well as of the third compartment of Lama guanacoe and Lama lamae stomach shows tubular glands opening into pits. Below the surface epithelium blood capillaries of the fenestrated type form a regular network, each mesh of which surrounds a gastric pit. From a morphological point of view (thin section and freeze-fracture replicas) the columnar cells of the surface epithelium and those of the pits closest to the capillaries are largely similar to the epithelial cells of the rabbit gallbladder. This similarity suggests that at the level of the columnar cells sodium-dependent water reabsorption occurs. This reabsorption has already been demonstrated in the abovementioned compartments by physiological methods. The surface and foveolae epithelial cells as well as some cells of the tubular glands have a secretory function. Their secretory granules contain mucosubstances, as indicated by light-(PAS- and Alcian blue reactions) and electron microscopic (PA-TCH-Ag-reaction) histochemistry. The secretory granules originate from the Golgi complex which shows a positive histochemical reaction in its innermost sacculi at the electron microscope level. Endocrine cells (s. second part of this investigation) are rare. The mucosal membrane of each muscular lip separating the glandular sacs in the first compartment shows a stratified, not keratinized, squamous epithelium.
Higher-order assemblies of BAR domain proteins for shaping membranes.
Suetsugu, Shiro
2016-06-01
Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development
NASA Technical Reports Server (NTRS)
Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.
2004-01-01
This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.
Clathrin-independent pathways do not contribute significantly to endocytic flux
Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J
2014-01-01
Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells. DOI: http://dx.doi.org/10.7554/eLife.03970.001 PMID:25232658
[Maculopathy in case of the pit of the disc].
Kolár, P
2005-09-01
The pit of the disc is a congenital anomaly of the optic nerve disc. The prevalence is 1/11 000 patients. On the affected side, the optic disc is in 85% of cases larger than the disc of the other healthy eye. The pit of the disc is very often associated with the presence of the cilioretinal artery. Maculopathy in congenital pit of the optic nerve disc was described in the early 30's of the last century by Calhoun. The average age of the patients is roughly 30 years of age (20-40 years). The complementary examination method, which may help to clarify anatomical conditions of the macular region, is the optical coherence tomography. The defect of the optic disc of different depth caused by the pit and maculopathy caused by retinoschisis communicating with the temporal rim of the disc are found. This case report refers to a 29 years old man with disturbing relative central scotoma and decreased vision for one month in his right eye, who underwent classical three-ports pars plana vitrectomy with expansive gas tamponade. On the basis of differential diagnosis discretion, the temporally localized pit of the disc accompanied by maculopathy due to retonoschisis was detemined. The surgical treatment by means of three-ports pars plana vitrectomy and peeling of the inner limiting membrane with expansive gas tamponade restored in our patient the physiological macular structure followed by improvement of the best-corrected visual acuity. No complications were noticed during the surgery or after it as well. Among the differential diagnoses, it is necessary to eliminate other possible causes of maculopathy in young patients as well as other congenital anomalies of the optic disc, which may be related to the maculopathy. Maculopathy following the pit of the optic nerve disc represents relatively rare diagnostic entity. According to the literature, the natural course of this disease results in very low final best-corrected visual acuity, often worse than 5/50 (0,1 or 20/200). The therapeutic possibility for patients with this disease is operative approach by means of pars plana vitrectomy with peeling of the inner limiting membrane and accompanied by expansive gas tamponade as already mentioned in our case report.
Aoyama, Fumiyo; Sawaguchi, Akira; Ide, Soyuki; Kitamura, Kazuo; Suganuma, Tatsuo
2008-06-01
It is clinicopathologically important to elucidate the cell kinetics for the maintenance of normal gastric epithelium. In a rat gastric mucosa isolated after stimulation, a number of cells were exfoliated into the gastric lumen of the pit region. The present study was undertaken to clarify the origin of exfoliated cells and their histochemical profiles by taking the advantages of cryotechniques. As results, most of the exfoliated cells were identified as pit-parietal cells labeled with both peanut-lectin and anti-H+/K+-ATPase antibody. Quantitative analysis verified a time-dependent increase in the number of exfoliated cells in the gastric mucosa isolated after stimulation. The exfoliated cells exhibited a diffuse intracellular staining for E-cadherin, suggesting a dissociation of the adhesion molecule prior to the cell exfoliation. It should be noted that most of the exfoliated cells were negative to the apoptotic markers (TUNEL staining and caspase-3). Ultrastructurally, autophagosome-like structures consisting of H+/K+-ATPase positive membranes were frequently seen in the exfoliated pit-parietal cells. In addition, the pit-parietal cell exfoliation was accompanied by sealing of their basal portion with the cytoplasmic processes of adjacent surface mucous cells. The present morphological findings provide a new insight into the cell kinetics in the gastric epithelium in vitro.
Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R
1996-01-01
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261
Engineering monolayer poration for rapid exfoliation of microbial membranes.
Pyne, Alice; Pfeil, Marc-Philipp; Bennett, Isabel; Ravi, Jascindra; Iavicoli, Patrizia; Lamarre, Baptiste; Roethke, Anita; Ray, Santanu; Jiang, Haibo; Bella, Angelo; Reisinger, Bernd; Yin, Daniel; Little, Benjamin; Muñoz-García, Juan C; Cerasoli, Eleonora; Judge, Peter J; Faruqui, Nilofar; Calzolai, Luigi; Henrion, Andre; Martyna, Glenn J; Grovenor, Chris R M; Crain, Jason; Hoogenboom, Bart W; Watts, Anthony; Ryadnov, Maxim G
2017-02-01
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Glickman, J N; Conibear, E; Pearse, B M
1989-01-01
Adaptors mediate the interaction of clathrin with select groups of receptors. Two distinct types of adaptors, the HA-II adaptors (found in plasma membrane coated pits) and the HA-I adaptors (localized to Golgi coated pits) bind to the cytoplasmic portion of the 270 kd mannose 6-phosphate (M6P) receptor-a receptor which is concentrated in coated pits on both the plasma membrane and in the trans-Golgi network. Neither type of adaptor appears to compete with the other for binding, suggesting that each type recognizes a distinct site on the M6P receptor tail. Mutation of the two tyrosines in the tail essentially eliminates the interaction with the HA-II plasma membrane adaptor, which recognizes a 'tyrosine' signal on other endocytosed receptors (for example, the LDL receptor and the poly Ig receptor). In contrast, the wild type and the mutant M6P receptor tail (lacking tyrosines) are equally effective at binding HA-I adaptors. This suggests that there is an HA-I recognition signal in another region of the M6P receptor tail, C-terminal to the tyrosine residues, which remains intact in the mutant. This signal is presumably responsible for the concentration of the M6P receptor, with bound lysosomal enzymes, into coated pits which bud from the trans-Golgi network, thus mediating efficient transfer of these enzymes to lysosomes. Images PMID:2545438
Nagasato, Chikako; Kajimura, Naoko; Terauchi, Makoto; Mineyuki, Yoshinobu; Motomura, Taizo
2014-11-01
In brown algae, membrane resources for the new cell partition during cytokinesis are mainly flat cisternae (FCs) and Golgi-derived vesicles. We used electron tomography coupled with rapid freezing/freeze substitution of zygotes to clarify the structure of transient membrane compartments during cytokinesis in Silvetia zygotes. After mitosis, an amorphous membranous structure, considered to be an FC intermediate was observed near endoplasmic reticulum clusters, lying between two daughter nuclei. FCs were arrayed at the cytokinetic plane, and a tubular membranous network was formed around them. This network might be formed by the consecutive fusion of spherical vesicles that are linked to the edges of FCs to form a membranous network (MN). At the initial stage of the formation of a membranous sac (MS) from the MN, the MS had flat and swollen parts, with the latter showing membranous tunnels. Coated pits were detected with high frequency at the swollen parts of the MS. This observation indicated that membranous tunnels disappeared by recycling of excess membrane via endocytosis, and the swollen part became flat. The MN appeared at the edges of the growing MS. MN and the MN-MS complex were observed along the cytokinetic plane in several spaces. The MS expanded by the incorporation of MN or other MS in its neighborhood. With the maturation of the new cell partition membrane, the thickness of the MS became constant and the membrane cavity disappeared. The changes in the surface area and volume of the transient membrane compartment during cytokinesis were analyzed from the tomographic data.
Zoncu, Roberto; Perera, Rushika M; Sebastian, Rafael; Nakatsu, Fubito; Chen, Hong; Balla, Tamas; Ayala, Guillermo; Toomre, Derek; De Camilli, Pietro V
2007-03-06
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)P(2) depletion resulted in a dramatic loss of clathrin puncta, which correlated with a massive dissociation of endocytic adaptors from the plasma membrane. Remaining clathrin spots at the cell surface had only weak fluorescence and were static over time. Dynamin and the p20 subunit of the Arp2/3 actin regulatory complex, which were concentrated at late-stage clathrin-coated pits and in lamellipodia, also dissociated from the plasma membrane, and these changes correlated with an arrest of motility at the cell edge. These findings demonstrate the critical importance of PI(4,5)P(2) in clathrin coat dynamics and Arp2/3-dependent actin regulation.
Pfaller, Kristian; Wagner, Johanna
2016-01-01
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris. PMID:27632365
Kuprian, Edith; Tuong, Tan D; Pfaller, Kristian; Wagner, Johanna; Livingston, David P; Neuner, Gilbert
2016-01-01
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.
Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.
Lu, Stella M; Fairn, Gregory D
2018-04-01
The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.
Cavitation and Its Discontents: Opportunities for Resolving Current Controversies1[C
Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele
2014-01-01
Cavitation has long been recognized as a key constraint on the structure and functional integrity of the xylem. Yet, recent results call into question how well we understand cavitation in plants. Here, we consider embolism formation in angiosperms at two scales. The first focuses on how air-seeding occurs at the level of pit membranes, raising the question of whether capillary failure is an appropriate physical model. The second addresses methodological uncertainties that affect our ability to infer the formation of embolism and its reversal in plant stems. Overall, our goal is to open up fresh perspectives on the structure-function relationships of xylem. PMID:24501002
Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng
2013-02-01
Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.
Melcher, Peter J.; Zwieniecki, Maciej A.; Holbrook, N. Michele
2003-01-01
The relation between xylem vessel age and vulnerability to cavitation of sugar maple (Acer saccharum Marsh.) was quantified by measuring the pressure required to force air across bordered pit membranes separating individual xylem vessels. We found that the bordered pit membranes of vessels located in current year xylem could withstand greater applied gas pressures (3.8 MPa) compared with bordered pit membranes in vessels located in older annular rings (2.0 MPa). A longitudinal transect along 6-year-old branches indicated that the pressure required to push gas across bordered pit membranes of current year xylem did not vary with distance from the growing tip. To understand the contribution of age-related changes in vulnerability to the overall resistance to cavitation, we combined data on the pressure thresholds of individual xylem vessels with measurements of the relative flow rate through each annual ring. The annual ring of the current year contributed only 16% of the total flow measured on 10-cm-long segments cut from 6-year-old branches, but it contributed more than 70% of the total flow when measured through 6-year-old branches to the point of leaf attachment. The vulnerability curve calculated using relative flow rates measured on branch segments were similar to vulnerability curves measured on 6-year-old branches (pressure that reduces hydraulic conductance by 50% = 1.6–2.4 MPa), whereas the vulnerability curve calculated using relative flow rates measured on 6-year-old branches were similar to ones measured on the extension growth of the current year (pressure that reduces hydraulic conductance by 50% = 3.8 MPa). These data suggest that, in sugar maple, the xylem of the current year can withstand larger xylem tensions than older wood and dominates water delivery to leaves. PMID:12692336
Membrane tension regulates clathrin-coated pit dynamics
NASA Astrophysics Data System (ADS)
Liu, Allen
2014-03-01
Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates the dynamics of CCPs.
Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy
Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom
2016-01-01
Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies. PMID:27535432
Santiago, Michael; Pagay, Vinay; Stroock, Abraham D
2013-10-01
In perfusion experiments, the hydraulic conductance of stem segments ( ) responds to changes in the properties of the perfusate, such as the ionic strength ( ), pH, and cationic identity. We review the experimental and theoretical work on this phenomenon. We then proceed to explore the hypothesis that electrokinetic effects in the bordered pit membrane (BPM) contribute to this response. In particular, we develop a model based on electroviscosity in which hydraulic conductance of an electrically charged porous membrane varies with the properties of the electrolyte. We use standard electrokinetic theory, coupled with measurements of electrokinetic properties of plant materials from the literature, to determine how the conductance of BPMs, and therefore , may change due to electroviscosity. We predict a nonmonotonic variation of with with a maximum reduction of 18%. We explore how this reduction depends on the characteristics of the sap and features of the BPM, such as pore size, density of chargeable sites, and their dissociation constant. Our predictions are consistent with changes in observed for physiological values of sap and pH. We conclude that electroviscosity is likely responsible, at least partially, for the electrolyte dependence of conductance through pits and that electroviscosity may be strong enough to play an important role in other transport processes in xylem. We conclude by proposing experiments to differentiate the impact of electroviscosity on from that of other proposed mechanisms.
Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.
Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan
2016-01-01
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. © 2015 The Authors.
A RESCUE THERAPY FOR PERSISTENT OPTIC DISK PIT MACULOPATHY IN PREVIOUSLY VITRECTOMIZED EYES.
Figueroa, Marta S; Nadal, Jeroni; Contreras, Inés
2018-01-01
To report the results of vitrectomy with platelet-rich plasma (PRP) application and gas tamponade as a rescue therapy in previously vitrectomized eyes with optic disk pit (ODP) maculopathy. Three patients with visual loss due to persistent or recurrent ODP maculopathy who had undergone previous vitrectomy were offered application of PRP. Platelet-rich plasma was obtained by centrifugation of a blood sample from each patient. Surgery consisted of vitrectomy and internal limiting membrane peeling if the membrane had not been already removed (in two eyes). After fluid/air exchange, three drops of PRP were applied on the ODP followed by 8% C3F8 tamponade. Immediately after surgery, the patient remained supine for 30 minutes and then kept a face-down position for 2 weeks. Optic disk pit maculopathy improved as soon as two weeks after surgery and resolved in all eyes between six and eight months after PRP application. Patients were followed up for three years, with no recurrences. Visual acuity remained stable in one eye and improved in two eyes. Vitrectomy with PRP application may be useful as a rescue therapy in patients with refractory ODP maculopathy. Platelet-rich plasma may act by promoting the closure of the communication between the vitreous and the intraretinal/subretinal space at the pit. This treatment may avoid potentially harmful maneuvers that have been used to treat ODP maculopathy.
Limitations in the hydraulic pathway: Effects of xylem embolisms on sap velocity and flow
USDA-ARS?s Scientific Manuscript database
Sap flow in plants takes place in the xylem, a hydraulic system that is usually under negative pressure and in which gas and liquid phases are separated by nanoporous, fibrous pit membranes. It has long been known that this system is at risk of drawing gas nanobubbles through these membranes into th...
Nanobubbles: a new paradigm for air-seeding in xylem.
Schenk, H Jochen; Steppe, Kathy; Jansen, Steven
2015-04-01
Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Han, E-mail: Dabombyh@aliyun.com; Yu, Zhongyuan
2014-11-15
Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facetsmore » for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.« less
Structural Design and Monitoring Analysis of Foundation Pit Support in Yiwu Huishang Tiandi
NASA Astrophysics Data System (ADS)
Zhang, Chunsu
2017-08-01
Huishang Tiandi deep foundation pit in Yiwu is a two-story basement,which is located in the downtown area and adjacent to the city center main traffic trunk. The surrounding environment is too com-plex to slope. The excavation depth is large, the formation is weak and complex, and the groundwater level is high.In order to ensure the safety of the foundation wall and the surrounding environment, the deformation of the foundation pit support is strictly controlled, and the deformation and internal force of the foundation supporting structure and the surrounding building are monitored.The deformation law of the foundation pit is obtained through the analysis of the horizontal displacement, the deformation rate of the supporting struc-ture, the surrounding environment of the foundation pit and the internal force of the anchor cable. The relia-bility and rationality of the design of foundation pit support are verified. It is of reference value for the de-sign and construction of other deep foundation pit engineering in Yiwu area.
Pulmonary artery dissection following balloon valvuloplasty in a dog with pulmonic stenosis.
Grint, K A; Kellihan, H B
2017-04-01
A 3-month-old, 9.9 kg, male pit bull cross was referred for evaluation of collapse. A left basilar systolic heart murmur graded V/VI and a grade IV/VI right basilar systolic heart murmur were ausculted. Echocardiography showed severe pulmonic stenosis characterized by annular hypoplasia, leaflet thickening, and leaflet fusion. After 1 month of atenolol therapy, a pulmonic valve balloon valvuloplasty procedure was performed, and the intra-operative right ventricular pressure was reduced by 43%. Echocardiography, performed the following day, showed apparent rupture of a pulmonary valve leaflet and a membranous structure within the pulmonary artery consistent with a dissecting membrane. Short-term follow-up has shown no apparent progression of the pulmonary artery dissection and the patient remains free of clinical signs. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fuji, Hiroshi; Kikukawa, Takashi; Tominaga, Junji
2004-07-01
Pit-edge recording at a density of 150 nm pits and spaces is carried out on a super-resolution near-field structure (super-RENS) disk with a platinum oxide layer. Pits are recorded and read using a 635-nm-wavelength laser and an objective lens with a 0.6 numerical aperture. We arrange laser pulses to correctly record the pits on the disk by a write-strategy technique. The laser-pulse figure includes a unit time of 0.25 T and intensities of Pw1, Pw2 and Pw3. After recording pits of various lengths, the observation of an eye pattern is achieved despite a pit smaller than the resolution limit. Furthermore, the eye pattern maintains its shape even though other pits fill the adjacent tracks at a track density of 600 nm. The disk can be used as a pit-edge recording system through a write-strategy technique.
Nishiyama, Yayoi; Takahata, Sho; Abe, Shigeru
2017-01-01
The effects of ME1111, a novel antifungal agent, on the hyphal morphology and ultrastructure of Trichophyton mentagrophytes were investigated by using scanning and transmission electron microscopy. Structural changes, such as pit formation and/or depression of the cell surface, and degeneration of intracellular organelles and plasmolysis were observed after treatment with ME1111. Our results suggest that the inhibition of energy production by ME1111 affects the integrity and function of cellular membranes, leading to fungal cell death. Copyright © 2016 American Society for Microbiology.
Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue
2015-10-01
The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P < 0.05). There were some significant differences in the microbial community structure between aged and aging pit mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Luek, Andreas; Rasmussen, Joseph B.
2017-04-01
Aquatic invertebrates form the base of the consumer food web in lakes. In coal-mining end-pit lakes, invertebrates are exposed to an environment with potentially challenging physical and chemical features. We hypothesized that the physical and chemical features of end-pit lakes reduce critical littoral habitat and thus reduce invertebrate diversity, thereby limiting the potential for these lakes to be naturalized. We used a multivariate approach using principle component analysis and redundancy analysis to study relationships between invertebrate community structure, habitat features, and water quality in five end-pit lakes and five natural lakes in the Rocky Mountain foothills of west-central Alberta, Canada. Results show a significantly different invertebrate community structure was present in end-pit lakes as compared with reference lakes in the same region, which could be accounted for by water hardness, conductivity, slope of the littoral zone, and phosphorus concentrations. Habitat diversity in end-pit lakes was also limited, cover provided by macrophytes was scarce, and basin slopes were significantly steeper in pit lakes. Although water chemistry is currently the strongest influencing factor on the invertebrate community, physical challenges of habitat homogeneity and steep slopes in the littoral zones were identified as major drivers of invertebrate community structure. The addition of floating wetlands to the littoral zone of existing pit lakes can add habitat complexity without the need for large-scale alterations to basing morphology, while impermeable capping of waste-rock and the inclusion of littoral habitat in the planning process of new pit lakes can improve the success of integrating new pit lakes into the landscape.
Luek, Andreas; Rasmussen, Joseph B
2017-04-01
Aquatic invertebrates form the base of the consumer food web in lakes. In coal-mining end-pit lakes, invertebrates are exposed to an environment with potentially challenging physical and chemical features. We hypothesized that the physical and chemical features of end-pit lakes reduce critical littoral habitat and thus reduce invertebrate diversity, thereby limiting the potential for these lakes to be naturalized. We used a multivariate approach using principle component analysis and redundancy analysis to study relationships between invertebrate community structure, habitat features, and water quality in five end-pit lakes and five natural lakes in the Rocky Mountain foothills of west-central Alberta, Canada. Results show a significantly different invertebrate community structure was present in end-pit lakes as compared with reference lakes in the same region, which could be accounted for by water hardness, conductivity, slope of the littoral zone, and phosphorus concentrations. Habitat diversity in end-pit lakes was also limited, cover provided by macrophytes was scarce, and basin slopes were significantly steeper in pit lakes. Although water chemistry is currently the strongest influencing factor on the invertebrate community, physical challenges of habitat homogeneity and steep slopes in the littoral zones were identified as major drivers of invertebrate community structure. The addition of floating wetlands to the littoral zone of existing pit lakes can add habitat complexity without the need for large-scale alterations to basing morphology, while impermeable capping of waste-rock and the inclusion of littoral habitat in the planning process of new pit lakes can improve the success of integrating new pit lakes into the landscape.
Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.
Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia
2015-07-02
Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.
Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.
Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang
2017-09-04
During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.
Loss of PiT-1 Results in Abnormal Endocytosis in the Yolk Sac Visceral Endoderm
Wallingford, Mary C.; Giachelli, Cecilia M.
2014-01-01
PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE. PMID:25138534
Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein
Sato, Miyuki; Sato, Ken; Liou, Willisa; Pant, Saumya; Harada, Akihiro; Grant, Barth D
2008-01-01
Using Caenorhabditis elegans genetic screens, we identified receptor-mediated endocytosis (RME)-4 and RME-5/RAB-35 as important regulators of yolk endocytosis in vivo. In rme-4 and rab-35 mutants, yolk receptors do not accumulate on the plasma membrane as would be expected in an internalization mutant, rather the receptors are lost from cortical endosomes and accumulate in dispersed small vesicles, suggesting a defect in receptor recycling. Consistent with this, genetic tests indicate the RME-4 and RAB-35 function downstream of clathrin, upstream of RAB-7, and act synergistically with recycling regulators RAB-11 and RME-1. We find that RME-4 is a conserved DENN domain protein that binds to RAB-35 in its GDP-loaded conformation. GFP–RME-4 also physically interacts with AP-2, is enriched on clathrin-coated pits, and requires clathrin but not RAB-5 for cortical association. GFP–RAB-35 localizes to the plasma membrane and early endocytic compartments but is lost from endosomes in rme-4 mutants. We propose that RME-4 functions on coated pits and/or vesicles to recruit RAB-35, which in turn functions in the endosome to promote receptor recycling. PMID:18354496
Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics
Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra
2014-01-01
The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819
Agarwal, Sorabh
2018-01-01
Abstract Overexpression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) is linked to a number of autoimmune diseases and cancer. MIF production has been correlated to the number of CATT repeats in a microsatellite region upstream of the MIF gene. We have characterized the interaction of pituitary-specific positive transcription factor 1 (Pit-1) with a portion of the MIF promoter region flanking a microsatellite polymorphism (−794 CATT5–8). Using fluorescence anisotropy, we quantified tight complex formation between Pit-1 and an oligonucleotide consisting of eight consecutive CATT repeats (8xCATT) with an apparent Kd of 35 nM. Using competition experiments we found a 23 base pair oligonucleotide with 4xCATT repeats to be the minimum DNA sequence necessary for high affinity interaction with Pit-1. The stoichiometry of the Pit-1 DNA interaction was determined to be 2:1 and binding is cooperative in nature. We subsequently structurally characterized the complex and discovered a completely novel binding mode for Pit-1 in contrast to previously described Pit-1 complex structures. The affinity of Pit-1 for the CATT target sequence was found to be highly dependent on cooperativity. This work lays the groundwork for understanding transcriptional regulation of MIF and pursuing Pit-1 as a therapeutic target to treat MIF-mediated inflammatory disorders. PMID:29186613
Pits, rifts and slumps: the summit structure of Piton de la Fournaise
NASA Astrophysics Data System (ADS)
Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre
2007-06-01
A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.
Roper, M Caroline; Greve, L Carl; Warren, Jeremy G; Labavitch, John M; Kirkpatrick, Bruce C
2007-04-01
Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.
Physical and functional connection between auxilin and dynamin during endocytosis
Sever, Sanja; Skoch, Jesse; Newmyer, Sherri; Ramachandran, Rajesh; Ko, David; McKee, Mary; Bouley, Richard; Ausiello, Dennis; Hyman, Bradley T; Bacskai, Brian J
2006-01-01
During clathrin-mediated endocytosis, the GTPase dynamin promotes formation of clathrin-coated vesicles, but its mode of action is unresolved. We provide evidence that a switch in three functional states of dynamin (dimers, tetramers, rings/spirals) coordinates its GTPase cycle. Dimers exhibit negative cooperativity whereas tetramers exhibit positive cooperativity with respect to GTP. Our study identifies tetramers as the kinetically most stable GTP-bound conformation of dynamin, which is required to promote further assembly into higher order structures such as rings or spirals. In addition, using fluorescence lifetime imaging microscopy, we show that interactions between dynamin and auxilin in cells are GTP-, endocytosis- and tetramer-dependent. Furthermore, we show that the cochaperone activity of auxilin is required for constriction of clathrin-coated pits, the same early step in endocytosis known to be regulated by the lifetime of dynamin:GTP. Together, our findings support the model that the GTP-bound conformation of dynamin tetramers stimulates formation of constricted coated pits at the plasma membrane by regulating the chaperone activity of hsc70/auxilin. PMID:16946707
Avci, R; Yilmaz, S; Inan, U U; Kaderli, B; Kurt, M; Yalcinbayir, O; Yildiz, M; Yucel, A
2013-12-01
To evaluate the results of surgical treatment of maculopathy secondary to congenital optic pit anomaly with pars plana vitrectomy (PPV), endolaser to the temporal edge of the optic disc and C3F8 tamponade without internal limiting membrane (ILM) peeling. Thirteen eyes of 12 patients with serous macular detachment and/or macular retinoschisis secondary to congenital optic disc pit (ODP) were included in the study. All eyes underwent PPV, posterior hyaloid removal, endolaser photocoagulation on the temporal margin of the optic disc and 12% C3F8 gas tamponade. Anatomic success and functional outcome determined retrospectively by optical coherence tomography and measurement of best corrected visual acuity (BCVA), respectively were the main outcome parameters. Two lines or more improvement in BCVA was obtained in 11 eyes and 6 of these eyes had 20/40 or better BCVA at the final visit. Subretinal or intraretinal fluid was completely resorbed postoperatively in 12 eyes but a little intraretinal fluid persisted in one eye at the 16-month follow-up. Better visual improvement was observed in patients treated by earlier surgical intervention. PPV, C3F8 gas tamponade and endolaser to the optic disc margin without ILM peeling may yield favourable results in the treatment of ODP maculopathy.
NASA Astrophysics Data System (ADS)
Chen, Wenzhao; Cui, Wenping
2018-03-01
The SMW method has many advantages, such as little influence on the surrounding environment, good watertight performance, wide range of application, short construction period, low cost and so on. In this paper, we chose the SMW engineering method combined with anchor cable to support structure in the second phase deep foundation pit of Jinan LuJinDongCheng as the research object, monitored and analysed the horizontal displacement of the pile top, Peripheral surface subsidence and internal force of the anchor cable in the foundation pit. We also discussed the displacement, internal force of anchor cable and the settlement of surrounding environment in the excavation of foundation pit and in different stages of construction. Conclusion:(1)The maximum horizontal displacement of the retaining structure is closely related to the depth and time of excavation, the construction of anchor cable can well limit the deformation of pile body; (2)Groundwater seepage caused by foundation pit dewatering will change the effective stress of soil. The change of groundwater level has an important influence on the working behavior of smw anchor cable supporting structure.
Corrosion pitting of SiC by molten salts
NASA Technical Reports Server (NTRS)
Jacobson, N. S.; Smialek, J. L.
1986-01-01
The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.
Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures
Lu, Chunyu; Wang, Jicheng; Yan, Shubin; Hu, Zheng-Da; Zheng, Gaige; Yang, Liu
2017-01-01
We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics. PMID:28773062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Narihito, E-mail: nokada@yamaguchi-u.ac.jp; Kashihara, Hiroyuki; Sugimoto, Kohei
2015-01-14
The internal quantum efficiency (IQE) of InGaN/GaN multiple quantum wells (MQWs) with blue light emission was improved by inserting an InGaN/GaN superlattice (SL) beneath the MQWs. While the SL technique is useful for improving the light-emitting diode (LED) performance, its effectiveness from a multilateral point of view requires investigation. V-shaped pits (V-pits), which generate a potential barrier and screen the effect of the threading dislocation, are one of the candidates for increasing the light emission efficiency of LEDs exceptionally. In this research, we investigated the relationship between the V-pit and SL and revealed that the V-pit diameter is strongly correlatedmore » with the IQE by changing the number of SL periods. Using scanning near-field optical microscopy and photoluminescence measurements, we demonstrated the distinct presence of the potential barrier formed by the V-pits around the dislocations. The relationship between the V-pit and the number of SL periods resulted in changing the potential barrier height, which is related to the V-pit diameter determined by the number of SL periods. In addition, we made an attempt to insert pit expansion layers (PELs) composed of combination of SL and middle temperature grown GaN layer instead of only SL structure. As a result of the evaluation of LEDs using SL or PEL, the EL intensity was strongly related to pit diameter regardless of the structures to form the V-pits. In addition, it was clear that larger V-pits reduce the efficiency droop, which is considered to be suppression of the carrier loss at high injection current.« less
Mitis group streptococci express variable pilus islet 2 pili.
Zähner, Dorothea; Gandhi, Ashish R; Yi, Hong; Stephens, David S
2011-01-01
Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators
NASA Astrophysics Data System (ADS)
Liu, Dongdong; Wang, Jicheng; Lu, Jian
2016-11-01
The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.
Vitrectomy for optic disk pit with macular schisis and outer retinal dehiscence.
Shukla, Dhananjay; Kalliath, Jay; Tandon, Manish; Vijayakumar, Balakrishnan
2012-07-01
To describe the outcomes of vitrectomy for optic disc pit-related maculopathy with central outer retinal dehiscence. This prospective interventional case series included seven patients with optic disc pit with macular schisis and central outer retinal dehiscence who underwent vitrectomy with internal limiting membrane peeling, barrage laser photocoagulation, and gas tamponade and were followed for at least 6 months. The surgical outcomes in terms of restoration of macular anatomy and visual improvement were recorded at each visit by fundus photography and optical coherence tomography. The mean age of the patients was 21.3 ± 8.6 years (range, 10-35 years), and the mean duration of defective vision was 6.7 ± 8.5 months (range, 1-24 months). Preoperatively, the median best-corrected visual acuity (BCVA) was 20/60 (range, 20/40 to 20/120). Full-thickness macular holes were noticed in 4 patients 1 month postoperatively. Gas tamponade was repeated in two patients with large macular holes. By the final follow-up, macular holes had closed and BCVA improved in all patients except one. Final mean central macular thickness was 176.83 ± 55.74 μ, the range being 109 μ to 256 μ. The median postoperative BCVA was 20/30 (range, 20/20 to 20/80). Six of 7 patients (85.7%) had improvement in BCVA postoperatively (mean, +2 lines; range, 1-4 lines). Five patients (71%) achieved a postoperative BCVA of ≥20/30. Best-corrected visual acuity dropped by one line in the patient with persistent macular hole. Vitrectomy with internal limiting membrane peeling can achieve excellent final surgical outcomes in optic pit maculopathy with outer retinal dehiscence despite the potential for macular hole formation.
NASA Technical Reports Server (NTRS)
Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.
2001-01-01
The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.
Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping; Li, Xiangzhen
2014-04-01
Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4(+), lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor.
Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka
2017-02-07
Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.
NASA Astrophysics Data System (ADS)
Scholl, V.; Hulslander, D.; Goulden, T.; Wasser, L. A.
2015-12-01
Spatial and temporal monitoring of vegetation structure is important to the ecological community. Airborne Light Detection and Ranging (LiDAR) systems are used to efficiently survey large forested areas. From LiDAR data, three-dimensional models of forests called canopy height models (CHMs) are generated and used to estimate tree height. A common problem associated with CHMs is data pits, where LiDAR pulses penetrate the top of the canopy, leading to an underestimation of vegetation height. The National Ecological Observatory Network (NEON) currently implements an algorithm to reduce data pit frequency, which requires two height threshold parameters, increment size and range ceiling. CHMs are produced at a series of height increments up to a height range ceiling and combined to produce a CHM with reduced pits (referred to as a "pit-free" CHM). The current implementation uses static values for the height increment and ceiling (5 and 15 meters, respectively). To facilitate the generation of accurate pit-free CHMs across diverse NEON sites with varying vegetation structure, the impacts of adjusting the height threshold parameters were investigated through development of an algorithm which dynamically selects the height increment and ceiling. A series of pit-free CHMs were generated using three height range ceilings and four height increment values for three ecologically different sites. Height threshold parameters were found to change CHM-derived tree heights up to 36% compared to original CHMs. The extent of the parameters' influence on modelled tree heights was greater than expected, which will be considered during future CHM data product development at NEON. (A) Aerial image of Harvard National Forest, (B) standard CHM containing pits, appearing as black speckles, (C) a pit-free CHM created with the static algorithm implementation, and (D) a pit-free CHM created through varying the height threshold ceiling up to 82 m and the increment to 1 m.
A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating
Massol, Ramiro H.; Boll, Werner; Griffin, April M.; Kirchhausen, Tomas
2006-01-01
Clathrin-coated pits assemble on a membrane and pinch off as coated vesicles. The released vesicles then rapidly lose their clathrin coats in a process mediated by the ATPase Hsc70, recruited by auxilin, a J-domain-containing cofactor. How is the uncoating process regulated? We find that during coat assembly small and variable amounts of auxilin are recruited transiently but that a much larger burst of association occurs after the peak of dynamin signal, during the transition between membrane constriction and vesicle budding. We show that the auxilin burst depends on domains of the protein likely to interact with lipid head groups. We conclude that the timing of auxilin recruitment determines the onset of uncoating. We propose that, when a diffusion barrier is established at the constricting neck of a fully formed coated pit and immediately after vesicle budding, accumulation of a specific lipid can recruit sufficient auxilin molecules to trigger uncoating. PMID:16798879
ORION Project-(SPLASH) Structural Passive Landing Attenuation fo
2011-12-13
ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pit Phase 4 Test or Pit 4 Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)
Characteristics of circular features on comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Deller, J. F.; Güttler, C.; Tubiana, C.; Hofmann, M.; Sierks, H.
2017-09-01
Comet 67P/Churyumov-Gerasimenko shows a large variety of circular structures such as pits, elevated roundish features in Imhotep, and even a single occurrence of a plausible fresh impact crater. Imaging the pits in the Ma'at region, aiming to understand their structure and origin drove the design of the final descent trajectory of the Rosetta spacecraft. The high-resolution images obtained during the last mission phase allow us to study these pits as exemplary circular features. A complete catalogue of circular features gives us the possibility to compare and classify these structures systematically.
Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos
NASA Technical Reports Server (NTRS)
Danilchik, Michael V.; Bedrick, Steven D.; Brown, Elizabeth E.; Ray, Kimberly
2003-01-01
In dividing Xenopus eggs, furrowing is accompanied by expansion of a new domain of plasma membrane in the cleavage plane. The source of the new membrane is known to include a store of oogenetically produced exocytotic vesicles, but the site where their exocytosis occurs has not been described. Previous work revealed a V-shaped array of microtubule bundles at the base of advancing furrows. Cold shock or exposure to nocodazole halted expansion of the new membrane domain, which suggests that these microtubules are involved in the localized exocytosis. In the present report, scanning electron microscopy revealed collections of pits or craters, up to approximately 1.5 micro m in diameter. These pits are evidently fusion pores at sites of recent exocytosis, clustered in the immediate vicinity of the deepening furrow base and therefore near the furrow microtubules. Confocal microscopy near the furrow base of live embryos labeled with the membrane dye FM1-43 captured time-lapse sequences of individual exocytotic events in which irregular patches of approximately 20 micro m(2) of unlabeled membrane abruptly displaced pre-existing FM1-43-labeled surface. In some cases, stable fusion pores, approximately 2 micro m in diameter, were seen at the surface for up to several minutes before suddenly delivering patches of unlabeled membrane. To test whether the presence of furrow microtubule bundles near the surface plays a role in directing or concentrating this localized exocytosis, membrane expansion was examined in embryos exposed to D(2)O to induce formation of microtubule monasters randomly under the surface. D(2)O treatment resulted in a rapid, uniform expansion of the egg surface via random, ectopic exocytosis of vesicles. This D(2)O-induced membrane expansion was completely blocked with nocodazole, indicating that the ectopic exocytosis was microtubule-dependent. Results indicate that exocytotic vesicles are present throughout the egg subcortex, and that the presence of microtubules near the surface is sufficient to mobilize them for exocytosis at the end of the cell cycle.
