Science.gov

Sample records for pitting temperature measurement

  1. Pitting resistance of Alloy 800 as a function of temperature and prefilming in high temperature water

    SciTech Connect

    Stellwag, B.

    1995-12-31

    The pitting behavior of Alloy 800 was investigated as a function of temperature and prefilming in high temperature water. The pitting behavior was characterized in terms of the pitting potential and the pit density. The pitting potential decreases with increasing temperature and chloride activity. Prefilming of test coupons over a time period between 100 and 5,000 hours in ammoniated water at 300 C has no apparent influence on the pitting potential at room temperature, 180 C and 300 C. However, the number of pits in prefilmed coupons is much higher than in coupons covered with an air passive layer. The effect of prefilming on pit nucleation was investigated in more detail with regard to a model and test methods developed by Bianchi and co-workers. Density of pits in prefilmed coupons is at least one order of magnitude higher than in air passive coupons. Maximum pit density was measured after a prefilming period of 1 00 hours. The effect is discussed in terms of Bianchi`s model and in terms of features of passive films. It is outlined that the initially amorphous metastable passive film on Alloy 800 becomes crystalline at increased temperatures. Crystallization induces lattice defects, such as dislocations and grain boundaries, in the passive film. The film grows and slowly transforms into a thick oxide layer. The transformation process is associated with enhanced susceptibility to pit nucleation.

  2. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other

  3. Coordinate Measuring Machine Pit Artifact Inspection Procedure

    SciTech Connect

    Montano, Joshua D.

    2012-07-31

    The goal of this document is to outline a procedure for dimensional measurement of Los Alamos National Laboratory's CMM Pit Artifact. This procedure will be used by the Manufacturing Practice's Inspection Technology Subgroup of the Interagency Manufacturing Operations Group and Joint Operations Weapon Operations Group (IMOG/JOWOG 39) round robin participants. The intent is to assess the state of industry within the Nuclear Weapons Complex for measurements made on this type of part and find which current measurement strategies and techniques produce the best results.

  4. Heart rate and core temperature responses of elite pit crews during automobile races.

    PubMed

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  5. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750

    SciTech Connect

    Tan Hua; Jiang Yiming; Deng Bo; Sun Tao; Xu Juliang; Li Jin

    2009-09-15

    The pitting corrosion resistance of commercial super duplex stainless steels SAF2507 (UNS S32750) annealed at seven different temperatures ranging from 1030 deg. C to 1200 deg. C for 2 h has been investigated by means of potentiostatic critical pitting temperature. The microstructural evolution and pit morphologies of the specimens were studied through optical/scanning electron microscope. Increasing annealing temperature from 1030 deg. C to 1080 deg. C elevates the critical pitting temperature, whereas continuing to increase the annealing temperature to 1200 deg. C decreases the critical pitting temperature. The specimens annealed at 1080 deg. C for 2 h exhibit the best pitting corrosion resistance with the highest critical pitting temperature. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The aforementioned results can be explained by the variation of pitting resistance equivalent number of ferrite and austenite phase as the annealing temperature changes.

  6. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Treesearch

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  7. Temperature measurement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003400.htm Temperature measurement To use the sharing features on this page, please enable JavaScript. The measurement of body temperature can help detect illness. It can also monitor ...

  8. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.

    PubMed

    Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan

    2014-12-01

    Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage.

  9. Micro-PIT/V --- Simultaneous temperature and velocity fields in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait

    2008-11-01

    The use of encapsulated thermochromic liquid crystals (TLC) for the simultaneous measurement of temperature and velocity fields in microfluidic devices has been demonstrated. Implementation of TLC thermometry at the micro-scale is significantly different than at the macro-scale due to the constraints on imaging and illumination configurations and the proximity of the measurements to interfaces and surfaces from which light will scatter. Unlike in micro-PIV, wavelength filtering (such as with fluorescent particles) cannot be used to remove undesired reflections, because the temperature information is carried by the particle color. Therefore, circular polarization filtering is used, exploiting the circular dichroism of TLC. Micro-PIT/V will enable new investigations into the physics of microfluidic devices involving temperature gradients, such as thermocapillary actuated devices and many ``lab-on-a-chip'' applications involving temperature sensitive chemical and biological processes. In addition, the design of operational devices can be improved by applying micro-PIT/V to the characterization of prototypes.

  10. Measurement research for pitting potential of aluminium alloy with chromate passivation layers

    NASA Astrophysics Data System (ADS)

    Su, Z. H.; Dai, Y.; Ma, Q. Y.; Wang, J. N.; Zheng, C. Q.

    2017-01-01

    This paper describes common technology for measuring corrosion resistant properties of aluminium alloy with chromate passivation layers. It gives a resolution to characterize corrosion resistant properties of pitting potential. The method, including sample preparation, measuring polarization and the determining of pitting corrosion potential, was proposed. Tests of repeatability and reproducibility can meet the demand of measurement precision. In addition, comparison of the positional relationships between polarization curves and nominal pitting corrosion potential was provided to judge products.

  11. The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels

    SciTech Connect

    Anwar, Moch Syaiful Prifiharni, Siska Mabruri, Efendi

    2016-04-19

    The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl{sup −} containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled to the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.

  12. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    PubMed

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse.

  13. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  14. High temperature behavior of pressureless-sintered SiC in a steel soaking pit environment

    SciTech Connect

    Wei, G.C.; White, C.L.

    1984-07-01

    Sintered-..cap alpha.. SiC was exposed for about 800 h at about 1250/sup 0/C to a steel soaking pit environment. A slag layer consisting of hematite and low cristobalite in an Fe-K-Ca silicate glass matrix was formed on the external surface of sintered-..cap alpha.. SiC. No measurable corrosion or loss of material was observed. Large angular pores and depletion of graphite sintering aid, observed in the surface region of the as-received material, resulted in a lower-than-usual fracture strength. The fracture strength increased slightly following the exposure. Auger electron spectroscopic analysis identified oxygen penetration in the near-surface region of the exposed material. The results suggested that sintered-..cap alpha.. SiC would be suitable for use as a heat exchanger material in steel soaking pits. 8 references, 8 figures, 1 table.

  15. Ultrasonic scattering from a hemispherical pit theory and experimental measurement precision

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2017-02-01

    The accuracy and precision of pulse-echo ultrasonic thickness measurement systems are influenced by systematic and environmental factors including the topographic profile of the back-wall surface. For the case of thickness measurement from the outside surface of a pipe, the back-wall surface can vary in roughness as a result of internal corrosion. A single corrosive pit can be geometrically represented by a hemisphere in a half-space to model the initiation point of rough surface corrosion, or to model isolated pitting degradation as is possible with naphthenic acid corrosion in oil refineries. The elastic wave scattering from a single hemispherical pit has been studied in the Non-Destructive Evaluation (NDE) community, as well as scattering from a hemispherical canyon in the seismology community for various incident and reflected wave angles, modes, and frequency ranges with both analytical and discretized numerical methods. This paper looks to first review recent scattering theory (developed in the seismology community) on a full frequency range analytical solution for a normal incident longitudinal wave at a normal reflection angle from a hemispherical canyon, and then extend this theory to NDE applications with the introduction of a new far-field scattering amplitude term. Next, a selection of new theoretical scattering amplitude solutions are presented along with semi-analytical simulation and experimental measurement results. Finally, a statistical methodology to determine thickness measurement accuracy and precision taking into consideration asymmetric measurement uncertainty is referenced.

  16. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  17. Volume Measurements of Laser-generated Pits for In Situ Geochronology using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    French, R. A.; Cohen, B. A.; Miller, J. S.

    2014-01-01

    The Potassium-Argon Laser Experiment( KArLE), is composed of two main instruments: a spectrometer as part of the Laser-Induced Breakdown Spectroscopy (LIBS) method and a Mass Spectrometer (MS). The LIBS laser ablates a sample and creates a plasma cloud, generating a pit in the sample. The LIBS plasma is measured for K abundance in weight percent and the released gas is measured using the MS, which calculates Ar abundance in mols. To relate the K and Ar measurements, total mass of the ablated sample is needed but can be difficult to directly measure. Instead, density and volume are used to calculate mass, where density is calculated based on the elemental composition of the rock (from the emission spectrum) and volume is determined by pit morphology. This study aims to reduce the uncertainty for KArLE by analyzing pit volume relationships in several analog materials and comparing methods of pit volume measurements and their associated uncertainties.

  18. FOVEA: a new program to standardize the measurement of foveal pit morphology

    PubMed Central

    Moore, Bret A.; Yoo, Innfarn; Tyrrell, Luke P.; Benes, Bedrich

    2016-01-01

    The fovea is one of the most studied retinal specializations in vertebrates, which consists of an invagination of the retinal tissue with high packing of cone photoreceptors, leading to high visual resolution. Between species, foveae differ morphologically in the depth and width of the foveal pit and the steepness of the foveal walls, which could influence visual perception. However, there is no standardized methodology to measure the contour of the foveal pit across species. We present here FOVEA, a program for the quantification of foveal parameters (width, depth, slope of foveal pit) using images from histological cross-sections or optical coherence tomography (OCT). FOVEA is based on a new algorithm to detect the inner retina contour based on the color variation of the image. We evaluated FOVEA by comparing the fovea morphology of two Passerine birds based on histological cross-sections and its performance with data from previously published OCT images. FOVEA detected differences between species and its output was not significantly different from previous estimates using OCT software. FOVEA can be used for comparative studies to better understand the evolution of the fovea morphology in vertebrates as well as for diagnostic purposes in veterinary pathology. FOVEA is freely available for academic use and can be downloaded at: http://estebanfj.bio.purdue.edu/fovea. PMID:27076997

  19. Application of in situ x-ray absorption and fluorescence measurements to analyze solutions in a simulated pit

    SciTech Connect

    Isaacs, H.S.; Davenport, A.J.; Cho, J.H.; Rivers, M.L.; Sutton, S.R.

    1991-12-31

    X-ray energy-dispersive spectroscopy has been used to study the compositions of metal ions in solutions developed during localized corrosion. An electrochemical cell was designed to simulate a corrosion pit, maintaining one-dimensional diffusion and fulfilling the requirements for x-ray fluorescence measurements. The working electrode consisted of a dissolving thin foil of Type 304 stainless steel sealed between Mylar sheets through which the x-ray beam passed. Concentration gradients within the artificial pit were quantitatively determined.

  20. Application of in situ x-ray absorption and fluorescence measurements to analyze solutions in a simulated pit

    SciTech Connect

    Isaacs, H.S.; Davenport, A.J.; Cho, J.H. ); Rivers, M.L.; Sutton, S.R. . Dept. of Geophysical Sciences)

    1991-01-01

    X-ray energy-dispersive spectroscopy has been used to study the compositions of metal ions in solutions developed during localized corrosion. An electrochemical cell was designed to simulate a corrosion pit, maintaining one-dimensional diffusion and fulfilling the requirements for x-ray fluorescence measurements. The working electrode consisted of a dissolving thin foil of Type 304 stainless steel sealed between Mylar sheets through which the x-ray beam passed. Concentration gradients within the artificial pit were quantitatively determined.

  1. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  2. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    NASA Astrophysics Data System (ADS)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2004-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  3. Measuring body temperature.

    PubMed

    McCallum, Louise; Higgins, Dan

    Body temperature is one of the four main vital signs that must be monitored to ensure safe and effective care. Temperature measurement is recommended by the National Institute of Clinical Excellence a part of the initial assessment in acute illness in adults (NICE, 2007) and by the Scottish Intercollegiate Guidelines Network guidelines for post-operative management in adults (SIGN, 2004). Despite applying in all healthcare environments, wide variations exist on the methods and techniques used to measure body temperature. It is essential to use the most appropriate technique to ensure that temperature is measured accurately. Inaccurate results may influence diagnosis and treatment, lead to a failure to identify patient deterioration and compromise patient safety. This article explains the importance of temperature regulation and compares methods of its measurement.

  4. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  5. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  6. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  7. Direct temperature measurement.

    PubMed

    Fessenden, P; Lee, E R; Samulski, T V

    1984-10-01

    Hyperthermia has little hope of progressing as a clinical modality without accurate assessment of the temperature distributions obtained. At the present time only direct, invasive temperature-measuring techniques are possible, posing severe limitations. Established techniques for clinical temperature measurement have developed over the past few years, and for both ultrasound and electromagnetic hyperthermia it is possible to get temperature-time profiles at a large number of spatial points. Position uncertainty, thermal conduction smearing, and artifactual heating limit the accuracy to about 0.2 degrees (electromagnetic) or 0.5 degrees (ultrasound), but this is probably less of a hindrance than the inadequate percentage of tumor and normal tissue volume for which achieved temperatures can be documented.

  8. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  9. Temperature measuring device

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  10. Pluto Pits

    NASA Image and Video Library

    2015-11-10

    NASA New Horizons cameras have spied swarms of mysterious pits across the informally named Sputnik Planum. Scientists believe the pits may form through a combination of sublimation and ice fracturing. http://photojournal.jpl.nasa.gov/catalog/PIA20151

  11. The effects of opaque and clear pit and fissure sealants on infrared laser fluorescence measurements.

    PubMed

    Bahrololoomi, Z; Khodabakhsh, M; Khaksar, Y

    2014-06-01

    The purpose of placing sealants is to inhibit caries by physical closure of the pits and fissures of teeth. A device named DIAGNOdent is useful in detecting occlusal caries by employing laser fluorescence (LF). However, there are contradictory results in the influence of sealants on LF measurements. The aim of this study is to investigate the effects of two different types of fissure sealants on LF measurements. In this in vitro study, 86 extracted permanent third molars were divided randomly into two groups and clear or opaque sealant was applied on the occlusal surfaces. Two examiners performed pre- and post-seal fluorescence measurements twice with one week interval by employing DIAGNOdent device. Finally, measured values were evaluated through the statistical paired t-test by means of SPSS 17 software. The mean value of LF measurements increased significantly due to the application of clear sealant (p= 0.001) while the statistical changes in this measurement was negligible after applying opaque sealant (p= 0.311). Clear sealants increase the LF measured values but opaque sealants cause almost no changes. Therefore, DIAGNOdent device is not reliable for detecting caries beneath the clear sealant.

  12. The Effects of Opaque and Clear Pit and Fissure Sealants on Infrared Laser Fluorescence Measurements

    PubMed Central

    Bahrololoomi, Z.; Khodabakhsh, M.; Khaksar, Y.

    2014-01-01

    Statement of the Problem: The purpose of placing sealants is to inhibit caries by physical closure of the pits and fissures of teeth. A device named DIAGNOdent is useful in detecting occlusal caries by employing laser fluorescence (LF). However, there are contradictory results in the influence of sealants on LF measurements. Purpose: The aim of this study is to investigate the effects of two different types of fissure sealants on LF measurements. Materials and Method: In this in vitro study, 86 extracted permanent third molars were divided randomly into two groups and clear or opaque sealant was applied on the occlusal surfaces. Two examiners performed pre- and post-seal fluorescence measurements twice with one week interval by employing DIAGNOdent device. Finally, measured values were evaluated through the statistical paired t-test by means of SPSS 17 software. Results: The mean value of LF measurements increased significantly due to the application of clear sealant (p= 0.001) while the statistical changes in this measurement was negligible after applying opaque sealant (p= 0.311). Conclusion: Clear sealants increase the LF measured values but opaque sealants cause almost no changes. Therefore, DIAGNOdent device is not reliable for detecting caries beneath the clear sealant. PMID:24883342

  13. EPA Directs Additional Safety Measures for San Jacinto River Waste Pits Superfund Site

    EPA Pesticide Factsheets

    DALLAS - (Feb. 17, 2016) Today, the U.S. Environmental Protection Agency (EPA) announced new safety requirements for the temporary armored cap at the San Jacinto River Waste Pits Superfund Site in Harris County, Texas. EPA has directed both Internat

  14. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Astrophysics Data System (ADS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2010-02-01

    The effects of hot corrosion pits on low-cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low-cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98%. Fatigue cracks initiated at a very small fraction of life for high-temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated based on measurements of pits initiating cracks on fracture surfaces.

  15. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  16. Measurement of optical scattered power from laser-induced shallow pits on silica

    DOE PAGES

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm2 and 11 J/cm2 are characterized as well and found in good agreement with model predictions.

  17. Guidelines to indirectly measure and enhance detection efficiency of stationary PIT tag interrogation systems in streams

    USGS Publications Warehouse

    Connolly, Patrick J.; Wolf, Keith; O'Neal, Jennifer S.

    2010-01-01

    With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.

  18. Measurement of optical scattered power from laser-induced shallow pits on silica

    SciTech Connect

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm2 and 11 J/cm2 are characterized as well and found in good agreement with model predictions.

  19. Arne - Exploring the Mare Tranquillitatis Pit

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Thangavelautham, J.; Wagner, R.; Hernandez, V. A.; Finch, J.

    2014-12-01

    Lunar mare "pits" are key science and exploration targets. The first three pits were discovered within Selene observations [1,2] and were proposed to represent collapses into lava tubes. Subsequent LROC images revealed 5 new mare pits and showed that the Mare Tranquillitatis pit (MTP; 8.335°N, 33.222°E) opens into a sublunarean void at least 20-meters in extent [3,4]. A key remaining task is determining pit subsurface extents, and thus fully understanding their exploration and scientific value. We propose a simple and cost effective reconnaissance of the MTP using a small lander (<130 kg) named Arne, that carries three flying microbots (or pit-bots) [5,6,7]. Key measurement objectives include decimeter scale characterization of the pit walls, 5-cm scale imaging of the eastern floor, determination of the extent of sublunarean void(s), and measurement of the magnetic and thermal environment. After landing and initial surface systems check Arne will transmit full resolution descent and surface images. Within two hours the first pit-bot will launch and fly into the eastern void. Depending on results from the first pit-bot the second and third will launch and perform follow-up observations. The primary mission is expected to last 48-hours; before the Sun sets on the lander there should be enough time to execute ten flights with each pit-bot. The pit-bots are 30-cm diameter spherical flying robots [5,6,7] equipped with stereo cameras, temperature sensors, sensors for obstacle avoidance and a laser rangefinder. Lithium hydride [5,6] and water/hydrogen peroxide power three micro-thrusters and achieve a specific impulse of 350-400 s. Each pit-bot can fly for 2 min at 2 m/s for more than 100 cycles; recharge time is 20 min. Arne will carry a magnetometer, thermometer, 2 high resolution cameras, and 6 wide angle cameras and obstacle avoidance infrared sensors enabling detailed characterization of extant sublunarean voids. [1] Haruyama et al. (2010) 41st LPSC, #1285. [2

  20. Field temperature measurements at Erta'Ale Lava Lake, Ethiopia

    NASA Astrophysics Data System (ADS)

    Burgi, Pierre-Yves; Caillet, Marc; Haefeli, Steven

    2002-06-01

    The shield volcano Erta'Ale, situated in the Danakil Depression, Ethiopia, is known for its active lava lake. In February 2001, our team visited this lake, located inside an 80-m-deep pit, to perform field temperature measurements. The distribution and variation of temperature inside the lake were obtained on the basis of infrared radiation measurements performed from the rim of the pit and from the lake shores. The crust temperature was also determined from the lake shores with a thermocouple to calibrate the pyrometer. We estimated an emissivity of the basalt of 0.74 from this experiment. Through the application of the Stefan-Boltzmann law, we then obtained an estimate of the total radiative heat flux, constrained by pyrometer measurements of the pit, and visual observations of the lake activity. Taking into account the atmospheric convective heat flux, the convected magma mass flux needed to balance the energy budget was subsequently derived and found to represent between 510 and 580 kg s-1. The surface circulation of this mass flux was also analyzed through motion processing techniques applied to video images of the lake. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00445-002-0224-3.

  1. A Model for High-Temperature Pitting Corrosion in Nickel-Based Alloys Involving Internal Precipitation of Carbides, Oxides, and Graphite

    NASA Astrophysics Data System (ADS)

    Albertsen, J. Z.; Grong, Ø.; Walmsley, J. C.; Mathiesen, R. H.; van Beek, W.

    2008-06-01

    The present investigation is concerned with fundamental studies of the mechanisms of pitting corrosion in the Ni-based alloys 602 and 693, following long-term exposure to syngas at 540 °C and a 35-bar total pressure. The 4-years’ plant-exposed alloys were examined using synchrotron X-ray diffraction (XRD) in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is concluded that the pitting corrosion attacks start when carbon diffuses into the bulk of the alloys following the breakdown of the protective Cr2O3-Al2O3 surface oxide layer. During the incubation period, this oxide layer provides an effective barrier against carbon intrusion by virtue of its ability to restore cracks and flaws through diffusion. The corrosion pits then grow by a process of internal carburization and oxidation, in which carbides, oxides, and graphite form separately within an approximately 30- μm-thick belt in front of the pits (referred to as the white zone). In particular, the oxidation of the internal Cr3C2 carbides occurring close to the white zone/pit interface is associated with large volume changes. This volume expansion results in the buildup of high mechanical stresses within the white zone and, eventually, to the complete disintegration of the original alloy matrices into a layered pit microstructure consisting of Ni + Fe and Cr2O3 + Al2O3 + graphite. The observed microstructural changes have been rationalized through detailed modeling of the physical reactions involved, leading to the development of new and comprehensive models for high-temperature pitting corrosion in Ni-based alloys.

  2. Pit assisted oxygen chemisorption on GaN surfaces.

    PubMed

    Mishra, Monu; Krishna T C, Shibin; Aggarwal, Neha; Kaur, Mandeep; Singh, Sandeep; Gupta, Govind

    2015-06-21

    A comprehensive analysis of oxygen chemisorption on epitaxial gallium nitride (GaN) films grown at different substrate temperatures via RF-molecular beam epitaxy was carried out. Photoemission (XPS and UPS) measurements were performed to investigate the nature of the surface oxide and corresponding changes in the electronic structure. It was observed that the growth of GaN films at lower temperatures leads to a lower amount of surface oxide and vice versa was observed for a higher temperature growth. The XPS core level (CL) and valence band maximum (VBM) positions shifted towards higher binding energies (BE) with oxide coverage and revealed a downward band bending. XPS valence band spectra were de-convoluted to understand the nature of the hybridization states. UPS analysis divulged higher values of electronic affinity and ionization energy for GaN films grown at a higher substrate temperature. The surface morphology and pit structure were probed via microscopic measurements (FESEM and AFM). FESEM and AFM analysis revealed that the film surface was covered with hexagonal pits, which played a significant role in oxygen chemisorption. The favourable energetics of the pits offered an ideal site for oxygen adsorption. Pit density and pit depth were observed to be important parameters that governed the surface oxide coverage. The contribution of surface oxide was increased with an increase in average pit density as well as pit depth.

  3. The Pits

    NASA Technical Reports Server (NTRS)

    2006-01-01

    8 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a pit chain on the lower, northern flank of the giant martian volcano, Arsia Mons. Pits such as these commonly form as a result of collapse of surface materials into a subsurface void, possibly along a fault or into an old lava tube. The layered material, exposed near the top of several of the pits, is shedding house-sized boulders which can be seen resting on the sloping sidewalls and floors of many of the pits.

    Location near: 6.7oS, 120.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  4. Pit Crater

    NASA Image and Video Library

    2016-12-02

    This image captured by NASA 2001 Mars Odyssey spacecraft is located in Noachis Terra. The unnamed crater at the bottom of the image contains a central pit. Central features such as pits and peaks can provide information about both the impacted surface and the size of the meteorite. Orbit Number: 65680 Latitude: -28.4965 Longitude: 349.805 Instrument: VIS Captured: 2016-10-03 22:49 http://photojournal.jpl.nasa.gov/catalog/PIA21180

  5. Note on the relationship between porosity data and intervessel pit dimension

    SciTech Connect

    Murphey, W.K.; Elder, T.J.; Blankenhorn, P.R.

    1980-01-01

    Data on porosity, charring temperature, mercury intrusion, pit dimensions, and density of black cherry char are summarized and examined statistically in an attempt to elucidate relationships between measured parameters. Pit dimensions were not related to porosity, but were related to real density. Porosity is found to be related to mercury intrusion, real density and temperature. 1 figure, 2 tables.

  6. Measuring Soil Temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a critical factor in the germination and early growth of many crops including corn, cotton, small grains, and vegetable crops. Soil temperature strongly influences the rate of critical biological reactions in the soil such as the rates of nitrification and microbial respiration. ...

  7. THEMIS Observation of Diurnal Temperature Change in the Pit Craters on Mars

    NASA Astrophysics Data System (ADS)

    Cho, E.; Jung, J.; Yi, Y.; Yu, J.; Oh, S.

    2015-10-01

    The cave candidates have been found on Pavonis Mons and Ascraeus Mons in Tharsis Montes. And we have examined the temperature change at daytime and at nighttime for cave candidates using the method of Cushing et al. (2007).

  8. Volume Computation of a Stockpile - a Study Case Comparing GPS and Uav Measurements in AN Open Pit Quarry

    NASA Astrophysics Data System (ADS)

    Raeva, P. L.; Filipova, S. L.; Filipov, D. G.

    2016-06-01

    The following paper aims to test and evaluate the accuracy of UAV data for volumetric measurements to the conventional GNSS techniques. For this purpose, an appropriate open pit quarry has been chosen. Two sets of measurements were performed. Firstly, a stockpile was measured by GNSS technologies and later other terrestrial GNSS measurements for modelling the berms of the quarry were taken. Secondly, the area of the whole quarry including the stockpile site was mapped by a UAV flight. Having considered how dynamic our world is, new techniques and methods should be presented in numerous fields. For instance, the management of an open pit quarry requires gaining, processing and storing a large amount of information which is constantly changing with time. Fast and precise acquisition of measurements regarding the process taking place in a quarry is the key to an effective and stable maintenance. In other words, this means getting an objective evaluations of the processes, using up-to-date technologies and reliable accuracy of the results. Often legislations concerning mine engineering state that the volumetric calculations are to present ±3% accuracy of the whole amount. On one hand, extremely precise measurements could be performed by GNSS technologies, however, it could be really time consuming. On the other hand, UAV photogrammetry presents a fast, accurate method for mapping large areas and calculating stockpiles volumes. The study case was performed as a part of a master thesis.

  9. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  10. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  11. Measuring Temperature: The Thermometer

    ERIC Educational Resources Information Center

    Chamoun, Mirvette

    2005-01-01

    The author discusses the historical development of the thermometer with the view of helping children understand the role that mathematics plays in society. A model thermometer that is divided into three sections, each displaying one of the three temperature scales used today (Fahrenheit, Celsius and Kelvin) is highlighted as a project to allow…

  12. Volume Measurements of Laser-generated Pits for in Situ Geochronology Using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    French, R. A.; Cohen, B. A.; Miller, J. S.

    2014-01-01

    KArLE (Potassium-­-Argon Laser Experiment) has been developed for in situ planetary geochronology using the K - Ar (potassium-­-argon) isotope system, where material ablated by LIBS (Laser-­-Induced Breakdown Spectroscopy) is used to calculate isotope abundances. We are determining the accuracy and precision of volume measurements of these pits using stereo and laser microscope data to better understand the ablation process for isotope abundance calculations. If a characteristic volume can be determined with sufficient accuracy and precision for specific rock types, KArLE will prove to be a useful instrument for future planetary rover missions.

  13. Air temperature measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    A coupled pair of identical film-mounted spherical bead thermistors serve as air temperature sensors aboard both Balloons 8-a and 8-b. The 8-a payload was reeled downward approximately 200 m beneath the balloon. The thermistor mounts were arranged in such a way so that when solar radiation was incident in a direction which was perpendicular to one film, then the direction of the incident solar ray was parallel to the second film. As the payload rotated during the flight (its rotation rate relative to the earth's magnetic field was sensed by a magnetometer), the temperature of each sensor varied depending on the orientation of the film surfaces with respect to the sun.

  14. Surface temperature measurement errors

    SciTech Connect

    Keltner, N.R.; Beck, J.V.

    1983-05-01

    Mathematical models are developed for the response of surface mounted thermocouples on a thick wall. These models account for the significant causes of errors in both the transient and steady-state response to changes in the wall temperature. In many cases, closed form analytical expressions are given for the response. The cases for which analytical expressions are not obtained can be easily evaluated on a programmable calculator or a small computer.

  15. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  16. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  17. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  18. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  19. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  20. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  1. Passive Layer Stability of 2205 Duplex Stainless Steel in Oilfield-Produced Water: Potentiostatic Critical Pitting Temperature Test and Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Sabouri, M.; Hoseiny, H.

