Science.gov

Sample records for pixel detectors irradiated

  1. Pixelated gamma detector

    SciTech Connect

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  2. Performance of n-in-p Pixel Detectors Irradiated at Fluences up to 5x1015 neq/cm2 for the Future ATLAS Upgrades

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Gallrapp, C.; La Rosa, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x1015 neq/cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first results from beam test data with 120 GeV pions at the CERN-SPS are also presented, demonstrating a high tracking efficiency before irradiation and a high collected charge for a device irradiated at 1015 neq/cm2. This work has been performed within the framework of the RD50 Collaboration.

  3. Charge-sharing observations with a CdTe pixel detector irradiated with a 57Co source

    NASA Astrophysics Data System (ADS)

    Maiorino, M.; Pellegrini, G.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Martinez, R.; Lozano, M.; Puigdengoles, C.; Ullan, M.

    2006-07-01

    Charge sharing is a limiting factor of detector spatial resolution and contrast in photon counting imaging devices because multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although this topic has been debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, we look at the importance of charge sharing in CdTe pixel detectors by exposing such a device to a low-activity (37 kBq) 57Co source, whose main emission line is at 122 keV.The detectors used are 1 mm thick with a pixel pitch of 55 μm. These detectors are bump-bonded to Medipix2 photon-counting chips. This study gives an insight of the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  4. The ALICE Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mercado-Perez, Jorge

    2002-07-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well.

  5. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  6. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  7. Physics performance of the ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Tsuno, S.

    2017-01-01

    In preparation for LHC Run-2 the ATLAS detector introduced a new pixel detector, the Insertable B-Layer (IBL). This detector is located between the beampipe and what was the innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level objects such a b-quark jet tagging. This in turn, leads to better physics results. This note summarizes the impact of the IBL detector on physics results, especially focusing on the analyses using b-quark jets throughout 2016 summer physics program.

  8. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    DTIC Science & Technology

    2013-02-21

    d’Altes Energies (IFAE), Barcelona, Spain bCentro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona , Spain cFondazione Bruno Kessler, FBK-CMM, Trento...Devices that show good electri - cal behavior before irradiation are able to sustain the voltage needed to achieve excellent efficiency (> 98% at...Research (ONR). The work at SCIPP was supported by Department of Energy , grant DE-FG02-04ER41286. References [1] The ATLAS Collaboration, “The ATLAS

  9. LISe pixel detector for neutron imaging

    NASA Astrophysics Data System (ADS)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  10. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  11. Towards spark-proof gaseous pixel detectors

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  12. Simulation study of pixel detector charge digitization

    NASA Astrophysics Data System (ADS)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  13. Anode readout for pixellated CZT detectors

    NASA Astrophysics Data System (ADS)

    Narita, Tomohiko; Grindlay, Jonathan E.; Hong, Jaesub; Niestemski, Francis C.

    2004-02-01

    Determination of the photon interaction depth offers numerous advantages for an astronomical hard X-ray telescope. The interaction depth is typically derived from two signals: anode and cathode, or collecting and non-collecting electrodes. We present some preliminary results from our depth sensing detectors using only the anode pixel signals. By examining several anode pixel signals simultaneously, we find that we can estimate the interaction depth, and get sub-pixel 2-D position resolution. We discuss our findings and the requirements for future ASIC development.

  14. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  15. Proceedings of PIXEL98 -- International pixel detector workshop

    SciTech Connect

    Anderson, D.F.; Kwan, S.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  16. Performance of the INTPIX6 SOI pixel detector

    NASA Astrophysics Data System (ADS)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  17. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  18. Operational experience with the ALICE pixel detector

    NASA Astrophysics Data System (ADS)

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  19. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.

  20. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  1. Silicon buried channels for pixel detector cooling

    NASA Astrophysics Data System (ADS)

    Boscardin, M.; Conci, P.; Crivellari, M.; Ronchin, S.; Bettarini, S.; Bosi, F.

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF6 plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  2. Characterization of high resolution CMOS monolithic active pixel detector in SOI technology

    NASA Astrophysics Data System (ADS)

    Ahmed, M. I.; Arai, Y.; Glab, S.; Idzik, M.; Kapusta, P.; Miyoshi, T.; Takeda, A.; Turala, M.

    2015-05-01

    Novel CMOS monolithic pixel detectors designed at KEK and fabricated at Lapis Semiconductor in 0.2 μm Silicon-on-Insulator (SOI) technology are presented. A thin layer of silicon oxide separates high and low resistivity silicon layers, allowing for optimization of design of detector and readout parts. Shallow wells buried under the oxide in the detector part screen the entire pixel electronics from electrical field applied to the detector. Several integration type SOI pixel detectors have been developed with pixel sizes 8-20 μm. The general features of 14 × 14 μm2 detectors designed on different wafers (CZ-n, FZ-n and FZ-p) were measured and compared. The detector performance was studied under irradiation with visible and infra-red laser, and also X-ray ionizing source. Using X-rays from an Am-241 source the noise of readout electronics was measured at different working conditions, showing the ENC in the range of 88-120 e-. The pixel current was calculated from average DC pedestal shift while varying the pixel integration time. The operation of the detector was studied under partial and full depletion conditions. The effects of temperature and detector bias voltage on noise and leakage current were studied. Characteristics of an ADC integrated in the front-end chip are also presented.

  3. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  4. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  5. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  6. Compensation for radiation damage of SOI pixel detector via tunneling

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Ikegami, Y.; Kurachi, I.; Miyoshi, T.; Nishimura, R.; Tauchi, K.; Tsuboyama, T.

    2016-09-01

    We are developing a method for removing holes trapped in the oxide layer of a silicon-on-insulator (SOI) monolithic pixel detector after irradiation. Radiation that passes through the detector generates positive charge by trapped holes in the buried oxide layer (BOX) underneath the MOSFET. The positive potential caused by these trapped holes modifies the characteristics of the MOSFET of the signal readout circuit. In order to compensate for the effect of the positive potential, we tried to recombine the trapped holes with electrons via Fowler-Nordheim (FN) tunneling. By applying high voltage to the buried p-well (BPW) under the oxide layer with the MOSFET fixed at 0 V, electrons are injected into the BOX by FN tunneling. X-rays cause a negative shift in the threshold voltage Vth of the MOSFET. We can successfully recover Vth close to its pre-irradiation level after applying VBPW ≥ 120 V. However, the drain leakage current increased after applying VBPW; we find that this can be suppressed by applying a negative voltage to the BPW.

  7. Detector apparatus having a hybrid pixel-waveform readout system

    DOEpatents

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  8. SLHC upgrade plans for the ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Šícho, Petr

    2009-08-01

    The ATLAS pixel detector is an 80 million channels silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. An upgrade of the ATLAS pixel detector is presently being considered, enabling to cope with higher luminosity at Super Large Hadron Collider (SLHC). The increased luminosity leads to extremely high radiation doses in the innermost region of the ATLAS tracker. Options considered for a new detector are discussed, as well as some important R&D activities, such as investigations towards novel detector geometries and novel processes.