NASA Astrophysics Data System (ADS)
Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong
2018-01-01
The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.
Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping
2014-01-01
Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4+, lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor. PMID:24487528
Perspective—Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, G. S.; Li, Tianshu; Scully, J. R.
2017-02-24
A debate about the critical step in localized corrosion has raged for decades. Some researchers focus on the composition and structure of the passive film associated with the initial breakdown of the film, whereas others consider that the susceptibility to pitting is controlled by the pit growth kinetics and the stabilization of pit growth. The basis for a unified theory of pitting is presented here in which pit stability considerations are controlling under aggressive conditions (harsh electrolytes and extreme environments and/or susceptible microstructures) and the passive film properties and protectiveness are the critical factors in less extreme environments and/or formore » less susceptible alloys.« less
NASA Astrophysics Data System (ADS)
Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien
2015-02-01
In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.
NASA Astrophysics Data System (ADS)
Weiyi, Xie; Pengcheng
2018-03-01
The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.
Shimoyama, Kyoko; Kagawa, Shunsuke; Ishida, Michihiro; Watanabe, Shinichiro; Noma, Kazuhiro; Takehara, Kiyoto; Tazawa, Hiroshi; Hashimoto, Yuuri; Tanabe, Shunsuke; Matsuoka, Junji; Kobayashi, Hisataka; Fujiwara, Toshiyoshi
2015-02-01
The prognosis of HER2-positive breast cancer has been improved by trastuzumab therapy, which features high specificity and limited side effects. However, trastuzumab-based therapy has shortcomings. Firstly, HER2-targeted therapy is only applicable to HER2-expressing tumors, which comprise only 20-25% of primary breast cancers. Secondly, many patients who initially respond to trastuzumab ultimately develop disease progression. To overcome these problems, we employed virus-mediated HER2 transduction and photoimmunotherapy (PIT) which involves trastuzumab conjugated with a photosensitizer, trastuzumab-IR700, and irradiation of near-infrared light. We hypothesized that the gene transduction technique together with PIT would expand the range of tumor entities suitable for trastuzumab-based therapy and improve its antitumor activity. The HER2-extracellular domain (ECD) was transduced by the adenoviral vector, Ad-HER2-ECD, and PIT with trastuzumab-IR700 was applied in the HER2-negative cancer cells. Ad-HER2-ECD can efficiently transduce HER2-ECD into HER2-negative human cancer cells. PIT with trastuzumab-IR700 induced direct cell membrane destruction of Ad-HER2-ECD-transduced HER2-negative cancer cells. Novel combination of viral transduction of a target antigen and an antibody-based PIT would expand and potentiate molecular-targeted therapy even for target-negative or attenuated cancer cells.
Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium.
Simionescu, N; Lupu, F; Simionescu, M
1983-11-01
We investigated the distribution of sterols in the cell membrane of microvascular endothelium (mouse pancreas, diaphragm, brain, heart, lung, kidney, thyroid, adrenal, and liver) with the polyene antibiotic filipin, which reportedly has binding specificity for free 3-beta-hydroxysterols. In some experiments, concomitantly, cell-surface anionic sites were detected with cationized ferritin. Vessels were perfused in situ with PBS, followed by light fixation and filipin administration for 10 to 60 min. Tissues were further processed for thin-section and freeze-fracture electron microscopy. Short exposure (10 min) to filipin-glutaraldehyde solution resulted in the initial appearance, on many areas, of rings of characteristic filipin-sterol complexes within the rim surrounding stomata of most plasmalemmal vesicles, transendothelial channels, and fenestrae. Such rings were absent from the rims of the large openings of the sinusoid endothelium (liver, adrenal), coated pits and phagocytic vacuoles. After longer exposure (30-60 min), filipin-sterol complexes labeled randomly the rest of plasma membrane (except for coated pits, and partially the interstrand areas of junctions), and also marked most plasmalemmal vesicles. These peristomal rings of sterols were displayed mostly on the P face, and, at their full development, consisted of 6-8 units around a vesicle stoma, and 10-12 units around a fenestra. At their level, the intramembranous particles and the cell surface anionic sites were virtually excluded. Peristomal rings of sterols were also detected on the plasma membrane of pericytes and smooth muscle cells of the microvascular wall, which otherwise were poorly labeled with filipin-sterol complexes as compared to endothelial plasmalemma. It is presumed that the peristomal rings of cholesterol may represent important contributors to the local transient stabilization of plasma membrane and to the phase separation between cell membrane and vesicle membrane at a certain stage of their fusion/fission process.
Tomita, Y; Matsuura, T; Kodama, T
2015-01-01
Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s
Sun, Qiang; Greve, L. Carl; Labavitch, John M.
2011-01-01
Symptom development of Pierce’s disease (PD) in grapevine (Vitis vinifera) depends largely on the ability of the bacterium Xylella fastidiosa to use cell wall-degrading enzymes (CWDEs) to break up intervessel pit membranes (PMs) and spread through the vessel system. In this study, an immunohistochemical technique was developed to analyze pectic and hemicellulosic polysaccharides of intervessel PMs. Our results indicate that PMs of grapevine genotypes with different PD resistance differed in the composition and structure of homogalacturonans (HGs) and xyloglucans (XyGs), the potential targets of the pathogen’s CWDEs. The PMs of PD-resistant grapevine genotypes lacked fucosylated XyGs and weakly methyl-esterified HGs (ME-HGs), and contained a small amount of heavily ME-HGs. In contrast, PMs of PD-susceptible genotypes all had substantial amounts of fucosylated XyGs and weakly ME-HGs, but lacked heavily ME-HGs. The intervessel PM integrity and the pathogen’s distribution in Xylella-infected grapevines also showed differences among the genotypes. In pathogen-inoculated, PD-resistant genotypes PM integrity was well maintained and Xylella cells were only found close to the inoculation site. However, in inoculated PD-susceptible genotypes, PMs in the vessels associated with bacteria lost their integrity and the systemic presence of the X. fastidiosa pathogen was confirmed. Our analysis also provided a relatively clear understanding of the process by which intervessel PMs are degraded. All of these observations support the conclusion that weakly ME-HGs and fucosylated XyGs are substrates of the pathogen’s CWDEs and their presence in or absence from PMs may contribute to grapevine’s PD susceptibility. PMID:21343427
An Autoregulatory Pathway Establishes the Definitive Chromatin Conformation at the Pit-1 Locus
Cooke, Nancy E.; Liebhaber, Stephen A.
2015-01-01
The transcription factor Pit-1 (POU1-F1) plays a dominant role in cell lineage expansion and differentiation in the anterior pituitary. Prior studies of the mouse Pit-1 (mPit-1) gene revealed that this master regulatory locus is activated at embryonic day 13.5 (E13.5) by an early enhancer (EE), whereas its subsequent expression throughout adult life is maintained by a more distal definitive enhancer (DE). Here, we demonstrate that the sequential actions of these two enhancers are linked to corresponding shifts in their proximities to the Pit-1 promoter. We further demonstrate that the looping of the definitive enhancer to the mPit-1 promoter is critically dependent on a self-sustaining autoregulatory mechanism mediated by the Pit-1 protein. These Pit-1-dependent actions are accompanied by localized recruitment of CBP and enrichment for H3K27 acetylation within the Pit-1 locus. These data support a model in which the sequential actions of two developmentally activated enhancers are linked to a corresponding shift in higher-order chromatin structures. This shift establishes an autoregulatory circuit that maintains durable expression of Pit-1 throughout adult life. PMID:25691665
NASA Astrophysics Data System (ADS)
Park, Keunhwan; Tixier, Aude; Christensen, Anneline; Arnbjerg-Nielsen, Sif; Zwieniecki, Maciej; Jensen, Kaare
2017-11-01
Water and minerals flow from plant roots to leaves in the xylem, an interconnected network of vascular conduits that spans the full length of the organism. When a plant is subjected to drought stress, air pockets can spread inside the xylem, threatening the survival of the plant. Many plants prevent propagation of air by using hydrophobic nano-membranes in the ``pit'' pores that link adjacent xylem cells. This adds considerable resistance to flow. Interestingly, torus-margo pit pores in conifers are open and offer less resistance. To prevent propagation of air, conifers use a soft gating mechanism, which relies on hydrodynamic interactions between the xylem liquid and the elastic pit. However, it is unknown exactly how it is able to combine the seemingly antagonist functions of high permeability and resistance to propagation of air. We conduct experiments on biomimetic pores to elucidate the flow regulation mechanism. The design of plant valves is compared to other natural systems and optimal strategies are discussed. This work was supported by a research Grant (13166) from VILLUM FONDEN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, P.; Austin, J.; Cao, S. V.
This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute tomore » the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.« less
J.C. Domec; B. Lachenbruch; F.C. Meinzer
2006-01-01
The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs...
The comparative morphology of pit organs in elasmobranchs.
Peach, M B; Marshall, N J
2009-06-01
The pit organs of elasmobranchs (sharks, skates and rays) are free neuromasts of the mechanosensory lateral line system. Pit organs, however, appear to have some structural differences from the free neuromasts of bony fishes and amphibians. In this study, the morphology of pit organs was investigated by scanning electron microscopy in six shark and three ray species. In each species, pit organs contained typical lateral line hair cells with apical stereovilli of different lengths arranged in an "organ-pipe" configuration. Supporting cells also bore numerous apical microvilli taller than those observed in other vertebrate lateral line organs. Pit organs were either covered by overlapping denticles, located in open grooves bordered by denticles, or in grooves without associated denticles. The possible functional implications of these morphological features, including modification of water flow and sensory filtering properties, are discussed.
Quantifying the Dynamic Interactions Between a Clathrin-Coated Pit and Cargo Molecules
NASA Astrophysics Data System (ADS)
Weigel, Aubrey; Tamkun, Michael; Krapf, Diego
2014-03-01
Clathrin-mediated endocytosis is a major pathway of internalization of cargo in eukaryotic cells. This process involves the recruitment of cargo molecules into a growing clathrin-coated pit (CCP). However, cargo-CCP interactions are difficult to study because CCPs display a large degree of lifetime heterogeneity and the interactions with cargo molecules evolve over time. We use single-molecule total internal reflection fluorescence (TIRF) microscopy, in combination with automatic detection and tracking algorithms, to directly visualize the recruitment of individual voltage-gated potassium channels into forming CCPs in living cells. Contrary to widespread ideas, cargo often escapes from a pit before abortive CCP termination or endocytic vesicle production. By measuring tens of thousands of capturing events, we build the distribution of capture times and the times that cargo remains confined to a CCP. An analytical stochastic model is developed and compared to the measured distributions. Due to the dynamic nature of the pit, the model is non-Markovian and it displays long-tail power law statistics. Our findings identify one source of the large heterogeneities observed in CCP maturation and provide a mechanism for the anomalous diffusion of proteins in the plasma membrane. This work was supported by National Science Foundation Grant PHY-0956714.
Tailoring mode interference in plasmon-induced transparency metamaterials
NASA Astrophysics Data System (ADS)
Liu, Meng; Yang, Quanlong; Xu, Quan; Chen, Xieyu; Tian, Zhen; Gu, Jianqiang; Ouyang, Chunmei; Zhang, Xueqian; Han, Jiaguang; Zhang, Weili
2018-05-01
We proposed an approach to tailor the mode interference effect in plasmon-induced transparency (PIT) metamaterials. Through introducing an extra coupling mode using an asymmetric structure configuration at terahertz (THz) frequencies, the well-known single-transparency-window PIT can be switched to dual-transparency-window PIT. Proof-of-concept subwavelength structures were fabricated and experimentally characterized. The measured results are in good agreement with the simulations, and well support our theoretical analysis. The presented research delivers a novel approach toward developing subwavelength devices with varies functionalities, such as ultra-slow group velocities, longitudinal pulse compression and light storage in the THz regime, which can also be extended to other spectral regimes.
Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David
2012-01-01
The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.
Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces
NASA Astrophysics Data System (ADS)
Niu, Yuying; Wang, Jicheng; Hu, Zhengda; Zhang, Feng
2018-06-01
The frequency tunable Plasmonic induced transparency (PIT) effect is researched with a periodically patterned T-shaped graphene array in mid-infrared region. We adjust the geometrical parameters to obtain the optimized combination for the realization of the PIT response and use the coupled Lorentz oscillator model to analysis the physical mechanism. Due to the properties of graphene, the PIT effect can be easily and markedly enhanced with the increase of chemical potential and carrier mobility. The frequency of PIT effect is also insensitive with the angle of incident light. In addition, we also propose the π shaped structure to realizing the double-peak PIT effect. The results offer a flexible approach for the development of tunable graphene-based photonic devices.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication
NASA Astrophysics Data System (ADS)
Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan
2015-08-01
Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan
2015-08-07
Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.
2016-01-01
Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro-micro hierarchy has been proven to be effective in replacing micro-nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro-micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie-Baxter state.
Limitations of using a thermal imager for snow pit temperatures
NASA Astrophysics Data System (ADS)
Schirmer, M.; Jamieson, B.
2013-10-01
Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and atmospheric temperatures are enhanced. At crusts or other heterogeneities, we were unable to create a sufficiently homogenous snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack even with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
Limitations of using a thermal imager for snow pit temperatures
NASA Astrophysics Data System (ADS)
Schirmer, M.; Jamieson, B.
2014-03-01
Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
Lucarelli, Stefanie; Delos Santos, Ralph Christian; Antonescu, Costin N
2017-01-01
The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.
Distribution, morphology, and origins of Martian pit crater chains
NASA Astrophysics Data System (ADS)
Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.
2004-06-01
Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.
Giant weathering pits in the Entrada Sandstone, southeastern Utah: Preliminary findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netoff, D.I.; Shroba, R.R.
Giant weathering pits formed in outcrops of the lower Entrada Sandstone slickrock of Jurassic age are present in two areas in the Glen Canyon region of arid southeastern Utah. The pits are far larger than any previously described in the geologic literature. The pits near Cookie Jar Butte are commonly cylindrical, typically have low width-to-depth ratios (1.5--3.6), and have a depth of closure of as much as 18 m. There are no obvious lithologic or structural controls that determine their shape or location. Many of the pits at Rock Creek Bay are elongate; several of them have long axes inmore » excess of 53 m, and the longest one is 74 m. Many of the pit walls are breached at the top, and the depth of closure is generally less than 6 m. The shapes of these pits are influenced by point orientation and pit coalescence. Thin-section analyses of near-surface sandstone cores taken near Cookie Jar Butte from pit walls, floors, and rims reveal no significant diagenetic alteration of the fine-grained to very fine frained quartzose sandstone (quartz arenite). Quartz grains appear fresh, and feldspar grains are only slightly weathered. The cement between the grains is mostly CaCO[sub 3]. In several of the pits in both areas sandy sediment veneers the bedrock floor. This sediment is similar in character to the adjacent sandstone and is probably locally derived. Possible origins of the giant pits include various physical, chemical, and biological weathering processes that initiate pit development, followed by excavation by plunge-pool action, wind deflation, dissolution, and piping. Preliminary field and laboratory data do not clearly identify and single process of group of processes that account for pit development.« less
Flat clathrin lattices: stable features of the plasma membrane.
Grove, Joe; Metcalf, Daniel J; Knight, Alex E; Wavre-Shapton, Silène T; Sun, Tony; Protonotarios, Emmanouil D; Griffin, Lewis D; Lippincott-Schwartz, Jennifer; Marsh, Mark
2014-11-05
Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear. We used quantitative imaging to provide the first comprehensive description of FCLs and explore their influence on plasma membrane organization. Ultrastructural analysis by electron and superresolution microscopy revealed two discrete populations of clathrin structures. CCPs were typified by their sphericity, small size, and homogeneity. FCLs were planar, large, and heterogeneous and present on both the dorsal and ventral surfaces of cells. Live microscopy demonstrated that CCPs are short lived and culminate in a peak of dynamin recruitment, consistent with classical CME. In contrast, FCLs were long lived, with sustained association with dynamin. We investigated the biological relevance of FCLs using the chemokine receptor CCR5 as a model system. Agonist activation leads to sustained recruitment of CCR5 to FCLs. Quantitative molecular imaging indicated that FCLs partitioned receptors at the cell surface. Our observations suggest that FCLs provide stable platforms for the recruitment of endocytic cargo. © 2014 Grove et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Williams, Nathan Robert
Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon's surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris -- selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction. Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims -- consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.
Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra.
Melcher, Peter J; Zwieniecki, Maciej A
2013-01-01
The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔP pit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔP pit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5-10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔP pit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔP pit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally.
NASA Astrophysics Data System (ADS)
Deng, Hua; Dutta, Prashanta; Liu, Jin
2016-11-01
Clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles at lipid membrane of cells, which plays crucial roles in fundamental understanding of viral infections and interacellular/transcelluar targeted drug delivery. During CME, highly dynamic clathrin-coated pit (CCP), formed by the growth of ordered clathrin lattices, is the key scaffolding component that drives the deformation of plasma membrane. Experimental studies have shown that CCP alone can provide sufficient membrane curvature for facilitating membrane invagination. However, currently there is no computational model that could couple cargo receptor binding with membrane invagination process, nor simulations of the dynamic growing process of CCP. We develop a stochastic computational model for the clathrin-mediated endocytosis based on Metropolis Monte Carlo simulations. In our model, the energetic costs of bending membrane and CCP are linked with antigen-antibody interactions. The assembly of clathrin lattices is a dynamic process that correlates with antigen-antibody bond formation. This model helps study the membrane deformation and the effects of CCP during functionalized bioparticles internalization through CME. This work is supported by NSF Grants: CBET-1250107 and CBET-1604211.
3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure
NASA Astrophysics Data System (ADS)
Hong, Ik-Seon; Yi, Yu; Yu, Jaehyung; Haruyama, Junichi
2015-06-01
When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.
Study of Etching Pits in a Large-grain Single Cell Bulk Niobium Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Ciovati, Gianluigi; Reece, Charles E.
2009-11-01
Performance of SRF cavities are limited by non-linear localized effects. The variation of local material characters between "hot" and "cold" spots is thus of intense interest. Such locations were identified in a BCP-etched large-grain single-cell cavity and removed for examination by high resolution electron microscopy (SEM), electron-back scattering diffraction microscopy (EBSD), optical microscopy, and 3D profilometry. Pits with clearly discernable crystal facets were observed in both "hotspot" and "coldspot" specimens. The pits were found in-grain, at bi-crystal boundaries, and on tri-crystal junctions. They are interpreted as etch pits induced by surface crystal defects (e.g. dislocations). All "coldspots" examined had qualitativelymore » low density of etching pits or very shallow tri-crystal boundary junction. EBSD revealed crystal structure surrounding the pits via crystal phase orientation mapping, while 3D profilometry gave information on the depth and size of the pits. In addition, a survey of the samples by energy dispersive X-ray analysis (EDX) did not show any significant contamination of the samples surface.« less
Structure of energy consumption and improving open-pit dump truck efficiency
NASA Astrophysics Data System (ADS)
Koptev, V. Yu; Kopteva, A. V.
2017-10-01
This paper studies the dynamics of the improvement of wheel type transport vehicles environmental and energy performance in open-pit mines. The paper discloses characteristics of the gas turbine engine with capacity of 1250 hp, mounted on tanks, and technical-economic calculations, confirming reasonability of their use in open-pit dump trucks with the 120 …130-ton loading capacity. The general layout scheme of mechanical transmission with the gas turbine engine is shown.
Fish assemblages in borrow-pit lakes of the Lower Mississippi River
Miranda, Leandro E.; Killgore, K. J.; Hoover, J.J.
2013-01-01
Borrow-pit lakes encompass about a third of the lentic water habitats (by area) in the active floodplain of the Lower Mississippi River, yet little is known about their fish assemblages. We investigated whether fish assemblages supported by borrow-pit lakes resembled those in oxbow lakes to help place the ecological relevance of borrow-pit lakes in context with that of natural floodplain lakes. In all, we collected 75 fish species, including 65 species in eight borrow-pit lakes, 52 species in four riverside oxbow lakes, and 44 species in eight landside oxbow lakes. Significant differences in several species richness metrics were evident between borrow-pit lakes and landside oxbow lakes but not between borrow-pit lakes and riverside oxbow lakes. All three lake types differed in fish assemblage composition. Borrow-pit lakes and riverside oxbow lakes tended to include a greater representation of fish species that require access to diverse environments, including lentic, lotic, and palustrine habitats; fish assemblages in landside oxbow lakes included a higher representation of lacustrine species. None of the fish species collected in borrow-pit lakes was federally listed as threatened or endangered, but several were listed as species of special concern by state governments in the region, suggesting that borrow-pit lakes provide habitat for sensitive riverine and wetland fish species. Differences in fish assemblages among borrow-pit lakes were linked to engineered morphologic features, suggesting that diversity in engineering can contribute to diversity in fish assemblages; however, more research is needed to match engineering designs with fish assemblage structures that best meet conservation needs.
Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.
Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan
2014-12-01
Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Colloidal gold-labeled insulin complex. Characterization and binding to adipocytes.
Moll, U M; Thun, C; Pfeiffer, E F
1986-01-01
Biologically active insulin gold complex was used as an ultrastructural marker to study insulin binding sites, uptake, and internalization in isolated rat adipocytes. The preparation conditions for monodispersed particles, ca. 16 nm in diameter and loaded with approximately 100 insulin molecules, are reported. The complex is stable for at least six weeks. Single particles or small clusters were scattered across the cell membrane. The distribution of unbound receptors seemed to be independent of the extensive system of pre-existing surface connected vesicles in adipocytes. The uptake of particles took place predominantly via non-coated pinocytotic invaginations; clathrin-coated pits did not seem to be important for this process. Lysosome-like structures contained aggregates of 10-15 particles. These data suggest that insulin gold complex is a useful marker for the specific labeling of insulin binding sites.
[Molecular pathology of congenital pituitary hypothyroidism--discovery of new clinical entities].
Tatsumi, K; Amino, N; Miyai, K
1993-05-01
Congenital pituitary hypothyroidism (pituitary cretinism) results in severe mental and growth retardation when it is not treated soon after birth. Since the introduction of neonatal mass screening of thyrotropin (TSH), most congenital hypothyroidism has been detected except for pituitary and hypothalamic hypothyroidism. In 1971, we reported the first familial case of congenital isolated TSH deficiency and thereafter began intensively investigating the molecular pathology of congenital pituitary hypothyroidism. After determining the entire structure of the human TSH beta gene, we identified the molecular pathology in this patient. Recently, we reported a familial case of congenital combined pituitary hormone deficiency (PIT1 abnormality). To examine the PIT1 gene, which encodes pituitary specific transcription factor, Pit-1/GHF-1, we determined its genomic structure. Sequence comparisons using PCR amplified PIT1 gene sequences revealed only one nonsense mutation in the patient, and established that this alteration caused the combined deficiencies of TSH, GH and PRL. We also discuss other recent progress in molecular pathology of congenital pituitary hypothyroidism.
Quarta, L; Corrado, A; d'Onofrio, F; Maruotti, N; Cantatore, Francesco Paolo
2010-08-01
In psoriatic arthritis, swelling and pitting oedema may be caused by different pathogenic mechanisms: on one hand, the involvement of tenosynovial structures; on the other hand, the involvement of lymphatic vessels, which may be rarely implicated by the inflammatory process. This different involvement is responsible for a different response to therapy and a different clinical outcome. In fact, patients with inflammation of the tenosynovial structures and normal lymphatic drainage have a more favourable clinical outcome and response to pharmacologic treatment, whilst patients affected by psoriatic arthritis with chronic lymphatic vascular damage are characterized usually by resistance of oedema to therapy. In this study, we report two cases of psoriatic arthritis with distal extremity swelling and pitting oedema. In the first patient, the swelling and pitting oedema were associated with lymphatic obstruction, as detected by lymphoscintigraphy. In the second, the predominant involvement of the tenosynovial structures, as shown by magnetic resonance, with normal lymphatic flow, may have been the cause of arthritis with oedema. These different pathogenetic mechanisms were associated with different response to therapy. Nevertheless, oedema was resistant to therapy in both patients probably because of other unknown factors, which influence therapy and clinical outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quan, Zhijue, E-mail: quanzhijue@ncu.edu.cn; Wang, Li, E-mail: wl@ncu.edu.cn; Zheng, Changda
2014-11-14
The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (10–11)-oriented semi-polar facets.
Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav
2018-05-22
The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-11-01
High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter-deep pits within ~800 years and ~2,000 years, respectively. Since comet 67P has been around the inner solar system for about 7,000 years, both of these processes are viable explanations for the pits.The simulations also show that direct sublimation of crystalline ices of water, carbon monoxide, and carbon dioxide can cause deep pits but only in the absence of a surface layer of dust, known as a dust mantle, in that region of the comet. Direct sublimation could be a viable explanation for the pits, then, if dust grains in the area are so small that they are carried away with the released gas, rather than falling back to form a layer on the comets surface.Regardless of the formation mechanism for these pits, the authors conclude that their very existence implies that the physical and chemical properties across the surface and subsurface of the comet cannot be uniform. Further observations from Rosetta will continue to help us understand comet 67P.CitationO. Mousis et al 2015 ApJ 814 L5. doi:10.1088/2041-8205/814/1/L5
Gregorio de Souza, Jonas; Robinson, Mark; Corteletti, Rafael; Cárdenas, Macarena Lucia; Wolf, Sidnei; Iriarte, José; Mayle, Francis; DeBlasis, Paulo
2016-01-01
A long held view about the occupation of southern proto-Jê pit house villages of the southern Brazilian highlands is that these sites represent cycles of long-term abandonment and reoccupation. However, this assumption is based on an insufficient number of radiocarbon dates for individual pit houses. To address this problem, we conducted a programme of comprehensive AMS radiocarbon dating and Bayesian modelling at the deeply stratified oversized pit House 1, Baggio I site (Cal. A.D. 1395-1650), Campo Belo do Sul, Santa Catarina state, Brazil. The stratigraphy of House 1 revealed an unparalleled sequence of twelve well preserved floors evidencing a major change in occupation dynamics including five completely burnt collapsed roofs. The results of the radiocarbon dating allowed us to understand for the first time the occupation dynamics of an oversized pit house in the southern Brazilian highlands. The Bayesian model demonstrates that House 1 was occupied for over two centuries with no evidence of major periods of abandonment, calling into question previous models of long-term abandonment. In addition, the House 1 sequence allowed us to tie transformations in ceramic style and lithic technology to an absolute chronology. Finally, we can provide new evidence that the emergence of oversized domestic structures is a relatively recent phenomenon among the southern proto-Jê. As monumental pit houses start to be built, small pit houses continue to be inhabited, evidencing emerging disparities in domestic architecture after AD 1000. Our research shows the importance of programmes of intensive dating of individual structures to understand occupation dynamics and site permanence, and challenges long held assumptions that the southern Brazilian highlands were home to marginal cultures in the context of lowland South America.
Interior and Ejecta Morphologies of Impact Craters on Ganymede
NASA Astrophysics Data System (ADS)
Barlow, Nadine G.; Klaybor, K.; Katz-Wigmore, J.
2006-09-01
We are utilizing Galileo SSI imagery of Ganymede to classify impact crater interior and ejecta morphologies. Although we are in the early stages of compiling our Catalog of Impact Craters on Ganymede, some interesting trends are beginning to emerge. Few craters display obvious ejecta morphologies, but 68 craters are classified as single layer ejecta and 3 as double layer ejecta. We see no obvious correlation of layered ejecta morphologies with terrain or latitude. All layered ejecta craters have diameters between 10 and 40 km. Sinuosity ("lobateness") and ejecta extent ("ejecta mobility ratio") of Ganymede layered ejecta craters are lower than for martian layered ejecta craters. This suggests less mobility of ejecta materials on Ganymede, perhaps due to the colder temperatures. Interior structures being investigated include central domes, peaks, and pits. 57 dome craters, 212 central peak craters, and 313 central pit craters have been identified. Central domes occur in 50-100 km diameter craters while peaks are found in craters between 20 and 50 km and central pit craters range between 29 and 74 km in diameter. The Galileo Regio region displays higher concentrations of central dome and central pit craters than other regions we have investigated. 67% of central pit craters studied to date are small pits, where the ratio of pit diameter to crater diameter is <0.2. Craters containing the three interior structures preferentially occur on darker terrain units, suggesting that an ice-silicate composition is more conducive to interior feature formation than pure ice alone. Results of this study have important implications not only for the formation of specific interior and ejecta morphologies on Ganymede but also for analogous features associated with Martian impact craters. This research is funded through NASA Outer Planets Research Program Award #NNG05G116G to N. G. Barlow.
Gregorio de Souza, Jonas; Robinson, Mark; Corteletti, Rafael; Cárdenas, Macarena Lucia; Wolf, Sidnei; Iriarte, José; Mayle, Francis; DeBlasis, Paulo
2016-01-01
A long held view about the occupation of southern proto-Jê pit house villages of the southern Brazilian highlands is that these sites represent cycles of long-term abandonment and reoccupation. However, this assumption is based on an insufficient number of radiocarbon dates for individual pit houses. To address this problem, we conducted a programme of comprehensive AMS radiocarbon dating and Bayesian modelling at the deeply stratified oversized pit House 1, Baggio I site (Cal. A.D. 1395–1650), Campo Belo do Sul, Santa Catarina state, Brazil. The stratigraphy of House 1 revealed an unparalleled sequence of twelve well preserved floors evidencing a major change in occupation dynamics including five completely burnt collapsed roofs. The results of the radiocarbon dating allowed us to understand for the first time the occupation dynamics of an oversized pit house in the southern Brazilian highlands. The Bayesian model demonstrates that House 1 was occupied for over two centuries with no evidence of major periods of abandonment, calling into question previous models of long-term abandonment. In addition, the House 1 sequence allowed us to tie transformations in ceramic style and lithic technology to an absolute chronology. Finally, we can provide new evidence that the emergence of oversized domestic structures is a relatively recent phenomenon among the southern proto-Jê. As monumental pit houses start to be built, small pit houses continue to be inhabited, evidencing emerging disparities in domestic architecture after AD 1000. Our research shows the importance of programmes of intensive dating of individual structures to understand occupation dynamics and site permanence, and challenges long held assumptions that the southern Brazilian highlands were home to marginal cultures in the context of lowland South America. PMID:27384341
NASA Astrophysics Data System (ADS)
Gvozdkova, T.; Tyulenev, M.; Zhironkin, S.; Trifonov, V. A.; Osipov, Yu M.
2017-01-01
Surface mining and open pits engineering affect the environment in a very negative way. Among other pollutions that open pits make during mineral deposits exploiting, particular problem is the landscape changing. Along with converting the land into pits, surface mining is connected with pilling dumps that occupy large ground. The article describes an analysis of transportless methods of several coal seams strata surface mining, applied for open pits of South Kuzbass coal enterprises (Western Siberia, Russia). To improve land-use management of open pit mining enterprises, the characteristics of transportless technological schemes for several coal seams strata surface mining are highlighted and observed. These characteristics help to systematize transportless open mining technologies using common criteria that characterize structure of the bottom part of a strata and internal dumping schemes. The schemes of transportless systems of coal strata surface mining implemented in South Kuzbass are given.
NASA Astrophysics Data System (ADS)
Austin, Lauren Jean
We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.
Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?
Tuthill, Tobias J.; Harlos, Karl; Walter, Thomas S.; Knowles, Nick J.; Groppelli, Elisabetta; Rowlands, David J.; Stuart, David I.; Fry, Elizabeth E.
2009-01-01
Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry. PMID:19816570
NASA Astrophysics Data System (ADS)
He, Yang; Geng, Yanquan; Yan, Yongda; Luo, Xichun
2017-09-01
We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100 μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100 μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65-80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800-5800 pits can be obtained in 1 s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.
He, Yang; Geng, Yanquan; Yan, Yongda; Luo, Xichun
2017-09-22
We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100 μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100 μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65-80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800-5800 pits can be obtained in 1 s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.
Method and apparatus for air-coupled transducer
NASA Technical Reports Server (NTRS)
Song, Junho (Inventor); Chimenti, Dale E. (Inventor)
2010-01-01
An air-coupled transducer includes a ultrasonic transducer body having a radiation end with a backing fixture at the radiation end. There is a flexible backplate conformingly fit to the backing fixture and a thin membrane (preferably a metallized polymer) conformingly fit to the flexible backplate. In one embodiment, the backing fixture is spherically curved and the flexible backplate is spherically curved. The flexible backplate is preferably patterned with pits or depressions.
Cajaraville, M P; Pal, S G
1995-10-01
In the present work the haemocytes of mussels Mytilus galloprovincialis (Mollusca, Bivalvia) have been studied by light and electron microscopy in order to describe their main morphological features and to relate these to their roles in immune defence. The haemocytes belong to two definitive differentiated types, hyalinocytes and granulocytes. The former shows the presence of several fine pseudopodial protrusions, large nucleus with clumps of dense chromatin, scant cytoplasm, a well developed Golgi apparatus, lysosomes, several mitochondria (some with characteristic inclusions), coated pits and peripherally placed membrane-bound endocytic vesicles, considerable amounts of endoplasmic reticulum and ribosomes. The granulocytes generally possess an organelle-free ectoplasmic zone, numerous membrane-delimited dense granules of various types, coated pits and vesicles, endocytic and phagocytic vesicles, multivesicular bodies, several peroxisome-like organelles, mitochondria with inclusions, scant endoplasmic reticulum and small Golgi apparatus. These cells show the presence of few lipid droplets and variable amounts of glycogen particles. Some of the substructural features of the granules are documented here to indicate their probable biogenesis, growth and relationship with the endolysosomal compartment. In addition, in vitro phagocytosis experiments demonstrate that both hyalinocytes and granulocytes uptake latex and zymosan particles, granulocytes being much more active in phagocytosis than hyalinocytes.
Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea
2014-03-19
Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.
NASA Astrophysics Data System (ADS)
Shahamat, Yadollah; Vahedi, Mohammad
2017-06-01
An ultracompact double eight-shaped plasmonic structure for the realization of plasmon-induced transparency (PIT) in the terahertz (THz) region has been studied. The device consists of a semiconductor-insulator-semiconductor bus waveguide coupled to the dual-disk resonators. Indium antimonide is employed to excite SPP in the THz region. The transmission characteristics of the proposed device are simulated numerically by the finite-difference time-domain method. In addition, a theoretical analysis based on the coupled-mode theory for transmission features is presented and compared with the numerical results. Results are in good agreement. Also, the dependence of PIT frequency characteristics on the radius of the outer disk is discussed in detail. In addition, by removing one of the outer disk resonators, double-PIT peaks can be observed in the transmission spectrum, and the physical mechanism of the appeared peaks is investigated. Finally, an application of the proposed structure for distinguishing different states of DNA molecules is discussed. Results show that the maximum sensitivity with 654 GHz/RIU-1 could be obtained for a single PIT structure. The frequency shifts equal to 37 and 99 GHz could be observed for the denatured and the hybridized DNA states, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANGEVIN, A.S.
1999-07-12
This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied themore » effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.« less
Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus.
Demarco, Ignacio A; Voss, Ty C; Booker, Cynthia F; Day, Richard N
2006-11-01
The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.
