Sample records for pixel detector based

  1. Limits in point to point resolution of MOS based pixels detector arrays

    NASA Astrophysics Data System (ADS)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  2. Diamond Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Gobbi, B.; Grim, G. P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J. L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  3. Small Pixel Hybrid CMOS X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  4. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  5. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  6. Study of a GaAs:Cr-based Timepix detector using synchrotron facility

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Kozhevnikov, D.; Bakina, O.; Chelkov, G.; Dedovich, D.; Kuper, K.; Leyva Fabelo, A.; Zhemchugov, A.

    2017-11-01

    High resistivity gallium arsenide compensated by chromium fabricated by Tomsk State University has demonstrated a good suitability as a sensor material for hybrid pixel detectors used in X-ray imaging systems with photon energies up to 60 keV. The material is available with a thickness up to 1 mm and due to its Z number a high absorption efficiency in this energy region is provided. However, the performance of thick GaAs:Cr-based detectors in spectroscopic applications is limited by readout electronics with relatively small pixels due to the charge sharing effect. In this paper, we present the experimental investigation of the charge sharing effect contribution in the GaAs:Cr-based Timepix detector. By means of scanning the detector with a pencil photon beam generated by the synchrotron facility, the geometrical mapping of pixel sensitivity is obtained, as well as the energy resolution of a single pixel. The experimental results are supported by numerical simulations. The observed limitation of the GaAs:Cr-based Timepix detector for the high flux X-ray imaging is discussed.

  7. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  8. Detection of X-ray spectra and images by Timepix

    NASA Astrophysics Data System (ADS)

    Urban, M.; Nentvich, O.; Stehlikova, V.; Sieger, L.

    2017-07-01

    X-ray monitoring for astrophysical applications mainly consists of two parts - optics and detector. The article describes an approach based on a combination of Lobster Eye (LE) optics with Timepix detector. Timepix is a semiconductor detector with 256 × 256 pixels on one electrode and a second electrode is common. Usage of the back-side-pulse from an common electrode of pixelated detector brings the possibility of an additional spectroscopic or trigger signal. In this article are described effects of the thermal stabilisation, and the cooling effect of the detector working as single pixel.

  9. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    NASA Astrophysics Data System (ADS)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  10. Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications

    PubMed Central

    Rozler, Mike; Liang, Haoning; Chang, Wei

    2013-01-01

    A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436

  11. Status and Plan for The Upgrade of The CMS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Lu, Rong-Shyang; CMS Collaboration

    2016-04-01

    The silicon pixel detector is the innermost component of the CMS tracking system and plays a crucial role in the all-silicon CMS tracker. While the current pixel tracker is designed for and performing well at an instantaneous luminosity of up to 1 ×1034cm-2s-1, it can no longer be operated efficiently at significantly higher values. Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity are likely to be reached before 2018 and perhaps significantly exceeded in the running period until 2022, referred to as LHC Run 3. Therefore, an upgraded pixel detector, referred to as the phase 1 upgrade, is planned for the year-end technical stop in 2016. With a new pixel readout chip (ROC), an additional fourth layer, two additional endcap disks, and a significantly reduced material budget the upgraded pixel detector will be able to sustain the efficiency of the pixel tracker at the increased requirements imposed by high luminosities and pile-up. The main new features of the upgraded pixel detector will be an ultra-light mechanical design, a digital readout chip with higher rate capability and a new cooling system. These and other design improvements, along with results of Monte Carlo simulation studies for the expected performance of the new pixel detector, will be discussed and compared to those of the current CMS detector.

  12. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    PubMed

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.

  13. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    DOE PAGES

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  14. Geometric correction methods for Timepix based large area detectors

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Dudak, J.; Karch, J.; Krejci, F.

    2017-01-01

    X-ray micro radiography with the hybrid pixel detectors provides versatile tool for the object inspection in various fields of science. It has proven itself especially suitable for the samples with low intrinsic attenuation contrast (e.g. soft tissue in biology, plastics in material sciences, thin paint layers in cultural heritage, etc.). The limited size of single Medipix type detector (1.96 cm2) was recently overcome by the construction of large area detectors WidePIX assembled of Timepix chips equipped with edgeless silicon sensors. The largest already built device consists of 100 chips and provides fully sensitive area of 14.3 × 14.3 cm2 without any physical gaps between sensors. The pixel resolution of this device is 2560 × 2560 pixels (6.5 Mpix). The unique modular detector layout requires special processing of acquired data to avoid occurring image distortions. It is necessary to use several geometric compensations after standard corrections methods typical for this type of pixel detectors (i.e. flat-field, beam hardening correction). The proposed geometric compensations cover both concept features and particular detector assembly misalignment of individual chip rows of large area detectors based on Timepix assemblies. The former deals with larger border pixels in individual edgeless sensors and their behaviour while the latter grapple with shifts, tilts and steps between detector rows. The real position of all pixels is defined in Cartesian coordinate system and together with non-binary reliability mask it is used for the final image interpolation. The results of geometric corrections for test wire phantoms and paleo botanic material are presented in this article.

  15. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  17. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  18. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.

  19. III-V infrared research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-08-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  20. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Lütticke, F.

    2013-02-01

    The existing Japanese Flavour Factory (KEKB) is currently being upgraded and is foreseen to be comissioned by 2014. The new e+e- collider (SuperKEKB) will have an instantaneous luminosity of 8 × 1035cm-2s-1, 40 times higher than the current world record set by KEKB. In order to handle the increased event rate and the higher background and provide high data quality, the Belle detector is upgraded to Belle II. The increased particle rate requires a new vertex pixel detector with high granularity. This silicon detector will be based on DEPFET technology and will consist of two layers of active pixel sensors. By integrating a field effect transistor into every pixel on top of a fully depleted bulk, the DEPFET technology combines detection and in-pixel amplification. This technology allows good signal to noise performance with a very low material budget.

  1. Measurements and simulations of MAPS (Monolithic Active Pixel Sensors) response to charged particles - a study towards a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Maczewski, Lukasz

    2010-05-01

    The International Linear Collider (ILC) is a project of an electron-positron (e+e-) linear collider with the centre-of-mass energy of 200-500 GeV. Monolithic Active Pixel Sensors (MAPS) are one of the proposed silicon pixel detector concepts for the ILC vertex detector (VTX). Basic characteristics of two MAPS pixel matrices MIMOSA-5 (17 μm pixel pitch) and MIMOSA-18 (10 μm pixel pitch) are studied and compared (pedestals, noises, calibration of the ADC-to-electron conversion gain, detector efficiency and charge collection properties). The e+e- collisions at the ILC will be accompanied by intense beamsstrahlung background of electrons and positrons hitting inner planes of the vertex detector. Tracks of this origin leave elongated clusters contrary to those of secondary hadrons. Cluster characteristics and orientation with respect to the pixels netting are studied for perpendicular and inclined tracks. Elongation and precision of determining the cluster orientation as a function of the angle of incidence were measured. A simple model of signal formation (based on charge diffusion) is proposed and tested using the collected data.

  2. Novel Hyperspectral Anomaly Detection Methods Based on Unsupervised Nearest Regularized Subspace

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Chen, Y.; Tan, K.; Du, P.

    2018-04-01

    Anomaly detection has been of great interest in hyperspectral imagery analysis. Most conventional anomaly detectors merely take advantage of spectral and spatial information within neighboring pixels. In this paper, two methods of Unsupervised Nearest Regularized Subspace-based with Outlier Removal Anomaly Detector (UNRSORAD) and Local Summation UNRSORAD (LSUNRSORAD) are proposed, which are based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. Using a dual window, an approximation of each testing pixel is a representation of surrounding data via a linear combination. The existence of outliers in the dual window will affect detection accuracy. Proposed detectors remove outlier pixels that are significantly different from majority of pixels. In order to make full use of various local spatial distributions information with the neighboring pixels of the pixels under test, we take the local summation dual-window sliding strategy. The residual image is constituted by subtracting the predicted background from the original hyperspectral imagery, and anomalies can be detected in the residual image. Experimental results show that the proposed methods have greatly improved the detection accuracy compared with other traditional detection method.

  3. First tests of Timepix detectors based on semi-insulating GaAs matrix of different pixel size

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Kubanda, D.; Žemlička, J.; Šagátová, A.; Zápražný, Z.; Boháček, P.; Nečas, V.; Mora, Y.; Pichotka, M.; Dudák, J.

    2018-02-01

    In this work, we have focused on Timepix detectors coupled with the semi-insulating GaAs material sensor. We used undoped bulk GaAs material with the thickness of 350 μm. We prepared and tested four pixelated detectors with 165 μm and 220 μm pixel size with two versions of technology preparation, without and with wet chemically etched trenches around each pixel. We have carried out adjustment of GaAs Timepix detectors to optimize their performance. The energy calibration of one GaAs Timepix detector in Time-over-threshold mode was performed with the use of 241Am and 133Ba radioisotopes. We were able to detect γ-photons with the energy up to 160 keV. The X-ray imaging quality of GaAs Timepix detector was tested with X-ray source using various samples. After flat field we obtained very promising imaging performance of tested GaAs Timepix detectors.

  4. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.

    2015-01-01

    Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100  μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200  μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194  μm, with 2×2 binning during the acquisition giving an effective pixel size of 388  μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095

  5. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT.

    PubMed

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J

    2015-04-01

    Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.

  6. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  7. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    NASA Astrophysics Data System (ADS)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.

  8. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications.

    PubMed

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2013-02-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μ m resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μ m pitch pixels (250 μ m anode pixels with 100 μ m gap) and coplanar cathode. Charge sharing among the pixels of a 350 μ m pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μ m pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μ m pitch detector biased at -1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications.

  9. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  10. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  11. Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

  12. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  13. Characterization of pixelated TlBr detectors with Tl electrodes

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo

    2014-05-01

    A 4.36-mm-thick pixelated thallium bromide (TlBr) detector with Tl electrodes was fabricated from a crystal grown by the traveling molten zone method using zone-purified material. The detector had four 1×1 mm2 pixelated anodes. The detector performance was characterized at room temperature. The mobility-lifetime products of electrons for each pixel of the TlBr detector were measured to be >2.8×10-3 cm2/V. The four pixelated anodes of the detector exhibited energy resolutions of 1.5-1.8% full width at half maximum (FWHM) for 662-keV gamma rays for single-pixel events with the depth correction method. An energy resolution of 4.5% FWHM for 662-keV gamma rays was obtained from a reconstructed energy spectrum using two-pixel events from the two pixelated anodes on the detector.

  14. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  15. Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.

  16. A new generation of small pixel pitch/SWaP cooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  17. Novel high-resolution VGA QWIP detector

    NASA Astrophysics Data System (ADS)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.

    2017-02-01

    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  18. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  19. Experience from the construction and operation of the STAR PXL detector

    NASA Astrophysics Data System (ADS)

    Greiner, L.; Anderssen, E. C.; Contin, G.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H. H.; Woodmansee, S.

    2015-04-01

    A new silicon based vertex detector called the Heavy Flavor Tracker (HFT) was installed at the Soleniodal Tracker At RHIC (STAR) experiment for the Relativistic Heavy Ion Collider (RHIC) 2014 heavy ion run to improve the vertex resolution and extend the measurement capabilities of STAR in the heavy flavor domain. The HFT consists of four concentric cylinders around the STAR interaction point composed of three different silicon detector technologies based on strips, pads and for the first time in an accelerator experiment CMOS monolithic active pixels (MAPS) . The two innermost layers at a radius of 2.8 cm and 8 cm from the beam line are constructed with 400 high resolution MAPS sensors arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors giving a total silicon area of 0.16 m2. Each sensor consists of a pixel array of nearly 1 million pixels with a pitch of 20.7 μm with column-level discriminators, zero-suppression circuitry and output buffer memory integrated into one silicon die with a sensitive area of ~ 3.8 cm2. The pixel (PXL) detector has a low power dissipation of 170 mW/cm2, which allows air cooling. This results in a global material budget of 0.5% radiation length per layer for detector used in this run. A novel mechanical approach to detector insertion allows for the installation and integration of the pixel sub detector within a 12 hour period during an on-going STAR run. The detector specifications, experience from the construction and operation, lessons learned and initial measurements of the PXL performance in the 200 GeV Au-Au run will be presented.

  20. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  1. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  2. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    NASA Astrophysics Data System (ADS)

    Rubinskiy, I.; EUDET Consortium; AIDA Consortium

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  3. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  4. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

  5. Optical sectioning in wide-field microscopy obtained by dynamic structured light illumination and detection based on a smart pixel detector array.

    PubMed

    Mitić, Jelena; Anhut, Tiemo; Meier, Matthias; Ducros, Mathieu; Serov, Alexander; Lasser, Theo

    2003-05-01

    Optical sectioning in wide-field microscopy is achieved by illumination of the object with a continuously moving single-spatial-frequency pattern and detecting the image with a smart pixel detector array. This detector performs an on-chip electronic signal processing that extracts the optically sectioned image. The optically sectioned image is directly observed in real time without any additional postprocessing.

  6. A fast event preprocessor for the Simbol-X Low-Energy Detector

    NASA Astrophysics Data System (ADS)

    Schanz, T.; Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.

  7. Tracking Detectors in the STAR Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  8. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive detector modules, are shown. PMID:19920884

  9. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive detector modules, are shown.

  10. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  11. Post-processing for improving hyperspectral anomaly detection accuracy

    NASA Astrophysics Data System (ADS)

    Wu, Jee-Cheng; Jiang, Chi-Ming; Huang, Chen-Liang

    2015-10-01

    Anomaly detection is an important topic in the exploitation of hyperspectral data. Based on the Reed-Xiaoli (RX) detector and a morphology operator, this research proposes a novel technique for improving the accuracy of hyperspectral anomaly detection. Firstly, the RX-based detector is used to process a given input scene. Then, a post-processing scheme using morphology operator is employed to detect those pixels around high-scoring anomaly pixels. Tests were conducted using two real hyperspectral images with ground truth information and the results based on receiver operating characteristic curves, illustrated that the proposed method reduced the false alarm rates of the RXbased detector.

  12. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  13. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  14. A detector interferometric calibration experiment for high precision astrometry

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.

    2016-11-01

    Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.

  15. Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.

    2016-09-01

    Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.

  16. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications

    PubMed Central

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 μm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 μm in x,y-plane and ~0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 μm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 μm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of the inherent limitations of MC methods. PMID:23079763

  17. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications.

    PubMed

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2012-11-21

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 µm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 µm in x,y-plane and ∼0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 µm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 µm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of the inherent limitations of MC methods.

  18. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  19. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  20. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Hit efficiency study of CMS prototype forward pixel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  2. First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.

    PubMed

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-21

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  3. Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry

    DOEpatents

    Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.

    2006-03-07

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  4. Apparatus and method for OSL-based, remote radiation monitoring and spectrometry

    DOEpatents

    Smith, Leon Eric [Richland, WA; Miller, Steven D [Richland, WA; Bowyer, Theodore W [Oakton, VA

    2008-05-20

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  5. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    PubMed

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  6. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  7. Simulation study of pixel detector charge digitization

    NASA Astrophysics Data System (ADS)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  8. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  9. Enhancing spatial resolution of (18)F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine.

    PubMed

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-07-07

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  10. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I.; Shi, Kuangyu

    2015-07-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [18F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  11. Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications

    NASA Technical Reports Server (NTRS)

    Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.; hide

    2014-01-01

    The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.

  12. Plasma-panel based detectors

    NASA Astrophysics Data System (ADS)

    Friedman, Peter

    2017-09-01

    The plasma panel sensor (PPS) is a novel micropattern gas detector inspired by plasma display panels (PDPs), the core component of plasma-TVs. A PDP comprises millions of discrete cells per square meter, each of which, when provided with a signal pulse, can initiate and sustain a plasma discharge. Configured as a detector, a pixel or cell is biased to discharge when a free-electron is generated in the gas. The PPS consists of an array of small plasma discharge pixels, and can be configured to have either an ``open-cell'' or ``closed-cell'' structure, operating with high gain in the Geiger region. We describe both configurations and their application to particle physics. The open-cell PPS lends itself to ultra-low-mass, ultrathin structures, whereas the closed-cell microhexcavity PPS is capable of higher performance. For the ultrathin-PPS, we are fabricating 3-inch devices based on two types of extremely thin, inorganic, transparent, substrate materials: one being 8-10 µm thick, and the other 25-27 µm thick. These gas-filled ultrathin devices are designed to operate in a beam-line vacuum environment, yet must be hermetically-sealed and gas-filled in an ambient environment at atmospheric pressure. We have successfully fabricated high resolution, submillimeter pixel electrodes on both types of ultrathin substrates. We will also report on the fabrication, staging and operation of the first microhexcavity detectors (µH-PPS). The first µH-PPS prototype devices have a 16 by 16 matrix of closed packed hexagon pixels, each having a 2 mm width. Initial tests of these detectors, conducted with Ne based gases at atmospheric pressure, indicate that each pixel responds independent of its neighboring cells, producing volt level pulse amplitudes in response to ionizing radiation. Results will include the hit rate response to a radioactive beta source, cosmic ray muons, the background from spontaneous discharge, pixel isolation and uniformity, and efficiency measurements. This work was funded in part by a DOE Office of Nuclear Physics SBIR Phase-II Grant.

  13. Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR

    NASA Astrophysics Data System (ADS)

    Grefenstette, Brian W.; Bhalerao, Varun; Cook, W. Rick; Harrison, Fiona A.; Kitaguchi, Takao; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram

    2017-08-01

    Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≍ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.

  14. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  15. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  16. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  17. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  18. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    DOE PAGES

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; ...

    2015-06-18

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  19. Crystal Identification in Dual-Layer-Offset DOI-PET Detectors Using Stratified Peak Tracking Based on SVD and Mean-Shift Algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Dai, Tiantian; Ma, Tianyu; Liu, Yaqiang; Gu, Yu

    2016-10-01

    An Anger-logic based pixelated PET detector block requires a crystal position map (CPM) to assign the position of each detected event to a most probable crystal index. Accurate assignments are crucial to PET imaging performance. In this paper, we present a novel automatic approach to generate the CPMs for dual-layer offset (DLO) PET detectors using a stratified peak tracking method. In which, the top and bottom layers are distinguished by their intensity difference and the peaks of the top and bottom layers are tracked based on a singular value decomposition (SVD) and mean-shift algorithm in succession. The CPM is created by classifying each pixel to its nearest peak and assigning the pixel with the crystal index of that peak. A Matlab-based graphical user interface program was developed including the automatic algorithm and a manual interaction procedure. The algorithm was tested for three DLO PET detector blocks. Results show that the proposed method exhibits good performance as well as robustness for all the three blocks. Compared to the existing methods, our approach can directly distinguish the layer and crystal indices using the information of intensity and offset grid pattern.

  20. Low noise WDR ROIC for InGaAs SWIR image sensor

    NASA Astrophysics Data System (ADS)

    Ni, Yang

    2017-11-01

    Hybridized image sensors are actually the only solution for image sensing beyond the spectral response of silicon devices. By hybridization, we can combine the best sensing material and photo-detector design with high performance CMOS readout circuitry. In the infrared band, we are facing typically 2 configurations: high background situation and low background situation. The performance of high background sensors are conditioned mainly by the integration capacity in each pixel which is the case for mid-wave and long-wave infrared detectors. For low background situation, the detector's performance is mainly limited by the pixel's noise performance which is conditioned by dark signal and readout noise. In the case of reflection based imaging condition, the pixel's dynamic range is also an important parameter. This is the case for SWIR band imaging. We are particularly interested by InGaAs based SWIR image sensors.

  1. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  2. Modulation transfer function of a triangular pixel array detector.

    PubMed

    Karimzadeh, Ayatollah

    2014-07-01

    The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.

  3. Achieving subpixel resolution with time-correlated transient signals in pixelated CdZnTe gamma-ray sensors using a focused laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.

    2017-05-01

    High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.

  4. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    PubMed

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  5. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; hide

    2011-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  6. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; hide

    2011-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-waveleng thinfrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  7. dada - a web-based 2D detector analysis tool

    NASA Astrophysics Data System (ADS)

    Osterhoff, Markus

    2017-06-01

    The data daemon, dada, is a server backend for unified access to 2D pixel detector image data stored with different detectors, file formats and saved with varying naming conventions and folder structures across instruments. Furthermore, dada implements basic pre-processing and analysis routines from pixel binning over azimuthal integration to raster scan processing. Common user interactions with dada are by a web frontend, but all parameters for an analysis are encoded into a Uniform Resource Identifier (URI) which can also be written by hand or scripts for batch processing.

  8. Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors

    NASA Technical Reports Server (NTRS)

    Sokolsky, P.; Krizmanic, J.

    2003-01-01

    Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.

  9. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro; LHCb VELO Upgrade Group

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  10. Status and Construction of the Belle II DEPFET pixel system

    NASA Astrophysics Data System (ADS)

    Lütticke, Florian

    2014-06-01

    DEpleted P-channel Field Effect Transistor (DEPFET) active pixel detectors combine detection with a first amplification stage in a fully depleted detector, resulting in an superb signal-to-noise ratio even for thin sensors. Two layers of thin (75 micron) silicon DEPFET pixels will be used as the innermost vertex system, very close to the beam pipe in the Belle II detector at the SuperKEKB facility. The status of the 8 million DEPFET pixels detector, latest developments and current system tests will be discussed.

  11. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  12. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was aboutmore » 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke $-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.« less

  13. FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout

    NASA Astrophysics Data System (ADS)

    Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.

    2016-02-01

    The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.

  14. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    DOE PAGES

    Hasegawa, S.

    2016-04-23

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  15. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  16. Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector

    NASA Astrophysics Data System (ADS)

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Després, Philippe

    2017-07-01

    Due to the low mobility of holes in CZT, commercially available detectors with a relatively large volume typically use a pixelated anode structure. They are mostly used in imaging applications and often require a dense electronic readout scheme. These large volume detectors are also interesting for high-sensitivity applications and a CZT-based blood gamma counter was developed from a 20×20×15 mm3 crystal available commercially and having a 11×11 pixelated readout scheme. A method is proposed here to reduce the number of channels required to use the crystal in a high-sensitivity counting application, dedicated to pharmacokinetic modelling in PET and SPECT. Inspired by a classic coplanar anode, an implementation of a virtual coplanar grid was done by connecting the 121 pixels of the detector to form intercalated bands. The layout, the front-end electronics and the characterization of the detector in this 2-channel anode geometry is presented. The coefficients required to compensate for electron trapping in CZT were determined experimentally to improve the performance. The resulting virtual coplanar detector has an intrinsic efficiency of 34% and an energy resolution of 8% at 662 keV. The detector's response was linear between 80 keV and 1372 keV. This suggests that large CZT crystals offer an excellent alternative to scintillation detectors for some applications, especially those where high-sensitivity and compactness are required.