  9. The Phase-1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  10. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  11. Monolithic pixel detectors in silicon on insulator technology

    NASA Astrophysics Data System (ADS)

    Bisello, Dario

    2013-05-01

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  12. Intra-pixel response of infrared detector arrays for JWST

    NASA Astrophysics Data System (ADS)

    Hardy, Tim; Baril, M. R.; Pazder, J.; Stilburn, J. S.

    2008-07-01

    The near-infrared instruments on the James Webb Space Telescope will use 5 micron cutoff HAWAII-2RG detector arrays. We have investigated the response of this type of detector at sub-pixel resolution to determine whether variations at this scale would affect the performance of the instruments. Using a simple experimental setup we were able to get measurements with a resolution of approximately 4 microns. We have measured an un-hybridized HAWAII-1RG multiplexer, a hybridized HAWAII-1RG device with a 5 micron cutoff HgCdTe detector layer, and a hybridized HAWAII-2RG device with a 5 micron cutoff substrate-removed HgCdTe detector layer. We found that the intra-pixel response functions of the hybrid devices are basically smooth and well behaved, and vary little from pixel to pixel. However, we did find numerous sub-pixel sized defects, notably some long straight thin features like scratches. We were not able to detect any significant variations with wavelength between 0.65 and 2.2 microns, but in the -1RG device there was a variation with temperature. When cooled from 80K to 40K, the pixel response became narrower, and some signal began to be lost at the edges of the pixel. We believe this reflects a reduction in charge diffusion at the lower temperature.

  13. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  14. Fast neutron dosemeter using pixelated detector Timepix.

    PubMed

    Bulanek, Boris; Ekendahl, Daniela; Prouza, Zdenek

    2014-10-01

    A Timepix detector covered with polyethylene convertors of different thicknesses is presented as a fast neutron real-time dosemeter. The application of different weighting factors in connection with the position of a signal in a Timepix detector enables one to obtain an energy-dependent signal equal to neutron dose equivalents. A simulation of a Timepix detector covered with polyethylene convertors using monoenergetic neutrons is presented. The experimental set-up of a dosemeter was also produced. The first results of detector response using different fast neutron sources are presented.

  15. 3D silicon pixel detectors for the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  16. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  17. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  18. Fabrication and performance of mercuric iodide pixellated detectors

    NASA Astrophysics Data System (ADS)

    van den Berg, Lodewijk; Bastian, Lloyd F.; Zhang, Feng; Lenos, Howard; Capote, M. Albert

    2007-09-01

    The radiation detection efficiency and spectral resolution of mercuric iodide detectors can be improved significantly by increasing the volume of the detectors and by using a pixellated anode structure. Detector bodies with a thickness of nominally 10 mm and an active area of approximately 14 mm x 14 mm have been used for these experiments. The detectors were cut from single crystals grown by the physical vapor transport method. The cut surfaces were polished and etched using a string saw and potassium iodide solutions. The Palladium contacts were deposited by magnetron sputtering through stainless steel masks. The cathode contact is continuous; the anode contacts consist of an array of 11 x 11 pixels surrounded by a guard ring. The resistance between a pixel and its surrounding contacts should be larger than 0.25 Gohm. The detector is mounted on a substrate that makes it possible to connect the anode pixels to an ASIC, and is conditioned so that it is stable for all pixels at a bias of -3000 Volts. Under these conditions the spectral resolution for Cs-137 gamma rays (662 keV) is approximately 5% FWHM. When depth sensing correction methods are applied, the resolution improves to about 2% FWHM or better. It is expected that the performance of the devices can be improved by the careful selection of crystal parts that are free of structural defects. Details of the fabrication technologies will be described. The effects of material inhomogeneities and transport properties of the charge carriers will be discussed.

  19. Calibration analysis software for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  20. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  1. Silicon pixel detector prototyping in SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  2. Pixel detectors in 3D technologies for high energy physics

    SciTech Connect

    Deptuch, G.; Demarteau, M.; Hoff, J.; Lipton, R.; Shenai, A.; Yarema, R.; Zimmerman, T.; /Fermilab

    2010-10-01

    This paper reports on the current status of the development of International Linear Collider vertex detector pixel readout chips based on multi-tier vertically integrated electronics. Initial testing results of the VIP2a prototype are presented. The chip is the second embodiment of the prototype data-pushed readout concept developed at Fermilab. The device was fabricated in the MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  3. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    SciTech Connect

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  4. The BTeV pixel and microstrip detector

    SciTech Connect

    Simon W Kwan

    2003-06-04

    The BTeV pixel detector is one of the most crucial elements in the BTeV experiment. While the pixel detector is technically challenging, we have made great progress towards identifying viable solutions for individual components of the system. The forward silicon tracker is based on more mature technology and its design has benefited from the experience of other experiments. Nevertheless, we have started an R&D program on the forward silicon tracker and first results are expected some time next year.

  5. Construction of the Phase I Forward Pixel Detector

    NASA Astrophysics Data System (ADS)

    Neylon, Ashton; Bartek, Rachel

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The original CMS detector was designed for the nominal instantaneous LHC luminosity of 1 x 1034 cm-2s-1 . The LHC has already started to exceed this luminosity causing the CMS pixel detector to see a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS Collaboration has been building an upgraded pixel detector which is scheduled for installation during an extended year end technical stop during winter 2016/2017. The phase 1 upgrade includes four barrel layers and three forward disks, providing robust tracking and vertexing for LHC luminosities up to 2 x 1034 cm-2s-1 . The upgrade incorporates new readout chips, front-end electronics, DC-DC powering, and dual-phase CO2 cooling to achieve performance exceeding that of the present detector with a lower material budget. This contribution will review the design and technology choices of the Phase I detector and discuss the status of the detector. The challenges and difficulties encountered during the construction will also be presented, as well as the lessons learned for future upgrades. National Science Foundation.

  6. Phase 1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  7. Overview of the BTeV Pixel Detector

    SciTech Connect

    Jeffrey A Appel

    2002-12-10

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton

  8. CMOS Hybrid Pixel Detectors for Scientific, Industrial and Medical Applications

    NASA Astrophysics Data System (ADS)

    Broennimann, Christian

    2009-03-01

    Crystallography is the principal technique for determining macromolecular structures at atomic resolution and uses advantageously the high intensity of 3rd generation synchrotron X-ray sources . Macromolecular crystallography experiments benefit from excellent beamline equipment, recent software advances and modern X-ray detectors. However, the latter do not take full advantage of the brightness of modern synchrotron sources. CMOS Hybrid pixel array detectors, originally developed for high energy physics experiments, meet these requirements. X-rays are recorded in single photon counting mode and data thus are stored digitally at the earliest possible stage. This architecture leads to several advantages over current detectors: No detector noise is added to the signal. Readout time is reduced to a few milliseconds. The counting rates are matched to beam intensities at protein crystallography beamlines at 3rd generation synchrotrons. The detector is not sensitive to X-rays during readout; therefore no mechanical shutter is required. The detector has a very sharp point spread function (PSF) of one pixel, which allows better resolution of adjacent reflections. Low energy X-rays can be suppressed by the comparator At the Paul Scherrer Institute (PSI) in Switzerland the first and largest array based on this technology was constructed: The Pilatus 6M detector. The detector covers an area of 43.1 x 44.8 cm2 , has 6 million pixels and is read out noise free in 3.7 ms. Since June 2007 the detector is in routine operation at the beamline 6S of the Swiss Light Source (SLS). The company DETCRIS Ltd, has licensed the technology from PSI and is commercially offering the PILATUS detectors. Examples of the wide application range of the detectors will be shown.