Terrien, N; Royer, D; Lepoutre, F; Déom, A
2007-06-01
To increase the sensitivity of Lamb waves to hidden corrosion in aircraft structures, a preliminary step is to understand the phenomena governing this interaction. A hybrid model combining a finite element approach and a modal decomposition method is used to investigate the interaction of Lamb modes with corrosion pits. The finite element mesh is used to describe the region surrounding the corrosion pits while the modal decomposition method permits to determine the waves reflected and transmitted by the damaged area. Simulations make easier the interpretation of some parts of the measured waveform corresponding to superposition of waves diffracted by the corroded area. Numerical results permit to extract significant information from the transmitted waveform and thus to optimize the signal processing for the detection of corrosion at an early stage. Now, we are able to detect corrosion pits down to 80-mum depth distributed randomly on a square centimeter of an aluminum plate. Moreover, thickness variations present on aircraft structures can be discriminated from a slightly corroded area. Finally, using this experimental setup, aircraft structures have been tested.
NASA Astrophysics Data System (ADS)
Aburada, Tomohiro
2011-12-01
The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic, nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.
NASA Astrophysics Data System (ADS)
Villinger, H. W.; Pichler, T.; Kaul, N.; Stephan, S.; Pälike, H.; Stephan, F.
2017-01-01
We acquired seismic and heat flow data and collected sediment cores in three areas in the Guatemala Basin (Cocos Plate, Eastern Pacific) to investigate the process by which depressions (pits) in the sedimentary cover on young oceanic crust were formed. Median heat flow of 55 mW/m2 for the three areas is about half of the expected conductive cooling value. The heat deficit is caused by massive recharge of cold seawater into the upper crust through seamounts which is inferred from depressed heat flow in the vicinity of seamounts. Heat flow inside of pits is always elevated, in some cases up to three times (max. 300 mW/m2) relative to background. None of the geochemical pore water profiles from cores inside and outside of the pits show any evidence of active fluid flow inside the pits. All three areas originated within the high productivity equatorial zone and moved northwest over the past 15 to 18 Ma. Pits found in the working areas are likely relict dissolution structures formed by diffuse hydrothermal venting in a zone of high biogenic carbonate production which were sealed when they moved north. It is likely that these pits were discharge sites of "hydrothermal siphons" where recharging seamounts could feed cold seawater via the upper crust to several discharging pits. Probably pit density on the whole Cocos Plate is similar to the three working areas and which may explain the huge heat deficit of the Cocos Plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng
2016-05-15
In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less
Specification of unique Pit-1 activity in the hGH locus control region
Shewchuk, Brian M.; Liebhaber, Stephen A.; Cooke, Nancy E.
2002-01-01
The human GH (hGH) gene cluster is regulated by a remote 5′ locus control region (LCR). HSI, an LCR component located 14.5 kb 5′ to the hGH-N promoter, constitutes the primary determinant of high-level hGH-N activation in pituitary somatotropes. HSI encompasses an array of three binding sites for the pituitary-specific POU homeodomain factor Pit-1. In the present report we demonstrate that all three Pit-1 sites in the HSI array contribute to LCR activity in vivo. Furthermore, these three sites as a unit are fully sufficient for position-independent and somatotrope-restricted hGH-N transgene activation. In contrast, the hGH-N transgene is not activated by Pit-1 sites native to either the hGH-N or rat (r)GH gene promoters. These findings suggest that the structures of the Pit-1 binding sites at HSI specify distinct chromatin-dependent activities essential for LCR-mediated activation of hGH in the developing pituitary. PMID:12189206
Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.
2013-01-01
Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.
The volcanotectonic structures of Ascraeus Mons
NASA Astrophysics Data System (ADS)
Byrne, Paul; van Wyk de Vries, Benjamin; Murray, John; Troll, Valentin
2010-05-01
Ascraeus Mons is the tallest of three large volcanoes situated to the NE of the Tharsis Rise and aligned parallel to a NE-SW regional structural trend. With a vertical relief of 14.9 km and an E-W diameter of 400 km, the main shield has a convex-upward morphology and a summit plateau, whilst significantly younger lava rift aprons issue from expansive embayments on its lower flanks onto the surrounding plains. The volcano hosts several types of well-preserved surface structures, and so has served as a basis for understanding Martian volcano geodynamics. Previous studies have not incorporated the full set of structures on Ascraeus Mons, however, and have been limited by photogeological data of lower resolution than that available today. We have used a GIS of MOLA, HRSC, and CTX data to map the spatial and temporal distributions of the most pronounced structures on Ascraeus Mons — its summit calderas, flank terraces, arcuate graben, and pit craters — to develop as comprehensive an evolutionary sequence for this volcano as possible. We summarise our mapping results here. · The 55-km wide caldera complex consists of at least three NE-SW-aligned depressions, with a possible fourth caldera on the periphery. Depths range from 818 m for the shallowest caldera to 3,110 m for the deepest. Whilst most lavas on the volcano are summit-derived, even the latest flows are cut by post-caldera formation subsidence and fracturing. · Flank terraces, topographically subtle outward-verging, convex-upward structures, encircle Ascraeus Mons in an imbricate, fish-scale pattern. 142 terraces in total extend from immediately below the summit to the basal plains, but do not occur on the rift aprons. The mean circumferential length for terraces is 31.9 km, though terraces over 60 km long lie on the NW and SE flanks. · Arcuate graben crosscut the NW flanks and surrounding plains, and extend for ca. 90° concentric to the volcano. These structures vary in width from 400 m to 1,200 m, and are between 10 and 100 m deep. They are shallower and more laterally continuous than the pit troughs observed elsewhere on the flanks (described below), although pits do occur nearby, and in places are laterally contiguous with graben. · Pit craters are circular or ovoid rimless depressions, between 190 and 3,000 m in diameter and several 100s m deep, that are superposed upon the latest lavas on the volcano. Rows of pits form crater chains, whilst chains can merge to form troughs. We mapped 4,166 pits across the volcano, trending circumferential near the summit to radial low on the NE and SW flanks; here, chains and troughs coalesce to form the embayments. Caldera formation is likely the result of evacuation of an underlying magma chamber. Recent work indicates that flank terraces are compressive structures, formed by upper flank shortening of a volcano as it flexes the supporting lithosphere; flexure could also account for the arcuate graben concentric to the shield. In contrast, pit craters are probably extensional structures, formed by collapse into subsurface voids. A developmental sequence for Ascraeus Mons, therefore, needs to account for the disparate formation mechanisms proposed for these spatially coincident structures. Incorporating our findings with earlier studies of this volcano, we conclude that Ascraeus has experienced a history of rapid shield building, coeval with magma chamber evacuation, which initiated sustained lithospheric flexure and led to the formation of flank terraces and concentric graben. Main shield construction was followed by a period of repose before rift apron volcanism initiated on the lower flanks along the NE-SW regional lineament. Ultimately, the dominant tectonic regime upon the volcano's flanks changed from compressional to extensional, resulting in the development of pit craters. This model may help establish a framework for understanding the volcanotectonic histories of large shields across Mars.
Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development.
Lim, Ye-Wheen; Lo, Harriet P; Ferguson, Charles; Martel, Nick; Giacomotto, Jean; Gomez, Guillermo A; Yap, Alpha S; Hall, Thomas E; Parton, Robert G
2017-07-10
The embryonic notochord is a flexible structure present during development that serves as scaffold for formation of the vertebrate spine. This rod-like organ is thought to have evolved in non-vertebrate chordates to facilitate locomotion by providing a rigid but flexible midline structure against which the axial muscles can contract. This hydrostatic "skeleton" is exposed to a variety of mechanical forces during oscillation of the body. There is evidence that caveolae, submicroscopic cup-shaped plasma membrane pits, can buffer tension in cells that undergo high levels of mechanical stress. Indeed, caveolae are particularly abundant in the embryonic notochord. In this study, we used the CRISPR/Cas9 system to generate a mutant zebrafish line lacking Cavin1b, a coat protein required for caveola formation. Our cavin1b -/- zebrafish line exhibits reduced locomotor capacity and prominent notochord lesions characterized by necrotic, damaged, and membrane-permeable cells. Notochord diameter and body length are reduced, but remarkably, the mutants recover and are homozygous viable. By manipulating mechanical stress using a number of different assays, we show that progression of lesion severity in the mutant notochord is directly dependent on locomotion. We also demonstrate changes in caveola morphology in vivo in response to mechanical stress. Finally, induction of a catastrophic collapse of live cavin1b -/- mutant notochord cells provides the first real-time observation of caveolae mediating cellular mechanoprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa-Bellosta, Ricardo; Sorribas, Victor
2008-10-01
Inorganic arsenate (As{sup V}) is a common contaminant of underground water. Following oral exposure, it is assumed that As{sup V} is distributed and crosses cell membranes through inorganic phosphate (Pi) transporters. We have tested this hypothesis by studying the inhibition of rat Na/Pi cotransporters by As{sup V} in Xenopus laevis oocytes and in several rat tissues. The ubiquitously expressed type III Pi transporters (PiT-1 and PiT-2) showed a low affinity for As{sup V} (K{sub i} {approx} 3.8 mM), similar to the Pi transport system in aortic vascular smooth muscle cells (K{sub i} 1.5 mM). The type II renal isoforms, NaPi-IIamore » and NaPi-IIc, were also poorly inhibited by As{sup V} (K{sub i} {approx} 1 mM), similar to the Pi transport from kidney cortex brush-border membrane (BBM) vesicles. Conversely, the high-affinity intestinal transporter, NaPi-IIb, was very efficiently inhibited with a K{sub i} of 51 {mu}M, similar to the Pi transport from intestinal BBM vesicles. Taking into account the 1.1 mM Pi in blood and renal ultrafiltrate, and the nanomolar range of As{sup V} exposures, we have determined that the contribution by Na/Pi cotransporters to As{sup V} membrane transport is negligible, given that 10-15 mM As{sup V} would be necessary in these fluids to be significantly transported. Intestinal transport is an exception, because Pi competition is weak, thereby considering that its concentration in lumen mainly depends on low Pi levels from ingested fresh water, and because As{sup V} very efficiently inhibits Pi intestinal transport. Our data agree with current toxicokinetic knowledge, and they explain the asymmetric excretion of trivalent and pentavalent arsenic species into bile and urine.« less
NASA Astrophysics Data System (ADS)
Berezovskaya, V. V.; Savrai, R. A.; Merkushkin, E. A.; Makarov, A. V.
2012-05-01
The structure, mechanical properties, and pitting corrosion of nickel-free high-nitrogen (0.8% N) austenitic 06Kh18AG19M2 and 07Kh16AG13M3 steels have been studied in various structural states obtained after hot deformation, quenching, and tempering at 300 and 500°C. Both steels are shown to be resistant to the γ → α and γ → ɛ martensite transformations irrespective of the decomposition of a γ solid solution (06Kh18AG19M2 steel). Austenite of the steel with 19 wt % Mn shows lower resistance to recrystallization, which provides its higher plasticity (δ5) and fracture toughness at a lower strength as compared to the steel with 13 wt % Mn. Electrochemical studies of the steels tempered at 300 and 500°C show that they are in a stable passive state during tests in a 3.5% NaCl solution and have high pitting resistance up to a potential E pf = 1.3-1.4 V, which is higher than that in 12Kh18N10T steel. In the quenched state, the passive state is instable but pitting formation potentials E pf retain their values. In all steels under study, pitting is shown to form predominantly along the grain boundaries of nonrecrystallized austenite. The lowest pitting resistance is demonstrated by the structure with a double grain boundary network that results from incomplete recrystallization at 1100°C and from the existence of initial and recrystallized austenite in the 07Kh16AG13M3 steel. To obtain a set of high mechanical and corrosion properties under given rolling conditions (1200-1150°C), annealing of the steels at temperatures no less than 1150°C (for 1 h) with water quenching and tempering at 500°C for 2 h are recommended.
Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop
2018-02-21
Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.
Exogenous lysophospholipids with large head groups perturb clathrin-mediated endocytosis.
Ailte, Ieva; Lingelem, Anne Berit D; Kvalvaag, Audun S; Kavaliauskiene, Simona; Brech, Andreas; Koster, Gerbrand; Dommersnes, Paul G; Bergan, Jonas; Skotland, Tore; Sandvig, Kirsten
2017-03-01
In this study, we have investigated how clathrin-dependent endocytosis is affected by exogenously added lysophospholipids (LPLs). Addition of LPLs with large head groups strongly inhibits transferrin (Tf) endocytosis in various cell lines, while LPLs with small head groups do not. Electron and total internal reflection fluorescence microscopy (EM and TIRF) reveal that treatment with lysophosphatidylinositol (LPI) with the fatty acyl group C18:0 leads to reduced numbers of invaginated clathrin-coated pits (CCPs) at the plasma membrane, fewer endocytic events per membrane area and increased lifetime of CCPs. Also, endocytosis of Tf becomes dependent on actin upon LPI treatment. Thus, our results demonstrate that one can regulate the kinetics and properties of clathrin-dependent endocytosis by addition of LPLs in a head group size- and fatty acyl-dependent manner. Furthermore, studies performed with optical tweezers show that less force is required to pull membrane tubules outwards from the plasma membrane when LPI is added to the cells. The results are in agreement with the notion that insertion of LPLs with large head groups creates a positive membrane curvature which might have a negative impact on events that require plasma membrane invagination, while it may facilitate membrane bending toward the cell exterior. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zampighi, G A; Fisher, R S
1997-08-01
In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 +/- 3.8 nm (mean SD, n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a approximately 45-nm-diameter lipid bilayer sphere encased in a cage 77 +/- 4.6 nm (mean SD, n = 42) in diameter. The cage was composed of open-faced pentamers 20-22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60-75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 +/- 9 nm (mean SD, n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (approximately 22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of "caged" and "plain" synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.
Distributed fiber optic strain sensing to detect artificial pitting corrosion in stirrups
NASA Astrophysics Data System (ADS)
Zhang, Jiachen; Kancharla, Vinutha; Hoult, Neil A.
2017-04-01
Pitting corrosion is difficult to identify through visual inspection and can lead to sudden structural failures. As such, an experimental study was undertaken to investigate whether distributed fiber optic strain sensors are capable of detecting the locations and strain changes associated with stirrup corrosion in reinforced concrete beams. In comparison to conventional strain gauges, this type of sensor can measure the strain response along the entire length of the fiber optic cable. Two specimens were tested: a control and a deteriorated beam. The deteriorated beam was artificially corroded by reducing the cross sectional area of the closed stirrups by 50% on both sides of the stirrup at the mid-height. This level of area reduction represents severe pitting corrosion. The beams were instrumented with nylon coated fiber optic sensors to measure the distributed strains, and then tested to failure under three point bending. The load deflection behavior of the two specimens was compared to assess the impact of the artificial pitting corrosion on the capacity. Digital Image Correlation was used to locate the extent and trajectory of the crack paths. It was found that the pitting corrosion had no impact on capacity or stiffness. Also, in this investigation the fiber optic sensing system failed to detect the location and strain changes due to pitting corrosion since the shear cracks did not intersect with the pitting location.
Tunable high-channel-count bandstop graphene plasmonic filters based on plasmon induced transparency
NASA Astrophysics Data System (ADS)
Zhang, Zhengren; Long, Yang; Ma, Pengyu; Li, Hongqiang
2017-11-01
A high-channel-count bandstop graphene plasmonic filter based on ultracompact plasmonic structure is proposed in this paper. It consists of graphene waveguide side-coupled with a series of graphene filtering units. The study shows that the waveguide-resonator system performs a multiple plasmon induced transparency (PIT) phenomenon. By carefully adjusting the Fermi level of the filtering units, any two adjacent transmitted dips which belong to different PIT units can produce coherent coupling superposition enhancement. This property prevents the attenuation of the high-frequency transmission dips of multiple PIT and leads to an excellent bandstop filter with multiple channels. Specifically, the bandwidth and modulation depth of the filters can be flexibly adjusted by tuning the Fermi energy of the graphene waveguide. This ultracompact plasmonic structure contributes to the achievement of frequency division multiplexing systems for optical computing and communications in highly integrated optical circuits.
Shin, Dong Hoon; Shim, Sang-Yuck; Kim, Myeung Ju; Oh, Chang Seok; Lee, Mi-Hyun; Jung, Suk Bae; Lee, Geon Il; Chai, Jong-Yil
2014-01-01
In a paleo-parasitological analysis of soil samples obtained from V-shaped pits dating to the ancient Baekje period in Korean history, we discovered Ascaris lumbricoides, Trichuris trichiura, and Clonorchis sinensis eggs. In light of the samples' seriously contaminated state, the V-shaped pits might have served as toilets, cesspits, or dung heaps. For a long period of time, researchers scouring archaeological sites in Korea have had difficulties locating such structures. In this context then, the present report is unique because similar kind of the ancient ruins must become an ideal resource for successful sampling in our forthcoming paleoparasitological studies. PMID:25352710
MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway.
Cerniello, Flavia M; Carretero, Oscar A; Longo Carbajosa, Nadia A; Cerrato, Bruno D; Santos, Robson A; Grecco, Hernán E; Gironacci, Mariela M
2017-11-01
The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of β-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated kinase 1/2) and Akt after MAS1R stimulation. Human embryonic kidney 293T cells were transfected with the coding sequence for MAS1R-YFP (MAS1R fused to yellow fluorescent protein). MAS1R internalization was evaluated by measuring the MAS1R present in the plasma membrane after agonist stimulation using a ligand-binding assay. MAS1R trafficking was evaluated by its colocalization with trafficking markers. MAS1R internalization was blocked in the presence of shRNAcaveolin-1 and with dominant negatives for Eps15 (a protein involved in endocytosed Rs by clathrin-coated pits) and for dynamin. After stimulation, MAS1R colocalized with Rab11-a slow recycling vesicle marker-and not with Rab4-a fast recycling vesicle marker-or LysoTracker-a lysosome marker. Cells transfected with MAS1R showed an increase in Akt and ERK1/2 activation on angiotensin-(1-7) stimulation, which was blocked when the clathrin-coated pits pathway was blocked. Suppression of β-arrestin2 by shRNA reduced the angiotensin-(1-7)-induced ERK1/2 activation, whereas Akt activation was not modified. We conclude that on agonist stimulation, MAS1R is internalized through clathrin-coated pits and caveolae in a dynamin-dependent manner and is then slowly recycled back to the plasma membrane. MAS1R induced Akt and ERK1/2 activation from early endosomes, and the activation of ERK1/2 was mediated by β-arrestin2. Thus, MAS1R activity and density may be tightly controlled by the cell. © 2017 American Heart Association, Inc.
Sub-surface structures and collapse mechanisms of summit pit craters
NASA Astrophysics Data System (ADS)
Roche, O.; van Wyk de Vries, B.; Druitt, T. H.
2001-01-01
Summit pit craters are found in many types of volcanoes and are generally thought to be the product of collapse into an underpressured reservoir caused by magma withdrawal. We investigate the mechanisms and structures associated with summit pit crater formation by scaled analogue experiments and make comparisons with natural examples. Models use a sand plaster mixture as analogue rock over a cylinder of silicone simulating an underpressured magma reservoir. Experiments are carried out using different roof aspect ratios (roof thickness/roof width) of 0.2-2. They reveal two basic collapse mechanisms, dependant on the roof aspect ratio. One occurs at low aspect ratios (≤1), as illustrated by aspect ratios of 0.2 and 1. Outward dipping reverse faults initiated at the silicone margins propagates through the entire roof thickness and cause subsidence of a coherent block. Collapse along the reverse faults is accommodated by marginal flexure of the block and tension fractures at the surface (aspect ratio of 0.2) or by the creation of inward dipping normal faults delimiting a terrace (aspect ratio of 1). At an aspect ratio of 1, overhanging pit walls are the surface expressions of the reverse faults. Experiments at high aspect ratio (>1.2) reveal a second mechanism. In this case, collapse occurs by stopping, which propagates upwards by a complex pattern of both reverse faults and tension fractures. The initial underground collapse is restricted to a zone above the reservoir and creates a cavity with a stable roof above it. An intermediate mechanism occurs at aspect ratios of 1.1-1.2. In this case, stopping leads to the formation of a cavity with a thin and unstable roof, which collapses suddenly. The newly formed depression then exhibits overhanging walls. Surface morphology and structure of natural examples, such as the summit pit craters at Masaya Volcano, Nicaragua, have many of the features created in the models, indicating that the internal structural geometry of experiments can be applied to real examples. In particular, the surface area and depth of the underpressured reservoir can be roughly estimated. We present a morphological analysis of summit pit craters at volcanoes such as Kilimanjaro (Tanzania), San Cristobal, Telica and Masaya (Nicaragua), and Ubinas (Peru), and indicate a likely type of subsidence and possible position of the former magma reservoir responsible for collapse in each case.
Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase.
Tommassen, J; Lugtenberg, B
1980-07-01
Outer membrane protein e is induced in wild-type cells, just like alkaline phosphatase and some other periplasmic proteins, by growth under phosphatase limitation. nmpA and nmpB mutants, which synthesize protein e constitutively, are shown also to produce the periplasmic enzyme alkaline phosphatase constitutively. Alternatively, individual phoS, phoT, and phoR mutants as well as pit pst double mutants, all of which are known to produce alkaline phosphatase constitutively, were found to be constitutive for protein e. Also, the periplasmic space of most nmpA mutants and of all nmpB mutants grown in excess phosphate was found to contain, in addition to alkaline phosphatase, at least two new proteins, a phenomenon known for individual phoT and phoR mutants as well as for pit pst double mutants. The other nmpA mutants as well as phoS mutants lacked one of these extra periplasmic proteins, namely the phosphate-binding protein. From these data and from the known positions of the mentioned genes on the chromosomal map, it is concluded that nmpB mutants are identical to phoR mutants. Moreover, some nmpA mutants were shown to be identical to phoS mutants, whereas other nmpA mutants are likely to contain mutations in one of the genes phoS, phoT, or pst.
Molecular Basis of Infrared Detection by Snakes
Gracheva, Elena O.; Ingolia, Nicolas T.; Kelly, Yvonne M.; Cordero-Morales, Julio F.; Hollopeter, Gunther; Chesler, Alexander T.; Sánchez, Elda E.; Perez, John C.; Weissman, Jonathan S.; Julius, David
2010-01-01
Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a ‘thermal image’ of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibers of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibers that innervate the pit organ. TRPA1 orthologues from pit bearing snakes (vipers, pythons, and boas) are the most heat sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of TRP channels as thermosensors in the vertebrate nervous system. PMID:20228791
Hammer, Daniel X; Iftimia, Nicusor V; Ferguson, R Daniel; Bigelow, Chad E; Ustun, Teoman E; Barnaby, Amber M; Fulton, Anne B
2008-05-01
To describe the fine structure of the fovea in subjects with a history of mild retinopathy of prematurity (ROP) using adaptive optics-Fourier domain optical coherence tomography (AO-FDOCT). High-speed, high-resolution AO-FDOCT videos were recorded in subjects with a history of ROP (n = 5; age range, 14-26 years) and in control subjects (n = 5; age range, 18-25 years). Custom software was used to extract foveal pit depth and volume from three-dimensional (3-D) retinal maps. The thickness of retinal layers as a function of retinal eccentricity was measured manually. The retinal vasculature in the parafoveal region was assessed. The foveal pit was wider and shallower in ROP than in control subjects. Mean pit depth, defined from the base to the level at which the pit reaches a lateral radius of 728 microm, was 121 microm compared with 53 microm. Intact, contiguous inner retinal layers overlay the fovea in ROP subjects but were absent in the control subjects. Mean full retinal thickness at the fovea was greater in the subjects with ROP (279.0 microm vs. 190.2 microm). The photoreceptor layer thickness did not differ between ROP and control subjects. An avascular zone was not identified in the subjects with ROP but was present in all the control subjects. The foveas of subjects with a history of mild ROP have significant structural abnormalities that are probably a consequence of perturbations of neurovascular development.
Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage
NASA Astrophysics Data System (ADS)
Donelick, R. A.; Donelick, M. B.
2016-12-01
We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as coal combustion products (fly ash, bottom ash, boiler slag, other) that may be put to beneficial use as part of the encapsulating structure; however, coal strip mines have lower volume to surface ratios than mine pits increasing the potential need to use geomembranes.
Adsorbate-driven morphological changes on Cu(111) nano-pits
Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; ...
2014-12-09
Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar + sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm -1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm -1 for CO adsorbedmore » on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.« less
Leung, Beatrice K; Balleine, Bernard W
2015-03-25
Outcome-specific Pavlovian-instrumental transfer (PIT) demonstrates the way that reward-related cues influence choice between instrumental actions. The nucleus accumbens shell (NAc-S) contributes critically to this effect, particularly through its output to the rostral medial ventral pallidum (VP-m). Using rats, we investigated in two experiments the role in the PIT effect of the two major outputs of this VP-m region innervated by the NAc-S, the mediodorsal thalamus (MD) and the ventral tegmental area (VTA). First, two retrograde tracers were injected into the MD and VTA to compare the neuronal activity of the two populations of projection neurons in the VP-m during PIT relative to controls. Second, the functional role of the connection between the VP-m and the MD or VTA was assessed using asymmetrical pharmacological manipulations before a PIT test. It was found that, whereas neurons in the VP-m projecting to the MD showed significantly more neuronal activation during PIT than those projecting to the VTA, neuronal activation of these latter neurons correlated with the size of the PIT effect. Disconnection of the two pathways during PIT also revealed different deficits in performance: disrupting the VP-m to MD pathway removed the response biasing effects of reward-related cues, whereas disrupting the VP-m to VTA pathway preserved the response bias but altered the overall rate of responding. The current results therefore suggest that the VP-m exerts distinct effects on the VTA and MD and that these latter structures mediate the motivational and cognitive components of specific PIT, respectively. Copyright © 2015 the authors 0270-6474/15/354953-12$15.00/0.
ETR, TRA642. ON GROUND FLOOR, CAMERA LOOKS SOUTHWEST INTO PIT. ...
ETR, TRA-642. ON GROUND FLOOR, CAMERA LOOKS SOUTHWEST INTO PIT. CANAL STRUCTURE IS AT RIGHT OF CENTER WITH RECTANGULAR OPENING TO BE MATED WITH THE DE-FUELING MECHANISM THAT WILL DEPOSIT FUEL RODS INTO THE WORKING CANAL. INL NEGATIVE NO. 56-3710. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Stieber, A; Gonatas, J O; Gonatas, N K
1984-04-01
A covalent conjugate of wheat germ agglutinin (WGA) with horseradish peroxidase (HRP) was used for a morphologic study of its adsorptive endocytosis by cultured human fibroblasts. Initial binding at 4 degrees C of the conjugate was observed over the entire plasma membrane, including "coated" and smooth pits. Endocytosis of HRP and the WGA-HRP conjugate was observed in lysosomes, but only the conjugate was seen in a cisterna of the Golgi apparatus (GERL), and in adjacent coated vesicles.
Tunable plasmon-induced transparency in plasmonic metamaterial composed of three identical rings
NASA Astrophysics Data System (ADS)
Tian, Yuchen; Ding, Pei; Fan, Chunzhen
2017-10-01
We numerically investigated the plasmon-induced transparency (PIT) effect in a three-dimensional plasmonic metamaterial composed of three identical rings. It is illustrated that the PIT effect appears as a result of the destructive interference between the electric dipole and the quadrupole resonance mode. By tuning gap distance, radius or rotation angle of the metamaterial, the required transmission spectra with a narrow sharp transparency peak can be realized. In particular, it is found that an on-to-off amplitude modulation of the PIT transparency window can be achieved by moving or rotating the horizontal ring. Two dips move to high frequency and low frequency regions, respectively, in the transmission spectra by moving the horizontal ring, namely, the width of transmission peak becomes larger. With the rotation of horizontal ring, both width and position of transmission peak are kept invariant. Our designed structure achieved a maximum group index of 352 in the visible frequency range, which has a significant slow light effect. Moreover, the PIT effect is explained based on the classical two-oscillator theory, which is in well agreement with the numerical results. It indicates our proposed structure and theoretical analysis may open up avenues for the tunable control of light in highly integrated optical circuits.
Structural graph-based morphometry: A multiscale searchlight framework based on sulcal pits.
Takerkart, Sylvain; Auzias, Guillaume; Brun, Lucile; Coulon, Olivier
2017-01-01
Studying the topography of the cortex has proved valuable in order to characterize populations of subjects. In particular, the recent interest towards the deepest parts of the cortical sulci - the so-called sulcal pits - has opened new avenues in that regard. In this paper, we introduce the first fully automatic brain morphometry method based on the study of the spatial organization of sulcal pits - Structural Graph-Based Morphometry (SGBM). Our framework uses attributed graphs to model local patterns of sulcal pits, and further relies on three original contributions. First, a graph kernel is defined to provide a new similarity measure between pit-graphs, with few parameters that can be efficiently estimated from the data. Secondly, we present the first searchlight scheme dedicated to brain morphometry, yielding dense information maps covering the full cortical surface. Finally, a multi-scale inference strategy is designed to jointly analyze the searchlight information maps obtained at different spatial scales. We demonstrate the effectiveness of our framework by studying gender differences and cortical asymmetries: we show that SGBM can both localize informative regions and estimate their spatial scales, while providing results which are consistent with the literature. Thanks to the modular design of our kernel and the vast array of available kernel methods, SGBM can easily be extended to include a more detailed description of the sulcal patterns and solve different statistical problems. Therefore, we suggest that our SGBM framework should be useful for both reaching a better understanding of the normal brain and defining imaging biomarkers in clinical settings. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.
2017-09-01
The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.
NASA Astrophysics Data System (ADS)
Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao
2018-06-01
The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.
NASA Astrophysics Data System (ADS)
Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao
2018-04-01
The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.
17. INTERIOR VIEW, LOOKING NORTHWEST, SHOWING STRUCTURAL SYSTEM, POSTS ENCASED ...
17. INTERIOR VIEW, LOOKING NORTHWEST, SHOWING STRUCTURAL SYSTEM, POSTS ENCASED IN CONCRETE, AND SERVICE PIT - Chesapeake Beach Railroad Engine House, 21 Yost Place, Seat Pleasant, Prince George's County, MD
Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.
Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan
2016-01-01
In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.
Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface
Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan
2016-01-01
In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-01-01
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis. PMID:28788708
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-06-23
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis.
NASA Astrophysics Data System (ADS)
Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir
2017-12-01
FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.
Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding
NASA Astrophysics Data System (ADS)
Kim, Jun Seok; Park, Young IL; Lee, Hae Woo
2015-03-01
The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.
Lazebnaia, I V; Lazebnyĭ, O E; Sulimova, G E
2010-03-01
The genetic structure of the Yakutian cattle breed was studied using the following genes: bPRL (RsaI site in exon 3), bGH (AluI site in exon 5), and bPit-1 (HinfI site in exon 6). The values of observed heterozygosity were 0.36 for bPRL, 0.29 for bGH, and 0.16 for bPit-1. These values are within the range of values for this parameter established for a number of Bos taurus breeds. The results obtained show that genetic variation is preserved in this aboriginal Russian breed, despite a catastrophic reduction of the number of animals.
Nebbioso, M; Dapoto, L; Lenarduzzi, F; Belcaro, G; Malagola, R
2012-12-01
The pit of the optic nerve head (ON) is a rare congenital defect that sometimes presents itself with a maculopathy of various neuroretinal layers for unknown reason. This study was focused, before and after pharmacological and parasurgical treatment, on the structural and functional visual assessment in a patient with optic pit maculopathy (OPM). In order to achieve this the latest generation of hi-tech diagnostic tests were used, such as Spectral-Domain Optical Coherence Tomography (SD-OCT), Visual Evoked Potentials (VEP), full-field Electroretinography (ERG), multifocal ERG (mfERG), Microperimetry (MP-1), Standard Automated Perimetry (SAP), Fluorescein Angiography (FA) and Indocyanine Green Angiography (ICG). The research was conducted through a review of past and recent literature.
Pedoturbation by tree uprooting: the key pattern-forming factor in the forest soil
NASA Astrophysics Data System (ADS)
Bobrovsky, Maxim; Loyko, Sergey
2017-04-01
Treefalls with uprooting are the most powerful and ubiquitous biotic factor changing the structure of forest soil under free forest development. Practically every soil profile in a forest has a number of soil horizons anomalies which are located within the limits of the potential depth of treefall-related pedoturbations and these anomalies are indeed a result of treefalls in most cases. It is important to recognize signs of treefalls with uprooting in a soil profile even when signs of treefalls on the ground surface (pit-and-mound topography) are erased. Numerous field studies of forest soil in the European part of Russia and in the Western Siberia allowed us to generalize signs of treefalls in a soil profile, which can be used to distinguish the patterns of old treefall-related pedoturbations. We distinguish two main types of uprooting of a fallen tree: hinge and rotational tree uprooting (treefall). The signs of treefalls with uprooting in a soil profile are as follows: (1) treefall pits (cauldrons); (2) spotty or streaky structures of different degrees of contrast; (3) blocks of "buried material" from the upper soil layers; (4) washed (bleached) material depositing at the bottom of pits and filling soil pores and channels of various origins; (5) signs of hydrogenous changes of soil material resulting from water stagnation in the pits; (6) root channels at the bottom of the pit and (7) inclusions of litter and charcoal. We cleared that treefall-related pedoturbations affect soil profiles at a depth larger than the depth usually described by the soil horizons A, E, Bhs, etc. Therefore in most forest soils, the middle and lower parts of the profiles have patterns originating from the transfer of soil material upon treefalls. Age since the tree uprooting can be determined by dating of organic matter or charcoal located in old pits. We dated several tens of old tree uprooting pits by charcoal in sandy soil in the center and the east of the Russian Plain: they showed from a few hundreds to 4500 cal years BP. We also dated tens of old tree uprooting pits by mull humus in Luvic Phaeozems on loams in the center of the Russian Plain: they showed from 2500 to more than 8000 cal years BP. Discerning of old treefall-related patterns in soil profile significantly improves our understanding of the forest soil formation and leads to the necessity of serious corrections of pedogenesys concepts. This study was partly supported by the Russian Science Foundation (Grant 16-17-10045).
DOT National Transportation Integrated Search
2012-12-01
Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...
Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom
2010-07-01
Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.
Induction of Caveolae in the Apical Plasma Membrane of Madin-Darby Canine Kidney Cells
Verkade, Paul; Harder, Thomas; Lafont, Frank; Simons, Kai
2000-01-01
In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929–942), only small (∼100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly (∼10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits. Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins. PMID:10684254
Maximum height in a conifer is associated with conflicting requirements for xylem design.
Domec, Jean-Christophe; Lachenbruch, Barbara; Meinzer, Frederick C; Woodruff, David R; Warren, Jeffrey M; McCulloh, Katherine A
2008-08-19
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100-127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of approximately 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety.
Hereford, R.; Thompson, K.S.; Burke, K.J.
1998-01-01
Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements (n = 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.
Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits
NASA Astrophysics Data System (ADS)
Lim, Yu Dian; Grapov, Dmitry; Hu, Liangxing; Kong, Qinyu; Tay, Beng Kang; Labunov, Vladimir; Miao, Jianmin; Coquet, Philippe; Aditya, Sheel
2018-02-01
It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.
Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO
Hoffmann, F. M.; Hrbek, J.; Ma, S.; ...
2015-12-02
Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with definedmore » defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.« less
Application and research of recyclable cables in foundation pit support engineering
NASA Astrophysics Data System (ADS)
Zheng, Suping
2018-05-01
Anchoring cables are widely used in the construction of foundation pit as a temporary support structure. After the construction is completed, the anchor cables left in the ground will not only cause environmental pollution but also cause a great waste of resources. The emergence of recyclable cable technology, to avoid such problems, to achieve the secondary use of the anchor cable, excavation in the excavation project is more and more widely used. Combined with the design and construction of recoverable anchor cable in engineering practice, the application effect of recoverable anchor cable in foundation pit support is analyzed, and the conclusion that the support effect of recoverable anchor cable is stable and safe can be obtained Recyclable anchor cable in the future support projects to provide a reference.
1985-01-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm. PMID:3968182
Ghinea, N; Simionescu, N
1985-02-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm.
Corrosion protection and steel-concrete bond improvement of prestressing strand.
DOT National Transportation Integrated Search
2012-12-01
Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...
Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhargava, U.; Bar-Lev, M.; Bellows, C.G.