    2017-08-01

    In this article, the potentiostatic passivation behavior of 2205 duplex stainless steel was investigated in oilfield-produced water with a focus on the variation of the passive layer stability with temperature. The obtained current-time transients were analyzed using wavelet transform to evaluate the passive layer deterioration at different time domains corresponding to the temperatures of 303 K, 313 K, 323 K, and 333 K (30 °C, 40 °C, 50 °C, and 60 °C). The results showed that the critical pitting temperature (CPT) of the 2205 alloy in the studied produced water was 333.2 K (60.2 °C). In addition, the optimum passivation of the material surface was obtained between 303 K and 313 K (30 °C and 40 °C). The passive layer deteriorated at about 323 K (50 °C) by penetration of chloride and subsequently entered into the transpassive region. Moreover, at 333 K (60 °C), the metastable pits converted to permanent or overlapped pits. Corrosion morphology confirmed the results obtained by wavelet analyses. In addition, microscopical studies of the alloy microstructure showed that both phases, i.e., austenite and ferrite, were attacked by corrosion, although it was more severe in ferrite.

  2. High-temperature rapid pyrometamorphism induced by a charcoal pit burning: The case of Ricetto, central Italy

    NASA Astrophysics Data System (ADS)

    Capitanio, Flavio; Larocca, Francesco; Improta, Salvatore

    Bulk chemistry and mineralogy of the peculiar rock of Ricetto (Carseolani Mts., Central Apennines, Italy) was studied to resolve its controversial origin: igneous dyke or anthropic product. This hybrid rock consists of a colorless, felsic component made up of glass plus quartz, and a brown, femic component made up of fans and spherulites of diopside, calcic plagioclase, wollastonite, and melilite. Textural relationships indicate very rapid cooling and immiscibility phenomena. The bulk chemistry of the rock is the same as that of the surrounding siliciclastic sandstone. The 14C analysis of a coal fragment from bottom of the body yields the conventional age of 227(+/-50) years. The Ricetto occurrence is an example of pyrometamorphism of a siliceous limestone induced by a charcoal pit burning. The small size of the heat source at Ricetto caused an intense but short-lived melting of the country rock. Prograde metamorphism caused a temperature increase up to 1,000-1,100 °C when melilite crystallization conditions were reached at appreciable P(CO2) and high f(O2). Melting occurred in a close system represented by the simplified equation: 3Cal+16.5Qtz+Ms+Bt-->Mel+Melt+2H2O+3CO2+0.5O2. Diopside+calcic plagioclase+wollastonite formed by melilite breakdown during rapid cooling, through the reaction: 6Mel+6Qtz+0.5O2-->3Di+2An+7Wo. Liquid immiscibility caused the separation between the felsic melt component and the femic melilite-bearing component. Immiscibility was characterized by different fractionation of alumina and alkalies between these two phases. Differences in bulk, glass, and mineral chemistry between the Ricetto and other melilite-bearing pyrometamorphic rocks can be attributed mainly to different protoliths.

  3. Noncontact temperature pattern measuring device

    NASA Technical Reports Server (NTRS)

    Elleman, D. D. (Inventor); Allen, J. L. (Inventor); Lee, M. C. (Inventor)

    1987-01-01

    This invention relates to a noncontact imagine pyrometer system for obtaining the true temperature image of a given substance in a contactless fashion without making assumptions about localized emissivity of the substance or the uniformity of the temperature distribution. Such a contactless temperature imaging system has particular application in the study and production of many materials where the physical contact required to make a conventional temperature measurement drastically effects or contaminates the physical process being observed. Two examples where accurate temperature profiles are of critical interest are: (1) the solid-liquid phase change interface in the production of electronic materials and (2) metastable materials in the undercooling region. The apparent novelty resides in the recognition that an active pyrometer system may be advantageously adapted to perform contactless temperature imaging so that an accurate temperature profile can be obtained.

  4. Integrated Emissivity And Temperature Measurement

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  5. Non-contact temperature measurement

    NASA Astrophysics Data System (ADS)

    Nordine, Paul C.; Krishnan, Shankar; Weber, J. K. R.; Schiffman, Robert A.

    Three methods for noncontact temperature measurement are presented. Ideal gas thermometry is realized by using laser-induced fluorescence to measure the concentration of mercury atoms in a Hg-Ar mixture in the vicinity of hot specimens. Emission polarimetry is investigated by measuring the spatially resolved intensities of polarized light from a hot tungsten sphere. Laser polarimetry is used to measure the optical properties, emissivity, and, in combination with optical pyrometry, the temperature of electromagnetically levitated liquid aluminum. The precision of temperature measurements based on the ideal gas law is + or - 2.6 percent at 1500-2000 K. The polarized emission technique is found to have the capability to determine optical properties and/or spectral emissivities of specimens over a wide range of wavelengths with quite simple instruments.

  6. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  7. Measurement of facial skin temperature.

    PubMed

    Ariyaratnam, S; Rood, J P

    1990-10-01

    It is essential to know the pattern of facial skin temperatures in normal subjects to be able to objectively assess differences in cases of nerve injury. Thirty healthy adults were selected at random to investigate the pattern of facial temperature using liquid crystal thermography and an electronic thermocouple system. The highest temperature of the face was in the forehead area (c, 34 degrees C) and the lowest (c. 32 degrees C) in the cheek area. If ambient temperature and humidity are controlled in a draught-free environment, symmetry of the facial skin temperature can be maintained. It is concluded that measurements of facial skin temperature may be used to investigate and assess lesions of peripheral branches of cranial nerves supplying the face.

  8. Pit Formation during the Self-Assembly of Dithiol Monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Macdairmid, A. R.; Cappello, M. L.; Keeler, W. J.; Banks, J. T.; Gallagher, M. C.

    2000-03-01

    The formation of pits one gold atom deep during the growth of alkanethiol monolayers on Au(111), has been observed previously by others. Explanations for pit formation include etching of the substrate, or mass transport of gold atom + thiol molecule on the surface, due to changes in surface energy^1. We have investigated the structure of dithiothreitol (DTT) SAMs on Au(111). Ex situ STM measurements indicate similar pitting occurs during formation of the dithiol monolayer. The degree of pitting depends on exposure time, sample temperature during formation, and subsequent annealing of the sample. Pitting is enhanced considerasbly when DTT is coordinated with Ti, in fact DTT/Ti films exhibit considerable pit motion during STM imaging. ^1 F. Teran et al. Electrochimica Acta 44, 1053 (1998).

  9. Pitted keratolysis*

    PubMed Central

    de Almeida Jr, Hiram Larangeira; Siqueira, Rodrigo Nunes; Meireles, Renan da Silva; Rampon, Greice; de Castro, Luis Antonio Suita; Silva, Ricardo Marques e

    2016-01-01

    Pitted keratolysis is a skin disorder that affects the stratum corneum of the plantar surface and is caused by Gram-positive bacteria. A 30-year-old male presented with small punched-out lesions on the plantar surface. A superficial shaving was carried out for scanning electron microscopy. Hypokeratosis was noted on the plantar skin and in the acrosyringium, where the normal elimination of corneocytes was not seen. At higher magnification (x 3,500) bacteria were easily found on the surface and the described transversal bacterial septation was observed. PMID:26982791

  10. The Kelvin and Temperature Measurements

    PubMed Central

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  11. The Kelvin and Temperature Measurements.

    PubMed

    Mangum, B W; Furukawa, G T; Kreider, K G; Meyer, C W; Ripple, D C; Strouse, G F; Tew, W L; Moldover, M R; Johnson, B C; Yoon, H W; Gibson, C E; Saunders, R D

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for "on-site" thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by calibration of

  12. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  13. Michelson interferometer for measuring temperature

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-09-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  14. Temperature measurement during microwave processing

    SciTech Connect

    Darby, G.; Clark, D.E.; DiFiore, R.; Foltz, D.

    1995-12-31

    Many ceramic materials have been fabricated using sol-gel processing where the starting materials consist of a liquid organic precursor mixed with water and alcohol. The initial stages in sol-gel reactions require temperatures in the range of 100{degrees}C or less, and therefore appear ideally suited for processing in a conventional microwave oven. In this paper we evaluate the use of several types of thermocouple geometries for measuring the temperature of liquids, including tetraethylorthosilicate (TEOS) during microwave heating. The boiling point of water is used as a reference on which to base the accuracy of our measurements.

  15. High temperature in absorption measurements

    NASA Astrophysics Data System (ADS)

    Krech, R. H.; Pugh, E. R.

    1981-09-01

    The temperature dependence of the absorption coefficient of water vapor was measured to determine the feasibility of using water vapor as a molecular seed to couple 10.6 micrometer CO2 laser radiation into a propellant for use in a high performance laser heated rocket thruster. A series of shock tube experiments were performed to determine the temperature dependence of the absorption coefficient of water vapor at high temperatures on the P(16), P(18) and P(20) 10.6 micrometer CO2 laser transitions. Measurements were made behind both incident and reflected shock waves encompassing a temperature range from 600 K to 3700 K at pressures from 1 to 40 atmospheres in 2, 5, and 10 mole percent water vapor in argon gas mixtures. Within the spectral range (944 to 948 cm) covered, no significant variation in the absorption coefficient was observed as a function of laser wavelength, water concentration, total pressure, or collision partner. Observations suggest that the water lines are sufficiently broadened to act as a continuum absorber under conditions to be found in a laser-heated rocket thruster. The measured laser high temperature absorption coefficients are 50 percent lower than the values obtained from the Ludwig empirical curve fit to low resolution data.

  16. [Effects of scale-like pit and mulching measures on soil moisture of dryland jujube orchard in North Shaanxi Province, China].

    PubMed

    Li, Hong-Chen; Zhao, Xi-Ning; Gao, Xiao-Ding; Wang, Jia-Wen; Shi, Yin-Guang

    2014-08-01

    Soil moisture is a key factor affecting jujube growth in the semiarid Northern Shaanxi Province. The impacts of different engineering and mulching measures on soil moisture were investigated via in situ measurements in a typical dryland jujube orchard. The results showed that the mean soil moistures (0-180 cm) of scale-like pit + branch mulching, scale-like scale + straw mulching, and soil moisture of scale-like pit with no mulching were increased by 14.2%, 9.4%, and 4.8% than control, respectively. Different measures, especially for the scale-like pit + branch mulching, significantly increased the soil moisture in the soil surface (0-20 cm) and the main root zone layer (20-100 cm) during the jujube growth stage. Individual precipitation events had great impacts on soil moisture in the 0-100 cm, while its effect on soil moisture in deep layers was not apparent. There was no significant difference among the soil moistures in different soil depths of scale-like pit with no mulching when compared with the control under high, medium, and low soil humidity conditions. This study indicated that using the clipped jujube branches as mulching could both save materials cost and achieve the goal of reserving more water in dryland jujube orchard in north Shaanxi Province.

  17. Noncontact temperature pattern measuring device

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Allen, James L. (Inventor); Lee, Mark C. (Inventor)

    1989-01-01

    Laser pyrometer techniques are utilized to accurately image a true temperature distribution on a given target without touching the target and without knowing the localized emissivity of the target. The pyrometer utilizes a very high definition laser beam and photodetector, both having a very narrow focus. The pyrometer is mounted in a mechanism designed to permit the pyrometer to be aimed and focused at precise localized points on the target surface. The pyrometer is swept over the surface area to be imaged, temperature measurements being taken at each point of focus.

  18. Refueling Tanker Truck Temperature Measurements

    DTIC Science & Technology

    2005-02-01

    temperature dropped from 136 °F down to 116 °F). 3. From 16:10 to 17:11 the truck returned to the flight line, servicing two more aircraft. 4. At...Locations of air and jet fuel within truck tank and accompanying liquid- gas interface. 18 15 20 25 30 35 40 45 5000 10000 15000 20000 25000...AFRL-PR-WP-TR-2005-2103 REFUELING TANKER TRUCK TEMPERATURE MEASUREMENTS Theodore F. Williams, Marlin D. Vangsness, James R. Shardo, and Jamie

  19. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion.

    PubMed

    Anton, Nicolas; Gayet, Pascal; Benoit, Jean-Pierre; Saulnier, Patrick

    2007-11-01

    This paper focuses on the phenomenological understanding of temperature cycling process, applied to the phase inversion temperature (PIT) method. The role of this particular thermal treatment on emulsions phase inversion, as well as its ability to generate nano-emulsions have been investigated. In order to propose a general study, we have based our investigations on a given formulation of nano-emulsions classically proposed in the literature [Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., Benoit, J.P., 2002. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res. 19, 875; Lamprecht, A., Bouligand, Y, Benoit, J.P., 2002. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Control. Release 84, 59-68], using a polyethoxylated model nonionic surfactant, a polyoxyehtylene-660-12-hydroxy stearate, stabilizing the emulsion composed of caprilic triglycerides (triglycerides medium chains), salt water (and also phospholipidic amphiphiles neutral for the formulation). Characterization of nano-emulsions was performed by dynamic light scattering (DLS) which provides the hydrodynamic diameter, but also the polydispersity index (PDI), as a fundamental criteria to judge the quality of the dispersion. Another aspect of the characterization was done following the emulsion inversion and structure by electrical conductivity through the temperature scan. Overall, the role such a temperature cycling process on the formulation of nano-emulsions appears to be relatively important, and globally enhanced as the surfactant concentration is lowered. Actually, both the hydrodynamic diameter and the PDI decrease as a function of the number and temperature cycles up to stabilize a steady state. Eventually, such a cycling process allows the generation of nano-emulsions in ranges of compositions largely expanded when compared with the classical PIT method. These general and interesting trends emerge from the results, are

  20. Environmental tests of thermographic phosphors for turbine-engine temperature measurements

    NASA Astrophysics Data System (ADS)

    Noel, B. W.; Bibby, M. C.; Borella, H. M.; Woodruff, S. E.; Hudson, C. L.

    1989-07-01

    A method that uses thermographic phosphors (TPs) for remote temperature measurements in hostile environments was developed. Based on the results of environmental tests, the potential for applying the TP method to measuring blade and vane temperatures in operating turbine engines was evaluated. Heat/water-quench tests, burner-rig tests, and a test in an experimental-engine hot section demonstrated that the TPs can be durably bonded to blade and vane surfaces, yet still exhibit usable luminescence after the test. A spin-pit test showed that it was possible to measure the temperature reliably on a heated rotating turbine disk. These tests and their results are described.

  1. Evaluating and testing thermographic phosphors for turbine-engine temperature measurements

    NASA Astrophysics Data System (ADS)

    Noel, B. W.; Allison, S. W.; Beshears, D. L.; Cates, M. R.; Borella, H. M.; Franks, L. A.; Iverson, C. E.; Lutz, S. S.; Marshall, B. R.; Thomas, M. B.

    A technique developed earlier for measuring the temperature of inaccessible surfaces in low-temperature rotating machines is being adapted to measure the temperature of surfaces at the higher temperatures and in the erosive environment inside operating turbine engines. The method uses the temperature dependence of the characteristic decay time of the laser-induced-fluorescence of thermographic phosphors to measure the temperature. This paper summarizes recent work in four areas: phosphor characterization and calibration, instrumentation development, bonding, and field tests. By using improved instrumentation and data-analysis techniques, calibration curves for several phosphors are measured with greater accuracy and extended to higher temperatures than before. Phosphors are evaluated that were attached to sample surfaces by high-temperature bonding materials, electron-beam deposition, flame spraying, and plasma spraying. A burner rig test was performed on some phosphor-coated samples and the instrumentation required for an upcoming spin-pit test was designed, built, and calibrated.

  2. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG

  3. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    NASA Astrophysics Data System (ADS)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  4. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  5. Measurements Of Snowpack Temperature In A Colorado Subalpine Forest

    NASA Astrophysics Data System (ADS)

    Burns, S. P.; Monson, R. K.; Losleben, M. V.; Williams, M. W.; Molotch, N. P.

    2006-12-01

    It is well documented that strong winds force air into snowpacks and result in the mixing of atmospheric air with air trapped in the interstitial snowpack space (Colbeck 1989; Clarke and Waddington 1991; Albert and Hardy 1995; Massman et~al. 1997). In this study, three years (2004-2006) of snow temperature data from the Niwot Ridge Ameriflux site were examined with respect to atmospheric temperature, humidity, wind speed, radiation, and turbulent fluxes of heat and water vapor. (Atmospheric measurements were provided by the 26-meter University of Colorado Ameriflux tower that is within 30~m of the study site.) Snow temperature probes consisted of polycarbonate rods embedded with thermistors every 10cm (model TP101 probes, Measurement Research Corporation (MRC), Gig Harbor, WA, 98335). Continuous measurements of soil temperature (by thermocouple and platinum resistance thermometer (PRT) sensors) and soil moisture complete the data set. Snow density profiles were determined weekly by manual snow pits. The MRC snow temperature probes were arranged in a transect across a forest clearing approximately 8~m wide allowing for an assessment of atmospheric drivers of snow temperature oscillations in the context of proximity to vegetation. Ventilation events typically occurred at time scales ranging from minutes to hours but the effect on snowpack temperatures can last for several days. During the early winter (when the snowpack is shallow and snow density is low), snowpack temperature oscillations were on the order of 5°C. These oscillations continue until snowpack density increased and the snowpack became isothermal as the phase transition of snow crystals into water began. These multi-year, season-long observations provide new insight into the atmospheric and ecological controls on snowpack microstructure and temperature during the winter and winter-spring transition periods.

  6. The application of PIT tags to measure transport of detrital coral fragments on a fringing reef: Majuro Atoll, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Ford, Murray R.

    2014-06-01

    Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.

  7. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  8. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  9. Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2015-06-01

    The dynamics of thermal plumes and their abundance is investigated in mixed convection in a cuboidal sample with respect to the characteristic numbers. The parameter range spans , and . Combined particle image thermography and particle image velocimetry is conducted in a horizontal layer close above the bottom thermal boundary layer. This combination of measurement techniques, using thermochromic liquid crystals as tracer particles, which is novel for air flows, allows for simultaneous measurement of temperature and velocity fields. Details of the measurement technique are published in Schmeling et al. (Meas Sci Technol 25:035302, 2014). The fingerprints of sheet-like plumes and those of the stems of mushroom-like plumes are visible in the instantaneous temperature fields. A study of temperature PDFs reveals that the distributions can be well described by a sum of two Gaussian distributions. Analysing the ratio of the probabilities reveals a sudden change at a critical Ra c ≈ 2.3 × 108. Here, denotes the abundance of fluid temperatures imprinted by the bulk flow, while represses the abundance of temperatures ascribed to warm thermal plumes. Accordingly, is a measure for the plume fraction in the measurement plane. The change occurs in the regime , in which the interaction of buoyancy-induced large-scale circulations with the wall jet of the incoming air results in an instability reported already by Schmeling et al. (Exp Fluids 54:1517, 2013). A combined evaluation of the temperature and velocity fields reveals a change in the horizontal heat fluxes at . Furthermore, the total amount of heat transported in x direction within the measurement layer increases with in bulk-dominated regions, while it stays almost constant for plume-dominated ones.

  10. Atmospheric temperature measurements by Raman laser scattering

    NASA Technical Reports Server (NTRS)

    Masica, W. J.; Salzman, J. A.; Coney, T. A.

    1973-01-01

    System makes continuous synoptic measurement of air temperatures and temperature profiles from the ground in real time. Development is based on principle that intensity distribution of Raman scattered laser light is a function of temperature and it is theoretically possible to measure air temperature by analyzing its Raman spectrum.

  11. Comet 67P's Pitted Surface

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter

  12. 121. Man with temperature probe aimed at armature measuring temperature ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  13. An evaluation of body temperature measurement.

    PubMed

    Ilsley, A H; Rutten, A J; Runciman, W B

    1983-02-01

    The accuracy of routine body temperature measurements, the suitability of various sites for such measurements, and the performance and practicality of various temperature measuring devices were studied. Oral and axillary temperature measurements made by the nursing staff were within 1 degree C of a reference value (within 0.5 degree C in 67%). Both sites were suitable for routine ward temperature measurement. Mercury-in-glass thermometers are recommended for routine ward use. Electronic and disposable chemical thermometers cost more but the latter are suitable in uncooperative patients and children. Forehead skin temperature measurements using liquid crystal plastic discs were unreliable. Pulmonary artery and rectal temperature measurements were satisfactory in operating theatre and intensive care unit; however, electronic thermometers should be subjected to routine checks. The bladder temperature measuring device proved unsuitable for clinical use. When oesophagus, nasopharynx and tympanum sites are used careful placement is necessary to minimise trauma and obtain reliable measurements.

  14. The relationship between induction time for pitting and pitting potential for high purity aluminum.

    SciTech Connect

    Wall, Frederick Douglas; Vandenavyle, Justin J.; Martinez, Michael A.

    2003-08-01

    The objective of this study was to determine if a distribution of pit induction times (from potentiostatic experiments) could be used to predict a distribution of pitting potentials (from potentiodynamic experiments) for high-purity aluminum. Pit induction times were measured for 99.99 Al in 50 mM NaCl at potentials of -0.35, -0.3, -0.25, and -0.2 V vs. saturated calomel electrode. Analysis of the data showed that the pit germination rate generally was an exponential function of the applied potential; however, a subset of the germination rate data appeared to be mostly potential insensitive. The germination rate behavior was used as an input into a mathematical relationship that provided a prediction of pitting potential distribution. Good general agreement was found between the predicted distribution and an experimentally determined pitting potential distribution, suggesting that the relationships presented here provide a suitable means for quantitatively describing pit germination rate.

  15. [Measurement and management of body temperature].

    PubMed

    Iwashita, Hironobu; Matsukawa, Takashi

    2012-01-01

    Body temperature regulation is at the basis of life maintenance and for humans to maintain the central body temperature within the range of 37 +/- 0.2 degrees Celsius. In the case of anesthesia, a patient would have a high possibility of lower body temperature and also could have more complications with low body temperature. In addition, it would generate more complications and extend a period of hospitalization. For that reason, anesthetists must pay full attention to body temperature management during surgery. Measurement for central body temperature is necessary as a monitor for body temperature measurement and the measurement for nasopharyngeal temperature, tympanic temperature, and lung artery temperature is effective for this purpose. Therapeutic hypothermia for brain injury is receiving attention recently as a preventive method for brain disorder and the method is utilized in hospital facilities. In future, it is expected to attain the most suitable treatment method by clinical studies on low body temperature.

  16. Apparatus Would Measure Temperatures Of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  17. Measuring Specific Heats at High Temperatures

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  18. Measurement of small temperature fluctuations at high average temperature

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1988-01-01

    Both absolute and differential temperature measurements were simultaneously performed as a function of time for a pixel on a high-temperature, multi-spectral, spatially and temporally varying infrared target simulator. A scanning laser beam was used to maintain a pixel at an on-the-average constant temperature of 520 K. The laser refresh rate of up to 1 kHz resulted in small-amplitude temperature fluctuations with a peak-to-peak amplitude of less than 1 K. The experimental setup to accurately measure the differential and the absolute temperature as a function of time is described.

  19. Measurement of turbine blade temperature using pyrometer

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Du, C.

    1985-09-01

    This paper presents the study of application of a self-made turbine blade pyrometer to measuring rotating turbine blade temperatures in a bed testing aeroengine. The study includes the temperature measuring principle and the pyrometer system; installation and adjustment of the double ball-floating type configuration optical head which goes through four different high temperatures bulkheads; and measurement of three kinds of temperature (the average blade temperature Ta, the average peak blade temperature Tap, and the maximum peak blade temperature Tmp) for all rotor blades of the turbine first stage. The experimental data analysis reveals that the first attempt of application of this pyrometer is successful. The measurement errors in the temperature range of 550-1200 C are within + or - 1 percent of calculated blade temperatures.

  20. Non-destructive measurement of demineralization and remineralization in the occlusal pits and fissures of extracted 3rd molars with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Hsu, Dennis J.; Le, Michael H.; Darling, Cynthia L.; Fried, Daniel

    2009-02-01

    Previous studies have demonstrated that Polarization Sensitive Optical Coherence Tomography (PS-OCT) can be used to image the remineralization of early artificial caries lesion on smooth enamel surfaces of human and bovine teeth. However, most new dental decay is found in the pits and fissures of the occlusal surfaces of posterior dentition and it is in these high risk areas where the performance of new caries imaging devices need to be investigated. The purpose of this study was to demonstrate that PS-OCT can be used to measure the subsequent remineralization of artificial lesions produced in the pits and fissures of extracted 3rd molars. A PS-OCT system operating at 1310-nm was used to acquire polarization resolved images of occlusal surfaces exposed to a demineralizing solution at pH-4.5 followed by a fluoride containing remineralizing solution at pH-7.0 containing 2-ppm fluoride. The integrated reflectivity was calculated to a depth of 200-µm in the entire lesion area using an automated image processing algorithm. Although a well-defined surface zone was clearly resolved in only a few of the samples that underwent remineralization, the PS-OCT measurements indicated a significant (p<0.05) reduction in the integrated reflectivity between the severity of the lesions that were exposed to the remineralization solution and those that were not. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. These results show that PS-OCT can be used to non-destructively monitor the remineralization potential of anti-caries agents in the important pits and fissures of the occlusal surface.

  1. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  2. Surface Temperature Measurement Using Hematite Coating

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J. (Inventor)

    2015-01-01

    Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

  3. Measuring Poisson Ratios at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  4. Temperature measurement inside metallic cables using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-07-01

    Nowadays, metallic cables are produced so as to avoid the maximum allowable temperature of the cable by the normal operation and the maximum allowable temperature for short-circuit the exceeding the maximum allowable internal temperature. The temperature increase is an unwanted phenomena causing losses in the cable and its abrasion. Longterm overload can lead to damaging of the cable or to the risk of fire in extreme cases. In our work, we present the temperature distribution measurement inside the metallic cables using distributed temperature system. Within the cooperation with manufacturer of the metallic cables, optical fibers were implemented into these cables. The cables are double coated and the fibers are allocated between these coatings and also in the centre of the cable. Thus we are able to measure the temperature inside the cable and also on the surface temperature along the whole cable length with spatial resolution 1 m during the cable heating. This measurement method can be also used for short-circuit prediction and detection, because this phenomena is always accompanied with temperature increase. Distributed temperature systems are already successfully implemented in temperature measurements in industry environment, such as construction, sewer systems, caliducts etc. The main advantage of these systems is electromagnetic resistance, low application price and the possibility of monitoring several kilometers long distances.

  5. Measuring the performance of two stationary interrogation systems for detecting downstream and upstream movement of PIT-tagged salmonids

    USGS Publications Warehouse

    Connolly, P.J.; Jezorek, I.G.; Martens, K.D.; Prentice, E.F.

    2008-01-01

    We tested the performance of two stationary interrogation systems designed for detecting the movement of fish with passive integrated transponder (PIT) tags. These systems allowed us to determine the direction of fish movement with high detection efficiency and high precision in a dynamic stream environment. We describe an indirect method for deriving an estimate for detection efficiency and the associated variance that does not rely on a known number of fish passing the system. By using six antennas arranged in a longitudinal series of three arrays, we attained detection efficiencies for downstream- and upstream-moving fish exceeding 96% during high-flow periods and approached 100% during low-flow periods for the two interrogation systems we tested. Because these systems did not rely on structural components, such as bridges or culverts, they were readily adaptable to remote, natural stream sites. Because of built-in redundancy, these systems were able to perform even with a loss of one or more antennas owing to dislodgement or electrical failure. However, the reduction in redundancy resulted in decreased efficiency and precision and the potential loss of ability to determine the direction of fish movement. What we learned about these systems should be applicable to a wide variety of other antenna configurations and to other types of PIT tags and transceivers.

  6. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Image and Video Library

    2008-09-30

    This chart plots the minimum daily atmospheric temperature measured by NASA Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased.

  7. Temperature measurements in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Coutier-Delgosha, Olivier

    2016-11-01

    Cavitation is usually a nearly isothermal process in the liquid phase, but in some specific flow conditions like hot water or cryogenic fluids, significant temperature variations are detected. In addition, a large temperature increase happens inside the cavitation bubbles at the very end of their collapse, due to the fast compression of the gas at the bubble core, which is almost adiabatic. This process is of primary interest in various biomedical and pharmaceutical applications, where the mechanisms of bubble collapse plays a major role. To investigate the amplitude and the spatial distribution of these temperature variations inside and outside the cavitation bubbles, a system based on cold wires has been developed. They have been tested in a configuration of a single bubble obtained by submitting a small air bubble to a large amplitude pressure wave. Some promising results have been obtained after the initial validation tests. This work is funded by the Office of Naval Research Global under Grant N62909-16-1-2116, Dr. Salahuddin Ahmed & Ki-Han Kim program managers.