  9. Novel integrated CMOS pixel structures for vertex detectors

    SciTech Connect

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  10. Study of indium and solder bumps for the BTeV Pixel Detector

    SciTech Connect

    Simon W Kwan et al.

    2003-11-05

    The pixel detector proposed for the BTeV experiment at the Fermilab Tevatron will use bump-bonding technology based on either Indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have studied the strength of the bumps by visual inspection of the bumps bonding silicon sensor modules to dummy chips made out of glass. The studies were done before and after thermal cycles, exposed to intense irradiation, and with the assemblies glued to a graphite substrate. We have also carried out studies on effects of temperature changes on both types of bump bonds by observing the responses of single-chip pixel detectors to an Sr{sup 90} source. We report the results from these studies and our plan to measure the effect of cryogenic temperatures on the bumps.

  11. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    SciTech Connect

    Fahim, Farah

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  12. ATLAS pixel detector design for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Smart, B.

    2017-02-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector is called the Inner Tracker (ITk). The ITk will cover an extended η-range: at least to |η|<3.2, and likely up to 0|η|<4.. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into `extended' and `inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will also be discussed.

  13. Large format, small pixel pitch and hot detectors at SOFRADIR

    NASA Astrophysics Data System (ADS)

    Reibel, Y.; Rouvie, A.; Nedelcu, A.; Augey, T.; Pere-Laperne, N.; Rubaldo, L.; Billon-Lanfrey, D.; Gravrand, O.; Rothman, J.; Destefanis, G.

    2013-10-01

    Recently Sofradir joined a very small circle of IR detector manufacturers with expertise every aspect of the cooled and uncooled IR technologies, all under one roof by consolidating all IR technologies available in France. These different technologies are complementary and are used depending of the needs of the applications mainly concerning the detection range needs as well as their ability to detect in bad weather environmental conditions. SNAKE (InGaAs) and SCORPIO LW (MCT) expand Sofradir's line of small pixel pitch TV format IR detectors from the mid-wavelength to the short and long wavelengths. Our dual band MW-LW QWIP detectors (25μm, 384×288 pixels) benefit to tactical platforms giving an all-weather performance and increasing flexibility in the presence of battlefield obscurants. In parallel we have been pursuing further infrared developments on future MWIR detectors, such as the VGA format HOT detector that consumes 2W and the 10μm pitch IR detector which gives us a leading position in innovation. These detectors are designed for long-range surveillance equipment, commander or gunner sights, ground-to-ground missile launchers and other applications that require higher resolution and sensitivity to improve reconnaissance and target identification. This paper discusses the system level performance in each detector type.

  14. Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.

    2017-01-01

    MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.

  15. First results from electrical qualification measurements on DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Majewski, Petra; Andricek, Ladislav; Lauf, Thomas; Lechner, Peter; Lutz, Gerhard; Reiffers, Jonas; Richter, Rainer; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

    2010-07-01

    We report on the first results from a new setup for electrical qualification measurements of DEPFET pixel detector matrices. In order to measure the transistor properties of all pixels, the DEPFET device is placed into a benchtest setup and electrically contacted via a probecard. Using a switch matrix, each pixel of the detector array can be addressed individually for characterization. These measurements facilitate to pre-select the best DEPFET matrices as detector device prior to the mounting of the matrix and allow to investigate topics like the homogeneity of transistor parameters on device, wafer and batch level in order to learn about the stability and reproducibility of the production process. Especially with regard to the detector development for the IXO Wide Field Imager (WFI), this yield learning will be an important tool. The first electrical qualification measurements with this setup were done on DEPFET macropixel detector flight hardware, which will form the FPAs of the Mercury Imaging X-ray Spectrometer (MIXS) on board of the 5th ESA cornerstone mission BepiColombo. The DEPFET array consists of 64×64 macropixel for which the transfer, output and clear characteristics were measured.

  16. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    SciTech Connect

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  17. Pixel detector system development at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  18. Use of silicon pixel detectors in double electron capture experiments

    NASA Astrophysics Data System (ADS)

    Cermak, P.; Stekl, I.; Shitov, Yu A.; Mamedov, F.; Rukhadze, E. N.; Jose, J. M.; Cermak, J.; Rukhadze, N. I.; Brudanin, V. B.; Loaiza, P.

    2011-01-01

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R&D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2νEC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify α/β/γ particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  19. Line profile modelling for multi-pixel CZT detectors

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  20. Spatial Pileup Considerations for Pixellated Gamma -ray Detectors

    PubMed Central

    Furenlid, L.R.; Clarkson, E.; Marks, D.G.; Barrett, H.H.

    2015-01-01

    High-spatial-resolution solid-state detectors being developed for gamma-ray applications benefit from having pixel dimensions substantially smaller than detector slab thickness. This leads to an enhanced possibility of charge partially spreading to neighboring pixels as a result of diffusion (and secondary photon emission) transverse to the drift direction. An undesirable consequence is the effective magnification of the event “size“ and the spatial overlap issues which result when two photons are absorbed in close proximity within the integration time of the detector/readout system. In this work, we develop the general statistics of spatial pileup in imaging systems and apply the results to detectors we are developing based on pixellated cadmium zinc telluride (CdZnTe) and a multiplexing application-specific integrated circuit (ASIC) readout. We consider the limitations imposed on total count rate capacity and explore in detail the consequences for the LISTMODE data-acquisition strategy. Algorithms are proposed for identifying and, where possible, resolving overlapping events by maximum-likelihood estimation. The efficacy and noise tolerance of these algorithms will be tested with a combination of simulated and experimental data in future work. PMID:26568675

  1. CMS Pixel Detector design for HL-LHC

    NASA Astrophysics Data System (ADS)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  2. 3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices

    SciTech Connect

    Micelli, A.; Helle, K.; Sandaker, H.; Stugu, B.; Barbero, M.; Hugging, F.; Karagounis, M.; Kostyukhin, V.; Kruger, H.; Tsung, J.W.; Wermes, N.; Capua, M.; Fazio, S.; Mastroberardino, A.; Susinno, G.; Gallrapp, C.; Di Girolamo, B.; Dobos, D.; La Rosa, A.; Pernegger, H.; Roe, S.; /CERN /Prague, Tech. U. /Prague, Tech. U. /Freiburg U. /Freiburg U. /Freiburg U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /Glasgow U. /Glasgow U. /Glasgow U. /Hawaii U. /Barcelona, IFAE /Barcelona, IFAE /LBL, Berkeley /Barcelona, IFAE /LBL, Berkeley /LBL, Berkeley /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /Manchester U. /New Mexico U. /New Mexico U. /Oslo U. /Oslo U. /Oslo U. /Oslo U. /Oslo U. /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SUNY, Stony Brook /SUNY, Stony Brook /SUNY, Stony Brook /INFN, Trento /Trento U. /INFN, Trento /Trento U. /INFN, Trento /Trento U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /INFN, Trieste /Udine U. /Barcelona, Inst. Microelectron. /Barcelona, Inst. Microelectron. /Barcelona, Inst. Microelectron. /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /Fond. Bruno Kessler, Trento /SINTEF, Oslo /SINTEF, Oslo /SINTEF, Oslo /SINTEF, Oslo /VTT Electronics, Espoo /VTT Electronics, Espoo

    2012-04-30

    The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.

  3. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  4. Characterization of indium and solder bump bonding for pixel detectors

    SciTech Connect

    Selcuk Cihangir and Simon Kwan

    2000-09-28

    A review of different bump-bonding processes used for pixel detectors is given. A large scale test on daisy-chained components from two vendors has been carried out at Fermilab to characterize the yield of these processes. The vendors are Advanced Interconnect Technology Ltd. (AIT) of Hong Kong and MCNC in North Carolina, US. The results from this test are presented and technical challenges encountered are discussed.

  5. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope.

  6. Heavily irradiated N-in-p thin planar pixel sensors with and without active edges

    NASA Astrophysics Data System (ADS)

    Terzo, S.; Andricek, L.; Macchiolo, A.; Moser, H. G.; Nisius, R.; Richter, R. H.; Weigell, P.

    2014-05-01

    We present the results of the characterization of silicon pixel modules employing n-in-p planar sensors with an active thickness of 150 μm, produced at MPP/HLL, and 100-200 μm thin active edge sensor devices, produced at VTT in Finland. These thin sensors are designed as candidates for the ATLAS pixel detector upgrade to be operated at the HL-LHC, as they ensure radiation hardness at high fluences. They are interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the n-in-p technology only requires a single side processing and thereby it is a cost-effective alternative to the n-in-n pixel technology presently employed in the LHC experiments. High precision beam test measurements of the hit efficiency have been performed on these devices both at the CERN SpS and at DESY, Hamburg. We studied the behavior of these sensors at different bias voltages and different beam incident angles up to the maximum one expected for the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained with 150 μm thin sensors, assembled with the new ATLAS FE-I4 chip and irradiated up to a fluence of 4 × 1015 neq/cm2, show that they are excellent candidates for larger radii of the silicon pixel tracker in the upgrade of the ATLAS detector at HL-LHC. In addition, the active edge technology of the VTT devices maximizes the active area of the sensor and reduces the material budget to suit the requirements for the innermost layers. The edge pixel performance of VTT modules has been investigated at beam test experiments and the analysis after irradiation up to a fluence of 5 × 1015 neq/cm2 has been performed using radioactive sources in the laboratory.

  7. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  8. Monolithic pixel detectors with 0.2 μm FD-SOI pixel process technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Chiba, Tadashi; Fujita, Yowichi; Hara, Kazuhiko; Honda, Shunsuke; Igarashi, Yasushi; Ikegami, Yoichi; Ikemoto, Yukiko; Kohriki, Takashi; Ohno, Morifumi; Ono, Yoshimasa; Shinoda, Naoyuki; Takeda, Ayaki; Tauchi, Kazuya; Tsuboyama, Toru; Tadokoro, Hirofumi; Unno, Yoshinobu; Yanagihara, Masashi

    2013-12-01

    Truly monolithic pixel detectors were fabricated with 0.2 μm SOI pixel process technology by collaborating with LAPIS Semiconductor Co., Ltd. for particle tracking experiment, X-ray imaging and medical applications. CMOS circuits were fabricated on a thin SOI layer and connected to diodes formed in the silicon handle wafer through the buried oxide layer. We can choose the handle wafer and therefore high-resistivity silicon is also available. Double SOI (D-SOI) wafers fabricated from Czochralski (CZ)-SOI wafers were newly obtained and successfully processed in 2012. The top SOI layers are used as electric circuits and the middle SOI layers used as a shield layer against the back-gate effect and cross-talk between sensors and CMOS circuits, and as an electrode to compensate for the total ionizing dose (TID) effect. In 2012, we developed two SOI detectors, INTPIX5 and INTPIX3g. A spatial resolution study was done with INTPIX5 and it showed excellent performance. The TID effect study with D-SOI INTPIX3g detectors was done and we confirmed improvement of TID tolerance in D-SOI sensors.

  9. Energy calibration of the pixels of spectral X-ray detectors.

    PubMed

    Panta, Raj Kumar; Walsh, Michael F; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-03-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have developed a technique for calibrating the energy response of individual pixels using X-ray fluorescence generated by metallic targets directly irradiated with polychromatic X-rays, and additionally γ-rays from (241)Am. This technique was used to measure the energy response of individual pixels in CdTe-Medipix3RX by characterizing noise performance, threshold dispersion, gain variation and spectral resolution. The comparison of these two techniques shows the energy difference of 1 keV at 59.5 keV which is less than the spectral resolution of the detector (full-width at half-maximum of 8 keV at 59.5 keV). Both techniques can be used as quality control tools in a pre-clinical multi-energy CT scanner using spectral X-ray detectors.

  10. Characterization of a pixelated CdTe Timepix detector operated in ToT mode

    NASA Astrophysics Data System (ADS)

    Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.

    2017-01-01

    A 1 mm thick CdTe sensor bump-bonded to a Timepix readout chip operating in Time-over-Threshold (ToT) mode has been characterized in view of possible applications in particle and medical physics. The CdTe sensor layer was segmented into 256 × 256 pixels, with a pixel pitch of 55 μm. This CdTe Timepix device, of ohmic contact type, has been exposed to alpha-particles and photons from an 241Am source, photons from a 137Cs source, and protons of different energies (0.8–10 MeV) delivered by the University of Montreal Tandem Accelerator. The device was irradiated on the negatively biased backside electrode. An X-ray per-pixel calibration commonly used for this type of detector was done and its accuracy and resolution were assessed and compared to those of a 300 μm thick silicon Timepix device. The electron mobility-lifetime product (μeτe) of CdTe for protons of low energy has been obtained from the Hecht equation. Possible polarization effects have been also investigated. Finally, information about the homogeneity of the detector was obtained from X-ray irradiation.

  11. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  12. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  13. The CT-PPS tracking system with 3D pixel detectors

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-11-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 210 m from the interaction point. This detector will measure leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constraints of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system is presented. A summary of the studies performed, before and after irradiation, on the 3D detectors produced for CT-PPS is given.