  17. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  18. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  19. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, L.; Bolotnikov, A. E.; Camarda, G. S.; De Geronimo, G.; Fried, J.; Gul, R.; Hodges, D.; Hossain, A.; Ünlü, K.; Vernon, E.; Yang, G.; James, R. B.

    2018-03-01

    We evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enabling use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 μm (650 nm) to scan over a selected 3 × 3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.

  20. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE PAGES

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-12-18

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  1. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  2. A system for characterization of DEPFET silicon pixel matrices and test beam results

    NASA Astrophysics Data System (ADS)

    Furletov, Sergey; DEPFET Collaboration

    2011-02-01

    The DEPFET pixel detector offers first stage in-pixel amplification by incorporating a field effect transistor in the high resistivity silicon substrate. In this concept, a very small input capacitance can be realized thus allowing for low noise measurements. This makes DEPFET sensors a favorable technology for tracking in particle physics. Therefore a system with a DEPFET pixel matrix was developed to test DEPFET performance for an application as a vertex detector for the Belle II experiment. The system features a current based, row-wise readout of a DEPFET pixel matrix with a designated readout chip, steering chips for matrix control, a FPGA based data acquisition board, and a dedicated software package. The system was successfully operated in both test beam and lab environment. In 2009 new DEPFET matrices have been characterized in a 120 GeV pion beam at the CERN SPS. The current status of the DEPFET system and test beam results are presented.

  3. CVD diamond pixel detectors for LHC experiments

    NASA Astrophysics Data System (ADS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A. M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J. C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.; RD42 Collaboration

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  4. Improved image quality using monolithic scintillator detectors with dual-sided readout in a whole-body TOF-PET ring: a simulation study.

    PubMed

    Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S; Schaart, Dennis R

    2017-02-13

    We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.

  5. Improved image quality using monolithic scintillator detectors with dual-sided readout in a whole-body TOF-PET ring: a simulation study

    NASA Astrophysics Data System (ADS)

    Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S.; Schaart, Dennis R.

    2017-03-01

    We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.

  6. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μ W from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e - RMS at room temperature.

  7. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  8. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  9. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  10. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  11. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  12. 3D track reconstruction capability of a silicon hybrid active pixel detector

    NASA Astrophysics Data System (ADS)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  13. Spectral correction algorithm for multispectral CdTe x-ray detectors

    NASA Astrophysics Data System (ADS)

    Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.

    2017-09-01

    Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.

  14. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.

    2012-09-01

    The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.

  15. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  16. 2D Array of Far-infrared Thermal Detectors: Noise Measurements and Processing Issues

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Stevenson, T.

    2008-01-01

    A magnesium diboride (MgB2) detector 2D array for use in future space-based spectrometers is being developed at GSFC. Expected pixel sensitivities and comparison to current state-of-the-art infrared (IR) detectors will be discussed.

  17. Self-similar grid patterns in free-space shuffle-exchange networks

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    1993-12-01

    Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.

  18. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  19. Scene-based nonuniformity correction with video sequences and registration.

    PubMed

    Hardie, R C; Hayat, M M; Armstrong, E; Yasuda, B

    2000-03-10

    We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.

  20. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  1. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.

    2011-02-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( <0.5% X0 per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 μm CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.

  2. Applications of a micro-pixel chamber (μPIC) based, time-resolved neutron imaging detector at pulsed neutron beams

    NASA Astrophysics Data System (ADS)

    Parker, J. D.; Harada, M.; Hattori, K.; Iwaki, S.; Kabuki, S.; Kishimoto, Y.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nishimura, H.; Oku, T.; Sawano, T.; Shinohara, T.; Suzuki, J.-I.; Takada, A.; Tanimori, T.; Ueno, K.; Ikeno, M.; Tanaka, M.; Uchida, T.

    2014-04-01

    The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10-12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.

  3. The FE-I4 Pixel Readout Chip and the IBL Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on testmore » results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.« less

  4. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  5. Study of run time errors of the ATLAS pixel detector in the 2012 data taking period

    NASA Astrophysics Data System (ADS)

    Gandrajula, Reddy Pratap

    The high resolution silicon Pixel detector is critical in event vertex reconstruction and in particle track reconstruction in the ATLAS detector. During the pixel data taking operation, some modules (Silicon Pixel sensor +Front End Chip+ Module Control Chip (MCC)) go to an auto-disable state, where the Modules don't send the data for storage. Modules become operational again after reconfiguration. The source of the problem is not fully understood. One possible source of the problem is traced to the occurrence of single event upset (SEU) in the MCC. Such a module goes to either a Timeout or Busy state. This report is the study of different types and rates of errors occurring in the Pixel data taking operation. Also, the study includes the error rate dependency on Pixel detector geometry.

  6. An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, M.

    2014-11-01

    The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.

  7. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Khoshakhlagh, Arezou; Rafol, Sir B.; Hoeglund, Linda; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Liao, Anna; Ting, David Z.-Y.; hide

    2012-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of Focal Plane Arrays (FPA) based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 ?m cutoff FPA without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. In addition, we demonstrated 320x256 format FPA based on the n-CBIRD design. The resulting FPAs yielded noise equivalent differential temperature of 26 mK at operating temperature of 80 K, with 300 K background and cold-stop. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  8. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  9. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  10. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    NASA Astrophysics Data System (ADS)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  11. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  12. Pixel Stability in the Hubble Space Telescope WFC3/UVIS Detector

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Baggett, Sylvia M.; Borncamp, David; Desjardins, Tyler D.; Grogin, Norman A.; Wide Field Camera 3 Team

    2018-06-01

    The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Ultraviolet-Visible (UVIS) detector has acquired roughly 12,000 dark images since the installation of WFC3 in 2009, as part of a daily monitoring program to measure the instrinsic dark current of the detector. These images have been reconfigured into 'pixel history' images in which detector columns are extracted from each dark and placed into a new time-ordered array, allowing for efficient analysis of a given pixel's behavior over time. We discuss how we measure each pixel's stability, as well as plans for a new Data Quality (DQ) flag to be introduced in a future release of the WFC3 calibration pipeline (CALWF3) for flagging pixels that are deemed unstable.

  13. Evaluation of a hybrid pixel detector for electron microscopy.

    PubMed

    Faruqi, A R; Cattermole, D M; Henderson, R; Mikulec, B; Raeburn, C

    2003-04-01

    We describe the application of a silicon hybrid pixel detector, containing 64 by 64 pixels, each 170 microm(2), in electron microscopy. The device offers improved resolution compared to CCDs along with faster and noiseless readout. Evaluation of the detector, carried out on a 120 kV electron microscope, demonstrates the potential of the device.

  14. Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.

    2017-01-01

    MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.

  15. Large Area Cd0.9Zn0.1Te Pixelated Detector: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sandeep K.; Nguyen, Khai; Pak, Rahmi O.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Mandal, Krishna C.

    2014-04-01

    Cd0.9Zn0.1Te (CZT) based pixelated radiation detectors have been fabricated and characterized for gamma ray detection. Large area CZT single crystals has been grown using a tellurium solvent method. A 10 ×10 guarded pixelated detector has been fabricated on a 19.5 ×19.5 ×5 mm3 crystal cut out from the grown ingot. The pixel dimensions were 1.3 ×1.3 mm2 and were pitched at 1.8 mm. A guard grid was used to reduce interpixel/inter-electrode leakage. The crystal was characterized in planar configuration using electrical, optical and optoelectronic methods prior to the fabrication of pixelated geometry. Current-voltage (I-V) measurements revealed a leakage current of 27 nA at an operating bias voltage of 1000 V and a resistivity of 3.1 ×1010 Ω-cm. Infrared transmission imaging revealed an average tellurium inclusion/precipitate size less than 8 μm. Pockels measurement has revealed a near-uniform depth-wise distribution of the internal electric field. The mobility-lifetime product in this crystal was calculated to be 6.2 ×10 - 3 cm2/V using alpha ray spectroscopic method. Gamma spectroscopy using a 137Cs source on the pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with percentage resolution (FWHM) as high as 1.8%.

  16. An Exploration of WFC3/IR Dark Current Variation

    NASA Astrophysics Data System (ADS)

    Sunnquist, B.; Baggett, S.; Long, K. S.

    2017-02-01

    We use a collection of darks spanning September 2009 to June 2016 to study variations in the dark current in the IR detector on WFC3. Although the darks possess a similar signal pattern across the detector, we find that their median dark rates vary by as much as 0.014 DN/s (0.032 e-/s). The distribution of these median values has a triangular shape with a mean and standard deviation of 0.021 ± 0.0029 DN/s (0.049 ± 0.0069 e-/s). We observe a long term time-dependence in the inboard vertical reference pixel and zeroth read signals; however, these differences do not noticeably affect the calibrated dark signals, and we conclude that the WFC3/IR dark current levels continue to remain stable since launch. The inboard reference pixel signals exhibit a unique, but consistent, pattern around the detector, but this pattern does not evolve noticeably with the median of the science pixels, and a quadrant or row-based reference pixel subtraction strategy does not reduce the spread between the median dark rates. We notice a slight drift in the inboard reference pixel signals up the dark ramps, and the intensity of this drift is related to the median dark current in the science pixels. This holds true using either the horizontal or vertical reference pixels and for darks with a variety of sample sequences.

  17. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  18. Chromatic Modulator for a High-Resolution CCD or APS

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Hull, Anthony

    2008-01-01

    A chromatic modulator has been proposed to enable the separate detection of the red, green, and blue (RGB) color components of the same scene by a single charge-coupled device (CCD), active-pixel sensor (APS), or similar electronic image detector. Traditionally, the RGB color-separation problem in an electronic camera has been solved by use of either (1) fixed color filters over three separate image detectors; (2) a filter wheel that repeatedly imposes a red, then a green, then a blue filter over a single image detector; or (3) different fixed color filters over adjacent pixels. The use of separate image detectors necessitates precise registration of the detectors and the use of complicated optics; filter wheels are expensive and add considerably to the bulk of the camera; and fixed pixelated color filters reduce spatial resolution and introduce color-aliasing effects. The proposed chromatic modulator would not exhibit any of these shortcomings. The proposed chromatic modulator would be an electromechanical device fabricated by micromachining. It would include a filter having a spatially periodic pattern of RGB strips at a pitch equal to that of the pixels of the image detector. The filter would be placed in front of the image detector, supported at its periphery by a spring suspension and electrostatic comb drive. The spring suspension would bias the filter toward a middle position in which each filter strip would be registered with a row of pixels of the image detector. Hard stops would limit the excursion of the spring suspension to precisely one pixel row above and one pixel row below the middle position. In operation, the electrostatic comb drive would be actuated to repeatedly snap the filter to the upper extreme, middle, and lower extreme positions. This action would repeatedly place a succession of the differently colored filter strips in front of each pixel of the image detector. To simplify the processing, it would be desirable to encode information on the color of the filter strip over each row (or at least over some representative rows) of pixels at a given instant of time in synchronism with the pixel output at that instant.

  19. A focal plane metrology system and PSF centroiding experiment

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Li, Baoquan; Cao, Yang; Li, Ligang

    2016-10-01

    In this paper, we present an overview of a detector array equipment metrology testbed and a micro-pixel centroiding experiment currently under development at the National Space Science Center, Chinese Academy of Sciences. We discuss on-going development efforts aimed at calibrating the intra-/inter-pixel quantum efficiency and pixel positions for scientific grade CMOS detector, and review significant progress in achieving higher precision differential centroiding for pseudo star images in large area back-illuminated CMOS detector. Without calibration of pixel positions and intrapixel response, we have demonstrated that the standard deviation of differential centroiding is below 2.0e-3 pixels.

  20. Locality-constrained anomaly detection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Li, Wei; Du, Qian; Liu, Kui

    2015-12-01

    Detecting a target with low-occurrence-probability from unknown background in a hyperspectral image, namely anomaly detection, is of practical significance. Reed-Xiaoli (RX) algorithm is considered as a classic anomaly detector, which calculates the Mahalanobis distance between local background and the pixel under test. Local RX, as an adaptive RX detector, employs a dual-window strategy to consider pixels within the frame between inner and outer windows as local background. However, the detector is sensitive if such a local region contains anomalous pixels (i.e., outliers). In this paper, a locality-constrained anomaly detector is proposed to remove outliers in the local background region before employing the RX algorithm. Specifically, a local linear representation is designed to exploit the internal relationship between linearly correlated pixels in the local background region and the pixel under test and its neighbors. Experimental results demonstrate that the proposed detector improves the original local RX algorithm.

  1. An efficient computational approach to model statistical correlations in photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian; Maier, Joscha; Sawall, Stefan

    2016-07-15

    Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel instead of an estimated 10{sup 8} random numbers per ray as Monte Carlo approaches would need. The spatial–spectral correlations as described by IMA are not important for the studied image-based material decomposition task. Respecting the absolute photon counts and thus the multiple counter increases by a single x-ray photon, the same material decomposition performance could be obtained with a simpler detector description using the energy bin sensitivity.« less

  2. Study on warning radius of diffuse reflection laser warning based on fish-eye lens

    NASA Astrophysics Data System (ADS)

    Chen, Bolin; Zhang, Weian

    2013-09-01

    The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.

  3. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.

  4. X-ray photon correlation spectroscopy using a fast pixel array detector with a grid mask resolution enhancer.

    PubMed

    Hoshino, Taiki; Kikuchi, Moriya; Murakami, Daiki; Harada, Yoshiko; Mitamura, Koji; Ito, Kiminori; Tanaka, Yoshihito; Sasaki, Sono; Takata, Masaki; Jinnai, Hiroshi; Takahara, Atsushi

    2012-11-01

    The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance.

  5. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  6. An alternative approach to depth of field which avoids the blur circle and uses the pixel pitch

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert

    2015-09-01

    Modern thermal imaging systems apply more and more uncooled detectors. High volume applications work with detectors which have a reduced pixel count (typical between 200x150 and 640x480). This shrinks the application of modern image treatment procedures like wave front coding. On the other hand side, uncooled detectors demand lenses with fast F-numbers near 1.0. Which are the limits on resolution if the target to analyze changes its distance to the camera system? The aim to implement lens arrangements without any focusing mechanism demands a deeper quantification of the Depth of Field problem. The proposed Depth of Field approach avoids the classic "accepted image blur circle". It bases on a camera specific depth of focus which is transformed in the object space by paraxial relations. The traditional RAYLEIGH's -criterion bases on the unaberrated Point Spread Function and delivers a first order relation for the depth of focus. Hence, neither the actual lens resolution neither the detector impact is considered. The camera specific depth of focus respects a lot of camera properties: Lens aberrations at actual F-number, detector size and pixel pitch. The through focus MTF is the base of the camera specific depth of focus. It has a nearly symmetric course around the maximum of sharp imaging. The through focus MTF is considered at detector's Nyquist frequency. The camera specific depth of focus is this the axial distance in front and behind of sharp image plane where the through focus MTF is <0.25. This camera specific depth of focus is transferred in the object space by paraxial relations. It follows a general applicable Depth of Field diagram which could be applied to lenses realizing a lateral magnification range -0.05…0. Easy to handle formulas are provided between hyperfocal distance and the borders of the Depth of Field in dependence on sharp distances. These relations are in line with the classical Depth of Field-theory. Thermal pictures, taken by different IR-camera cores, illustrate the new approach. The quite often requested graph "MTF versus distance" choses the half Nyquist frequency as reference. The paraxial transfer of the through focus MTF in object space distorts the MTF-curve: hard drop at closer distances than sharp distance, smooth drop at further distances. The formula of a general Diffraction-Limited-Through-Focus-MTF (DLTF) is deducted. Arbitrary detector-lens combinations could be discussed. Free variables in this analysis are waveband, aperture based F-number (lens) and pixel pitch (detector). The DLTF- discussion provides physical limits and technical requirements. The detector development with pixel pitches smaller than captured wavelength in the LWIR-region generates a special challenge for optical design.

  7. Noise propagation issues in Belle II pixel detector power cable

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  8. Comparison of high resolution x-ray detectors with conventional FPDs using experimental MTFs and apodized aperture pixel design for reduced aliasing

    NASA Astrophysics Data System (ADS)

    Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.

  9. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    NASA Astrophysics Data System (ADS)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  10. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less

  11. Experimental realization of a metamaterial detector focal plane array.

    PubMed

    Shrekenhamer, David; Xu, Wangren; Venkatesh, Suresh; Schurig, David; Sonkusale, Sameer; Padilla, Willie J

    2012-10-26

    We present a metamaterial absorber detector array that enables room-temperature, narrow-band detection of gigahertz (GHz) radiation in the S band (2-4 GHz). The system is implemented in a commercial printed circuit board process and we characterize the detector sensitivity and angular dependence. A modified metamaterial absorber geometry allows for each unit cell to act as an isolated detector pixel and to collectively form a focal plane array . Each pixel can have a dedicated microwave receiver chain and functions together as a hybrid device tuned to maximize the efficiency of detected power. The demonstrated subwavelength pixel shows detected sensitivity of -77 dBm, corresponding to a radiation power density of 27 nW/m(2), with pixel to pixel coupling interference below -14 dB at 2.5 GHz.

  12. Improvement of spatial resolution in a Timepix based CdTe photon counting detector using ToT method

    NASA Astrophysics Data System (ADS)

    Park, Kyeongjin; Lee, Daehee; Lim, Kyung Taek; Kim, Giyoon; Chang, Hojong; Yi, Yun; Cho, Gyuseong

    2018-05-01

    Photon counting detectors (PCDs) have been recognized as potential candidates in X-ray radiography and computed tomography due to their many advantages over conventional energy-integrating detectors. In particular, a PCD-based X-ray system shows an improved contrast-to-noise ratio, reduced radiation exposure dose, and more importantly, exhibits a capability for material decomposition with energy binning. For some applications, a very high resolution is required, which translates into smaller pixel size. Unfortunately, small pixels may suffer from energy spectral distortions (distortion in energy resolution) due to charge sharing effects (CSEs). In this work, we propose a method for correcting CSEs by measuring the point of interaction of an incident X-ray photon by the time-of-threshold (ToT) method. Moreover, we also show that it is possible to obtain an X-ray image with a reduced pixel size by using the concept of virtual pixels at a given pixel size. To verify the proposed method, modulation transfer function (MTF) and signal-to-noise ratio (SNR) measurements were carried out with the Timepix chip combined with the CdTe pixel sensor. The X-ray test condition was set at 80 kVp with 5 μA, and a tungsten edge phantom and a lead line phantom were used for the measurements. Enhanced spatial resolution was achieved by applying the proposed method when compared to that of the conventional photon counting method. From experiment results, MTF increased from 6.3 (conventional counting method) to 8.3 lp/mm (proposed method) at 0.3 MTF. On the other hand, the SNR decreased from 33.08 to 26.85 dB due to four virtual pixels.

  13. The Speedster-EXD- A New Event-Driven Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2016-01-01

    The Speedster-EXD is a new 64×64 pixel, 40-μm pixel pitch, 100-μm depletion depth hybrid CMOS x-ray detector with the capability of reading out only those pixels containing event charge, thus enabling fast effective frame rates. A global charge threshold can be specified, and pixels containing charge above this threshold are flagged and read out. The Speedster detector has also been designed with other advanced in-pixel features to improve performance, including a low-noise, high-gain capacitive transimpedance amplifier that eliminates interpixel capacitance crosstalk (IPC), and in-pixel correlated double sampling subtraction to reduce reset noise. We measure the best energy resolution on the Speedster-EXD detector to be 206 eV (3.5%) at 5.89 keV and 172 eV (10.0%) at 1.49 keV. The average IPC to the four adjacent pixels is measured to be 0.25%±0.2% (i.e., consistent with zero). The pixel-to-pixel gain variation is measured to be 0.80%±0.03%, and a Monte Carlo simulation is applied to better characterize the contributions to the energy resolution.

  14. Circuit for high resolution decoding of multi-anode microchannel array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B. (Inventor)

    1995-01-01

    A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.

  15. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications. PMID:27147324

  16. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.

  17. Section 1: Interfacial reactions and grain growth in ferroelectric SrBi{sub 2}Ta{sub 2}O (SBT) thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, B.D.; Zhang, X.; Desu, S.B.

    1997-04-01

    Much of the cost of traditional infrared cameras based on narrow-bandgap photoelectric semiconductors comes from the cryogenic cooling systems required to achieve high detectivity. Detectivity is inversely proportional to noise. Generation-recombination noise in photoelectric detectors increases roughly exponentially with temperature, but thermal noise in photoelectric detectors increases only linearly with temperature. Therefore `thermal detectors perform far better at room temperature than 8-14 {mu}m photon detectors.` Although potentially more affordable, uncooled pyroelectric cameras are less sensitive than cryogenic photoelectric cameras. One way to improve the sensitivity to cost ratio is to deposit ferroelectric pixels with good electrical properties directly on mass-produced,more » image-processing chips. `Good` properties include a strong temperature dependence of the remanent polarization, P{sub r}, or the relative dielectric constant, {epsilon}{sub r}, for sensitive operation in pyroelectric or dielectric mode, respectively, below or above the Curie temperature, which is 320 C for SBT. When incident infrared radiation is chopped, small oscillations in pixel temperature produce pyroelectric or dielectric alternating currents. The sensitivity of ferroelectric thermal detectors depends strongly on pixel microstructure, since P{sub r} and {epsilon}{sub r} increase with grain size during annealing. To manufacture SBT pixels on Si chips, acceptable SBT grain growth must be achieved at the lowest possible oxygen annealing temperature, to avoid damaging the Si chip below. Therefore current technical progress describes how grain size, reaction layer thickness, and electrical properties develop during the annealing of SBT pixels deposited on Si.« less

  18. Superlattice Barrier Infrared Detector Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Rafol, Sir B.; Nguyen, Jean; Hoglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.