  8. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  9. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  10. Probes For Measuring Changing Internal Temperatures

    NASA Technical Reports Server (NTRS)

    Hunt, S. B.; Durtschi, J.; Smith, D.; Maw, Joel; Sakaguchi, M.; Smart, L.; Blake, B.

    1995-01-01

    Improved thermocouple probes devised for measuring rapidly changing temperatures within layers of solid materials. In original application, layers in question are carbon-cloth phenolic liners in solid-rocket motor nozzles, and probes inserted in layers to various depths of order of 0.5 in. measure changing temperatures in layers during hot-fire tests. Probe concept adapted to measurements of temperatures inside various other layers, materials, and components, including material test specimens.

  11. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    SciTech Connect

    Zapp, P.E.

    1996-11-01

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion tests are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of out-of-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5 per cent of the established limit) at a temperature of 50 degrees C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured on each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum expected pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set

  12. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    SciTech Connect

    Zapp, P.E.

    1995-12-31

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of below-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5% of the established limit) at a temperature of 50 C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured one each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set.

  13. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  14. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  15. Remote temperature-measurement instrumentation for a heated rotating turbine disk

    NASA Astrophysics Data System (ADS)

    Lutz, S. S.; Turley, W. D.; Borella, H. M.; Noel, B. W.; Cates, M. R.; Probert, M. R.

    Thermographic-Phosphor (TP) remote temperature sensors were installed on a turbine disk and subjected to thermal and centrifugal stresses in a spin-pit test. The sensors were placed at three different radii on the disk, which was run at 6600, 9330, 11400, and 13200 rpm at nominal temperatures of ambient, 300 F, 600 F, 900 F, and 1250 F. The paper gives details of the TP temperature-measurement method, phosphor bonding to the disk, calibration, optical-system design, and electronics instrumentation. The temperatures measured by the TP sensors were compared with those measured by thermocouples mounted on the disk. A number of the thermocouples behaved erratically after we operated the disk at 677 C for an extended period. Nevertheless, for those cases where they could be compared with confidence, the agreement between the TP sensors and the thermocouples was good.

  16. Temperature standards, what and where: resources for effective temperature measurements

    SciTech Connect

    Johnston, W.W. Jr.

    1982-01-01

    Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided.

  17. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This chart plots the minimum daily atmospheric temperature measured by NASA's Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased. Clouds, ground fog, and frost were observed each night after the temperature started dropping.

  18. High temperature heat treatment on boron precursor and PIT process optimization to improve the Jc performance of MgB2-based conductors

    NASA Astrophysics Data System (ADS)

    Vignolo, M.; Bovone, G.; Bernini, C.; Palenzona, A.; Kawale, S.; Romano, G.; Siri, A. S.

    2013-10-01

    The promising results reported in our previous works led us to think that the production process of boron plays a crucial role in MgB2 synthesis. A new method for boron preparation has been developed in our laboratory. This particular process is based on magnesiothermic reaction (Moissan’s process) with the addition of an initial step that gives boron powder with nano-metric grain size. In this paper we report our efforts regarding optimization of the powder-in-tube (PIT) method for these nano-metric powders, and the resolution of problems previously highlighted such as the difficulty in powder packaging and the high friction phenomena occurring during cold working. This increases cracking during the tape and wire manufacture, leading to failure. Packaging problems are related to the amorphous nature of boron synthesized in our laboratory, so a crystallization treatment was applied to improve the crystallinity of the boron. To prevent excessive friction phenomena we synthesized non-stoichiometric MgB2 and used magnesium as lubricant. Our goal is the Jc improvement, but a global physical-chemical characterization was also made to analyse the improvement given by our treatments: this characterization includes x-ray diffraction, ρ(T) measurement, and SEM imaging, besides magnetic and transport Jc measurements.

  19. Measuring Moduli Of Elasticity At High Temperatures

    NASA Technical Reports Server (NTRS)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  20. Minimizing noise-temperature measurement errors

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1992-01-01

    An analysis of noise-temperature measurement errors of low-noise amplifiers was performed. Results of this analysis can be used to optimize measurement schemes for minimum errors. For the cases evaluated, the effective noise temperature (Te) of a Ka-band maser can be measured most accurately by switching between an ambient and a 2-K cooled load without an isolation attenuator. A measurement accuracy of 0.3 K was obtained for this example.

  1. CHerenkov detectors In mine PitS (CHIPS) Letter of Intent to FNAL

    SciTech Connect

    Adamson, P.; Austin, J.; Cao, S. V.; Coelho, J. A. B.; Davies, G. S.; Evans, J. J.; Guzowski, P.; Habig, A.; Holin, A.; Huang, J.; Johnson, R.; St. John, J.; Kreymer, A.; Kordosky, M.; Lang, K.; Marshak, M. L.; Mehdiyev, R.; Meier, J.; Miller, W.; Naples, D.; Nelson, J. K.; Nichol, R. J.; Patterson, R. B.; Paolone, V.; Pawloski, G.; Perch, A.; Pfutzner, M.; Proga, M.; Qian, X.; Radovic, A.; Sanchez, M. C.; Schreiner, S.; Soldner-Rembold, S.; Sousa, A.; Thomas, J.; Vahle, P.; Wendt, C.; Whitehead, L. H.; Wojcicki, S.

    2013-12-30

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.

  2. KINETICS OF PITTING CORROSION IN GELS.

    SciTech Connect

    ISAACS, H.S.; ADZIC, G.

    2000-10-22

    An investigation has been carried out on stainless steel to determine the important parameters that related the changes in pH around pits to the current coming from the pits. Potentiodynamic measurements at 1 mV/s were made on Type 302 stainless steel in agar containing 1M NaCl and a wide range pH indicator. Many pits suddenly appeared at the pitting potential, as indicated by the red, low pH region around the pits. Simulations of the changes in pH were based on diffusion from a point current source. The results also were considered in terms of the effects of a minimum detectable thickness of pH change within the gel.

  3. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  4. Dual-wavelengths photoacoustic temperature measurement

    NASA Astrophysics Data System (ADS)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  5. Temperature Sensitive Particle for Velocity and Temperature Measurement.

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Okamoto, Koji; Iida, Masao

    2007-11-01

    Phosphorescence and fluorescence are often applied to measure the temperature and the concentration of oxygen. The intensity and the lifetime of phosphor depend on the temperature and the oxygen concentration, due to the quenching effect of the phosphor. The present study clarified the effects of temperature on the lifetime of phosphorescence of Porphyrins, Ru(bpy)3^2+ and the europium complex. The phosphorescence lifetime of oil solution / water solution / painted wall were measured with changing temperature and oxygen concentration. In addition, the optical property of the small particles incorporated with the europium complex was investigated in the oil/water. The lifetime was strongly affected by temperature. Then, the temperature sensitive particle (TSParticle) with metal complex was applied to measure temperature in Silicone oil (10cSt) two-dimensionally. Present study is the result of ?High speed three-dimensional direct measurement technology development for the evaluation of heat flux and flow of liquid metal? entrusted to the University of Tokyo by the Ministry of Education, Culture, Sports, Science and Technology of Japan(MEXT).

  6. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  7. Is Playing in the Pit Really the Pits?: Pain, Strength, Music Performance Anxiety, and Workplace Satisfaction in Professional Musicians in Stage, Pit, and Combined Stage/Pit Orchestras.

    PubMed

    Kenny, Dianna T; Driscoll, Tim; Ackermann, Bronwen J

    2016-03-01

    Typically, Australian orchestral musicians perform on stage, in an orchestra pit, or in a combination of both workplaces. This study explored a range of physical and mental health indicators in musicians who played in these different orchestra types to ascertain whether orchestra environment was a risk factor affecting musician wellbeing. Participants comprised 380 full-time orchestral musicians from the eight major state orchestras in Australia comprised of two dedicated pit orchestras, three stage-only symphonic orchestras, and three mixed stage/pit orchestras. Participants completed a physical assessment and a range of self-report measures assessing performance-related musculoskeletal disorders (PRMD), physical characteristics including strength and perceived exertion, and psychological health, including music performance anxiety (MPA), workplace satisfaction, and bullying. Physical characteristics and performance-related musculoskeletal profiles were similar for most factors on the detailed survey completed by orchestra members. The exceptions were that pit musicians demonstrated greater shoulder and elbow strength, while mixed-workload orchestra musicians had greater flexibility Significantly more exertion was reported by pit musicians when rehearsing and performing. Stage/pit musicians reported less physical exertion when performing in the pit compared with performing on stage. Severity of MPA was significantly greater in pit musicians than mixed orchestra musicians. Pit musicians also reported more frequent bullying and lower job satisfaction compared with stage musicians. There were few differences in the objective physical measures between musicians in the different orchestra types. However, pit musicians appear more psychologically vulnerable and less satisfied with their work than musicians from the other two orchestra types. The physical and psychological characteristics of musicians who perform in different orchestra types have not been adequately

  8. [Microsite characteristics of pit and mound and their effects on the vegetation regeneration in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Du, Shan; Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Wei, Quan-Shuai; Li, Meng; Wang, Li-dong

    2013-03-01

    Abstract: An investigation was conducted in a 2.55 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study the microsite characteristics of pit and mound formed by 42 treefalls and the status of vegetation regeneration on the microsites. The soil water content, soil temperature, relative air humidity, and photosynthetically active radiation (PAR) on five microsites (mound top, mound face, pit wall, pit bottom, and intact forest floor) were measured. Among the five mirosites, mound top had the highest PAR (527.9 micromol.m-2.s-1 ) while intact forest floor had the lowest one (58.7 micromol.m-2.s-), mound top had the highest soil temperature (16.0 degrees C) but pit bottom had the lowest one (13.3 degrees C), pit bottom had the highest soil water content (34.6%) but mound face had the lowest one (0.5%), and intact forest floor had the highest relative air humidity (75.9%) but mound top had the lowest one (68.0%). The frequency of forming pit/ mound complex by the tree species was decreased in the order of Pinus koraiensis (42. 9%) >Picea asperata (31.0%) > Betula platyphylla (16.7%) > Abies fabri (7. 1%) > Prunus padus (2.4%). Among the 42 treefalls, two-thirds of them were in northwest direction. The treefalls volume had significant positive correlations with pit depth, pit length, mound height, and mound width, but negative correlation with mound thickness. The treefall mean diameter at breast height had significant positive correlations with pit width (r=0.328, P=0.017) and pit length (r=0.527, P= 0). The tree species richness at the microsites decreased in the order of intact forest floor > pit > mound, and the tree species coverage was in the sequence of intact forest floor > pit > mound.

  9. Temperature measurements of high power LEDs

    NASA Astrophysics Data System (ADS)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei

    2016-12-01

    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  10. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  11. Nonintrusive temperature measurements on advanced turbomachinery components

    SciTech Connect

    Noel, B.W.; Turley, W.D.; Lewis, W.

    1992-12-31

    A nonintrusive, noncontacting method we developed for temperature measurements in hostile environments is well-suited for measurements on advanced turbine components. The method is not only superior to thermocouples in sufficiently difficult environments, but also is the only known method for making measurements in situations where no form of pyrometry works. We demonstrated the method, which uses laser-induced fluorescence of thermographic phosphors bonded to the component surfaces, on turbine blades and vanes in developmental turbine engines. The method is extendable to the much-higher temperatures expected inside advanced turbomachinery. Of particular note is the adaptability of the method to surface-temperature measurements on ceramics operating at high temperatures. In this temperature range, the ceramics become translucent, and surface emissivity becomes meaningless. We shall discuss the method, its advantages and limitations, recent test results on operating turbine engines, and the extension to ceramic components.

  12. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2002-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 ?m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  13. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2004-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  14. Direct in situ measurements of thermospheric temperature

    NASA Technical Reports Server (NTRS)

    Kayser, D. C.; Nier, A. O.; Breig, E. L.; Power, R. A.; Hanson, W. B.

    1979-01-01

    The open source neutral mass spectrometer on the Atmosphere Explorer satellites used for direct in situ measurements of the neutral gas temperature by means of the 'fly-through' mode of operation is evaluated. The derived neutral temperature (Tn) is compared with ion temperatures (T1) obtained simultaneously from the on-board retarding potential analyzer for altitudes and conditions where the two temperatures should be equal. A statistical analysis showed consistency between concurrently observed values of Tn and T1, also shown through profiles depicting their altitude distributions between 150 and 225 km. The overall magnitude of temperatures calculated from the Jacchia (1971) model results in a better representation of the observations than the higher temperatures predicted for this region by the MSIS model (Hedin, 1977), and agreement is also found between observed temperatures and neutral temperatures derived from altitude distributions of N2 particle densities.

  15. [Temperature Measurement with Bluetooth under Android Platform].

    PubMed

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.

  16. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  17. Surface aspects of pitting and stress corrosion cracking

    NASA Technical Reports Server (NTRS)

    Truhan, J. S., Jr.; Hehemann, R. F.

    1977-01-01

    The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.

  18. [Body temperature measurement in daily practice].

    PubMed

    Sermet-Gaudelus, I; Chadelat, I; Lenoir, G

    2005-08-01

    The use of rectal mercury thermometer has long been the standard method for measurement of body temperature. The restriction of mercury use since 1996 has led to development of other devices. The liquid crystal strip thermometer held against the forehead has a low sensitivity. The single-use chemical thermometer measures oral temperature. Its accuracy must be evaluated. Infrared ear thermometers are routinely used because it is convenient and fast to use. However, numerous studies have shown that it does not show sufficient correlation with rectal temperature, leading to the risk to miss cases of true fever. Rectal temperature remains the gold standard in case of fever. Rectal temperature measurement with an electronic device is well correlated with the glass mercury standard. Galistan thermometer accuracy must be evaluated because of sterilization of the whole device, which is not the case for the electronic thermometer. A pediatric study is necessary to evaluate the performance of this device in comparison with the electronic thermometer.

  19. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  20. Pitted terrains on Vesta: Thermophysical analysis

    NASA Astrophysics Data System (ADS)

    Capria, M.; Tosi, F.; De Sanctis, M.; Turrini, D.; Ammannito, E.; Capaccioni, F.; Fonte, S.; Frigeri, A.; Longobardo, A.; Palomba, E.; Zambon, F.; Schroeder, S.; Denevi, B.; Williams, D.; Scully, J.; Russell, C.; Raymond, C.

    2014-07-01

    Launched in 2007, the Dawn spacecraft, after one year spent orbiting Vesta, is now on its way to Ceres. In the science payload, the Visible and Infrared mapping spectrometer (VIR) is devoted to the study of the mineralogical composition and thermophysical properties of Vesta's surface [1]. Disk-resolved surface temperatures of Vesta have been determined from the infrared spectra measured by VIR [2]. The observed temperatures, together with a thermophysical model, have been used to constrain the thermal properties of a large part of the surface of the asteroid [3]. The average thermal inertia of the surface is quite low, consistent with a widespread presence of a dust layer. While the global thermal inertia is low, the characterization of its surface in terms of regions showing peculiar thermophysical properties gives us the possibility to identify specific areas with different thermal and structural characteristics. These variations can be linked to strong albedo variations that have been observed, or to other physical and structural characteristics of the first few centimeters of the soil. The highest values of thermal inertia have been determined on areas coinciding with locations where pitted terrains have been found [4]. Pitted terrains, first identified on Mars, have been found in association with 4 craters on Vesta: Marcia, Cornelia, Licinia, and Numisia. The Marcia area is characterized by high hydrogen and OH content [5]. By analogy with Mars, the formation of these terrains is thought to be due to the rapid release of volatiles, triggered by heating from an impact event. A question arises on the origin of volatiles: hydrated minerals, or ground, buried ice? In order to discuss the second hypothesis, we have to assume that a comet impact delivers ice that gets buried under a layer of regolith. Successively, another impact on the same area would give origin to the pitted terrain. The buried ice has obviously to survive for the time between the two impacts

  1. Central Pit Crater

    NASA Image and Video Library

    2015-11-13

    Crater floors can have a range of features, from flat to a central peak or a central pit. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Terra Sabaea has a central pit. This unnamed crater in Terra Sabaea has a central pit. The different floor features develop do due several factors, including the size of the impactor, the geology of the surface material and the geology of the materials at depth. Orbit Number: 60737 Latitude: 22.3358 Longitude: 61.2019 Instrument: VIS Captured: 2015-08-23 20:13 http://photojournal.jpl.nasa.gov/catalog/PIA20092

  2. Microwave radiometry for cement kiln temperature measurements.

    PubMed

    Stephan, Karl D; Wang, Lingyun; Ryza, Eric

    2007-01-01

    The maximum temperature inside a cement kiln is a critical operating parameter, but is often difficult or impossible to measure. We present here the first data that show a correlation between cement kiln temperature measured using a microwave radiometer and product chemistry over an eight-hour period. The microwave radiometer senses radiation in the 12-13 GHz range and has been described previously [Stephan and Pearce (2002), JMPEE 37: 112-124].

  3. Wideband filter radiometers for blackbody temperature measurements

    NASA Astrophysics Data System (ADS)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  4. Reliability issues in human brain temperature measurement.

    PubMed

    Childs, Charmaine; Machin, Graham

    2009-01-01

    The influence of brain temperature on clinical outcome after severe brain trauma is currently poorly understood. When brain temperature is measured directly, different values between the inside and outside of the head can occur. It is not yet clear if these differences are 'real' or due to measurement error. The aim of this study was to assess the performance and measurement uncertainty of body and brain temperature sensors currently in use in neurocritical care. Two organic fixed-point, ultra stable temperature sources were used as the temperature references. Two different types of brain sensor (brain type 1 and brain type 2) and one body type sensor were tested under rigorous laboratory conditions and at the bedside. Measurement uncertainty was calculated using internationally recognised methods. Average differences between the 26 degrees C reference temperature source and the clinical temperature sensors were +0.11 degrees C (brain type 1), +0.24 degrees C (brain type 2) and -0.15 degrees C (body type), respectively. For the 36 degrees C temperature reference source, average differences between the reference source and clinical thermometers were -0.02 degrees C, +0.09 degrees C and -0.03 degrees C for brain type 1, brain type 2 and body type sensor, respectively. Repeat calibrations the following day confirmed that these results were within the calculated uncertainties. The results of the immersion tests revealed that the reading of the body type sensor was sensitive to position, with differences in temperature of -0.5 degrees C to -1.4 degrees C observed on withdrawing the thermometer from the base of the isothermal environment by 4 cm and 8 cm, respectively. Taking into account all the factors tested during the calibration experiments, the measurement uncertainty of the clinical sensors against the (nominal) 26 degrees C and 36 degrees C temperature reference sources for the brain type 1, brain type 2 and body type sensors were +/- 0.18 degrees C, +/- 0

  5. Precision temperature gradient measurements on window glass

    NASA Technical Reports Server (NTRS)

    Mikk, G.; Petrie, W.

    1977-01-01

    Surface temperature gradients were measured with miniature thermocouples installed in a 58.5 cm (23-inch) square window. Test measurements at 25 locations were made under vacuum and with the window operating in radiant heat transfer mode. The analysis of thermocouple design and installation is presented along with a lead wire routing scheme to allow for both differential and absolute temperature measurements while using a minimum number of signal feedthru paths through the test chamber wall. Typical test data and operational precautions are presented along with the accuracy analysis for installation effects and measurement effects to support differential temperature measurement precision values of + or - 0.06 C RMS + or - 0.1 F RMS).

  6. MISSE 1 and 2 Tray Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  7. Accurate measurement of LED lens surface temperature

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah; Liu, Yi-wei

    2013-09-01

    Radiant power emitted by high power light-emitting diodes (LEDs) have been steadily increasing over the past decade. High radiation, especially short wavelength, can increase the temperature and negatively affect the primary lens performance of high-power LEDs. In this regards, assessment of lens temperature during operation is important. Past studies have shown large errors when thermocouples are used for measuring temperature in high radiant flux environments. Therefore, the objective of this study was to understand the problem in using thermocouples to measure LED lens surface temperature and to find a solution to improving the measurement accuracy. A laboratory study was conducted to better understand the issue. Results showed that most of the error is due to absorption of visible radiant energy by the thermocouple. In this study, the measurements made using an infrared (IR) thermal imaging system were used as the reference temperature because the IR imaging system is unaffected by radiant flux in the visible range. After studying the thermocouple wire metallurgy and its radiation absorption properties, a suitable material was identified to shield the thermocouple from visible radiation. Additionally, a silicone elastomer was used to maintain the thermal interface between the lens surface and the thermocouple junction bead. With these precautions, the lens temperature measurements made using the J-type thermocouple and the IR imaging system matched very well.

  8. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  9. [Electronic rectal temperature measurement. A clinical trial].

    PubMed

    Ottesen, S; Nielsen, F T; Lund, H

    1993-05-24

    Rectal measurement of body temperature with an electronic device (Ivac) was compared to measurement with mercury thermometers in 157 adult patients on a medical ward. The electronic thermometers were less accurate, giving 3.6 times as many febrile patients. This was reduced to 1.6 after thermometer calibration. It is necessary to make regular calibrations of Ivac thermometers.

  10. Whistle Gauge Measures Flow And Temperature

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy; Kwack, Eug Y.

    1989-01-01

    Simple, rugged gauge used to measure speed of flow and temperature of steam or other gas flowing through pipes of arbitrary diameter, from 1 to 28 in. or larger. Specially designed, instrumented whistle - has no moving parts, small, nonobstruction, operates at high temperature and pressure, and cleans itself. Does not operate at zero flow, but at moderate flows (tens of meters per second) generates intense sound for use in measurements. Consists of slanted ring groove of depth D and pressure taps in wall of pipe carrying flow to be measured. Resonant wavelength of sound generated by ring groove depends primarily on size and shape of groove and approximately equal to 4D.

  11. Assessment of body temperature measurement options.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature.

  12. Noncontact temperature measurement of a falling drop

    SciTech Connect

    Hofmeister, W.J.; Bayuzick, R.J.; Robinson, M.B.

    1989-01-01

    The 105-m drop tube at the Marshall Space Flight Center has been used in a number of experiments to determine the effects of containerless, microgravity processing on the undercooling and solidification behavior of metals and alloys. These experiments have been limited, however, because direct temperature measurement of the falling drops has not been available. Undercooling and nucleation temperatures are calculated from thermophysical properties based on droplet cooling models. In most cases these properties are not well known, particularly in the undercooled state. This results in a large amount of uncertainty in the determination of nucleation temperatures. If temperature measurement can be accomplished, then the thermal history of the drops could be well documented. This would lead to a better understanding of the thermophysicial and thermal radiative properties of undercooled melts. An effort to measure the temperature of a falling drop is under way at Vanderbilt and Marshall Space Flight Center. The technique uses two-color pyrometry and high-speed data acquisition. The approach is presented along with some preliminary data from drop tube experiments. The results from droplet cooling models are compared with noncontact temperature measurements.

  13. Laser weld penetration estimation using temperature measurements

    SciTech Connect

    Lankalapalli, K.N.; Tu, J.F.; Leong, K.H.; Gartner, M.

    1997-10-01

    Penetration depth is an important factor critical to the quality of a laser weld. This paper examines the feasibility of using temperature measurements on the bottom surface of the work-piece to estimate weld penetration. A three-dimensional analytical model relating penetration depth, weld bead width and welding speed to temperature distribution at the bottom surface of the workpiece is developed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. Experimental results from bead-on-plate welds on low carbon steel plates of varying thickness at different levels of laser power and speeds validate the model and show that the temperature on the bottom surface is a sensitive indicator of penetration depth. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

  14. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  15. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  16. Sulci Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in serveral ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire ediface to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in an area of 'sulci' ridges east of Olympus Mons. Graben cut the ridges, and one graben hosts the collapse pits. It is likely that these collapse pits are related to volatile release from material that filled the lows at some point after graben formation.

    Image information: VIS instrument. Latitude 18.6, Longitude 234.6 East (125.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  17. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  18. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  19. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  20. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  1. Two-temperature method for measuring emissivity

    USGS Publications Warehouse

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  2. Ascraeus Mons Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Ascraeus Mons. The pits and channels are all related to lava tube formation and emptying.

    Image information: IR instrument. Latitude 8, Longitude 253.9 East (106.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  3. Lava Tube Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in the southern hemisphere of Mars. They are likely lava tube collapse pits related to flows from Hadriaca Patera.

    Image information: VIS instrument. Latitude -36.8, Longitude 89.6 East (270.4 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  4. Lava Tube Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in the southern hemisphere of Mars. They are likely lava tube collapse pits related to flows from Hadriaca Patera.

    Image information: VIS instrument. Latitude -36.8, Longitude 89.6 East (270.4 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  5. Ascraeus Mons Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Ascraeus Mons. The pits and channels are all related to lava tube formation and emptying.

    Image information: IR instrument. Latitude 8, Longitude 253.9 East (106.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  6. Ion temperature measurements in the Maryland Spheromak

    SciTech Connect

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  7. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  8. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  9. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  10. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  11. Material parameter measurements at high temperatures

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    Alternate fixtures of techniques for the measurement of the constitutive material parameters at elevated temperatures are presented. The technique utilizes scattered field data from material coated cylinders between parallel plates or material coated hemispheres over a finite size groundplane. The data acquisition is centered around the HP 8510B Network Analyzer. The parameters are then found from a numerical search algorithm using the Newton-Ralphson technique with the measured and calculated fields from these canonical scatters. Numerical and experimental results are shown.

  12. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  13. Two methods to measure granular gas temperature

    NASA Astrophysics Data System (ADS)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  14. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  15. Core temperature measurement: methods and current insights.

    PubMed

    Moran, Daniel S; Mendal, Liran

    2002-01-01

    Climatic injuries, including hypothermia, hyperthermia and heat stroke, are common in many sports activities. Body core temperature (T(c)) measurement for the sportsperson can influence individual performance and may help to prevent injuries. Monitoring internal body T(c) accurately requires invasive methods of measurement. The mercury thermometer, most commonly used to measure oral temperature (T(oral)), has been almost exclusively the only instrument for measuring T(c) since the 18th century. Rectal (T(re)) and oesophageal temperatures (T(oes)) have been the most preferred measurement sites employed in thermoregulatory investigations. However, these measurement sites (T(re), T(oes), T(oral)), and the methods used to measure T(c) at these sites, are not convenient. T(oral) measurements are not always possible or accurate. T(oes) is undesirable because of the difficulty of inserting the thermistor, irritation to nasal passages and general subject discomfort. T(re) is not suitable under many circumstances as it is labour intensive and has a prolonged response time. However, T(re) remains the most accurately available method for monitoring T(c) in thermal illness that occurs during sports activities. In addition, T(re) and T(oes) require wire connections between the thermistor and the monitoring device. The purpose of this paper is to review the various existing methods of T(c) measurements in order to focus on the breakthrough needed for a simple, noninvasive, universally used device for T(c) measurement which is essential for preventing climatic injuries during sports events.

  16. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  17. Noncontact infrared temperature measurement using machine vision

    NASA Astrophysics Data System (ADS)

    Zhong, Fei; Shi, Tielin; He, Tao; Zhong, Yuning

    2006-11-01

    Temperature monitoring is a common requirement; the thermocouples can accurately control the temperature of rotating and moving heated object, without touching it. Uncoated metal heaters are difficult for infrared sensors to measure reliably, the reflected infrared signals can change after a heated object surface is clean, the smog is rareness after the clean heated object has been burnt, when the surface is dirty and smeary, the smog is so dense that the measurement result would be influenced. In order to measuring the metal heater accurately, the measurement noise can be reduced by the machine vision. The Self-Organizing Maps (SOM) is an efficient tool for image processing. It projects input space on prototypes of a low-dimensional regular grid. In this paper a new image process technique has been validated against U-matrix method based on Euclidean distances between input vectors and neurons weights combined with the distribution of the fixed lattices in the network. SOM, as an unsupervised neural networks, is applied to pattern recognition and image processing. By analyzing and processing of the noise signals of the image, the characteristic parameters which represent operating state of the heated object are extracted to construct characteristic vector and used to train SOM. The trained results can be used to modify the sensor testing value. A new image processing scheme based on the use of the organization property of Kohonen maps are presented in this paper, the image processing result can be correct the non-contact infrared temperature measurement.

  18. Temperature measurements of shocked silica aerogel foam

    SciTech Connect

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  19. Temperature measurements of shocked silica aerogel foam

    DOE PAGES

    Falk, K.; McCoy, C. A.; Fryer, C. L.; ...

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  20. Tharsis Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found within the extensive lava flows of the Tharsis region. They are related to lava tubes, likely coming from Ascraeus Mons.