  14. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  15. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    NASA Astrophysics Data System (ADS)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  16. The ultralight DEPFET pixel detector of the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Luetticke, Florian

    2017-02-01

    An upgrade of the existing Japanese flavor factory (KEKB in Tsukuba, Japan) is under construction and foreseen for commissioning by the end of 2017. This new e+e- machine (SuperKEKB) will deliver an instantaneous luminosity 40 times higher than the luminosity world record set by KEKB. To fully exploit the increased number of events and provide high precision measurements of B-meson decay vertices in such a harsh environment, the Belle detector will be upgraded to Belle II, featuring a new silicon vertex detector with two pixel layers close to the interaction point based on the DEPFET (DEpleted P-channel Field Effect Transistor) technology. This technology combines particle detection together with in-pixel amplification by integrating a field effect transistor into a fully depleted silicon bulk. In Belle II, DEPFET sensors thinned down to 75 μm with low power consumption and low intrinsic noise will be used. The first large thin multi-chip production modules have been produced and characterization results on both large modules as well as small test systems will be presented in this contribution.

  17. Pixelated transmission-mode diamond X-ray detector.

    PubMed

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-11-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  18. Pixelated transmission-mode diamond X-ray detector

    SciTech Connect

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-09-29

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10-2to 90 W mm-2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  19. Pixelated transmission-mode diamond X-ray detector

    PubMed Central

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-01-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼1 kHz, which leads to an image sampling rate of ∼30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10−2 to 90 W mm−2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). PMID:26524304

  20. A new design for the gas pixel detector

    NASA Astrophysics Data System (ADS)

    Muleri, Fabio; Bellazzini, Ronaldo; Brez, Alessandro; Costa, Enrico; Fabiani, Sergio; Minuti, Massimo; Pinchera, Michele; Rubini, Alda; Soffitta, Paolo; Spandre, Gloria

    2012-09-01

    The Gas Pixel Detector, developed and continuously improved by Pisa INFN in collaboration with INAF-IAPS, can visualize the tracks produced within a low Z gas by photoelectrons of few keV. By reconstructing the impact point and the original direction of the photoelectrons, the GPD can measure the linear polarization of X-rays, while preserving the information on the absorption point, the energy and the time of arrival of individual photons. The Gas Pixel Detector filled with He-DME mixture at 1 bar is sensitive in the 2-10 keV energy range and this configuration has been the basis of a number of mission proposals, such as POLARIX or XPOL on-board XEUS/IXO, or the X-ray Imaging Polarimetry Explorer (XIPE) submitted in response to ESA small mission call in 2012. We have recently improved the design by modifying the geometry of the absorption cell to minimize any systematic effect which could leave a residual polarization signal for non polarized source. We report on the testing of this new concept with preliminary results on the new design performance.

  1. Diamond Pixel Detectors and 3D Diamond Devices

    NASA Astrophysics Data System (ADS)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  2. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    SciTech Connect

    Koybasi, Ozhan; Bortoletto, Daniela; Hansen, Thor-Erik; Kok, Angela; Hansen, Trond Andreas; Lietaer, Nicolas; Jensen, Geir Uri; Summanwar, Anand; Bolla, Gino; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  3. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Buchanan, E.

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  4. Multilayer fluorescence imaging on a single-pixel detector

    PubMed Central

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-01-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect. PMID:27446679

  5. Multilayer fluorescence imaging on a single-pixel detector.

    PubMed

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-07-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect.

  6. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  7. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  8. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-12-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ``high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ``continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan.

  9. Tracking performance of GasPixel detectors in test beam studies

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. S.; Hartjes, F.; Hessey, N. P.; Fransen, M.; Konovalov, S. P.; Koppert, W.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Van der Graaf, H.; Vorobev, K.

    2016-01-01

    A combination of a pixel chip and a gas chamber (GasPixel detectors) opens new opportunities for particle detectors. GasPixel detectors consist of an electron drift volume, an amplification gap and an anode plane based on a semiconductor chip. This technology promises large benefits in high-energy charged-particle tracking. It allows reconstruction of a 3D image of a particle track segment in a single detector layer with high accuracy. Several prototypes of GasPixel detectors based on micromegas technology with different gas mixtures and drift gaps were studied in a test beam. A spatial resolution of 8 μm and angular accuracy of about 0.2° in a chip plane were obtained. A dedicated Monte Carlo simulation of GasPixel detectors shows good agreement with experimental data.

  10. From vertex detectors to inner trackers with CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Besson, A.; Pérez, A. Pérez; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2017-02-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R & D results for the conception of a CPS well adapted for the ALICE-ITS.

  11. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  12. Adhesive Testing for the BTeV Pixel Detector

    SciTech Connect

    Lei, C.M.; Kwan, Simon; Hicks, D.; Hahn, Eileen; Hoffman, Jay; Austin, Sharon; Jones, Renee; /Fermilab

    2005-12-01

    The basic unit of the BTeV pixel detector is a multi-chip module which is comprised of a silicon sensor module bump-bonded to a number of readout chips. The pixel module will then be glued to a high intensity interconnect (HDI) cable using electrically conductive adhesive, and then onto a substrate using another kind of adhesive with reasonable thermal conductivity. This report is mostly addressed to the need of the latter--the substrate adhesive. The aim of this technical note is to summarize the testing efforts and results of this substrate adhesive covering a period since 2001 till the end of 2004. The substrate will serve two purposes: mechanical support and cooling of the modules. Stresses and strains will be generated when there is a thermal change on the substrate. In addition, since there are many kinds of materials, with different coefficient of thermal expansion (CTE), being glued together to form the complete detector assembly, the substrate may get distorted due to the CTE mismatches. As stress is directly proportional to the material modulus, a significant amount of effort was concentrated in understanding the adhesive modulus. There are other constraints which need to be considered as well. For instance, the detector will be placed in a vacuum close to the beam, and it will be exposed to significant radiation during operation. As there are so many requirements on the adhesive, it is certainly not that easy to find one that meets all the demands. With a reasonable screening that the adhesive candidates being radiation hard and have low outgassing, searching for suitable adhesives was focused on those with low modulus. That is because (1) a mechanically reliable and fail-proof adhesive structure with low stress is needed, and (2) the leaking current characteristics of the modules will increase if mechanical stresses are too high. However, much of the technical information needed is usually not available from the vendor and therefore testing on our own

  13. Development of CdTe pixel detectors combined with an aluminum Schottky diode sensor and photon-counting ASICs

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Saji, C.; Kawase, M.; Wu, S.; Furukawa, Y.; Kajiwara, K.; Sato, M.; Hirono, T.; Shiro, A.; Shobu, T.; Suenaga, A.; Ikeda, H.