    2011-01-01

    We report recent efforts in achieving state-of-the-art performance in type-II superlattice based infrared photodetectors using the barrier infrared detector architecture. We used photoluminescence measurements for evaluating detector material and studied the influence of the material quality on the intensity of the photoluminescence. We performed direct noise measurements of the superlattice detectors and demonstrated that while intrinsic 1/f noise is absent in superlattice heterodiode, side-wall leakage current can become a source of strong frequency-dependent noise. We developed an effective dry etching process for these complex antimonide-based superlattices that enabled us to fabricate single pixel devices as well as large format focal plane arrays. We describe the demonstration of a 1024x1024 pixel long-wavelength infrared focal plane array based the complementary barrier infrared detector (CBIRD) design. An 11.5 micron cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 ?m cutoff focal plane array are also presented.

  19. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  20. Development of slow control system for the Belle II ARICH counter

    NASA Astrophysics Data System (ADS)

    Yonenaga, M.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yusa, Y.

    2017-12-01

    A slow control system (SCS) for the Aerogel Ring Imaging Cherenkov (ARICH) counter in the Belle II experiment was newly developed and coded in the development frameworks of the Belle II DAQ software. The ARICH is based on 420 Hybrid Avalanche Photo-Detectors (HAPDs). Each HAPD has 144 pixels to be readout and requires 6 power supply (PS) channels, therefore a total number of 2520 PS channels and 60,480 pixels have to be configured and controlled. Graphical User Interfaces (GUIs) with detector oriented view and device oriented view, were also implemented to ease the detector operation. The ARICH SCS is in operation for detector construction and cosmic rays tests. The paper describes the detailed features of the SCS and preliminary results of operation of a reduced set of hardware which confirm the scalability to the full detector.

  1. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    NASA Astrophysics Data System (ADS)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  2. A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Goldberg, Hirsh; Nasrabadi, Nasser M.

    2007-04-01

    In this paper we implement various linear and nonlinear subspace-based anomaly detectors for hyperspectral imagery. First, a dual window technique is used to separate the local area around each pixel into two regions - an inner-window region (IWR) and an outer-window region (OWR). Pixel spectra from each region are projected onto a subspace which is defined by projection bases that can be generated in several ways. Here we use three common pattern classification techniques (Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST)) to generate projection vectors. In addition to these three algorithms, the well-known Reed-Xiaoli (RX) anomaly detector is also implemented. Each of the four linear methods is then implicitly defined in a high- (possibly infinite-) dimensional feature space by using a nonlinear mapping associated with a kernel function. Using a common machine-learning technique known as the kernel trick all dot products in the feature space are replaced with a Mercer kernel function defined in terms of the original input data space. To determine how anomalous a given pixel is, we then project the current test pixel spectra and the spectral mean vector of the OWR onto the linear and nonlinear projection vectors in order to exploit the statistical differences between the IWR and OWR pixels. Anomalies are detected if the separation of the projection of the current test pixel spectra and the OWR mean spectra are greater than a certain threshold. Comparisons are made using receiver operating characteristics (ROC) curves.

  3. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  4. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  5. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    PubMed

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  6. Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey

    2013-04-01

    This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.

  7. Velocity map imaging using an in-vacuum pixel detector.

    PubMed

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J J

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  8. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  9. A review of advances in pixel detectors for experiments with high rate and radiation

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  10. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Adkin, P.; Booker, P.; Coughlan, J.; French, M. J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Carini, G. A.; Hart, P. A.

    2017-12-01

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 105 12 keV photons per image readout at 4.5 MHz. In this paper results from the testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. The performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.

  11. Maximum likelihood positioning and energy correction for scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  12. Introducing a non-pixelated and fast centre of mass detector for differential phase contrast microscopy.

    PubMed

    Schwarzhuber, Felix; Melzl, Peter; Pöllath, Simon; Zweck, Josef

    2018-06-10

    With the advent of probe corrected STEM machines it became possible to probe specimens on a scale of less than 50 pm resolution. This opens completely new horizons for research, as it is e.g. possible to probe the electrostatic fields between individual rows of atoms, using differential phase contrast (DPC). However, in contrast to conventional DPC, where one deals with extended fields which can be assumed constant across the electron probe, this is not possible for sub-atomic probes in DPC. For the latter case it was shown [1,2], that the strongly inhomogeneous field distribution within the probe diameter, which usually is caused by the nuclear potentials of an atomic column, leads to a complicated intensity redistribution within the diffraction disk. The task is then to determine the intensity weighted centre of the diffraction disk pattern (frequently also called centre of mass, COM), which is proportional to the average lateral momentum gained by the average electron, transmitted through the probe diameter. In first reported measurements, the determination of this COM was achieved using a pixelated detector in combination with a software-based evaluation of the COM. This suffers from two disadvantages: first, the nowadays available pixelated detectors are still not very fast (approximately 1000 fps) and quite expensive, and second, the amount of data to be processed after acquisition is comparatively huge. In this paper we report on an alternative to a pixelated detector, which is able to directly deliver the COM of a diffraction disk's intensity distribution with frequencies up to 200 kHz. We present measurements on the sensitivity of this detector as well as first results from DPC imaging. From these results we expect the detector also to serve well in sub-atomic DPC field sensing, possibly replacing today's segmented or pixelated detectors. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Qualification and calibration tests of detector modules for the CMS Pixel Phase 1 upgrade

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Backhaus, M.; Berger, P.; Meinhard, M.; Starodumov, A.; Tavolaro, V.

    2018-01-01

    In high energy particle physics, accelerator- and detector-upgrades always go hand in hand. The instantaneous luminosity of the Large Hadron Collider will increase to up to L = 2×1034cm-2s-1 during Run 2 until 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced early 2017. The so-called CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important production step is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration tests and results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average 0.55‰ ± 0.01‰ defective pixels and that all performance parameters stay within their specifications.

  14. 4.3 μm quantum cascade detector in pixel configuration.

    PubMed

    Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G

    2016-07-25

    We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured.

  15. NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY

    NASA Astrophysics Data System (ADS)

    Gong, Qian

    2018-01-01

    Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory, design, analysis, and fabrication status will be presented.

  16. Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Dragicevic, M.; Friedl, M.; Hrubec, J.; Steininger, H.; Gädda, A.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Winkler, A.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Bonnin, C.; Charles, L.; Gross, L.; Hosselet, J.; Tromson, D.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Pierschel, G.; Preuten, M.; Rauch, M.; Wlochal, M.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schütze, P.; Sola, V.; Spannagel, S.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Kiss, T.; Siklér, F.; Tölyhi, T.; Veszprémi, V.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Focardi, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ceccanti, M.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Magazzu, G.; Mammini, P.; Mariani, F.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Profeti, A.; Raffaelli, F.; Ragonesi, A.; Rizzi, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bonnaud, J.; Daguin, J.; D'Auria, A.; Detraz, S.; Dondelewski, O.; Engegaard, B.; Faccio, F.; Frank, N.; Gill, K.; Honma, A.; Kornmayer, A.; Labaza, A.; Manolescu, F.; McGill, I.; Mersi, S.; Michelis, S.; Onnela, A.; Ostrega, M.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Postema, H.; Rapacz, K.; Sigaud, C.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Verlaat, B.; Vichoudis, P.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Tsai, J.-F.; Tzeng, Y. M.; Cussans, D.; Goldstein, J.; Grimes, M.; Newbold, D.; Hobson, P.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Durkin, T.; Harder, K.; Shepherd-Themistocleous, C.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Dominguez, A.; Bartek, R.; Bentele, B.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Kwan, S.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Siehl, K.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Gerber, C. E.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Schmitz, E.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; D'Angelo, P.; Johns, W.; Rose, K.; Choudhury, S.; Korol, I.; Seitz, C.; Vargas Trevino, A.; Dolinska, G.

    2017-05-01

    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC . The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is 99.95 ± 0.05%, while the intrinsic spatial resolutions are 4.80 ± 0.25 μm and 7.99 ± 0.21 μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.

  17. A 25μm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2mK NETD

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe

    2010-04-01

    CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.

  18. A High Frame Rate Test System for the HEPS-BPIX Based on NI-sbRIO Board

    NASA Astrophysics Data System (ADS)

    Gu, Jingzi; Zhang, Jie; Wei, Wei; Ning, Zhe; Li, Zhenjie; Jiang, Xiaoshan; Fan, Lei; Shen, Wei; Ren, Jiayi; Ji, Xiaolu; Lan, Allan K.; Lu, Yunpeng; Ouyang, Qun; Liu, Peng; Zhu, Kejun; Wang, Zheng

    2017-06-01

    HEPS-BPIX is a silicon pixel detector designed for the future large scientific facility, high-energy photon sources (HEPS) in Beijing, China. It is a high frame rate hybrid pixel detector which works in the single-photon-counting mode. High frame rate leads to much higher readout data bandwidth than former systems, which is also the difficulty of the design. Aiming to test and calibrate the pixel detector, a test system based on the National Instruments single-board RIO 9626 and LabVIEW program environment has been designed. A series of tests has been carried out with X-ray machine as well as on the Beijing Synchrotron Radiation Facility 1W2B beamline. The test results show that the threshold uniformity is better than 60 electrons and the equivalent noise charge is less than 120 electrons. Besides, the required highest frame rate of 1.2 kHz has been realized. This paper will elaborate the test system design and present the latest testing results of the HEPS-BPIX system.

  19. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  20. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  1. Particle tracking with a Timepix based triple GEM detector

    NASA Astrophysics Data System (ADS)

    George, S. P.; Murtas, F.; Alozy, J.; Curioni, A.; Rosenfeld, A. B.; Silari, M.

    2015-11-01

    This paper details the response of a triple GEM detector with a 55 μmetre pitch pixelated ASIC for readout. The detector is operated as a micro TPC with 9.5 cm3 sensitive volume and characterized with a mixed beam of 120 GeV protons and positive pions. A process for reconstruction of incident particle tracks from individual ionization clusters is described and scans of the gain and drift fields are performed. The angular resolution of the measured tracks is characterized. Also, the readout was operated in a mixed mode where some pixels measure drift time and others charge. This was used to measure the energy deposition in the detector and the charge cloud size as a function of interaction depth. The future uses of the device, including in microdosimetry are discussed.

  2. Application of the Medipix2 technology to space radiation dosimetry and hadron therapy beam monitoring

    NASA Astrophysics Data System (ADS)

    Pinsky, Lawrence; Stoffle, Nicholas; Jakubek, Jan; Pospisil, Stanislav; Leroy, Claude; Gutierrez, Andrea; Kitamura, Hisashi; Yasuda, Nakahiro; Uchihori, Yulio

    2011-02-01

    The Medipix2 Collaboration, based at CERN, has developed the TimePix version of the Medipix pixel readout chip, which has the ability to provide either an ADC or TDC capability separately in each of its 256×256 pixels. When coupled to a Si detector layer, the device is an excellent candidate for application as an active dosimeter for use in space radiation environments. In order to facilitate such a development, data have been taken with heavy ions at the HIMAC facility in Chiba, Japan. In particular, the problem of determining the resolution of such a detector system with respect to heavy ions of differing charges and energies, but with similar d E/d x values has been explored for several ions. The ultimate problem is to parse the information in the pixel "footprint" images from the drift of the charge cloud produced in the detector layer. In addition, with the use of convertor materials, the detector can be used as a neutron detector, and it has been used both as a charged particle and neutron detector to evaluate the detailed properties of the radiation fields produced by hadron therapy beams. New versions of the basic chip design are ongoing.

  3. Musculoskeletal imaging with a prototype photon-counting detector.

    PubMed

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  4. Ultrasensitive Kilo-Pixel Imaging Array of Photon Noise-Limited Kinetic Inductance Detectors Over an Octave of Bandwidth for THz Astronomy

    NASA Astrophysics Data System (ADS)

    Bueno, J.; Murugesan, V.; Karatsu, K.; Thoen, D. J.; Baselmans, J. J. A.

    2018-05-01

    We present the development of a background-limited kilo-pixel imaging array of ultrawide bandwidth kinetic inductance detectors (KIDs) suitable for space-based THz astronomy applications. The array consists of 989 KIDs, in which the radiation is coupled to each KID via a leaky lens antenna, covering the frequency range between 1.4 and 2.8 THz. The single pixel performance is fully characterised using a representative small array in terms of sensitivity, optical efficiency, beam pattern and frequency response, matching very well its expected performance. The kilo-pixel array is characterised electrically, finding a yield larger than 90% and an averaged noise-equivalent power lower than 3 × 10^{-19} W/Hz^{1/2} . The interaction between the kilo-pixel array and cosmic rays is studied, with an expected dead time lower than 0.6% when operated in an L2 or a similar far-Earth orbit.

  5. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  6. Microtomography with photon counting detectors: improving the quality of tomographic reconstruction by voxel-space oversampling

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.

    2017-01-01

    Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ling-Jian

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and processmore » the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.« less

  8. Velocity map imaging using an in-vacuum pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256x256 square pixels, 55x55 {mu}m{sup 2}) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 {mu}s. Results of the first time application of the Medipix2 detector to VMImore » are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.« less

  9. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector.

    PubMed

    Long, Jingming; Furch, Federico J; Durá, Judith; Tremsin, Anton S; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J J

    2017-07-07

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (10 4 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO 2 ), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  10. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    NASA Astrophysics Data System (ADS)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (104 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  11. Delay Line Detectors for the UVCS and Sumer Instruments on the SOHO Satellite

    NASA Technical Reports Server (NTRS)

    Seigmund, O. H. W.; Stock, J. M.; Marsh, D. R.; Gummin, M. A.; Raffanti, R.; Hull, J.; Gaines, G. A.; Welsh, B.; Donakowski, B.; Jelinsky, P.; hide

    1994-01-01

    Microchannel plate based detectors with cross delay line image readout have been rapidly implemented for the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in July 1995. In October 1993 a fast track program to build and characterize detectors and detector control electronics was initiated. We present the detector system design for the SOHO UVCS and SUMER detector programs, and results from the detector test program. Two deliverable detectors have been built at this point, a demonstration model for UVCS, and the flight Ly alpha detector for UVCS, both of which are to be delivered in the next few weeks. Test results have also been obtained with one other demonstration detector system. The detector format is 26mm x 9mm, with 1024 x 360 digitized pixels, using a low resistance Z stack of microchannel plates (MCP's) and a multilayer cross delay line anode (XDL). This configuration provides gains of approximately 2 x 10(exp 7) with good pulse height distributions (less than 50% FWHM) under uniform flood illumination, and background levels typical for this configuration (approximately 0.6 event cm (exp -2)sec(exp -1)). Local counting rates up to about 400 events/pixel/sec have been achieved with no degradation of the MCP gain. The detector and event encoding electronics achieves about 25 millimeter FVHM with good linearity (plus or minus approximately 1 pixel) and is stable to high global counting rates (greater than 4 x 10(exp 5) events sec(exp -1)). Flat field images are dominated by MCP fixed pattern noise and are stable, but the MCP multifiber modulation usually expected is uncharacteristically absent. The detector and electronics have also successfully passed both thermal vacuum and vibration tests.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  13. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  14. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    PubMed

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  15. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; ATLAS Collaboration

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  16. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  17. X-ray characterization of a multichannel smart-pixel array detector.

    PubMed

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  18. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.

    PubMed

    Koerner, Lucas J; Gruner, Sol M

    2011-03-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.

  19. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    PubMed Central

    Koerner, Lucas J.; Gruner, Sol M.

    2011-01-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901

  20. Pixel detectors in double beta decay experiments, a new approach for background reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, J. M.; Čermák, P.; Štekl, I.

    Double beta decay (ββ) experiments are challenging frontiers in contemporary physics. These experiments have the potential to investigate more about neutrinos (eg. nature and mass). The main challenge for these experiments is the reduction of background. The group at IEAP, CTU in Prague is investigating a new approach using pixel detectors Timepix. Pixel detector offer background reduction capabilities with its ability to identify the particle interaction (from the 2D signature it generates). However, use of pixel detectors has some challenges such as the presence of readout electronics near the sensing medium and heat dissipation. Different aspects of pixel setup (identificationmore » of radio-impurities, selection of radio-pure materials) and proposed experimental setup are presented. Also, results of preliminary background measurements (performed on the surface and in the underground laboratories) using the prototype setups are presented.« less

  1. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    NASA Astrophysics Data System (ADS)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  2. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  3. Microcomputer control of infrared detector arrays used in direct imaging and in Fabry-Perot spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossano, G.S.

    1989-02-01

    A microcomputer based data acquisition system has been developed for astronomical observing with two-dimensional infrared detector arrays operating at high pixel rates. The system is based on a 16-bit 8086/8087 microcomputer operating at 10 MHz. Data rates of up to 560,000 pixels/sec from arrays of up to 4096 elements are supported using the microcomputer system alone. A hardware co-adder the authors are developing permits data accumulation at rates of up to 1.67 million pixels/sec in both staring and chopped data acquisition modes. The system has been used for direct imaging and for data acquisition in a Fabry-Perot Spectrometer developed bymore » NRL. The hardware is operated using interactive software which supports the several available modes of data acquisition, and permits data display and reduction during observing sessions.« less

  4. Advanced processing of CdTe pixel radiation detectors

    NASA Astrophysics Data System (ADS)

    Gädda, A.; Winkler, A.; Ott, J.; Härkönen, J.; Karadzhinova-Ferrer, A.; Koponen, P.; Luukka, P.; Tikkanen, J.; Vähänen, S.

    2017-12-01

    We report a fabrication process of pixel detectors made of bulk cadmium telluride (CdTe) crystals. Prior to processing, the quality and defect density in CdTe material was characterized by infrared (IR) spectroscopy. The semiconductor detector and Flip-Chip (FC) interconnection processing was carried out in the clean room premises of Micronova Nanofabrication Centre in Espoo, Finland. The chip scale processes consist of the aluminum oxide (Al2O3) low temperature thermal Atomic Layer Deposition (ALD), titanium tungsten (TiW) metal sputtering depositions and an electroless Nickel growth. CdTe crystals with the size of 10×10×0.5 mm3 were patterned with several photo-lithography techniques. In this study, gold (Au) was chosen as the material for the wettable Under Bump Metalization (UBM) pads. Indium (In) based solder bumps were grown on PSI46dig read out chips (ROC) having 4160 pixels within an area of 1 cm2. CdTe sensor and ROC were hybridized using a low temperature flip-chip (FC) interconnection technique. The In-Au cold weld bonding connections were successfully connecting both elements. After the processing the detector packages were wire bonded into associated read out electronics. The pixel detectors were tested at the premises of Finnish Radiation Safety Authority (STUK). During the measurement campaign, the modules were tested by exposure to a 137Cs source of 1.5 TBq for 8 minutes. We detected at the room temperature a photopeak at 662 keV with about 2 % energy resolution.

  5. Development of a long wave infrared detector for SGLI instrument

    NASA Astrophysics Data System (ADS)

    Dariel, Aurélien; Chorier, P.; Reeb, N.; Terrier, B.; Vuillermet, M.; Tribolet, P.

    2007-10-01

    The Japanese Aerospace Exploration Agency (JAXA) will be conducting the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation Global Imager) is an optical sensor on board GCOM-C (Climate), that includes a Long Wave IR Detector (LWIRD) sensitive up to about 13 μm. SGLI will provide high accuracy measurements of the atmosphere (aerosol, cloud ...), the cryosphere (glaciers, snow, sea ice ...), the biomass and the Earth temperature (sea and land). Sofradir is a major supplier of Space industry based on the use of a Space qualified MCT technology for detectors from 0.8 to 15 μm. This mature and reproducible technology has been used for 15 years to produce thousands of LWIR detectors with cut-off wavelengths between 9 and 12 μm. NEC Toshiba Space, prime contractor for the Second Generation Global Imager (SGLI), has selected SOFRADIR for its heritage in space projects and Mercury Cadmium Telluride (MCT) detectors to develop the LWIR detector. This detector includes two detection circuits for detection at 10.8 μm and 12.0 μm, hybridized on a single CMOS readout circuit. Each detection circuit is made of 20x2 square pixels of 140 μm. In order to optimize the overall performance, each pixel is made of 5x5 square sub-pixels of 28 μm and the readout circuit enables sub-pixel deselection. The MCT material and the photovoltaic technology are adapted to maximize response for the requested bandwidths: cut-off wavelengths of the 2 detection circuits are 12.6 and 13.4 μm at 55K. This detector is packaged into a sealed housing for full integration into a Dewar at 55K. This paper describes the main technical requirements, the design features of this detector, including trade-offs regarding performance optimization, and presents preliminary electro-optical results.

  6. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.

  7. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface betweenmore » the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.« less

  8. Modularized compact positron emission tomography detector for rapid system development

    PubMed Central

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2016-01-01

    Abstract. We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is 76  mm×50  mm×55  mm in extent (excluding I/O connectors) and contains an 18×12 array of 4.2×4.2×20  mm3 one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of ∼1.6  mm. PMID:28018941

  9. Pixelated coatings and advanced IR coatings

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  10. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE PAGES

    Veale, M. C.; Adkin, P.; Booker, P.; ...

    2017-12-04

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  11. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veale, M. C.; Adkin, P.; Booker, P.

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  12. Simulations of radiation-damaged 3D detectors for the Super-LHC

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.

    2008-07-01

    Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.

  13. Characterization of a 2-mm thick, 16x16 Cadmium-Zinc-Telluride Pixel Array

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Richardson, Georgia; Mitchell, Shannon; Ramsey, Brian; Seller, Paul; Sharma, Dharma

    2003-01-01

    The detector under study is a 2-mm-thick, 16x16 Cadmium-Zinc-Telluride pixel array with a pixel pitch of 300 microns and inter-pixel gap of 50 microns. This detector is a precursor to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation. In addition, we discuss electric field modeling for this specific detector geometry and the role this mapping will play in terms of charge sharing and charge loss in the detector.

  14. Noise propagation issues in Belle II pixel detector power cable

    DOE PAGES

    Iglesias, M.; Arteche, F.; Echeverria, I.; ...

    2018-04-26

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  15. Noise propagation issues in Belle II pixel detector power cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, M.; Arteche, F.; Echeverria, I.