When cells enzymatically digested from 21 d fetal rat calvaria are grown in ascorbic acid and Na beta-glycerophosphate, they form discrete three-dimensional nodular structures with the histological and immunohistochemical appearance of woven bone. The present investigation was undertaken to verify that bone-like features were identifiable at the ultrastructural level. The nodules formed on top of a fibroblast-like multilayer of cells. The upper surface of the nodules was lined by a continuous layer of cuboidal osteoblastic cells often seen to be joined by adherens junctions. Numerous microvilli, membrane protrusions, and coated pits could be seen on the upper surface of thesemore » cells, their cytoplasm contained prominent RER and Golgi membranes, and processes extended from their lower surfaces into a dense, highly organized collagenous matrix. Some osteocyte-like cells were completely embedded within this matrix; they also displayed RER and prominent processes which extended through the matrix and often made both adherens and gap junctional contacts with the processes of other cells. The fibroblastic cells not participating in nodule formation were surrounded by a less dense collagenous matrix and, in contrast to the matrix of the nodules, it did not mineralize. An unmineralized osteoid-like layer was seen directly below the cuboidal top layer of cells. A mineralization front was detectable below this in which small, discrete structures resembling matrix vesicles and feathery mineral crystals were evident and frequently associated with the collagen fibrils. More heavily mineralized areas were seen further into the nodule. Electron microprobe and electron and X-ray diffraction analysis confirmed the mineral to be hydroxyapatite.« less
NASA Astrophysics Data System (ADS)
Strom, Brandon William
In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.
Nuts, nut cracking, and pitted stones at Gesher Benot Ya‘aqov, Israel
Goren-Inbar, Naama; Sharon, Gonen; Melamed, Yoel; Kislev, Mordechai
2002-01-01
The Acheulian site of Gesher Benot Ya‘aqov (Israel) has revealed a unique association of edible nuts with pitted hammers and anvils. Located in the Dead Sea rift, on the boundary between the Arabian and African plates, the site dates to the Early-Middle Pleistocene, oxygen isotope stage 19. In a series of strata, seven species of nuts, most of which can be cracked open only by a hard hammer, were uncovered. Five of the species are extant terrestrial nuts, and two are aquatic nuts now extinct in the Levant. In addition, the site yielded an assemblage of pitted hammers and anvils similar in pit morphology to those used by chimpanzees and contemporary hunter–gatherers. This is the first time, to our knowledge, that a site has offered both paleobotanical and lithic evidence of plant foods eaten by early hominins and technologies used for processing these foods. The evidence also sheds light on the structure of the community: ethnographic analogies suggest that mixedgender groups may have been active on the shores of paleoLake Hula. PMID:11854536
Shallow V-Shape Nanostructured Pit Arrays in Germanium Using Aqua Regia Electroless Chemical Etching
Chaabane, Ibtihel; Banerjee, Debika; Touayar, Oualid; Cloutier, Sylvain G.
2017-01-01
Due to its high refractive index, reflectance is often a problem when using Germanium for optoelectronic devices integration. In this work, we propose an effective and low-cost nano-texturing method for considerably reducing the reflectance of bulk Germanium. To do so, uniform V-shape pit arrays are produced by wet electroless chemical etching in a 3:1 volume ratio of highly-concentrated hydrochloridric and nitric acids or so-called aqua regia bath using immersion times ranging from 5 to 60 min. The resulting pit morphology, the crystalline structure of the surface and the changes in surface chemistry after nano-patterning are all investigated. Finally, broadband near-infrared reflectance measurements confirm a significant reduction using this simple wet etching protocol, while maintaining a crystalline, dioxide-free, and hydrogen-passivated surface. It is important to mention that reflectance could be further reduced using deeper pits. However, most optoelectronic applications such as photodetectors and solar cells require relatively shallow patterning of the Germanium to allow formation of a pn-junction close to the surface. PMID:28773215
Cui, Yong; Liu, Shuming; Smith, Kate; Hu, Hongying; Tang, Fusheng; Li, Yuhong; Yu, Kanghua
2016-10-01
Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl - and SO 4 2- ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales. Copyright © 2016. Published by Elsevier B.V.
Crystal growth and dislocation etch pits observation of chalcopyrite CdSiP2
NASA Astrophysics Data System (ADS)
He, Zhiyu; Zhao, Beijun; Zhu, Shifu; Chen, Baojun; Huang, Wei; Lin, Li; Feng, Bo
2018-01-01
CdSiP2 is the only crystal that can offer Non-critical Phase Matching (NCPM) for a 1064 nm pumped optical parametric oscillation (OPO) with idler output in the 6 μm range. In this paper, a large, crack-free CdSiP2 single crystal measuring 18 mm in diameter and 65 mm in length was successfully grown by the Vertical Bridgman method (MVB) with an explosion-proof quartz ampoule. The results of lattice parameters, element composition and IR transmittance of the as-grown crystal characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS) and Fourier transformation infrared spectrometer (FTIR) showed the as grown crystal crystallized well and the absorption coefficients at 4878 cm-1 and 2500 cm-1 were 0.14 cm-1 and 0.06 cm-1. Moreover, a new etchant composed of Br2, HCl, HNO3, CH3OH and H2O (1:800:800:400:400 in volume ratio) was prepared and the dislocation etch pits on oriented faces of as-grown CdSiP2 crystal were observed for the first time. It is found the etch pits are in rectangular structure on the (1 0 1) face, but in trigonal pyramid structure on (3 1 2) face. According to the quantities of the etch pits, the average densities of dislocation were evaluated to be 2.28 × 105/cm2 and 1.4 × 105/cm2, respectively.
Crouthamel, Matthew H.; Lau, Wei Ling; Leaf, Elizabeth M.; Chavkin, Nick; Wallingford, Mary C.; Peterson, Danielle F.; Li, Xianwu; Liu, Yonggang; Chin, Michael T.; Levi, Moshe; Giachelli, Cecilia M.
2014-01-01
Objective Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human VSMCs, but its importance in vascular calcification in vivo, as well as the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease, and the potential compensatory role of PiT-2 using in vitro knockdown and over-expression strategies. Approach and Results Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1Δsm). PiT-1 mRNA levels were undetectable whereas PiT-2 mRNA levels were increased 2 fold in the vascular aortic media of PiT-1Δsm compared to PiT-1flox/flox control. When arterial medial calcification was induced in PiT-1Δsm and PiT-1flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1Δsm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared to PiT-1flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1Δsm VSMCs. Furthermore, over-expression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. Conclusions PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 appear to serve redundant roles in phosphate-induced calcification of vascular smooth muscle cells. PMID:23968976
Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory1[OPEN
Espino, Susana; Nima, Neda; Do, Aissa Y.T.; Michaud, Joseph M.; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Steppe, Kathy
2017-01-01
Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. PMID:27927981
Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.
2010-01-01
The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028
Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.
Schenk, H Jochen; Espino, Susana; Romo, David M; Nima, Neda; Do, Aissa Y T; Michaud, Joseph M; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Zuo, Yi Y; Steppe, Kathy; Jansen, Steven
2017-02-01
Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. © 2017 American Society of Plant Biologists. All Rights Reserved.
Microbial shaping of sedimentary wrinkle structures
NASA Astrophysics Data System (ADS)
Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.
2014-10-01
Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.
Role of turgor pressure in endocytosis in fission yeast
Basu, Roshni; Munteanu, Emilia Laura; Chang, Fred
2014-01-01
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane. PMID:24403609
Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N.; Dayam, Roya M.; Abousawan, John; Botelho, Roberto J.; Antonescu, Costin N.
2017-01-01
Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. PMID:28814502
Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency
NASA Astrophysics Data System (ADS)
Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.
2018-06-01
Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.
18. DETAIL VIEW OF THE HIGH BAY STRUCTURAL SYSTEM AND ...
18. DETAIL VIEW OF THE HIGH BAY STRUCTURAL SYSTEM AND WINDOW ILLUMINATION AT THE SHRINK PIT AREA, S END OF B BAY; LOOKING SSE. (Ceronie) - Watervliet Arsenal, Building No. 135, Gillespie Road, South of Parker Road, Watervliet, Albany County, NY
Effects of Corrosion and Fatigue on the Load-Carrying Capacity of Structural and Reinforcing Steel
DOT National Transportation Integrated Search
1994-03-01
Pitting and crevice corrosion have profound effects on the fatigue life of structural and reinforcing steels used in bridge construction. Stress concentration factors were measured on actual corroded plates with strain gage instrumentation. Using cor...
Hu, Yu; Shen, Xiao-Qin; Wang, Zhong-Min
2017-01-01
Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at −40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness. PMID:29258262
Hu, Yu; Shi, Yong-Hua; Shen, Xiao-Qin; Wang, Zhong-Min
2017-12-18
Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at -40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness.
The Metathoracic Scent Gland of the Leaf-Footed Bug, Leptoglossus zonatus
Gonzaga-Segura, J.; Valdez-Carrasco, J.; Castrejón-Gómez, V. R.
2013-01-01
The metathoracic scent gland of 25-day-old adults of both sexes of the leaf-footed bug, Leptoglossus zonatus (Dallas) (Heteroptera: Coreidae), are described based on optical microscopy analysis. No sexual dimorphism was observed in the glandular composition of this species. The gland is located in the anteroventral corner of the metathoracic pleura between the middle and posterior coxal pits. The opening to the outside of the gland is very wide and permanently open as it lacks a protective membrane. In the internal part, there is a pair of metathoracic glands that consist of piles of intertwined and occasionally bifurcated cellular tubes or columns. These glands discharge their pheromonal contents into the reservoir through a narrow cuticular tube. The reservoir connects with the vestibule via two opposite and assembled cuticular folds that can separate muscularly in order to allow the flow of liquid away from the insect. The external part consists of an ostiole from which the pheromone is emitted. The ostiole is surrounded by a peritreme, a structure that aids optimum pheromone dispersion. The described gland is of the omphalien type. PMID:24773315
Microbial Community Structure and Biogeochemistry of Three Small Eutrophic Lakes
Background: The three Jackson Lakes within the Bayou Chico Watershed in NW FL, USA were formed at different times from abandoned sand pits. The lakes experienced inundation with marine water during Hurricane Ivan 2004 and, despite their proximity and similar physical structures, ...
NASA Astrophysics Data System (ADS)
Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.
2018-04-01
Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.
Tang, Qinggong; Nagaya, Tadanobu; Liu, Yi; Horng, Hannah; Lin, Jonathan; Sato, Kazuhide; Kobayashi, Hisataka; Chen, Yu
2018-06-10
As a novel low-side-effect cancer therapy, photo-immunotherapy (PIT) is based on conjugating monoclonal antibody (mAb) with a near-infrared (NIR) phthalocyanine dye IRDye700DX (IR 700). IR700 is not only fluorescent to be used as an imaging agent, but also phototoxic. When illuminating with NIR light, PIT can induce highly-selective cancer cell death while leaving most of tumor blood vessels unharmed, leading to an effect termed super-enhanced permeability and retention (SUPR), which can significantly improve the effectiveness of anti-cancer drug. Currently, the therapeutic effects of PIT are monitored using 2D macroscopic fluorescence reflectance imager, which lacks the resolution and depth information to reveal the 3D distribution of mAb-IR700. In the study, we applied a multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT), to provide 3D tumor micro-structure and micro-distribution of mAb-IR700 in the tumor simultaneously during PIT in situ and in vivo. The multi-wavelength FLOT can also provide the blood vessels morphology of the tumor. Thus, the 3D FLOT reconstructed images allow us to evaluate the IR700 fluorescence distribution change with respect to the blood vessels and at different tumor locations/depths non-invasively, thereby enabling evaluation of the therapeutic effects in vivo and optimization of treatment regimens accordingly. The mAb-IR700 can access more tumor areas after PIT treatment, which can be explained by increased vascular permeability immediately after NIR-PIT. Two-photon microscopy was also used to record the mAb-IR700 on the tumor surface near the blood vessels to verify the results. Published by Elsevier B.V.
Superconducting MgB2 wires with vanadium diffusion barrier
NASA Astrophysics Data System (ADS)
Hušek, I.; Kováč, P.; Melišek, T.; Kulich, M.; Rosová, A.; Kopera, L.; Szundiová, B.
2017-10-01
Single-core MgB2 wires with a vanadium barrier and Cu stabilization have been made by the in situ powder-in-tube (PIT) and internal magnesium diffusion (IMD) into boron processes. Heat treatment of PIT wires was done at the temperature range of 650 °C-850 °C/30 min. Critical currents of differently treated MgB2/V/Cu wires have been measured and related with the structure of MgB2. It was found that critical current density of MgB2/V wire annealed above 700 °C decreases rapidly. The obtained results clearly show that vanadium is a well formable metal and can be applied as an effective diffusion barrier for MgB2 wires heat-treated at temperatures ≤700 °C. This temperature limit is well applicable for MgB2 wires with high current densities made by PIT and also by the IMD process.
Superswollen microemulsions stabilized by shear and trapped by a temperature quench.
Roger, Kevin; Olsson, Ulf; Zackrisson-Oskolkova, Malin; Lindner, Peter; Cabane, Bernard
2011-09-06
We studied the solubilization of oil in the C(16)E(8)/hexadecane/H(2)O system. Close to the phase inversion temperature (PIT), the system, at equilibrium, can form either homogeneous states (i.e., microemulsions) at high surfactant concentrations or three-phase states at lower concentrations. We show that, under gentle shear, at a line we named the clearing boundary (CB), located a few degrees below the PIT, the system is homogeneous regardless of the surfactant concentration. We relate this shift of the microemulsion boundary to shear-induced disruption of the asymmetric bicontinuous structure. Although this state quickly relaxes to equilibrium when shear is stopped, we show that it is still possible to trap it into a metastable state through a temperature quench. This method is the sub-PIT emulsification that we described in a previous work (Roger Langmuir 2010, 26, 3860-3867). © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang
2017-04-01
In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
NASA Technical Reports Server (NTRS)
Hillman, E.; Barlow, N. G.
2005-01-01
Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.
Physiological and structural properties of saponin-skinned single smooth muscle cells
1987-01-01
The study of the fundamental events underlying the generation and regulation of force in smooth muscle would be greatly facilitated if the permeability of the cell membrane were increased so that the intracellular environment of the contractile apparatus could be manipulated experimentally. To initiate such an analysis, we developed a saponin permeabilization procedure that was used to "skin" isolated smooth muscle cells from the stomach of the toad, Bufo marinus. Suspensions of single cells isolated enzymatically were resuspended in high-K+ rigor solution (0 ATP, 5 mM EGTA) and exposed for 5 min to 25 micrograms/ml saponin. Virtually all the cells in a suspension were made permeable by this procedure and shortened to less than one-third their initial length when ATP and Ca++ were added; they re-extended when free Ca++ was removed. Analysis of the protein content of the skinned cells revealed that, although their total protein was reduced by approximately 30%, they retained most of their myosin and actin. Skinning was accompanied by a rearrangement of actin and myosin filaments within the cells such that a fine fibrillar structure became visible under the light microscope and a tight clustering of acting filaments around myosin filaments was revealed by the electron microscope. Face-on views of saponin-treated cell membranes revealed the presence of 70-80-A-wide pits or holes. The shortening rate of skinned cells was sensitive to [Ca++] between pCa 7 and pCa 5 and was half-maximal at approximately pCa 6.2. Shortening was also dependent on [ATP] but could be increased at low [ATP] by pretreatment with adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), which suggests that myosin phosphorylation was more sensitive to low substrate concentrations than was cross-bridge cycling. To determine whether a significant limitation to free diffusion existed in the skinned cells, a computer model of the cell and the unstirred layer surrounding it was developed. Simulations revealed that the membrane, even in skinned cells, could, for short time intervals, significantly inhibit the movement of substances into and out of cells. PMID:3114416
Physiological and structural properties of saponin-skinned single smooth muscle cells.
Kargacin, G J; Fay, F S
1987-07-01
The study of the fundamental events underlying the generation and regulation of force in smooth muscle would be greatly facilitated if the permeability of the cell membrane were increased so that the intracellular environment of the contractile apparatus could be manipulated experimentally. To initiate such an analysis, we developed a saponin permeabilization procedure that was used to "skin" isolated smooth muscle cells from the stomach of the toad, Bufo marinus. Suspensions of single cells isolated enzymatically were resuspended in high-K+ rigor solution (0 ATP, 5 mM EGTA) and exposed for 5 min to 25 micrograms/ml saponin. Virtually all the cells in a suspension were made permeable by this procedure and shortened to less than one-third their initial length when ATP and Ca++ were added; they re-extended when free Ca++ was removed. Analysis of the protein content of the skinned cells revealed that, although their total protein was reduced by approximately 30%, they retained most of their myosin and actin. Skinning was accompanied by a rearrangement of actin and myosin filaments within the cells such that a fine fibrillar structure became visible under the light microscope and a tight clustering of acting filaments around myosin filaments was revealed by the electron microscope. Face-on views of saponin-treated cell membranes revealed the presence of 70-80-A-wide pits or holes. The shortening rate of skinned cells was sensitive to [Ca++] between pCa 7 and pCa 5 and was half-maximal at approximately pCa 6.2. Shortening was also dependent on [ATP] but could be increased at low [ATP] by pretreatment with adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), which suggests that myosin phosphorylation was more sensitive to low substrate concentrations than was cross-bridge cycling. To determine whether a significant limitation to free diffusion existed in the skinned cells, a computer model of the cell and the unstirred layer surrounding it was developed. Simulations revealed that the membrane, even in skinned cells, could, for short time intervals, significantly inhibit the movement of substances into and out of cells.
Nie, Mengyan; Wharton, Julian A.; Cranny, Andy; Harris, Nick R.; Wood, Robert J.K.; Stokes, Keith R.
2013-01-01
The ability to predict structural degradation in-service is often limited by a lack of understanding of the evolving chemical species occurring within a range of different microenvironments associated with corrosion sites. Capillary electrophoresis (CE) is capable of analysing nanolitre solution volumes with widely disparate concentrations of ionic species, thereby producing accurate and reliable results for the analysis of the chemical compositions found within microenvironment corrosion solutions, such as those found at crevice and pit corrosion sites. In this study, CE with contactless conductivity detection (CCD) has been used to characterize pitting and crevice corrosion solution chemistries for the first time. By using the capillary electrophoresis with contactless conductivity detection (CE-CCD) system, direct and simultaneous detection of seven metal cations (Cu2+, Ni2+, Fe3+, Fe2+, Cr3+, Mn2+, and Al3+) and chloride anions was achieved with a buffer solution of 10 mM 2,6-pyridinedicarboxylic acid and 0.5 mM cetyltrimethylammonium hydroxide at pH 4 using a pre-column complexation method. The detection limits obtained for the metal cations and chloride anions were 100 and 10 ppb, respectively. The CE-CCD methodology has been demonstrated to be a versatile technique capable of speciation and quantifying the ionic species generated within artificial pit (a pencil electrode) and crevice corrosion geometries for carbon steels and nickel-aluminium bronze, thus allowing the evolution of the solution chemistry to be assessed with time and the identification of the key corrosion analyte targets for structural health monitoring. PMID:28788335
Characterization of erosion of metallic materials under cavitation attack in a mineral oil
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1984-01-01
Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied using a 20-kHz ultrasonic magnetostrictive oscillator in viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hcp-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of the fcc metals. Scanning electron microscopy indicates that the cavitation pits are initially formed at the grain boundaries and precipitates and that the pits that formed at the triple points grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements show that the pits that formed over the grain boundaries deepended faster than other pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t(0) t 2.5 t(0), where t(0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period.
Functional Quality Criterion of Rock Handling Mechanization at Open-pit Mines
NASA Astrophysics Data System (ADS)
Voronov, Yuri; Voronov, Artyoni
2017-11-01
Overburden and mining operations at open-pit mines are performed mainly by powerful shovel-truck systems (STSs). One of the main problems of the STSs is a rather low level of their operating quality, mainly due to unjustified over-trucking. In this article, a functional criterion for assessing the qualify of the STS operation at open-pit mines is formulated, derived and analyzed. We introduce the rationale and general principles for the functional criterion formation, its general form, as well as variations for various STS structures: a mixed truck fleet and a homogeneous shovel fleet, a mixed shove! fleet and a homogeneous truck fleet, mixed truck and shovel fleets. The possibility of assessing the quality of the STS operation is of great importance for identifying the main directions for improving their operational performance and operating quality, optimizing the main performance indicators by the qualify criterion, and. as a result, for possible saving of material and technical resources for open-pit mining. Improvement of the quality of the STS operation also allows increasing the mining safety and decreasing the atmosphere pollution - by means of possible reducing of the number of the operating trucks.
Pitted keratolysis: a clinical review.
Bristow, Ivan R; Lee, Yong Leng H
2014-03-01
Pitted keratolysis is a bacterial infection that affects the plantar epidermis. Despite the condition being reported in many countries affecting both shod and unshod populations, there is little guidance for clinicians providing evidence or best practice guidelines on the management of this often stubborn infection. Using a structured search of a range of databases, papers were identified that reported treatments tested on patients with the condition. Most of the literature uncovered was generally of a low level, such as case-based reporting or small case series. Studies were focused mainly on the use of topical antibiotic agents, such as clindamycin, erythromycin, fusidic acid, and mupirocin, often in combination with other measures, such as hygiene advice and the use of antiperspirants. From the limited evidence available, the use of topical antibiotic agents shows some efficacy in the treatment of pitted keratolysis. However, there is currently no suggestion that oral antibiotic drug therapy alone is effective in managing the condition. Currently, there is no consensus on the most effective approach to managing pitted keratolysis, but a combination of antimicrobial agents and adjunctive measures, such as antiperspirants, seems to demonstrate the most effective approach from the current literature available.
The three principles of action: a Pavlovian-instrumental transfer hypothesis
Cartoni, Emilio; Puglisi-Allegra, Stefano; Baldassarre, Gianluca
2013-01-01
Pavlovian conditioned stimuli can influence instrumental responding, an effect called Pavlovian-instrumental transfer (PIT). During the last decade, PIT has been subdivided into two types: specific PIT and general PIT, each having its own neural substrates. Specific PIT happens when a conditioned stimulus (CS) associated with a reward enhances an instrumental response directed to the same reward. Under general PIT, instead, the CS enhances a response directed to a different reward. While important progress has been made into identifying the neural substrates, the function of specific and general PIT and how they interact with instrumental responses are still not clear. In the experimental paradigm that distinguishes specific and general PIT an effect of PIT inhibition has also been observed and is waiting for an explanation. Here we propose an hypothesis that links these three PIT effects (specific PIT, general PIT and PIT inhibition) to three aspects of action evaluation. These three aspects, which we call “principles of action”, are: context, efficacy, and utility. In goal-directed behavior, an agent has to evaluate if the context is suitable to accomplish the goal, the efficacy of his action in getting the goal, and the utility of the goal itself: we suggest that each of the three PIT effects is related to one of these aspects of action evaluation. In particular, we link specific PIT with the estimation of efficacy, general PIT with the evaluation of utility, and PIT inhibition with the adequacy of context. We also provide a latent cause Bayesian computational model that exemplifies this hypothesis. This hypothesis and the model provide a new framework and new predictions to advance knowledge about PIT functioning and its role in animal adaptation. PMID:24312025
Chocu, Sophie; Evrard, Bertrand; Lavigne, Régis; Rolland, Antoine D; Aubry, Florence; Jégou, Bernard; Chalmel, Frédéric; Pineau, Charles
2014-11-01
Spermatogenesis is a complex process, dependent upon the successive activation and/or repression of thousands of gene products, and ends with the production of haploid male gametes. RNA sequencing of male germ cells in the rat identified thousands of novel testicular unannotated transcripts (TUTs). Although such RNAs are usually annotated as long noncoding RNAs (lncRNAs), it is possible that some of these TUTs code for protein. To test this possibility, we used a "proteomics informed by transcriptomics" (PIT) strategy combining RNA sequencing data with shotgun proteomics analyses of spermatocytes and spermatids in the rat. Among 3559 TUTs and 506 lncRNAs found in meiotic and postmeiotic germ cells, 44 encoded at least one peptide. We showed that these novel high-confidence protein-coding loci exhibit several genomic features intermediate between those of lncRNAs and mRNAs. We experimentally validated the testicular expression pattern of two of these novel protein-coding gene candidates, both highly conserved in mammals: one for a vesicle-associated membrane protein we named VAMP-9, and the other for an enolase domain-containing protein. This study confirms the potential of PIT approaches for the discovery of protein-coding transcripts initially thought to be untranslated or unknown transcripts. Our results contribute to the understanding of spermatogenesis by characterizing two novel proteins, implicated by their strong expression in germ cells. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD000872. © 2014 by the Society for the Study of Reproduction, Inc.
NASA Astrophysics Data System (ADS)
Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing
2018-06-01
Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
NASA Astrophysics Data System (ADS)
Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.
NIR detection of pits and pit fragments in fresh cherries (abstract)
USDA-ARS?s Scientific Manuscript database
The feasibility of using near infrared (NIR) diffuse reflectance spectroscopy for the detection of pits and pit fragments in cherries was demonstrated. For detection of whole pits, 300 cherries were obtained locally and pits were removed from half. NIR reflectance spectra were obtained in triplicate...
7 CFR 52.779 - Freedom from pits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Freedom from pits. 52.779 Section 52.779 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...
The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy
NASA Technical Reports Server (NTRS)
Ma, LI; Hoeppner, David W.
1994-01-01
A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.
Structure and Evolution of Hawaii's Loihi Seamount from High-resolution Mapping
NASA Astrophysics Data System (ADS)
Clague, D. A.; Paduan, J. B.; Moyer, C. L.; Glazer, B. T.; Caress, D. W.; Yoerger, D.; Kaiser, C. L.
2016-12-01
Loihi Seamount has been mapped repeatedly using shipboard multibeam sonars with improving resolution over time. Simrad EM302 data with 25m resolution at the 950m summit and 90m at the 5000m base of the volcano were collected from Schmidt Ocean Institute's R/V Falkor in 2014. A contracted multibeam survey in 1997 employing a deep-towed vehicle has 7m resolution for the summit and upper north and south rift zones, but suffered from poor navigation. Woods Hole Oceanographic Institution's AUV Sentry surveyed most of the summit and low-T hydrothermal vents on the base of the south rift in 2013 and 2014. The 2m resolution of most data is more precise than the navigation. The 6 summit surveys were reprocessed using MB-System to remove abundant bad bottom picks and adjust the navigation to produce a spatially accurate map. The 3 summit pits, including Pele's Pit that formed in 1996, are complex collapse structures and nested inside a larger caldera that was modified by large landslides on the east and west summit flanks. The pits cut low shields that once formed a complex of overlapping summit shields, similar to Kilauea before the current caldera formed 1500 to 1790 CE. An 11m section of ash deposits crops out on the east rim of the summit along a caldera-bounding fault and is analogous to Kilauea where the caldera-bounding faults expose ash erupted as the present caldera formed. Most of the Loihi ash section is 3300 to 5880 yr BP, indicating that the larger caldera structure at Loihi is younger than 3300 yr BP. The landslides on the east and west edges of the summit are therefore younger 3300 yr BP. The uppermost south rift has several small pit craters between cones and pillow ridges, also analogous to Kilauea. Two cones near the deep low-T vents are steep pillow mounds with slopes of talus. High-resolution mapping reveals, for the first time, the many similarities between the structure and evolution of submarine Loihi Seamount and subaerial Kilauea Volcano.
Impact Cratering Processes as Understood Through Martian and Terrestrial Analog Studies
NASA Astrophysics Data System (ADS)
Caudill, C. M.; Osinski, G. R.; Tornabene, L. L.
2016-12-01
Impact ejecta deposits allow an understanding of subsurface lithologies, volatile content, and other compositional and physical properties of a planetary crust, yet development and emplacement of these deposits on terrestrial bodies throughout the solar system is still widely debated. Relating relatively well-preserved Martian ejecta to terrestrial impact deposits is an area of active research. In this study, we report on the mapping and geologic interpretation of 150-km diameter Bakhuysen Crater, Mars, which is likely large enough to have produced a significant volume of melt, and has uniquely preserved ejecta deposits. Our mapping supports the current formation hypothesis for Martian crater-related pitted material, where pits are likened to collapsed degassing features identified at the Ries and Haughton terrestrial impact structures. As hot impact melt-bearing ejecta deposits are emplaced over volatile-saturated material during crater formation, a rapid degassing of the underlying layer results in lapilli-like fluid and gas flow pipes which may eventually lead to collapse features on the surface. At the Haughton impact structure, degassing pipes are related to crater fracture and fault systems; this is analogous to structure and collapse pits mapped in Bakhuysen Crater. Based on stratigraphic superposition, surface and flow texture, and morphological and thermophysical mapping of Bakhuysen, we interpret the top-most ejecta unit to be likely melt-bearing and analogous to terrestrial impact deposits (e.g., Ries suevites). Furthermore, we suggest that Chicxulub is an apt terrestrial comparison based on its final diameter and the evidence of a ballistically-emplaced and volatile-entrained initial ejecta. This is significant as Bakhuysen ejecta deposits may provide insight into larger impact structures where limited exposures make studies difficult. This supports previous work which suggests that given similarities in volatile content and subsurface stratigraphy, mechanisms of multi-unit ejecta emplacement extend to impact cratering processes on comparable rocky bodies. The widespread pitted material, ejecta rampart and lobe formations, and distal debris flows associated with Bakhuysen impactite emplacement further indicates a volatile-rich Martian crust during its formation.
Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L
1996-05-01
In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene. The interactions between CREs and the transcription factor Pit-1 in mediating GH gene expression were also examined. In HeLa cells, a human cervical cancer cell line deficient in Pit-1, both basal and cAMP-induced expression of pGH.CAT were apparent only with the cotransfection of a Pit-1 expression vector. These results taken together indicate that the two CREs in the chinook salmon GH gene are functionally associated with the cAMP-dependent pathway and that their promoter activity is dependent on the presence of Pit-1
Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis
Jullien, Nicolas; Roche, Catherine; Brue, Thierry; Figarella-Branger, Dominique; Graillon, Thomas; Barlier, Anne; Herman, Jean-Paul
2015-01-01
To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1. PMID:25822178
Rain Erosion Studies of Sapphire, Aluminum Oxynitride, Spinel, Lanthana- Doped Yttria, and TAF Glass
1990-07-01
small , there is little change in average scatter for any material in any test. CONCLUSIONS AND DISCUSSION The principal conclusions are 1. ALON...20 Sample broke erosion damage 10 Slight pitting, 20 No change erosion damage 15 Pitting, cratering, 20 Small surface pits erosion damage 15 Pitting...Sample broke 10 No damage 15 Sample pitted, small edge fracture 15 Slight pitting, 1 crater, 20 Sample pitted, erosion damage small edge fracture 15 SUght
NASA Astrophysics Data System (ADS)
Matheson, G.; van Proosdij, D.; Ross, C.
2017-12-01
Flood and erosion mitigations and adaptation structures are often implemented in anthropogenically modified coastal regions, such as dykelands, to protect against coastal hazards. If saltmarshes are to be incorporated into a coastal management plan as a source of coastal defence, it is paramount to understand how ecomorphodynamic feedbacks triggered by implementing these structures can impact saltmarshes. This study examines how these structures, in combination with natural drivers, have precipitated changes in foreshore saltmarsh erosion and progradation rates over varying spatial scales in the hypertidal Minas Basin, located in the upper Bay of Fundy, during the past 80 years. Foreshore change rates (in 25m segments) are obtained using empirical field measurements, geomatics techniques in a geographical information system (GIS), as well as imagery and digital surface models (DSMs) derived from an unmanned aerial vehicle (UAV). Furthermore, UAV DSMs were used to determine infill rates and short-term sediment budgets in saltmarsh borrow pits. Natural cyclical foreshore change rates are observed in the Minas Basin, but are often augmented by the presence of anthropogenic structures. Erosion and progradation rates in individual transects have been observed to be as much as -14.9m/yr and 20.1m/yr, respectively. In individual saltmarsh communities, average change rates have been observed to be as much -3.4m/yr and 2.1m/yr across the entire foreshore. Furthermore, results suggest that under specific environmental conditions some structures (e.g. kickers) work in tandem with saltmarshes to protect the upland by precipitating ecomorphodynamic feedbacks that promote saltmarsh progradation. Conversely, other structures (e.g. foreshore rocking) can exacerbate natural cycles of erosion, locally. Borrow pit studies reveal that although local suspended sediment concentrations, which can vary from 50mg/l to 50000mg/l, play an integral role in pit sedimentation, channel geometry design may play an equally important role in governing infill rates.
Bon, Nina; Couasnay, Greig; Bourgine, Annabelle; Sourice, Sophie; Beck-Cormier, Sarah; Guicheux, Jérôme; Beck, Laurent
2018-02-09
Extracellular phosphate (P i ) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular P i levels implies the existence of a P i -sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in P i sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent P i transporters PiT1 and PiT2 in mediating P i signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the P i -dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for P i signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing P i transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and P i -regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent P i transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular P i levels. Of note, when two putative P i -binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular P i These observations suggested that P i binding rather than P i uptake may be the key factor in mediating P i signaling through the PiT proteins. Taken together, these results demonstrate that P i -regulated PiT1-PiT2 heterodimerization mediates P i sensing independently of P i uptake. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G
2015-08-26
Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.
Ding, Xiao-Fei; Wu, Chong-De; Zhang, Li-Qiang; Zheng, Jia; Zhou, Rong-Qing
2014-02-01
The aim of this study was to investigate and compare the microbial community structures of eubacteria and archaea in the pit mud of Chinese Luzhou-flavor liquor from the wall (C(w)) and bottom (C(b)) of cellar through nested PCR-denaturing gradient gel electrophoresis (DGGE). The Shannon-Wiener index (H) calculated from the DGGE profiles showed that the community diversities of eubacteria and archaea in samples from C(b) were almost higher than that from C(w). In addition, cluster analysis of the DGGE profiles revealed that some differences were found in the microbial community structure in samples from different locations. The closely relative microorganisms of all eubacterial 16S rRNA gene sequences fell into four phyla (Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria), including 12 genera and 2 uncultured eubacteria. Moreover, 37.1% eubacteria were affiliated with Clostridium. Particularly, genus Acinetobacter was absent in all samples from C(b) but present in all samples from C(w). The closely relative microorganisms of all archaeal 16S rRNA gene sequences fell into four genera, which included Methanobrevibacter, Methanoculleus, Methanobacterium and Methanosaeta, while the dominant archaea in samples from C(w) and C(b) were similar. Results presented in this study provide further understanding of the spatial differences in microbial community structure in the pit mud, and is of great importance for the production and quality improvement of Luzhou-flavor liquor.
Review and study of physics driven pitting corrosion modeling in 2024-T3 aluminum alloys
NASA Astrophysics Data System (ADS)
Yu, Lingyu; Jata, Kumar V.
2015-04-01
Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of civilian and military aircraft, especially for the current fleet of airplanes that have served beyond their initial design life. The ability to predict the corrosion damage development in aircraft components and structures, therefore, is of great importance in managing timely maintenance for the aging aircraft vehicles and in assisting the design of new ones. The assessment of aircraft corrosion and its influence on fatigue life relies on appropriate quantitative models that can evaluate the initiation of the corrosion as well as the accumulation during the period of operation. Beyond the aircraft regime, corrosion has also affected the maintenance, safety and reliability of other systems such as nuclear power systems, steam and gas turbines, marine structures and so on. In the work presented in this paper, we reviewed and studied several physics based pitting corrosion models that have been reported in the literature. The classic work of particle induced pitting corrosion by Wei and Harlow is reviewed in detail. Two types of modeling, a power law based simplified model and a microstructure based model, are compared for 2024-T3 alloy. Data from literatures are used as model inputs. The paper ends with conclusions and recommendations for future work.
Mechanism of Aldolase Control of Sorting Nexin 9 Function in Endocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan, Erumbi S.; Park, HaJeung; Fortin, Emanuelle
Sorting nexin 9 (SNX9) functions in a complex with the GTPase dynamin-2 at clathrin-coated pits, where it provokes fission of vesicles to complete endocytosis. Here the SNX9-dynamin-2 complex binds to clathrin and adapter protein complex 2 (AP-2) that line these pits, and this occurs through interactions of the low complexity domain (LC4) of SNX9 with AP-2. Intriguingly, localization of the SNX9-dynamin-2 complex to clathrin-coated pits is blocked by interactions with the abundant glycolytic enzyme aldolase, which also binds to the LC4 domain of SNX9. The crystal structure of the LC4 motif of human SNX9 in complex with aldolase explains themore » biochemistry and biology of this interaction, where SNX9 binds near the active site of aldolase via residues 165-171 that are also required for the interactions of SNX9 with AP-2. Accordingly, SNX9 binding to aldolase is structurally precluded by the binding of substrate to the active site. Interactions of SNX9 with aldolase are far more extensive and differ from those of the actin-nucleating factor WASP with aldolase, indicating considerable plasticity in mechanisms that direct the functions of the aldolase as a scaffold protein.« less
PitScan: Computer-Assisted Feature Detection
NASA Astrophysics Data System (ADS)
Wagner, R. V.; Robinson, M. S.