    2017-01-01

    We have been developing CdTe pixel detectors combined with a Schottky diode sensor and photon-counting ASICs. The hybrid pixel detector was designed with a pixel size of 200 μ m by 200 μm and an area of 19 mm by 20 mm or 38.2 mm by 40.2 mm. The photon-counting ASIC, SP8-04F10K, has a preamplifier, a shaper, 3-level window-type discriminators and a 24-bits counter in each pixel. The single-chip detector with 100 by 95 pixels successfully operated with a photon-counting mode selecting X-ray energy with the window comparator and stable operation was realized at 20 degrees C. We have performed a feasibility study for a white X-ray microbeam experiment. Laue diffraction patterns were measured during the scan of the irradiated position in a silicon steel sample. The grain boundaries were identified by using the differentials between adjacent images at each position.

  14. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  15. Radiation tolerance of prototype BTeV pixel detector readout chips

    SciTech Connect

    Gabriele Chiodini et al.

    2002-07-12

    High energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump bonded to arrays of front-end electronic cells) is the state of the art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200 MeV proton beam at Indiana University Cyclotron Facility. Prototype pixel readout chip preFPIX2 has been developed at Fermilab for collider experiments and implemented in standard 0.25 micron CMOS technology following radiation tolerant design rules. The tests confirmed the radiation tolerance of the chip design to proton total dose up to 87 MRad. In addition, non destructive radiation-induced single event upsets have been observed in on-chip static registers and the single bit upset cross section has been extensively measured.

  16. Qualification of the modules for the Phase 1 upgrade of the CMS forward pixel detector

    NASA Astrophysics Data System (ADS)

    Sandoval Gonzalez, Irving; CMS Collaboration

    2017-01-01

    The innermost component of the Compact Muon Solenoid (CMS) detector, the silicon pixel tracker, will be replaced by a new device in early 2017 to cope with the significant increase in instantaneous luminosity expected for the remainder of Run 2 of the Large Hadron Collider. The upgraded detector is composed of two subcomponents: the barrel pixel (BPIX) and the forward pixel (FPIX). In this work, we describe the testing and calibration procedures that the FPIX detector subcomponents underwent as well as the quality assurance criteria used for selecting the best detector modules for the final installation. NSF

  17. Characterization and performance of silicon n-in-p pixel detectors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Weigell, P.; Beimforde, M.; Gallrapp, Ch.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.

    2011-12-01

    The existing ATLAS tracker will be at its functional limit for particle fluences of 10 15 neq/cm2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. n-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 μm thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current ATLAS read-out chip FE-I3. The characterisation has been performed with the ATLAS pixel read-out systems, before and after irradiation with 24 GeV/ c protons. In addition preliminary testbeam results for the tracking efficiency and charge collection, obtained with a SCM, are discussed.

  18. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  19. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Backhaus, M.

    2016-09-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO2 based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  20. A prototype of a new generation readout ASIC in 65nm CMOS for pixel detectors at HL-LHC

    NASA Astrophysics Data System (ADS)

    Monteil, E.; Pacher, L.; Paternò, A.; Loddo, F.; Demaria, N.; Gaioni, L.; De Canio, F.; Traversi, G.; Re, V.; Ratti, L.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Marzocca, C.; Licciulli, F.; Ciciriello, F.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.; Veri, C.

    2016-12-01

    This paper describes a readout ASIC prototype designed by CHIPIX65 project, part of RD53, for a pixel detector at HL-LHC . A 64 × 64 matrix of 50 × 50 μ m2 pixels is realised. A digital architecture has been developed, with particle efficiency above 99.9% at 3 GHz/cm2 pixel rate, 1 MHz trigger rate with 12.5 μ s latency. Two analog front end designs, one synchronous and one asynchronous, are implemented. Charge is measured with 5-bit precision and the analog dead-time is below 1%. IP-blocks (DAC, ADC, BandGap, SER, sLVS-TX/RX) and very front ends are silicon proven, irradiated to 600-800Mrad.

  1. A prototype of pixel readout ASIC in 65 nm CMOS technology for extreme hit rate detectors at HL-LHC

    NASA Astrophysics Data System (ADS)

    Paternò, A.; Pacher, L.; Monteil, E.; Loddo, F.; Demaria, N.; Gaioni, L.; De Canio, F.; Traversi, G.; Re, V.; Ratti, L.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Marzocca, C.; Licciulli, F.; Ciciriello, F.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.; Veri, C.

    2017-02-01

    This paper describes a readout ASIC prototype designed by the CHIPIX65 project, part of RD53, for a pixel detector at HL-LHC . A 64×64 matrix of 50×50μm2 pixels is realised. A digital architecture has been developed, with particle efficiency above 99.5% at 3 GHz/cm2 pixel rate, trigger frequency of 1 MHz and 12.5μsec latency. Two analog front end designs, one synchronous and one asynchronous, are implemented. Charge is measured with 5-bit precision, analog dead-time below 1%. The chip integrates for the first time many of the components developed by the collaboration in the past, including the Digital-to-Analog converters, Bandgap reference, Serializer, sLVS drivers, and analog Front Ends. Irradiation tests on these components proved their reliability up to 600 Mrad.

  2. A MCM-D-type module for the ATLAS pixel detector

    SciTech Connect

    Becks, K.H.; Beyne, E.; Ehrmann, O.; Gerlach, P.; Gregor, I.M.; Pieters, P.; Toepper, M.; Truzzi, C.; Wolf, J.

    1999-12-01

    For the ATLAS experiment at the planned Large Hadron Collider LHC at CERN hybrid pixel detectors are being built as innermost layers of the inner tracking detector system. Modules are the basic building blocks of the ATLAS pixel detector. A module consists of a sensor tile with an active area of 16.4 mm x 60.4 mm, 16 read out IC's, each serving 24 x 160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution busses. The dies are attached by flip-chip assembly to the sensor diodes and the local busses.

  3. Using an Active Pixel Sensor In A Vertex Detector

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Chen, Yandong; Gareus, Robin; Kleinfelder, Stuart; Oldenburg, Markus; Retiere, Fabrice; Ritter, HansGeorg; Wieman, Howard H.; Wurzel, Samuel E.; Yamamoto, Eugene

    2004-04-22

    Research has shown that Active Pixel CMOS sensors can detect charged particles. We have been studying whether this process can be used in a collider environment. In particular, we studied the effect of radiation with 55 MeV protons. These results show that a fluence of about 2 x 10{sup 12} protons/cm{sup 2} reduces the signal by a factor of two while the noise increases by 25%. A measurement 6 months after exposure shows that the silicon lattice naturally repairs itself. Heating the silicon to 100 C reduced the shot noise and increased the collected charge. CMOS sensors have a reduced signal to noise ratio per pixel because charge diffuses to neighboring pixels. We have constructed a photogate to see if this structure can collect more charge per pixel. Results show that a photogate does collect charge in fewer pixels, but it takes about 15 ms to collect all of the electrons produced by a pulse of light.