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  16. MT3825BA: a 384×288-25µm ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Gulden, M. Ali; Bayhan, Nusret; Incedere, O. Samet; Soyer, S. Tuncer; Ustundag, Cem M. B.; Isikhan, Murat; Kocak, Serhat; Turan, Ozge; Yalcin, Cem; Akin, Tayfun

    2014-06-01

    This paper reports the development of a new microbolometer Readout Integrated Circuit (ROIC) called MT3825BA. It has a format of 384 × 288 and a pixel pitch of 25μm. MT3825BA is Mikro-Tasarim's second microbolometer ROIC product, which is developed specifically for resistive surface micro-machined microbolometer detector arrays using high-TCR pixel materials, such as VOx and a-Si. MT3825BA has a system-on-chip architecture, where all the timing, biasing, and pixel non-uniformity correction (NUC) operations in the ROIC are applied using on-chip circuitry simplifying the use and system integration of this ROIC. The ROIC is designed to support pixel resistance values ranging from 30 KΩ to 100 KΩ. MT3825BA is operated using conventional row based readout method, where pixels in the array are read out in a row-by-row basis, where the applied bias for each pixel in a given row is updated at the beginning of each line period according to the applied line based NUC data. The NUC data is applied continuously in a row-by-row basis using the serial programming interface, which is also used to program user configurable features of the ROIC, such as readout gain, integration time, and number of analog video outputs. MT3825BA has a total of 4 analog video outputs and 2 analog reference outputs, placed at the top and bottom of the ROIC, which can be programmed to operate in the 1, 2, and 4-output modes, supporting frames rates well above 60 fps at a 3 MHz pixel output rate. The pixels in the array are read out with respect to reference pixels implemented above and below actual array pixels. The bias voltage of the pixels can be programmed over a 1.0 V range to compensate for the changes in the detector resistance values due to the variations coming from the manufacturing process or changes in the operating temperature. The ROIC has an on-chip integrated temperature sensor with a sensitivity of better than 5 mV / K, and the output of the temperature sensor can be read out the output as part of the analog video stream. MT3825BA can be used to build a microbolometer FPAs with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a detector resistance value up to 100 KΩ, a high TCR value (< 2 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). MT3825BA measures 13.0 mm × 13.5 mm and is fabricated on 200 mm CMOS wafers. The microbolometer ROIC wafers are engineered to have flat surface finish to simplify the wafer level detector fabrication and wafer level vacuum packaging (WLVP). The ROIC runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 85 mW in the 2-output mode at 30 fps. Mikro-Tasarim provides tested ROIC wafers and offers compact test electronics and software for its ROIC customers to shorten their FPA and camera development cycles.

  17. Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2015-08-01

    Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.

  18. Modeling radiation damage to pixel sensors in the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  19. DEPFET pixel detector for future e-e+ experiments

    NASA Astrophysics Data System (ADS)

    Boronat, M.; DEPFET Collaboration

    2016-04-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future e+e- collider experiments. A DEPFET sensor provides, simultaneously, position sensitive detector capabilities and in-pixel amplification by the integration of a field effect transistor on a fully depleted silicon bulk. The characterization of the latest DEPFET prototypes has proven that a comfortable signal to noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 μm. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. The close to Belle related final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the Belle II required read-out speed. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a solid candidate for the International Linear Collider (ILC). Therefore, in this paper, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future e+e- collider.

  20. X-ray Hybrid CMOS Detectors : Recent progress in development and characterization

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.

    2017-08-01

    PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame,more » in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.« less

  2. Study of cluster shapes in a monolithic active pixel detector

    NASA Astrophysics Data System (ADS)

    Maçzewski, ł.; Adamus, M.; Ciborowski, J.; Grzelak, G.; łużniak, P.; Nieżurawski, P.; Żarnecki, A. F.

    2009-11-01

    Beamstrahlung will constitute an important source of background in a pixel vertex detector at the future International Linear Collider. Electron and positron tracks of this origin impact the pixel planes at angles generally larger than those of secondary hadrons and the corresponding clusters are elongated. We report studies of cluster characteristics using test beam electron tracks incident at various angles on a MIMOSA-5 monolithic active pixel sensor matrix.

  3. Simulation and Measurement of Absorbed Dose from 137 Cs Gammas Using a Si Timepix Detector

    NASA Technical Reports Server (NTRS)

    Stoffle, Nicholas; Pinsky, Lawrence; Empl, Anton; Semones, Edward

    2011-01-01

    The TimePix readout chip is a hybrid pixel detector with over 65k independent pixel elements. Each pixel contains its own circuitry for charge collection, counting logic, and readout. When coupled with a Silicon detector layer, the Timepix chip is capable of measuring the charge, and thus energy, deposited in the Silicon. Measurements using a NIST traceable 137Cs gamma source have been made at Johnson Space Center using such a Si Timepix detector, and this data is compared to simulations of energy deposition in the Si layer carried out using FLUKA.

  4. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  5. Techniques for precise energy calibration of particle pixel detectors.

    PubMed

    Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  6. Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragicevic, M.; Friedl, M.; Hrubec, J.

    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. Here in this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency ismore » $$99.95\\pm0.05\\,\\%$$, while the intrinsic spatial resolutions are $$4.80\\pm0.25\\,\\mu \\mathrm{m}$$ and $$7.99\\pm0.21\\,\\mu \\mathrm{m}$$ along the $$100\\,\\mu \\mathrm{m}$$ and $$150\\,\\mu \\mathrm{m}$$ pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.« less

  7. Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    DOE PAGES

    Dragicevic, M.; Friedl, M.; Hrubec, J.; ...

    2017-05-30

    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. Here in this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency ismore » $$99.95\\pm0.05\\,\\%$$, while the intrinsic spatial resolutions are $$4.80\\pm0.25\\,\\mu \\mathrm{m}$$ and $$7.99\\pm0.21\\,\\mu \\mathrm{m}$$ along the $$100\\,\\mu \\mathrm{m}$$ and $$150\\,\\mu \\mathrm{m}$$ pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.« less

  8. A generic readout system for astrophysical detectors

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  9. Angular resolution of the gaseous micro-pixel detector Gossip

    NASA Astrophysics Data System (ADS)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  10. Study of the material of the ATLAS inner detector for Run 2 of the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-07

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studiedmore » using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less

  11. Study of the material of the ATLAS inner detector for Run 2 of the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studiedmore » using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less

  12. Study of the material of the ATLAS inner detector for Run 2 of the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s = 13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel regionmore » is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less

  13. Study of the material of the ATLAS inner detector for Run 2 of the LHC

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; RØhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2017-12-01

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb-1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.

  14. Study of the material of the ATLAS inner detector for Run 2 of the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-07

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s = 13 TeV pp collision sample corresponding to around 2.0 nb -1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel regionmore » is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.« less

  15. Using a pulsed laser beam to investigate the feasibility of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors

    DOE PAGES

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-04-20

    For this study, we evaluated the X-Y position resolution achievable in 3D pixelated detectors by processing the signal waveforms readout from neighboring pixels. In these measurements we used a focused light beam, down to 10 μm, generated by a ~1 mW pulsed laser (650 nm) to carry out raster scans over selected 3×3 pixel areas, while recording the charge signals from the 9 pixels and the cathode using two synchronized digital oscilloscopes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, J. M.; Čermák, P.; Fajt, L.

    The SPT collaboration has been investigating the applicability of pixel detectors in the detection of two neutrino double electron capture (2νEC/EC) in{sup 106}Cd. The collaboration has proposed a Silicon Pixel Telescope (SPT) where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. The Pixel detector gives spatial information along with energy of the particle, thus helps to identify and remove the background signals. Four units of SPT prototype (using 0.5 and 1 mm Si sensors) were fabricated and installed in the LSM underground laboratory, France. Recent progress in the SPT experiment and preliminarymore » results from background measurements are presented.« less

  17. Beam test results of the BTeV silicon pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriele Chiodini et al.

    2000-09-28

    The authors have described the results of the BTeV silicon pixel detector beam test. The pixel detectors under test used samples of the first two generations of Fermilab pixel readout chips, FPIX0 and FPIX1, (indium bump-bonded to ATLAS sensor prototypes). The spatial resolution achieved using analog charge information is excellent for a large range of track inclination. The resolution is still very good using only 2-bit charge information. A relatively small dependence of the resolution on bias voltage is observed. The resolution is observed to depend dramatically on the discriminator threshold, and it deteriorates rapidly for threshold above 4000e{sup {minus}}.

  18. The Maia Spectroscopy Detector System: Engineering for Integrated Pulse Capture, Low-Latency Scanning and Real-Time Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, R.; Siddons, D.; Dunn, P.A.

    2010-06-23

    The Maia detector system is engineered for energy dispersive x-ray fluorescence spectroscopy and elemental imaging at photon rates exceeding 10{sup 7}/s, integrated scanning of samples for pixel transit times as small as 50 {micro}s and high definition images of 10{sup 8} pixels and real-time processing of detected events for spectral deconvolution and online display of pure elemental images. The system developed by CSIRO and BNL combines a planar silicon 384 detector array, application-specific integrated circuits for pulse shaping and peak detection and sampling and optical data transmission to an FPGA-based pipelined, parallel processor. This paper describes the system and themore » underpinning engineering solutions.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixelmore » pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.« less

  1. Small FDIRC designs

    DOE PAGES

    Dey, B.; Ratcliff, B.; Va’vra, J.

    2017-02-16

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  2. Small FDIRC designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, B.; Ratcliff, B.; Va’vra, J.

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  3. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  4. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  5. Recent progress and development of a speedster-EXD: a new event-triggered hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2015-08-01

    We present the characterization of a new event-driven X-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Along with its low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up, the Speedster-EXD has been designed with the capability to limit its readout to only those pixels containing charge, thus enabling even faster effective frame rates. The threshold for the comparator in each pixel can be set by the user so that only pixels with signal above the set threshold are read out. The Speedster-EXD hybrid CMOS detector also has two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate crosstalk from interpixel capacitance (IPC) and (2) in-pixel CDS subtraction to reduce kTC noise. We present the read noise, dark current, IPC, energy resolution, and gain variation measurements of one Speedster-EXD detector.

  6. Evaluating video digitizer errors

    NASA Astrophysics Data System (ADS)

    Peterson, C.

    2016-01-01

    Analog output video cameras remain popular for recording meteor data. Although these cameras uniformly employ electronic detectors with fixed pixel arrays, the digitization process requires resampling the horizontal lines as they are output in order to reconstruct the pixel data, usually resulting in a new data array of different horizontal dimensions than the native sensor. Pixel timing is not provided by the camera, and must be reconstructed based on line sync information embedded in the analog video signal. Using a technique based on hot pixels, I present evidence that jitter, sync detection, and other timing errors introduce both position and intensity errors which are not present in cameras which internally digitize their sensors and output the digital data directly.

  7. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  8. A Low-Noise X-ray Astronomical Silicon-On-Insulator Pixel Detector Using a Pinned Depleted Diode Structure

    PubMed Central

    Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go

    2017-01-01

    This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO2 interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e−rms, low dark current density of 56 pA/cm2 at −35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV. PMID:29295523

  9. A Low-Noise X-ray Astronomical Silicon-On-Insulator Pixel Detector Using a Pinned Depleted Diode Structure.

    PubMed

    Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2017-12-23

    This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO₂ interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e - rms , low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.

  10. Evaluation of a CdTe semiconductor based compact γ camera for sentinel lymph node imaging.

    PubMed

    Russo, Paolo; Curion, Assunta S; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caracò, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-01

    The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. The room-temperature CdTe pixel detector (1 mm thick) has 256 x 256 square pixels arranged with a 55 microm pitch (sensitive area 14.08 x 14.08 mm2), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. For 99 mTc, at 50 mm distance, a background-subtracted sensitivity of 6.5 x 10(-3) cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3 x 10(-2) cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq 99 mTc and prior localization with standard gamma camera lymphoscintigraphy. The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.

  11. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.

    PubMed

    Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of 21.3%. The photopeak amplitude of the BaSO 4 array with 80 μm reflector almost doesn't change with depth, it provides the best energy resolution of 12.9%. A maximum timing shift of 1.37 ns to 1.61 ns among the corner and the center crystals in the four arrays was obtained due to the use of resistor network readout. A crystal based timing resolution of 0.68 ns to 0.83 ns and a detector based timing resolution of 1.26 ns to 1.45 ns were obtained for the four detector modules. Four high resolution depth encoding small animal PET detectors were developed using dual-ended readout of pixelated scintillator arrays with SiPMs. The performance results show that those detectors can be used to build a small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. © 2017 American Association of Physicists in Medicine.

  12. Modulate chopper technique used in pyroelectric uncooled focal plane array thermal imager

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Jin, Weiqi; Liu, Guangrong; Gao, Zhiyun; Wang, Xia; Wang, Lingxue

    2002-09-01

    Pyroelectric uncooled focal plane array (FPA) thermal imager has the advantages of low cost, small size, high responsibility and can work under room temperature, so it has great progress in recent years. As a matched technique, the modulate chopper has become one of the key techniques in uncooled FPA thermal imaging system. Now the Archimedes spiral cord chopper technique is mostly used. When it works, the chopper pushing scans the detector's pixel array, thus makes the pixels being exposed continuously. This paper simulates the shape of this kind of chopper, analyses the exposure time of the detector's every pixel, and also analyses the whole detector pixels' exposure sequence. From the analysis we can get the results: the parameter of Archimedes spiral cord, the detector's thermal time constant, the detector's geometrical dimension, the relative position of the detector to the chopper's spiral cord are the system's important parameters, they will affect the chopper's exposure efficiency and uniformity. We should design the chopper's relevant parameter according to the practical request to achieve the chopper's appropriate structure.

  13. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    NASA Astrophysics Data System (ADS)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm2, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  14. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  15. TU-FG-209-03: Exploring the Maximum Count Rate Capabilities of Photon Counting Arrays Based On Polycrystalline Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, A K; Koniczek, M; Antonuk, L E

    Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailedmore » circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed circuit simulations and prototyping is expected. Partially supported by NIH grant R01-EB000558. This work was partially supported by NIH grant no. R01-EB000558.« less

  16. The stability of TlBr detectors at low temperature

    NASA Astrophysics Data System (ADS)

    Dönmez, Burçin; He, Zhong; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.

    2010-11-01

    Thallium bromide (TlBr) is a promising semiconductor detector material due to its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm 3) and wide band gap (2.68 eV). Current TlBr detectors suffer from polarization, which causes performance degradation over time when high voltage is applied. A 4.6-mm thick TlBr detector with pixellated anodes made by Radiation Monitoring Devices Inc. was used in the experiments. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0-mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board for pulse shaping. Several experiments were carried out at -20 °C while the detector was under bias for over a month. No polarization effect was observed and the detector's spectroscopic performance improved over time. Energy resolution of 1.5% FWHM at 662 keV has been measured without depth correction at -2000 V cathode bias. Average electron mobility-lifetime of (5.7±0.8) ×10 -3 cm 2/V has been measured from four anode pixels.

  17. Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav

    2011-10-01

    Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).

  18. Demonstration of Lasercom and Spatial Tracking with a Silicon Geiger-Mode APD Array

    DTIC Science & Technology

    2016-02-26

    standardized pixel mask as described in the previous paragraph disabling 167 of the 1024 detectors in the array , this gives an absolute maximum rate...number of elements in an array based detector .5 In this paper, we present the results of photon-counting communication tests based on an arrayed ...semiconductor photon-counting detector .6 The array also has the ability to sense the spatial distribution of the received light giving it the potential to act

  19. Microradiography with Semiconductor Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri

    High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  20. Spectral Target Detection using Schroedinger Eigenmaps

    NASA Astrophysics Data System (ADS)

    Dorado-Munoz, Leidy P.

    Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.

  1. Large Format, Background Limited Arrays of Kinetic Inductance Detectors for Sub-mm Astronomy

    NASA Astrophysics Data System (ADS)

    Baselmans, Jochem

    2018-01-01

    We present the development of large format imaging arrays for sub-mm astronomy based upon microwave Kinetic Inductance detectors and their read-out. In particular we focus on the arrays developed for the A-MKID instrument for the APEX telescope. AMKID contains 2 focal plane arrays, covering a field of view of 15?x15?. One array is optimized for the 350 GHz telluric window, the other for the 850 GHz window. Both arrays are constructed from four 61 x 61 mm detector chips, each of which contains up to 3400 detectors and up to 880 detectors per readout line. The detectors are lens antenna coupled MKIDs made from NbTiN and Aluminium that reach photon noise limited sensitivity in combination with a high optical coupling. The lens-antenna radiation coupling enables the use of 4K optics and Lyot stop due to the intrinsic directivity of the detector beam, allowing a simple cryogenic architecture. We discuss the pixel design and verification, detector packaging and the array performance. We will also discuss the readout system, which is a combination of a digital and analog back-end that can read-out up to 4000 pixels simultaneously using frequency division multiplexing.

  2. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  3. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gatingmore » time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.« less

  5. Development of a Timepix based detector for the NanoXCT project

    NASA Astrophysics Data System (ADS)

    Nachtrab, F.; Hofmann, T.; Speier, C.; Lučić, J.; Firsching, M.; Uhlmann, N.; Takman, P.; Heinzl, C.; Holmberg, A.; Krumm, M.; Sauerwein, C.

    2015-11-01

    The NanoXCT EU FP7 project [1] aims at developing a laboratory, i.e. bench top sized X-ray nano-CT system with a large field-of-view (FOV) for non-destructive testing needs in the micro- and nano-technology sector. The targeted voxel size is 50 nm at 0.175 mm FOV, the maximum FOV is 1 mm at 285 nm voxel size. Within the project a suitable X-ray source, detector and manipulation system have been developed. The system concept [2] omits the use of X-ray optics, to be able to provide a large FOV of up to 1 mm and to preserve the flexibility of state-of-the-art micro-CT systems. The targeted resolution will be reached via direct geometric magnification made possible by the development of a specialized high-flux nano-focus transmission X-ray tube. The end-user's demand for elemental analysis will be covered by energy-resolved measurement techniques, in particular a K-edge imaging method. Timepix [3] modules were chosen as the basis for the detector system, since a photon counting detector is advantageous for the long exposure times that come with very small focal spot sizes. Additional advantages are the small pixel size and adjustable energy threshold. To fulfill the requirements on field-of-view, a detector width 0> 300 pixels was needed. The NanoXCT detector consists of four Hexa modules with 500 μm silicon sensors supplied by X-ray Imaging Europe. An adapter board was developed to connect all four modules to one Fitpix3 readout. The final detector has an active area of 3072 × 512 pixels or approximately 17 × 3 cm2.In this contribution we present the development of the Timepix based NanoXCT detector, it's application in the NanoXCT project for CT and material specific measurements and the current status of results.

  6. High throughput reconfigurable data analysis system

    NASA Technical Reports Server (NTRS)

    Bearman, Greg (Inventor); Pelletier, Michael J. (Inventor); Seshadri, Suresh (Inventor); Pain, Bedabrata (Inventor)

    2008-01-01

    The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.

  7. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    NASA Astrophysics Data System (ADS)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  8. iPadPix—A novel educational tool to visualise radioactivity measured by a hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Keller, O.; Schmeling, S.; Müller, A.; Benoit, M.

    2016-11-01

    With the ability to attribute signatures of ionising radiation to certain particle types, pixel detectors offer a unique advantage over the traditional use of Geiger-Müller tubes also in educational settings. We demonstrate in this work how a Timepix readout chip combined with a standard 300μm pixelated silicon sensor can be used to visualise radioactivity in real-time and by means of augmented reality. The chip family is the result of technology transfer from High Energy Physics at CERN and facilitated by the Medipix Collaboration. This article summarises the development of a prototype based on an iPad mini and open source software detailed in ref. [1]. Appropriate experimental activities that explore natural radioactivity and everyday objects are given to demonstrate the use of this new tool in educational settings.

  9. The bipolar silicon microstrip detector: A proposal for a novel precision tracking device

    NASA Astrophysics Data System (ADS)

    Horisberger, R.

    1990-03-01

    It is proposed to combine the technology of fully depleted silicon microstrip detectors fabricated on n doped high resistivity silicon with the concept of the bipolar transistor. This is done by adding a n ++ doped region inside the normal p + implanted region of the reverse biased p + n diode. Teh resulting structure has amplifying properties and is referred to as bipolar pixel transistor. The simplest readout scheme of a bipolar pixel array by an aluminium strip bus leads to the bipolar microstrip detector. The bipolar pixel structure is expected to give a better signal-to-noise performance for the detection of minimum ionizing charged particle tracks than the normal silicon diode strip detector and therefore should allow in future the fabrication of thinner silicon detectors for precision tracking.

  10. ePix: a class of architectures for second generation LCLS cameras

    DOE PAGES

    Dragone, A.; Caragiulo, P.; Markovic, B.; ...

    2014-03-31

    ePix is a novel class of ASIC architectures, based on a common platform, optimized to build modular scalable detectors for LCLS. The platform architecture is composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog-to-digital converters per column. It also implements a dedicated control interface and all the required support electronics to perform configuration, calibration and readout of the matrix. Based on this platform a class of front-end ASICs and several camera modules, meeting different requirements, can be developed by designing specific pixel architectures. This approach reduces development time andmore » expands the possibility of integration of detector modules with different size, shape or functionality in the same camera. The ePix platform is currently under development together with the first two integrating pixel architectures: ePix100 dedicated to ultra low noise applications and ePix10k for high dynamic range applications.« less

  11. Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.

    2018-02-01

    To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.

  12. Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit

    NASA Astrophysics Data System (ADS)

    Kozlinskiy, Alexandr

    2017-08-01

    The Mu3e experiment is designed to search for the lepton flavor violating decay μ+ → e+e+e-. The aim of the experiment is to reach a branching ratio sensitivity of 10-16. In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland) providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10-15. The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons) with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 μm × 80 μm allows for a precise track reconstruction in the high multiplicity environment of the Mu3e experiment, reaching 100 tracks per reconstruction frame of 50 ns in the final phase of the experiment. To deal with such high rates and combinatorics, the Mu3e track reconstruction uses a novel fit algorithm that in the simplest case takes into account only the multiple scattering, which allows for a fast online tracking on a GPU based filter farm. An implementation of the 3-dimensional multiple scattering fit based on hit triplets is described. The extension of the fit that takes into account energy losses and pixel size is used for offline track reconstruction. The algorithm and performance of the offline track reconstruction based on a full Geant4 simulation of the Mu3e detector are presented.