    Image information: VIS instrument. Latitude 22.8, Longitude 266.8 East (93.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office

  1. Sulci Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    This is the Noctis Labyrinthus region of Mars. These collapse pits are forming along structural fractures that are allowing the release of volatiles from the subsurface. This is believed to be the way that chaos terrain forms on Mars. This area represents the early stage of chaos formation.

    Image information: VIS instrument. Latitude -12.6, Longitude 264 East (96 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  2. Tractus Catena Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in graben located in Tractus Catena. These features are related to subsidence after magma chamber evacuation of Alba Patera.

    Image information: VIS instrument. Latitude 35.8, Longitude 241.7 East (118.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  3. Alba Patera Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found within graben surrounding Alba Patera. Alba Patera is an old volcano that has subsided after it's magma chamber was evacuated.

    Image information: VIS instrument. Latitude 43.1, Longitude 259.4 East (100.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  4. Alba Patera Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    This image of the Alba Patera region has both lava tube collapse pits (running generally east/west) and subsidence related collapse within structural grabens.

    Image information: IR instrument. Latitude 26.9, Longitude 256.5 East (103.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  5. Alba Patera Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found within graben surrounding Alba Patera. Alba Patera is an old volcano that has subsided after it's magma chamber was evacuated.

    Image information: VIS instrument. Latitude 43.1, Longitude 259.4 East (100.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  6. Tractus Catena Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in graben located in Tractus Catena. These features are related to subsidence after magma chamber evacuation of Alba Patera.

    Image information: VIS instrument. Latitude 35.8, Longitude 241.7 East (118.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  7. Tharsis Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found within the extensive lava flows of the Tharsis region. They are related to lava tubes, likely coming from Ascraeus Mons.

    Image information: VIS instrument. Latitude 22.8, Longitude 266.8 East (93.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office

  8. Alba Patera Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    This image of the Alba Patera region has both lava tube collapse pits (running generally east/west) and subsidence related collapse within structural grabens.

    Image information: IR instrument. Latitude 26.9, Longitude 256.5 East (103.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  9. Sulci Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    This is the Noctis Labyrinthus region of Mars. These collapse pits are forming along structural fractures that are allowing the release of volatiles from the subsurface. This is believed to be the way that chaos terrain forms on Mars. This area represents the early stage of chaos formation.

    Image information: VIS instrument. Latitude -12.6, Longitude 264 East (96 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  10. Variable-Temperature Critical-Current Measurements

    SciTech Connect

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  11. Time-resolved Temperature Measurements in SSPX

    SciTech Connect

    Ludington, A R; Hill, D N; McLean, H S; Moller, J; Wood, R D

    2006-08-14

    We seek to measure time-resolved electron temperatures in the SSPX plasma using soft X-rays from free-free Bremsstrahlung radiation. To increase sensitivity to changes in temperature over the range 100-300 eV, we use two photodiode detectors sensitive to different soft X-ray energies. The detectors, one with a Zr/C coating and the other with a Ti/Pd coating, view the plasma along a common line of sight tangential to the magnetic axis of the spheromak, where the electron temperature is a maximum. The comparison of the signals, over a similar volume of plasma, should be a stronger function of temperature than a single detector in the range of Te< 300 eV. The success of using photodiodes to detect changing temperatures along a chord will make the case for designing an array of the detectors, which could provide a time changing temperature profile over a larger portion of the plasma.

  12. Correcting horsepower measurements to a standard temperature

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report discusses the relation between the temperature of the air at the entrance to the carburetor and the power developed by the engine. Its scope is limited to a consideration of the range of temperatures likely to result from changes of season, locality, or altitude, since its primary aim is the finding of a satisfactory basis for correcting power measurements to a standard temperature. The tests upon which this report is based were made upon aviation engines in the Altitude Laboratory of the Bureau of Standards. From the results of over 1,600 tests it is concluded that if calculations be based on the assumption that the indicated horsepower of an engine varies inversely as the square root of the absolute temperature of the carburetor air the values obtained will check closely experimental measurements. The extent to which this relationship would be expected from theoretical considerations is discussed and some suggestions are given relative to the use of this relationship in correcting horsepower measurements. (author)

  13. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  14. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  15. Temperature measurement on and inside lamps

    SciTech Connect

    Wallin, B.

    1994-12-31

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6,000 C, the bulk around 700 C and the electrodes inside the bulb can have temperatures in excess of 2,000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  16. Temperature measurement on and inside lamps

    NASA Astrophysics Data System (ADS)

    Wallin, Bo

    1994-03-01

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6000 C, the bulb around 700 C and the electrodes inside the bulb can have temperatures in excess of 2000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  17. Permeameter for high-temperature magnetic measurements

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1972-01-01

    A permeameter is described that measures the magnetizing force and the corresponding magnetic induction up to 1000 C. The two symmetrical yokes are made of an alloy of 9 percent iron, 91 percent cobalt. A coil surrounding the specimen supplies a magnetizing force of up to 100 oersteds. The instrument uses the magnetic potentiometer principle to cancel the effects of the reluctance of the yoke and the joint gaps. Very close agreement was obtained at room temperature when compared to an MH type permeameter. The effect of temperature on the normal induction curves for the yoke material is also presented.

  18. Thermoluminescence measurement technique using millisecond temperature pulses.

    PubMed

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater.

  19. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  20. Pitting of 3003 aluminum

    SciTech Connect

    Lee, R.

    1996-12-31

    The Advanced Photon Source is a state-of-the-art synchrotron light source. The storage ring vacuum chamber is fabricated from 6061 extruded Al. Water connections to the vacuum chambers that were fabricated from 3003 Al had developed water leaks, which were subsequently remedied after considerable investigations. Materials subjected to the pitting analysis in this study are 3003, 6061, and 6063 Al.

  1. PIT Coating Requirements Analysis

    SciTech Connect

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  2. A new technique for measuring ionospheric temperature

    NASA Astrophysics Data System (ADS)

    Archer, William Edward

    The lower ionosphere is a region of immense electrical energy inflow from space, yet to date there are no direct (in-situ) measurements of the consequent Joule (frictional) heating, partly because of the lack of appropriate instrumentation. This thesis presents a new technique for measuring ion temperature from a sub-orbital sounding rocket using a new type of ion detector, the suprathermal ion imager (SII). Simulations of the SII instrument show that 2-dimensional count-rate distributions binned according to detector azimuth are sensitive to the ratio of ram speed to thermal speed, or Mach number. Analysis of data from the JOULE-II rocket mission show a significant increase in thermal speed at the peak of the Joule heating region as expected, and even higher but unexplained temperatures at lower altitudes.

  3. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  4. Drainage pits in cohesionless materials: implications for surface of Phobos.

    PubMed

    Horstman, K C; Melosh, H J

    1989-09-10

    Viking orbiter images show grooves and chains of pits crossing the surface of Phobos, many of which converge toward the large crater Stickney or its antipode. Although it has been proposed that the pits and grooves are chains of secondary craters, their morphology and geometric relations suggest that they are the surface traces of fractures in the underlying solid body of Phobos. Several models have been proposed to explain the pits, of which the most plausible are gas venting and drainage of regolith into open fractures. the latter mechanism is best supported by the image data and is the mechanism studied in this investigation. Drainage pits and fissures are modeled experimentally by using two rigid substrate plates placed edge to edge and covered by uniform thicknesses of dry fragmental debris (simulated regolith). Fracture extension is simulated by drawing the plates apart, allowing drainage of regolith into the newly created void. A typical drainage experiment begins with a shallow depression on the surface of the regolith, above the open fissure. Increased drainage causes local drainage pits to form; continued drainage causes the pits to coalesce, forming a cuspate groove. The resulting experimental patterns of pits and grooves have pronounced similarities to those observed on Phobos. Characteristics such as lack of raised rims, linearity of grooves and chains of pits, uniform spacing of pits, and progression from discrete pits to cuspate grooves are the same in the experiments and on Phobos. In contrast, gas-venting pits occur in irregular chains and have raised rims. These experiments thus indicate that the Phobos grooves and pits formed as drainage structures. The pit spacing in an experiment is measured at the time that the maximum number of pits forms, prior to groove development. The average pit spacing is compared to the regolith thickness for each material. Regression line fits indicate that the average spacing of drainage pits in unconsolidated

  5. Improved Refractometer for Measuring Temperatures of Drops

    NASA Technical Reports Server (NTRS)

    Naqwi, Amir A.

    2004-01-01

    The Dual Rainbow refractometer is an enhanced version of the Rainbow refractometer, which is added to, and extends the capabilities of, a phase Doppler particle analyzer (PDPA). A PDPA utilizes pairs of laser beams to measure individual components of velocity and sizes of drops in a spray. The Rainbow-refractometer addition measures the temperatures of individual drops. The designs of prior versions of the Rainbow refractometer have required substantial modifications of PDPA transmitting optics, plus dedicated lasers as sources of illumination separate from, and in addition to, those needed for PDPA measurements. The enhancement embodied in the Dual Rainbow refractometer eliminates the need for a dedicated laser and confers other advantages as described below. A dedicated laser is no longer needed because the Dual Rainbow refractometer utilizes one of the pairs of laser beams already present in a PDPA. Hence, the design of the Dual Rainbow refractometer simplifies the task of upgrading PDPA hardware to enable measurement of temperature. Furthermore, in a PDPA/Dual Rainbow refractometer system, a single argon-ion laser with three main wavelengths can be used to measure the temperatures, sizes, and all three components of velocity (in contradistinction to only two components of velocity in a prior PDPA/Rainbow refractometer system). In order to enable the Dual Rainbow refractometer to utilize a pair of PDPA laser beams, it was necessary to (1) find a location for the refractometer receiver, such that the combined rainbow patterns of two laser beams amount to a pattern identical to that of a single beam, (2) adjust the polarization of the two beams to obtain the strongest rainbow pattern, and (3) find a location for the PDPA receiver to obtain a linear relationship between the measured phase shift and drop size.

  6. Detecting Cavitation Pitting Without Disassembly

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.

    1986-01-01

    Technique for detecting cavitation pitting in pumps, turbines, and other machinery uses low-level nuclear irradiation. Isotopes concentrated below surface emit gamma radiation, a portion of which is attenuated by overlying material. Where there are cavitation pits, output of gamma-ray detector fluctuates as detector is scanned near pits. Important to detect cavitation pits because nozzle, turbine blade, or other pump component weakened by cavitation could fail catastrophically and cause machine to explode.

  7. Thermoreflectance temperature measurement with millimeter wave.

    PubMed

    Pradere, C; Caumes, J-P; BenKhemis, S; Pernot, G; Palomo, E; Dilhaire, S; Batsale, J-C

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications.

  8. Thermoreflectance temperature measurement with millimeter wave

    SciTech Connect

    Pradere, C. Caumes, J.-P.; BenKhemis, S.; Palomo, E.; Batsale, J.-C.; Pernot, G.; Dilhaire, S.

    2014-06-15

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10{sup −3} K{sup −1} versus 10{sup −5} K{sup −1} for the visible domain, is very promising for future thermoreflectance applications.

  9. Uncertainty evaluation in transition temperature measurements

    SciTech Connect

    Brillaud, C.; Augendre, H.; Bethmont, M.

    1996-12-31

    The pressure vessel surveillance program is mainly based on the transition temperature change assessment, a change which is induced by neutron irradiation. Uncertainties in Charpy test measurements are well known; however, the authors are less familiar with uncertainties due to general procedures governing experiments, which can be significant and therefore must be taken into account. In fact, procedures specify neither the number of specimens needed to obtain a transition curve, nor the choice of test temperatures, nor the fitting method for the transition curve. A study has been conducted to determine the influence of the experimental procedure on the accuracy of transition temperature determination, and the initial results are presented in this paper. Two EDF laboratories performed Charpy tests on the surveillance program reference metal, using 8, 16, 24, 32 and 64 specimens to evaluate how the number of specimens affects the transition temperature. The influence of the scatter of mechanical properties has also been studied at two levels of irradiation. The authors have evaluated the effect of different sampling strategies and investigated a new fitting method, which is based on a simultaneous fitting of all curves with common constraints on parameters.

  10. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    SciTech Connect

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  11. Central pit craters on Ganymede

    NASA Astrophysics Data System (ADS)

    Alzate, Nathalia; Barlow, Nadine G.

    2011-02-01

    Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede's purer ice crust. A transition to different characteristics occurs in Ganymede's icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.

  12. Infrared radiometric technique in temperature measurement

    NASA Technical Reports Server (NTRS)

    Glazer, S.; Madding, R.

    1988-01-01

    One class of commercially available imaging infrared radiometers using cooled detectors is sensitive to radiation over the 3 to 12 micron wavelength band. Spectral filters can tailor instrument sensitivity to specific regions where the target exhibits optimum radiance. The broadband spectral response coupled with real time two-dimensional imaging and emittance/background temperature corrections make the instruments useful for remote measurement of surface temperatures from -20 C to +1500 C. Commonly used radiometric techniques and assumptions are discussed, and performance specifications for a typical modern commercial instrument are presented. The potential usefulness of an imaging infrared radiometer in space laboratories is highlighted through examples of research, nondestructive evaluation, safety, and routine maintenance applications. Future improvements in instrument design and application of the radiometric technique are discussed.

  13. Measurement Techniques for Data Recording and High Temperature Measurement

    DTIC Science & Technology

    2010-10-01

    location. These fiber optic cables convey the infrared data produced by the fireball or other thermal event to a separate array of physically...for Data Recording and High Temperature Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT ... infrared data produced by the fireball or other thermal event to a separate array of physically protected NIR photo detectors whose data signals are

  14. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  15. Polar Cap Pits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows kidney bean-shaped pits, and other pits, formed by erosion in a landscape of frozen carbon dioxide. This images shows one of about a dozen different patterns that are common in various locations across the martian south polar residual cap, an area that has been receiving intense scrutiny by the MGS MOC this year, because it is visible on every orbit and in daylight for most of 2005.

    Location near: 86.9oS, 6.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  16. Polar Cap Pits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows kidney bean-shaped pits, and other pits, formed by erosion in a landscape of frozen carbon dioxide. This images shows one of about a dozen different patterns that are common in various locations across the martian south polar residual cap, an area that has been receiving intense scrutiny by the MGS MOC this year, because it is visible on every orbit and in daylight for most of 2005.

    Location near: 86.9oS, 6.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  17. Measuring supernova neutrino temperatures using lead perchlorate

    SciTech Connect

    Elliott, S. R.

    2000-12-01

    Neutrino interactions with lead produce neutrons in numbers that depend on neutrino energy and type. A detector based on lead perchlorate, for example, would be able to measure the energy deposited by electrons and gammas in coincidence with the number of neutrons produced. Sorting the electron energy spectra by the number of coincident neutrons permits the identification of the neutrino type that induced the reaction. This separation allows an analysis which can determine the temperatures of {nu}{sub e} and {bar {nu}}{sub e} from a supernova in one experiment. The neutrino reaction signatures of lead perchlorate, and the fundamentals of using this material as a neutrino detector, are described.

  18. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    A pseudo-Brewster angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster angle radiometer would exploit the spectral emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation.

  19. [Temperature measurements during abrasive water jet osteotomy].

    PubMed

    Schmolke, S; Pude, F; Kirsch, L; Honl, M; Schwieger, K; Krömer, S

    2004-01-01

    Working on bone is a major aspect of orthopaedic surgery. Despite its well-known appreciable thermal effects on the edges of the bone cut, the oscillating bone saw blade the oscillating saw remains the standard instrument both for cutting long bones and creating a bed for an endoprosthesis. The application of abrasive water jets offers the possibility of achieving an extremely precise curved cut in bone with no accompanying thermal effect. The thermographically measured absolute temperature increase at the cut edges seen with the water jet was 13 K maximum. The small process forces permit the application in automated handling systems.

  20. Measuring supernova neutrino temperatures using lead perchlorate

    NASA Astrophysics Data System (ADS)

    Elliott, S. R.

    2000-12-01

    Neutrino interactions with lead produce neutrons in numbers that depend on neutrino energy and type. A detector based on lead perchlorate, for example, would be able to measure the energy deposited by electrons and gammas in coincidence with the number of neutrons produced. Sorting the electron energy spectra by the number of coincident neutrons permits the identification of the neutrino type that induced the reaction. This separation allows an analysis which can determine the temperatures of νe and ν¯e from a supernova in one experiment. The neutrino reaction signatures of lead perchlorate, and the fundamentals of using this material as a neutrino detector, are described.

  1. Complementary Use of Information from Space-Based Dinsar and Field Measuring Systems for Operational Monitoring Purposes in Open Pit Iron Mines of Carajas Mining Complex (brazilian Amazon Region)

    NASA Astrophysics Data System (ADS)

    Paradella, W. R.; Mura, J. C.; Gama, F. F.; Santos, A. R.; Silva, G. G.; Galo, M.; Camargo, P. O.; Silva, A. Q.

    2015-04-01

    Now spanning five simultaneous open-pit operations with exploration carried out through open pit benching, Carajas complex encompasses the world's largest iron reserves. Open pit mining operations in the area can lead to slope instabilities with risks to personnel, equipment and production due to intense excavations in rock products of low geomechanical quality, blasting practices and heavy precipitation. Thus, an effective prediction and management of surface deformations should be a key concern for the mining operations. The ground displacement monitoring techniques in Carajas include surface measurement techniques at discrete points (total station/reflective prisms) and over area using SSR (Slope Stability Radar, a ground based radar). On the other hand, DInSAR techniques are receiving relevance in the mining industry for reasons such a synoptic and continuous coverage without the need for ground instrumentation and a point-to-point good accuracy of measuring displacements (millimeter to centimeter scale) over a dense grid. Using a stack of 33 StripMap TerraSAR-X images acquired over Carajas covering the time span from March 2012 to April 2013, a monitoring approach is discussed based on the complementary use of information provided by DInSAR (DInSAR Time-Series and Persistent Scatterer Interferometry) and surface measuring techniques (total station/prisms, ground-based radar).

  2. Pits and Scarps

    NASA Image and Video Library

    2015-04-08

    Lessing crater can be seen in the lower left of this image. Instead of the typical central peak found in a complex crater on Mercury, Lessing sports a central pit, likely formed by volcanic activity. A large tectonic scarp that formed when the planet's interior cooled and contracted can be seen running through a crater near the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19276

  3. D-Area Burning/Rubble Pits (431-D and 431-1D) Corrective Measures Study/Focused Feasibility Study

    SciTech Connect

    Palmer, E.R.; Mason, J.T.

    1995-09-01

    The purpose of this report is to determine alternatives which may be used to remediate the D-Area Burning/Rubble Pits (DBRP). An objective of this process is to provide decision makers adequate information to compare alternatives, select an appropriate remediation for the DBRP, and demonstrate the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements in the Record of Decision.

  4. Ariel's Densely Pitted Surface

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.

    JPL manages the Voyager project for NASA's Office of Space Science.

  5. Pit disassembly motion control

    SciTech Connect

    Christensen, L.; Pittman, P. C.

    2001-01-01

    A Department of Energy (DOE) Pit Disassembly and Conversion Facility (PDCF) is being designed for the Savannah River Site in South Carolina. The facility will recover plutonium from excess nuclear weapon pits defined in START II and START III treaties. The plutonium will be stored and used to produce mixed oxide reactor fuel at another new DOE facility. Because of radiation dose issues, much of the pit disassembly work and material transfer will be automated. Automated material handling systems will interface with disassembly lathes, conversion reactors that produce oxide for storage, robotic container welding stations, vault retrieval systems, and nondestructive assay (NDA) instrumentation. The goal is to use common motion control hardware for material transfer and possibly common motion controllers for the unique PDCF systems. The latter is complicated by the different directions manufactures are considering for distributed control, such as Firewire, SERCOS, etc., and by the unique control requirements of machines such as lathes compared to controls for an integrated NDA system. The current design approach is to standardize where possible, use network cables to replace wire bundles where possible, but to first select hardware and motion controllers that meet specific machine or process requirements.

  6. Pits in Polar Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This full-frame image from the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbiter shows faults and pits in Mars' north polar residual cap that have not been previously recognized.

    The faults and depressions between them are similar to features seen on Earth where the crust is being pulled apart. Such tectonic extension must have occurred very recently because the north polar residual cap is very young, as indicated by the paucity of impact craters on its surface. Alternatively, the faults and pits may be caused by collapse due to removal of material beneath the surface. The pits are aligned along the faults, either because material has drained into the subsurface along the faults or because gas has escaped from the subsurface through them.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  7. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  8. Temperature buffer test design, instrumentation and measurements

    NASA Astrophysics Data System (ADS)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  9. Temperature measurement of particles in fluidized bed

    NASA Astrophysics Data System (ADS)

    Kueh, Kimberley; Lau, Timothy; Nathan, Graham; Alwahabi, Zeyad

    2016-11-01

    In order to improve process efficiencies in particle-laden flow applications, it is necessary to have a more comprehensive understanding of the heat transfer between particles and the flow in a turbulent environment. The presentation will detail the planar thermometry of radiatively heated particles in an optically-accessible fluidized bed. This is done by investigating the interaction between particles and the flow where a 3kW laser was used as the well-defined heat source. Laser-induced phosphorescence (LIP) technique was used for non-intrusive, planar, in-situ measurements that is temporally and spatially resolved. The thermometry was conducted in the fluidized bed where the air mass flow rate was kept constant at 15 L/min, and particles were subjected to varying radiative heat flux up to 32 MW/m2. It was found that the particle temperature measurement uncertainty was about 2K at room temperature, and 5K at 600K. Australian Research Council (ARC): ARC Discovery Grant DP130100198.

  10. Optical techniques for measurement of high temperatures

    SciTech Connect

    Veligdan, J.T.

    1991-10-25

    The availability of instrumentation to measure the high outlet gas temperature of a particle bed reactor is a topic of some concern. There are a number of possible techniques with advantages and disadvantages. In order to provide some baseline choice of instrumentation, a review has been conducted of these various technologies. This report summarizes the results of this review for a group of technologies loosely defined as optical techniques (excluding optical pyrometry). The review has concentrated on a number of questions for each technology investigated. These are: (1) Description of the technology, (2) Anticipated sensitivity and accuracy, (3) Requirements for implementation, (4) Necessary development time and costs, (5) Advantages and disadvantages of the technology. Each of these areas was considered for a technology and a large number of technologies were considered in a review of the literature. Based upon this review it was found that a large number of methods exist to measure temperatures in excess of 2000 K. None of the methods found were ideal. Four methods, however, appeared to warrant further consideration: opto-mechanical expansion thermometry, surface Raman spectroscopy, gas-phase Raman spectroscopy and coherent anti-Stokes Raman spectroscopy (CARS). These techniques will be discussed further in this document.

  11. Remote temperature-measurement instrumentation for a heated rotating turbine disk

    SciTech Connect

    Lutz, S.S.; Turley, W.D.; Borella, H.M.; Noel, B.W.; Cates, M.R.; Probert, M.R.

    1988-01-01

    Thermographic-phosphor (TP) remote temperature sensors were installed on a turbine disk and subjected to thermal and centrifugal stresses in a spin-pit test. The sensors were placed at three different radii on the disk, which was run at 6600, 9330, 11400, and 13200 rpm at nominal temperatures of ambient, 300) degree)F, 600)degree)F, 900)degree)F, and 1250)degree)F (149)degree)C, 316)degree)C, 482)degree)C, and 677)degree)C, respectively). The paper gives details of the TP temperature-measurement method, phosphor bonding to the disk, calibration, optical-system design, and electronics instrumentation. The temperatures measured by the TP sensors were compared with those measured by thermocouples mounted on the disk. A number of the thermocouples behaved erratically after we operated the disk at 677)degree)C for an extended period. Nevertheless, for those cases where they could be compared with confidence, the agreement between the TP sensors and the thermocouples was good. 6 refs., 7 figs., 4 tabs.

  12. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2003-01-01

    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the

  13. The Measurement of Temperature; Part i: Temperature Scales

    ERIC Educational Resources Information Center

    Forrest, A. M.

    1974-01-01

    Discusses the inter-relationships between some important temperature scales such as the Celsius scale, the Kelvin Thermodynamic scale, and the International Practical Temperature Scale (IPTS). Included is a description of the 1968 IPTS with emphasis on innovations introduced in the range below 273.15 k. (CC)

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  19. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  20. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  1. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  2. High Temperature Strain Measurements Using Digital Optics

    DTIC Science & Technology

    1991-09-01

    Eae Melting and Boiling Temperatures for Several Metals ................ 3 2 Comparison of Micrometer and Camera Readings at Room Temperature...over-all accuracy. For materials at or near melting or ablation temperatures any contact with the test sample is an undesirable and often unacceptable... melting and boiling temperatures for several metals 3. In addition to high metals, carbon in the form of graphite sublimes at temperatures near 7000’F in

  3. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels.

    SciTech Connect

    Galuszka-Muga, Barbara; Muga, Luis M.

    2006-12-31

    Previous work relevant to current efforts is summarized. A description of an improved version of a new electrochemical probe, the ArtPit, is given. The distinct feature of the probe for investigating metastable pitting of carbon steels is specified and compared to other approaches. The electrochemical response of the ArtPit under the gamma irradiation and elevated temperature conditions that occur at high level waste (HLW) storage tanks is presented. In particular, the Tafel slope determinations and chemical analyses of the ArtPit confined volume electrolyte are described. Based on results a possible approach for reducing the corrosion rate of HLW tank walls is suggested. Additional statistical analysis of the occurrence of short duration (passivated pits) and long term (stable pitting) electrochemical pulses (current surges) during exposure confirm that radiation enhances the occurrence of both more and smaller sized pits due to increased likelihood of repassivation.

  4. [Physical meaning of temperature measured by spectral line intensity method].

    PubMed

    Zhao, Wen-Hua; Tang, Huang-Zai; Shen, Yan; Shi, Yong; Hou, Ling-Yun

    2007-11-01

    The difference between electron temperature and excitation temperature is analyzed in the aspect of statistics thermodynamics. It is presented clearly that the temperature acquired by spectral line intensity method is not free electron temperature, but internal electronic excitation temperature of heavy particle. Under thermal equilibrium condition, the excitation temperature is equal to the electron temperature, while under non-thermal equilibrium condition, the excitation temperature is not equal to the electron temperature. In the study of arc jet plume in vacuum chamber, spectral line intensity method was employed to measure the apparent excitation temperature of arc jet plume, and Langmuir probe was employed to measure the electron temperature of arcjet plume. The big difference between the excitation temperature and the electron temperature proved that the temperature acquired by spectral line intensity method is not free electron temperature.

  5. Accuracy of temperature measurement in the cardiopulmonary bypass circuit.

    PubMed

    Newland, Richard F; Sanderson, Andrew J; Baker, Robert A

    2005-03-01

    Oxygenator arterial outlet blood temperature is routinely measured in the cardiopulmonary bypass (CPB) circuit as a surrogate for the temperature of the arterial blood delivered to sensitive organs such as the brain. The aim of this study was to evaluate the accuracy of the temperature thermistors used in the Terumo Capiox SX25 oxygenator and to compare the temperature measured at the outlet of the oxygenator using the Capiox CX*TL Luer Thermistor with temperatures measured at distal sites. Five experimental stages were performed in vitro to achieve this aim. Under our experimental conditions, the luer thermistors accurately measured the temperature as referenced by a precision thermometer. In the CPB circuit, the difference between arterial outlet and reference thermometer temperature varied with outlet temperature over-reading at low temperatures and under reading at high temperatures. There was negligible heat loss (-0.4+/-0.1degrees C) measured at 4.5 m from the arterial outlet. The Terumo Capiox CX*TL Luer Thermistor is an accurate and reliable instrument for measuring temperature when incorporated into the Capiox Oxygenator. The accuracy in the measurement of temperature using these thermistors is affected by the thermistor immersion depth. Under reading of the arterial blood temperature by approximately 0.5 degrees C should be considered at normothermic temperatures, to avoid exceeding the maximum arterial blood temperature as described by institutional protocols. The accuracy of blood temperature measurements should be considered for all oxygenator arterial outlet temperature probes.

  6. Measurement Corner: Volume, Temperature and Pressure

    ERIC Educational Resources Information Center

    Teates, Thomas G.

    1977-01-01

    Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)

  7. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  8. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  9. 13. DETAIL WEST OF TURBINE PIT SHOWING PIT DRAINED AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL WEST OF TURBINE PIT SHOWING PIT DRAINED AND TURBINE EXPOSED. ORIGINAL WATER LEVEL SHOWN BY LINE JUST ABOVE ARCHED OPENING TO LEFT. WATER LINE AFTER 1982 INSTALLATION OF FLASH BOARDS REVEALED BY DARK STAIN. - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  10. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  11. Crevice and pitting corrosion behavior of stainless steels in seawater

    SciTech Connect

    Zaragoza-Ayala, A.E.; Orozco-Cruz, R.