  4. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  5. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    NASA Astrophysics Data System (ADS)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  6. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  7. Direct charge sharing observation in single-photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pellegrini, G.; Maiorino, M.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 μm pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  8. Characterization of silicon 3D pixel detectors for the ATLAS Forward Physics experiment

    SciTech Connect

    Lopez Paz, I.; Cavallaro, E.; Lange, J.; Grinstein, S.

    2015-07-01

    The ATLAS Forward Physics (AFP) project aims to measure protons scattered under a small angle from the pp collisions in ATLAS. In order to perform such measurements, a new silicon tracker, together with a time-of-flight detector for pile-up removal, are planned to be installed at ∼210 m from the interaction point and at 2-3 mm from the LHC proton beam. To cope with such configuration and maximize the physics outcome, the tracker has to fulfil three main requirements: endure highly non-uniform radiation doses, due to the very inhomogeneous beam profile, have slim and efficient edges to improve the acceptance of the tracker, and provide good position resolution. Recent laboratory and beam test characterization results of AFP prototypes will be presented. Slim-edged 3D pixel detectors down to 100-200 μm were studied and later non-uniformly irradiated (with a peak fluence of several 10{sup 15} n{sub eq}/cm{sup 2}) to determine the fulfilment of the AFP requirements. (authors)

  9. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    NASA Astrophysics Data System (ADS)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  10. Irradiation and testbeam of KEK/HPK planar p-type pixel modules for HL-LHC

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Arai, Y.; Hagihara, M.; Hanagaki, K.; Hara, K.; Hori, R.; Hirose, M.; Ikegami, Y.; Jinnouchi, O.; Kamada, S.; Kawagoe, K.; Kohno, T.; Motohashi, K.; Nishimura, R.; Oda, S.; Otono, H.; Takubo, Y.; Terada, S.; Takashima, R.; Tojo, J.; Unno, Y.; Usui, J.; Wakui, T.; Yamaguchi, D.; Yamamoto, K.; Yamamura, K.

    2015-06-01

    For the ATLAS detector upgrade for the high luminosity LHC (HL-LHC), an n-in-p planar pixel sensor-module is being developed with HPK. The modules were irradiated at the Cyclotron RadioIsotope Center (CYRIC) using 70 MeV protons. For the irradiation, a novel irradiation box has been designed that carries 16 movable slots to irradiate the samples slot-by-slot independently, to reduce the time for replacing the samples by hand, thus reducing the irradiation to human body. The box can be moved horizontally and vertically to scan the samples for a maximum area of 11 cm × 11 cm. Tests were subsequently carried out with beam at CERN by using 120 GeV pions and at DESY with 4 GeV electrons. We describe the analyses of the testbeam data of the KEK/HPK sensor-modules, focussing on the comparison of the performance of old and new designs of pixel structures, together with a reference of the simplest design (no biasing structure). The novel design has shown comparably good performance as the no-structure design in detecting passing-through charged particles.

  11. Si pixel detectors in the detection of EC/EC decay

    SciTech Connect

    Jose, J. M.; Čermák, P.; Fajt, L.; Štekl, I.; Rukhadze, N. I.; Shitov, Yu. A.

    2015-08-17

    The SPT collaboration has been investigating the applicability of pixel detectors in the detection of two neutrino double electron capture (2νEC/EC) in{sup 106}Cd. The collaboration has proposed a Silicon Pixel Telescope (SPT) where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. The Pixel detector gives spatial information along with energy of the particle, thus helps to identify and remove the background signals. Four units of SPT prototype (using 0.5 and 1 mm Si sensors) were fabricated and installed in the LSM underground laboratory, France. Recent progress in the SPT experiment and preliminary results from background measurements are presented.

  12. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  13. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    SciTech Connect

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  14. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  15. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    SciTech Connect

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  16. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    SciTech Connect

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.

  17. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  18. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  19. Detection and Real Time Spectroscopy of Charged Particles with the TimePix Pixel Detector

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal; Pospisil, Stanislav; Vykydal, Zdenek

    2010-01-01

    We tested the position—, spectral— and time—resolution capability of the TimePix semiconductor detector together with the USB readout interface and Pixelman control and DAQ software tool for detection and visualization of particles. Event—by—event spectroscopy can be achieved by real time analysis of the characteristic tracks and specific response of different radiation in the pixel detector.

  20. Pixel architectures in a HV-CMOS process for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Krüger, H.; Lachkar, M.; Liu, J.; Orsini, F.; Pangaud, P.; Rymaszewski, P.; Wang, T.

    2016-12-01

    In this paper, design details and simulation results of new pixel architectures designed in LFoundry 150 nm high voltage CMOS process in the framework of the ATLAS high luminosity inner detector upgrade are presented. These pixels can be connected to the FE-I4 readout chip via bump bonding or glue and some of them can also be tested without a readout chip. Negative high voltage is applied to the high resistivity (> 2 kΩ .cm) substrate in order to deplete the deep n-well charge collection diode, ensuring good charge collection and radiation tolerance. In these pixels, the front-end has been implemented inside the diode using both NMOS and PMOS transistors. The pixel pitch is 50 μm × 250 μm for all pixels. These pixels have been implemented in a demonstrator chip called LFCPIX.

  1. Performance evaluation of a serially powered pixel detector prototype for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Gonella, L.; Filimonov, V.; Hügging, F.; Hemperek, T.; Janssen, J.; Krüger, H.; Pohl, D.-L.; Wermes, N.

    2017-03-01

    Efficient and low mass power distribution presents a challenge for vertex and tracking detectors at the HL-LHC . Different approaches have been considered to transmit power at low current and high voltage. This paper presents the serial powering scheme proposed as baseline for the ATLAS and CMS pixel detectors at the HL-LHC . A serially powered detector prototype with six pixel modules has been built, featuring all elements needed for current distribution, redundancy, data transmission, and sensor biasing. Results of the characterisation of the prototype in standard operating conditions as well as in more challenging scenarios including increased digital activity are presented.

  2. Physics performance and upgrade for Run II of the ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Miglioranzi, S.

    2015-05-01

    The ATLAS pixel detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle trajectories in the high radiation environment close to the collision region. The operation and performance of the pixel detector during the first years of LHC running are described. More than 96% of the detector modules were operational during this period, with an average intrinsic hit efficiency larger than 99%. The alignment of the detector was found to be stable at the few-micron level over long periods of time. Detector material description, tracking performances in Run I and expectations for the upcoming Run II are presented.

  3. Hard x-ray response of pixellated CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Del Sordo, S.; Caroli, E.; Gerardi, G.; Raso, G.; Caccia, S.; Bertuccio, G.

    2009-06-01

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10×10×1 and 10×10×2 mm3 single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 μm BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T =10 °C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  4. Hard x-ray response of pixellated CdZnTe detectors

    SciTech Connect

    Abbene, L.; Caccia, S.; Bertuccio, G.

    2009-06-15

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10x10x1 and 10x10x2 mm{sup 3} single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 mum BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T=10 deg.C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  5. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Veale, M. C.; Duarte, D. D.; Bell, S. J.; Wilson, M. D.; Lipp, J. D.; Seller, P.