  13. The Detector Subsystem for the SXS Instrument on the Astro-H Observatory

    NASA Technical Reports Server (NTRS)

    Porter, Frederick; Adams, J. S.; Brown, G. V.; Chervenak, J. A.; Chiao, M. P.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; hide

    2011-01-01

    The Soft X-ray Spectrometer (SXS) instrument on the Astro-H observatory is based on a 36 pixel x-ray calorimeter array cooled to 50 mK in a sophisticated spaceflight cryostat. The SXS is a true spatial-spectral instrument, where each spatially discrete pixel functions as a high-resolution spectrometer. Here we discuss the SXS detector subsystem that includes the detector array, the anticoincidence detector, the first stage amplifiers, the thermal and mechanical staging of the detector, and the cryogenic bias electronics. The design of the SXS detector subsystem has significant heritage from the Suzaku/XRS instrument but has some important modifications that increase performance margins and simplify the focal plane assembly. Notable improvements include x-ray absorbers with significantly lower heat capacity, improved load resistors, improved thermometry, and a decreased sensitivity to thermal radiation. These modifications have yielded an energy resolution of 3.5-4.0 eV FWHM at 6 keV for representative devices in the laboratory, giving considerable margin against the 7 eV instrument requirement. We expect similar performance in flight

  14. AO WFS detector developments at ESO to prepare for the E-ELT

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Casali, Mark; Finger, Gert; Lewis, Steffan; Marchetti, Enrico; Mehrgan, Leander; Ramsay, Suzanne; Reyes, Javier

    2016-07-01

    ESO has a very active on-going AO WFS detector development program to not only meet the needs of the current crop of instruments for the VLT, but also has been actively involved in gathering requirements, planning, and developing detectors and controllers/cameras for the instruments in design and being proposed for the E-ELT. This paper provides an overall summary of the AO WFS Detector requirements of the E-ELT instruments currently in design and telescope focal units. This is followed by a description of the many interesting detector, controller, and camera developments underway at ESO to meet these needs; a) the rationale behind and plan to upgrade the 240x240 pixels, 2000fps, "zero noise", L3Vision CCD220 sensor based AONGC camera; b) status of the LGSD/NGSD High QE, 3e- RoN, fast 700fps, 1760x1680 pixels, Visible CMOS Imager and camera development; c) status of and development plans for the Selex SAPHIRA NIR eAPD and controller. Most of the instruments and detector/camera developments are described in more detail in other papers at this conference.

  15. Performance verification of the CMS Phase-1 Upgrade Pixel detector

    NASA Astrophysics Data System (ADS)

    Veszpremi, V.

    2017-12-01

    The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3 cm and 110 cm in radius and up to 280 cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2 m 2 total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200 m 2 total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC . The current strip detector continues to perform very well. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suited to match the increased instantaneous luminosity the LHC would reach before 2023. It was built to operate at an instantaneous luminosity of around 2×1034 cm-2s-1. The detector's new layout has an additional inner layer with respect to the previous one; it allows for more efficient tracking with smaller fake rate at higher event pile-up. The paper focuses on the first results obtained during the commissioning of the new detector. It also includes challenges faced during the first data taking to reach the optimal measurement efficiency. Details will be given on the performance at high occupancy with respect to observables such as data-rate, hit reconstruction efficiency, and resolution.

  16. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro-magnetic pulse (EMP). The calibrated detector system was finally used for online detection of laser-accelerated proton and carbon ions at the Astra-Gemini laser.

  17. Large Format CMOS-based Detectors for Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.

    2013-03-01

    Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.

  18. Reproducibility and calibration of MMC-based high-resolution gamma detectors

    DOE PAGES

    Bates, C. R.; Pies, C.; Kempf, S.; ...

    2016-07-15

    Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.

  19. Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current

    NASA Astrophysics Data System (ADS)

    Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.

    2017-09-01

    We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.

  20. Centroid measurement error of CMOS detector in the presence of detector noise for inter-satellite optical communications

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Shihong; Ma, Jing; Tan, Liying; Shen, Tao

    2013-08-01

    CMOS is a good candidate tracking detector for satellite optical communications systems with outstanding feature of sub-window for the development of APS (Active Pixel Sensor) technology. For inter-satellite optical communications it is critical to estimate the direction of incident laser beam precisely by measuring the centroid position of incident beam spot. The presence of detector noise results in measurement error, which degrades the tracking performance of systems. In this research, the measurement error of CMOS is derived taking consideration of detector noise. It is shown that the measurement error depends on pixel noise, size of the tracking sub-window (pixels number), intensity of incident laser beam, relative size of beam spot. The influences of these factors are analyzed by numerical simulation. We hope the results obtained in this research will be helpful in the design of CMOS detector satellite optical communications systems.

  1. The analysis and rationale behind the upgrading of existing standard definition thermal imagers to high definition

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.

    2016-05-01

    With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.

  2. Electron imaging with Medipix2 hybrid pixel detector.

    PubMed

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  3. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  4. High resolution 1280×1024, 15 μm pitch compact InSb IR detector with on-chip ADC

    NASA Astrophysics Data System (ADS)

    Nesher, O.; Pivnik, I.; Ilan, E.; Calalhorra, Z.; Koifman, A.; Vaserman, I.; Oiknine Schlesinger, J.; Gazit, R.; Hirsh, I.

    2009-05-01

    Over the last decade, SCD has developed and manufactured high quality InSb Focal Plane Arrays (FPAs), which are currently used in many applications worldwide. SCD's production line includes many different types of InSb FPA with formats of 320x256, 480x384 and 640x512 elements and with pitch sizes in the range of 15 to 30 μm. All these FPAs are available in various packaging configurations, including fully integrated Detector-Dewar-Cooler Assemblies (DDCA) with either closed-cycle Sterling or open-loop Joule-Thomson coolers. With an increasing need for higher resolution, SCD has recently developed a new large format 2-D InSb detector with 1280x1024 elements and a pixel size of 15μm. The InSb 15μm pixel technology has already been proven at SCD with the "Pelican" detector (640x512 elements), which was introduced at the Orlando conference in 2006. A new signal processor was developed at SCD for use in this mega-pixel detector. This Readout Integrated Circuit (ROIC) is designed for, and manufactured with, 0.18 μm CMOS technology. The migration from 0.5 to 0.18 μm CMOS technology supports SCD's roadmap for the reduction of pixel size and power consumption and is in line with the increasing demand for improved performance and on-chip functionality. Consequently, the new ROIC maintains the same level of performance and functionality with a 15 μm pitch, as exists in our 20 μm-pitch ROICs based on 0.5μm CMOS technology. Similar to Sebastian (SCD ROIC with A/D on chip), this signal processor also includes A/D converters on the chip and demonstrates the same level of performance, but with reduced power consumption. The pixel readout rate has been increased up to 160 MHz in order to support a high frame rate, resulting in 120 Hz operation with a window of 1024×1024 elements at ~130 mW. These A/D converters on chip save the need for using 16 A/D channels on board (in the case of an analog ROIC) which would operate at 10 MHz and consume about 8Watts A Dewar has been designed with a stiffened detector support to withstand harsh environmental conditions with a minimal contribution to the heat load of the detector. The combination of the 0.18μm-based low power CMOS technology for the ROIC and the stiffening of the detector support within the Dewar has enabled the use of the Ricor K508 cryo-cooler (0.5 W). This has created a high-resolution detector in a very compact package. In this paper we present the basic concept of the new detector. We will describe its construction and will present electrical and radiometric characterization results.

  5. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  6. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  7. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  8. Ultrahigh-frame CCD imagers

    NASA Astrophysics Data System (ADS)

    Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.

    2004-02-01

    This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.

  9. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  10. KENIS: a high-performance thermal imager developed using the OSPREY IR detector

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Baker, Ian M.

    2000-07-01

    `KENIS', a complete, high performance, compact and lightweight thermal imager, is built around the `OSPREY' infrared detector from BAE systems Infrared Ltd. The `OSPREY' detector uses a 384 X 288 element CMT array with a 20 micrometers pixel size and cooled to 120 K. The relatively small pixel size results in very compact cryogenics and optics, and the relatively high operating temperature provides fast start-up time, low power consumption and long operating life. Requiring single input supply voltage and consuming less than 30 watts of power, the thermal imager generates both analogue and digital format outputs. The `KENIS' lens assembly features a near diffraction limited dual field-of-view optical system that has been designed to be athermalized and switches between fields in less than one second. The `OSPREY' detector produces near background limited performance with few defects and has special, pixel level circuitry to eliminate crosstalk and blooming effects. This, together with signal processing based on an effective two-point fixed pattern noise correction algorithm, results in high quality imagery and a thermal imager that is suitable for most traditional thermal imaging applications. This paper describes the rationale used in the development of the `KENIS' thermal imager, and highlights the potential performance benefits to the user's system, primarily gained by selecting the `OSPREY' infra-red detector within the core of the thermal imager.

  11. The 150 ns detector project: Prototype preamplifier results

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, S.

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less

  13. A 400 KHz line rate 2048-pixel stitched SWIR linear array

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick

    2016-05-01

    Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (<20mV). An on-chip Correlated Double Sample (CDS) facilitates removal of CTIA KTC and 1/f noise, and other offsets, achieving low noise performance. There are five gain modes in the FPA giving the full well range from 85Ke- to 40Me-. The measured input referred noise is 35e-rms in the highest gain mode. The FPA operates in Integrate While Read mode and, at a master clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.

  14. DEPFET detectors for future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Marinas, C.

    2015-11-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-Franç

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time andmore » energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.« less

  16. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  17. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Q; Brehler, M; Sisniega, A

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection)more » using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high-frequency imaging tasks through adoption of the CMOS detector and small FS x-ray source, motivating the use of these components in a new system for quantitative in-vivo imaging of trabecular bone. Financial Support: US NIH grant R01EB018896. Qian Cao is a Howard Hughes Medical Institute International Student Research Fellow. Disclosures: W Zbijewski, J Siewerdsen and A Sisniega receive research funding from Carestream Health.« less

  18. A history of hybrid pixel detectors, from high energy physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  19. Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor

    NASA Technical Reports Server (NTRS)

    Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.

    2011-01-01

    Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.

  20. Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches

    NASA Astrophysics Data System (ADS)

    Gleixner, T.; Anton, G.; Filipenko, M.; Seller, P.; Veale, M. C.; Wilson, M. D.; Zang, A.; Michel, T.

    2015-07-01

    Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view.

  1. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    PubMed

    Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.

  2. Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength Sample Analysis.

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2000-09-12

    A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.

  3. Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength.

    DOEpatents

    Liu, Changsheng; Li, Qingbo (State College, PA

    1999-12-07

    A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.

  4. Scalable gamma-ray camera for wide-area search based on silicon photomultipliers array

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Van, Benjamin; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.

    2018-03-01

    Portable coded-aperture imaging systems based on scintillators and semiconductors have found use in a variety of radiological applications. For stand-off detection of weakly emitting materials, large volume detectors can facilitate the rapid localization of emitting materials. We describe a scalable coded-aperture imaging system based on 5.02 × 5.02 cm2 CsI(Tl) scintillator modules, each partitioned into 4 × 4 × 20 mm3 pixels that are optically coupled to 12 × 12 pixel silicon photo-multiplier (SiPM) arrays. The 144 pixels per module are read-out with a resistor-based charge-division circuit that reduces the readout outputs from 144 to four signals per module, from which the interaction position and total deposited energy can be extracted. All 144 CsI(Tl) pixels are readily distinguishable with an average energy resolution, at 662 keV, of 13.7% FWHM, a peak-to-valley ratio of 8.2, and a peak-to-Compton ratio of 2.9. The detector module is composed of a SiPM array coupled with a 2 cm thick scintillator and modified uniformly redundant array mask. For the image reconstruction, cross correlation and maximum likelihood expectation maximization methods are used. The system shows a field of view of 45° and an angular resolution of 4.7° FWHM.

  5. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  6. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers

    NASA Astrophysics Data System (ADS)

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-01

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 109 Mcps mm-2 in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (<=10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous. The possible choices are, however, quite limited, since only 'mature' materials, which operate at room temperature and can be manufactured reliably should reasonably be considered. Since GaAs is still known to cause reliability problems, the simplest choice is Si, however with the drawback of strong Compton scatter which can cause considerable inter-pixel cross-talk. To investigate the potential and the problems of Si in a multi-layer detector, in this paper the combination of top detector layers made of Si with lower layers made of Cd[Zn]Te is studied by using Monte Carlo simulated detector responses. It is found that the inter-pixel cross-talk due to Compton scatter is indeed very high; however, with an appropriate cross-talk correction scheme, which is also described, the negative effects of cross-talk are shown to be removed to a very large extent.

  7. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    DOE PAGES

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less

  8. Computational imaging with a single-pixel detector and a consumer video projector

    NASA Astrophysics Data System (ADS)

    Sych, D.; Aksenov, M.

    2018-02-01

    Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.

  9. Terahertz imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam

    Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.

  10. Pixel-based characterisation of CMOS high-speed camera systems

    NASA Astrophysics Data System (ADS)

    Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.

    2011-05-01

    Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

  11. Dosimetric characterization with 62 MeV protons of a silicon-segmented detector for 2D dose verifications in radiotherapy

    NASA Astrophysics Data System (ADS)

    Talamonti, C.; Bucciolini, M.; Marrazzo, L.; Menichelli, D.; Bruzzi, M.; Cirrone, G. A. P.; Cuttone, G.; LoJacono, P.

    2008-10-01

    Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications.

  12. Random telegraph signal (RTS) noise and other anomalies in the near-infrared detector systems for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Kohley, Ralf; Barbier, Rémi; Kubik, Bogna; Ferriol, Sylvain; Clemens, Jean-Claude; Ealet, Anne; Secroun, Aurélia; Conversi, Luca; Strada, Paolo

    2016-08-01

    Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared spectro-photometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3μm cut-off wavelength and SIDECAR readout electronics. The performance of the detector systems is critical to the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses a variety of undesired pixel behaviour including the known effect of random telegraph signal (RTS) noise based on initial on-ground test results from demonstrator model detector systems. Some stability aspects of the RTS pixel populations are addressed as well.

  13. Demonstration of a superconducting nanowire single photon detector with an ultrahigh polarization extinction ratio over 400.

    PubMed

    Xu, Ruiying; Li, Yongchao; Zheng, Fan; Zhu, Guanghao; Kang, Lin; Zhang, Labao; Jia, Xiaoqing; Tu, Xuecou; Zhao, Qingyuan; Jin, Biaobing; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2018-02-19

    Polarization sensitive photo-detectors are the key to the implementation of the polarimetric imaging systems, which are proved to have superior performance than their traditional counterparts based on intensity discriminations. In this article, we report the demonstration of a superconducting nanowire single photon detector (SNSPD) of which the response is ultra-sensitive to the polarization state of the incident photons. Measurements carried out on a fabricated SNSPD show that a device efficiency of ~48% can be achieved at 1550 nm for the case of parallel polarization, which is ~420 times larger than that for the case of perpendicular polarization. While the reported polarization ultra-sensitive technique is demonstrated on a single-pixel SNSPD, it is also fully compatible with the multi-pixel SNSPD array platforms that emerged recently.

  14. Advanced testing of the DEPFET minimatrix particle detector

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.

    2012-01-01

    The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.

  15. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like geostationary telecom platforms.

  16. Fixed forced detection for fast SPECT Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cajgfinger, T.; Rit, S.; Létang, J. M.; Halty, A.; Sarrut, D.

    2018-03-01

    Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.

  17. Fixed forced detection for fast SPECT Monte-Carlo simulation.

    PubMed

    Cajgfinger, T; Rit, S; Létang, J M; Halty, A; Sarrut, D

    2018-03-02

    Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.

  18. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm

    PubMed Central

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  19. Recent X-ray hybrid CMOS detector developments and measurements

    NASA Astrophysics Data System (ADS)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  20. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.

  1. Advances on Sensitive Electron-injection based Cameras for Low-Flux, Short-Wave-Infrared Applications

    NASA Astrophysics Data System (ADS)

    Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman

    2016-08-01

    Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two generations of development and optimization cycles. We review our imager results using the first-generation detectors. In the second-generation devices, the dark current is reduced by two orders of magnitude, and bandwidth is improved by 4 orders of magnitude. The dark current density of the EI detector is shown to outperform the state-of-the-art technology, the

  2. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    PubMed Central

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = −0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches. PMID:27795606

  3. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector.

    PubMed

    Jorgensen, Steven M; Vercnocke, Andrew J; Rundle, David S; Butler, Philip H; McCollough, Cynthia H; Ritman, Erik L

    2016-08-28

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  4. Studies on a 300 k pixel detector telescope

    NASA Astrophysics Data System (ADS)

    Middelkamp, Peter; Antinori, F.; Barberis, D.; Becks, K. H.; Beker, H.; Beusch, W.; Burger, P.; Campbell, M.; Cantatore, E.; Catanesi, M. G.; Chesi, E.; Darbo, G.; D'Auria, S.; Davia, C.; di Bari, D.; di Liberto, S.; Elia, D.; Gys, T.; Heijne, E. H. M.; Helstrup, H.; Jacholkowski, A.; Jæger, J. J.; Jakubek, J.; Jarron, P.; Klempt, W.; Krummenacher, F.; Knudson, K.; Kralik, I.; Kubasta, J.; Lasalle, J. C.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lopez, L.; Loukas, D.; Luptak, M.; Martinengo, P.; Meddeler, G.; Meddi, F.; Morando, M.; Munns, A.; Pellegrini, F.; Pengg, F.; Pospisil, S.; Quercigh, E.; Ridky, J.; Rossi, L.; Safarik, K.; Scharfetter, L.; Segato, G.; Simone, S.; Smith, K.; Snoeys, W.; Vrba, V.

    1996-02-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e- has been measured to be less than 10-10. The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm2. Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam.

  5. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.« less

  6. MOCCA: A 4k-Pixel Molecule Camera for the Position- and Energy-Resolving Detection of Neutral Molecule Fragments at CSR

    NASA Astrophysics Data System (ADS)

    Gamer, L.; Schulz, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Kempf, S.; Krantz, C.; Novotný, O.; Schwalm, D.; Wolf, A.

    2016-08-01

    We present the design of MOCCA, a large-area particle detector that is developed for the position- and energy-resolving detection of neutral molecule fragments produced in electron-ion interactions at the Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg. The detector is based on metallic magnetic calorimeters and consists of 4096 particle absorbers covering a total detection area of 44.8 mathrm {mm} × 44.8 mathrm {mm}. Groups of four absorbers are thermally coupled to a common paramagnetic temperature sensor where the strength of the thermal link is different for each absorber. This allows attributing a detector event within this group to the corresponding absorber by discriminating the signal rise times. A novel readout scheme further allows reading out all 1024 temperature sensors that are arranged in a 32 × 32 square array using only 16+16 current-sensing superconducting quantum interference devices. Numerical calculations taking into account a simplified detector model predict an energy resolution of Δ E_mathrm {FWHM} le 80 mathrm {eV} for all pixels of this detector.

  7. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  8. Quantitative evaluation method of the threshold adjustment and the flat field correction performances of hybrid photon counting pixel detectors

    NASA Astrophysics Data System (ADS)

    Medjoubi, K.; Dawiec, A.

    2017-12-01

    A simple method is proposed in this work for quantitative evaluation of the quality of the threshold adjustment and the flat-field correction of Hybrid Photon Counting pixel (HPC) detectors. This approach is based on the Photon Transfer Curve (PTC) corresponding to the measurement of the standard deviation of the signal in flat field images. Fixed pattern noise (FPN), easily identifiable in the curve, is linked to the residual threshold dispersion, sensor inhomogeneity and the remnant errors in flat fielding techniques. The analytical expression of the signal to noise ratio curve is developed for HPC and successfully used as a fit function applied to experimental data obtained with the XPAD detector. The quantitative evaluation of the FPN, described by the photon response non-uniformity (PRNU), is measured for different configurations (threshold adjustment method and flat fielding technique) and is demonstrated to be used in order to evaluate the best setting for having the best image quality from a commercial or a R&D detector.

  9. In-Vivo Real-Time X-ray μ-Imaging

    NASA Astrophysics Data System (ADS)

    Dammer, Jiri; Holy, Tomas; Jakubek, Jan; Jakubek, Martin; Pospisil, Stanislav; Vavrík, Daniel

    2007-11-01

    The technique of X-ray transmission imaging is available for more than 100 years and it is still one of the fastest and easiest ways how to study the internal structure of living biological samples. The advances in semiconductor technology in last years make possible to fabricate new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Especially semiconductor pixel detectors seem to be very promising. Compared to the film technique they bring single-quantum and real-time digital information about the studied object with high resolution, high sensitivity and broad dynamic range. These pixel detector-based imaging stand promising as a new tool in the field of small animal imaging, for cancer research and for observation of dynamic processes inside organisms. These detectors open up for instance new possibilities for researchers to perform non-invasive studies of tissue for mutations or pathologies and to monitor disease progression or response to therapy.

  10. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  11. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    NASA Astrophysics Data System (ADS)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  12. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  13. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  14. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  15. Collection of holes in thick TlBr detectors at low temperature

    NASA Astrophysics Data System (ADS)

    Dönmez, Burçin; He, Zhong; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.

    2012-10-01

    A 3.5×3.5×4.6 mm3 thick TlBr detector with pixellated Au/Cr anodes made by Radiation Monitoring Devices Inc. was studied. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0 mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board. Several experiments were carried out at -20 °C, with the detector under bias for over a month. An energy resolution of 1.7% FWHM at 662 keV was measured without any correction at -2400 V bias. Holes generated at all depths can be collected by the cathode at -2400 V bias which made depth correction using the cathode-to-anode ratio technique difficult since both charge carriers contribute to the signal. An energy resolution of 5.1% FWHM at 662 keV was obtained from the best pixel electrode without depth correction at +1000 V bias. In this positive bias case, the pixel electrode was actually collecting holes. A hole mobility-lifetime of 0.95×10-4 cm2/V has been estimated from measurement data.

  16. A noiseless, kHz frame rate imaging detector for AO wavefront sensors based on MCPs read out with the Medipix2 CMOS pixel chip

    NASA Astrophysics Data System (ADS)

    Vallerga, J. V.; McPhate, J. B.; Tremsin, A. S.; Siegmund, O. H. W.; Mikulec, B.; Clark, A. G.