2018-04-01
We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.
Acquired pit of the optic nerve: a risk factor for progression of glaucoma.
Ugurlu, S; Weitzman, M; Nduaguba, C; Caprioli, J
1998-04-01
To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.
Parturition pit: the bony imprint of vaginal birth.
McArthur, Tatum A; Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J; Larrison, Matthew C
2016-09-01
To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p < 0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p < 0.0001). No males had pits. Our study indicates that parturition pits are associated with prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists.
Parturition Pit: The Bony Imprint of Vaginal Birth
Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J.; Larrison, Matthew C.
2017-01-01
Purpose To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. Materials and Methods We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. Results 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p<0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p<0.0001). No males had pits. Conclusion Our study indicates that parturition pits are associated prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists. PMID:27270921
The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth.
Bahar, A; Tagomori, S
1994-01-01
The effects of normal pulsed Nd-YAG laser irradiation on the acid resistance of human dental enamel of pits and fissures, the cleaning of the pit and fissure contents and fluoride uptake into deep pits and fissures were examined. The acid resistance of the pit and fissure enamel was evaluated by the amount of dissolved calcium per square millimeter of the surface area. The pit and fissure enamel treated with laser irradiation obtained an acid resistance 30% higher than that of the unlased controls. The cleaning effect of laser irradiation on the pit and fissure contents was compared with chemicomechanical and mechanical methods. The laser irradiation was found to clean the pits and fissures to a greater depth without alterating the shape of pits and fissures, compared with the other two methods. The distribution of calcium, phosphorus and fluoride in the enamel of the pits and fissures was then measured by electron probe microanalyzer. At the entrance and in the deep part of the pits and fissures, the fluoride content of the enamel treated with acidulated phosphate fluoride after laser irradiation was higher than that of the enamel treated with acidulated phosphate fluoride alone. These results thus suggest that Nd-YAG laser irradiation might be effective in increasing the acid resistance of the pit and fissure enamel, while removing the pit and fissure debris contents and increasing the fluoride uptake into the pit and fissure enamel.
1974-11-01
HO Membrane 18 I ■ ■■ mmi 11 TABLES Table 3 4 8 9 Title Page Acid Cumpositiun of Wastewater from Mtrocollulosc Area - Boiling Tub Pit 2...8217 • # • • 9600 9100 ** 1 I ♦ # • • 8800 ** «• 16 «« <moo 9000 11,000 #« 18 *• *« «* 14.000 • • 20 ** liVOOO 10,500 •* ** »i ** • « 17,000 ** 21...14 ** •* 2640 ** •* 16 *• 2750 2600 2840 •♦ 18 •* •• •• 2790 •• 20 •• 2860 2210 •• ♦• 22 •» # # 2770
Liu, Yao; Chu, Hong-yan; Wang, Danqian; Ma, Han; Sun, Wei
2017-01-01
In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state. PMID:28777327
Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth
NASA Astrophysics Data System (ADS)
Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.
2018-05-01
Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.
Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process
NASA Astrophysics Data System (ADS)
Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang
2013-05-01
In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.
Characterization of erosion of metallic materials under cavitation attack in a mineral oil
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1985-01-01
Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied. The erosion experiments were conducted with a 20-kHz ultrasonic magnetostrictive oscillator in a viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hop-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of those of the fcc materials. Studies with scanning electron microscopy indicated that the cavitation pits were initially formed at the grain boundaries and precipitates and that the pits formed at the junction of grain boundaries grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements showed that the pits that formed over the grain boundaries deepened faster than pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t (sub 0) t 2.5 t (sub 0), where t (sub 0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period.
Analytical and experimental vibration analysis of a faulty gear system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-10-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Analytical and experimental vibration analysis of a faulty gear system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-10-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Analytical and Experimental Vibration Analysis of a Faulty Gear System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-01-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Krauss and Catherine Birney
2011-05-01
This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08,more » Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.« less
Corrosion behavior of binary titanium aluminide intermetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saffarian, H.M.; Gan, Q.; Hadkar, R.
1996-08-01
The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit}more » decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.« less
Investigating pitting in X65 carbon steel using potentiostatic polarisation
NASA Astrophysics Data System (ADS)
Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.
2017-11-01
Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.
Silva, A M; Leandro, I; Pereira, D; Costa, C; Valera, A C
2015-02-01
Perdigões is a large site with a set of ditched enclosures located at Reguengos de Monsaraz, Alentejo, South Portugal. Recently at the central area of this site burnt human remains were found in a pit (#16). This structure had inside human remains, animal bones (namely pig, sheep or goat, cattle, dog, deer and rabbit), shards, ivory idols and arrowheads. All have been subjected to fire and later deposited in that pit, resulting in a secondary disposal of human bones. The recovered fragmented human bones (4845.18 g) correspond to a minimal number of 9 individuals: 6 adults and 3 sub-adults. The aim of this work is to document and interpret this funerary context based on the study of the recovered human remains. For that purpose, observations of all alterations due to fire, such as colour change and type of bone distortion, as well as anthropological data were collected. The data obtained suggest that these human remains were probably intentionally cremated, carefully collected and finally deposited in this pit. The cremation was conducted on probably complete corpses, some of them still fairly fresh and fleshed, as some bones presented thumbnail fractures. The collective cremation of the pit 16 represents an unprecedented funerary context for Portuguese, and Iberian Peninsula, Chalcolithic burial practices. Moreover, it is an example of the increasing diversity of mortuary practices of Chalcolithic human populations described in present Portuguese territory, as well as, in the Iberian Peninsula. Copyright © 2014 Elsevier GmbH. All rights reserved.
Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution
NASA Astrophysics Data System (ADS)
Li, Shengyi; Church, Benjamin C.
2018-05-01
The corrosion mechanisms and kinetics of AA1085 in Li2SO4 and LiNO3 aqueous rechargeable lithium-ion battery electrolytes were investigated at pH 11 using chronoamperometry. The corrosion kinetics of AA1085 is controlled by the electrolyte concentration level and the anodic potentials. AA1085 is susceptible to crystallographic pitting corrosion in Li2SO4 electrolytes. The rates of pit nucleation and pit growth both decreased at higher Li2SO4 concentrations or at lower anodic potentials. AA1085 passivates against pitting corrosion in LiNO3 electrolytes due to the formation of a thick, uniform corrosion product layer. The growth rate of the passive film was slightly enhanced by increasing the electrolyte concentration and anodic potentials. X-ray photoelectron spectroscopy spectra showed the formation of a thin sulfate-incorporated passive film on the electrode, which comprises Al2(SO)418H2O, Al(OH)SO4 and Al(OH)3, before the occurrence of pitting growth in 2 M Li2SO4 electrolyte. The thick corrosion product layer formed in 5 M LiNO3 electrolyte was composed of Al(OH)3 and AlOOH. Raman spectroscopy on deionized water, LiOH solution, Li2SO4 and LiNO3 electrolytes depicted changes of solution structure with increasing electrolyte concentration. The influence of extrinsic and intrinsic factors on the corrosion kinetics of AA1085 in Li2SO4 and LiNO3 electrolytes at pH 11 are discussed in detail.
NASA Astrophysics Data System (ADS)
Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun
2017-06-01
The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.
Morphology and Evolution of Sublimation Pits on Pluto
NASA Astrophysics Data System (ADS)
Abu-Hashmeh, N.; Conrad, J. W.; Nimmo, F.; Moore, J. M.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Ennico Smith, K.; Young, L. A.
2017-12-01
Pluto's Sputnik Planitia region hosts a geologically young surface of nitrogen ice that exhibits striking pitted terrain (Moore et al., Science 351, 2016). These pits are most likely formed by sublimation due to incident sunlight, similar to the southern polar cap of Mars (Byrne and Ingersoll, Science 299, 2003); however, their evolution over time has resulted in unique morphological characteristics. Motivated by this, we used the high-resolution mosaic strips captured by New Horizons' Long Range Reconnaissance Imager (LORRI) to map sublimation pits in the southernmost region of Sputnik Planitia. Statistical data shows pit orientations appearing North-South dominant; their morphology also indicates extensional evolution along the major axis caused by further sublimation and contact-coalescence processes. Qualitative analysis of the region yielded indications of an evolutionary path for individual pits that coalesce into each other and exhibit an elongated end-stage. Additionally, densely-pitted regions generally appear to correlate with regions containing longer pits, implying that coalescence may be an important process for elongation. We also model the evolution geometry through competing effects of diffusion (viscous relaxation) and retreat (sublimation) (Buhler and Ingersoll, LPSC Abstract #1746, 2017). The model demonstrates single-pit and coalescing-pit evolutions that influence overall length, as well as a potential ability for the pit center to move in space while the pit morphology evolves.
NASA Astrophysics Data System (ADS)
Aparin, B. F.; Mingareeva, E. V.; Sanzharova, N. I.; Sukhacheva, E. Yu.
2017-12-01
Data on the concentrations of natural (226Ra, 232Th and 40K) and artificial (137Cs) radionuclides and on the physicochemical properties of chernozems sampled in different years are presented. In 1952, upon the creation of the Penza-Kamensk state shelterbelt, three deep (up to 3 m) soil pits were examined within the former arable field under two-year-old plantations of ash and maple along the transect crossing the territory of the Beloprudskaya Experimental Station of the USSR Academy of Sciences in Volgograd oblast. The samples from these pits were included into the collection of dated soil samples of the Dokuchaev Central Soil Science Museum. Five pits were examined along the same transect in 2009: three pits under shelterbelts (analogues of the pits studied in 1952) and two pits on arable fields between the shelterbelts. In the past 57 years, certain changes took place in the soil structure, bulk density, and the content and composition of humus. The salt profile of soils changed significantly under the forests. The comparison of distribution patterns of natural soil radionuclides in 1952 and 2009 demonstrated their higher contents at the depth of 10-20 cm in 2009 (except for the western shelterbelt). Background concentrations of natural radionuclides in parent materials and relationships between their distributions and the salt profiles of soils have been determined; they are most clearly observed is the soils under shelterbelts. Insignificant contamination with 137Cs (up to 34 Bq/kg) has been found in the samples of 2009 from the upper (0-20 cm) horizon. The activity of 137Cs regularly decreases from the east to the west; the highest concentrations of this radionuclide are found in the topmost 10 cm. This allows us to suppose that 137Cs was brought with aerial dust by eastern winds, and the shelterbelts served as barriers to the wind flow.
Growth and dislocation studies of β-HMX.
Gallagher, Hugh G; Sherwood, John N; Vrcelj, Ranko M
2014-01-01
The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in "hot-spot" detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]. Graphical abstractEtch pits on the twinned (010) face of β-HMX.
Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.
1986-01-01
The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).
Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul
2016-07-01
The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.
Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution
Platz, T.; Schorghofer, N.; Prettyman, T. H.; De Sanctis, M. C.; Crown, D. A.; Schmedemann, N.; Neesemann, A.; Kneissl, T.; Marchi, S.; Schenk, P. M.; Bland, M. T.; Schmidt, B. E.; Hughson, K. H. G.; Tosi, F.; Zambon, F.; Mest, S. C.; Yingst, R. A.; Williams, D. A.; Russell, C. T.; Raymond, C. A.
2017-01-01
Abstract Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice‐rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization. PMID:28989206
Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution.
Sizemore, H G; Platz, T; Schorghofer, N; Prettyman, T H; De Sanctis, M C; Crown, D A; Schmedemann, N; Neesemann, A; Kneissl, T; Marchi, S; Schenk, P M; Bland, M T; Schmidt, B E; Hughson, K H G; Tosi, F; Zambon, F; Mest, S C; Yingst, R A; Williams, D A; Russell, C T; Raymond, C A
2017-07-16
Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.
Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution
Sizemore, H.G.; Platz, Thomas; Schorghofer, Norbert; Prettyman, Thomas; De Sanctis, Maria Christina; Crown, David A.; Schmedemann, Nico; Nessemann, Andeas; Kneissl, Thomas; Simone Marchi,; Schenk, Paul M.; Bland, Michael T.; Schmidt, B.E.; Hughson, Kynan H.G.; Tosi, F.; Zambon, F; Mest, S.C.; Yingst, R.A.; Williams, D.A.; Russell, C.T.; Raymond, C.A.
2017-01-01
Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.
Zettl, Alexander K.; Meyer, Jannik Christian
2013-04-02
An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.
Least tern and piping plover nesting at sand pits in Nebraska
Sidle, John G.; Kirsch, E.M.
1993-01-01
Endangered Least Terns (Sterna antillarum) and threatened Piping Plovers (Charadrius melodus) nest at commercial sand and gravel mining operations (sand pits) along the Platte River system in Nebraska. Sandbar habitat has been disappearing since the early 1900's along the Platte River system, but numbers of sand pits have increased. We hypothesized that birds would more fully utilize sand pits where suitable sandbar habitat was limited. We inventoried sand pits and censused terns and plovers on both habitats along the Loup River, part of the North Loup River, and most of the Platte River during 1988-1991. Using aircraft, we also quantified features of suitable sand pits present on the central Platte in 1988 and lower Platte in 1990, and related features to abundance and presence of birds. We found 225 sand pits of which 78 were suitable and 187 were unsuitable for nesting. Along the central Platte, where sandbar habitat is severely degraded, birds nested at 81% of the suitable sand pits (N = 32) at least once during 1988-1991, and most birds (61-94%) nested on sand pits. Along the lower Platte, where both sandbar and sand pit habitat are plentiful, birds nested at 60% of the suitable sand pits (N = 35) at least once during 1988-1991, and most birds (60-86%) nested on sandbars. Numbers of terns and plovers were more weakly correlated with features of sand pits on the central Platte than on the lower Platte. Least Terns and Piping Plovers seem to use more of the suitable sand pit habitat on the central Platte than on the lower Platte. Sand pits probably have influenced the birds' distribution by providing alternative nesting habitat along rivers where suitable sandbars are rare or absent.
NASA Astrophysics Data System (ADS)
Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.
2015-09-01
A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.
Metallurgical effects on chloride ion corrosion threshold of steel in concrete.
DOT National Transportation Integrated Search
2001-11-30
The chloride-induced corrosion of reinforcing steel bars (rebar) in concrete seriously limits durability of reinforcing concrete structures. This investigation examines key issues in pitting corrosion and chloride corrosion threshold of rebar in alka...
Elimination of trench defects and V-pits from InGaN/GaN structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalc-Koziorowska, Julita; Grzanka, Ewa; Czernecki, Robert
2015-03-09
The microstructural evolution of InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor phase epitaxy was studied as a function of the growth temperature of the GaN quantum barriers (QBs). We observed the formation of basal stacking faults (BSFs) in GaN QBs grown at low temperature. The presence of BSFs terminated by stacking mismatch boundaries (SMBs) leads to the opening of the structure at the surface into a V-shaped trench loop. This trench may form above an SMB, thereby terminating the BSF, or above a junction between the SMB and a subsequent BSF. Fewer BSFs and thus fewer trench defectsmore » were observed in GaN QBs grown at temperatures higher than 830 °C. Further increase in the growth temperature of the GaN QBs led to the suppression of the threading dislocation opening into V-pits.« less
NASA Technical Reports Server (NTRS)
Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.
1982-01-01
One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.
One dimensional Linescan x-ray detection of pits in fresh cherries
USDA-ARS?s Scientific Manuscript database
The presence of pits in processed cherries is a concern for both processors and consumers, in many cases causing injury and potential lawsuits. While machines used for pitting cherries are extremely efficient, if one or more plungers in a pitting head become misaligned, a large number of pits may p...
Light scattering from laser induced pit ensembles on high power laser optics
Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.
2015-01-01
Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less
Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing
2017-11-14
Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.
Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.
2017-01-01
Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912
The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.
2009-01-01
The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.
Nicolson, Garth L
2014-06-01
In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.
Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G
1997-03-01
We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.
Hussain, Faruqe; Clasen, Thomas; Akter, Shahinoor; Bawel, Victoria; Luby, Stephen P; Leontsini, Elli; Unicomb, Leanne; Barua, Milan Kanti; Thomas, Brittany; Winch, Peter J
2017-05-25
In rural Bangladesh, India and elsewhere, pour-flush pit latrines are the most common sanitation system. When a single pit latrine becomes full, users must empty it themselves and risk exposure to fresh feces, pay an emptying service to remove pit contents or build a new latrine. Double pit pour-flush latrines may serve as a long-term sanitation option including high water table areas because the pits do not need to be emptied immediately and the excreta decomposes into reusable soil. Double pit pour-flush latrines were implemented in rural Bangladesh for 'hardcore poor' households by a national NGO, BRAC. We conducted interviews, focus groups, and spot checks in two low-income, rural areas of Bangladesh to explore the advantages and limitations of using double pit latrines compared to single pit latrines. The rural households accepted the double pit pour-flush latrine model and considered it feasible to use and maintain. This latrine design increased accessibility of a sanitation facility for these low-income residents and provided privacy, convenience and comfort, compared to open defecation. Although a double pit latrine is more costly and requires more space than a single pit latrine the households perceived this sanitation system to save resources, because households did not need to hire service workers to empty pits or remove decomposed contents themselves. In addition, the excreta decomposition process produced a reusable soil product that some households used in homestead gardening. The durability of the latrine superstructures was a problem, as most of the bamboo-pole superstructure broke after 6-18 months of use. Double pit pour-flush latrines are a long-term improved sanitation option that offers users several important advantages over single pit pour-flush latrines like in rural Bangladesh which can also be used in areas with high water table. Further research can provide an understanding of the comparative health impacts and effectiveness of the model in preventing human excreta from entering the environment.
Hydraulic acclimation to shading in boreal conifers of varying shade tolerance.
Schoonmaker, Amanda L; Hacke, Uwe G; Landhäusser, Simon M; Lieffers, Victor J; Tyree, Melvin T
2010-03-01
The purpose of this study was to determine how shading affects the hydraulic and wood-anatomical characteristics of four boreal conifers (Pinus banksiana, Pinus contorta, Picea glauca and Picea mariana) that differ in shade tolerance. Plants were grown in an open field and under a deciduous-dominated overstory for 6 years. Sapwood- and leaf-area specific conductivity, vulnerability curves, and anatomical measurements (light and scanning electron microscopy) were made on leading shoots from six to nine trees of each treatment combination. There was no difference in sapwood-area specific conductivity between open-grown and understory conifers, although two of four species had larger tracheid diameters in the open. Shaded conifers appeared to compensate for small diameter tracheids by changes in pit membrane structure. Scanning electron microscopy revealed that understory conifers had thinner margo strands, greater maximum pore size in the margo, and more torus extensions. All of these trends may contribute to inadequate sealing of the torus. This is supported by the fact that all species showed increased vulnerability to cavitation when grown in the understory. Although evaporative demand in an understory environment is low, a rapid change into fully exposed conditions could be detrimental for shaded conifers.
Pellegrini, Isabelle; Roche, Cathy; Quentien, Marie-Helene; Ferrand, Mireille; Gunz, Ginette; Thirion, Sylvie; Bagnis, Claude; Enjalbert, Alain; Franc, Jean-Louis
2006-12-01
The anterior pituitary-specific transcription factor Pit-1 was initially identified and cloned as a transactivator of the prolactin (PRL) and GH genes and later as a regulator of the TSHb gene. It was found to be a major developmental regulator, because natural Pit-1 gene mutations cause a dwarf phenotype in mice and cause combined pituitary hormone deficiency associated with pituitary hypoplasia in humans. To further investigate the growth-promoting effects of Pit-1, we used a strategy based on the use of dominant-negative Pit-1 mutants as an alternative means of inactivating endogenous Pit-1 functions. R271W, a Pit-1 mutant identified in one allele in patients with severe combined pituitary hormone deficiency, and Pit-1Delta1-123, a deletion mutant in which only the DNA binding domain of Pit-1 is conserved, were generated, and their ability to abolish the effects of the endogenous native Pit-1 in the differentiated proliferating somatolactotrope GH4C1 cell line was investigated. Enforced expression of the dominant-negative mutants in GH4C1 cells using recombinant lentiviral vectors decreased the levels of expression of known Pit-1 target genes such as PRL and GH, abolished the hormone release, and reduced cell viability by decreasing the growth rate and inducing apoptosis via a caspase-independent pathway. These results show for the first time that the growth-promoting effects of Pit-1 are at least partly due to the fact that this transcription factor prevents apoptotic cell death.
SHI induced nano track polymer filters and characterization
NASA Astrophysics Data System (ADS)
Vijay, Y. K.
2009-07-01
Swift heavy ion irradiation produces damage in polymers in the form of latent tracks. Latent tracks can be enlarged by etching it in a suitable etchant and thus nuclear track etch membrane can be formed for gas permeation / purification in particular for hydrogen where the molecular size is very small. By applying suitable and controlled etching conditions well defined tracks can be formed for specific applications of the membranes. After etching gas permeation method is used for characterizing the tracks. In the present work polycarbonate (PC) of various thickness were irradiated with energetic ion beam at Inter University Accelerator Centre (IUAC), New Delhi. Nuclear tracks were modified by etching the PC in 6N NaOH at 60 (±1) °C from both sides for different times to produce track etch membranes. At critical etch time the etched pits from both the sides meet a rapid increase in gas permeation was observed. Permeability of hydrogen and carbon dioxide has been measured in samples etched for different times. The latent tracks produced by SHI irradiation in the track etch membranes show enhancement of free volume of the polymer. Nano filters are separation devices for the mixture of gases, different ions in the solution and isotopes and isobars separations. The polymer thin films with controlled porosity finding it self as best choice. However, the permeability and selectivity of these polymer based membrane filters are very important at the nano scale separation. The Swift Heavy Ion (SHI) induced nuclear track etched polymeric films with controlled etching have been attempted and characterized as nano scale filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta
2015-03-02
We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less
Distribution, formation mechanisms, and significance of lunar pits
NASA Astrophysics Data System (ADS)
Wagner, Robert V.; Robinson, Mark S.
2014-07-01
Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.
Chirwa, Charles F. C.; Hall, Ralph P.; Krometis, Leigh-Anne H.; Vance, Eric A.; Edwards, Adam; Guan, Ting; Holm, Rochelle H.
2017-01-01
Pit latrines can provide improved household sanitation, but without effective and inexpensive emptying options, they are often abandoned once full and may pose a public health threat. Emptying techniques can be difficult, as the sludge contents of each pit latrine are different. The design of effective emptying techniques (e.g., pumps) is limited by a lack of data characterizing typical in situ latrine sludge resistance. This investigation aimed to better understand the community education and technical engineering needs necessary to improve pit latrine management. In low income areas within Mzuzu city, Malawi, 300 pit latrines from three distinct areas were assessed using a dynamic cone penetrometer to quantify fecal sludge strength, and household members were surveyed to determine their knowledge of desludging procedures and practices likely to impact fecal sludge characteristics. The results demonstrate that there is a significant difference in sludge strength between lined and unlined pits within a defined area, though sludge hardened with depth, regardless of the pit type or region. There was only limited association between cone penetration depth and household survey data. To promote the adoption of pit emptying, it is recommended that households be provided with information that supports pit emptying, such as latrine construction designs, local pit emptying options, and cost. This study indicates that the use of a penetrometer test in the field prior to pit latrine emptying may facilitate the selection of appropriate pit emptying technology. PMID:28165378
The efficiencies of cast blasting in wide pits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.L.; King, M.G.
Blasting activities in all four pits at Thunder Basin Coal`s Black Thunder Mine are focused on cast blasting. With widths varying from 190 feet to 265 feet and bench heights varying from 90 feet to 175 feet, casting efficiencies vary with different geometry`s. For example, the percent cast to final in the 200 foot pit is on the average higher than the 270 foot pit. The powder factors are somewhat higher in the narrower pits, thus increasing the cost of blasting. This leads to a very detailed look at the actual benefit of cast blasting and the associated cost ofmore » these benefits. The simple solution would be to reduce the width of the pits, thereby increasing the percent cast to final. However, the lower rehandle and low coal loss associated with wide pits would be fortified. Upon further review it becomes obvious that the wider pits could not be compared to the narrow pits with the cast to final percent indices. The focus should be shifted to cubic yards cast to final per lineal foot of pit. This will allow for more accurate measures of the casting efficiency of the shot. When comparing the pits with these indices their performances were much closer than the percent cast to final indices. The powder factors being higher in the narrow pits drove up the cost per cubic yard cast to final. Therefore, even though the percent cast to final was higher, the cost per cubic yard was also higher.« less
Evaluation of the engineering characteristics of RAP/Aggregate blends.
DOT National Transportation Integrated Search
2005-07-01
"This report describes results from a research program that was structured to evaluate the : suitability of using reclaimed and recycled asphalt pavement (RAP) as an additive to crushed : angular aggregate or pit run granular soils. Research and test...
Yang, Hao; Cheng, Jian; Chen, Mingjun; Wang, Jian; Liu, Zhichao; An, Chenhui; Zheng, Yi; Hu, Kehui; Liu, Qi
2017-07-24
In high power laser systems, precision micro-machining is an effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal. Repaired surfaces with smooth spherical and Gaussian contours can alleviate the light field modulation caused by damage site. To obtain the optimal repairing structure parameters, finite element method (FEM) models for simulating the light intensification caused by the mitigation pits on rear KDP surface were established. The light intensity modulation of these repairing profiles was compared by changing the structure parameters. The results indicate the modulation is mainly caused by the mutual interference between the reflected and incident lights on the rear surface. Owing to the total reflection, the light intensity enhancement factors (LIEFs) of the spherical and Gaussian mitigation pits sharply increase when the width-depth ratios are near 5.28 and 3.88, respectively. To achieve the optimal mitigation effect, the width-depth ratios greater than 5.3 and 4.3 should be applied to the spherical and Gaussian repaired contours. Particularly, for the cases of width-depth ratios greater than 5.3, the spherical repaired contour is preferred to achieve lower light intensification. The laser damage test shows that when the width-depth ratios are larger than 5.3, the spherical repaired contour presents higher laser damage resistance than that of Gaussian repaired contour, which agrees well with the simulation results.
Modelling cavitation erosion using fluid–material interaction simulations
Chahine, Georges L.; Hsiao, Chao-Tsung
2015-01-01
Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140
High efficiency, low cost, thin film silicon solar cell design and method for making
Sopori, Bhushan L.
2001-01-01
A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.
High efficiency low cost thin film silicon solar cell design and method for making
Sopori, Bhushan L.
1999-01-01
A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.
Earth Observation taken during the Expedition 37 mission
2013-10-30
ISS037-E-022990 (30 Oct. 2013) --- This detailed image, photographed by an Expedition 37 crew member on the International Space Station, features the former US Borax mine located to the northwest of Boron, California. The mine, currently owned by the Rio Tinto Group, is the largest open-pit mine in California (covering approximately 54 square kilometers) and is among the largest borate mines in the world. Borates, chemical compounds that include the element boron (B), are important both as providers of an essential plant micronutrient, for metallurgical applications, and as components of specialized types of glass, anticorrosive coatings, fire retardants, and detergents (among other uses). Borate minerals such as borax, kernite, and ulexite are found in deposits at the Rio Tinto borax mine. The geologic setting is a structural, nonmarine basin ? a permanent shallow lake ? fed by thermal springs rich in sodium and boron that existed approximately 16 million years ago, according to scientists. The first mining claim in the area was filed in 1913, following discovery of boron-bearing nodules during well drilling. Much of the mine workings were underground until 1957, when US Borax changed to open-pit mining. The open pit is clearly visible at center; concentric benches along the pit wall are accentuated by shadows and mark successive levels of material extraction. Mine tailings are visible as stacked terraces along the northern boundary of the mine. Ore processing facilities occupy a relatively small percentage of the mine area, and are located directly to the west of the open pit. The Rio Tinto mine is one of the Earth?s richest borate deposits; together with mines in Argentina, they produce almost 40 percent of the world?s supply of industrial borate minerals.
Quantification of skeletal fraction volume of a soil pit by means of photogrammetry
NASA Astrophysics Data System (ADS)
Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens
2015-04-01
The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.
ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO
2011-01-01
Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942
Recent Developments of Graphene Oxide-Based Membranes: A Review
Ma, Jinxia; Ping, Dan; Dong, Xinfa
2017-01-01
Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications. PMID:28895877
Recent Developments of Graphene Oxide-Based Membranes: A Review.
Ma, Jinxia; Ping, Dan; Dong, Xinfa
2017-09-12
Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications.
NASA Astrophysics Data System (ADS)
Feng, Y. P.; Sinha, S. K.; Melendres, C. A.; Lee, D. D.
1996-02-01
We have studied the electrochemically-induced pitting process on a Cu electrode in NaHCO 3 solution using in-situ X-ray off-specular reflectivity measurements. The morphology and growth dynamics of the localized corrosion sites or pits were studied as the applied potential was varied from the cathodic region where the Cu surface is relatively free of oxide films to the anodic region where surface roughening occurs by general corrosion with concomitant formation of an oxide film. Quantitative analysis of the experimental results indicates that early pitting proceeds in favor of nucleation of pit clusters over individual pit growth. It was found that the lateral distribution of the pits is not random but exhibits a short-range order as evidenced by the appearance of a side peak in the transverse off-specular reflectivity. The position, height, and width of the peak was modeled to yield the average size, nearest-neighbor distance (within any one of the clusters), and over-all density of the pits averaged over the entire illuminated surface. In addition, measurements of the longitudinal off-specular reflectivity indicate a bimodal depth distribution for the pits, suggesting a “film breaking” type of pitting mechanism.
Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.
2003-06-30
This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less
Printability and inspectability of programmed pit defects on teh masks in EUV lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, I.-Y.; Seo, H.-S.; Ahn, B.-S.
2010-03-12
Printability and inspectability of phase defects in ELlVL mask originated from substrate pit were investigated. For this purpose, PDMs with programmed pits on substrate were fabricated using different ML sources from several suppliers. Simulations with 32-nm HP L/S show that substrate pits with below {approx}20 nm in depth would not be printed on the wafer if they could be smoothed by ML process down to {approx}1 nm in depth on ML surface. Through the investigation of inspectability for programmed pits, minimum pit sizes detected by KLA6xx, AIT, and M7360 depend on ML smoothing performance. Furthermore, printability results for pit defectsmore » also correlate with smoothed pit sizes. AIT results for pattemed mask with 32-nm HP L/S represents that minimum printable size of pits could be {approx}28.3 nm of SEVD. In addition, printability of pits became more printable as defocus moves to (-) directions. Consequently, printability of phase defects strongly depends on their locations with respect to those of absorber patterns. This indicates that defect compensation by pattern shift could be a key technique to realize zero printable phase defects in EUVL masks.« less
NASA Astrophysics Data System (ADS)
Özden, Selin; Koc, Mumin Mehmet
2018-03-01
CdTe epitaxial thin films, for use as a buffer layer for HgCdTe defectors, were grown on GaAs (211)B using the molecular beam epitaxy method. Wet chemical etching (Everson method) was applied to the epitaxial films using various concentrations and application times to quantify the crystal quality and dislocation density. Surface characterization of the epitaxial films was achieved using Atomic force microscopy and Scanning electron microscopy (SEM) before and after each treatment. The Energy Dispersive X-Ray apparatus of SEM was used to characterize the chemical composition. Untreated CdTe films show smooth surface characteristics with root mean square (RMS) roughnesses of 1.18-3.89 nm. The thicknesses of the CdTe layers formed were calculated via FTIR spectrometry and obtained by ex situ spectroscopic ellipsometry. Raman spectra were obtained for various temperatures. Etch pit densities (EPD) were measured, from which it could be seen that EPD changes between 1.7 × 108 and 9.2 × 108 cm-2 depending on the concentration of the Everson etch solution and treatment time. Structure, shape and depth of pits resulting from each etch pit implementation were also evaluated. Pit widths varying between 0.15 and 0.71 µm with heights varying between 2 and 80 nm were observed. RMS roughness was found to vary by anything from 1.56 to 26 nm.
Complex Dynamic Development of Poliovirus Membranous Replication Complexes
Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie
2012-01-01
Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780
Kenny, Dianna T; Driscoll, Tim; Ackermann, Bronwen J
2016-03-01
Typically, Australian orchestral musicians perform on stage, in an orchestra pit, or in a combination of both workplaces. This study explored a range of physical and mental health indicators in musicians who played in these different orchestra types to ascertain whether orchestra environment was a risk factor affecting musician wellbeing. Participants comprised 380 full-time orchestral musicians from the eight major state orchestras in Australia comprised of two dedicated pit orchestras, three stage-only symphonic orchestras, and three mixed stage/pit orchestras. Participants completed a physical assessment and a range of self-report measures assessing performance-related musculoskeletal disorders (PRMD), physical characteristics including strength and perceived exertion, and psychological health, including music performance anxiety (MPA), workplace satisfaction, and bullying. Physical characteristics and performance-related musculoskeletal profiles were similar for most factors on the detailed survey completed by orchestra members. The exceptions were that pit musicians demonstrated greater shoulder and elbow strength, while mixed-workload orchestra musicians had greater flexibility Significantly more exertion was reported by pit musicians when rehearsing and performing. Stage/pit musicians reported less physical exertion when performing in the pit compared with performing on stage. Severity of MPA was significantly greater in pit musicians than mixed orchestra musicians. Pit musicians also reported more frequent bullying and lower job satisfaction compared with stage musicians. There were few differences in the objective physical measures between musicians in the different orchestra types. However, pit musicians appear more psychologically vulnerable and less satisfied with their work than musicians from the other two orchestra types. The physical and psychological characteristics of musicians who perform in different orchestra types have not been adequately theorized or studied. We offer some preliminary thoughts that may account for the observed differences.
Development of an aversive Pavlovian-to-instrumental transfer task in rat
Campese, Vincent; McCue, Margaret; Lázaro-Muñoz, Gabriel; LeDoux, Joseph E.; Cain, Christopher K.
2013-01-01
Pavlovian-to-instrumental transfer (PIT) is an effect whereby a classically conditioned stimulus (CS) enhances ongoing instrumental responding. PIT has been extensively studied with appetitive conditioning but barely at all with aversive conditioning. Although it's been argued that conditioned suppression is a form of aversive PIT, this effect is fundamentally different from appetitive PIT because the CS suppresses, instead of facilitates, responding. Five experiments investigated the importance of a variety of factors on aversive PIT in a rodent Sidman avoidance paradigm in which ongoing shuttling behavior (unsignaled active avoidance or USAA) was facilitated by an aversive CS. Experiment 1 demonstrated a basic PIT effect. Experiment 2 found that a moderate amount of USAA extinction produces the strongest PIT with shuttling rates best at around 2 responses per minute prior to the CS. Experiment 3 tested a protocol in which the USAA behavior was required to reach the 2-response per minute mark in order to trigger the CS presentation and found that this produced robust and reliable PIT. Experiment 4 found that the Pavlovian conditioning US intensity was not a major determinant of PIT strength. Experiment 5 demonstrated that if the CS and US were not explicitly paired during Pavlovian conditioning, PIT did not occur, showing that CS-US learning is required. Together, these studies demonstrate a robust, reliable and stable aversive PIT effect that is amenable to analysis of neural circuitry. PMID:24324417
Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion.
Burleigh, Thomas D; Gierke, Casey G; Fredj, Narjes; Boston, Penelope J
2014-06-05
Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.
Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion
Burleigh, Thomas D.; Gierke, Casey G.; Fredj, Narjes; Boston, Penelope J.
2014-01-01
Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water. PMID:28788679
NASA Astrophysics Data System (ADS)
Xiang, Longhao; Pan, Juyi; Chen, Songying
2018-06-01
The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.
Biomimetic membranes and methods of making biomimetic membranes
Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong
2016-11-08
The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing
2018-05-01
In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.