    1999-11-01

    Pitting and crevice corrosion tests in natural seawater were performed on a series of stainless steels (i.e., S31603, N08904, S32304, S31803, S32520, N08925 and S31266) in order to determine their resistance to these types of localized corrosion. Open circuit potential (OCP) measurements for these alloys show for short exposure times an ennoblement in the OCP. After a certain time, occasional fall and rise in the OCP values was observed, which can be related to nucleation and repassivation of pits and/or crevices on the metal surface. Analysis of the electrochemical behavior and microscopic observations shows that only S31603 and S32304 alloys were susceptible to crevice and pitting corrosion, whereas the remaining alloys exhibited good resistance. Pitting potentials determined by the potentiodynamic technique also show S3 1603 and S32304 are susceptible to pitting corrosion under the experimental conditions used in this work.

  12. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms.

    PubMed

    Tixier, Aude; Herbette, Stephane; Jansen, Steven; Capron, Marie; Tordjeman, Philippe; Cochard, Hervé; Badel, Eric

    2014-08-01

    Various correlations have been identified between anatomical features of bordered pits in angiosperm xylem and vulnerability to cavitation, suggesting that the mechanical behaviour of the pits may play a role. Theoretical modelling of the membrane behaviour has been undertaken, but it requires input of parameters at the nanoscale level. However, to date, no experimental data have indicated clearly that pit membranes experience strain at high levels during cavitation events. Transmission electron microscopy (TEM) was used in order to quantify the pit micromorphology of four tree species that show contrasting differences in vulnerability to cavitation, namely Sorbus aria, Carpinus betulus, Fagus sylvatica and Populus tremula. This allowed anatomical characters to be included in a mechanical model that was based on the Kirchhoff-Love thin plate theory. A mechanistic model was developed that included the geometric features of the pits that could be measured, with the purpose of evaluating the pit membrane strain that results from a pressure difference being applied across the membrane. This approach allowed an assessment to be made of the impact of the geometry of a pit on its mechanical behaviour, and provided an estimate of the impact on air-seeding resistance. The TEM observations showed evidence of residual strains on the pit membranes, thus demonstrating that this membrane may experience a large degree of strain during cavitation. The mechanical modelling revealed the interspecific variability of the strains experienced by the pit membrane, which varied according to the pit geometry and the pressure experienced. The modelling output combined with the TEM observations suggests that cavitation occurs after the pit membrane has been deflected against the pit border. Interspecific variability of the strains experienced was correlated with vulnerability to cavitation. Assuming that air-seeding occurs at a given pit membrane strain, the pressure predicted by the model

  13. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes

    SciTech Connect

    Okada, Narihito Kashihara, Hiroyuki; Sugimoto, Kohei; Yamada, Yoichi; Tadatomo, Kazuyuki

    2015-01-14

    The internal quantum efficiency (IQE) of InGaN/GaN multiple quantum wells (MQWs) with blue light emission was improved by inserting an InGaN/GaN superlattice (SL) beneath the MQWs. While the SL technique is useful for improving the light-emitting diode (LED) performance, its effectiveness from a multilateral point of view requires investigation. V-shaped pits (V-pits), which generate a potential barrier and screen the effect of the threading dislocation, are one of the candidates for increasing the light emission efficiency of LEDs exceptionally. In this research, we investigated the relationship between the V-pit and SL and revealed that the V-pit diameter is strongly correlated with the IQE by changing the number of SL periods. Using scanning near-field optical microscopy and photoluminescence measurements, we demonstrated the distinct presence of the potential barrier formed by the V-pits around the dislocations. The relationship between the V-pit and the number of SL periods resulted in changing the potential barrier height, which is related to the V-pit diameter determined by the number of SL periods. In addition, we made an attempt to insert pit expansion layers (PELs) composed of combination of SL and middle temperature grown GaN layer instead of only SL structure. As a result of the evaluation of LEDs using SL or PEL, the EL intensity was strongly related to pit diameter regardless of the structures to form the V-pits. In addition, it was clear that larger V-pits reduce the efficiency droop, which is considered to be suppression of the carrier loss at high injection current.

  14. High-temperature archeointensity measurements from Mesopotamia

    NASA Astrophysics Data System (ADS)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  15. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  16. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid...

  17. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid...

  18. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  19. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  20. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  2. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid...

  3. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  4. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  5. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  7. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid...

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  9. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the temperature: (1) At the bottom of the tank; and (2) Near the top of the tank and below the maximum liquid...

  10. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  11. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    NASA Astrophysics Data System (ADS)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  12. Update: The Search for Lunar Pits

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Robinson, M. S.

    2015-10-01

    An update on the search for pits and caves on the Moon using LROC data, highlighting three newly-discovered pits in the lunar maria. We also discuss the limitations of investigating lunar pits from orbit.

  13. Pitted Terrain on Mars and Vesta

    NASA Image and Video Library

    2012-09-20

    A distinctive pitted terrain observed by NASA Dawn mission on asteroid Vesta has also been seen on Mars. The morphologies of pits are similar on both bodies, with irregular shapes and sharp angles where pits share walls.

  14. PIT Tagging Anurans

    USGS Publications Warehouse

    McCreary, Brome

    2008-01-01

    The following video demonstrates a procedure to insert a passive integrated transponder (PIT) tag under the skin of an anuran (frog or toad) for research and monitoring purposes. Typically, a 12.5 mm tag (0.5 in.) is used to uniquely identify individual anurans as smal as 40 mm (1.6 in.) in length from snout to vent. Smaller tags are also available and allow smaller anurans to be tagged. The procedure does not differ for other sizes of tages or other sizes of anurans. Anyone using this procedure should ensure that the tag is small enough to fit easily behind the sacral hump of the anuran, as shown in this video.

  15. Bulk temperature measurement in thermally striped pipe flows

    SciTech Connect

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique.

  16. Refractory thermowell for continuous high temperature measurement of molten metal

    DOEpatents

    Thiesen, Todd J.

    1992-01-01

    An apparatus for the continuous high temperature measurement of materials in vessels lined with rammed or cast refractory materials. A refractory housing member is integral with the refractory lining of the vessel and contains a plurality of high temperature sensing means, such as thermocouples. A face of the housing is flush with the refractory lining and contacts the high temperature material contained in the vessel. Continuous temperature measurement is achieved by a means which is coupled to the thermocouples for indicating the temperature.

  17. Titan's Surface Temperatures Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kundle, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; hide

    2008-01-01

    A large fraction of 19-micron thermal radiation from the surface of Titan reaches space through a spectral window of low atmospheric opacity. The emergent radiance, after removing the effect of the atmosphere, gives the brightness temperature of the surface. This atmospheric window is covered by the far-infrared channel of the Composite Infrared spectrometer1 (CIRS) on Cassini. In mapping Titan surface temperatures, CIRS is able to improve upon results of Voyager IRIS, by taking advantage of improved latitude coverage and a much larger dataset. Observations are from a wide range of emission angles and thereby provide constraints on the atmospheric opacity and radiance that are used to derive the surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, virtually identical to the HASI temperature at the Huygens landing site. Mapping in latitude shows that the surface temperature decreases toward the poles by about 2 K in the south and 3 K in the north. This surface temperature distribution is consistent with the formation of lakes seen at high latitudes on Titan.

  18. Titan's Surface Temperatures Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kundle, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; Arhterberg, R. K.; Bjoraker, G. L.; Romani, P. N.; Segura, M. E.; Albright, S. A.; Elliott, M. H.; Tingley, J. S.; Calcutt, S.; Coustenis, A.; Bezard, B.; Courtin, R.

    2008-01-01

    A large fraction of 19-micron thermal radiation from the surface of Titan reaches space through a spectral window of low atmospheric opacity. The emergent radiance, after removing the effect of the atmosphere, gives the brightness temperature of the surface. This atmospheric window is covered by the far-infrared channel of the Composite Infrared spectrometer1 (CIRS) on Cassini. In mapping Titan surface temperatures, CIRS is able to improve upon results of Voyager IRIS, by taking advantage of improved latitude coverage and a much larger dataset. Observations are from a wide range of emission angles and thereby provide constraints on the atmospheric opacity and radiance that are used to derive the surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, virtually identical to the HASI temperature at the Huygens landing site. Mapping in latitude shows that the surface temperature decreases toward the poles by about 2 K in the south and 3 K in the north. This surface temperature distribution is consistent with the formation of lakes seen at high latitudes on Titan.

  19. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    PubMed

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.

    1981-01-01

    The development of thin film temperature sensors is discussed. The technology for sputtering 2 micron thin film platinum versus platinum 10 percent rhodium thermocouples on alumina forming coatings was improved and extended to applications on actual turbine blades. Good adherence was found to depend upon achieving a proper morphology of the alumina surface. Problems of adapting fabrication procedures to turbine blades were uncovered, and improvements were recommended. Testing at 1250 K at one atmosphere pressure was then extended to a higher Mach No. (0.5) in combustor flow for 60 hours and 71 thermal cycles. The mean time to failure was 47 hours accumulated during 1 hour exposures in the combustor. Calibration drift was about 0.1 percent per hour, attributable to oxidation of the rhodium in the thin films. An increase in film thickness and application of a protective overcoat are recommended to reduce drift in actual engine testing.

  1. MPF Top-Mast Measured Temperature

    NASA Image and Video Library

    1997-10-14

    This temperature figure shows the change in the mean and variance of the temperature fluctuations at the Pathfinder landing site. Sol 79 and 80 are very similar, with a significant reduction of the mean and variance on Sol 81. The science team suspects that a cold front has past of the landing sight between Sols 80 and 81. http://photojournal.jpl.nasa.gov/catalog/PIA00978

  2. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2003-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. These types of measurements are used in computer models to relate remotely sensed water-surface temperature to bulkwater temperature. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured.

  3. A noncontact temperature measurement method in polymerase chain reaction reactors

    NASA Astrophysics Data System (ADS)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  4. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  5. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  6. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  7. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  8. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  9. Junction Temperature Measurement of IGBTs Using Short Circuit Current

    SciTech Connect

    Wang, Fei; Xu, Zhuxian; Ning, Puqi

    2012-01-01

    In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

  10. Temperature measurement of contact resistance based on infrared detection

    NASA Astrophysics Data System (ADS)

    En, De; Feng, Jieyu

    2010-11-01

    For science and technology, the level of science and technology is determined by the measurement accuracy and efficiency to some extent. Contact resistance can not be ignored in precise measurement. Because the measured object is not directly contacted with infrared measurement device, there is no friction. Infrared measurement has the advantage of high sensitivity, fast response and so on. In this paper, the reasons for the temperature rising of the contact resistance and its harm and the importance of measuring the temperature of the contact resistance in precise measurement are analyzed firstly; then some theories of the infrared detection technology are introduced; finally, an infrared temperature measurement system based on SCM is designed.

  11. Measuring Method for Lightning Channel Temperature

    PubMed Central

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-01-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  12. Measuring Method for Lightning Channel Temperature.

    PubMed

    Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R

    2016-09-26

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  13. Pits in Hale Crater Ejecta

    NASA Image and Video Library

    2015-01-28

    The pits visible in this image from NASA Mars Reconnaissance Orbiter arent impact craters. The material they are embedded into is ejecta stuff thrown out of an impact crater when it forms from a large crater called Hale not seen in this image. Substances called "volatiles" -- which can explode as gases when they're quickly warmed by the immense heat of an impact-exploded out of the ejecta and caused these pits. Unrelated sand dunes near the top of the image have since blown over portions of the pits. http://photojournal.jpl.nasa.gov/catalog/PIA19289

  14. Operating and maintenance benefits of automated oven wall temperature measurement

    SciTech Connect

    Leuchtmann, K.P.; Hinz, D.; Bergbau, D.; Platts, M.

    1997-12-31

    For a very long time and regardless of all shortcomings associated with it, the manual measurement of the heating flue temperature has been the only method of monitoring the temperature prevailing in a coke oven battery and discovering weak points in the heating system. In the course of the last few years a number of automated temperature measuring systems have been developed that are intended to replace or supplement the manual heating flue measurement system. These measuring systems and their advantages/disadvantages are briefly described in this paper. Additionally, operational experience gathered with the oven chamber wall temperature measuring system is discussed in detail.

  15. Nanosecond-resolved temperature measurements using magnetic nanoparticles.

    PubMed

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  16. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    SciTech Connect

    Xu, Wenbiao; Zhang, Pu; Liu, Wenzhong

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  17. 7 CFR 52.807 - Freedom from pits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... United States Standards for Grades of Frozen Red Tart Pitted Cherries Factors of Quality § 52.807 Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  18. 7 CFR 52.779 - Freedom from pits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Factors of Quality § 52.779 Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  19. 7 CFR 52.807 - Freedom from pits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... United States Standards for Grades of Frozen Red Tart Pitted Cherries Factors of Quality § 52.807 Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  20. 7 CFR 52.779 - Freedom from pits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Factors of Quality § 52.779 Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  1. Temperature Measurement and Numerical Prediction in Machining Inconel 718

    PubMed Central

    Tapetado, Alberto; Vázquez, Carmen; Miguélez, Henar

    2017-01-01

    Thermal issues are critical when machining Ni-based superalloy components designed for high temperature applications. The low thermal conductivity and extreme strain hardening of this family of materials results in elevated temperatures around the cutting area. This elevated temperature could lead to machining-induced damage such as phase changes and residual stresses, resulting in reduced service life of the component. Measurement of temperature during machining is crucial in order to control the cutting process, avoiding workpiece damage. On the other hand, the development of predictive tools based on numerical models helps in the definition of machining processes and the obtainment of difficult to measure parameters such as the penetration of the heated layer. However, the validation of numerical models strongly depends on the accurate measurement of physical parameters such as temperature, ensuring the calibration of the model. This paper focuses on the measurement and prediction of temperature during the machining of Ni-based superalloys. The temperature sensor was based on a fiber-optic two-color pyrometer developed for localized temperature measurements in turning of Inconel 718. The sensor is capable of measuring temperature in the range of 250 to 1200 °C. Temperature evolution is recorded in a lathe at different feed rates and cutting speeds. Measurements were used to calibrate a simplified numerical model for prediction of temperature fields during turning. PMID:28665312

  2. Temperature Measurement and Numerical Prediction in Machining Inconel 718.

    PubMed

    Díaz-Álvarez, José; Tapetado, Alberto; Vázquez, Carmen; Miguélez, Henar

    2017-06-30

    Thermal issues are critical when machining Ni-based superalloy components designed for high temperature applications. The low thermal conductivity and extreme strain hardening of this family of materials results in elevated temperatures around the cutting area. This elevated temperature could lead to machining-induced damage such as phase changes and residual stresses, resulting in reduced service life of the component. Measurement of temperature during machining is crucial in order to control the cutting process, avoiding workpiece damage. On the other hand, the development of predictive tools based on numerical models helps in the definition of machining processes and the obtainment of difficult to measure parameters such as the penetration of the heated layer. However, the validation of numerical models strongly depends on the accurate measurement of physical parameters such as temperature, ensuring the calibration of the model. This paper focuses on the measurement and prediction of temperature during the machining of Ni-based superalloys. The temperature sensor was based on a fiber-optic two-color pyrometer developed for localized temperature measurements in turning of Inconel 718. The sensor is capable of measuring temperature in the range of 250 to 1200 °C. Temperature evolution is recorded in a lathe at different feed rates and cutting speeds. Measurements were used to calibrate a simplified numerical model for prediction of temperature fields during turning.

  3. Measuring the Electron Temperature in the Corona

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  4. 105-KW Sandfilter Backwash Pit sludge volume calculation

    SciTech Connect

    Dodd, E.N. Jr.

    1995-02-10

    The volume of sludge contained in the 100-KW Sandfilter Backwash Pit (SFBWP) was calculated from depth measurements of the sludge, pit dimension measurements and analysis of video tape recordings taken by an underwater camera. The term sludge as used in this report is any combination of sand, sediment, or corrosion products visible in the SFBWP area. This work was performed to determine baseline volume for use in determination of quantities of uranium and plutonium deposited in the pit from sandfilter backwashes. The SFBWP has three areas where sludge is deposited: (1) the main pit floor, (2) the transfer channel floor, and (3) the surfaces and structures in the SFBWP. The depths of sludge and the uniformity of deposition varies significantly between these three areas. As a result, each of the areas was evaluated separately. The total volume of sludge determined was 3.75 M{sup 3} (132.2 ft{sup 3}).

  5. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  6. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    PubMed

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  7. Temperature measurement. [liquid monopropellant rocket engine performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, installation, checkout, calibration, and operation of a temperature measuring system to be used during tests of a liquid monopropellant rocket engine are discussed. Appendixes include: (1) temperature measurement system elemental uncertainties, and (2) tables and equations for use with thermocouples and resistance thermometers. Design guidelines are given for the critical components of each portion of the system to provide an optimum temperature measurement system which meets the performance criteria specified.

  8. [Problems in the measurement of human body temperature].

    PubMed

    Shakhov, E K; Mel'nikov, A A; Dolgova, I A

    2008-01-01

    The problems arising in the measurement of human body temperature are discussed. The results of the experimental research are described. The effect of the initial sensor temperature on the results of measurement is explained. It is shown that the thermal or cold irritation of skin when brought in contact with the sensor also has an effect on the measurement results. Recommendations for optimizing the temperature sensor size are given.

  9. Pitted keratolysis, erythromycin, and hyperhidrosis.

    PubMed

    Pranteda, Guglielmo; Carlesimo, Marta; Pranteda, Giulia; Abruzzese, Claudia; Grimaldi, Miriam; De Micco, Sabrina; Muscianese, Marta; Bottoni, Ugo

    2014-01-01

    Pitted keratolysis (PK) is a plantar skin disorder mainly caused by coryneform bacteria. A common treatment consists of the topical use of erythromycin. Hyperhidrosis is considered a predisposing factor for bacterial proliferation and, consequently, for the onset of PK. The aim of this study was to evaluate the relationship between PK erythromycin and hyperhidrosis. All patients with PK seen in Sant'Andrea Hospital, between January 2009 and December 2011, were collected. PK was clinically and microscopically diagnosed. All patients underwent only topical treatment with erythromycin 3% gel twice daily. At the beginning of the study and after 5 and 10 days of treatment, a clinical evaluation and a gravimetric measurement of plantar sweating were assessed. A total of 97 patients were diagnosed as PK and were included in the study. Gravimetric measurements showed that in 94 of 97 examined patients (96.90%) at the time of the diagnosis, there was a bilateral excessive sweating occurring specifically in the areas affected by PK. After 10 days of antibiotic therapy, hyperhidrosis regressed together with the clinical manifestations. According to these data, we hypothesize that hyperhidrosis is due to an eccrine sweat gland hyperfunction, probably secondary to bacterial infection.

  10. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  11. Dielectric property measurement of zirconia fibers at high temperatures

    SciTech Connect

    Vogt, G.J.; Tinga, W.R.; Plovnick, R.H.

    1995-05-01

    Using a self-heating, electronically tunable microwave dielectrometer, the complex dielectric constant of zirconia-based filaments was measured at 915 MHz from 350{degrees} to 1100{degrees}C. This fibrous material cools rapidly to near room temperature within several seconds due to a large surface area to volume ratio. Such rapid sample cooling necessitates the use of a self-heating technique to measure the complex dielectric constant at temperatures up to 1100{degrees}C. Sample temperature was measured with optical fiber thermometry. The effect of sample temperature measurement on data accuracy is discussed.

  12. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  13. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    SciTech Connect

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  14. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  15. Autonomous System for MISSE Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.

    2001-01-01

    The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.

  16. MRI Based Diagnostics for Temperature Measurements in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Burton, Lauren Sascha; Elkins, Christopher J.; Eaton, John K.

    2014-11-01

    Accurate modeling of the thermal diffusion in the complex turbulent flows related to cooling high temperature gas turbine blades is critical to optimize the performance and predict the lifetime of the blades. Magnetic Resonance Imaging (MRI) techniques for temperature measurement in simple but related flows are being developed in an effort to obtain full field thermal measurements to better understand diffusion processes and support the development of more accurate computational models in these flows. Magnetic Resonance Thermometry (MRT) utilizes the temperature dependence of the hydrogen proton resonant frequency (PRF) in water. MRT is now routinely used to measure tissue temperatures during medical procedures, and a few previous studies have made velocity and temperature measurements in turbulent pipe flows. In this study, MRT is applied to the flow of a heated single hole film cooling jet (Reynolds number 3000) inclined at 30 degrees injected into a cold developing turbulent channel flow (Reynolds number 25,000 based on bulk velocity and channel height.) The jet fluid temperature is 30 degrees Celsius above the temperature in the channel. The temperature measurements compare well to previously published results for measured passive scalar concentration in the same flow although the temperature measurements show higher uncertainties of 5--10 % of the temperature difference. Techniques for reducing this uncertainty will be presented as well as procedures for applying MRT to quantify the turbulent heat transfer coefficient in turbulent internal flows.

  17. What measure of temperature is the best predictor of mortality?

    PubMed

    Barnett, A G; Tong, S; Clements, A C A

    2010-08-01

    Hot and cold temperatures significantly increase mortality rates around the world, but which measure of temperature is the best predictor of mortality is not known. We used mortality data from 107 US cities for the years 1987-2000 and examined the association between temperature and mortality using Poisson regression and modelled a non-linear temperature effect and a non-linear lag structure. We examined mean, minimum and maximum temperature with and without humidity, and apparent temperature and the Humidex. The best measure was defined as that with the minimum cross-validated residual. We found large differences in the best temperature measure between age groups, seasons and cities, and there was no one temperature measure that was superior to the others. The strong correlation between different measures of temperature means that, on average, they have the same predictive ability. The best temperature measure for new studies can be chosen based on practical concerns, such as choosing the measure with the least amount of missing data.

  18. Multi-spectral pyrometer for gas turbine blade temperature measurement

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  19. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  20. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  1. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  2. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    PubMed

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from

  3. Measuring Contact Thermal Conductances at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Brooks, Walter; Spivak, Alan L.; Marks, William G., Jr.

    1987-01-01

    Instrument measures thermal conductance of pressed contacts in liquid helium. Makes measurements automatically as function of force on pairs of brass samples having various surface finishes. Developed as part of effort to determine heat-transfer characteristics of bolted joints on cryogenically cooled focal planes in infrared equipment. Cylindrical chamber hangs from cover plate in bath of liquid helium. Inside chamber rocker arm applies controlled force to samples. Upper sample made slightly wider than lower one so two samples remain in complete contact even under slight lateral misalignment.

  4. Sensitivity to thermal stimulation in prairie rattlesnakes (Crotalus viridis) after bilateral anesthetization of the facial pits

    SciTech Connect

    Chiszar, D.; Dickman, D.; Colton, J.

    1986-01-01

    Six yearling prairie rattlesnakes (Crotalus viridis) were exposed to thermal stimuli prior to and after bilateral anesthetization of their facial pits with 2% xylocaine solution. This treatment eliminates trigeminally mediated electrophysiological responses of the pits to thermal stimulation. Nevertheless, the rattlesnakes continued to exhibit behavioral responses to thermal cues after anesthetization of the pits. An auxiliary infrared-sensitive system, nociceptors, or the common temperature sense could be responsible for these findings.

  5. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  6. Further development of the dynamic gas temperature measurement system

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1985-01-01

    Two experiments for verifying the frequency response of a previously-developed dynamic gas temperature measurement system were performed. In both experiments, fine-wire resistance temperature sensors were used as standards. The compensated dynamic temperature sensor data will be compared with the standards to verify the compensation method. The experiments are described in detail.

  7. Measurement of improved pressure dependence of superconducting transition temperature

    NASA Astrophysics Data System (ADS)

    Karmakar, S.

    2013-06-01

    We describe a technique for making electrical transport measurements in a diamond anvil cell at liquid helium temperature having in situ pressure measurement option, permitting accurate pressure determination at any low temperature during the resistance measurement scan. In general, for four-probe resistivity measurements on a polycrystalline sample, four fine gold wires are kept in contact with the sample with the help of the compression from the soft solid (usually alkali halides such as NaCl, KCl, etc.) acting as a pressure-transmitting medium. The actual pressure on the sample is underestimated if not measured from a ruby sphere placed adjacent to the sample and at that very low temperature. Here, we demonstrate the technique with a quasi-four-probe resistance measurement on an Fe-based superconductor in the temperature range 1.2-300 K and pressures up to 8 GPa to find an improved pressure dependence of the superconducting transition temperature.

  8. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  9. CARS Temperature Measurements in Turbulent and Supersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Antcliff, R. R.; Smith, M. W.; Cutler, A. D.; Diskin, G. S.; Northam, G. B.

    1991-01-01

    This paper documents the development of the National Aeronautics and Space Administration s (NASA) Langley Research Center ( LaRC) Coherent Antistokes Raman Spectroscopy (CARS) systems for measurements of temperature in a turbulent subsonic or supersonic reacting hydrogen-air environment. Spectra data provides temperature data when compared to a precalculated library of nitrogen CARS spectra. Library validity was confirmed by comparing CARS temperatures derived through the library with three different techniques for determination of the temperature in hydrogen-air combustion and an electrically heated furnace. The CARS system has been used to survey temperature profiles in the simulated flow of a supersonic combustion ramjet (scramjet) model. Measurement results will be discussed.

  10. Global exospheric temperatures from ESRO 4 scale height measurements

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Prior, E. J.; Lake, L. R.; Nicholson, J. Y., III; Fricke, K.

    1977-01-01

    The scale height temperatures considered are based on molecular nitrogen measurements by the gas analyzer aboard the ESRO 4 in the altitude range from 280 to 310 km during the interval from December 1972 to April 1974, a period of low solar activity. At the altitude of measurement during the considered period, the scale height temperature is essentially the exospheric temperature. The mean scale height temperature derived from 1833 independent N2 scale heights is 708 K. It is concluded that the ESRO 4 data provides evidence of mean global temperatures of less than 800 K.

  11. Influence of Resistance Method on Motor Winding Temperature Rise Measurement

    NASA Astrophysics Data System (ADS)

    Beges, G.

    2011-12-01

    The objective of this article is presentation of influences when measuring the motor winding temperature rise in the scope of safety testing of electrical appliances, with respect to conformity assessment. The temperature measurement in testing is one of the most defined fields of measurement, but it is very important how the measurement is performed. Standards only describe that the resistance method shall be used for determination of the temperature rise (heating) of the winding. The temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, at the specified load of the unit under test. It is not explicitly defined how to approach this measurement when using cooling characteristics of the winding for determination of the temperature rise. Since the extrapolation curve is used, the procedure is also very important to obtain a result as accurate as possible. It is important that measurement results and their associated uncertainties are correctly evaluated, and on that basis, appropriate conclusions of conformity of the product with specifications are made. The resistance method influence on the motor winding temperature rise measurement is a case study in this article. The article focuses on the measurement of the temperature rise of electrical motors used in electrical appliances according to the standard EN 60335-1, clause 11 (2002) (identical as standard IEC 60335-1, 2001). In this article, the influencing parameters are analyzed when measuring the temperature rise of electromotor winding. As a case study, concrete measurements are presented. The optimal time after which the performer has to start measurement of the cooling characteristics is analyzed, since the motors are typically mounted deep into appliances. Especially for a collector motor winding, it takes some time for a performer to be able to connect the measuring instrument to collector's lamellas because this contact has an important

  12. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  13. Portable optical fiber probe for in vivo brain temperature measurements.

    PubMed

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  14. A versatile system for Hall effect measurements at high temperature

    NASA Astrophysics Data System (ADS)

    Gunes, Murat; Sato, Hisanori; Pinsard-Gaudart, Loreynne; Berardan, David; Dragoe, Nita

    2017-10-01

    We present a fast Hall effect measurement system that can be used at high temperature. The use of a homogeneous high field permanent magnet in a Halbach configuration allows fast measurements in various DC and AC current fields with step and continuous measurement modes. The results are presented of measurements on platinum film at room temperature and Ge and BiCuSeO between 300 K and 650 K.

  15. Portable optical fiber probe for in vivo brain temperature measurements

    PubMed Central

    Musolino, Stefan; Schartner, Erik P.; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M.; Hutchinson, Mark R.

    2016-01-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories. PMID:27570698

  16. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  17. An evaluation of methods for measuring surface temperature

    NASA Astrophysics Data System (ADS)

    Huebner, G.; Gladen, C. L.