    2004-12-01

    Future wavefront sensors in adaptive optics (AO) systems for the next generation of large telescopes (> 30 m diameter) will require large formats (512x512) , kHz frame rates, low readout noise (<3 electrons) and high optical QE. The current generation of CCDs cannot achieve the first three of these specifications simultaneously. We present a detector scheme that can meet the first three requirements with an optical QE > 40%. This detector consists of a vacuum tube with a proximity focused GaAs photocathode whose photoelectrons are amplified by microchannel plates and the resulting output charge cloud counted by a pixelated CMOS application specific integrated circuit (ASIC) called the Medipix2 (http://medipix.web.cern.ch/MEDIPIX/). Each 55 micron square pixel of the Medipix2 chip has an amplifier, discriminator and 14 bit counter and the 256x256 array can be read out in 287 microseconds. The chip is 3 side abuttable so a 512x512 array is feasible in one vacuum tube. We will present the first results with an open-faced, demountable version of the detector where we have mounted a pair of MCPs 500 microns above a Medipix2 readout inside a vacuum chamber and illuminated it with UV light. The results include: flat field response, spatial resolution, spatial linearity on the sub-pixel level and global event counting rate. We will also discuss the vacuum tube design and the fabrication issues associated with the Medipix2 surviving the tube making process.

  17. Overview of the ATLAS Insertable B-Layer (IBL) Project

    NASA Astrophysics Data System (ADS)

    Kagan, M. A.

    2014-06-01

    The first upgrade for the Pixel Detector will be a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. A production quality control test bench was set up in the ATLAS inner detector assembly clean room to verify and rate the performance of the detector elements before integration around the beam-pipe. An overview of the IBL project, of the module design, the qualification for these sensor technologies, the integration quality control setups and recent results in the construction of this full scale new concept detector is discussed.

  18. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  19. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  20. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  1. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    PubMed

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  2. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers.

    PubMed

    Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S

    2014-12-07

    The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.

  3. Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS).

    PubMed

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Titus, Albert; Rudin, Stephen

    2013-03-06

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  4. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  5. QWIPs at IRnova, a status update

    NASA Astrophysics Data System (ADS)

    Martijn, Henk; Gamfeldt, Anders; Asplund, Carl; Smuk, Sergiy; Kataria, Himanshu; Costard, Eric

    2016-05-01

    IRnova has a long history of producing QWIPs for the LWIR band. In this paper we give an overview of the current products (FPAs with 640x480 and 384x288 pixels respectively, and 25 μm pitch) and their performance. Their superior stability and uniformity inherent to detectors based on III/V material system will be demonstrated. Furthermore, an IDCA specifically designed for hand-held systems used for the detection of SF6 gas using a 0.5 W cooler will be presented. The detector format is 320x256 pixels with 30 μm pitch using the ISC9705 read out circuit. The peak wavelength is at 10.55 μm and the NETD is 22 mK.

  6. Silicon pixel-detector R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  7. Performance overview of the Euclid infrared focal plane detector subsystems

    NASA Astrophysics Data System (ADS)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  8. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  9. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  10. The Phase-II ATLAS ITk pixel upgrade

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-07-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase-II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 m2 of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| <4. Supporting structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide circulated in thin-walled titanium pipes embedded in the structures. Planar, 3D, and CMOS sensors are being investigated to identify the optimal technology, which may be different for the various layers. The RD53 Collaboration is developing the new readout chip. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gb/s per data link will be needed in the innermost layers going down to 640 Mb/s for the outermost. Because of the very high radiation level inside the detector, the first part of the transmission has to be implemented electrically, with signals converted for optical transmission at larger radii. Extensive tests are being carried out to prove the feasibility of implementing serial powering, which has been chosen as the baseline for the ITk pixel system due to the reduced material in the servicing cables foreseen for this option.

  11. Kinetic Inductance Detectors for Measuring the Polarization of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Flanigan, Daniel

    Kinetic inductance detectors (KIDs) are superconducting thin-film microresonators that are sensitive photon detectors. These detectors are a candidate for the next generation of experiments designed to measure the polarization of the cosmic microwave background (CMB). I discuss the basic theory needed to understand the response of a KID to light, focusing on the dynamics of the quasiparticle system. I derive an equation that describes the dynamics of the quasiparticle number, solve it in a simplified form not previously published, and show that it can describe the dynamic response of a detector. Magnetic flux vortices in a superconducting thin film can be a significant source of dissipation, and I demonstrate some techniques to prevent their formation. Based on the presented theory, I derive a corrected version of a widely-used equation for the quasiparticle recombination noise in a KID. I show that a KID consisting of a lumped-element resonator can be sensitive enough to be limited by photon noise, which is the fundamental limit for photometry, at a level of optical loading below levels in ground-based CMB experiments. Finally, I describe an ongoing project to develop multichroic KID pixels that are each sensitive to two linear polarization states in two spectral bands, intended for the next generation of CMB experiments. I show that a prototype 23-pixel array can detect millimeter-wave light, and present characterization measurements of the detectors.

  12. Improved Reference Sampling and Subtraction: A Technique for Reducing the Read Noise of Near-infrared Detector Systems

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Wen, Yiting; Wilson, Donna V.; Xenophontos, Christos

    2017-10-01

    Near-infrared array detectors, like the James Webb Space Telescope (JWST) NIRSpec’s Teledyne’s H2RGs, often provide reference pixels and a reference output. These are used to remove correlated noise. Improved reference sampling and subtraction (IRS2) is a statistical technique for using this reference information optimally in a least-squares sense. Compared with the traditional H2RG readout, IRS2 uses a different clocking pattern to interleave many more reference pixels into the data than is otherwise possible. Compared with standard reference correction techniques, IRS2 subtracts the reference pixels and reference output using a statistically optimized set of frequency-dependent weights. The benefits include somewhat lower noise variance and much less obvious correlated noise. NIRSpec’s IRS2 images are cosmetically clean, with less 1/f banding than in traditional data from the same system. This article describes the IRS2 clocking pattern and presents the equations needed to use IRS2 in systems other than NIRSpec. For NIRSpec, applying these equations is already an option in the calibration pipeline. As an aid to instrument builders, we provide our prototype IRS2 calibration software and sample JWST NIRSpec data. The same techniques are applicable to other detector systems, including those based on Teledyne’s H4RG arrays. The H4RG’s interleaved reference pixel readout mode is effectively one IRS2 pattern.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector to be used for time-resolved X-ray scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and a depletion depth of 10 μm. The multichannel scaler counted X-ray pulses over continuous 2046 time bins for every 0.5 ns and recorded a time spectrum at each pixel with a time resolution of 0.5 ns (FWHM) for 8.0 keV X-rays. Using the detector system, we were able to observe X-ray peaks clearly separated with 2 nsmore » interval in the multibunch-mode operation of the Photon Factory ring. The small-angle X-ray scattering for polyvinylidene fluoride film was also observed with the detector.« less

  14. The Belle II Pixel Detector Data Acquisition and Background Suppression System

    NASA Astrophysics Data System (ADS)

    Lautenbach, K.; Deschamps, B.; Dingfelder, J.; Getzkow, D.; Geßler, T.; Konorov, I.; Kühn, W.; Lange, S.; Levit, D.; Liu, Z.-A.; Marinas, C.; Münchow, D.; Rabusov, A.; Reiter, S.; Spruck, B.; Wessel, C.; Zhao, J.

    2017-06-01

    The Belle II experiment at the future SuperKEKB collider in Tsukuba, Japan, features a design luminosity of 8 · 1035 cm-2s-1, which is a factor of 40 larger than that of its predecessor Belle. The pixel detector (PXD) with about 8 million pixels is based on the DEPFET technology and will improve the vertex resolution in beam direction by a factor of 2. With an estimated trigger rate of 30 kHz, the PXD is expected to generate a data rate of 20 GBytes/s, which is about 10 times larger than the amount of data generated by all other Belle II subdetectors. Due to the large beam-related background, the PXD requires a data acquisition system with high-bandwidth data links and realtime background reduction by a factor of 30. To achieve this, the Belle II pixel DAQ uses an FPGA-based computing platform with high speed serial links implemented in the ATCA (Advanced Telecommunications Computing Architecture) standard. The architecture and performance of the data acquisition system and data reduction of the PXD will be presented. In April 2016 and February 2017 a prototype PXD-DAQ system operated in a test beam campaign delivered data with the whole readout chain under realistic high rate conditions. Final results from the beam test will be presented.

  15. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers.

    PubMed

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-21

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 10⁹ Mcps mm⁻² in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (≤ 10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous. The possible choices are, however, quite limited, since only 'mature' materials, which operate at room temperature and can be manufactured reliably should reasonably be considered. Since GaAs is still known to cause reliability problems, the simplest choice is Si, however with the drawback of strong Compton scatter which can cause considerable inter-pixel cross-talk. To investigate the potential and the problems of Si in a multi-layer detector, in this paper the combination of top detector layers made of Si with lower layers made of Cd[Zn]Te is studied by using Monte Carlo simulated detector responses. It is found that the inter-pixel cross-talk due to Compton scatter is indeed very high; however, with an appropriate cross-talk correction scheme, which is also described, the negative effects of cross-talk are shown to be removed to a very large extent.

  16. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray detectors for commercial DBT systems. Our findings suggest that the Dexela detector can be applied to the DBT system with regard to its high imaging performance.

  17. 75 FR 82372 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ..., Argonne LLC, 9700 South Cass Ave., Lemont, IL 60439. Instrument: Pilatus 100K Pixel Detector System... efficiency (no readout noise and direct detection scheme), high dynamic range (20-bits), and fast readout.... Instrument: Pilatus 300K Pixel Detector System. Manufacturer: Dectris Ltd., Switzerland. Intended Use: The...

  18. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array withoutmore » any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.« less

  19. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  20. Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun

    2005-01-01

    Results of a survey of instrumentation and detector systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-infrared wavelengths. Some of the most prominent trends include the development of vastly larger optical detector systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-infrared detectors - something that was quite rare only a decade ago in astronomy. Some future science applications for detectors are then explored, in an attempt to build a bridge between current detectors and what will be needed to support the research ambitions of astronomers in the future.

  1. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  2. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  3. Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs

    NASA Astrophysics Data System (ADS)

    Schug, David; Wehner, Jakob; Goldschmidt, Benjamin; Lerche, Christoph; Dueppenbecker, Peter Michael; Hallen, Patrick; Weissler, Bjoern; Gebhardt, Pierre; Kiessling, Fabian; Schulz, Volkmar

    2015-06-01

    In positron emission tomography (PET) systems, light sharing techniques are commonly used to readout scintillator arrays consisting of scintillation elements, which are smaller than the optical sensors. The scintillating element is then identified evaluating the signal heights in the readout channels using statistical algorithms, the center of gravity (COG) algorithm being the simplest and mostly used one. We propose a COG algorithm with a fixed number of input channels in order to guarantee a stable calculation of the position. The algorithm is implemented and tested with the raw detector data obtained with the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's (PDPC) digitial SiPMs. The gamma detectors use LYSO scintillator arrays with 30 ×30 crystals of 1 ×1 ×12 mm3 in size coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) via a 2-mm-thick light guide. These self-triggering sensors are made up of 2 ×2 pixels resulting in a total of 64 readout channels. We restrict the COG calculation to a main pixel, which captures most of the scintillation light from a crystal, and its (direct and diagonal) neighboring pixels and reject single events in which this data is not fully available. This results in stable COG positions for a crystal element and enables high spatial image resolution. Due to the sensor layout, for some crystals it is very likely that a single diagonal neighbor pixel is missing as a result of the low light level on the corresponding DPC. This leads to a loss of sensitivity, if these events are rejected. An enhancement of the COG algorithm is proposed which handles the potentially missing pixel separately both for the crystal identification and the energy calculation. Using this advancement, we show that the sensitivity of the Hyperion-II D insert using the described scintillator configuration can be improved by 20-100% for practical useful readout thresholds of a single DPC pixel ranging from 17-52 photons. Furthermore, we show that the energy resolution of the scanner is superior for all readout thresholds if singles with a single missing pixel are accepted and correctly handled compared to the COG method only accepting singles with all neighbors present by 0-1.6% (relative difference). The presented methods can not only be applied to gamma detectors employing DPC sensors, but can be generalized to other similarly structured and self-triggering detectors, using light sharing techniques, as well.

  4. Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K. E.; Labov, S.; Collins, J.; Cook, W. R.; McLean, R.; Harrison, F.

    2009-07-01

    We have constructed a moderately large area (32cm), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256cm) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2cm×2cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512cm) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5m area) required in EXIST/HET.

  5. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution

    NASA Astrophysics Data System (ADS)

    Seifert, Stefan; van der Lei, Gerben; van Dam, Herman T.; Schaart, Dennis R.

    2013-05-01

    Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM). Here, we present a first experimental characterization of a TOF PET detector comprising a 24 × 24 × 10 mm3 LSO:Ce,0.2%Ca scintillator read out by a dSiPM array (DPC-6400-44-22) developed by Philips Digital Photon Counting. A spatial resolution of ˜1 mm full-width-at-half-maximum (FWHM) averaged over the entire crystal was obtained (varying from just below 1 mm FWHM in the detector center to ˜1.2 mm FWHM close to the edges). Furthermore, the bias in the position estimation at the crystal edges that is typically found in monolithic scintillators is well below 1 mm even in the corners of the crystal.

  6. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  7. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  8. Small pixel cross-talk MTF and its impact on MWIR sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Willers, Cornelius J.

    2017-05-01

    As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.

  9. Operation of an InGrid based X-ray detector at the CAST experiment

    NASA Astrophysics Data System (ADS)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.

  10. New concept of a submillimetric pixellated Silicon detector for intracerebral application

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Märk, J.; Weiss, P.; Benoit, D.; Clemens, J. C.; Fougeron, D.; Janvier, B.; Jevaud, M.; Karkar, S.; Menouni, M.; Pain, F.; Pinot, L.; Morel, C.; Laniece, P.

    2011-12-01

    A new beta+ radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a volume of brain tissue of a few mm3 has been developed recently. This project expands the concept of the previously designed beta microprobe, which has been validated extensively in neurobiological experiments performed on anesthetized animals. Due to its limitations considering recordings on awake and freely moving animals, we have proposed to develop a wireless setup that can be worn by an animal without constraining its movements. To that aim, we have chosen a highly beta sensitive Silicon-based detector to devise a compact pixellated probe. Miniaturized wireless electronics is used to read-out and transfer the measurement data. Initial Monte-Carlo simulations showed that high resistive Silicon pixels are appropriate for this purpose, with their dimensions to be adapted to our specific signals. More precisely, we demonstrated that 200 μm thick pixels with an area of 200 μm×500 μm are optimized in terms of beta+sensitivity versus relative transparency to the gamma background. Based on this theoretical study, we now present the development of the novel sensor, including the system simulations with technology computer-assisted design (TCAD) to investigate specific configurations of guard rings and their potential to increase the electrical isolation and stabilization of the pixel, as well as the corresponding physical tests to validate the particular geometries of this new sensor.

  11. Tritium autoradiography with thinned and back-side illuminated monolithic active pixel sensor device

    NASA Astrophysics Data System (ADS)

    Deptuch, G.

    2005-05-01

    The first autoradiographic results of the tritium ( 3H) marked source obtained with monolithic active pixel sensors are presented. The detector is a high-resolution, back-side illuminated imager, developed within the SUCIMA collaboration for low-energy (<30 keV) electrons detection. The sensitivity to these energies is obtained by thinning the detector, originally fabricated in the form of a standard VLSI chip, down to the thickness of the epitaxial layer. The detector used is the 1×10 6 pixel, thinned MIMOSA V chip. The low noise performance and thin (˜160 nm) entrance window provide the sensitivity of the device to energies as low as ˜4 keV. A polymer tritium source was parked directly atop the detector in open-air conditions. A real-time image of the source was obtained.

  12. A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2009-05-01

    The Simbol-X Low Energy Detector (LED), a 128×128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.

  13. Downsampling Photodetector Array with Windowing

    NASA Technical Reports Server (NTRS)

    Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit

    2012-01-01

    In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.

  14. Wafer-scale pixelated detector system

    DOEpatents

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  15. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  16. Target detection using the background model from the topological anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Dorado Munoz, Leidy P.; Messinger, David W.; Ziemann, Amanda K.

    2013-05-01

    The Topological Anomaly Detection (TAD) algorithm has been used as an anomaly detector in hyperspectral and multispectral images. TAD is an algorithm based on graph theory that constructs a topological model of the background in a scene, and computes an anomalousness ranking for all of the pixels in the image with respect to the background in order to identify pixels with uncommon or strange spectral signatures. The pixels that are modeled as background are clustered into groups or connected components, which could be representative of spectral signatures of materials present in the background. Therefore, the idea of using the background components given by TAD in target detection is explored in this paper. In this way, these connected components are characterized in three different approaches, where the mean signature and endmembers for each component are calculated and used as background basis vectors in Orthogonal Subspace Projection (OSP) and Adaptive Subspace Detector (ASD). Likewise, the covariance matrix of those connected components is estimated and used in detectors: Constrained Energy Minimization (CEM) and Adaptive Coherence Estimator (ACE). The performance of these approaches and the different detectors is compared with a global approach, where the background characterization is derived directly from the image. Experiments and results using self-test data set provided as part of the RIT blind test target detection project are shown.

  17. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Braccini, S.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Weston, T.; Wu, W.; Xu, L.; Zaffaroni, E.

    2018-02-01

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1× 1014 and 5× 1015 1-MeV- neq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1× 1015 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.

  18. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC

    NASA Astrophysics Data System (ADS)

    Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.

    2018-06-01

    We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.

  19. The first bump-bonded pixel detectors on CVD diamond

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V. G.; Pan, L. S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G.; RD42 Collaboration

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch.

  20. Full-color stereoscopic single-pixel camera based on DMD technology

    NASA Astrophysics Data System (ADS)

    Salvador-Balaguer, Eva; Clemente, Pere; Tajahuerce, Enrique; Pla, Filiberto; Lancis, Jesús

    2017-02-01

    Imaging systems based on microstructured illumination and single-pixel detection offer several advantages over conventional imaging techniques. They are an effective method for imaging through scattering media even in the dynamic case. They work efficiently under low light levels, and the simplicity of the detector makes it easy to design imaging systems working out of the visible spectrum and to acquire multidimensional information. In particular, several approaches have been proposed to record 3D information. The technique is based on sampling the object with a sequence of microstructured light patterns codified onto a programmable spatial light modulator while light intensity is measured with a single-pixel detector. The image is retrieved computationally from the photocurrent fluctuations provided by the detector. In this contribution we describe an optical system able to produce full-color stereoscopic images by using few and simple optoelectronic components. In our setup we use an off-the-shelf digital light projector (DLP) based on a digital micromirror device (DMD) to generate the light patterns. To capture the color of the scene we take advantage of the codification procedure used by the DLP for color video projection. To record stereoscopic views we use a 90° beam splitter and two mirrors, allowing us two project the patterns form two different viewpoints. By using a single monochromatic photodiode we obtain a pair of color images that can be used as input in a 3-D display. To reduce the time we need to project the patterns we use a compressive sampling algorithm. Experimental results are shown.

  1. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  2. Modulation transfer function measurement technique for small-pixel detectors

    NASA Technical Reports Server (NTRS)

    Marchywka, Mike; Socker, Dennis G.

    1992-01-01

    A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.

  3. Single photon detection using Geiger mode CMOS avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.

    2005-10-01

    Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.

  4. Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hiti, B.; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.

    2017-10-01

    Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1× 1016 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5× 1014 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.

  5. The Belle-II Depfet Pixel Detector at the Superkekb Flavour Factory

    NASA Astrophysics Data System (ADS)

    Heindl, Stefan

    2012-08-01

    The ongoing upgrade of the asymmetric electron positron collider KEKB also requires extensive detector upgrades to cope with the new design luminosity of 8 · 1035 cm-2 · s-1 · Of critical importance is the new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution, crucial for time dependent CP violation measurements. This new detector will consist of two layers of DEPFET pixel seii8ors very close to the interaction point. These sensors combine both particle detection and amplification of the signal by embedding a field effect transistor into a 75 μm thick fully depleted silicon substrate, providing very high signal to noise ratios and excellent spatial resolution. Using this technology satisfies the given requirements of extremely low material and high radiation tolerance at the new Belle II experiment. The power dissipation due to continuous readout at high rate and spatial constraints also give strict requirements for the mechanical support and cooling of the new detector. We will discuss the overall concept of the pixel vertex tracker, its expected performance and the challenging mechanical integration.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull

    Modern storage rings are readily capable of providing intense x-ray pulses, tens of picoseconds in duration, millions of times per second. Exploiting the temporal structure of these x-ray sources opens avenues for studying rapid structural changes in materials. Many processes (e.g. crack propagation, deformation on impact, turbulence, etc.) differ in detail from one sample trial to the next and would benefit from the ability to record successive x-ray images with single x-ray sensitivity while framing at 5 to 10 MHz rates. To this end, we have pursued the development of fast x-ray imaging detectors capable of collecting bursts of imagesmore » that enable the isolation of single synchrotron bunches and/or bunch trains. The detector technology used is the hybrid pixel array detector (PAD) with a charge integrating front-end, and high-speed, in-pixel signal storage elements. A 384×256 pixel version, the Keck-PAD, with 150 µm × 150 µm pixels and 8 dedicated in-pixel storage elements is operational, has been tested at CHESS, and has collected data for compression wave studies. An updated version with 27 dedicated storage capacitors and identical pixel size has been fabricated.« less

  7. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.

    PubMed

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  8. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  9. The NUC and blind pixel eliminating in the DTDI application

    NASA Astrophysics Data System (ADS)

    Su, Xiao Feng; Chen, Fan Sheng; Pan, Sheng Da; Gong, Xue Yi; Dong, Yu Cui

    2013-12-01

    AS infrared CMOS Digital TDI (Time Delay and integrate) has a simple structure, excellent performance and flexible operation, it has been used in more and more applications. Because of the limitation of the Production process level, the plane array of the infrared detector has a large NU (non-uniformity) and a certain blind pixel rate. Both of the two will raise the noise and lead to the TDI works not very well. In this paper, for the impact of the system performance, the most important elements are analyzed, which are the NU of the optical system, the NU of the Plane array and the blind pixel in the Plane array. Here a reasonable algorithm which considers the background removal and the linear response model of the infrared detector is used to do the NUC (Non-uniformity correction) process, when the infrared detector array is used as a Digital TDI. In order to eliminate the impact of the blind pixel, the concept of surplus pixel method is introduced in, through the method, the SNR (signal to noise ratio) can be improved and the spatial and temporal resolution will not be changed. Finally we use a MWIR (Medium Ware Infrared) detector to do the experiment and the result proves the effectiveness of the method.