Hu, Xiaolong; Du, Hai; Ren, Cong
2016-01-01
Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances of Clostridia, Clostridium kluyveri, Bacteroidia, and Methanobacteria significantly increased, with corresponding increases in levels of pH, NH4+, and available phosphorus, from degraded to high-quality pit muds, while levels of Lactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under the Clostridia, Bacteroidia, Methanobacteria, and Methanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus, Pediococcus, and Streptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud. PMID:26896127
Stochastic Modeling of the Clathrin-dependent and -independent Endocytic Pathways
NASA Astrophysics Data System (ADS)
Deng, Hua; Dutta, Prashanta; Liu, Jin
2017-11-01
Endocytosis is one of the important processes that bioparticles use to enter the cells. During endocytosis the membrane-bound vesicles are formed by the invagination of plasma membrane as a result of interactions among many proteins and cytoskeletons. The clathrin-mediated endocytosis is one of the most significant form of endocytosis, where the dynamic assembly of clathrin-coated pits play a critical role. While herpes simplex virus-1 has recently shown to infect cell by a novel phagocytosis-like endocytic pathway where actin polymerization may facilitate the viral entry. In this work, we propose a stochastic model for both clathrin-dependent and -independent endocytic pathways based on Monte Carlo simulations. The important roles of clathrin coating and actin cytoskeleton as well as the impact of other biological parameters are studied. Our preliminary results indicate that there exist an intermediate particle size and ligand density that maximize the internalization efficiency. Below a critical size or surface ligand density, it is difficult for the entry of a single particle, which means clustering may needed for more efficient internalization. We also find that lower membrane bending rigidity may help promote the bioparticle entry. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.
Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature
Daste, Frederic; Walrant, Astrid; Mason, Julia; Lee, Ji-Eun; Brook, Daniel; Mettlen, Marcel; Larsson, Elin; Lee, Steven F.; Lundmark, Richard
2017-01-01
The conditional use of actin during clathrin-mediated endocytosis in mammalian cells suggests that the cell controls whether and how actin is used. Using a combination of biochemical reconstitution and mammalian cell culture, we elucidate a mechanism by which the coincidence of PI(4,5)P2 and PI(3)P in a curved vesicle triggers actin polymerization. At clathrin-coated pits, PI(3)P is produced by the INPP4A hydrolysis of PI(3,4)P2, and this is necessary for actin-driven endocytosis. Both Cdc42⋅guanosine triphosphate and SNX9 activate N-WASP–WIP- and Arp2/3-mediated actin nucleation. Membrane curvature, PI(4,5)P2, and PI(3)P signals are needed for SNX9 assembly via its PX–BAR domain, whereas signaling through Cdc42 is activated by PI(4,5)P2 alone. INPP4A activity is stimulated by high membrane curvature and synergizes with SNX9 BAR domain binding in a process we call curvature cascade amplification. We show that the SNX9-driven actin comets that arise on human disease–associated oculocerebrorenal syndrome of Lowe (OCRL) deficiencies are reduced by inhibiting PI(3)P production, suggesting PI(3)P kinase inhibitors as a therapeutic strategy in Lowe syndrome. PMID:28923975
76 FR 13401 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... Mine Pits, Haul Roads, Water Management Structures, and Overburden Disposal Areas, Implementation..., Final EIS, TVA, KY, Tennessee Valley Authority (TVA) Integrated Resource Plan (IRP), To Address the... Activities, Proposal to Support and Conduct Current, Emerging, and Future Training Activities, Implementation...
Hayashi, Keiko; Yoshida, Hitoshi
2009-02-01
The plant genome contains a large number of disease resistance (R) genes that have evolved through diverse mechanisms. Here, we report that a long terminal repeat (LTR) retrotransposon contributed to the evolution of the rice blast resistance gene Pit. Pit confers race-specific resistance against the fungal pathogen Magnaporthe grisea, and is a member of the nucleotide-binding site leucine-rich repeat (NBS-LRR) family of R genes. Compared with the non-functional allele Pit(Npb), the functional allele Pit(K59) contains four amino acid substitutions, and has the LTR retrotransposon Renovator inserted upstream. Pathogenesis assays using chimeric constructs carrying the various regions of Pit(K59) and Pit(Npb) suggest that amino acid substitutions might have a potential effect in Pit resistance; more importantly, the upregulated promoter activity conferred by the Renovator sequence is essential for Pit function. Our data suggest that transposon-mediated transcriptional activation may play an important role in the refunctionalization of additional 'sleeping' R genes in the plant genome.
Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.
Zhao, Q; Davis, M E; Hines, H C
2004-08-01
The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.
Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto
2017-12-19
We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.
Effect of UV light on different structural and transport parameters of cellophane membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benavente, J.; Vazquez, M.I.; De Abajo, J.
1996-01-01
A comparative study of UV light influence on structural and transport parameters of cellophane membranes was made. Changes in the chemical structure and electrical behavior of cellophane membranes were considered by determining the hydraulic permeability, salt diffusion coefficient, and resistance values, as well as some geometrical parameters, for an untreated membrane and two differently UV-treated cellophane membranes. Differences in the characteristic parameters for the three samples showed that radiation mainly affected the membrane structure, while only small changes in membrane electrical behavior were determined.
Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J
2010-03-01
The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.
Detecting Cavitation Pitting Without Disassembly
NASA Technical Reports Server (NTRS)
Barkhoudarian, S.
1986-01-01
Technique for detecting cavitation pitting in pumps, turbines, and other machinery uses low-level nuclear irradiation. Isotopes concentrated below surface emit gamma radiation, a portion of which is attenuated by overlying material. Where there are cavitation pits, output of gamma-ray detector fluctuates as detector is scanned near pits. Important to detect cavitation pits because nozzle, turbine blade, or other pump component weakened by cavitation could fail catastrophically and cause machine to explode.
Yuan, Ren; Kulkarni, Trupti; Wei, Fu; Shah, Girish V
2005-01-14
It was previously shown that calcitonin-like pituitary peptide (pit-CT) is synthesized and secreted by gonadotrophs, and pit-CT inhibits PRL gene transcription and lactotroph cell proliferation. Present studies examined long-term consequences of pit-CT overexpression on the functioning of mouse anterior pituitary (AP) gland. Targeted overexpression of pit-CT in gonadotrophs of mouse pituitaries was achieved by generating mice overexpressing bovine luteinizing hormone (LH)-alpha subunit promoter-pit-CT cDNA transgene. Transgenic (pit-CT+) mice displayed chronic but selective overexpression of pit-CT in gonadotrophs. The mice also displayed a dramatic decline in PRL gene expression as assessed by PRL mRNA abundance, PRL immunohistochemistry (IHC) and serum PRL levels. LH secretion in pit-CT+ mice was also reduced, without any change in FSH secretion. Reproductive abnormalities such as prolonged estrous cycles, reduced pregnancy rate, delivery of smaller litters, increased neonatal mortality and deficient lactation were also observed. Administration of PRL during early pregnancy significantly increased the pregnancy rate and neonatal survival of newborns. These results demonstrate that overexpression of pit-CT leads to chronic hypoprolactinemia and reproductive dysfunction in female mice, and reinforces the possibility that gonadotroph-derived pit-CT is an important paracrine regulator of lactotroph function.
NASA Astrophysics Data System (ADS)
Liu, Peng; Xie, Shulin; Zhang, Lixiao; Zhou, Guangyi; Zhao, Xuefeng
2018-03-01
A certain level of horizontal displacement will occur during excavation or subsequent construction of deep foundation pit. If the support is improper and the horizontal displacement of the foundation pit is too large, it will cause collapse and even affect the buildings around the foundation pit, which will endanger people's life and property. Therefore, the horizontal displacement monitoring of deep foundation pit becomes more and more important. At present, the electronic total station is often used to monitor the horizontal displacement of the foundation pit, but this monitoring method is expensive, prone to accidental errors, and can not be used for real-time monitoring. Therefore, a method of monitoring the horizontal displacement of deep foundation pit by using laser projection sensing technique is proposed in this paper. The horizontal displacement of the foundation pit is replaced by the displacement of the laser spot emitted by the laser, and the horizontal displacement of the foundation pit can be obtained by identifying the displacement of the laser spot projected on the screen. A series of experiments show that the accuracy of this monitoring method meets the engineering requirements and greatly reduces the cost, which provides a new technology for the displacement monitoring of deep foundation pit.
Cheng, Shi-Bin; Graeber, Carl T; Quinn, Jeffrey A; Filardo, Edward J
2011-08-01
G-protein-coupled receptor 30 (GPR30/GPER) belongs to the seven transmembrane receptor (7TMR) superfamily, the most common class of surface receptor with approximately 800 known members. GPER promotes estrogen binding and rapid signaling via membrane-associated enzymes resulting in increased cAMP and release of heparan bound epidermal growth factor (proHB-EGF) from breast cancer cells. However, GPER is predominately localized intracellularly in breast cancer cells with minor amounts of receptor on the cell surface, an observation that has caused some controversy regarding its potential role as a plasma membrane estrogen receptor. Using the widely employed approach of tracking recombinant 7TMRs by surface labeling live cells, we have begun to characterize and compare the endocytic fate of GPER to other similarly labeled 7TMRs. Upon ectopic expression in human embryonic kidney HEK-293 cells, functional GPER is generated as these cells acquire the capacity to stimulate cAMP and activate cyclic AMP responsive binding protein in response to estradiol-17 beta stimulation. GPER is detectable on the cell surface by immunofluorescent analysis using HA-specific antibodies, albeit the bulk of the receptor is located intracellularly. Like β1AR (beta 1 adrenergic receptor) and CXCR4 (C-X-C chemokine receptor 4), GPER exits the plasma membrane via clathrin-coated pits and enters early endosomes. Interestingly, GPER has a destination that is uncommon among 7TMRs, as it accumulates in a perinuclear compartment. Like many 7TMRs (approximately one-third), GPER trafficking from the plasma membrane is constitutive (occurs in the absence of agonist). However, its route of intracellular trafficking is highly unusual, as 7TMRs typically recycle to the plasma membrane (e.g. β1AR) or are degraded in lysosomes (e.g. CXCR4). The accumulation of GPER in the perinuclear space and its possible significance for attenuating estrogen action via this newly recognized membrane estrogen receptor is discussed herein. Published by Elsevier Inc.
Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khromov, S.; Hemmingsson, C.; Monemar, B.
2014-12-14
Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits,more » quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.« less
Earth Observations taken by the Expedition 22 Crew
2010-01-14
ISS022-E-026137 (14 Jan. 2010) --- Open Pit Mines in southern Arizona are featured in this image photographed by an Expedition 22 crew member on the International Space Station. The State of Arizona is the United States? largest producer of the metal copper, primarily mined from ore bodies known as porphyry copper deposits. Copper is a good conductor of electricity and heat, and is a vital element of virtually all of our electronic devices and components. A porphyry copper deposit is a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes, it forms an igneous rock with large crystals embedded in a fine-grained matrix, known as porphyry. Hot fluids circulate through the magma and surrounding rocks via fractures, depositing copper-bearing and other minerals in characteristic spatial patterns that signal the nature of the ore body to a geologist. The most common approach to extracting metal-bearing ore from a porphyry copper deposit is by open-pit mining. For more details, please refer to http://earth.jsc.nasa.gov/EarthObservatory/OpenPitMinesSouthernArizona.htm.
Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi
2008-06-24
Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse imposemore » pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.« less
Nakagiri, Anne; Niwagaba, Charles B; Nyenje, Philip M; Kulabako, Robinah N; Tumuhairwe, John B; Kansiime, Frank
2016-02-04
A pit latrine is the most basic form of improved sanitation which is currently used by a number of people around the globe. In spite of the wide spread use, known successes and advantages associated with pit latrines, they have received little attention in form of research and development. This review focuses on the usage and performance (filling, smell and insect nuisance) of pit latrines in urban areas of sub-Saharan Africa (SSA) and proposes approaches for their improvements and sustainability. Current pit latrine usage within urban SSA was calculated from Joint Monitoring Programme (JMP) water and sanitation country-files. We conducted a literature search and review of documents on pit latrine usage, filling, smell and insect nuisances in urban areas of SSA. Findings of the review are presented and discussed in this paper. Pit latrines are in use by more than half the urban population in SSA and especially among low income earners. An additional 36 million people in urban areas of SSA have adopted the pit latrine since 2007. However, their performance is unsatisfactory. Available literature shows that contributions have been made to address shortfalls related to pit latrine use in terms of science and technological innovations. However, further research is still needed. Any technology and process management innovations to pit latrines should involve scientifically guided approaches. In addition, development, dissemination and enforcement of minimum pit latrine design standards are important while the importance of hygienic latrines should also be emphasized.
Pulawski, Wojciech; Jamroz, Michal; Kolinski, Michal; Kolinski, Andrzej; Kmiecik, Sebastian
2016-11-28
The CABS coarse-grained model is a well-established tool for modeling globular proteins (predicting their structure, dynamics, and interactions). Here we introduce an extension of the CABS representation and force field (CABS-membrane) to the modeling of the effect of the biological membrane environment on the structure of membrane proteins. We validate the CABS-membrane model in folding simulations of 10 short helical membrane proteins not using any knowledge about their structure. The simulations start from random protein conformations placed outside the membrane environment and allow for full flexibility of the modeled proteins during their spontaneous insertion into the membrane. In the resulting trajectories, we have found models close to the experimental membrane structures. We also attempted to select the correctly folded models using simple filtering followed by structural clustering combined with reconstruction to the all-atom representation and all-atom scoring. The CABS-membrane model is a promising approach for further development toward modeling of large protein-membrane systems.
NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, Catherine M.; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095; Zhang, Xinli
2012-06-08
Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 ormore » rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Lunyong; Sun Jianfei, E-mail: jfsun_hit@263.net; Zuo Hongbo
2012-08-15
The tridimensional morphology and etching kinetics of the etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal ({alpha}-Al{sub 2}O{sub 3}) in molten KOH were studied experimentally. It was shown that the etch pit takes on tridimensional morphologies with triangular symmetry same as the symmetric property of the sapphire crystal. Pits like centric and eccentric triangular pyramid as well as hexagonal pyramid were observed, but the latter is less in density. In-depth analyses show the side walls of the etch pits belong to the {l_brace}1 1{sup Macron} 0 2{sup Macron }{r_brace} family, and the triangular pit contains edgesmore » full composed by Al{sup 3+} ions on the etching surface so it is more stable than the hexagonal pit since its edges on the etching surface contains Al{sup 2+} ions. The etch pits developed in a manner of kinematic wave by the step moving with constant speed, which is controlled by the chemical reaction with activation energy of 96.6 kJ/mol between Al{sub 2}O{sub 3} and KOH. - Graphical abstract: Schematic showing the atomic configuration of the predicted side walls of regular triangular pyramid shaped etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal. Highlights: Black-Right-Pointing-Pointer Observed the tridimensional morphology of etch pits. Black-Right-Pointing-Pointer Figured out the atomic configuration origin of the etch pits. Black-Right-Pointing-Pointer Quantitatively determined the etch rates of the etch pits.« less
Effector and central memory T helper 2 cells respond differently to peptide immunotherapy
Mackenzie, Karen J.; Nowakowska, Dominika J.; Leech, Melanie D.; McFarlane, Amanda J.; Wilson, Claire; Fitch, Paul M.; O’Connor, Richard A.; Howie, Sarah E. M.; Schwarze, Jürgen; Anderton, Stephen M.
2014-01-01
Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62Llo) and central memory (CD62Lhi) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62Lhi and CD62Llo Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4+ T cells to PIT. Most notably, allergen-reactive CD62Llo Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62Lhi Th2 cells. Despite this, PIT was most potent against CD62Llo Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62Lhi Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios. PMID:24516158
Hu, Xiaolong; Du, Hai; Ren, Cong; Xu, Yan
2016-04-01
Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances of Clostridia,Clostridium kluyveri, Bacteroidia, and Methanobacteria significantly increased, with corresponding increases in levels of pH, NH4 (+), and available phosphorus, from degraded to high-quality pit muds, while levels of Lactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under the Clostridia,Bacteroidia,Methanobacteria, and Methanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus,Pediococcus, and Streptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Inconsistent identification of pit bull-type dogs by shelter staff.
Olson, K R; Levy, J K; Norby, B; Crandall, M M; Broadhurst, J E; Jacks, S; Barton, R C; Zimmerman, M S
2015-11-01
Shelter staff and veterinarians routinely make subjective dog breed identification based on appearance, but their accuracy regarding pit bull-type breeds is unknown. The purpose of this study was to measure agreement among shelter staff in assigning pit bull-type breed designations to shelter dogs and to compare breed assignments with DNA breed signatures. In this prospective cross-sectional study, four staff members at each of four different shelters recorded their suspected breed(s) for 30 dogs; there was a total of 16 breed assessors and 120 dogs. The terms American pit bull terrier, American Staffordshire terrier, Staffordshire bull terrier, pit bull, and their mixes were included in the study definition of 'pit bull-type breeds.' Using visual identification only, the median inter-observer agreements and kappa values in pair-wise comparisons of each of the staff breed assignments for pit bull-type breed vs. not pit bull-type breed ranged from 76% to 83% and from 0.44 to 0.52 (moderate agreement), respectively. Whole blood was submitted to a commercial DNA testing laboratory for breed identification. Whereas DNA breed signatures identified only 25 dogs (21%) as pit bull-type, shelter staff collectively identified 62 (52%) dogs as pit bull-type. Agreement between visual and DNA-based breed assignments varied among individuals, with sensitivity for pit bull-type identification ranging from 33% to 75% and specificity ranging from 52% to 100%. The median kappa value for inter-observer agreement with DNA results at each shelter ranged from 0.1 to 0.48 (poor to moderate). Lack of consistency among shelter staff indicated that visual identification of pit bull-type dogs was unreliable. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Du, Shan; Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Wei, Quan-Shuai; Li, Meng; Wang, Li-dong
2013-03-01
Abstract: An investigation was conducted in a 2.55 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study the microsite characteristics of pit and mound formed by 42 treefalls and the status of vegetation regeneration on the microsites. The soil water content, soil temperature, relative air humidity, and photosynthetically active radiation (PAR) on five microsites (mound top, mound face, pit wall, pit bottom, and intact forest floor) were measured. Among the five mirosites, mound top had the highest PAR (527.9 micromol.m-2.s-1 ) while intact forest floor had the lowest one (58.7 micromol.m-2.s-), mound top had the highest soil temperature (16.0 degrees C) but pit bottom had the lowest one (13.3 degrees C), pit bottom had the highest soil water content (34.6%) but mound face had the lowest one (0.5%), and intact forest floor had the highest relative air humidity (75.9%) but mound top had the lowest one (68.0%). The frequency of forming pit/ mound complex by the tree species was decreased in the order of Pinus koraiensis (42. 9%) >Picea asperata (31.0%) > Betula platyphylla (16.7%) > Abies fabri (7. 1%) > Prunus padus (2.4%). Among the 42 treefalls, two-thirds of them were in northwest direction. The treefalls volume had significant positive correlations with pit depth, pit length, mound height, and mound width, but negative correlation with mound thickness. The treefall mean diameter at breast height had significant positive correlations with pit width (r=0.328, P=0.017) and pit length (r=0.527, P= 0). The tree species richness at the microsites decreased in the order of intact forest floor > pit > mound, and the tree species coverage was in the sequence of intact forest floor > pit > mound.
High-sensitivity chemiluminescence immunoassays for detection of growth hormone doping in sports.
Bidlingmaier, Martin; Suhr, Jennifer; Ernst, Andrea; Wu, Zida; Keller, Alexandra; Strasburger, Christian J; Bergmann, Andreas
2009-03-01
Recombinant human growth hormone (rhGH) is abused in sports, but adequate routine doping tests are lacking. Analysis of serum hGH isoform composition has been shown to be effective in detecting rhGH doping. We developed and validated selective immunoassays for isoform analysis with potential utility for screening and confirmation in doping tests. Monoclonal antibodies with preference for pituitary hGH (phGH) or rhGH were used to establish 2 pairs of sandwich-type chemiluminescence assays with differential recognition of rhGH (recA and recB) and phGH (pitA and pitB). We analyzed specimens from volunteers before and after administration of rhGH and calculated ratios between the respective rec- and pit-assay results. Functional sensitivities were <0.05 microg/L, with intra- and interassay imprecision < or =8.4% and < or =13.7%, respectively. In 2 independent cohorts of healthy subjects, rec/pit ratios (median range) were 0.84 (0.09-1.32)/0.81 (0.27-1.21) (recA/pitA) and 0.68 (0.08-1.20)/0.80 (0.25-1.36) (recB/pitB), with no sex difference. In 20 recreational athletes, ratios (median SD) increased after a single injection of rhGH, reaching 350% (73%) (recA/pitA) and 400% (93%) (recB/pitB) of baseline ratios. At a moderate dose (0.033 mg/kg), mean recA/pitA and recB/pitB ratios remained significantly increased for 18 h (men) and 26 h (women). After high-dose rhGH (0.083 mg/kg), mean rec/pit ratios remained increased for 32 h (recA/pitA) and 34 h (recB/pitB) in men and were still increased after 36 h in women. Using sensitive chemiluminescence assays with preferential recognition of phGH or rhGH, detection of a single injection of rhGH was possible for up to 36 h.
Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, E.
This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).
Site-controlled crystalline InN growth from the V-pits of a GaN substrate
NASA Astrophysics Data System (ADS)
Kuo, Chien-Ting; Hsu, Lung-Hsing; Lai, Yung-Yu; Cheng, Shan-Yun; Kuo, Hao-Chung; Lin, Chien-Chung; Cheng, Yuh-Jen
2017-05-01
A site-controlled crystalline InN growth from the V-pits of a GaN substrate was investigated. The V- pits were fabricated by epitaxial lateral growth of GaN over SiO2 disks patterned on a sapphire substrate. InN crystals were found to preferably grow on the inclined {10-11} crystal planes of the V-pits. A V-pit size of 1 μm or less can provide precise site-controlled InN nucleation at the V-pit bottom, while no InN was grown on the rest of the exposed GaN surfaces. The site-controlled nucleation is attributed to the low surface energy point created by the converging six {10-11} crystal facets at the V-pit bottom. When In source supply is below a certain value, this V-pit bottom is the only location able to aggregate enough active sources to start nucleation, thereby providing site-controlled crystal growth.
Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028
NASA Astrophysics Data System (ADS)
Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu
2018-06-01
The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.
Crusius, John; Pieters, R.; Leung, A.; Whittle, P.; Pedersen, T.; Lawrence, G.; McNee, J.J.
2003-01-01
Pit lakes are becoming increasingly common in North America as well as in the rest of the world. They are created as openpit mines fill passively with ground water and surface inflows on cessation of mining activity. In many instances, the water quality in these pit lakes does not meet regulatory requirements due to a number of influences. The most important are the oxidation of sulfide minerals and the associated release of acid and metals and the flushing of soluble metals during pit filling. Examples of pit lakes with severe water-quality problems include the Berkeley Pit lake (Butte, MT) and the Liberty Pit lake (Nevada), whose waters are characterized by a pH near 3 and Cu concentrations as high as ~150 mg/L (Miller et al., 1996; Davis and Eary, 1997). The importance of the problem can be seen in the fact that some of these sites in the United States are Superfund sites.
Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy
Yitamben, Esmeralda; Butera, Robert E.; Swartzentruber, Brian S.; ...
2017-10-16
Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and healmore » by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.« less
Maertz, Josef; Kolb, Jan Philip; Klein, Thomas; Mohler, Kathrin J; Eibl, Matthias; Wieser, Wolfgang; Huber, Robert; Priglinger, Siegfried; Wolf, Armin
2018-02-01
To demonstrate papillary imaging of eyes with optic disc pits (ODP) or optic disc pit associated maculopathy (ODP-M) with ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s. To generate 3D-renderings of the papillary area with 3D volume-reconstructions of the ODP and highly resolved en face images from a single densely-sampled megahertz-OCT (MHz-OCT) dataset for investigation of ODP-characteristics. A 1.68 MHz-prototype SS-MHz-OCT system at 1050 nm based on a Fourier-domain mode-locked laser was employed to acquire high-definition, 3D datasets with a dense sampling of 1600 × 1600 A-scans over a 45° field of view. Six eyes with ODPs, and two further eyes with glaucomatous alteration or without ocular pathology are presented. 3D-rendering of the deep papillary structures, virtual 3D-reconstructions of the ODPs and depth resolved isotropic en face images were generated using semiautomatic segmentation. 3D-rendering and en face imaging of the optic disc, ODPs and ODP associated pathologies showed a broad spectrum regarding ODP characteristics. Between individuals the shape of the ODP and the appending pathologies varied considerably. MHz-OCT en face imaging generates distinct top-view images of ODPs and ODP-M. MHz-OCT generates high resolution images of retinal pathologies associated with ODP-M and allows visualizing ODPs with depths of up to 2.7 mm. Different patterns of ODPs can be visualized in patients for the first time using 3D-reconstructions and co-registered high-definition en face images extracted from a single densely sampled 1050 nm megahertz-OCT (MHz-OCT) dataset. As the immediate vicinity to the SAS and the site of intrapapillary proliferation is located at the bottom of the ODP it is crucial to image the complete structure and the whole depth of ODPs. Especially in very deep pits, where non-swept-source OCT fails to reach the bottom, conventional swept-source devices and the MHz-OCT alike are feasible and beneficial methods to examine deep details of optic disc pathologies, while the MHz-OCT bears the advantage of an essentially swifter imaging process.
Polyamide membranes with nanoscale Turing structures for water purification
NASA Astrophysics Data System (ADS)
Tan, Zhe; Chen, Shengfu; Peng, Xinsheng; Zhang, Lin; Gao, Congjie
2018-05-01
The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-09-01
In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.
Nanofiltration Membranes for Water Purification: structure-transport relationships and applications
NASA Astrophysics Data System (ADS)
Jons, Steven; Paul, Mou; Matthews, Tamlin; Hailemariam, Leaelaf
Nanofiltration (NF) membranes are used for separating salts and small neutral molecules. NF membranes show unique selectivity properties compared to reverse osmosis membranes as it can selectively pass monovalent salts and neutral molecules as a function of charge and molecular weight cut-off which are dependent on membrane characteristics and operating conditions. Dow Water & Process solutions has been a pioneer in the membrane based water purification field and Dow's role was instrumental in developing several NF membranes for different applications. However, the characterization of NF membranes and hence the development of structure-property relationship is challenging due to the nanoscale thin, crosslinked nature of the membrane. Recently significant efforts were employed to develop analytical capabilities to understand polymer structure and composition and it had been possible to achieve a structure-property relationship for NF membranes. This paper will highlight similar relationships and will also focus on the relationships of membrane structure with membrane transport properties and how this relationship influences products for different application areas such as in oil field, sweetener and minimum liquid discharge etc.
Single Etch-Pit Shape on Off-Angled 4H-SiC(0001) Si-Face Formed by Chlorine Trifluoride
NASA Astrophysics Data System (ADS)
Hatayama, Tomoaki; Tamura, Tetsuya; Yano, Hiroshi; Fuyuki, Takashi
2012-07-01
The etch pit shape of an off-angled 4H-SiC Si-face formed by chlorine trifluoride (ClF3) in nitrogen (N2) ambient has been studied. One type of etch pit with a crooked hexagonal shape was formed at an etching temperature below 500 °C. The angle of the etch pit measured from a cross-sectional atomic force microscopy image was about 10° from the [11bar 20] view. The dislocation type of the etch pit was discussed in relation to the etch pit shape and an electron-beam-induced current image.
Study on the Accident-causing of Foundation Pit Engineering
NASA Astrophysics Data System (ADS)
Shuicheng, Tian; Xinyue, Zhang; Pengfei, Yang; Longgang, Chen
2018-05-01
With the development of high-rise buildings and underground space, a large number of foundation pit projects have occurred. Frequent accidents of it cause great losses to the society, how to reduce the frequency of pit accidents has become one of the most urgent problems to be solved. Therefore, analysing the influencing factors of foundation pit engineering accidents and studying the causes of foundation pit accidents, which of great significance for improving the safety management level of foundation pit engineering and reducing the incidence of foundation pit accidents. Firstly, based on literature review and questionnaires, this paper selected construction management, survey, design, construction, supervision and monitoring as research factors, we used the AHP method and the Dematel method to analyze the weights of various influencing factors to screen indicators to determine the ultimate system of accidents caused by foundation pit accidents; Secondly, SPSS 21.0 software was used to test the reliability and validity of the recovered questionnaire data. AMOS 7.0 software was used to fit, evaluate, and explain the set model; Finally, this paper analysed the influencing factors of foundation pit engineering accidents, corresponding management countermeasures and suggestions were put forward.
Pit initiation on nitinol in simulated physiological solutions.
Pound, Bruce G
2018-05-01
Inclusions appear to play a crucial role in the initiation of pitting on nitinol, but the reason remains unclear. Furthermore, it has not been established whether the type of inclusion is a central factor. In this study, potentiodynamic polarization together with scanning electron microscopy and energy dispersive X-ray spectroscopy were used to provide more insight into the initiation of pits on electropolished nitinol wire. Corrosion was limited to a single primary pit on each of the few wire samples that exhibited breakdown. The pit contained numerous Ti 2 NiO x inclusions, but secondary pits that developed within the primary pit provided evidence that these inclusions were the sites of pit initiation. Although several theories have been proposed to account for pit initiation at inclusions in mechanically polished and electropolished nitinol, titanium depletion in the adjacent alloy matrix appears to provide the most viable explanation. The key factor appears to be the size of the inclusion and therefore the extent of titanium depletion in the alloy matrix. The type of inclusion evidently plays a secondary role at most. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1605-1610, 2018. © 2017 Wiley Periodicals, Inc.
The effect of pits of different sizes on ultrasonic shear wave signals
NASA Astrophysics Data System (ADS)
Howard, Richard; Cegla, Frederic
2018-04-01
The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.
NASA Astrophysics Data System (ADS)
Shekhar, Adarsh
Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in nanoporous silica are different from that of bulk water, and insight into the properties of confined water is important for our understanding of many geological and biological processes. Nanoporous silica has a wide range of technological applications because it is easy to tune the size of pores and their morphologies and to functionalize pore surfaces with a variety of molecular moieties. Nanoporous silica is used in catalysis, chromatography, anticorrosion coatings, desalination membranes, and as drug delivery vehicles. We use reactive molecular dynamics to study the structure and dynamics of nanoconfined water between 100 and 300 K
CALL FOR ABSTRACTS - PIT LAKES 2004
This call for abstracts is for the 11/16-18/2004 Pit Lakes 2004 meeting held in Reno, NV. This conference will provide a forum for the exchange of scientific information on current domestic and international pit lake approaches, including pit lakes from arid and wet regions throu...
NASA Astrophysics Data System (ADS)
Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun
2017-10-01
The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Walter, T. R.; Schöpfer, M. P. J.; Walsh, J. J.; Orr, T.; Poland, M.
2012-04-01
In March 2011, a spectacular fissure eruption on Kilauea was associated with a major collapse event in the highly-active Puu Oo crater. Time-lapse cameras maintained by the Hawaii Volcano Observatory captured views of the crater in the moments before, during, and after the collapse. The 2011 event hence represents a unique opportunity to characterize the surface deformation related to the onset of a pit crater collapse and to understand what factors influence it. To do so, we used two approaches. First, we analyzed the available series of camera images by means of digital image correlation techniques. This enabled us to gain a semi-quantitative (pixel-unit) description of the surface displacements and the structural development of the collapsing crater floor. Secondly, we ran a series of 'true-scale' numerical pit-crater collapse simulations based on the two-dimensional Distinct Element Method (2D-DEM). This enabled us to gain insights into what geometric and mechanical factors could have controlled the observed surface displacement pattern and structural development. Our analysis of the time-lapse images reveals that the crater floor initially gently sagged, and then rapidly collapsed in association with the appearance of a large ring-like fault scarp. The observed structural development and surface displacement patterns of the March 2011 Puu Oo collapse are best reproduced in DEM models with a relatively shallow magma reservoir that is vertically elongated, and with a crater floor rock mass that is reasonably strong. In combining digital image correlation with DEM modeling, our study highlights the future potential of these relatively new techniques for understanding physical processes at active volcanoes.
The avian prechordal head region: a morphological study.
Seifert, R; Jacob, M; Jacob, H J
1993-01-01
The axial mesoderm of the anterior head region was investigated in young chick and quail embryos by light and electron microscopy. Semithin sections showed that the axial head mesoderm consists of the head process and prechordal mesoderm. At the anterior end of the prechordal mesoderm, a group of columnar epithelial cells formed a pit-like structure. The bases of these columnar cells extended to the neural plate, thus limiting the prechordal mesoderm anteriorly. The cells lining the pit-like structure at its anterior end joined a cell accumulation made up of cells of mesenchymal character. Electron microscopy revealed that the columnar cells forming the pit-like structure were covered by a basal lamina which was discontinuous on its anterior aspect. No basal lamina was recognisable between the columnar epithelial cells and mesenchymal cells joining them anteriorly. The columnar epithelial cells bordering the prechordal mesoderm anteriorly were therefore assumed to be part of the endodermal germ layer. In agreement with the findings of other authors, it is proposed to term these axially located columnar cells of the endoderm the prechordal plate and to distinguish them from the prechordal mesoderm arising during gastrulation. For the mesenchymal cell accumulation anterior to the prechordal plate, participation in the formation of the prosencephalic mesenchyme is assumed. This implies that the definitive endodermal germ layer, like the ectodermal one represented by the neural crest, may also be able to contribute to mesenchyme formation in the head. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 PMID:8270478
Surface Dynamics of Unipolar Arcing
1989-12-01
slioising bulk copper deposition. (6.4X)( i10 ) Figure 20. Copper deposition on a steel surface shoiing a cor relation bet’seeni greater pitting...pit’s depth and its width. 1. Arc damage - a heating phenomenon To study the effect of the same laser shot. and the same unipolar arc. on two...between pit depth and diameter for pitting on the copper films. This conclusion comes from the fact that in many cases pits with relatively smaller
NASA Astrophysics Data System (ADS)
Jung, Jongil; Hong, Ik-Seon; Cho, Eunjin; Yi, Yu
2016-03-01
Caves can serve as major outposts for future human exploration of the Moon and Mars. In addition, caves can protect people and electronic equipment from external hazards such as cosmic ray radiation and meteorites impacts and serve as a shelter. Numerous pit craters have been discovered on the Moon and Mars and are potential entrances to caves; the principal topographic features of pit craters are their visible internal floors and pits with vertical walls. We have devised two topographical models for investigating the relationship between the topographical characteristics and the inner void of pit craters. One of our models is a concave floor void model and the other is a convex floor tube model. For each model, optical photographs have been obtained under conditions similar to those in which optical photographs have been acquired for craters on the Moon and Mars. Brightness profiles were analyzed for determining the profile patterns of the void pit craters. The profile patterns were compared to the brightness profiles of Martian pit craters, because no good-quality images of lunar pit craters were available. In future studies, the model profile patterns will be compared to those of lunar pit craters, and the proposed method will likely become useful for finding lunar caves and consequently for planning lunar bases for manned lunar expeditions.
Pluto: Pits and mantles on uplands north and east of Sputnik Planitia
NASA Astrophysics Data System (ADS)
Howard, Alan D.; Moore, Jeffrey M.; White, Oliver L.; Umurhan, Orkan M.; Schenk, Paul M.; Grundy, William M.; Schmitt, Bernard; Philippe, Sylvain; McKinnon, William B.; Spencer, John R.; Beyer, Ross A.; Stern, S. Alan; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; New Horizons Science Team
2017-09-01
The highlands region north and east of Sputnik Planitia can be subdivided into seven terrain types based on their physiographic expression. The northern rough uplands are characterized by jagged uplands and broad troughs, and it may contain a deeply-eroded ancient mantle. Dissected terrain has been interpreted to have been eroded by paleo-glaciation. The smooth uplands and pits terrain contains broad, rolling uplands surrounding complexes of pits, some of which contain smooth floors. The uplands are mantled by smooth-surfaced deposits possibly derived from adjacent pits through low-power explosive cryovolcanism or through slow vapor condensation. The eroded smooth uplands appear to have originally been smooth uplands and pits terrain modified by small-scale sublimation pitting. The bright pitted uplands features intricate texturing by reticulate ridges that may have originated by sublimation erosion, volatile condensation, or both. The bladed terrain is characterized by parallel ridges oriented north-south and is discussed in a separate paper. The dark uplands are mantled with reddish deposits that may be atmospherically deposited tholins. Their presence has affected long-term landform evolution. Widespread pit complexes occur on most of the terrain units. Most appear to be associated with tectonic lineations. Some pits are floored by broad expanses of ices, whereas most feature deep, conical depressions. A few pit complexes are enclosed by elevated rims of uncertain origin.