    1982-10-01

    In order to evaluate the effectiveness of infrared camouflage, surface temperatures of targets and backgrounds have to be measured. A variety of instruments are available to do this and have been used in previous field tests. Inconsistencies in the results from these experiments prompted the test reported herein. A simple asphalt target was instrumented with several types of thermometers to measure kinetic temperature and radiation temperature. Readings from radiation thermometers were found to depend on target emissivity, sky temperature, and spectral range of instrument. Measurements of kinetic temperature depended on surface contact of the probe and on the amount of surface disturbance. Any comparison between different temperature measurement techniques should take these influences into account.

  18. Proximity effect thermometer for local temperature measurements on mesoscopic samples.

    SciTech Connect

    Aumentado, J.; Eom, J.; Chandrasekhar, V.; Baldo, P. M.; Rehn, L. E.; Materials Science Division; Northwestern Univ; Univ. of Chicago

    1999-11-29

    Using the strong temperature-dependent resistance of a normal metal wire in proximity to a superconductor, we have been able to measure the local temperature of electrons heated by flowing a direct-current (dc) in a metallic wire to within a few tens of millikelvin at low temperatures. By placing two such thermometers at different parts of a sample, we have been able to measure the temperature difference induced by a dc flowing in the samples. This technique may provide a flexible means of making quantitative thermal and thermoelectric measurements on mesoscopic metallic samples.

  19. A high temperature apparatus for measurement of the Seebeck coefficient

    SciTech Connect

    Iwanaga, Shiho; Toberer, Eric S.; LaLonde, Aaron; Snyder, G. Jeffrey

    2011-06-15

    A high temperature Seebeck coefficient measurement apparatus with various features to minimize typical sources of error is designed and built. Common sources of temperature and voltage measurement error are described and principles to overcome these are proposed. With these guiding principles, a high temperature Seebeck measurement apparatus with a uniaxial 4-point contact geometry is designed to operate from room temperature to over 1200 K. This instrument design is simple to operate, and suitable for bulk samples with a broad range of physical types and shapes.

  20. Remote measurement of atmospheric temperatures by Raman lidar

    NASA Technical Reports Server (NTRS)

    Coney, T. A.; Salzman, J. A.

    1974-01-01

    The Raman shifted return of a lidar system has been utilized to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 C to +30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum which were simultaneously sampled from a preset range. A temperature measurement accuracy of plus or minus 4 C and a temporal resolution of one minute were realized with this system. The combined results of the theoretical analysis and the experimentation indicate that system improvements will significantly increase both accuracy and range.

  1. Oxidative pit formation in pristine, hydrogenated and dehydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Jones, J. D.; Morris, C. F.; Verbeck, G. F.; Perez, J. M.

    2013-01-01

    We study oxidative pit formation in pristine, hydrogenated, and dehydrogenated monolayer graphene (MLG), bilayer graphene (BLG) and trilayer graphene (TLG). Graphene samples are produced by mechanical exfoliation of highly oriented pyrolytic graphite (HOPG) onto SiO2 substrates. Etching is carried out by exposing samples to O2 gas at 450-700 °C. Using atomic force microscopy, we observe that pre-heating pristine MLG in vacuum at 590 °C increases the onset temperature for pit formation to values comparable to those in HOPG. We attribute this decrease in reactivity to an increase in adhesion between the MLG and substrate. In hydrogenated MLG and BLG, we observe a significant decrease in the onset temperature for pit formation. Dehydrogenation of these materials results in a decrease in the density of pits. We attribute the decrease in onset temperature to H-related defects in their sp3-bonded structure. In contrast, hydrogenated TLG and thicker-layer samples show no significant change in pit formation. We propose that this is because they are not transformed into an sp3-bonded structure by hydrogenation.

  2. Skin Temperature Measurements on Small Bodies of Water

    SciTech Connect

    Kurzeja, R.

    2002-11-26

    The temperature of the top millimeter of a water surface is generally a few tenths of a degree Celsius cooler than the 'bulk' temperature, i.e., the temperature approximately 1 meter deep, which is routinely measured by buoys and ships. This is because of a daytime temperature gradient between the bulk location and the surface, and because of the thin skin at the surface. This difference is important for climate and weather forecasting because of the atmospheric forcing by the oceans.

  3. Interpretation of measurements of electron temperature using Vertikal' rockets

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    1990-09-01

    A theoretical model is proposed for interpreting measurements of electron temperature carried out between 1970 and 1977 during five flights of Vertikal' rockets from the Volgograd station near the terminator. The best agreement between measured and calculated values of the electron temperature is obtained when the empirical equation for the photoelectron heating rate given by Swartz and Nisbet (1972) is used in the model.

  4. Thermocouple design for measuring temperatures of small insects

    Treesearch

    A.A. Hanson; R.C. Venette

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to...

  5. Non-contact temperature measurement requirements for electronic materials processing

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  6. Measuring transient high temperature thermal phenomena in hostile environment

    SciTech Connect

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument.

  7. Measuring High Temperatures In Ceramic-Fiber Blankets

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1996-01-01

    Thermocouple assemblies devised specifically for measuring temperatures at fixed locations within insulating blankets made of such ceramic fibers as alumina, silicon carbide, and/or aluminoborosilicate. Thermocouples measure temperatures from 100 to 3,200 degrees F in oxidizing atmospheres. Wires enclosed in alumina sheath for protection against hot oxidation and mechanical damage.

  8. An array for measuring detailed soil temperature profiles

    USDA-ARS?s Scientific Manuscript database

    Soil temperature dynamics can provide insights into soil variables which are much more difficult or impossible to measure. We designed an array to measure temperature at precise depth increments. Data was collected to determine if the construction materials influence surface and near-surface tempera...

  9. Separation of temperature and emittance in remotely sensed radiance measurements

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Alley, Ronald E.

    1992-01-01

    The remote determination of surface temperature and surface spectral emittance by use of airborne or satellite-borne thermal infrared instruments is not straightforward. The radiance measured is a function of surface temperature, the unknown surface spectral emittance, and absorption and emission in the intervening atmosphere. With a single measurement, the solution for temperature and spectral emittance is undedetermined. This article reviews two of the early approximate methods which have been fairly widely used to approach this problem.

  10. Measurement of relative permittivity of LTCC ceramic at different temperatures

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  11. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    PubMed

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  12. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  13. Fabrication and superconducting properties of MgB2 composite wiresby the PIT method

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Zhao, Y.; Pradhan, A. K.; Zhou, L.; Zhang, P. X.; Liu, X. H.; Ji, P.; Du, S. J.; Liu, C. F.; Wu, Y.; Koshizuka, N.

    2002-01-01

    Dense MgB2/Cu wires with Ta as a buffer layer were successfully fabricated by the powder-in-tube (PIT) method. The microstructure was investigated by optical microscopy. Magnetization measurements were carried out by using a superconducting quantum interference device (SQUID) magnetometer at magnetic fields up to 7 T from 5 K to 35 K. The transition temperature of the MgB2 wire is around 38.4 K and the irreversibility field is 6.6 T at 5 K. The critical current density as high as 105 A cm-2 (5 K, self-field) and 104 A cm-2 (20 K, 1 T) has been obtained. The results suggest that the powder-in-tube (PIT) process is promising in preparing high-quality MgB2 wires.

  14. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  15. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  16. Collapse Pits in Bernard Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in serveral ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire ediface to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These pits occur in the floor of Bernard Crater. These collapse pits were likely formed by the release of volatiles from the materials deposited in the crater floor.

    Image information: VIS instrument. Latitude -24, Longitude 205.5 East (154.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission

  17. Surveying Temperature and Density Measurements in Nuclear Calorimetry

    NASA Astrophysics Data System (ADS)

    Raciti, G.; Bassini, R.; Begemann-Blaich, M.; Fritz, S.; Groß, C.; Immè, G.; Iori, I.; Lynen, U.; Mahi, M.; Möhlenkamp, T.; Müller, W. F. J.; Ocker, B.; Odeh, T.; Pochodzalla, J.; Riccobene, G.; Romano, F. P.; Saija, A.; Schwarz, C.; Serfling, V.; Schnittker, M.; Schüttauf, A.; Seidel, W.; Sfienti, C.; Trautmann, W.; Trzclnski, A.; Verde, G.; Xi, Hongfei; Zwieglinski, B.

    2001-11-01

    An experimental investigation on thermodynamical observables characterizing the conditions of multifragmenting systems is reported. High granularity hodoscopes allowed simultaneous measurements of isotopic and emission temperatures. HBT interferometry with light charged particles allowed radii measurements. The disagreement between the two temperature measurements could be related to the space-time evolution of the fragmentation process as confirmed by density measurements. The slope temperatures derived from the target spectator decay fragment energy spectra suggest a dependence on the Fermi motion within the initial system. The dependence of the Nuclear Caloric Curve on the mass of the systems was probed.

  18. Further development of the dynamic gas temperature measurement system

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1986-01-01

    A compensated thermocouple measurement method was experimentally verified. Dynamic signal content from an atmospheric pressure laboratory burner was measured by the dynamic temperature sensor and a relatively delicate fine-wire resistance thermometer. Compensated data from the two dynamic temperature sensor thermoelements were compared with the compensated fine-wire data in the frequency domain. Absolute differences between spectral line amplitudes measured with different sensors are small relative to the mean temperature and verify the compenation method. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.

  19. Fast Response Temperature Measurements in Stirling Cycle Cryocooler Components

    NASA Astrophysics Data System (ADS)

    Kar, K.; Dadd, M. W.; Bailey, P. B.; Stone, C. R.

    2008-03-01

    One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator. The test rig was run at different volume ratios, frequencies (8-50 Hz), gases and filling pressures (1-26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Reynolds number was determined to be 9.6-11. At the critical condition, the temperature was so unstable that fluctuations up to 250 Hz were observed. A series of validation tests have confirmed that the observed temperatures were not artifacts.

  20. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.

  1. Optimizing the temperature compensation of an electronic pressure measurement system

    SciTech Connect

    Maxey, L.C.; Blalock, T.V.

    1990-08-01

    In an effort to minimize temperature sensitivity, the pressure measurement channels in the sensor/electronics modules of a high-resolution multiplexed pressure measurement system were analyzed. The pressure sensor (a silicon diaphragm strain gage) was known to have two temperature-dependent parameters. Component testing revealed that the current source driving the pressure sensor was also temperature sensitive. Although the transducer manufacturer supplies empirically selected temperature compensation resistors with each transducer, it was determined that the temperature sensitivity compensation could be optimized for this application by changing one of these resistors. By modifying the value of the sensitivity compensation resistor to optimize performance in this application, the temperature sensitivity of the pressure measurement channels was reduced by more than 60%.

  2. Thermo-voltage measurements of atomic contacts at low temperature

    PubMed Central

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul

    2016-01-01

    Summary We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. PMID:27335765

  3. Thermo-voltage measurements of atomic contacts at low temperature.

    PubMed

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke

    2016-01-01

    We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = -ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.

  4. Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Akihiko Kon,; Koichi Mizutani,; Naoto Wakatsuki,

    2010-04-01

    We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.

  5. Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements

    NASA Astrophysics Data System (ADS)

    O'Donnell Meininger, T.; Selker, J. S.

    2015-02-01

    Error in distributed temperature sensing (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, streambed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.

  6. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  7. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, Jr., Charles L.; Ericson, M. Nance

    1999-01-01

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  8. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    NASA Astrophysics Data System (ADS)

    Stenberg, J.; Frederick, W. J.; Boström, S.; Hernberg, R.; Hupa, M.

    1996-05-01

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700-900 °C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300-400 °C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40° below the furnace temperature.

  9. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    NASA Astrophysics Data System (ADS)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  10. Radon and aerosol release from open-pit uranium mining

    SciTech Connect

    Thomas, V.W.; Nielson, K.K.; Mauch, M.L.

    1982-08-01

    The quantity of /sup 222/Rn (hereafter called radon) released per unit of uranium produced from open pit mining has been determined. A secondary objective was to determine the nature and quantity of airborne particles resulting from mine operations. To accomplish these objectives, a comprehensive study of the release rates of radon and aerosol material to the atmosphere was made over a one-year period from April 1979 to May 1980 at the Morton Ranch Mine which was operated by United Nuclear Corporation (UNC) in partnership with Tennessee Valley Authority (TVA). The mine is now operated for TVA by Silver King Mines. Morton Ranch Mine was one of five open pit uranium mines studied in central Wyoming. Corroborative measurements were made of radon flux and /sup 226/Ra (hereafter called radium) concentrations of various surfaces at three of the other mines in October 1980 and again at these three mines plus a fourth in April of 1981. Three of these mines are located in the Powder River Basin, about 80 kilometers east by northeast of Casper. One is located in the Shirley Basin, about 60 km south of Casper, and the remaining one is located in the Gas Hills, approximately 100 km west of Casper. The one-year intensive study included simultaneous measurement of several parameters: continuous measurement of atmospheric radon concentration near the ground at three locations, monthly 24-hour radon flux measurements from various surfaces, radium analyses of soil samples collected under each of the flux monitoring devices, monthly integrations of aerosols on dichotomous aerosol samplers, analysis of aerosol samplers for total dust loading, aerosol elemental and radiochemical composition, aerosol elemental composition by particle size, wind speed, wind direction, temperature, barometric pressure, and rainfall.

  11. Novel method of optical fiber temperature measurement: measuring the inner temperature of the cage motor in starting

    NASA Astrophysics Data System (ADS)

    Jia, Danping; Lin, Wei; Lin, YinWen

    2000-10-01

    Although the development of fluorescent fiber optic temperature measurement technology have overcome the difficulty of the surface temperature distribution measurement of a rotor of electric machine. The temperature of the conductor (or magnetic) strips which are buried under the surface of the rotor yet not be resolved. A new measuring scheme of fluorescent optical fiber is presented in this paper. It is fully suitable for the above measuring demands. Several fiber probes are assembled with the rotor. The sensor heads are buried under the rotor surface to touch the measuring points. The other ends of the fiber probes are terminated on an optical rotational coupling disc. The induced temperature signals then are sequentially transmitted out to the external of the rotor by another fix fiber. Finally the temperature of the strips is obtained. In this paper we will discuss the selection of light source, the design of light path and derive the theory analysis of dynamic coupling.

  12. Measurements of temperature profiles at the exit of small rockets.

    PubMed

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  13. Analysis and improvement of gas turbine blade temperature measurement error

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  14. Acoustic force measurement in a dual-temperature resonant chamber

    NASA Technical Reports Server (NTRS)

    Robey, Judith L.; Trinh, Eugene H.; Wang, Taylor G.

    1987-01-01

    The acoustic radiation force was measured for a dual-temperature resonant chamber. This rectangular chamber has its long dimension approximately 8.5 times the square cross-sectional dimension, and the opposite ends are at widely different temperatures. Force profiles were obtained for two hot end temperatures of 520 C and 760 C, while the cool end remained at approximately room temperature. Force magnitudes as high as 17 dyn for a sample 1.2 cm in diameter at 760 C and at 162-dB input level were measured.

  15. Application of Phosphor Thermometry to a Galvanneal Temperature Measurement System

    SciTech Connect

    Beshears, D.L.; Allison, S.W.; Andrews, W.H.; Cates, M.R.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.; Childs, R.M.; Vehec, J.; Zhang, L.

    1999-06-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 840 to 1292 F with an accuracy of better than {+-}9 F. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control.

  16. Tissue temperature distribution measurement and laser immunotherapy for cancer treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Gyanwalib, Surya; Bjorlie, Jeremy; Andrienko, Kirill; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2006-02-01

    Temperature distribution in tissue can be a crucial factor in laser treatment for inducing immunization responses. In this study, Magnetic Resonance Imaging (MRI) was used to measure thermal temperature distribution in target tissue in laser treatment of metastatic tumors. It is the only feasible method for in vivo, non-invasive temperature distribution measurement. The measurement was conducted using phantom gel and tumor-bearing rats. The thermal couple measurement of target temperature was also was used to calibrate the relative temperature increase. The phantom system was constructed with a dye-enhanced spherical gel embedded in uniform gel phantom, simulating a tumor within normal tissue. Irradiation by an 805-nm laser increased the system temperature. Using an MRI system and proper algorithm processing for small animal studies, a clear temperature distribution matrix was obtained. The temperature profiles of rat tumors, irradiated by the laser with a power in the range of 2-3.5W and injected with a light-absorbing dye, ICG, and an immunoadjuvant, GC, were obtained. The temperature distribution provided in vivo thermal information and future reference for optimizing dye concentration and irradiation parameters to reach the optimum tumor destruction and immunization effects.

  17. An anatomically realistic temperature phantom for radiofrequency heating measurements.

    PubMed

    Graedel, Nadine N; Polimeni, Jonathan R; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L

    2015-01-01

    An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the unperfused case. We describe an anatomically realistic human head phantom that allows rapid three-dimensional (3D) temperature mapping at 7T. The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature-sensitive contrast agent (TmDOTMA(-)) validated by direct fiber optic temperature measurements. Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2-4 minutes. Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. © 2014 Wiley Periodicals, Inc.

  18. An anatomically realistic temperature phantom for radiofrequency heating measurements

    PubMed Central

    Graedel, Nadine N.; Polimeni, Jonathan R.; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L.

    2014-01-01

    Purpose An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the un-perfused case. We describe an anatomically realistic human head phantom that allows rapid 3D temperature mapping at 7 T. Methods The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature sensitive contrast agent (TmDOTMA−) validated by direct fiber optic temperature measurements. Results Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2–4 minutes. Conclusion Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. PMID:24549755

  19. Correcting air temperature measurements from a radiation-exposed sensor

    NASA Astrophysics Data System (ADS)

    Cobos, D. R.; Campbell, R.; Campbell, C. S.

    2016-12-01

    Despite seeming simplicity, air temperature is one of the most difficult environmental parameters to measure accurately. Current best practice includes housing the air temperature sensor in a radiation shield that is either passively ventilated or actively aspirated. Due to design constraints, the air temperature sensor in the new MA-4100 MicroEnvironment Monitor cannot be fully shielded from solar radiation. However, since the MA-4100 measures wind speed and solar radiation, both of which are primary factors affecting the accuracy of the air temperature measurement, correction is possible. Uncorrected measurements showed errors ranging to 3 °C when compared to measurements made in a state-of-the-art aspirated radiation shield. After correction, error decreased to < 0.5 °C, and yielded better accuracy than commonly used passive ventilation radiation shields.

  20. [Calculation of infrared temperature measurement on non-Lambertian objects].

    PubMed

    Yang, Zhen; Zhang, Shi-cheng; Yang, Li

    2010-08-01

    According to the theory of infrared radiation and principles of temperature measurement using infrared imager, a universal mathematical model of infrared imager is established. Based on the normal emissivity characteristics of measured surface, the mathematical model is simplified, and the formula of temperature measurement using infrared imager is obtained. Through the relevant experiment, it is proved that the sum of emissivity and reflectivity of objects remained basically unchanged in a certain temperature range. The sum of emissivity and reflectivity of objects is relevant to the object types, surface conditions and the object temperature. The closer an object to Lambertian objects, the greater the sum is and the closer it is to 1. The farther the surface conditions deviate from the Lambertian surface, or the smoother the surface, the smaller the sum is. Experimental results show that if the object is close to Lambertian objects, it could be regarded as Lambertian, without the need for amendments to the actual objects. For non-Lambertian body (especially the smooth surfaces and low-emissivity objects), the amendment is necessary, or the temperature measurement error will increase, or even the obtained temperature is very far away from its true temperature. The study shows that, through the amendment, infrared temperature measurement on non-Lambertian objects is available.

  1. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  2. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  3. 41. 44INCH SOAKING PITS. A MORGAN CRANE LOWERS THE STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. 44-INCH SOAKING PITS. A MORGAN CRANE LOWERS THE STEEL INGOT INTO A 'SOAKING PIT,' WHERE IT IS HEATED TO A UNIFORM TEMPERATURE PRIOR TO ROLLING. THE INGOT RECEIVES ITS FIRST ROLLING ON THE 44-INCH BLOOMING MILL. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  4. Calorimetric Measurements at Low Temperatures in Toluene Glass and Crystal

    NASA Astrophysics Data System (ADS)

    Alvarez-Ney, C.; Labarga, J.; Moratalla, M.; Castilla, J. M.; Ramos, M. A.

    2017-04-01

    The specific heat of toluene in glass and crystal states has been measured both at low temperatures down to 1.8 K (using the thermal relaxation method) and in a wide temperature range up to the liquid state (using a quasiadiabatic continuous method). Our measurements therefore extend earlier published data to much lower temperatures, thereby allowing to explore the low-temperature "glassy anomalies" in the case of toluene. Surprisingly, no indication of the existence of tunneling states is found, at least within the temperature range studied. At moderate temperatures, our data either for the glass or for the crystal show good agreement with those found in the literature. Also, we have been able to prepare bulk samples of toluene glass by only doping with 2% mol ethanol instead of with higher impurity doses used by other authors.

  5. Body Temperature Measurements for Metabolic Phenotyping in Mice

    PubMed Central

    Meyer, Carola W.; Ootsuka, Youichirou; Romanovsky, Andrej A.

    2017-01-01

    Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses. PMID:28824441

  6. Temperature measurement within myocardium during in vitro RF catheter ablation.

    PubMed

    Cao, H; Vorperian, V R; Tsai, J Z; Tungjitkusolmun, S; Woo, E J; Webster, J G

    2000-11-01

    While most commercial ablation units and research systems can provide catheter tip temperature during ablation, they do not provide information about the temperature change inside the myocardium, which determines the lesion size. We present the details of a flow simulation and temperature measurement system, which allows the monitoring of the temperature change inside the myocardium during in vitro radio frequency (RF) cardiac catheter ablation at different blood flow rates to which the catheter site may be exposed. We set up a circulation system that simulated different blood flow rates of 0 to 5 L/min at 37 degrees C. We continuously measured the temperature at the catheter tip using the built-in thermistor and inside the myocardium using a three-thermocouple probe. The system provides a means for further study of the temperature inside myocardium during RF catheter ablation under different flow conditions and at different penetration depths.

  7. Development of resistance and temperature measurement system for cryogenic equipment

    NASA Astrophysics Data System (ADS)

    Nugraha, H.; Imaduddin, A.; Mulya, M. A. J.; Hermanto, B.

    2017-04-01

    Cryogenic equipment is used especially for the research on superconductors as the tools to create a condition of low temperature and high magnetic field. However, it needs the measurement system to be used to analyze the material properties. This work developed a control program of resistance measurement system using instruments of current source, nanovoltmeter and temperature controller. We designed and developed a measurement system by building a connection of the instruments and creating a new control program. The created control program can be revised or modified easily when we have to replace or add the instruments. LabVIEW program was used as a control program, and designed for measuring the resistance and controlling the temperature. Four-point probe method was used to measure the resistance value, a sensor to determine the temperature and a heater to control the temperature. The developed measurement system was tested using standard superconductor sample. It clearly showed the graph of the temperature dependence of resistance. And it showed sharp drop of resistance around 98K, indicating its critical temperature.

  8. [Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Wei, Quan-Shuai; Wang, Jing-Hua; Duan, Wen-Biao; Chen, Li-Xin; Wang, Ting; Han, Dong-Hui; Gu, Wei

    2014-03-01

    An investigation was conducted in a 2.25 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study basic characteristics of 7 small gaps, 5 middle gaps, 3 large gaps and 7 closed stands within 38 pit and mound complexes caused by treefall in May 2012. From June to September 2012, the soil temperature, soil water content and relative humidity at five microsites (pit bottom, pit wall, mound top, mound face and undisturbed closed stands) were measured in six sunny days each month. The results showed that among the five microsites in every month, the mound top had the highest soil temperature and the lowest water content and relative humidity, and vice versa for the pit bottom. Mostly, the differences in the above indicators among the five microsites were significant. From June to September, the mean soil temperatures for all microsites at pit and mound complex in the various gaps and closed stands were in the order of large gap>middle gap >small gap>closed stand; but the soil water content ranked differently every month. In June, August and September, the mean relative humidities for all microsites in the various gaps and closed stands were in the order of closed stand>small gap>middle gap>large gap. Mostly, the differences in the above indicators between all microsites in the various gaps and closed stand were significant. The mean monthly soil temperature and relative humidity were highest in July, but lowest in September. The maximal mean monthly soil water content occurred in July and the minimal one in September for each microsite except the undisturbed closed stands, where the maximal mean monthly soil water content occurred in July. The variation of the microclimate at the pit and mound complex was mainly influenced by gap size, microsite, and time.

  9. Electron Temperature Measurement by Floating Probe Method Using AC Voltage

    NASA Astrophysics Data System (ADS)

    Nodomi, Satoshi; Sato, Shuichi; Ohuchi, Mikio

    2016-11-01

    This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.

  10. Surface temperature measurements of heterogeneous explosives by IR emission

    SciTech Connect

    Henson, B.F.; Funk, D.J.; Dickson, P.M.; Fugard, C.S.; Asay, B.W.

    1998-03-01

    The authors present measurements of the integrated IR emission (1--5 {micro}m) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 300 C to 2,500 C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which the authors report as the thermal emissivity. The authors have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. They demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

  11. Surface temperature measurements of heterogeneous explosives by IR emission

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Funk, D. J.; Dickson, P. M.; Fugard, C. S.; Asay, B. W.

    1998-07-01

    We present measurements of the integrated IR emission (1-5 μm) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 30 °C to 250 °C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which we report as the thermal emissivity. We have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. We demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

  12. The emittance of space radiator materials measured at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Difilippo, Frank; Barry, Jennifer; Kussmaul, Michael

    1988-01-01

    The spectral emittances of textured space radiator materials between 1.7 and 14.7 micrometer have been evaluated at room temperature and elevated temperature (630 C) in air. Heating in air caused a permanent increase in spectral emittance for all materials tested: HCl/ion beam textured 304 stainless steel, untextured Ti (6 percent Al, 4 percent V), and sandblasted Ti (6 percent Al, 4 percent V). Changes in the surface chemistry and/or surface morphology of these materials were also observed. Elevated temperature spectral emittance was measured in an argon atmosphere and compared to the measurements in air. Similarity between the room temperature and elevated temperature spectral emittance measurements was also investigated, and limited agreement was found.

  13. Electron Temperature Measurement by Floating Probe Method Using AC Voltage

    NASA Astrophysics Data System (ADS)

    Satoshi, Nodomi; Shuichi, Sato; Mikio, Ohuchi

    2016-11-01

    This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.

  14. Ambient Temperature Changes and the Impact to Time Measurement Error

    NASA Astrophysics Data System (ADS)

    Ogrizovic, V.; Gucevic, J.; Delcev, S.

    2012-12-01

    Measurements in Geodetic Astronomy are mainly outdoors and performed during a night, when the temperature often decreases very quickly. The time-keeping during a measuring session is provided by collecting UTC time ticks from a GPS receiver and transferring them to a laptop computer. An interrupt handler routine processes received UTC impulses in real-time and calculates the clock parameters. The characteristics of the computer quartz clock are influenced by temperature changes of the environment. We exposed the laptop to different environmental temperature conditions, and calculate the clock parameters for each environmental model. The results show that the laptop used for time-keeping in outdoor measurements should be kept in a stable temperature environment, at temperatures near 20° C.

  15. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study.

    PubMed

    Dompierre, Kathryn A; Barbour, S Lee

    2016-06-01

    Soft tailings pose substantial challenges for mine reclamation due to their high void ratios and low shear strengths, particularly for conventional terrestrial reclamation practices. Oil sands mine operators have proposed the development of end pit lakes to contain the soft tailings, called fluid fine tailings (FFT), generated when bitumen is removed from oil sands ore. End pit lakes would be constructed within mined-out pits with FFT placed below the lake water. However, the feasibility of isolating the underlying FFT has yet to be fully evaluated. Chemical constituents of interest may move from the FFT into the lake water via two key processes: (1) advective-diffusive mass transport with upward pore water flow caused by settling of the FFT; and (2) mixing created by wind events or unstable density profiles through the lake water and upper portion of the FFT. In 2013 and 2014, temperature and stable isotopes of water profiles were measured through the FFT and lake water in the first end pit lake developed by Syncrude Canada Ltd. Numerical modelling was undertaken to simulate these profiles to identify the key mechanisms controlling conservative mass transport in the FFT. Shallow mixing of the upper 1.1 m of FFT with lake water was required to explain the observed temperature and isotopic profiles. Following mixing, the re-establishment of both the temperature and isotope profiles required an upward advective flux of approximately 1.5 m/year, consistent with average FFT settling rates measured at the study site. These findings provide important insight on the ability to sequester soft tailings in an end pit lake, and offer a foundation for future research on the development of end pit lakes as an oil sands reclamation strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study

    NASA Astrophysics Data System (ADS)

    Dompierre, Kathryn A.; Barbour, S. Lee

    2016-06-01

    Soft tailings pose substantial challenges for mine reclamation due to their high void ratios and low shear strengths, particularly for conventional terrestrial reclamation practices. Oil sands mine operators have proposed the development of end pit lakes to contain the soft tailings, called fluid fine tailings (FFT), generated when bitumen is removed from oil sands ore. End pit lakes would be constructed within mined-out pits with FFT placed below the lake water. However, the feasibility of isolating the underlying FFT has yet to be fully evaluated. Chemical constituents of interest may move from the FFT into the lake water via two key processes: (1) advective-diffusive mass transport with upward pore water flow caused by settling of the FFT; and (2) mixing created by wind events or unstable density profiles through the lake water and upper portion of the FFT. In 2013 and 2014, temperature and stable isotopes of water profiles were measured through the FFT and lake water in the first end pit lake developed by Syncrude Canada Ltd. Numerical modelling was undertaken to simulate these profiles to identify the key mechanisms controlling conservative mass transport in the FFT. Shallow mixing of the upper 1.1 m of FFT with lake water was required to explain the observed temperature and isotopic profiles. Following mixing, the re-establishment of both the temperature and isotope profiles required an upward advective flux of approximately 1.5 m/year, consistent with average FFT settling rates measured at the study site. These findings provide important insight on the ability to sequester soft tailings in an end pit lake, and offer a foundation for future research on the development of end pit lakes as an oil sands reclamation strategy.