  10. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altunbas, Cem, E-mail: caltunbas@gmail.com; Lai, Chao-Jen; Zhong, Yuncheng

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrancemore » exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.« less

  12. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science

    PubMed Central

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Huthwelker, T.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2016-01-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e− electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a ‘software mask’ or a ‘cluster finding’ algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system. PMID:26917124

  13. Distributed Antenna-Coupled TES for FIR Detectors Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas

    2007-01-01

    We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.

  14. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  15. Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Aritoki

    Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our measurements show beams with percent level ellipticity, percent level cross-polarization leakage, and partitioned bands using banks of two and three filters. We will also describe the development of broadband anti-reflection coatings for the high dielectric constant lens. The broadband anti-reflection coating has approximately 100% bandwidth and no detectable loss at cryogenic temperature. We will describe a next generation CMB polarimetry experiment, the POLARBEAR-2, in detail. The POLARBEAR-2 would have focal planes with kilo-pixel of these detectors to achieve high sensitivity. We'll also introduce proposed experiments that would use multi-chroic detector array we developed in this work. We'll conclude by listing out suggestions for future multichroic detector development.

  16. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    NASA Astrophysics Data System (ADS)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  17. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  18. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. Inmore » this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.« less

  19. Detection of ternary and quaternary fission fragments from 252Cf with a position-sensitive ΔE-E telescope based on silicon detectors

    NASA Astrophysics Data System (ADS)

    Ahmadov, G. S.; Kopatch, Yu. N.; Telezhnikov, S. A.; Ahmadov, F. I.; Granja, C.; Garibov, A. A.; Pospisil, S.

    2015-07-01

    The silicon based pixel detector Timepix is a multi-parameter detector which gives simultaneously information about position, energy and arrival time of a particle hitting the detector. Applying the ΔE-E method with these detectors makes it possible to determine types of detected particles, separating them by charge. Using a thin silicon detector with thickness of 12 μm combined with a Timepix (300 μm), a ΔE-E telescope has been constructed. The telescope provides information about position, energy, time and type of registered particles. The emission probabilities and the energy distributions of ternary particles (He, Li, Be) from 252Cf spontaneous fission source were determined using this telescope. Besides the ternary particles, a few events were collected, which were attributed to the "pseudo" quaternary fission.

  20. Assessment of illumination conditions in a single-pixel imaging configuration

    NASA Astrophysics Data System (ADS)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  1. High dynamic range bio-molecular ion microscopy with the Timepix detector.

    PubMed

    Jungmann, Julia H; MacAleese, Luke; Visser, Jan; Vrakking, Marc J J; Heeren, Ron M A

    2011-10-15

    Highly parallel, active pixel detectors enable novel detection capabilities for large biomolecules in time-of-flight (TOF) based mass spectrometry imaging (MSI). In this work, a 512 × 512 pixel, bare Timepix assembly combined with chevron microchannel plates (MCP) captures time-resolved images of several m/z species in a single measurement. Mass-resolved ion images from Timepix measurements of peptide and protein standards demonstrate the capability to return both mass-spectral and localization information of biologically relevant analytes from matrix-assisted laser desorption ionization (MALDI) on a commercial ion microscope. The use of a MCP-Timepix assembly delivers an increased dynamic range of several orders of magnitude. The Timepix returns defined mass spectra already at subsaturation MCP gains, which prolongs the MCP lifetime and allows the gain to be optimized for image quality. The Timepix peak resolution is only limited by the resolution of the in-pixel measurement clock. Oligomers of the protein ubiquitin were measured up to 78 kDa. © 2011 American Chemical Society

  2. Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai

    2018-02-01

    Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.

  3. First full dynamic range calibration of the JUNGFRAU photon detector

    NASA Astrophysics Data System (ADS)

    Redford, S.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Vetter, S.; Zhang, J.

    2018-01-01

    The JUNGFRAU detector is a charge integrating hybrid silicon pixel detector developed at the Paul Scherrer Institut for photon science applications, in particular for the upcoming free electron laser SwissFEL. With a high dynamic range, analogue readout, low noise and three automatically switching gains, JUNGFRAU promises excellent performance not only at XFELs but also at synchrotrons in areas such as protein crystallography, ptychography, pump-probe and time resolved measurements. To achieve its full potential, the detector must be calibrated on a pixel-by-pixel basis. This contribution presents the current status of the JUNGFRAU calibration project, in which a variety of input charge sources are used to parametrise the energy response of the detector across four orders of magnitude of dynamic range. Building on preliminary studies, the first full calibration procedure of a JUNGFRAU 0.5 Mpixel module is described. The calibration is validated using alternative sources of charge deposition, including laboratory experiments and measurements at ESRF and LCLS. The findings from these measurements are presented. Calibrated modules have already been used in proof-of-principle style protein crystallography experiments at the SLS. A first look at selected results is shown. Aspects such as the conversion of charge to number of photons, treatment of multi-size pixels and the origin of non-linear response are also discussed.

  4. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  5. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Li, X.; Kirkland, A.

    2008-08-01

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey A Appel

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detectormore » components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton-antiproton interaction can be measured with an rms uncertainty of 138 {micro}m. This, with the uncertainty in the decay vertex position, leads to an uncertainty of the B{sub s} proper decay time of 46 fs. Even if the parameter x{sub s} equals 25 (where the current lower limit on x{sub s} is about 15), the corresponding relevant proper time is 400 fs. So, the detector resolution is more than adequate to make an excellent measurement of this parameter.« less

  7. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  8. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  9. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  10. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging

    PubMed Central

    Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2014-01-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010

  11. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging.

    PubMed

    Muir, Ryan D; Pogranichney, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2014-09-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrummore » of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.« less

  13. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  14. Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karus, Michael

    2015-02-24

    In order to unveil the mystery of ultra-high energy cosmic rays (UHECRs), the planned fluorescence telescope JEM-EUSO (Extreme Universe Space Observatory on-board Japanese Experiment Module) will observe extensive air showers induced by UHECRs from the International Space Station (ISS) orbit with a huge acceptance. The JEM-EUSO instrument consists of Fresnel optics and a focal surface detector with 5000 multi-anode photomultiplier tubes (MAPMTs), 300000 channels in total. For fluorescence detection of cosmic rays it is essential to calibrate the detector pre-flight with utmost precision and to monitor the performance of the detector throughout the whole mission time. For that purpose amore » calibration stand on-ground was built to measure precisely the performance of Hamamatsu 64 pixel MAPMTs that are planned to be used for JEM-EUSO. To investigate the suitability of alternative detector devices, further research is done with state-of-the-art silicon photomultipliers (SiPMs), namely Hamamatsu multi-pixel photon counters (MPPCs). These will also be tested in the calibration stand and their performance can be compared to conventional photomultiplier tubes.« less

  15. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.

    2017-12-01

    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  16. Report on recent results of the PERCIVAL soft X-ray imager

    NASA Astrophysics Data System (ADS)

    Khromova, A.; Cautero, G.; Giuressi, D.; Menk, R.; Pinaroli, G.; Stebel, L.; Correa, J.; Marras, A.; Wunderer, C. B.; Lange, S.; Tennert, M.; Niemann, M.; Hirsemann, H.; Smoljanin, S.; Reza, S.; Graafsma, H.; Göttlicher, P.; Shevyakov, I.; Supra, J.; Xia, Q.; Zimmer, M.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Nicholls, T.; Turchetta, R.; Pedersen, U.; Tartoni, N.; Hyun, H. J.; Kim, K. S.; Rah, S. Y.; Hoenk, M. E.; Jewell, A. D.; Jones, T. J.; Nikzad, S.

    2016-11-01

    The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125-1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10-120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10-120 Hz range an average noise floor of 14e- has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 · 106 e- or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.

  17. System geometry optimization for molecular breast tomosynthesis with focusing multi-pinhole collimators

    NASA Astrophysics Data System (ADS)

    van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.

    2018-01-01

    Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.

  18. Experimental study on the 3D image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector and its image characteristics

    NASA Astrophysics Data System (ADS)

    Hong, Daeki; Cho, Heemoon; Cho, Hyosung; Choi, Sungil; Je, Uikyu; Park, Yeonok; Park, Chulkyu; Lim, Hyunwoo; Park, Soyoung; Woo, Taeho

    2015-11-01

    In this work, we performed a feasibility study on the three-dimensional (3D) image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector for application to high-accurate, cost-effective dental x-ray imaging. Here an x-ray tube and a detector rotate together around the rotational axis several times and, concurrently, the detector moves horizontally in the detector coordinate at a constant speed to cover the whole imaging volume during the projection data acquisition. We established a table-top setup which mainly consists of an x-ray tube (60 kVp, 5 mA), a narrow CMOS-type detector (198-μm pixel resolution, 184 (W)×1176 (H) pixel dimension), and a rotational stage for sample mounting and performed a systematic experiment to demonstrate the viability of the proposed approach to volumetric dental imaging. For the image reconstruction, we employed a compressed-sensing (CS)-based algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate reconstruction. We successfully reconstructed 3D images of considerably high quality and investigated the image characteristics in terms of the image value profile, the contrast-to-noise ratio (CNR), and the spatial resolution.

  19. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  20. A 1024×768-12μm Digital ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim

    2017-02-01

    This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim's second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing and biasing, and performs 14-bit analog to digital conversion (ADC). The signal processing chain in the ROIC is composed of pixel bias circuitry, integrator based programmable gain amplifier followed by column parallel ADC circuitry. MT10212BD has a serial programming interface that can be used to configure the programmable ROIC features and to load the Non-Uniformity-Correction (NUC) date to the ROIC. MT10212BD has a total of 8 high-speed serial digital video outputs, which can be programmed to operate in the 2, 4, and 8-output modes and can support frames rates above 60 fps. The high-speed serial digital outputs supports data rates as high as 400 Mega-bits/s, when operated at 50 MHz system clock frequency. There is an on-chip phase-locked-loop (PLL) based timing circuitry to generate the high speed clocks used in the ROIC. The ROIC is designed to support pixel resistance values ranging from 30KΩ to 90kΩ, with a nominal value of 60KΩ. The ROIC has a globally programmable gain in the column readout, which can be adjusted based on the detector resistance value.

  1. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection.

    PubMed

    Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Terai, Hirotaka

    2014-04-07

    We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector (SSPD) array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics within the small range of 7.19-7.23 K of superconducting transition temperature and 15.8-17.8 μA of superconducting switching current. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency (SDE) in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

  2. Numerical simulation of the modulation transfer function (MTF) in infrared focal plane arrays: simulation methodology and MTF optimization

    NASA Astrophysics Data System (ADS)

    Schuster, J.

    2018-02-01

    Military requirements demand both single and dual-color infrared (IR) imaging systems with both high resolution and sharp contrast. To quantify the performance of these imaging systems, a key measure of performance, the modulation transfer function (MTF), describes how well an optical system reproduces an objects contrast in the image plane at different spatial frequencies. At the center of an IR imaging system is the focal plane array (FPA). IR FPAs are hybrid structures consisting of a semiconductor detector pixel array, typically fabricated from HgCdTe, InGaAs or III-V superlattice materials, hybridized with heat/pressure to a silicon read-out integrated circuit (ROIC) with indium bumps on each pixel providing the mechanical and electrical connection. Due to the growing sophistication of the pixel arrays in these FPAs, sophisticated modeling techniques are required to predict, understand, and benchmark the pixel array MTF that contributes to the total imaging system MTF. To model the pixel array MTF, computationally exhaustive 2D and 3D numerical simulation approaches are required to correctly account for complex architectures and effects such as lateral diffusion from the pixel corners. It is paramount to accurately model the lateral di_usion (pixel crosstalk) as it can become the dominant mechanism limiting the detector MTF if not properly mitigated. Once the detector MTF has been simulated, it is directly decomposed into its constituent contributions to reveal exactly what is limiting the total detector MTF, providing a path for optimization. An overview of the MTF will be given and the simulation approach will be discussed in detail, along with how different simulation parameters effect the MTF calculation. Finally, MTF optimization strategies (crosstalk mitigation) will be discussed.

  3. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    NASA Astrophysics Data System (ADS)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  4. Optically Based Rapid Screening Method for Proven Optimal Treatment Strategies Before Treatment Begins

    DTIC Science & Technology

    2015-08-01

    lifetime ( t2 ) corresponds to protein- bound NADH (23). Conversely, protein-bound FAD corre- sponds to the short lifetime, whereas free FAD corresponds...single photon counting (TCSPC) electronics (SPC-150, Becker and Hickl). TCSPC uses a fast detector PMT to measure the time between a laser pulse and... Becker and Hickl). A binning of nine surrounding pixels was used. Then, the fluorescence lifetime components were computed for each pixel by deconvolving

  5. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  6. The phase 1 upgrade of the CMS Pixel Front-End Driver

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Pernicka, M.; Steininger, H.

    2010-12-01

    The pixel detector of the CMS experiment at the LHC is read out by analog optical links, sending the data to 9U VME Front-End Driver (FED) boards located in the electronics cavern. There are plans for the phase 1 upgrade of the pixel detector (2016) to add one more layer, while significantly cutting down the overall material budget. At the same time, the optical data transmission will be replaced by a serialized digital scheme. A plug-in board solution with a high-speed digital optical receiver has been developed for the Pixel-FED readout boards and will be presented along with first tests of the future optical link.

  7. The INFN-FBK pixel R&D program for HL-LHC

    NASA Astrophysics Data System (ADS)

    Meschini, M.; Dalla Betta, G. F.; Boscardin, M.; Calderini, G.; Darbo, G.; Giacomini, G.; Messineo, A.; Ronchin, S.

    2016-09-01

    We report on the ATLAS and CMS joint research activity, which is aiming at the development of new, thin silicon pixel detectors for the Large Hadron Collider Phase-2 detector upgrades. This R&D is performed under special agreement between Istituto Nazionale di Fisica Nucleare and FBK foundation (Trento, Italy). New generations of 3D and planar pixel sensors with active edges are being developed in the R&D project, and will be fabricated at FBK. A first planar pixel batch, which was produced by the end of year 2014, will be described in this paper. First clean room measurement results on planar sensors obtained before and after neutron irradiation will be presented.

  8. Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L.; Soares, Edward J.; Lemahieu, Ignace; Glick, Stephen J.

    2006-06-01

    In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast recovery were obtained with MLEM when the correct system matrix was used instead of simple ray tracing. The correct modelling was the major cause of improved contrast for the same background noise. Less important factors were the choice of the algorithm (MLEM performed better than ART) and the basis functions (generalized natural pixels gave better results than pixels).

  9. High signal-to-noise-ratio electro-optical terahertz imaging system based on an optical demodulating detector array.

    PubMed

    Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring

    2009-11-01

    We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.

  10. Advanced Space-Based Detector Research at the Air Force Research Laboratory

    DTIC Science & Technology

    2009-03-04

    purposes. The dark backgrounds place very stringent requirements on the noise characteristics of the sensor system, resulting in FPAs that must be...signal within a single pixel of a detector. 2. Optical signal amplification 2.1. Quantum interference Quantum well infrared photodetectors ( QWIPs ) are...are now extremely attractive for a growing number of sensor applications. Although considerable progress has been made in QWIPs , their relatively low

  11. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  12. Towards an active real-time THz camera: first realization of a hybrid system

    NASA Astrophysics Data System (ADS)

    May, T.; am Weg, C.; Alcin, A.; Hils, B.; Löffler, T.; Roskos, H. G.

    2007-04-01

    We report the realization of a hybrid system for stand-off THz reflectrometry measurements. The design combines the best of two worlds: the high radiation power of sub-THz micro-electronic emitters and the high sensitivity of coherent opto-electronic detection. Our system is based on a commercially available multiplied Gunn source with a cw output power of 0.6 mW at 0.65 THz. We combine it with electro-optic mixing with femtosecond light pulses in a ZnTe crystal. This scheme can be described as heterodyne detection with a Ti:sapphire fs-laser acting as local oscillator and therefore allows for phase-sensitive measurements. Example images of test objects are obtained with mechanical scanning optics and with measurement times per pixel as short as 10 ms. The test objects are placed at a distance of 1 m from the detector and also from the source. The results indicate diffraction-limited resolution. Different contrast mechanisms, based on absorption, scattering, and difference in optical thickness are employed. Our evaluation shows that it should be possible to realize a real-time multi-pixel detector with several hundreds of pixels and a dynamic range of at least two orders of magnitude in power.

  13. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    PubMed

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther; DEPFET Collaboration

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  15. Homogeneity study of a GaAs:Cr pixelated sensor by means of X-rays

    NASA Astrophysics Data System (ADS)

    Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.

    2018-04-01

    Direct conversion semiconductor detectors have become an indispensable tool in radiation detection by now. In order to obtain a high detection efficiency, especially when detecting X or γ rays, high-Z semiconductor sensors are necessary. Like other compound semiconductors GaAs, compensated by chromium (GaAs:Cr), suffers from a number of defects that affect the charge collection efficiency and homogeneity of the material. A precise knowledge of this problem is important to predict the performance of such detectors and eventually correct their response in specific applications. In this study we analyse the homogeneity and mobility-lifetime products (μe τe) of a 500 μ m thick GaAs:Cr pixelated sensor connected to a Timepix chip. The detector is irradiated by 23 keV X-rays, each pixel recording the number of photon interactions and the charge they induce on its electrode. The μe τe products are extracted on a per-pixel basis, using the Hecht equation corrected for the small pixel effect. The detector shows a good time stability in the experimental conditions. Significant inhomogeneities are observed in photon counting and charge collection efficiencies. An average μe τe of 1.0 ṡ 10‑4 cm2V‑1 is found, and compared with values obtained by other methods for the same material. Solutions to improve the response are discussed.

  16. An asynchronous data-driven readout prototype for CEPC vertex detector

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  17. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  18. WFC3 UVIS Detector Performance

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; MacKenty, John W.; Anderson, Jay; WFC3 Team

    2015-01-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument installed on the Hubble Space Telescope (HST) during Servicing Mission 4 (SM4) in May 2000. WFC3 has two observational channels, UV/visible (UVIS) and infrared (IR); both have been performing well on-orbit. Since installation, the WFC3 team has been diligent in monitoring the performance of both detectors. The UVIS channel consists of two e2v, backside illuminated, 2Kx4K CCDs arranged in a 2x1 mosaic. We present results from some of the monitoring programs used to check various aspects of the UVIS detector. We discuss the growth trend of hot pixels and the efficacy of regular anneals in controlling the hot pixel population. We detail a pixel population with lowered-sensitivity that evolves during the time between anneals, and is largely reset by each anneal procedure. We discuss the stability of the post-flash LED lamp, used and recommended for CTE mitigation in observations with less than 12 e-/pixel backgrounds. Finally, we summarize long-term photometric trends of the UVIS detector, as well as the absolute gain measurement, used as a proxy for the on-orbit evolution of the UVIS channel.

  19. Influence of magnetic fields on charge sharing caused by diffusion in medipix detectors with a Si sensor

    NASA Astrophysics Data System (ADS)

    Jamil, Ako; Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Michel, Thilo

    2016-02-01

    The spatial and energy resolution of hybrid photon counting pixel detectors like the Timepix detector can suffer from charge sharing. Due to diffusion an initially point-like charge carrier distribution generated by ionizing radiation becomes a typically Gaussian-like distribution when arriving at the pixel electrodes. This leads to loss of charge information in edge pixels if the amount of charge in the pixel fall below the discriminator threshold. In this work we investigated the reduction of charge sharing by applying a magnetic field parallel to the electric drift field inside the sensor layer. The reduction of diffusion by a magnetic field is well known for gases. With realistic assumptions for the mean free path of charge carriers in semiconductors, a similar effect should be observable in solid state materials. We placed a Medipix-2 detector in the magnetic field of a medical MR device with a maximum magnetic field of 3 T and illuminated it with photons and α-particles from 241Am. We observe that with a magnetic field of 3000 mT the mean cluster size is reduced by 0.75 %.

  20. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  1. A 400 KHz line rate 2048 pixel modular SWIR linear array for earth observation applications

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Wouters, Kristof; Gielen, Daphne; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; van der Zanden, Koen; Vermeiren, Jan; Merken, Patrick

    2015-10-01

    In this paper, we report about a family of linear imaging FPAs sensitive in the [0.9 - 1.7um] band, developed for high speed applications such as LIDAR, wavelength references and OCT analyzers and also for earth observation applications. Fast linear FPAs can also be used in a wide variety of terrestrial applications, including high speed sorting, electro- and photo-luminesce and medical applications. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. In principle, this concept can be extended to any multiple of 512 pixels, the limiting factor being the pixel yield of long InGaAs arrays and the CTE differences in the hybrid setup. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long-linear array to run at a high line rate of 400 KHz irrespective of the array length, which limits the line rate in a traditional linear array. The pixel has a pitch of 12.5um. The detector frontend is based on CTIA (Capacitor Trans-impedance Amplifier), having 5 selectable integration capacitors giving full well from 62x103e- (gain0) to 40x106e- (gain4). An auto-zero circuit limits the detector bias non-uniformity to 5-10mV across broad intensity levels, limiting the input referred dark signal noise to 20e-rms for Tint=3ms at room temperature. An on-chip CDS that follows the CTIA facilitates removal of Reset/KTC noise, CTIA offsets and most of the 1/f noise. The measured noise of the ROIC is 35e-rms in gain0. At a master clock rate of 60MHz and a minimum integration time of 1.4us, the FPAs reach the highest line rate of 400 KHz.

  2. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maj, Piotr; Grybos, P.; Szczgiel, R.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 μm. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e ₋rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largestmore » charge deposition. The chip architecture and preliminary measurements are reported.« less

  3. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    DOE PAGES

    Benoit, M.; Braccini, S.; Casse, G.; ...

    2018-02-08

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4 th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1×10 14 and 5×10 15 1–MeV– n eq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured atmore » the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1×10 15 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. Furthermore, the results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.« less

  4. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M.; Braccini, S.; Casse, G.

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4 th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1×10 14 and 5×10 15 1–MeV– n eq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured atmore » the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1×10 15 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. Furthermore, the results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.« less

  5. Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2017-11-01

    Hybrid pixel sensor technology such as the Medipix3 represents a unique tool for electron imaging. We have investigated its performance as a direct imaging detector using a Transmission Electron Microscope (TEM) which incorporated a Medipix3 detector with a 300 μm thick silicon layer compromising of 256×256 pixels at 55 μm pixel pitch. We present results taken with the Medipix3 in Single Pixel Mode (SPM) with electron beam energies in the range, 60-200 keV . Measurements of the Modulation Transfer Function (MTF) and the Detective Quantum Efficiency (DQE) were investigated. At a given beam energy, the MTF data was acquired by deploying the established knife edge technique. Similarly, the experimental data required to determine DQE was obtained by acquiring a stack of images of a focused beam and of free space (flatfield) to determine the Noise Power Spectrum (NPS).