Chavkin, Nicholas W.; Jun Chia, Jia; Crouthamel, Matthew H.; Giachelli, Cecilia M.
2015-01-01
Vascular calcification (VC) is prevalent in chronic kidney disease and elevated serum inorganic phosphate (Pi) is a recognized risk factor. The type III sodium-dependent phosphate transporter, PiT-1, is required for elevated Pi-induced osteochondrogenic differentiation and matrix mineralization in vascular smooth muscle cells (VSMCs). However, the molecular mechanism(s) by which PiT-1 promotes these processes is unclear. In the present study, we confirmed that the Pi concentration required to induce osteochondrogenic differentiation and matrix mineralization of mouse VSMCs was well above that required for maximal Pi uptake, suggesting a signaling function of PiT-1 that was independent of Pi transport. Elevated Pi-induced signaling via ERK1/2 phosphorylation was abrogated in PiT-1 deficient VSMCs, but could be rescued by wild-type (WT) and a Pi transport-deficient PiT-1 mutant. Furthermore, both WT and transport-deficient PiT-1 mutants promoted osteochondrogenic differentiation as measured by decreased SM22α and increased osteopontin mRNA expression. Finally, compared to vector alone, expression of transport-deficient PiT-1 mutants promoted VSMC matrix mineralization, but not to the extent observed with PiT-1 WT. These data suggest that both Pi uptake-dependent and -independent functions of PiT-1 are important for VSMC processes mediating vascular calcification. PMID:25684711
Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits
NASA Astrophysics Data System (ADS)
Hong, Ik-Seon; Yi, Yu; Kim, Eojin
2014-06-01
Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.
ENWRIGHT, JOHN F.; KAWECKI-CROOK, MARGARET A.; VOSS, TY C.; SCHAUFELE, FRED; DAY, RICHARD N.
2010-01-01
The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, in cluding CCAAT/enhancer binding protein α (C/ EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPα with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPα induced PRL gene transcription in pituitary GHFT1–5 cells, whereas the coexpression of Pit-1 and C/EBPα in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPα, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPα from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPα. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPα. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPα, was itself recruited by C/EBPα to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity. PMID:12554749
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.; Gallaway, J.; Chaikina, O.
2011-12-01
Herein we conduct a followup investigation to an earlier research project in which we developed a numerical model of tree population dynamics, tree throw, and sediment transport associated with the formation of pit-mound features for Hawk Creek watershed, Canadian Rockies (Gallaway et al., 2009). We extend this earlier work by exploring the most appropriate transport relations to simulate the diffusion over time of newly-formed pit-pound features due to tree throw. We combine our earlier model with a landscape development model that can incorporate these diffusive transport relations. Using these combined models, changes in hillslope microtopography over time associated with the formation of pit-mound features and their decay will be investigated. The following ideas have motivated this particular study: (i) Rates of pit-mound degradation remain a source of almost complete speculation, as there is almost no long-term information on process rates. Therefore, we will attempt to tackle the issue of pit-mound degradation in a methodical way that can guide future field studies; (ii) The degree of visible pit-mound topography at any point in time on the landscape is a joint function of the rate of formation of new pit-mound features due to tree death/topple and their magnitude vs. the rate of decay of pit-mound features. An example of one interesting observation that arises is the following: it appears that pit-mound topography is often more pronounced in some eastern North American forests vs. field sites along the eastern slopes of the Canadian Rockies. Why is this the case? Our investigation begins by considering whether pit-mound decay might occur by linear or nonlinear diffusion. What differences might arise depending on which diffusive approach is adopted? What is the magnitude of transport rates associated with these possible forms of transport relations? We explore linear and nonlinear diffusion at varying rates and for different sizes of pit-mound pairs using a numerical modelling approach. Model results suggest that longevity of pit-mound features is dependent on: (i) magnitude/dimensions of initial pit-mound features for forests in different regions; (ii) defining appropriate pit-mound diffusion rates for these different forests (unfortunately, almost no appropriate field observations exist for calibration of these transport relations). In the next stage of this research, we will combine our earlier model of forest disturbance/tree population dynamics, tree throw and pit-mound formation with the numerical model LandMod (Martin, 1998, 2000, 2007); the latter will be used to simulate pit-mound diffusion over time. In this way, we can observe changes in hillslope microtopographic signatures over time that are found in different forest settings.
Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo
2007-01-01
Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the future. PMID:17551577
Dallai, R; Lupetti, P; Lane, N J
1996-10-01
Cultures of the rotifer Brachionus plicatilis were examined with regard to their interepithelial junctions after infiltration with the extracellular tracer lanthanum, freeze-fracturing or quick-freeze deep-etching. The lateral borders between ciliated cells have an unusual apical adhering junction. This apical part of their intercellular cleft looks desmosome-like, but it is characterized by unusual intramembranous E-face clusters of particles. Deep-etching reveals that these are packed together in short rows which lie parallel to one another in orderly arrays. The true membrane surface in these areas features filaments in the form of short ribbons; these are produced by projections, possibly part of the glycocalyx, emerging from the membranes, between which the electron-dense tracer lanthanum permeates. These projections appear to overlap with each other in the centre of the intercellular cleft; this would provide a particularly flexible adaptation to maintain cell-cell contact and coordination as a consequence. The filamentous ribbons may be held in position by the intramembranous particle arrays since both have a similar size and distribution. These contacts are quite different from desmosomes and appear to represent a distinct new category of adhesive cell-cell junction. Beneath these novel structures, conventional pleated septate junctions are found, exhibiting the undulating intercellular ribbons typical of this junctional type, as well as the usual parallel alignments of intramembranous rows of EF grooves and PF particles. Below these are found gap junctions as close-packed plaques of intramembranous particles on either the P-face or E-face. After freeze-fracturing, the complementary fracture face to the particles shows pits, usually on the P-face, arrayed with a very precise hexagonal pattern.
Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N
2016-01-01
Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted drug delivery.
Qiao, Wenjie; Medina, Vicente; Falk, Bryce W.
2017-01-01
Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses. PMID:29021801
Miller, L L; Rasmussen, J B; Palace, V P; Sterling, G; Hontela, A
2013-07-01
Pit lakes are a common reclamation strategy for open pit mines; however, there is a concern about their water quality and suitability as fish habitat because they are often contaminated by metals or metalloids. This study assessed the exposure of fish and invertebrates to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, were stocked into two thermal coal pit lakes (water Se < 2 μg/L, low water Se) and two metallurgical coal pit lakes (water Se > 15 μg/L, high water Se). Se accumulation in stocked fish and concentrations in invertebrates were characterized over a period of 2 years. In the metallurgical pits, invertebrates had higher Se concentrations and fish accumulated Se to higher levels (exceeding USEPA tissue Se guidelines) than biota in the thermal pits. Rainbow and brook trout accumulated similar concentrations of Se in their muscle and exhibited a similar relationship between whole-body and muscle Se concentrations. These results may be used by resource managers to assess compliance with whole-body tissue Se guidelines and to determine if pit lakes in coal mining areas pose a significant Se risk to wildlife or human health. The high Se exposure in metallurgical coal pits indicates that under the current mining and reclamation strategy, these lakes are not suitable for management as recreational "put and take" fisheries.
Sato, Kazuhide; Nagaya, Tadanobu; Choyke, Peter L.; Kobayashi, Hisataka
2015-01-01
Pleural metastases are common in patients with advanced thoracic cancers and are a cause of considerable morbidity and mortality yet is difficult to treat. Near Infrared Photoimmunotherapy (NIR-PIT) is a cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of pleural disseminated non-small cell lung carcinoma (NSCLC). In vitro and in vivo experiments were conducted with a HER2, luciferase and GFP expressing NSCLC cell line (Calu3-luc-GFP). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized. In vitro NIR-PIT cytotoxicity was assessed with dead staining, luciferase activity, and GFP fluorescence intensity. In vivo NIR-PIT was performed in mice with tumors implanted intrathoracic cavity or in the flank, and assessed by tumor volume and/or bioluminescence and fluorescence thoracoscopy. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. In vivo NIR-PIT led significant reductions in both tumor volume (p = 0.002 vs. APC) and luciferase activity (p = 0.0004 vs. APC) in a flank model, and prolonged survival (p < 0.0001). Bioluminescence indicated that NIR-PIT lead to significant reduction in pleural dissemination (1 day after PIT; p = 0.0180). Fluorescence thoracoscopy confirmed the NIR-PIT effect on disseminated pleural disease. In conclusion, NIR-PIT has the ability to effectively treat pleural metastases caused by NSCLC in mice. Thus, NIR-PIT is a promising therapy for pleural disseminated tumors. PMID:25897335
Ryan, Kevin J.; Zydlewski, Joseph D.; Calhoun, Aram J.K.
2014-01-01
Pure-diploid Blue-spotted Salamanders (Ambystoma laterale) are the smallest members of the family Ambystomatidae which makes tracking with radio-transmitters difficult because of small battery capacity. Passive integrated transponder (PIT) tags provide another tracking approach for small fossorial animals such as salamanders. We evaluated the use of portable PIT tag readers (PIT packs) to detect PIT tag-implanted pure-diploid Blue-spotted Salamanders in situ. We also examined the detection probability of salamanders with PIT tags held in enclosures in wetland and terrestrial habitats, as well as the underground detection range of PIT packs by scanning for buried tags not implanted into salamanders. Of the 532 PIT tagged salamanders, we detected 6.84% at least once during scanning surveys. We scanned systematically within a 13.37 ha area surrounding a salamander breeding pool on 34 occasions (~119 hours of survey time) and detected PIT tags 74 times. We detected 55% of PITs in tagged salamanders and 45%were expelled tags. We were able to reliably detect buried PIT tags from 1–22cm below the ground surface. Because nearly half the locations represented expelled tags, our data suggest this technique is inappropriate for future studies of pure-diploid Blue-spotted Salamanders, although it may be suitable for polyploid Blue-spotted Salamanders and other ambystomatid species, which are larger in size and may exhibit higher tag retention rates. It may also be prudent to conduct long-term tag retention studies in captivity before tagging and releasing salamanders for in situ study, and to double-mark individuals.
Cheng, Chi-Yuan; Han, Songi
2013-01-01
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
NASA Astrophysics Data System (ADS)
Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal
2018-05-01
Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.
NASA Astrophysics Data System (ADS)
Shrive, Jason D. A.; Krull, Ulrich J.
1995-01-01
In the work reported here, surface concentrations of 0.027 and 0.073 molecules nm-2 of the fluorescent membrane probe molecule nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine (NBD-PE) were shown to yield optimum sensitivity for fluorimetric transduction of membrane structural perturbations for lipid membrane-based biosensor development. These optima were obtained through correlation of experimental data with theoretical predictions of optimum surface concentrations based on a model for NBD-PE self quenching previously published by our group. It was also determined that membrane structural heterogeneity improves the sensitivity of NBD-PE labeled membrane transducers. Together with fluorescence microscopy, observations of surface potential change upon compression or expansion of phosphatidylcholine (PC)/phosphatidic acid (PA) monolayers were used to qualitatively indicate the degree of structural heterogeneity in these membranes. It was determined that sub-microscopic domains must exist in microscopically homogeneous egg PC/egg PA membranes in order to facilitate the observed NBD-PE self-quenching responses upon alteration of bulk pH and therefore, membrane surface electrostatics and structure.
Shan, Yuping; Wang, Hongda
2015-06-07
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A
2014-05-09
The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.
Rosenbaek, Lena L.; Kortenoeven, Marleen L. A.; Aroankins, Takwa S.; Fenton, Robert A.
2014-01-01
The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20–30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812
Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.
Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu
2016-05-01
Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.
Yue, Hai-Yuan; Bieberich, Erhard; Xu, Jianhua
2017-08-01
At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca 2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Analysis of Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.
2011-01-01
To synchronize clocks between spacecraft in proximity, the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol has been proposed. PITS is based on the NTP Interleaved On-Wire Protocol and is capable of being adapted and integrated into CCSDS Proximity-1 Space Link Protocol with minimal modifications. In this work, we will discuss the correctness and liveness of PITS. Further, we analyze and evaluate the performance of time synchronization latency with various channel error rates in different PITS operational modes.
MEVTV Workshop on Tectonic Features on Mars
NASA Technical Reports Server (NTRS)
Watters, Thomas R. (Editor); Golombek, Matthew P. (Editor)
1989-01-01
The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed.
Giant-geode endowment of tumuli in the Veia Alta flow, Ametista do Sul
NASA Astrophysics Data System (ADS)
Hartmann, L. A.; Pertille, J.; Duarte, L. C.
2017-08-01
Tumuli are a common feature of pahoehoe basaltic flows, interspersed with pits, and furnished the necessary volume of rock in the Paraná volcanic province for hydrothermal alteration and ballooning to form large cavities (1-2 m common). Filling by amethyst and other minerals resulted in the largest world deposit of geodes, Ametista do Sul. The flat-lying fracture positioned 1 m below the 2-3 m thick geodic level crosses the plateau and is a major guide for exploration and gallery opening. The geodes are limited on the top by the platy joint layer, which is covered by an auto-breccia with undulating lower limit. This wave mimicks and is internal to the structure of tumuli and pits at the surface. This field-oriented survey of galleries selected out of 300 active mines resulted in the description of the internal structure of the remarkable Veia Alta pahoehoe flow, in addition to observations in Uruguay.
NASA Astrophysics Data System (ADS)
Sugimoto, Kohei; Okada, Narihito; Kurai, Satoshi; Yamada, Yoichi; Tadatomo, Kazuyuki
2018-06-01
We evaluated the electrical properties of InGaN-based light-emitting diodes (LEDs) with a superlattice (SL) layer or a mid-temperature-grown GaN (MT-GaN) layer just beneath the multiple quantum wells (MQWs). Both the SL layer and the MT-GaN layer were effective in improving the electroluminescence (EL) intensity. However, the SL layer had a more pronounced effect on the EL intensity than did the MT-GaN layer. Based on a comparison with devices with an MT-GaN layer, the overall effects of the SL could be separated into the effect of the V-pits and the structural or compositional effect of the SL. It was observed that the V-pits formed account for 30% of the improvement in the LED performance while the remaining 70% can be attributed to the structural or compositional effect of the SL.
High efficiency low cost thin film silicon solar cell design and method for making
Sopori, B.L.
1999-04-27
A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.
A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway
Erdmann, Kai S.; Mao, Yuxin; McCrea, Heather J.; Zoncu, Roberto; Lee, Sangyoon; Paradise, Summer; Modregger, Jan; Biemesderfer, Daniel; Toomre, Derek; De Camilli, Pietro
2007-01-01
Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, whose manifestations include mental retardation and renal Fanconi syndrome. OCRL has been implicated in membrane traffic, but disease mechanisms remain unclear. We show that OCRL visits late stage endocytic clathrin coated pits and binds the Rab5 effector APPL1 on peripheral early endosomes. The interaction with APPL1, which is mediated by the ASH-RhoGAP-like domains of OCRL and is abolished by disease mutations, provides a link to protein networks implicated in the reabsorptive function of kidney and in traffic and signaling of growth factor receptors in brain. Crystallographic studies reveal a role of the ASH-RhoGAP-like domains in positioning the phosphatase domain at the membrane interface and a clathrin box protruding from the RhoGAP-like domain. Our results support a role of OCRL in the early endocytic pathway consistent with the predominant localization of its preferred substrates, PI(4,5)P2 and PI(3,4,5)P3, at the cell surface. PMID:17765681
New tools for “hot-wiring” clathrin-mediated endocytosis with temporal and spatial precision
2017-01-01
Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is difficult because the initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. A clathrin-binding protein fragment (“hook”) is inducibly attached to an “anchor” protein at the plasma membrane, which triggers the formation of new clathrin-coated vesicles. Our design incorporates temporal and spatial control by the use of chemical and optogenetic methods for inducing hook–anchor attachment. Moreover, the cargo is defined. Because several steps in vesicle creation are bypassed, we term it “hot-wiring.” We use hot-wired endocytosis to describe the functional interactions between clathrin and AP2. Two distinct sites on the β2 subunit, one on the hinge and the other on the appendage, are necessary and sufficient for functional clathrin engagement. PMID:28954824
Miller, Sharon E.; Mathiasen, Signe; Bright, Nicholas A.; Pierre, Fabienne; Kelly, Bernard T.; Kladt, Nikolay; Schauss, Astrid; Merrifield, Christien J.; Stamou, Dimitrios; Höning, Stefan; Owen, David J.
2015-01-01
Summary The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake. PMID:25898166
Salmon, D; Geuskens, M; Hanocq, F; Hanocq-Quertier, J; Nolan, D; Ruben, L; Pays, E
1994-07-15
In T. brucei, a transferrin-binding protein has been found to share sequence homology with pESAG-7 and -6, the products of two related genes present in the VSG gene polycistronic transcription unit. When expressed in Xenopus oocytes, they appear as N-glycosylated proteins secreted in the medium (pESAG-7) and GPI anchored to the membrane (pESAG-6). These proteins are able to homo- or heterodimerize, probably through association in the same orientation. Only heterodimers can bind Tf, possibly two molecules per dimer. A comparison of Tf binding to pESAG-7/6-expressing oocytes and trypanosomes suggests that pESAG-7/6 is the Tf receptor of the parasite. In trypanosomes, the majority of pESAG-7/6 is released from the membrane and associates, together with Tf, with a glycosylated matrix present in the lumen of the flagellar pocket. Both pESAG-7/6 and Tf are internalized via coated pits and vesicles. These observations suggest a novel mode of Tf binding and uptake in trypanosomes.
A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis
Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.
2013-01-01
Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689
Zooming in on Pluto Pattern of Pits
2015-12-10
On July 14, 2015, the telescopic camera on NASA's New Horizons spacecraft took the highest resolution images ever obtained of the intricate pattern of "pits" across a section of Pluto's prominent heart-shaped region, informally named Tombaugh Regio. Mission scientists believe these mysterious indentations may form through a combination of ice fracturing and evaporation. The scarcity of overlying impact craters in this area also leads scientists to conclude that these pits -- typically hundreds of yards across and tens of yards deep -- formed relatively recently. Their alignment provides clues about the ice flow and the exchange of nitrogen and other volatile materials between the surface and the atmosphere. The image is part of a sequence taken by New Horizons' Long Range Reconnaissance Imager (LORRI) as the spacecraft passed within 9,550 miles (15,400 kilometers) of Pluto's surface, just 13 minutes before the time of closest approach. The small box on the global view shows the section of the region imaged in the southeast corner of the giant ice sheet informally named Sputnik Planum. The magnified view is 50-by-50 miles (80-by-80 kilometers) across. The large ring-like structure near the bottom right of the magnified view -- and the smaller one near the bottom left -- may be remnant craters. The upper-left quadrant of the image shows the border between the relatively smooth Sputnik Planum ice sheet and the pitted area, with a series of hills forming slightly inside this unusual "shoreline." http://photojournal.jpl.nasa.gov/catalog/PIA20212
Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo
2005-07-01
The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.
Zhang, L; Zhou, R; Niu, M; Zheng, J; Wu, C
2015-11-01
Artificial pit muds (APMs) is produced by peats, aged pit muds, yellow and black clays etc. and is one of essential factors for Luzhou-flavour liquor production. The microbial community of APMs significantly influence the quality of Luzhou-flavour liquor. The aim of this study was to investigate the differences in bacterial, archaeal and fungal community of APMs, starters and materials. Multiphase culture-independent technology were employed in this study, including nested PCR-denaturing gradient gel electrophoresis (nested PCR-DGGE), phospholipid fatty acid (PLFA), phospholipid ether lipids (PLEL) and fluorescence in situ hybridization (FISH) analysis. Results suggested that the microbial diversity significantly changed under environmental stress and different culture patterns during APMs cultivation. The dominant bacteria in APMs mainly fell into Clostridiales, Lactobacillales, Bacteroidales and Rhizobiales, Archaea affiliated with Methanomicrobiales and Methanosarcinales, and fungi belonged to Saccharomycetales and Eurotiales. Furthermore, the microbial community structures of APMs cultured by ground pile pattern were more similar with that of aged pit muds, meanwhile, the relative bands intensities of microbes, which are the main contributors for liquor brewing, increased with the culture times. Not only the niche selection and biogeochemical properties of APMs, but also the mutual collaboration and constraint between different microbes may result in enriching different liquor-brewing microbes into APMs. APM cultivation technology was necessary to promote enriching functional liquor-brewing microbes into APMs. These results may facilitate understanding the microbial succession during APMs manufacture. © 2015 The Society for Applied Microbiology.
Earth Observations taken by the Expedition 15 Crew
2007-09-20
ISS015-E-29867 (20 Sept. 2007) --- Bingham Canyon Mine, Utah is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Bingham Canyon Mine (center) located approximately 32 kilometers to the southeast of Salt Lake City, UT is one of the largest open-pit mines in the world, measuring over 4 kilometers wide and 1,200 meters deep. The mine exploits a porphyry copper, a type of geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes (forming an igneous rock with large crystals in a fine-grained matrix, known as a porphyry), hot fluids circulate through the magma and surrounding rocks via fractures. This process of hydrothermal alteration typically forms copper-bearing and other minerals in spatial patterns that a geologist recognizes as a potential porphyry copper deposit. Parallel benches (stepped terraces), visible along the western pit face (center left), range from 16 to 25 meters high - these provide access for equipment to work the rock face, as well as maintaining stability of the sloping pit walls. A dark, larger roadway is also visible directly below the benches. Brown to gray, flat topped hills of gangue (waste rock) surround the pit, and are thrown into sharp relief by shadows and the oblique viewing angle of this image. Leachate reservoirs associated with ore processing are visible to the south of the city of Bingham Canyon, UT (right).
Nucleation Of Ge 3D-islands On Pit-patterned Si Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, P. L.; Smagina, J. V.; Vlasov, D. Yu.
2011-12-23
Joint experimental and theoretical study of Ge nanoislands growth on pit-patterned Si substrate is carried out. Si substrates that have been templated by means of electron beam lithography and reactive ion etching have been used to grow Ge by molecular-beam epitaxy. Atomic-force-microscopy studies show that at Si(100) substrate temperature 550 deg. C, Ge nanoislands are formed at the pits' edges, rather than between the pits. The effect is interpreted in terms of energy barrier, that is formed near the edge of a pit and prevents Ge transport inside the pit. By molecular dynamics calculations the value of the energy barriermore » 0.9 eV was obtained.« less
Corrosion behavior of stainless steel weldments in physiological solutions
NASA Astrophysics Data System (ADS)
Farooq, A.; Azam, M.; Deen, K. M.
2018-01-01
In this study corrosion behavior of TIG welded 316L stainless steel plates in simulated biological solutions is investigated. The mechanical testing results showed slight decrease in ductility after welding and the fracture surface represented mixed cleavage and inclusions containing dimple structure. The heat affected and weld zone (WZ) demonstrated higher corrosion potential and relatively large pitting tendency than base metal (BM) in both Hank’s and Ringer’s solution. The formation of delta (δ) ferrite in the heat affected and WZ decreased the corrosion resistance as confirmed from potentiodynamic Tafel scans. The decrease in pitting resistance and lower protection tendency of the WZ compared to BM and heat affected zone was also quantified from the cyclic polarization trends.
Polymeric water filtration membranes
NASA Astrophysics Data System (ADS)
Paul, Mou
Nanofiltration (NF) membranes are used for separating salts and small neutral molecules. NF membranes show unique selectivity properties compared to reverse osmosis membranes as it can selectively pass monovalent salts and neutral molecules as a function of charge and molecular weight cut-off which are dependent on membrane characteristics and operating conditions. Dow Water and Process solutions has been a pioneer in the membrane based water purification field and Dow's role was instrumental in developing several NF membranes for different applications. However, the characterization of NF membranes and hence the development of structure-property relationship is challenging due to the nanoscale thin, crosslinked nature of the membrane. Recently significant efforts were employed to develop analytical capabilities to understand polymer structure and composition and it had been possible to achieve a structure-property relationship for NF membranes. This paper will highlight similar relationships and will also focus on the relationships of membrane structure with membrane transport properties and how this relationship influences products for different application areas such as in oil field, sweetener and minimum liquid discharge etc.
Corrosion and corrosion fatigue of airframe aluminum alloys
NASA Technical Reports Server (NTRS)
Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.
1994-01-01
Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.
NASA Astrophysics Data System (ADS)
Wang, Min-Shuai; Huang, Xiao-Jing
2013-08-01
We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN-based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaN-based light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal—organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.
Improving Pit Vehicle Ecology Safety
NASA Astrophysics Data System (ADS)
Koptev, V. Yu; Kopteva, A. V.
2018-05-01
The article discloses the ways to improve the ecological safety of a pit transport: reducing harmful substance concentrations in exhaust gases, implementation of the ecological certificate of the dumping truck, taking into account the operation of the dumping truck actual work, choosing the best model and comparing ecological characteristics of pit lifters at deep pits.
Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V
2007-01-01
Somatotrophs are the only pituitary cells that express Ret, GFRα1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCδ, JNK, c/EBPα and CREB induced by a complex of Ret, caspase 3 and PKCδ. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas. PMID:17380130
Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V
2007-04-18
Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.
Huang, Yongfang; Gang, Tieqiang; Chen, Lijie
2017-01-01
For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ) and pit depth (d) with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively. PMID:28772758
NASA Astrophysics Data System (ADS)
Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping
2016-11-01
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
Le Luyer, Mona; Coquerelle, Michael; Rottier, Stéphane; Bayle, Priscilla
2016-01-01
Variations in the dental crown form are widely studied to interpret evolutionary changes in primates as well as to assess affinities among human archeological populations. Compared to external metrics of dental crown size and shape, variables including the internal structures such as enamel thickness, tissue proportions, and the three-dimensional shape of enamel-dentin junction (EDJ), have been described as powerful measurements to study taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to providing good estimate of phenotypic distances within/across archeological samples, these internal tooth variables may help to understand phylogenetic, functional, and developmental underlying causes of variation. In this study, a high resolution microtomographic-based record of upper permanent second molars from 20 Neolithic individuals of the necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study aims to compare interindividual dental variations with burial practices and chronocultural parameters, and suggest underlying causes of these dental variations. From the non-invasive characterization of internal tooth structure, differences have been found between individuals buried in pits with alcove and those buried in pits with container and pits with wattling. Additionally, individuals from early and recent phases of the necropolis have been distinguished from those of the principal phase from their crown tissue proportions and EDJ shape. The results suggest that the internal tooth structure may be a reliable proxy to track groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn tip (corresponding to the hypocone). Environmental, developmental and/or functional underlying causes might be suggested for the origin of phenotypic differences shared by these individuals buried in alcoves.
NASA Astrophysics Data System (ADS)
Klompmaker, Adiël A.; Portell, Roger W.; van der Meij, Sancia E. T.
2016-03-01
Members of the Cryptochiridae are small, fragile, symbiotic crabs that live in domiciles in modern corals. Despite their worldwide occurrence with over 50 species known today, their fossil record is unknown. We provide the first unambiguous evidence of cryptochirids in the fossil record through their crescentic pits, typical for certain cryptochirids, in Western Atlantic fossil corals, while the Eocene genus Montemagrechirus is excluded from the Cryptochiridae and referred to Montemagrechiridae fam. nov. Nine Pleistocene corals with crescentic pits originate from Florida (USA), and single specimens with pits come from the late Pleistocene of Cuba and the late Pliocene of Florida, all of which are measured for growth analyses. These pits represent trace fossils named Galacticus duerri igen. nov., isp. nov. A study of modern cryptochirid domicile shape (crescentic pit, circular-oval pit, or a true gall) shows that species within crab genera tend to inhabit the same pit shape. Crescentic pits in corals occur not only in the Western Atlantic today, but also in the Indo-West Pacific and in the Eastern Pacific. Thus, examination of Cenozoic fossil coral collections from these regions should yield further examples of cryptochirid pits, which would help to constrain the antiquity of this cryptic crab family.
NASA Astrophysics Data System (ADS)
Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang
2018-05-01
The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.
Methodology of selecting dozers for lignite open pit mines in Serbia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stojanovic, D.; Ignjatovic, D.; Kovacevic, S.
1996-12-31
Apart from the main production processes (coal and overburden mining, rail conveyors transportation and storage of excavated masses) performed by great-capacity mechanization at open pit mines, numerous and different auxiliary works, that often have crucial influence on both the work efficiency of main equipment and the maintenance of optimum technical conditions of machines and plants covering technological system of open pit, are present. Successful realization of work indispensably requires a proper and adequate selection of auxiliary machines according to their type quantity, capacity, power etc. thus highly respecting specific conditions existing at each and every open pit mine. A dozermore » is certainly the most important and representative auxiliary machine at single open pit mine. It is widely used in numerous works that, in fact, are preconditions for successful work of the main mechanization and consequently the very selection of a dozer ranges among the most important operations when selecting mechanization. This paper presents the methodology of dozers selection when lignite open pit mines are concerned. A mathematical model defining the volume of work required for dozers to perform at open pit mines and consequently the number of necessary dozers was designed. The model underwent testing in practice at big open pit mines and can be used in design of future open pits mines.« less
Shewchuk, Brian M.; Ho, Yugong; Liebhaber, Stephen A.; Cooke, Nancy E.
2006-01-01
Activation of the human growth hormone (hGH-N) gene in pituitary somatotropes is mediated by a locus control region (LCR). This LCR is composed of DNase I-hypersensitive sites (HS) located −14.5 kb to −32 kb relative to the hGH-N promoter. HSI, at −14.5 kb, is the dominant determinant of hGH-N expression and is essential for establishment of a 32-kb domain of histone acetylation that encompasses the active hGH locus. This activity is conferred by three binding sites for the POU domain transcription factor Pit-1. These Pit-1 elements are sufficient to activate hGH-N expression in the mouse pituitary. In contrast, Pit-1 sites at the hGH-N promoter are consistently unable to mediate similar activity. In the present study, we demonstrate that the functional difference between the promoter-proximal and the HSI Pit-1 binding sites can be attributed in part to a single base difference. This base affects the conformation of the Pit-1/DNA complex, and reciprocal exchange of the divergent bases between the two sets of Pit-1 elements results in a partial reversal of their transgenic activities. These data support a model in which the Pit-1 binding sites in the hGH LCR allosterically program the bound Pit-1 complex for chromatin activating functions. PMID:16914737
Im, Kiho; Lee, Jong-Min; Jeon, Seun; Kim, Jong-Heon; Seo, Sang Won; Na, Duk L; Grant, P Ellen
2013-01-01
Sulcal pit analysis has been providing novel insights into brain function and development. The purpose of this study was to evaluate the reliability of sulcal pit extraction with respect to the effects of scan session, scanner, and surface extraction tool. Five subjects were scanned 4 times at 3 MRI centers and other 5 subjects were scanned 3 times at 2 MRI centers, including 1 test-retest session. Sulcal pits were extracted on the white matter surfaces reconstructed with both Montreal Neurological Institute and Freesurfer pipelines. We estimated similarity of the presence of sulcal pits having a maximum value of 1 and their spatial difference within the same subject. The tests showed high similarity of the sulcal pit presence and low spatial difference. The similarity was more than 0.90 and the spatial difference was less than 1.7 mm in most cases according to different scan sessions or scanners, and more than 0.85 and about 2.0 mm across surface extraction tools. The reliability of sulcal pit extraction was more affected by the image processing-related factors than the scan session or scanner factors. Moreover, the similarity of sulcal pit distribution appeared to be largely influenced by the presence or absence of the sulcal pits on the shallow and small folds. We suggest that our sulcal pit extraction from MRI is highly reliable and could be useful for clinical applications as an imaging biomarker.
Pavlovian-to-instrumental transfer in alcohol dependence: a pilot study.
Garbusow, Maria; Schad, Daniel J; Sommer, Christian; Jünger, Elisabeth; Sebold, Miriam; Friedel, Eva; Wendt, Jean; Kathmann, Norbert; Schlagenhauf, Florian; Zimmermann, Ulrich S; Heinz, Andreas; Huys, Quentin J M; Rapp, Michael A
2014-01-01
Pavlovian processes are thought to play an important role in the development, maintenance and relapse of alcohol dependence, possibly by influencing and usurping ongoing thought and behavior. The influence of pavlovian stimuli on ongoing behavior is paradigmatically measured by pavlovian-to-instrumental transfer (PIT) tasks. These involve multiple stages and are complex. Whether increased PIT is involved in human alcohol dependence is uncertain. We therefore aimed to establish and validate a modified PIT paradigm that would be robust, consistent and tolerated by healthy controls as well as by patients suffering from alcohol dependence, and to explore whether alcohol dependence is associated with enhanced PIT. Thirty-two recently detoxified alcohol-dependent patients and 32 age- and gender-matched healthy controls performed a PIT task with instrumental go/no-go approach behaviors. The task involved both pavlovian stimuli associated with monetary rewards and losses, and images of drinks. Both patients and healthy controls showed a robust and temporally stable PIT effect. Strengths of PIT effects to drug-related and monetary conditioned stimuli were highly correlated. Patients more frequently showed a PIT effect, and the effect was stronger in response to aversively conditioned CSs (conditioned suppression), but there was no group difference in response to appetitive CSs. The implementation of PIT has favorably robust properties in chronic alcohol-dependent patients and in healthy controls. It shows internal consistency between monetary and drug-related cues. The findings support an association of alcohol dependence with an increased propensity towards PIT. © 2014 S. Karger AG, Basel.
Ligand structure and mechanical properties of single-nanoparticle-thick membranes.
Salerno, K Michael; Bolintineanu, Dan S; Lane, J Matthew D; Grest, Gary S
2015-06-01
The high mechanical stiffness of single-nanoparticle-thick membranes is believed to result from the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH(3)) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Moreover, the particular end group (COOH or CH(3)) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.
2010-03-07
The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less
Lantinga-van Leeuwen, I S; Mol, J A; Kooistra, H S; Rijnberk, A; Breen, M; Renier, C; van Oost, B A
2000-01-01
Combined pituitary hormone deficiency (CPHD) is an autosomal recessive inherited disease of German shepherd dogs characterized primarily by dwarfism. In mice and humans a similar genetic disorder has been described that results from an alteration in the gene encoding the transcription factor Pit-1. In this study we characterized the canine Pit-1 gene, determined the chromosomal localization of the Pit-1 gene, and screened dwarf German shepherd dogs for the presence of mutations in this gene. The full-length canine Pit-1 cDNA contained an open reading frame encoding 291 amino acids, 92 bp of 5'-untranslated region, and 1959 bp of 3'-untranslated region. The deduced amino acid sequence was highly homologous with Pit-1 of other mammalian species. Using a Pit-1 BAC clone as probe, the Pit-1 gene was mapped by FISH to canine Chromosome (Chr) 31. In dwarf German shepherd dogs a C to A transversion was detected, causing a Phe (TTC) to Leu (TTA) substitution at codon 81. This alteration was present neither in other canine breeds analyzed nor in other mammalian species. However, healthy German shepherd dogs were also homozygous for the mutant allele, indicating that it is not the primary disease-causing mutation. In addition, linkage analysis of polymorphic DNA markers flanking the Pit-1 gene, 41K19 and 52L05, revealed no co-segregation between the Pit-1 locus and the CPHD phenotype. These findings suggest that a gene other than Pit-1 is responsible for the pituitary anomaly in dwarf German shepherd dogs.