  17. Acoustic temperature profile measurement technique for large combustion chambers

    NASA Technical Reports Server (NTRS)

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.

  18. Low temperature measurements on UBe/sub 13/

    SciTech Connect

    Brison, J.P.; Lasjaunias, J.C.; Ravex, A.; Flouquet, J.; Jaccard, D.; Fisk, Z.; Smith, J.L.

    1988-01-01

    Transport and specific heat measurements are reported on a new sample of UBe/sub 13/. Special focuses are given on the zero field specific heat : at low temperature (T < 150 mK) where the impurity scattering dominates, at intermediate temperature where a quani T/sub 3/ law characteristic of an axial state is obeyed and near the critical temperature where critical fluctuations are observed. Correlations are made with magnetoresistivity and thermal conductivity experiments. 9 refs., 2 figs.

  19. Rocket measurements of electron temperature in the E region

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. K., Jr.; Smith, L. G.

    1980-01-01

    The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc.

  20. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  1. The extent of temporal smearing in surface-temperature histories derived from borehole temperature measurements

    USGS Publications Warehouse

    Clow, G.D.

    1992-01-01

    The ability of borehole temperature data to resolve past climatic events is investigated using Backus-Gilbert inversion methods. Two experimental approaches are considered: (1) the data consist of a single borehole temperature profile, and (2) the data consist of climatically-induced temperature transients measured within a borehole during a monitoring experiment. The sensitivity of the data's resolving power to the vertical distribution of the measurements, temperature measurement errors, the inclusion of a local meteorological record, and the duration of a monitoring experiment, are investigated. The results can be used to help interpret existing surface temperature histories derived from borehole temperature data and to optimize future experiments for the detection of climatic signals. ?? 1992.

  2. What about temperature? Measuring permeability at magmatic conditions.

    NASA Astrophysics Data System (ADS)

    Kushnir, Alexandra R. L.; Martel, Caroline; Champallier, Rémi; Reuschlé, Thierry

    2015-04-01

    The explosive potential of volcanoes is intimately linked to permeability, which is governed by the connectivity of the porous structure of the magma and surrounding edifice. As magma ascends, volatiles exsolve from the melt and expand, creating a gas phase within the conduit. In the absence of a permeable structure capable of dissipating these gases, the propulsive force of an explosive eruption arises from the gas expansion and the build up of subsurface overpressures. Thus, characterizing the permeability of volcanic rocks under in-situ conditions (high temperature and pressure) allows us to better understand the outgassing potential and explosivity of volcanic systems. Current studies of the permeabilities of volcanic rocks generally measure permeability at room temperature using gas permeameters or model permeability using analytic imaging. Our goal is to perform and assess permeability measurements made at high temperature and high pressure in the interest of approaching the permeability of the samples at magmatic conditions. We measure the permeability of andesitic samples expelled during the 2010 Mt. Merapi eruption. We employ and compare two protocols for measuring permeability at high temperature and under high pressure using argon gas in an internally heated Paterson apparatus with an isolated pore fluid system. We first use the pulse decay method to measure the permeability of our samples, then compare these values to permeability measurements performed under steady state flow. We consider the steady state flow method the more rigorous of the two protocols, as we are more capable of accounting for the temperature gradient within the entire pore fluid system. At temperatures in excess of 700°C and pressures of 100 MPa, permeability values plummet by several orders of magnitude. These values are significantly lower than those commonly reported for room temperature permeameter measurements. The reduction in permeability at high temperature is a

  3. Technology and education: First approach for measuring temperature with Arduino

    NASA Astrophysics Data System (ADS)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  4. Soil moisture from temperature measurements at the Earth's surface, update

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1984-01-01

    Soil moisture budgets at the Earth's surface were investigated based on soil and atmospheric temperature variations. A number of data sets were plotted and statistically analyzed in order to accentuate the existence and the characteristics of mesoscale soil temperature extrema variations and their relations to other parameters. The correlations between diurnal temperature extrema for air and soil in drought and non-drought periods appear to follow different characteristic patterns, allowing an inference of soil moisture content from temperature data. The recovery of temperature extrema after a precipitation event also follows a characteristic power curve rise between two limiting values which is an indicator of evaporation rates. If these indicators are applied universally to regional temperature data, soil moisture content or drought conditions can be inferred directly from temperature measurements.

  5. Soil moisture from temperature measurements at the Earth's surface, update

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1984-01-01

    Soil moisture budgets at the Earth's surface were investigated based on soil and atmospheric temperature variations. A number of data sets were plotted and statistically analyzed in order to accentuate the existence and the characteristics of mesoscale soil temperature extrema variations and their relations to other parameters. The correlations between diurnal temperature extrema for air and soil in drought and non-drought periods appear to follow different characteristic patterns, allowing an inference of soil moisture content from temperature data. The recovery of temperature extrema after a precipitation event also follows a characteristic power curve rise between two limiting values which is an indicator of evaporation rates. If these indicators are applied universally to regional temperature data, soil moisture content or drought conditions can be inferred directly from temperature measurements.

  6. The measurement of droplet temperature using thermochromic liquid crystals

    SciTech Connect

    Peterson, D.; Hu, S.H.; Richards, C.D.; Richards, R.F.

    1995-12-31

    A noninvasive technique to determine the temperature of droplets in flight is under development. The technique involves atomizing droplets of neat thermochromic liquid crystals and then inferring the droplet temperatures form the liquid crystals` color-play. Previous work has shown the feasibility of atomizing the neat liquid crystal. The present work reports results of a calibration of the temperature response of 200 to 300 micron droplets of neat liquid crystal. The calibration is accomplished by suspending droplets of the neat liquid crystal on a microthermocouple within a controlled temperature environment. The droplet is imaged using a long-distance microscope, an RGB video camera, and a frame grabber. Images of the droplet are acquired and digitized to quantify changes in RGB values (color) with temperature. The RGB information is transformed into hue, saturation, intensity (HSI) space to relate hue, H, to temperature. The temperature of the droplet is measured directly with the micro-thermocouple.

  7. Miniature ingestible telemeter devices to measure deep-body temperature

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  8. Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Alderfer, David W.

    2004-01-01

    Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.

  9. Surface Temperature Measurements of Heterogeneous Explosives by IR Emission

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Funk, D. J.; Laabs, G. W.; Asay, B. W.

    1997-07-01

    Solid phase temperature is a key observable for understanding chemical and physical properties of energetic materials. Material decomposition during prolonged heating and the rate and mechanism of energy release during explosive ignition are both strongly coupled to the temperature field in the solid. Toward the end of addressing these issues we are pursuing the remote measurement of temperature by the quantitative collection of IR emission from the material surface. We present measurements of the integrated IR emission (1-5 mm) from both the heterogeneous explosive PBX 9501 and pure components at calibrated temperatures from 100C to 250C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature-independent constant for each component which we report as the thermal emissivity of that component in this spectral region. In addition, we report preliminary measurements of the thermal transients from the unconfined surface of both PBX9501 and pressed HMX during ignition after periods of prolonged heating. We demonstrate that the measurement of IR emission in this spectral region provides both a reliable probe of static surface temperature and a unique observable of dynamic temperature change during ignition.

  10. Low Temperature Hall Measurements of Neutron Irradiated Silicon Carbide

    DTIC Science & Technology

    2004-03-01

    general programming interface bus (GPIB). Table 3: Equipment List for Keithley System 110 Make Model Name Keithley 617 Electrometer Keithley 196 Voltmeter...concentration with temperature as measured by the S110 system . Theory models the temperature dependence of carrier concentration as an exponential. 44 y = 8E+16x...Penney Model of Conduction ........................................................................ 7 Silicon Carbide

  11. Bio-tissue temperature measuring for laser medicine

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-06-01

    Temperature is an intuitionistic indicator of laser and tissue thermal interaction. It can be used as verification of theory prediction as well as online clinic indicator. Temperature measuring is an indispensable tool in laser and tissue photo-thermal theory research. A computer-assistant noninvasive or minimally invasive temperature measuring system, which can be used in laser medicine, was introduced. Combined infrared radiation thermometer and miniature thermocouple, the surface irradiating point and inner temperature can be monitored synchronously. This system has some necessary advantages for in vivo tissue temperature measuring. The infrared radiation thermometer temperature range is 0~200°C and 1mV/°C analog voltage output signal can be tntered to computer. Inside LED red light and aiming sound can assure the distance between thermometer and measuring point to be the focus distance of 25mm and measuring circle has the least diameter of 2.5mm. The mini K-thermocouples were made by ourselves, their temperature range is 25~500°C, the diameter of 0.4mm, and the response time is rapid up to 0.1s. They are convenient for precision orientation in the organisms. Multichannel temperature measuring can reduce the measurement error and be able for distribution measuring. Integrated temperature sensor LM35 and numerical computation is used to compensate the cold port temperature of the thermocouples. The numerical computation can also revise the nonlinearity error with the least squares method quintic polynomial fitting, which excels to the circuit method. Calibration results with glycerin and mercury thermometer showed the absolute error value is less than 0.45°C within 26-98°C. The real time temperatures of murine skin tissue irradiated by CO II and Nd:YAG laser were measured. Such a system is suitable to high precision, large range, minute point, rapid response and real time tissue temperature measuring in laser applications. The saved data can be used for

  12. Sub-optimal pit construction in predatory ant lion larvae (Myrmeleon sp.).

    PubMed

    Burgess, Matthew G

    2009-10-07

    The impacts on energy gains of two aspects of ant lion pit architecture were investigated in a natural population of pit-building ant lion larvae (Myrmeleon sp.) in Costa Rica. Field and laboratory settings were used to examine the impacts of circumference and depth of the pit on net energy gain rate. An optimization model predicted a point optimum circumference and angle of depression in an unconstrained system, and positive correlations between body mass, pit circumference, and pit angle of depression in the presence of physiological constraints on both measures. Such a physiological constraint is possible in this system due to a large one-time construction cost. All of these correlations were observed in a lab setting with filtered substrate and no competition; though none were significant in the field. Individuals additionally constructed wider, shallower pits in the field. These results are consistent with an angle of depression that is limited by the angle of repose of the substrate in the field, rather than physiology. These results provided suggestive evidence for sub-optimal pit dimensions in Myrmeleon sp., and for the importance of substrate type in understanding the architecture of natural ant lion pits. The model predicted that the frequency of relocation would not affect the optimal angle of depression, but it would affect the optimal pit circumference to a degree proportional to the square root of the change in the average time an ant lion occupies a single pit. These findings challenge the widely held assumption of adaptive optimality in animal foraging.

  13. Indoxyl sulfate promotes vascular smooth muscle cell calcification via the JNK/Pit-1 pathway.

    PubMed

    Wu, Yiru; Han, Xue; Wang, Liyan; Diao, Zongli; Liu, Wenhu

    2016-11-01

    We determined the effect of indoxyl sulfate (IS) on Pit-1 expression and the role of Pit-1 in IS-induced osteoblastic differentiation and calcification of vascular smooth muscle cells (VSMCs). To assess osteoblastic differentiation and Pit-1 expression, VSMCs were incubated with various concentrations of IS for different durations. Phosphonoformic acid (PFA), a competitive inhibitor of Pit-1, was used to verify the role of Pit-1. Western blot analysis and quantitative real-time polymerase chain reaction (PCR) were performed to assess Pit-1 protein and mRNA levels, respectively. To evaluate calcification, calcium content was measured. After IS treatment, we observed osteoblastic differentiation and calcification of VSMCs and up-regulation of Pit-1 expression. Moreover, the effect of IS on osteoblastic differentiation and Pit-1 expression was partly dose- and time-dependent. PFA abrogated the IS-induced osteoblastic differentiation and calcification of VSMCs to a certain extent. The c-Jun N-terminal kinase (JNK) pathway was activated after treatment with IS, whereas inhibition of the JNK pathway partially attenuated the effect of IS on both the stimulation of Pit-1 expression and calcium deposition. Our study is the first to demonstrate that IS promotes Pit-1 expression in part by activation of the JNK pathway that is involved in the mechanism of IS-induced osteoblastic differentiation and matrix mineralization.

  14. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.

    2002-01-01

    Laser-based combustion diagnostics, such as single-pulse UV Raman spectroscopy and visible Raman spectroscopy, have been successfully applied to optically-accessible rocket-like test articles. If an independent pressure measurement is available, Raman major species concentration measurements can also provide a temperature measurement. However it is desirable to obtain a Raman-derived temperature measurement without the need for simultaneous pressure measurement, especially when chamber pressure may vary spatially. This report describes Raman temperature measurements obtained by exploiting the variation in shape of the H2 Raman spectrum. Hydrogen is advantageous since it is ubiquitous in H2-O2 systems and its Raman spectrum is simpler than for other diatomics. However the influence of high pressure on the H2 Raman spectrum must be investigated. At moderate pressures, well below those of rocket engines, the Raman spectra of O2 and N2 are known to become featureless due to collisional broadening.

  15. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.

    2002-01-01

    Laser-based combustion diagnostics, such as single-pulse UV Raman spectroscopy and visible Raman spectroscopy, have been successfully applied to optically-accessible rocket-like test articles. If an independent pressure measurement is available, Raman major species concentration measurements can also provide a temperature measurement. However it is desirable to obtain a Raman-derived temperature measurement without the need for simultaneous pressure measurement, especially when chamber pressure may vary spatially. This report describes Raman temperature measurements obtained by exploiting the variation in shape of the H2 Raman spectrum. Hydrogen is advantageous since it is ubiquitous in H2-O2 systems and its Raman spectrum is simpler than for other diatomics. However the influence of high pressure on the H2 Raman spectrum must be investigated. At moderate pressures, well below those of rocket engines, the Raman spectra of O2 and N2 are known to become featureless due to collisional broadening.

  16. Nonequilibrium temperature measurement in a thermal conduction process

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Batra, Romesh C.

    2017-01-01

    We identify the temperature being measured by a thermometer in a nonequilibrium scenario by studying heat conduction in a three-dimensional Lennard-Jones (LJ) system whose two ends are kept at different temperatures. It is accomplished by modeling the thermometer particles also with the LJ potential but with added tethers to prevent their rigid body motion. These models of the system and the thermometer mimic a real scenario in which a mechanical thermometer is "inserted" into a system and kept there long enough for the temperature to reach a steady value. The system is divided into five strips, and for each strip the temperature is measured using an embedded thermometer. Unlike previous works, these thermometers are small enough not to alter the steady state of the nonequilibrium system. After showing initial transients, the thermometers eventually show steady-state conditions with the subregions of the system and provide values of the different temperature definitions—kinetic, configurational, dynamical, and higher-order configurational. It is found that their kinetic and the configurational temperatures are close to the system's kinetic temperature except in the two thermostatted regions. In the thermostatted regions, where the system's kinetic and the configurational temperatures are significantly different, the thermometers register a temperature substantially different from either of these two values. With a decrease in the system density and size, these differences between the kinetic and the configurational temperatures of the thermometer become more pronounced.

  17. High temperature thermographic measurements of laser heated silica

    SciTech Connect

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  18. High temperature thermographic measurements of laser heated silica

    NASA Astrophysics Data System (ADS)

    Elhadj, Selim; Yang, Steven T.; Matthews, Manyalibo J.; Cooke, Diane J.; Bude, Jeffrey D.; Johnson, Michael; Feit, Michael; Draggoo, Vaughn; Bisson, Scott E.

    2009-10-01

    In situ spatial and temporal surface temperature profiles of CO2 laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  19. Simultaneous in vivo measurements of intranasal air and mucosal temperature.

    PubMed

    Wiesmiller, Kerstin; Keck, Tilman; Leiacker, Richard; Lindemann, Jörg

    2007-06-01

    Nasal cavity volume and blood temperature along the nasal airways, reflecting the mucosal temperature, are considered to be the most important predictors of nasal air conditioning. The purpose of this study was to simultaneously in vivo measure intranasal air as well as mucosal temperature for the first time. Fifteen healthy subjects were enrolled into the study. Two combined miniaturized thermocouples were used for simultaneous recording of intranasal air and mucosal temperature within the anterior turbinate area close to the head of the middle turbinate without interruption of nasal breathing. The highest air and mucosal temperature values were detected at the end of expiration, the lowest values at the end of inspiration. The difference was statistically significant (P < 0.05). The mean mucosal temperature ranged from 30.2 +/- 0.9 to 32.2 +/- 0.8 degrees C. The mean air temperature ranged from 28.5 +/- 1.2 to 34.1 +/- 0.7 degrees C. The mean differences between air and mucosal temperature were 1.7 +/- 0.5 degrees C after inspiration and 1.9 +/- 0.7 degrees C after expiration. Simultaneous measurements of intranasal air and mucosal temperature are practicable. The detected temperature gradient between air and mucosa confirm a relevant heat exchange during inspiration and expiration. This gradient between air and mucosa is obligatory for heat and water exchange to ensure adequate nasal air conditioning.

  20. Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid

    NASA Astrophysics Data System (ADS)

    Doleček, Roman; Psota, Pavel; Lédl, Vít.; Vít, Tomáś; Dančová, Petra; Kopecký, Václav

    2015-05-01

    The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon's projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.

  1. Development of a multispectral sensor for crop canopy temperature measurement

    USDA-ARS?s Scientific Manuscript database

    Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...

  2. Measurement of electron density and temperature in plasmas

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Presley, L. L.; Stallcop, J.

    1972-01-01

    Application of two laser wavelengths passing through plasma measures electron density and temperature. Function depends on determining absorption of light at two wavelengths. Nature of reaction is explained and schematic diagram of equipment is included.

  3. Study of Windows Effects for Shock Wave Temperature Measurements

    SciTech Connect

    W. D. Turley, G. Stevens, L. Veeser, D. Holtkamp, A. Seifter

    2011-05-25

    Temperature measurements of shocked plutonium are needed for improved understanding of its equation of state (EOS) and will enable better understanding and reliability of the U.S. nuclear weapon stockpile.

  4. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  5. Lower atmospheric temperature profile measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Whiteman, D.

    1986-01-01

    A Raman lidar system was used to measure the temperature profile of the upper troposphere and lower stratosphere. The system consists of a tripled Nd-YAG laser and a 1.5 meter diameter telescope. Two photomultipliers are used at the output of the telescope to allow for measurements at both the laser wavelength and at the Raman shifted wavelength due to atmospheric nitrogen. The signal from the photomultipliers is recorded as photon counts in 1 microsec bins. The results of a number of laser shots are summed together to provide atmospheric returns which have acceptable signal to noise characteristics. Measurements of the Raman nitrogen return were acquired up to an altitude in excess of 20 km. Temperature profiles were retrieved from the attenuation corrected Raman nitrogen return assuming the atmosphere to be in hydrostatic equilibrium and using the ideal gas law. Retrieved temperature profiles are shown compared with independent temperature measurements.

  6. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  7. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  8. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  9. High temperature spectral emissivity measurement using integral blackbody method

    NASA Astrophysics Data System (ADS)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  10. Ismenia Fossae: Craters or Pits?

    NASA Image and Video Library

    2003-04-15

    The circular depressions prevalent throughout this scene from NASA Mars Odyssey at first glance appear to be craters, but are they? Could they be pits formed by devolatilization? It is not clear. Scientists are studying these features in search of answe

  11. INTERACTIVE PIT LAKES 2004 CONFERENCE

    EPA Science Inventory

    This CD and the workshop provide a pit lakes forum for the exchange of scientific information on current domestic and international approaches, including arid and wet regions throughout the world. These approaches include characterization, modeling/monitoring, and treatment and r...

  12. INTERACTIVE PIT LAKES 2004 CONFERENCE

    EPA Science Inventory

    This CD and the workshop provide a pit lakes forum for the exchange of scientific information on current domestic and international approaches, including arid and wet regions throughout the world. These approaches include characterization, modeling/monitoring, and treatment and r...

  13. Turbine engine hot-part temperature measurement techniques

    SciTech Connect

    Jackson, A.G.; Prufert, M.B. )

    1992-07-01

    The paper identifies altitude test facility techniques for nonintrusive acquisition of hot-part temperatures using IR radiance measurements. The techniques discussed are applicable for turbojet and low-bypass turbofan engines. Constraints limiting IR measurements in the altitude ground test facility are discussed. Methods for evaluating altitude ground test data are outlined including review of predictive capabilities which enable the determination of the influence of turbine engine hot-part temperatures on IR emissions. 7 refs.

  14. Spectroscopic measurements of temperature in a weakly nonideal plasma

    SciTech Connect

    Mitrofanov, N.K.

    1995-04-01

    Application of traditional spectroscopic techniques for determining the temperature in a plasma by measuring the spectral line intensities is incorrect, even for a weakly nonideal plasma. The method of relative intensities of spectral lines and a continuum is modified taking into account a decrease in the line intensity caused by ionization in a plasma microfield. Comparison of temperature measurements in an atmospheric-pressure arc plasma performed by traditional and modified methods supports the validity of our approach.

  15. Surface temperature measurements using a thin film thermal array

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Johnson, P. B.; Ash, R. L.; Daryabeigi, K.; Whipple, J. C.

    1989-01-01

    A thin film device was designed and fabricated to measure surface temperatures. An array of eight integrated thermal sensors are mounted on a 0.002 inch (0.05 mm) Kapton film and multiplexed to obtain an area thermal measurement. The device was tested on a flat plate airfoil and demonstrated a temperature variation of 0.55 C maximum and 0.05 C minimum compared to embedded thermocouples. Future improvements are also discussed.

  16. Basal cell nevus syndrome - plantar pits (image)

    MedlinePlus

    ... pits in the palms and soles, and numerous basal cell carcinomas (skin cancers). This picture is a close-up of the pits found on the sole of the foot of an individual with basal cell nevus syndrome.

  17. Characterization of Permeable Zones by the Measurement of Borehole Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Tung-Lin; Chuang, Po-Yu; Lee, Tsai-Ping; Chia, Yeeping

    2015-04-01

    Subsurface temperature distribution has become an important issue in hydrogeologic studies. The major heat transfer mechanisms in porous medium are conduction and convection. Temperature profile in geological formations with different thermal conductivity would be controlled primarily by heat conduction. The temperature change related to water flows is caused by heat convection. Consequently, temperature profiles are affected by a variety of factors, such as surface temperature change, well diameter, groundwater level change, and water flows inside the borehole. In this study, we use temperature probe as a well logging device to investigate the borehole conditions. There is the depth correction for the time lag problem resulting from the equilibration time of the sensors during the logging process. Then the field measurement was conducted in a 60-m deep well in a gravelly aquifer to characterize the temperature profile of screened zone. In the shallow depth, the change of temperature is primarily influenced by seasonal variation and daily fluctuation. Below the depth of 30-m, the change of temperature was subject to geothermal gradient. However, the slope of temperature profiles changed at approximately 42-m deep, the top of well screen, and it indicated the effects of heat convection in the aquifer. In addition, the measured temperature in the borehole may not represent the actual temperature of aquifer. The measured temperature in the screened section changed continuously in response to pumping, but stabilized an hour data when 2 to 3 times of the borehole water volume is extracted. This phenomenon is related to the temperature mixing with the upper borehole water and aquifer permeability. On the other hand, if the aquifer permeability is high enough, it may influence the temperature profile in borehole through the high flow velocity. The test results indicated that, in order to obtain the actual temperature or chemical constituents, we have to pump 2 to 3 times

  18. Nonintrusive Temperature and Velocity Measurements in a Hypersonic Nozzle Flow

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Houwing, A. F. P.

    2002-01-01

    Distributions of nitric oxide vibrational temperature, rotational temperature and velocity have been measured in the hypersonic freestream at the exit of a conical nozzle, using planar laser-induced fluorescence. Particular attention has been devoted to reducing the major sources of systematic error that can affect fluorescence tempera- ture measurements, including beam attenuation, transition saturation effects, laser mode fluctuations and transition choice. Visualization experiments have been performed to improve the uniformity of the nozzle flow. Comparisons of measured quantities with a simple one-dimensional computation are made, showing good agreement between measurements and theory given the uncertainty of the nozzle reservoir conditions and the vibrational relaxation rate.

  19. Temperature and voltage measurement in quantum systems far from equilibrium

    NASA Astrophysics Data System (ADS)

    Shastry, Abhay; Stafford, Charles A.

    2016-10-01

    We show that a local measurement of temperature and voltage for a quantum system in steady state, arbitrarily far from equilibrium, with arbitrary interactions within the system, is unique when it exists. This is interpreted as a consequence of the second law of thermodynamics. We further derive a necessary and sufficient condition for the existence of a solution. In this regard, we find that a positive temperature solution exists whenever there is no net population inversion. However, when there is a net population inversion, we may characterize the system with a unique negative temperature. Voltage and temperature measurements are treated on an equal footing: They are simultaneously measured in a noninvasive manner, via a weakly coupled thermoelectric probe, defined by requiring vanishing charge and heat dissipation into the probe. Our results strongly suggest that a local temperature measurement without a simultaneous local voltage measurement, or vice versa, is a misleading characterization of the state of a nonequilibrium quantum electron system. These results provide a firm mathematical foundation for voltage and temperature measurements far from equilibrium.

  20. The effects of spatial sampling choices on MR temperature measurements.

    PubMed

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case.

  1. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    PubMed

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  2. Temperature measurement of cryogenic nitrogen jets at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Tani, H.; Teramoto, S.; Toki, T.; Yoshida, S.; Yamaguchi, K.; Okamoto, K.

    2016-07-01

    The temperatures of transcritical and supercritical nitrogen jets were measured to explore the influence of "pseudovaporization" upon cryogenic propellant mixing in high-pressure rocket chambers. Pseudovaporization is the large thermodynamic transition near the pseudocritical temperature under transcritical conditions, which can include a drastic density change and large peak of isobaric specific heat. A decline in the rise of temperature along the jet centerline of the transcritical jet was caused at the position where the local temperature reached nearpseudocritical temperature. This can be considered to be due to the large peak of isobaric specific heat. The density jump appeared near the pseudocritical temperature, which can be correlated to the sudden expansion due to pseudovaporization. The axial profiles of the temperature and density of the supercritical jet monotonically increased and decreased, respectively, in the downstream region of the end of the jet potential core. Similar to the axial profiles, the radial profiles of the temperature were influenced by the pseudovaporization - i. e., the temperature rise in the radial direction became very shallow in the region where the local temperature was still lower than the pseudocritical temperature. The full width at half maximum of the density profiles stayed almost constant further downstream of the end of the jet potential core, whereas that of the mass fraction profiles of the incompressible variable-density jet began to increase near the end of the potential core. Hence, the evolutions of jet mixing layers of transcritical jets and variable-density jets can be considered to differ due to pseudovaporization.