  6. 1024x1024 Pixel MWIR and LWIR QWIP Focal Plane Arrays and 320x256 MWIR:LWIR Pixel Colocated Simultaneous Dualband QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hill, Cory J.; Rafol, S. B.; Mumolo, Jason M.; Trinh, Joseph T.; Tidrow, M. Z.; Le Van, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NE(Delta)T) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NE(Delta)T of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating-temperatures respectively, with similar optical and background conditions. In addition, we are in the process of developing MWIR and LWIR pixel collocated simultaneously readable dualband QWIP focal plane arrays.

  7. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC-based detector system through the (1) design, manufacture, and test of front-end electronics instrument boards and (2) calibration of the detectors to assess their performance and (3) vibration and environmental testing. By the end of this program, multiple detector assemblies will be built and characterized, and can be used as part of future instruments. We propose to augment the existing effort with the development of an anti-coincidence shield for these HEXITEC-based detector assemblies to maximize sensitivity. Designing the anti-coincidence shield is enabled by the addition of a new team member, Wayne Baumgartner, who has recently and fortuitously joined the existing effort. Dr. Baumgartner has valuable and relevant past experience with a similar shield systems developed for NuSTAR and the InFOCμS x-ray telescope. We are asking for a modest amount of additional funding in this proposal year, as it coincides with a key time in the characterization and environmental testing of the detector assemblies. Characterization and environmental testing of the bare assemblies is already funded under the current effort. The addition of this active shield will allow for a more complete detector module vibration and environment test at the end of the existing development program so that this project results in a detector system with a demonstrated TRL of 6: "System/subsystem model or prototype demonstration in a relevant environment."

  8. A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family

    NASA Astrophysics Data System (ADS)

    Li, Qiyan; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz, C.; Stroth, J.; Tischler, T.

    2014-06-01

    CMOS Monolithic Active Pixel Sensors (MAPS) demonstrated excellent performances in the field of charged particle tracking. Among their strong points are an single point resolution few μm, a light material budget of 0.05% X0 in combination with a good radiation tolerance and high rate capability. Those features make the sensors a valuable technology for vertex detectors of various experiments in heavy ion and particle physics. To reduce the load on the event builders and future mass storage systems, we have developed algorithms suited for preprocessing and reducing the data streams generated by the MAPS. This real-time processing employs remaining free resources of the FPGAs of the readout controllers of the detector and complements the on-chip data reduction circuits of the MAPS.

  9. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors.

  10. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Spiropulu, M.; Trevor, J.; Pena, C.; Presutti, F.; Los, S.

    2017-11-01

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. In this report we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beam measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.

  11. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  12. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    DOE PAGES

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...

    2017-11-27

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less

  13. An array of antenna-coupled superconducting microbolometers for passive indoors real-time THz imaging

    NASA Astrophysics Data System (ADS)

    Luukanen, A.; Grönberg, L.; Helistö, P.; Penttilä, J. S.; Seppä, H.; Sipola, H.; Dietlein, C. R.; Grossman, E. N.

    2006-05-01

    The temperature resolving power (NETD) of millimeter wave imagers based on InP HEMT MMIC radiometers is typically about 1 K (30 ms), but the MMIC technology is limited to operating frequencies below ~ 150 GHz. In this paper we report the first results from a pixel developed for an eight pixel sub-array of superconducting antenna-coupled microbolometers, a first step towards a real-time imaging system, with frequency coverage of 0.2 - 3.6 THz. These detectors have demonstrated video-rate NETDs in the millikelvin range, close to the fundamental photon noise limit, when operated at a bath temperature of ~ 4K. The detectors will be operated within a turn-key cryogen-free pulse tube refrigerator, which allows for continuous operation without the need for liquid cryogens. The outstanding frequency agility of bolometric detectors allows for multi-frequency imaging, which greatly enhances the discrimination of e.g. explosives against innoncuous items concealed underneath clothing.

  14. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less

  15. Tests of UFXC32k chip with CdTe pixel detector

    NASA Astrophysics Data System (ADS)

    Maj, P.; Taguchi, T.; Nakaye, Y.

    2018-02-01

    The paper presents the performance of the UFXC32K—a hybrid pixel detector readout chip working with CdTe detectors. The UFXC32K has a pixel pitch of 75 μm and can cope with both input signal polarities. This functionality allows operating with widely used silicon sensors collecting holes and CdTe sensors collecting electrons. This article describes the chip focusing on solving the issues connected to high-Z sensor material, namely high leakage currents, slow charge collection time and thick material resulting in increased charge-sharring effects. The measurements were conducted with higher X-ray energies including 17.4 keV from molybdenum. Conclusions drawn inside the paper show the UFXC32K's usability for CdTe sensors in high X-ray energy applications.

  16. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor.

    PubMed

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael

    2015-03-01

    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  17. 10μm pitch family of InSb and XBn detectors for MWIR imaging

    NASA Astrophysics Data System (ADS)

    Gershon, G.; Avnon, E.; Brumer, M.; Freiman, W.; Karni, Y.; Niderman, T.; Ofer, O.; Rosenstock, T.; Seref, D.; Shiloah, N.; Shkedy, L.; Tessler, R.; Shtrichman, I.

    2017-02-01

    There has been a growing demand over the past few years for infrared detectors with a smaller pixel dimension. On the one hand, this trend of pixel shrinkage enables the overall size of a given Focal Plan Array (FPA) to be reduced, allowing the production of more compact, lower power, and lower cost electro-optical (EO) systems. On the other hand, it enables a higher image resolution for a given FPA area, which is especially suitable in infrared systems with a large format that are used with a wide Field of View (FOV). In response to these market trends SCD has developed the Blackbird family of 10 μm pitch MWIR digital infrared detectors. The Blackbird family is based on three different Read- Out Integrated Circuit (ROIC) formats: 1920×1536, 1280×1024 and 640×512, which exploit advanced and mature 0.18 μm CMOS technology and exhibit high functionality with relatively low power consumption. Two types of 10 μm pixel sensing arrays are supported. The first is an InSb photodiode array based on SCD's mature planar implanted p-n junction technology, which covers the full MWIR band, and is designed to operate at 77K. The second type of sensing array covers the blue part of the MWIR band and uses the patented XBn-InAsSb barrier detector technology that provides electro-optical performance equivalent to planar InSb but at operating temperatures as high as 150 K. The XBn detector is therefore ideal for low Size, Weight and Power (SWaP) applications. Both sensing arrays, InSb and XBn, are Flip-chip bonded to the ROICs and assembled into custom designed Dewars that can withstand harsh environmental conditions while minimizing the detector heat load. A dedicated proximity electronics board provides power supplies and timing to the ROIC and enables communication and video output to the system. Together with a wide range of cryogenic coolers, a high flexibility of housing designs and various modes of operation, the Blackbird family of detectors presents solutions for EO systems which cover both the very high-end and the low SWaP types of application. In this work we present in detail the EO performance of the Blackbird detector family.

  18. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Stephen

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator withmore » a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.« less

  19. Belle II silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  20. The Level 0 Pixel Trigger system for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project

    2007-01-01

    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Simon; Lei, CM; Menasce, Dario

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  2. High speed systems for time-resolved experiments with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Koziol, Anna; Maj, Piotr

    2018-02-01

    The UFXC32k is a single photon counting hybrid pixel detector with 75 μm pixel pitch. It was designed to cope with high X-ray intensities and therefore it is a very good candiate for synchrotron applications. In order to use this detector in an application, a dedicated setup must be designed and built allowing proper operation of the detector within the experiment. The paper presents two setups built for the purpose of Pump-Probe-Probe experiments at the Synchrotron SOLEIL and XPCS experiments at the APS.

  3. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of themore » data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.« less

  4. A 128 x 128 InGaAs detector array for 1.0 - 1.7 microns

    NASA Technical Reports Server (NTRS)

    Olsen, G.; Joshi, A.; Lange, M.; Woodruff, K.; Mykietyn, E.; Gay, D.; Ackley, D.; Erickson, G.; Ban, V.; Staller, C.

    1990-01-01

    A two-dimensional 128 x 128 detector array for the 1.0 - 1.7 micron spectral region has been demonstrated with indium gallium arsenide. The 30 micron square pixels had 60 micron spacing in both directions and were designed to be compatible with a 2D Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF, and quantum efficiencies above 80 percent were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89 percent (7 dropouts) in an area of 6528 pixels and 99.37 percent (103 dropouts) over an entire 128 x 128 pixel region.

  5. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo

    2011-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.

  6. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  7. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  8. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  9. Kinetic inductance detectors for far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Aguirre, James; Stevenson, Thomas

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (between redshifts 1 and 3) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation during that period, in particular fine structure lines of nitrogen, carbon, and oxygen, as well as the carbon monoxide molecule. Using an observation technique known as intensity mapping, it would be possible to observe the total line intensity for a given redshift range even without detecting individual sources. Here, we describe a detector system suitable for a balloonborne spectroscopic intensity mapping experiment at far-infrared wavelengths. The experiment requires an "integralfield" type spectrograph, with modest spectral resolution (R 100) for each of a number of spatial pixels spanning several octaves in wavelength. The detector system uses lumped-element kinetic inductance detectors (LEKIDs), which have the potential to achieve the high sensitivity, low noise, and high multiplexing factor required for this experiment. We detail the design requirements and considerations, and the fabrication process for a prototype LEKID array of 1600 pixels. The pixel design is driven by the need for high responsivity, which requires a small physical volume for the LEKID inductor. In order to minimize two-level system noise, the resonators include large-area interdigitated capacitors. High quality factor resonances are required for a large frequency multiplexing factor. Detectors were fabricated using both trilayer TiN/Ti/TiN recipes and thin-film Al, and are operated at base temperatures near 250 mK.

  10. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long.more » A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.« less

  12. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGES

    Kwan, Simon; Lei, CM; Menasce, Dario; ...

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  13. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout

    NASA Astrophysics Data System (ADS)

    Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-11-01

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.

  14. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    PubMed

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less

  16. Voting based object boundary reconstruction

    NASA Astrophysics Data System (ADS)

    Tian, Qi; Zhang, Like; Ma, Jingsheng

    2005-07-01

    A voting-based object boundary reconstruction approach is proposed in this paper. Morphological technique was adopted in many applications for video object extraction to reconstruct the missing pixels. However, when the missing areas become large, the morphological processing cannot bring us good results. Recently, Tensor voting has attracted people"s attention, and it can be used for boundary estimation on curves or irregular trajectories. However, the complexity of saliency tensor creation limits its applications in real-time systems. An alternative approach based on tensor voting is introduced in this paper. Rather than creating saliency tensors, we use a "2-pass" method for orientation estimation. For the first pass, Sobel d*etector is applied on a coarse boundary image to get the gradient map. In the second pass, each pixel puts decreasing weights based on its gradient information, and the direction with maximum weights sum is selected as the correct orientation of the pixel. After the orientation map is obtained, pixels begin linking edges or intersections along their direction. The approach is applied to various video surveillance clips under different conditions, and the experimental results demonstrate significant improvement on the final extracted objects accuracy.

  17. Analog pixel array detectors.

    PubMed

    Ercan, A; Tate, M W; Gruner, S M

    2006-03-01

    X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.

  18. Life test of the InGaAs focal plane arrays detector for space applications

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Liang; Zhang, Hai-Yan; Li, Xue; Huang, Zhang-Cheng; Gong, Hai-Mei

    2017-08-01

    The short-wavelength infrared (SWIR) InGaAs focal plane array (FPA) detector consists of infrared detector chip, readout integrated circuit (ROIC), and flip-chip bonding interconnection by Indium bump. In order to satisfy space application requirements for failure rates or Mean Time to Failure (MTTF), which can only be demonstrated with the large number of detectors manufactured, the single pixel in InGaAs FPAs was chosen as the research object in this paper. The constant-stress accelerated life tests were carried out at 70°C 80°C 90°C and100°C. The failed pixels increased gradually during more than 14000 hours at each elevated temperatures. From the random failure data the activation energy was estimated to be 0.46eV, and the average lifetime of a single pixel in InGaAs FPAs was estimated to be longer than 1E+7h at the practical operating temperature (5°C).

  19. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  20. A new imaging method for understanding chemical dynamics: efficient slice imaging using an in-vacuum pixel detector.

    PubMed

    Jungmann, J H; Gijsbertsen, A; Visser, J; Visschers, J; Heeren, R M A; Vrakking, M J J

    2010-10-01

    The implementation of the Timepix complementary metal oxide semiconductor pixel detector in velocity map slice imaging is presented. This new detector approach eliminates the need for gating the imaging detector. In time-of-flight mode, the detector returns the impact position and the time-of-flight of charged particles with 12.5 ns resolution and a dynamic range of about 100 μs. The implementation of the Timepix detector in combination with a microchannel plate additionally allows for high spatial resolution information via center-of-mass centroiding. Here, the detector was applied to study the photodissociation of NO(2) at 452 nm. The energy resolution observed in the experiment was ΔE/E=0.05 and is limited by the experimental setup rather than by the detector assembly. All together, this new compact detector assembly is well-suited for slice imaging and is a promising tool for imaging studies in atomic and molecular physics research.

  1. The AMS-02 RICH detector: Performance during ground-based data taking at CERN

    NASA Astrophysics Data System (ADS)

    Pereira, R.; AMS RICH Collaboration

    2011-05-01

    The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) in 2011, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the art particle identification techniques. Among several detector subsystems, AMS includes a proximity focusing RICH detector enabling precise measurements of particle electric charge (charge identification up to the iron region) and velocity ( Δβ/β˜10-3 for Z=1, Δβ/β˜10-4 for Z=10-20). The optimization of the RICH reconstruction efficiency imposed a dual radiator configuration with 16 NaF tiles ( n=1.33) in the centre and 92 aerogel tiles ( n=1.050) in the outer region, a pixelized detection matrix with 680 Hamamatsu R7600-M16 photomultipliers (each with 4×4 pixels) and a highly reflective conical mirror to increase photon collection. After its assembly at CIEMAT in Madrid, the RICH was taken to CERN in January 2008 and integrated into the full AMS-02 detector. AMS-02 underwent a pre-assembly in 2008 without magnet followed by a second detector assembly with a superconducting magnet in 2009 and the final assembly with a permanent magnet in mid-2010. Cosmic events were acquired in the context of the 2008 pre-assembly and in 2009, and two beam tests from CERN SPS took place in 2010. Results obtained with data from ground-based tests on the RICH performance are presented. A comparison with the aerogel light yield obtained on previous beam tests with a prototype detector is also discussed.

  2. MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 × 256 and a pixel pitch of 50 µm, developed with a system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT3250BA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. MT3250BA has 2 analog video outputs and 1 analog reference output for pseudo-differential operation, and the ROIC can be programmed to operate in the 1 or 2-output modes. A unique feature of MT3250BA is that it performs snapshot readout operation; therefore, the image quality will only be limited by the thermal time constant of the detector pixels, but not by the scanning speed of the ROIC, as commonly found in the conventional microbolometer ROICs performing line-by-line (rolling-line) readout operation. The signal integration is performed at the pixel level in parallel for the whole array, and signal integration time can be programmed from 0.1 µs up to 100 ms in steps of 0.1 µs. The ROIC is designed to work with high-resistance detector arrays with pixel resistance values higher than 250 kΩ. The detector bias voltage can be programmed on-chip over a 2 V range with a resolution of 1 mV. The ROIC has a measured input referred noise of 260 µV rms at 300 K. The ROIC can be used to build a microbolometer infrared sensor with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a high detector resistance value (≥ 250 KΩ), a high TCR value (≥ 2.5 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). The ROIC uses a single 3.3 V supply voltage and dissipates less than 75 mW in the 1-output mode at 60 fps. MT3250BA is fabricated using a mixed-signal CMOS process on 200 mm CMOS wafers, and tested wafers are available with test data and wafer map. A USB based compact test electronics and software are available for quick evaluation of this new microbolometer ROIC.

  3. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  4. Shadow-free single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang

    2017-11-01

    Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.

  5. IRAC test report. Gallium doped silicon band 2: Read noise and dark current

    NASA Technical Reports Server (NTRS)

    Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey

    1987-01-01

    A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.

  6. Energy resolution of the CdTe-XPAD detector: calibration and potential for Laue diffraction measurements on protein crystals.

    PubMed

    Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre

    2012-05-01

    The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.

  7. A fast 1-D detector for imaging and time resolved SAXS experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Arfelli, F.; Bernstorff, S.; Pontoni, D.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.

    1999-02-01

    A one-dimensional test detector on the principle of a highly segmented ionization chamber with shielding grid (Frisch grid) was developed to evaluate if this kind of detector is suitable for advanced small-angle X-ray scattering (SAXS) experiments. At present it consists of 128 pixels which can be read out within 0.2 ms with a noise floor of 2000 e-ENC. A quantum efficiency of 80% for a photon energy of 8 keV was achieved. This leads to DQE values of 80% for photon fluxes above 1000 photons/pixel and integration time. The shielding grid is based on the principles of the recently invented MCAT structure and the GEM structure which also allows electron amplification in the gas. In the case of the MCAT structure, an energy resolution of 20% at 5.9 keV was observed. The gas amplification mode enables imaging with this integrating detector on a subphoton noise level with respect to the integration time. Preliminary experiments of saturation behavior show that this kind of detector digests a photon flux density up to 10 12 photons/mm 2 s and operates linearly. A spatial resolution of at least three line pairs/mm was obtained. All these features show that this type of detector is well suited for time-resolved SAXS experiments as well as high flux imaging applications.

  8. Vehicle and cargo container inspection system for drugs

    NASA Astrophysics Data System (ADS)

    Verbinski, Victor V.; Orphan, Victor J.

    1999-06-01

    A vehicle and cargo container inspection system has been developed which uses gamma-ray radiography to produce digital images useful for detection of drugs and other contraband. The system is comprised of a 1 Ci Cs137 gamma-ray source collimated into a fan beam which is aligned with a linear array of NaI gamma-ray detectors located on the opposite side of the container. The NaI detectors are operated in the pulse-counting mode. A digital image of the vehicle or container is obtained by moving the aligned source and detector array relative to the object. Systems have been demonstrated in which the object is stationary (source and detector array move on parallel tracks) and in which the object moves past a stationary source and detector array. Scanning speeds of ˜30 cm/s with a pixel size (at the object) of ˜1 cm have been achieved. Faster scanning speeds of ˜2 m/s have been demonstrated on railcars with more modest spatial resolution (4 cm pixels). Digital radiographic images are generated from the detector count rates. These images, recorded on a PC-based data acquisition and display system, are shown from several applications: 1) inspection of trucks and containers at a border crossing, 2) inspection of railcars at a border crossing, 3) inspection of outbound cargo containers for stolen automobiles, and 4) inspection of trucks and cars for terrorist bombs.

  9. Application of Timepix3 based CdTe spectral sensitive photon counting detector for PET imaging

    NASA Astrophysics Data System (ADS)

    Turecek, Daniel; Jakubek, Jan; Trojanova, Eliska; Sefc, Ludek; Kolarova, Vera

    2018-07-01

    Positron emission tomography (PET) is a nuclear medicine functional imaging technique. It is used in clinical oncology (medical imaging of tumors and the search for metastases), and pre-clinical studies using animals. PET uses small amounts of radioactive materials (radiotracers) and a special photon sensitive camera. Most of these cameras use scintillators with photomultipliers as detectors. However, these detectors have limited energy sensitivity and large pixels. Therefore, the false signal caused by a scattering poses a significant problem. In this work we study properties of position, energy and time sensitive semiconductor detector of Timepix3 type and its applicability for PET measurements. This work presents an initial study and evaluation of two Timepix3 detectors with 2 mm thick CdTe sensors used in simplified geometry for PET imaging. The study is performed on 2 samples - a capillary tube and a cylindrical plexiglass phantom with cavities. Both samples are filled with fluodeoxyglucose (FDG) solution that is used as a radiotracer. The Timepix3 offers better properties compared to conventional detectors - high granularity (55 μm pixel pitch), good energy resolution (1 keV at 60 keV) and sufficient time resolution (1.6 ns). The spectral sensitivity of Timepix3 together with coincidence/anticoincidence technique allows for significant reduction of background signal caused by Compton scattering and internal X-ray fluorescence of Cd and Te.

  10. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-07

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  11. System design and simulation of a long-wave infrared hyperspectral imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Yuan, Li-yin; Xu, Wei-ming; He, Zhi-ping; Lin, Ying; Shu, Rong; Wang, Jian-yu

    2009-07-01

    A ground-based long-wave hyperspectral imaging spectrometer (LWHIS) is designed and simulated. The spectrometer is based on a focal plane array detector with a spectral response that covers the range 7700 to 9300 nm. Optical system of this instrument is all-reflective and provides up to 30 continuous spectral channels with 54 nm of dispersion per pixel. The entrance aperture is 20 mm and feeds an F/2 telescope front end. The telescope has a 11-deg field of view with 256 spatially resolved elements (detector pixel size is 30 μm). To get high enough signal noise rate (SNR), no concern about the electronic part, first, the cool stop of the detector is used as soon as possible, and second, background thermal radiance of the opto-mechanical system seen by the focal plane must be suppressed. Thus, the entire instrument is set in a vacuum chamber and the opto-mechanical subsystem is cooled by liquid nitrogen. The background thermal radiance verse different cases is discussed. Based on the radiation simulation and analysis, if the opto-mechanical subsystem of the spectrometer within the vacuum chamber is cooled blew 100 Kelvin, significant performance gains can be realized. The design and simulation provides an example for illustrating the design principles specific and radiation simulation to this type of system.

  12. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  13. Infrared detectors and test technology of cryogenic camera

    NASA Astrophysics Data System (ADS)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  14. Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos

    2012-01-01

    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.

    There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that formmore » when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.« less

  16. Characterizing the response of a scintillator-based detector to single electrons.

    PubMed

    Sang, Xiahan; LeBeau, James M

    2016-02-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Radiation hard analog circuits for ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.

    2016-03-01

    The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.

  18. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  19. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  20. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

Top