Chiu, Chi-Chien; John, Joseph Abraham Christopher; Hseu, Tzong-Hsiung; Chang, Chi-Yao
2002-03-01
The pituitary-specific transcription factor Pit-1 belongs to the family of POU-domain proteins and is known to play an important role in the differentiation of pituitary cells. Here we report the complete nucleotide sequence of cDNA encoding Pit-1 from the brackish water fish, ayu (Plecoglossus altivelis). Nucleotide sequence analysis of 1910 bp of ayu Pit-1 cDNA revealed an open reading frame of 1074 bp that encodes a protein of 358 amino acids containing a POU-specific domain, POU homeodomain, and an STA (Ser/Thr-rich activation) transactivation domain. We inserted the coding region of Pit-1 cDNA, obtained by PCR, into a pET-20b(+) plasmid to produce recombinant Pit-1 in Escherichia coli BL21 (DE3) pLysS cells. Upon induction with isopropyl beta-D-thiogalactopyranoside, Pit-1 was expressed and accumulated as inclusion bodies in E. coli. The protein was then purified in one step by affinity chromatography on a nickel-nitrilotriacetic acid agarose column under denaturing conditions. This method yielded 0.7 mg of highly pure and stable protein per 200 ml of bacterial culture. A band of 40 kDa, resolved as recombinant ayu Pit-1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, agrees well with the molecular mass calculated from the translated cDNA sequence. The purified recombinant Pit-1 was confirmed in vitro through Western blot analysis, using its monoclonal antibody. This monoclonal antibody detected Pit-1 in the nuclei of ayu developing pituitary by immunohistochemical reaction. It serves as a good reagent for the detection of ayu Pit-1 in situ. Copyright 2002 Elsevier Science (USA).
Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.
Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias
2004-05-01
The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.
Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer
Sato, Kazuhide; Hanaoka, Hirofumi; Watanabe, Rira; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase expressing, ovarian cancer cell line (SKOV-luc). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to near infrared (NIR) light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a 3D spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the anti-tumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs control in tumor volume changes at day 10; p=0.0001, NIR-PIT vs control in luciferase activity at day 4; p=0.0237), and the peritoneal model (NIR-PIT vs control in luciferase activity at day 7; p=0.0037). NIR-PIT provided effective cell killing in this HER2 positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors. PMID:25416790
NASA Astrophysics Data System (ADS)
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.
Dependency of EBT2 film calibration curve on postirradiation time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Liyun, E-mail: liyunc@isu.edu.tw; Ding, Hueisch-Jy; Ho, Sheng-Yow
2014-02-15
Purpose: The Ashland Inc. product EBT2 film model is a widely used quality assurance tool, especially for verification of 2-dimensional dose distributions. In general, the calibration film and the dose measurement film are irradiated, scanned, and calibrated at the same postirradiation time (PIT), 1-2 days after the films are irradiated. However, for a busy clinic or in some special situations, the PIT for the dose measurement film may be different from that of the calibration film. In this case, the measured dose will be incorrect. This paper proposed a film calibration method that includes the effect of PIT. Methods: Themore » dose versus film optical density was fitted to a power function with three parameters. One of these parameters was PIT dependent, while the other two were found to be almost constant with a standard deviation of the mean less than 4%. The PIT-dependent parameter was fitted to another power function of PIT. The EBT2 film model was calibrated using the PDD method with 14 different PITs ranging from 1 h to 2 months. Ten of the fourteen PITs were used for finding the fitting parameters, and the other four were used for testing the model. Results: The verification test shows that the differences between the delivered doses and the film doses calculated with this modeling were mainly within 2% for delivered doses above 60 cGy, and the total uncertainties were generally under 5%. The errors and total uncertainties of film dose calculation were independent of the PIT using the proposed calibration procedure. However, the fitting uncertainty increased with decreasing dose or PIT, but stayed below 1.3% for this study. Conclusions: The EBT2 film dose can be modeled as a function of PIT. For the ease of routine calibration, five PITs were suggested to be used. It is recommended that two PITs be located in the fast developing period (1∼6 h), one in 1 ∼ 2 days, one around a week, and one around a month.« less
New Generation Energy Efficient Refractory Application in Soaking Pits of Bhilai Steel Plant, Sail
NASA Astrophysics Data System (ADS)
Roy, Indranil; Chintaiah, Perumetla; Bhattacharya, Ajoy Kr.; Garai, Swapan Kr.; Ray Choudhury, Pankaj Kr.; Tiwari, Laksman
In Bhilai Steel Plant (BSP), soaking pits are used for heating ingots for successive rolling into blooms. Pits are operated at a temperature of around 1350°C. Mixed gas (Mixture of Blast Furnace gas & Coke Oven gas) of calorific value around 2040 kcal/Nm3 is used as fuel. The walls of soaking pits were lined with traditional 38% Al2O3 firebricks and top 500mm was cast with 70% Al2O3 low cement castable (LCC). This type of lining results in frequent damages due to hitting by ingots while being lifted from pit by overhead cranes thus affecting the availability of pit. Life of pits was 2 to 2.5 years in BSP with 3-4 cold repairs and 3-4 hot repairs. Energy loss through the wall is also quite high in this type of lining. To triumph over the limitations of the conventional lining, a lining design was developed for the walls which consist of special 70% Al2O3 LCC having high hot strength (HMOR) in combination with specially design flexible SS-304 anchors. Ceramic fiber blanket and insulation bricks were provided between castable and the metallic shell of the pit to minimize the heat loss. A heating schedule was developed and introduced based on available infrastructure at BSP for proper curing of modified LCC based lining. After introduction of modified lining, pit no. 14/2 is running for more than 2.5 years without any repair. To capitalize the success, two more pits i.e. 12/1 and 9/2 were converted to modified lining. These pits are also running satisfactorily for more than 1.5 years. The modification has resulted in higher availability with substantial increase in production. Shell temperature of the modified pits reduced to 90° - 140°C from 120° - 200°C of conventional pits. This shows reduction in heat loss through walls, resulting less fuel consumption and energy saving of about 18%.
Beeman, John W.; Hayes, Brian; Wright, Katrina
2012-01-01
A series of in-stream passive integrated transponder (PIT) detection antennas installed across the Klamath River in August 2010 were tested using tagged fish in the summer of 2011. Six pass-by antennas were constructed and anchored to the bottom of the Klamath River at a site between the Shasta and Scott Rivers. Two of the six antennas malfunctioned during the spring of 2011 and two pass-through antennas were installed near the opposite shoreline prior to system testing. The detection probability of the PIT tag detection system was evaluated using yearling coho salmon implanted with a PIT tag and a radio transmitter and then released into the Klamath River slightly downstream of Iron Gate Dam. Cormack-Jolly-Seber capture-recapture methods were used to estimate the detection probability of the PIT tag detection system based on detections of PIT tags there and detections of radio transmitters at radio-telemetry detection systems downstream. One of the 43 PIT- and radio-tagged fish released was detected by the PIT tag detection system and 23 were detected by the radio-telemetry detection systems. The estimated detection probability of the PIT tag detection system was 0.043 (standard error 0.042). Eight PIT-tagged fish from other studies also were detected. Detections at the PIT tag detection system were at the two pass-through antennas and the pass-by antenna adjacent to them. Above average river discharge likely was a factor in the low detection probability of the PIT tag detection system. High discharges dislodged two power cables leaving 12 meters of the river width unsampled for PIT detections and resulted in water depths greater than the read distance of the antennas, which allowed fish to pass over much of the system with little chance of being detected. Improvements in detection probability may be expected under river discharge conditions where water depth over the antennas is within maximum read distance of the antennas. Improvements also may be expected if additional arrays of antennas are used.
Modeling pitting corrosion of iron exposed to alkaline solutions containing nitrate and nitrite
NASA Astrophysics Data System (ADS)
Chen, Lifeng
2001-07-01
Pitting corrosion could be extremely serious for dilute high-level radioactive waste stored or processed in carbon steel tanks at the Savannah River Site. In these solutions, nitrate is an aggressive ion with respect to pitting of carbon steel while nitrite can be used as an inhibitor. Excessive additions of nitrite increase the risk of generating unstable nitrogen compounds during waste processing, and insufficient additions of nitrite could increase the risk of corrosion-induced failure. Thus there are strong incentives to obtain a fundamental understanding of the role of nitrite in pitting corrosion prevention with these solution chemistries. In this dissertation, both a 1-D and a 2-D model are used to study the pitting mechanism as a function of nitrite/nitrate ratios. The 1-D model used BAND(J) to test a reaction mechanism for the passivation behavior by comparing the predicted Open Circuit Potential (OCP) with OCP data from experiments at different NO2-/NO3- ratio. The model predictions are compared with Cyclic Potentiodynamic Polarization (CPP) experiments. A 2-D model was developed for the propagation of a pit in iron by writing subroutines for finite element software of GAMBIT and FIDAP. Geometrically distributed anodic and cathodic reactions are assumed. The results show three partial explanations describing the inhibition influence of nitrite to iron corrosion: the competing reduction reaction of nitrate to nitrite, the formation of Fe(OH)+, and the function of the porous film. The current distributions and the effect of porosity of the film on pH are also explained. The calculation results also show that rate of pit growth decreases as the pit diameter increases until it reaches a constant value. The profile of the local current density on the pit wall is parabolic for small pits and it changes to a linear distribution for large pits. The model predicts that addition of nitrite will decrease the production of ferrous ions and those can prevent iron from dissolving. Also nitrate ion will accumulate in the pit if not enough inhibitor is added to the solution, and this will accelerate pit growth.
Cardiolipin effects on membrane structure and dynamics.
Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J
2013-12-23
Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... Project; Notice of Availability of the Final Environmental Impact Statement for the Mccloud-Pit... Pit Rivers in Shasta County, California and has prepared a final environmental impact statement (EIS... and the alternatives for relicensing the McCloud-Pit Project. The final EIS documents the views of...
Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1983-01-01
Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1.
Microcrater investigations on lunar rock 12002
NASA Technical Reports Server (NTRS)
Hartung, J. B.; Hodges, F.; Horz, F.; Storzer, D.
1975-01-01
Relative ages of 26 submillimeter-sized pits from an equilibrium population in rock 12002 were measured by determining the densities of pits 0.7 microns in diameter and larger on the submillimeter-sized pits. Production rates for 0.7 micron diameter pits were determined from solar-flare track exposure age measurements, and the data for rock 12002 are consistent with previously obtained data for sample 15205 if a lower meteoroid flux prevailed in the past. Metal mounds or spherules within a microcrater pit glass were found to have a meteoritic composition, and an impact lining consisting of protruding crystals was observed. The crystals apparently developed during exposure to space immediately after the 200-micron diameter pit was formed by impact into an olivine grain.
3D Modeling of Landslide in Open-pit Mining on Basis of Ground-based LIDAR Data
NASA Astrophysics Data System (ADS)
Hu, H.; Fernandez-Steeger, T. M.; Azzam, R.; Arnhardt, C.
2009-04-01
Slope stability is not only an important problem which is related to production and safety in open-pit mining, but also very complex task. There are three main reasons which affect the slope stability as follows: geotechnical factors: Geological structure, lithologic characteristics, water, cohesion, friction, etc.; climate factors: Rainfall and temperature; and external factors: Open-pit mining process, explosion vibration, dynamic load, etc.. The 3rd reason, as a specially one in open-pit mining, not only causes some dynamic problems but also induces the fast geometry changing which must be considered in the following research using numerical simulation and stability analysis. Recently, LIDAR technology has been applied in many fields and places in the world wide. Ground-based LIDAR technology with high accuracy up to 3mm increasingly accommodates to monitoring landslides and detecting changing. LIDAR data collection and preprocessing research have been carried out by Department of Engineering Geology and Hydrogeology at RWTH Aachen University. LIDAR data, so-called a point-cloud of mass data in high density can be obtained in short time for the sensitive open-pit mining area by using ground-based LIDAR. To obtain a consistent surface model, it is necessary to set up multiple scans with the ground-based LIDAR. The framework of data preprocessing which can be implemented by Poly-Works is introduced as follows: gross error detection and elimination, integration of reference frame, model fusion of different scans (re-sampled in overlap region), data reduction without removing the useful information which is a challenge and research front in LIDAR data processing. After data preprocessing, 3D surface model can be directly generated in Poly-Works or generated in other software by building the triangular meshes. The 3D surface landslide model can be applied to further researches such as: real time landslide geometry monitoring due to the fast data collection and processing; change detecting by means of overlying different periods of topographic or geometric data; FEM (Finite Element Method) numerical simulation on basis of combining with the geotechnical properties and parameters to analyze slope stability and predict future movements for designing and rectifying the open-pit mining process; using the reverse engineering thought for developing constitutive models. An improved 3D surface model (HRDEM) which is based on fast data collection and precise data processing on basis of ground-based LIDAR technology is important contribution for further researches of slope stability in open-pit mining area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; Simpson, John T.; Aytug, Tolga
Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
Cherry-Slush-Candling Apparatus
NASA Technical Reports Server (NTRS)
Stephens, James B.; Weiss, James R.; Hoover, Gordon
1996-01-01
Proposed infrared-scanning apparatus for use in bakeries making cherry pies detect cherry pits remaining in cherry slush after pitting process. Pits detected via their relative opacity to infrared radiation.
NASA Astrophysics Data System (ADS)
Lantreibecq, A.; Legros, M.; Plassat, N.; Monchoux, J. P.; Pihan, E.
2018-02-01
The PV properties of wafers processed from Cz-seeded directionally solidified silicon ingots suffer from variable structural defects. In this study, we draw an overview on the types of structural defects encountered in the specific case of full 〈1 0 0〉 oriented growth. We found micro twins, background dislocations, and subgrains boundaries. We discuss the possible links between thermomechanical stresses and growth processes with spatial evolution of both background dislocation densities and subgrain boundaries length.
Spall Damage of Concrete Structures
1988-06-01
structures prediction Structural response Cased charges Scabbing Tests Concrete walls--testing . emi -hardened Upgrading Conventional weapons Spall Weapon...recording devices in a trailer approximately 750 feet from the test pit. Up to 30 channels were recorded on a Sangamo Model III, 32-channel FM magnetic tape...6.7"’DEEP 23.6" N 21’.6" 0.114? 4000 0 73670636 RATx.000620 RAT%.000520 SHEILD WALL DESTROYED MAIM WALL 0.2611 4000 0.S9001025 RAT-.000S29 RATa.000S20
Ligand structure and mechanical properties of single-nanoparticle thick membranes
Salerno, Kenneth Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.; ...
2015-06-16
We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with amore » nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH 3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH 3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.« less
Arocena, J M; Rutherford, P M
2005-07-01
Many contaminated sites in Canada are associated with flare pits generated during past petroleum extraction operations. Flare pits are located adjacent to well sites, compressor stations and batteries and are often subjected to the disposal of wastes from the flaring of gas, liquid hydrocarbons and brine water. This study was conducted to evaluate the physical, chemical, electrical and mineral properties of three flare pit soils as compared to adjacent control soils. Results showed that particle size distribution, pH, total N, cation exchange capacity, exchangeable Mg(2+), and sodium adsorption ratio were similar in soils from flare pits and control sites. Total C, exchangeable Ca(2+), K(+) and Na(+), soluble Ca(2+), Mg(2+), K(+) and Na(+) and electrical conductivity were higher in flare pit soils compared to control soils. X-ray diffraction and scanning electron microscopic analyses showed the presence of gypsum [CaSO(4).2H(2)O], dolomite [CaMg(CO(3))(2)], pyrite [FeS(2)], jarosite [KFe(3)(OH)(6)(SO(4))(2)], magnesium sulphate, oxides of copper and iron+copper in salt efflorescence observed in flare pit soils. Soils from both flare pits and control sites contained mica, kaolonite and 2:1 expanding clays. The salt-rich materials altered the ionic equilibria in the flare pit soils; K(Mg-Ca) selectivity coefficients in control soils were higher compared to contaminated soils. The properties of soils (e.g., high electrical conductivity) affected by inputs associated with oil and gas operations might render flare pit soils less conducive to the establishment and growth of common agricultural crops and forest trees.
Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review
Polizzotto, Matthew L.
2013-01-01
Background: Pit latrines are one of the most common human excreta disposal systems in low-income countries, and their use is on the rise as countries aim to meet the sanitation-related target of the Millennium Development Goals. There is concern, however, that discharges of chemical and microbial contaminants from pit latrines to groundwater may negatively affect human health. Objectives: Our goals were to a) calculate global pit latrine coverage, b) systematically review empirical studies of the impacts of pit latrines on groundwater quality, c) evaluate latrine siting standards, and d) identify knowledge gaps regarding the potential for and consequences of groundwater contamination by latrines. Methods: We used existing survey and population data to calculate global pit latrine coverage. We reviewed the scientific literature on the occurrence of contaminants originating from pit latrines and considered the factors affecting transport of these contaminants. Data were extracted from peer-reviewed articles, books, and reports identified using Web of ScienceSM, PubMed, Google, and document reference lists. Discussion: We estimated that approximately 1.77 billion people use pit latrines as their primary means of sanitation. Studies of pit latrines and groundwater are limited and have generally focused on only a few indicator contaminants. Although groundwater contamination is frequently observed downstream of latrines, contaminant transport distances, recommendations based on empirical studies, and siting guidelines are variable and not well aligned with one another. Conclusions: In order to improve environmental and human health, future research should examine a larger set of contextual variables, improve measurement approaches, and develop better criteria for siting pit latrines. PMID:23518813
Future directions of electron crystallography.
Fujiyoshi, Yoshinori
2013-01-01
In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.
Ellison, L.E.; O'Shea, T.J.; Neubaum, D.J.; Neubaum, M.A.; Pearce, R.D.; Bowen, R.A.
2007-01-01
We compared conventional capture (primarily mist nets and harp traps) and passive integrated transponder (PIT) tagging techniques for estimating capture and survival probabilities of big brown bats (Eptesicus fuscus) roosting in buildings in Fort Collins, Colorado. A total of 987 female adult and juvenile bats were captured and marked by subdermal injection of PIT tags during the summers of 2001-2005 at five maternity colonies in buildings. Openings to roosts were equipped with PIT hoop-style readers, and exit and entry of bats were passively monitored on a daily basis throughout the summers of 2002-2005. PIT readers 'recaptured' adult and juvenile females more often than conventional capture events at each roost. Estimates of annual capture probabilities for all five colonies were on average twice as high when estimated from PIT reader data (P?? = 0.93-1.00) than when derived from conventional techniques (P?? = 0.26-0.66), and as a consequence annual survival estimates were more precisely estimated when using PIT reader encounters. Short-term, daily capture estimates were also higher using PIT readers than conventional captures. We discuss the advantages and limitations of using PIT tags and passive encounters with hoop readers vs. conventional capture techniques for estimating these vital parameters in big brown bats. ?? Museum and Institute of Zoology PAS.
Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model
Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794
Avoidance-based human Pavlovian-to-instrumental transfer
Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.
2013-01-01
The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624
13. DETAIL WEST OF TURBINE PIT SHOWING PIT DRAINED AND ...
13. DETAIL WEST OF TURBINE PIT SHOWING PIT DRAINED AND TURBINE EXPOSED. ORIGINAL WATER LEVEL SHOWN BY LINE JUST ABOVE ARCHED OPENING TO LEFT. WATER LINE AFTER 1982 INSTALLATION OF FLASH BOARDS REVEALED BY DARK STAIN. - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA
10. Turbine Pit of Unit 5, view to the north. ...
10. Turbine Pit of Unit 5, view to the north. Note the difference in configuration within this turbine pit as compared to one of the original pits illustrated in photograph number MT-105-A-11. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] (Released 3 July 2002) Off the western flank of Elysium are the Hephaestus Fossae, including linear arrangements of small, round pits. These features are commonly called 'pit chains' and most likely represent the collapse of lava tubes. Lava tubes allow molten rock to move long distances underground. When the lava drains out it leaves unsupported tunnels, which can collapse and form pits. These particular pit chains are unusual because they change direction abruptly. In the lower portion of the image, pits have collapsed at the bends and allow us to observe the sharp, nearly right angle corners. These direction changes are most likely due to some sort of structural control during the emplacement of the lava tubes. There is an extraordinarily high concentration of small, degraded craters on the plains surface. The size range of these craters is fairly consistent and they all appear to be of similar age. It is unlikely that these were caused by primary impacts (impacts of meteors onto the surface) because both the size and timing distributions of primary impactors vary tremendously. However, the craters in the image could have been created from secondary impacts. Secondaries are impacts of material that is excavated during a large cratering event nearby or from the disintegration of a primary meteor in the atmosphere into many smaller parts that rain onto the surface. In contrast to these older, small craters, there is a relatively young crater in the center of the image. A hummocky ejecta blanket is visible around the crater and has covered some of the smaller craters on the plain around it. The edges of the crater are sharp, formed by rocky material in the crater rim. This material is visible as the layer of rough, grooved material at the top of the inside walls. Small dust avalanches have left dark streaks down the inside walls of the crater.
Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source
NASA Astrophysics Data System (ADS)
Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.
2013-12-01
Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.
Howey, Meghan C. L.; Sullivan, Franklin B.; Tallant, Jason; Kopple, Robert Vande; Palace, Michael W.
2016-01-01
Forested settings present challenges for understanding the full extent of past human landscape modifications. Field-based archaeological reconnaissance in forests is low-efficiency and most remote sensing techniques are of limited utility, and together, this means many past sites and features in forests are unknown. Archaeologists have increasingly used light detection and ranging (lidar), a remote sensing tool that uses pulses of light to measure reflecting surfaces at high spatial resolution, to address these limitations. Archaeology studies using lidar have made significant progress identifying permanent structures built by large-scale complex agriculturalist societies. Largely unaccounted for, however, are numerous small and more practical modifications of landscapes by smaller-scale societies. Here we show these may also be detectable with lidar by identifying remnants of food storage pits (cache pits) created by mobile hunter-gatherers in the upper Great Lakes during Late Precontact (ca. AD 1000–1600) that now only exist as subtle microtopographic features. Years of intensive field survey identified 69 cache pit groups between two inland lakes in northern Michigan, almost all of which were located within ~500 m of a lakeshore. Applying a novel series of image processing techniques and statistical analyses to a high spatial resolution DTM we created from commercial-grade lidar, our detection routine identified 139 high potential cache pit clusters. These included most of the previously known clusters as well as several unknown clusters located >1500 m from either lakeshore, much further from lakeshores than all previously identified cultural sites. Food storage is understood to have emerged regionally as a risk-buffering strategy after AD 1000 but our results indicate the current record of hunter-gatherer cache pit food storage is markedly incomplete and this practice and its associated impact on the landscape may be greater than anticipated. Our study also demonstrates the potential of harnessing commercial-grade lidar for other fine-grained archaeology applications. PMID:27584031
Howey, Meghan C L; Sullivan, Franklin B; Tallant, Jason; Kopple, Robert Vande; Palace, Michael W
2016-01-01
Forested settings present challenges for understanding the full extent of past human landscape modifications. Field-based archaeological reconnaissance in forests is low-efficiency and most remote sensing techniques are of limited utility, and together, this means many past sites and features in forests are unknown. Archaeologists have increasingly used light detection and ranging (lidar), a remote sensing tool that uses pulses of light to measure reflecting surfaces at high spatial resolution, to address these limitations. Archaeology studies using lidar have made significant progress identifying permanent structures built by large-scale complex agriculturalist societies. Largely unaccounted for, however, are numerous small and more practical modifications of landscapes by smaller-scale societies. Here we show these may also be detectable with lidar by identifying remnants of food storage pits (cache pits) created by mobile hunter-gatherers in the upper Great Lakes during Late Precontact (ca. AD 1000-1600) that now only exist as subtle microtopographic features. Years of intensive field survey identified 69 cache pit groups between two inland lakes in northern Michigan, almost all of which were located within ~500 m of a lakeshore. Applying a novel series of image processing techniques and statistical analyses to a high spatial resolution DTM we created from commercial-grade lidar, our detection routine identified 139 high potential cache pit clusters. These included most of the previously known clusters as well as several unknown clusters located >1500 m from either lakeshore, much further from lakeshores than all previously identified cultural sites. Food storage is understood to have emerged regionally as a risk-buffering strategy after AD 1000 but our results indicate the current record of hunter-gatherer cache pit food storage is markedly incomplete and this practice and its associated impact on the landscape may be greater than anticipated. Our study also demonstrates the potential of harnessing commercial-grade lidar for other fine-grained archaeology applications.
Hall, A.M.; Phillips, W.M.
2006-01-01
Weathering pits 1-140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non-linear and a best fit is provided by the sigmoidal function D = b1+ exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10 Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52-297 ka. Glacially exposed surfaces with pits 10-46 cm deep have given 10 Be exposure durations of 21-79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well-developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum. ?? Swedish Society for Anthropology and Geography.
Evaluation of methods for attaching PIT tags and biotelemetry devices to freshwater mussels
Young, S.P.; Isely, J.J.
2008-01-01
We evaluated methods to attach PIT tags and transmitters to freshwater mussels. Mussels received externally-mounted PIT tags using cyanoacrylate or underwater epoxy, and a sub-group of those with PIT tags attached using cyanoacrylate also received dummy transmitters. Tag retention and survival were 100% after a 30 day laboratory observation period for each method. During the subsequent 18 months of field observation, underwater epoxy and cyanoacrylate proved to be adequate adhesives for attaching PIT tags and transmitters. Epoxy performed best with 100% PIT tag retention. Cyanoacrylate also provided high retention rates of PIT tags and transmitters, >90%. Mortality was minimal at 4.7% for all relocated mussels over 18 months. All mortalities were those tagged with cyanoacrylate. Three of the mortalities occurred among mussels fitted with dummy transmitters, and seven among PIT tags only. Percent recapture of the different tag/adhesive combinations ranged from 48 - 77.5% during 6- and 18-month surveys. Results suggest both adhesives provide a reliable method for external attachment of tags during freshwater mussel research; however, epoxy may be better suited because of slightly higher tag retention and reduced emersion times during attachment. Copyright ?? 2008 Malacological Society of Australasia.
Yamasaki, Ryota; Takatsuji, Yoshiyuki; Asakawa, Hitoshi; Fukuma, Takeshi; Haruyama, Tetsuya
2016-01-26
The Trichoderma reesei hydrophobin, HFBI, is a unique structural protein. This protein forms membranes by self-organization at air/water or water/solid interfaces. When HFBI forms a membrane at an air/water interface, the top of the water droplet is flattened. The mechanism underlying this phenomenon has not been explored. In this study, this unique phenomenon has been investigated. Self-organized HFBI membranes form a hexagonal structured membrane on the surface of water droplets; the structure was confirmed by atomic force microscopy (AFM) measurement. Assembled hexagons can form a planar sheet or a tube. Self-organized HFBI membranes on water droplets form a sheet with an array of hexagonal structures or a honeycomb structure. This membrane, with its arrayed hexagonal structures, has very high buckling strength. We hypothesized that the high buckling strength is the reason that water droplets containing HFBI form flattened domes. To test this hypothesis, the strength of the self-organized HFBI membranes was analyzed using AFM. The buckling strength of HFBI membranes was measured to be 66.9 mN/m. In contrast, the surface tension of water droplets containing dissolved HFBI is 42 mN/m. Thus, the buckling strength of a self-organized HFBI membrane is higher than the surface tension of water containing dissolved HFBI. This mechanistic study clarifies why the water droplets formed by self-organized HFBI membranes have a flattened top.
NASA Astrophysics Data System (ADS)
Tempeler, J.; Danylyuk, S.; Brose, S.; Loosen, P.; Juschkin, L.
2018-07-01
In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 1010 cm‑2.
Tempeler, J; Danylyuk, S; Brose, S; Loosen, P; Juschkin, L
2018-07-06
In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 10 10 cm -2 .
Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches
MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF
2008-01-01
Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962
Confined semiflexible polymers suppress fluctuations of soft membrane tubes.
Mirzaeifard, Sina; Abel, Steven M
2016-02-14
We use Monte Carlo computer simulations to investigate tubular membrane structures with and without semiflexible polymers confined inside. At small values of membrane bending rigidity, empty fluid and non-fluid membrane tubes exhibit markedly different behavior, with fluid membranes adopting irregular, highly fluctuating shapes and non-fluid membranes maintaining extended tube-like structures. Fluid membranes, unlike non-fluid membranes, exhibit a local maximum in specific heat as their bending rigidity increases. The peak is coincident with a transition to extended tube-like structures. We further find that confining a semiflexible polymer within a fluid membrane tube reduces the specific heat of the membrane, which is a consequence of suppressed membrane shape fluctuations. Polymers with a sufficiently large persistence length can significantly deform the membrane tube, with long polymers leading to localized bulges in the membrane that accommodate regions in which the polymer forms loops. Analytical calculations of the energies of idealized polymer-membrane configurations provide additional insight into the formation of polymer-induced membrane deformations.
Penetration and Effectiveness of Micronized Copper in Refractory Wood Species
Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N.; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W. M. R.
2016-01-01
The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect. PMID:27649315
Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.
Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R
2016-01-01
The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.
Ex vivo perfusion of human spleens maintains clearing and processing functions.
Buffet, Pierre A; Milon, Geneviève; Brousse, Valentine; Correas, Jean-Michel; Dousset, Bertrand; Couvelard, Anne; Kianmanesh, Reza; Farges, Olivier; Sauvanet, Alain; Paye, François; Ungeheuer, Marie-Noëlle; Ottone, Catherine; Khun, Huot; Fiette, Laurence; Guigon, Ghislaine; Huerre, Michel; Mercereau-Puijalon, Odile; David, Peter H
2006-05-01
The spleen plays a central role in the pathophysiology of several potentially severe diseases such as inherited red cell membrane disorders, hemolytic anemias, and malaria. Research on these diseases is hampered by ethical constraints that limit human spleen tissue explorations. We identified a surgical situation--left splenopancreatectomy for benign pancreas tumors--allowing spleen retrieval at no risk for patients. Ex vivo perfusion of retrieved intact spleens for 4 to 6 hours maintained a preserved parenchymal structure, vascular flow, and metabolic activity. Function preservation was assessed by testing the ability of isolated-perfused spleens to retain Plasmodium falciparum-infected erythrocytes preexposed to the antimalarial drug artesunate (Art-iRBCs). More than 95% of Art-iRBCs were cleared from the perfusate in 2 hours. At each transit through isolated-perfused spleens, parasite remnants were removed from 0.2% to 0.23% of Art-iRBCs, a proportion consistent with the 0.02% to 1% pitting rate previously established in artesunate-treated patients. Histologic analysis showed that more than 90% of Art-iRBCs were retained and processed in the red pulp, providing the first direct evidence of a zone-dependent parasite clearance by the human spleen. Human-specific physiologic or pathophysiologic mechanisms involving clearing or processing functions of the spleen can now be experimentally explored in a human tissue context.
Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit.
Lee, Eun Ji; Kim, Tae-Woo
2017-02-01
To report a case in which progressive retinal nerve fiber layer (RNFL) atrophy was observed along with enlargement of the peripapillary pit. A 34-year-old male was diagnosed with primary open-angle glaucoma and followed up for 4 years with regular ophthalmic examinations. Both eyes were myopic (-10 D, OD and -10.5 D, OS), and untreated intraocular pressures were 18 mm Hg (OD) and 16 mm Hg (OS). A subtle depression of the superotemporal peripapillary area was deepened and emerged as a peripapillary pit during the follow-up period. With the enlargement of the peripapillary pit, a RNFL defect at the location of pit widened and thinned continuously. The enlargement of the pit was documented by the spectral-domain optical coherence tomography posterior pole scanning. Progressive RNFL atrophy was observed with enlargement of the peripapillary pit. The finding suggests that tensile stress derived from the scleral stretching may have significant influence on the integrity of the RNFL.
Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy
NASA Astrophysics Data System (ADS)
Yitamben, E. N.; Butera, R. E.; Swartzentruber, B. S.; Simonson, R. J.; Misra, S.; Carroll, M. S.; Bussmann, E.
2017-11-01
Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits’ atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.
Pitting Corrosion of alloy 690 in thiosulfate-containing chloride solutions
NASA Astrophysics Data System (ADS)
Tsai, Wen-Ta; Wu, Tsung-Feng
2000-01-01
The effects of thiosulfate ion and solution pH on pitting corrosion of Alloy 690 in chloride solution were explored. Potentiodynamic polarization measurements were conducted to evaluate pitting corrosion susceptibility of Alloy 690 in these environments. The results showed that pitting corrosion occurred in the mill-annealed (1050°C/5min) Alloy 690 in 1 wt% NaCl solution but not in 0.1 M Na 2S 2O 3 solution. The value of pitting nucleation potential ( Enp) determined in 1 wt% NaCl solution (without Na 2S 2O 3 ) increased with increasing solution pH value in the range of 2-10. The addition of Na 2S 2O 3 to 1 wt% NaCl solution greatly affected the pitting corrosion behavior, which was dependent on concentration. The preformed nickel sulfide surface film due to the presence of Na 2S 2O 3 caused Alloy 690 to become more susceptible to pitting corrosion in 1 wt% NaCl solution.
Mapping sand and gravel pits in the Patuxent River watershed
NASA Technical Reports Server (NTRS)
Schmidt, T. J.; Witt, R. G.
1981-01-01
LANDSAT data from July 1973 and June 1978 for the Patuxent River Watershed of Maryland were processed in an effort to devise an economical method of monitoring the reclamation of sand and gravel pits. ASTEP-II and IDIMS software were utilized to derive signatures for sand and gravel pits and other land use/land cover types. Both unsupervised and supervised classifications of the two data sets were produced. Resultant statistics and color output products were compared in order to determine the extent of reclamation and expansion of sand and gravel pits over the five-year time span and to check the locations of more recent sand and gravel pits. Preliminary results indicate that, for a selected northern sub-acre, signatures derived for sand and gravel pits were nearly 90 percent accurate.
Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Newman, John A.; Piascik, Robert S.
2003-01-01
Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.
HYPGEO - A collaboration between geophysics and remote sensing for mineral exploration
NASA Astrophysics Data System (ADS)
Meyer, Uwe; Frei, Michaela; Petersen, Hauke; Papenfuß, Anne; Ibs-von Seht, Malte; Stolz, Ronny; Queitsch, Matthias; Buchholz, Peter; Siemon, Bernhard
2017-04-01
The German Federal Institute for Geosciences and Natural Resources (BGR) aims to promote and design application oriented, generic techniques for the detection and 3D-characterisation of mineral deposits. Most newly developed mineral mining structures are still exploiting near surface sources. Since exploration and exploitation of mineral resources are increasingly under public review concerning environmental issues and social acceptance, non-invasive methods using satellites, fixed-wing aircraft, helicopters or unmanned aerial vehicles are preferred techniques within this investigation. Therefore, a data combination of helicopter-borne gamma ray spectrometry, hyperspectral imagery and full tensor gradient magnetometry is being evaluated. Test areas are open pit mining structures in Aznalcollar and Tharsis within the Pyrite Belt of southern Spain. First test flights using gamma-ray spectrometry and gradient magnetometry using SQUID-based sensors have been performed. Hyperspectral imagery has been applied on ground. Rock and core samples from the mines have been taken or investigated for further analysis. The basic idea is to combine surface triggered signals from gamma-ray spectrometry and hyperspectral imagery to enhance the detection of shallow mineralisation structures. In order to investigate whether these structures are connected with near-surface ore veins, gradient magnetometry was applied to model subsurface formations. To verify that good correlations between the applied methods are given, open pit mining structures were chosen, where the mineral content and the local to regional geology is well known.
Ibarguren, Maitane; López, David J; Escribá, Pablo V
2014-06-01
This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of the Effects of Surface Pitting and Wear on the Vibrations of a Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Polyshchuk, V.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure to simulate and analyze the vibrations in a gear transmission system with surface pitting, 'wear' and partial tooth fracture of the gear teeth is presented. An analytical model was developed where the effects of surface pitting and wear of the gear tooth were simulated by phase and magnitude changes in the gear mesh stiffness. Changes in the gear mesh stiffness were incorporated into each gear-shaft model during the global dynamic simulation of the system. The overall dynamics of the system were evaluated by solving for the transient dynamics of each shaft system simultaneously with the vibration of the gearbox structure. In order to reduce the number of degrees-of-freedom in the system, a modal synthesis procedure was used in the global transient dynamic analysis of the overall transmission system. An FFT procedure was used to transform the averaged time signal into the frequency domain for signature analysis. In addition, the Wigner-Ville distribution was also introduced to examine the gear vibration in the joint time frequency domain for vibration pattern recognition. Experimental results obtained from a gear fatigue test rig at NASA Lewis Research Center were used to evaluate the analytical model.
Influence of micromachined targets on laser accelerated proton beam profiles
NASA Astrophysics Data System (ADS)
Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran
2018-03-01
High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.
The responses of ant communities to structural change (removal of an invasive were studied in a replicated experiment in a Chihuahuan Desert grassland. The results from sampling of ant communities by pit-fall trapping were validated by mapping ant colonies on the experimental plo...