  3. Radiotelemetric measurement of body temperature in feedlot steers during winter.

    PubMed

    Lefcourt, A M; Adams, W R

    1998-07-01

    Little is known concerning body temperature regulation in cattle under conditions of low ambient temperature. To investigate the influence of cold on body temperature regulation, core body temperatures of feedlot steers (crossbred Bos taurus) were monitored for two winters in Nebraska, from late December to mid-March in yr 1 and from late December through June in yr 2. In yr 1, radiotransmitters to monitor temperature were implanted in the peritoneum of five steers (360 kg); in yr 2, four steers (320 kg) were used. Body temperatures and ambient temperatures were recorded at 3-min intervals and were mathematically filtered to produce 120 readings/d. For yr 1 and 2, daily maximum (40.09 and 39.66 degrees C), minimum (38.78 and 38.64 degrees C), and average (39.29 and 39.06 degrees C) body temperatures were not affected by ambient temperatures. Body temperatures exhibited circadian rhythms with the minima at approximately 0800 and the maxima at approximately 1900. For both years, sharp peaks in body temperature were often seen in the evening and, for yr 2, to a lesser extent in the morning. The occurrence of peaks was normally congruent, within a 1.5-h window, across steers. Congruent peaks in the evening with peak heights of 1.05 and .77 degrees C occurred on 65 and 56% of the days in yr 1 and 2, respectively. Occurrence of congruent peaks was correlated with dusk; peaks followed dusk by 30 to 60 min. Ambient temperature also influenced the occurrence of peaks; few peaks were observed when average daily ambient temperatures were below -7.5 degrees C. The dynamic changes in body temperature throughout the day, including the peaks in body temperature after dusk, strongly suggest that thermoregulatory systems in steers respond not only to current ambient conditions, but also to more integrative measures such as day length and daily heat load.

  4. ASRDI oxygen technology survey. Volume 4: Low temperature measurement

    NASA Technical Reports Server (NTRS)

    Sparks, L. L.

    1974-01-01

    Information is presented on temperature measurement between the triple point and critical point of liquid oxygen. The criterion selected is that all transducers which may reasonably be employed in the liquid oxygen (LO2) temperature range are considered. The temperature range for each transducer is the appropriate full range for the particular thermometer. The discussion of each thermometer or type of thermometer includes the following information: (1) useful temperature range, (2) general and particular methods of construction and the advantages of each type, (3) specifications (accuracy, reproducibility, response time, etc.), (4) associated instrumentation, (5) calibrations and procedures, and (6) analytical representations.

  5. Gas temperature measurements in deuterium hollow cathode glow discharge

    SciTech Connect

    Majstorović, Gordana; Šišović, Nikola

    2016-03-25

    We report results of optical emission spectroscopy measurements of rotational T{sub rot} and translational (gas) temperature of deuterium molecules in a hollow cathode (HC) glow discharge. The rotational temperature of excited electronic state of D{sub 2} was determined from the intensity distribution in the rotational structure of Q branch of the two Fulcher-α diagonal bands: (ν’=ν”=2) and (ν’=ν”=3). The population of excited energy levels, determined from relative line intensities, was used to derive radial rotational temperature distributions as well as gas temperature distribution of deuterium molecule.

  6. Instrumentation requirements for small scale towed temperature measurements

    NASA Astrophysics Data System (ADS)

    Dugan, J. P.; Morris, W. D.

    1984-03-01

    Measurements of horizontal ocean temperature structure are difficult to obtain by towing sensors from research vessels because the tow cable induces sensor platform motions which contaminate the data. In this report, temperature data which previously were acquired in the thermocline with special care are used to specify the acceptable level of motion and to prescribe appropriate sensor noise levels. In the swell-induced ship motion band, for example, the rms vertical displacements of the sensors should be less than several centimeters and temperature sensors should resolve fluctuations of one millidegree Celsius in regions of high (approx 0.1 C/m) temperature gradient.

  7. Aluminum flame temperature measurements in solid propellant combustion.

    PubMed

    Parigger, Christian G; Woods, Alexander C; Surmick, David M; Donaldson, A B; Height, Jonathan L

    2014-01-01

    The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models.

  8. Measurement of the temperature distribution inside the power cable using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  9. Effect of droplet-induced breakdown on CARS temperature measurements

    SciTech Connect

    Dunn-Rankin, D. ); Switzer, G.L. ); Obringer, C.A.; Jackson, T. )

    1990-07-20

    This research examines the potential for coherent anti-Stokes Raman scattering (CARS) to rovide reliable gas temperature measurements in the presence of liquid droplets. The droplets cause dielectric breakdown by focusing the CARS laser beams. This breakdown produces a plasma that can disrupt or obscure the CARS signal. Specifically, we examine the influence of laser induced breakdown on the CARS signal, and we determine the importance of droplet position relative to the CARS focal volume and droplet concentration on the reliability of CARS temperature measurements in droplet-laden flows. In addition, we propose a reliable data reduction procedure to minimize the disruptive influence of laser induced breakdown on CARS temperature.

  10. Simultaneous measurement of temperature and strain using four connecting wires

    NASA Technical Reports Server (NTRS)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  11. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  12. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  13. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  14. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  15. Based on coherent detection of Rayleigh - Brillouin temperature measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Yeliang; Hu, Yihua; Huang, Baokun

    2016-11-01

    The traditional laser temperature measurement usually adopt the direct detection method, while the direct detection method is easily influenced by aerosol scattering and background stray light. In this paper, the DSC710 balanced detector was first applied to the measurement of complete gas Rayleigh - Brillouin scattering spectrum (RBS). By utilizing the difference of RBS spectrum broadening under different temperature to get the temperature information. In this article, a simple theoretical derivation and error analysis has been made. The results show that using this method can effectively inhibit the interference of background stray light and has high precision.

  16. Evaluation of Raytek infrared pyrometer for continuous propellant temperature measurement

    NASA Technical Reports Server (NTRS)

    Dykstra, Mark D.

    1990-01-01

    The primary purpose of this evaluation was to determine if the Raytek IR pyrometer that was installed in the 600 gallon propellant mixers could be used to provide a continuous, accurate, reliable measurement of the propellant temperature during mixing. The Raytek infrared sensor is not recommended to be used for controlling propellant temperature nor for inspection buy-off. The first part of the evaluation was to determine the accuracy of the sensor in measuring the propellant temperature. The second part was to determine the reliability of the air purge design in preventing contamination of the IR window.

  17. Multi-spectral temperature measurement method for gas turbine blade

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  18. Modeling the wet bulb globe temperature using standard meteorological measurements.

    PubMed

    Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.

  19. EPR-based distance measurements at ambient temperature

    NASA Astrophysics Data System (ADS)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T < 80 K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.

  20. Temperature measurement in laminar free convective flow using digital holography.

    PubMed

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  1. Vibrational and rotational temperature measurements in a shock tube

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.

    1992-01-01

    Vibrational and rotational temperatures in nitrogen test gas relaxing behind a normal shock are measured using the emission spectra of N2(+)(1-) and N2(2+) band systems in an electric-arc driven shock tube, at a shock velocity of 6.2 km/sec. The results are compared with similar data obtained by AVCO-Everett Research Laboratory during the 1960s. The vibrational and rotational temperatures in the equilibrium region obtained in the present experiment agreed with those of AVCO, but those in the nonequilibrium region are greatly different from the AVCO results. The measured rotational temperature seems to be in nonequilibrium with the translational temperature, contradicting the two-temperature model widely used in CFD. Also, the relaxation rates for both N2(+) and N2 molecules seem to be of the same order.

  2. [Combustion temperature measurement of solid propellant by remote sensing FTIR].

    PubMed

    Li, Yan; Wang, Jun-De; Sun, Xiu-Yun; Zhou, Xue-Tie

    2004-08-01

    The combustion temperature of solid propellant was measured in this paper. Emission spectra of the combustion flame were collected with remote sensing FTIR at the resolution of 4 cm(-1). The combustion temperatures with the burning time were calculated from the maximum spectral line intensity and the molecular rotation-vibration spectra of HF molecule, respectively. Combustion temperatures at each time were all 1 788.8 K from the maximum spectral line intensity method. For comparison, the temperatures calculated from the molecular rotation-vibration spectra were 1 859.7, 1 848. 3, 1 804.0 and 1 782.7 K, respectively. Results show that the two methods are all dependable in measuring combustion temperature of solid propellant. But the maximum spectral line intensity method is more convenient and rapid than the other when the combustion is relatively stable.

  3. Prediction of parturition in bitches utilizing continuous vaginal temperature measurement.

    PubMed

    Geiser, B; Burfeind, O; Heuwieser, W; Arlt, S

    2014-02-01

    The objective of this study was to determine sensitivity and specificity of a body temperature decline in bitches to predict parturition. Temperature loggers were placed into the vaginal cavity of 16 pregnant bitches on day 56-61 after estimated ovulation or first mating. This measurement technique has been validated previously and enabled continuous sampling of body temperature. The temperature loggers were expelled from the vagina before delivery of the first pup. The computed values for specificity (77-92%) were higher than sensitivity (53-69%), indicating a more precise prognosis of parturition not occurring. In conclusion, our findings may assist interpreting vaginal temperature measurements in order to predict parturition in bitches. © 2013 Blackwell Verlag GmbH.

  4. Modeling the wet bulb globe temperature using standard meteorological measurements.

    SciTech Connect

    Liljegren, J. C.; Carhart, R. A.; Lawday, P.; Tschopp, S.; Sharp, R.; Decision and Information Sciences

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 C based on comparisons with wet bulb globe temperature measurements at all depots.

  5. Measuring gas temperature during spin-exchange optical pumping process

    NASA Astrophysics Data System (ADS)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  6. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  7. NIR detection of pits and pit fragments in fresh cherries (abstract)

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using near infrared (NIR) diffuse reflectance spectroscopy for the detection of pits and pit fragments in cherries was demonstrated. For detection of whole pits, 300 cherries were obtained locally and pits were removed from half. NIR reflectance spectra were obtained in triplicate...

  8. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Shiffman, Robert A.

    1987-01-01

    Containerless high temperature processing and material property measurements are discussed. Researchers developed methods for non-contact suspension, heating, and property measurement for materials at temperatures up to 3,680K, the melting point of tungsten. New, scientifically interesting results were obtained in Earth-based research. These results and the demonstration of new methods and techniques form a basis for further advances under the low gravity environment of space where containerless conditions are more easily achieved. Containerless high temperature material property investigations that have been completed in this and our earlier projects include measurements of fluorine LaB sub 6 reaction kinetics at 1,000 to 1,500K; optical property measurements on sapphire (Al2O3) at temperatures up to the melting point (2,327K); and vapor pressure measurements for LaB sub 6 at 2,000 to 2,500K, for molybdenum up to 2,890K and for tungsten up to 3,680K. Gas jet levitation which is applicable to any solid material, and electromagnetic levitation of electrical conductors were used to suspend the materials of interest. Non-contact heating and property measurements were achieved by optical techniques, i.e., laser heating, laser induced fluorescence measurements of vapor concentrations, and optical pyrometry for specimen temperatures.

  9. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  10. Validation of magnetic resonance concentration measurements with adiabatic wall temperature measurements

    NASA Astrophysics Data System (ADS)

    Sayles, Emily L.; Eaton, John K.

    2016-12-01

    Adiabatic wall temperature measurements were obtained in a high subsonic Mach number airflow experiment and compared with concentration measurements near the surface from a low-speed liquid flow experiment. Excellent agreement between the temperature and concentration measurements validates the investigation of turbulent mixing phenomena in compressible gas flows through the study of incompressible liquid flows with magnetic resonance techniques.

  11. Hydrothermal Fluxes at the Turtle Pits Vent Site, southern MAR

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Walter, M.; Mertens, C.; Sültenfuß, J.; Rhein, M.

    2009-04-01

    The Turtle Pits vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5oS. The site consists of three known hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. Data collected during a Meteor cruise in May 2006 and a L' Atalante cruise in January 2008 are used to calculate the total emission of volume, heat, and helium of the site. The data sets consist of vertical profiles and towed transsects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with an ROV. The particle plume is confined to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the helium fluxes at the vent sites in comparison with the horizontal helium transport in the valley. The comparison of the 3He concentration measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and an average 3He end member concentration a flux of 900 l/s is estimated, which corresponds to a heat flux of 450 MW. The rise height of the particle plume estimated from the turbidity data combined with the known background stratification yields an estimate of the total flux of the hydrothermal vents which is one order of magnitude lower.

  12. The measurement of radiant temperature in neonatal thermal environments.

    PubMed

    Sinclair, A

    1992-01-01

    Heat exchange through radiation is recognized as the dominant mode of heat transfer for an infant nursed in an incubator or warmer. A radiometer was constructed to measure the planar radiant temperature experienced by the infant. Two heat-flow sensors of different emissivities were mounted onto a heat sink such that one measured principally convective heat exchange while the other measured convective and radiant heat exchange. The radiant heat exchange was obtained from the difference between these values, from which the planar radiant temperature could be calculated. The spatial variation in planar radiant temperatures within an incubator and warmer was determined by orienting the instrument towards the five orthogonal hemispheres sensed by the infant abdomen, sides, head, and feet. In the incubator, the spatial variation in radiant temperatures exceeded 2 degrees C, or four times the spatial variation in air temperatures (0.5 degrees C). The radiant warmer had a spatial variation of 18 degrees C in radiant temperature at three-fourths of maximum power, corresponding to a variation in heat flux over the infant's surface of 100 W/m2. This thermal asymmetry would be expected to influence the variation in surface skin temperature, and thus the thermal stimuli to the infant thermoregulatory system. Further research is needed to understand the clinical significance of this asymmetry. Furthermore, the precise control over air temperature in modern incubators provides a false sense of thermal control and stability. Radiant temperature needs to be measured in addition to air temperature if the thermal performances of incubators and warmers are to be fully understood.

  13. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels.

    SciTech Connect

    Galuszka-Muga, Barbara

    2005-05-19

    An investigation was undertaken of the effect of gamma radiation on metastable pitting of mild carbon steels immersed in a solution similar to those existing at high level waste (HLW) deposits in the US. The object was to observe the extent to which a dosage rate of 1 Mrad/hour (10 Kgrey/hour) affected measurable electrochemical parameters such as pitting potential, open circuit potential, rate of metastable pitting and repassivation potential. Methods for reliably measuring electrochemical potentials in a high radiation field were developed. Exploratory analyses were made of the ion product release and electrolyte composition change in a confined volume simulating the conditions of a corrosion initiated pit during gamma irradiation. As expected the results indicated that the metastable pitting rate (as well as the general rate of corrosion) was significantly enhanced by a radiation field.

  14. Traceability and calibration in temperature measurement: a clinical necessity.

    PubMed

    Simpson, R; Machin, G; McEvoy, H; Rusby, R

    2006-01-01

    Patient temperature is a fundamental physiological measurement used primarily for observation and diagnosis, for example during surgery, intensive care, recuperation, or treatment. A variety of thermometers are used clinically and these can be separated into two categories, either contact (oral thermometers, rectal thermometers and temporal strips), or non-contact (ear thermometers, temporal thermometers and thermal imagers). To have the maximum confidence in the clinical performance of the temperature measurement instrument it is strongly desirable that the device be traceably calibrated to the International Temperature Scale of 1990 (ITS-90). Lack of traceable calibrations accredited to ISO17025 can lead to unreliability in temperature measurement and in some cases can have a deleterious effect on patient care. The National Physical Laboratory (NPL) maintains and disseminates the ITS-90 for contact and non-contact thermometry in the UK. The importance of accredited traceable calibrations and an outline of contact and non-contact thermometry standards are given here.

  15. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    PubMed

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  16. High-Temperature Sprayable Phosphor Coating Developed for Measuring Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2003-01-01

    The use of phosphor thermography for noncontact temperature measurements in harsh environments has been proven over the last decade, but it has suffered from difficult application procedures such as vapor deposition or sputtering techniques. We have developed a high-temperature-sensitive paint that is easily applied with commercially available paint-spraying equipment and have successfully demonstrated it to temperatures up to 1500 C. Selected phosphors have also shown measurable signals to 1700 C, thus allowing a combination of phosphors to be used in high-temperature binders to make surface temperature measurements from ambient to over 1500 C. Phosphor thermography is an optical technique that measures the time response of fluorescence light, which is a function of the phosphor temperature. The phosphors are excited with short wavelength light (ultraviolet or blue), and they emit light at a longer wavelength. This technique has a benefit over other temperature measurements, such as thermocouples and infrared thermography, in difficult environments such as high blackbody backgrounds, vibration, flames, high electromagnetic noise, or where special windows may be needed. In addition, the sprayable phosphor paints easily cover large or complicated structures, providing full-surface information with a single measurement. Oak Ridge National Laboratories developed and tested the high-temperature binders and phosphors under the direction of the NASA Glenn Research Center. Refractory materials doped with rare earth metals were selected for their performance at high temperature. Survivability, adhesion, and material compatibility tests were conducted at high temperatures in a small furnace while the fluorescent response from the phosphors was being measured. A painted sample in a furnace with a clearly visible fluorescing dot excited by a pulsed laser is shown. Measuring the decay time of this fluorescence yields the surface temperature. One new paint was recently tested

  17. Temperature dependence of Brewer UV measurements at Rome station

    NASA Astrophysics Data System (ADS)

    Siani, Anna M.; Benevento, Giuseppe; Casale, Giuseppe R.

    2003-11-01

    Decreasing trends of total ozone affect mainly solar ultraviolet (UV) levels at ground level with adverse effects on the biosphere. Highly accurate measurements of solar UV irradiance have become an important issue to assess UV trends. To detect these trends stations with well calibrated instruments, with long-term stability and Quality Assurance (QA)/ Quality Control (QC) carefully followed procedures, are necessary. The Solar Radiometry Observatory of Rome, University "La Sapienza" (city center) is one of the stations regularly measuring UV irradiance in Italy. Measurements of UV spectral (290-325 nm) irradiance started in 1992, using Brewer MKIV 067. Measurements of total irradiance contained in the 280 - 320 nm waveband begun in 2000 with the YES UVB-1 broad-band radiometer. An investigation of the internal temperature dependence of the spectral responsivity to improve the quality of the Brewer UV data was carried out. The study was based on the analysis of responsivity files recorded during the years 2000-2002. Responsivities are provided by specific tests through a set of five 50 W quartz tungsten-halogen lamps, traceable to the standards of the National Institute of Standards and Technology (NIST). The lamp tests allow to measure any changes in the instrument response over time. It was observed that a decrease in the instrument's responsivity resulted from an increase of the internal temperature. A methodology based on a family of responsivity files at different temperature intervals is proposed to allow correction of UV irradiances using the responsivity file at the corresponding temperatures. The mean percentage differnce between temperature corrected and non-corrected Brewer data varies from 0.8% to 1.5% over an internal temperature of 8°C-42°C. In addition the results of a field evaluation in Rome between Brewer 067 and two temperature stabilized instruments, a broad-band radiometer (YES UVB-1) and a moderate bandwidth multichannel radiometer

  18. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    USDA-ARS?s Scientific Manuscript database

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  19. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    PubMed

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  20. Stagnation temperature measurement using thin-film platinum resistance sensors

    NASA Astrophysics Data System (ADS)

    Bonham, C.; Thorpe, S. J.; Erlund, M. N.; Stevenson, R. D.

    2014-01-01

    The measurement of stagnation temperature in high-speed flows is an important aspect of gas turbine engine testing. The ongoing requirement to improve the accuracy of such measurements has led to the development of probe systems that use a thin-film platinum resistance thermometer (PRT) as the sensing element. For certain aspects of engine testing this type of sensing device potentially offers superior measurement performance to the thermocouple, the temperature sensor of choice in most gas turbine applications. This paper considers the measurement performance of prototype PRT-based stagnation temperature probes, up to high-subsonic flow conditions, using passively aspirated probe heads. The relatively poor temperature recovery performance of a simply constructed probe has led to the development of a new design that is intended to reduce the impact of thermal conduction within the probe assembly. The performance of this so-called dual-skin probe has been measured through a series of tests at a range of Mach numbers, incidence angles and Reynolds numbers. The data reveal that a high probe recovery factor has been achieved with this device, and that the application of this design to engine tests would yield the measurement performance benefits of the PRT whilst requiring small levels of temperature recovery compensation.

  1. Self-calibrated active pyrometer for furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  2. Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces

    PubMed Central

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-01

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel. PMID:23353141

  3. Flowmeter measures flow rates of high temperature fluids

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1966-01-01

    Flowmeter in which flow rate is determined by measuring the position and thus the displacement of an internal float acted upon by the flowing fluid determines the flow rates of various liquid metals at elevated temperatures. Viscous forces cause the float to move from its mounted position, affording several means for measuring this motion and the flow rate.

  4. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  5. Measure of the influence of detector noise on temperature-measurement accuracy for multiband infrared systems.

    PubMed

    Chrzanowski, K; Szulim, M

    1998-08-01

    The noise-equivalent temperature difference is a measure of the detector-noise-limited sensitivity of single-band IR systems for noncontact temperature measurement. However, because its definition is based on the signal-to-noise ratio in a single detector channel, the notion of noise-equivalent temperature difference must be generalized in case of dual-band or multiband IR systems. A new measure of temperature-measurement sensitivity is proposed that can be used to describe single-band, dual-band, and multiband IR measurement systems. With this measure a comparison of temperature-measurement accuracy among single-band, dual-band, and multiband systems was carried out.

  6. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  7. Snow pit studies from the 2008-9 Norway-US Scientific Traverse of East Antarctica

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Albert, M. R.

    2012-12-01

    The Norway-US Scientific Traverse of East Antarctica is an International Polar Year (IPY) collaborative effort to examine the mass balance of the East Antarctic plateau, focusing on the region of Dronning Maud Land. The traverse field campaign spanned two field seasons, with an inland-bound leg and outland-bound leg during the austral summers of 2007-8 and 2008-9, respectively. An international team of researchers conducted extensive field work en route, including shallow firn cores, shallow, deep and intermediate radar profiles, gravity measurements, firn temperature profiles, borehole stratigraphy, and snow pit studies. This report focuses on the results of snow pit studies of the second year's outland-bound leg from South Pole Station (US) to Troll Station (NOR), which consisted of density, stratigraphy, and snow grain geometry profiles. This traverse route crossed over a variety of features of the East Antarctic ice sheet, including a system of subglacial lakes, points crossed by the International Glaciological Year (IGY) Queen Maud Land traverses of 1964-1968, and a variety of depositional features. The area is predominantly a low-accumulation region where little previous field work had been conducted, the IGY Queen Maude Land traverses being the last scientific traverse to cross this region previous. We compare the physical property profiles collected to the snow pit studies of Koerner (1971) at Plateau Station and to satellite radar data of the larger region.

  8. Structural Origins of Martian Pit Chains

    NASA Astrophysics Data System (ADS)

    Wyrick, D.; Ferrill, D. A.; Morris, A. P.; Colton, S. L.; Sims, D. W.

    2003-12-01

    Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs, and are common on the surface of Mars. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that these features are formed by collapse into a subsurface cavity. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying sediments. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, karst dissolution, fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (i) visible faulting to (ii) faults and pits to (iii) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to interpret a pattern of pit chain evolution and calculate pit depth, slope, and volume. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational

  9. Pulsed Raman measurements of lattice temperature: Validity tests

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Lee, M. C.; Lo, H. W.; Trott, G. J.; Aydinli, A.

    1983-10-01

    We measure the temperature dependence of the Raman correction factors and present data on the spot size and transverse beam quality of lasers used in the pulsed Raman measurements of lattice temperature in Si. Recent criticisms are also evaluated and shown to be inappropriate or in error. Finally we measure the shift of the 520-cm-1 Raman line and find it also to be consistent with the observed Stokes/anti-Stokes ratios indicating optic phonon populations characteristic of ˜450 °C.

  10. The validation of ATSR measurements with in situ sea temperatures

    SciTech Connect

    Minnett, P.J.; Stansfield, K.L.

    1993-10-08

    The largest source of uncertainty in the retrieval of SST (sea-surface) temperature from space-borne infrared radiometric measurements is in the correction for the effects of the intervening atmosphere. During a research cruise of the R/V Alliance measurements of sea surface temperature, surface meteorological variables and surface infrared radiances were taken. SST fields were generated from the ATSR data using pre-launch algorithims derived by the ATSR Instrument Team (A.M. Zavody, personal communication), and the initial comparison between ATSR measurements and SST taken along the ship`s track indicate that the dual-angle atmospheric correction is accurate in mid-latitude conditions.

  11. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (=71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in.(=1.9 cm) thick and 2.5 in. (=6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger.

  12. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Selinsky, T.; Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (approx. = 71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in. (approx. = 1.9 cm) thick and 2.5 in. (approx. = 6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger. This work was done by Randy

  13. Comparison of two methods for contactless surface temperature measurement

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Michalski, Dariusz; Strąk, Kinga

    2016-03-01

    The aim of the paper is to determine the temperature filed of the heating surface on the basis of temperature measurements taken by liquid crystal thermography and infrared thermography applied in boiling heat transfer research during FC-72 flow in minichannels, and to compare them. The essential part of the experimental stand is the test section with two parallel rectangular minichannels, each 1.7 mm deep, 24 mm wide and 360 mm long. It is possible to observe the channel surfaces through panes: of the first minichannel allows observing foil temperature changes on the plain side due to liquid crystal thermography (LCT), which required treating the foil surface with thermochromic liquid crystals, of the other minichannel enables detecting outer glass or foil surface temperature changes due to infrared thermography (IRT). Comparison of the results of the measurements are presented in graphical form as thermographs and as heating surface temperature vs. minichannel length. The differences between two sets of measurement data concerning the temperature of the heating surface obtained with LCT and IRT, were analyzed using: Pearson linear correlation coefficient, determination coefficient, Experimental Method Error and Method Accuracy. The comparative data analysis shows that similar values and distributions of the surface temperature were obtained from both techniques.

  14. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Selinsky, T.; Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (approx. = 71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in. (approx. = 1.9 cm) thick and 2.5 in. (approx. = 6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger. This work was done by Randy

  15. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (=71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in.(=1.9 cm) thick and 2.5 in. (=6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger.

  16. A Temperature-Monitoring Vaginal Ring for Measuring Adherence

    PubMed Central

    Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl

    2015-01-01

    Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956

  17. Non-contact infrared temperature measurements in dry permafrost boreholes

    NASA Astrophysics Data System (ADS)

    Junker, Ralf; Grigoriev, Mikhail N.; Kaul, Norbert

    2008-04-01

    While planning the COAST Expedition to the Siberian Laptev Sea in 2005, the question of how to make a short equilibrium temperature measurement in a dry borehole arose. As a result, an infrared borehole tool was developed and used in three dry boreholes (up to 60.2 m deep) in the coastal transition zone from terrestrial to sub-sea permafrost near Mamontovy Klyk in the western Laptev Sea. A depth versus temperature profile was acquired with equilibration times of 50 × 10-3 s at each depth interval. Comparison with a common resistor string revealed an offset due to limitations of accuracy of the infrared technique and the influence of the probe's massive steel housing. Therefore it was necessary to calibrate the infrared sensor with a high precision temperature logger in each borehole. The results of the temperature measurements show a highly dynamic transition zone with temperature gradients up to -0.092°C/m and heat flow of -218 mW/m. A period of submergence of only 600 years the drilled sub-sea permafrost is approaching the overlying seawater temperature at -1.61°C with a temperature gradient of 0.021°C/m and heat flow of 49 mW/m. Further offshore, 11 km from the coastline, a temperature gradient of 0.006°C/m and heat flow of 14 mW/m occur. Thus the sub-sea permafrost in the Mamontovy Klyk region has reached a critical temperature for the presence of interstitial ice. The aim of this article is to give a brief feasibility study of infrared downhole temperature measurements and to present experiences and results of its successful application.

  18. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  19. Proceedings of the Second Noncontact Temperature Measurement Workshop

    NASA Technical Reports Server (NTRS)

    Hale, Robert R. (Editor)

    1989-01-01

    The state of the art in noncontact temperature measurement (NCTM) technology was reviewed and the NCTM requirements of microgravity materials processing community identified. The workshop included technical presentations and discussions which ranged from research on advanced concepts for temperature measurement to laboratory research and development regarding measurement principles and state-of-the-art engineering practices for NCTM methodology in commercial and industrial applications. Technical presentations were made concerning: NCTM needs as perceived by several NASA centers, recent ground-based NCT, research and development of industry, NASA, academia, and selected national laboratories, work-in-progress communication, and technical issues of the implementation of temperature measurement in the space environment to facilitate future U.S. materials science investigations.

  20. [Combustion temperature measurement of solid propellant and the effect of organic compound on combustion temperature].

    PubMed

    Zhou, Xue-tie; Li, Yan; Chen, Zuo-ru; Wang, Jun-de

    2003-06-01

    The FTIR emission spectra in the spectral range of 4,500-300 cm-1 for the solid propellants were measured by a remote sensing FTIR system. The P-branch of fine structure of HCl fundamental band lying at 3.46 microns was used for precise combustion temperature measurement of the solid propellant. The effect of the organic compound in the solid propellant on the combustion temperature was discussed.