    2015-02-01

    In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and γ-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (~ 20× 20 mm2) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74× 74 arrays of 200 μ m × 200 μ m pixels with 250 μ m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150\\r{ }C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique.

  6. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    NASA Astrophysics Data System (ADS)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  7. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    PubMed

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  8. Compressive holography with a single-pixel detector.

    PubMed

    Clemente, Pere; Durán, Vicente; Tajahuerce, Enrique; Andrés, Pedro; Climent, Vicent; Lancis, Jesús

    2013-07-15

    This Letter develops a framework for digital holography at optical wavelengths by merging phase-shifting interferometry with single-pixel optical imaging based on compressive sensing. The field diffracted by an input object is sampled by Hadamard patterns with a liquid crystal spatial light modulator. The concept of a single-pixel camera is then adapted to perform interferometric imaging of the sampled diffraction pattern by using a Mach-Zehnder interferometer. Phase-shifting techniques together with the application of a backward light propagation algorithm allow the complex amplitude of the object under scrutiny to be resolved. A proof-of-concept experiment evaluating the phase distribution of an ophthalmic lens with compressive phase-shifting holography is provided.

  9. A new generation of small pixel pitch/SWaP cooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  10. Characteristics of non-irradiated and irradiated double SOI integration type pixel sensor

    NASA Astrophysics Data System (ADS)

    Asano, M.; Sekigawa, D.; Hara, K.; Aoyagi, W.; Honda, S.; Tobita, N.; Arai, Y.; Miyoshi, T.; Kurachi, I.; Tsuboyama, T.; Yamada, M.

    2016-09-01

    We are developing monolithic pixel sensors based on a 0.2 μm fully depleted silicon-on-insulator (FD-SOI) technology for high-energy physics experiment applications. With this SOI technology, the wafer resistivities for the electronics and sensor parts can be chosen separately. Therefore, a device with full depletion and fast charge collection is realized. The total ionizing dose (TID) effect is the major challenge for application in hard radiation environments. To compensate for TID damage, we introduced a double SOI structure that implements an additional middle silicon layer (SOI2 layer). Applying a negative voltage to the SOI2 layer should compensate for the effects induced by holes trapped in the buried oxide layers. We studied the recovery from TID damage induced by 60Co γ and other characteristics of the integration-type double SOI sensor INTPIXh2. When the double SOI sensor was irradiated to 100 kGy, it showed a response to the infrared laser similar to that of a non-irradiated sensor when we applied a negative voltage to the SOI2 layer. Thus, we concluded that the double SOI sensor is very effective at sufficiently enhancing the radiation hardness for application in experiments with harsh radiation environments, such as at Belle II or ILC.

  11. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  12. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  13. Evaluation of a Wobbling Method Applied to Correcting Defective Pixels of CZT Detectors in SPECT Imaging

    PubMed Central

    Xie, Zhaoheng; Li, Suying; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2016-01-01

    In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging. PMID:27240368

  14. Imaging detector development for nuclear astrophysics using pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  15. Low-cost bump-bonding processes for high energy physics pixel detectors

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Blank, T.; Colombo, F.; Dierlamm, A.; Husemann, U.; Kudella, S.; Weber, M.

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes.

  16. Large monolithic particle pixel-detector in high-voltage CMOS technology

    NASA Astrophysics Data System (ADS)

    Perić, I.; Takacs, C.

    2010-12-01

    A large monolithic particle pixel-detector implemented as system on a chip in a high-voltage 0.35 μm CMOS technology will be presented. The detector uses high-voltage n-well/p-substrate diodes as pixel-sensors. The diodes can be reversely biased with more than 60 V. In this way, depleted zones of about 10 μm thickness are formed, where the signal charges can be collected by drift. Due to fast charge collection in the strong electric-field zones, a higher radiation tolerance of the sensor is expected than in the case of the standard MAPS detectors. Simple pixel-readout electronics are implemented inside the n-wells. The readout is based on a source follower with one select- and two reset-transistors. Due to embedding of the pixel-readout electronics inside the collecting electrodes (n-wells) there are no insensitive zones within the pixel matrix. The detector chip contains a 128×128 matrix consisting of pixels of 21×21 μm2 -size. The diode voltages of one selected pixel-row are received at the bottom of the matrix by 128 eight-bit single-slope ADCs. All ADCs operate in parallel. The ADC codes are read out using eight LVDS 500 MBit/s output links. The readout electronics are designed to allow the readout of the whole pixel matrix in less than 50 μs. The total DC power consumption of the chip is 50 mW. All analog parts of the chip are implemented using radiation-hard layout techniques. Experimental results will be presented.

  17. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  18. Novel module production methods for the CMS pixel detector, upgrade phase I

    NASA Astrophysics Data System (ADS)

    Blank, T.; Caselle, M.; Weber, M.; Kudella, S.; Colombo, F.; Hansen, K.; Arab, S.

    2015-02-01

    For the High-Luminosity upgrade of the LHC (HL-LHC), phase I, the CMS pixel detector needs to be replaced. In order to improve the tracking resolution even at high luminosity the pixel detector is upgraded by a fourth barrel layer. This paper describes the production process and results for the fourth barrel layer for the CMS silicon pixel detector, upgrade phase I. The additional barrel layer will be produced by KIT and DESY. Both research centers have commonly developed and investigated new production processes, including SAC solder bump jetting, gold stud bumping and "Precoat by Powder Processes" (PPS) to bump the sensor tiles and prepare them for the flip-chip process. First bare modules have been produced with the new digital ROC.

  19. Recent progress in the development of a B-factory monolithic active pixel detector

    NASA Astrophysics Data System (ADS)

    Stanič, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-11-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25 μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R&D towards a full Pixel Vertex Detector (PVD) are presented.

  20. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  1. A history of hybrid pixel detectors, from high energy physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  2. Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector.

    PubMed

    Fu, Chen; Arguello, Henry; Sadler, Brian M; Arce, Gonzalo R

    2015-11-01

    A compressive spectral and polarization imager based on a pixelized polarizer and colored patterned detector is presented. The proposed imager captures several dispersed compressive projections with spectral and polarization coding. Stokes parameter images at several wavelengths are reconstructed directly from 2D projections. Employing a pixelized polarizer and colored patterned detector enables compressive sensing over spatial, spectral, and polarization domains, reducing the total number of measurements. Compressive sensing codes are specially designed to enhance the peak signal-to-noise ratio in the reconstructed images. Experiments validate the architecture and reconstruction algorithms.

  3. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.

  4. X-ray imaging using a 320 x 240 hybrid GaAs pixel detector

    SciTech Connect

    Irsigler, R.; Andersson, J.; Alverbro, J.

    1999-06-01

    The authors present room temperature measurements on 200 {micro}m thick GaAs pixel detectors, which were hybridized to silicon readout circuits. The whole detector array contains 320 x 240 square shaped pixel with a pitch of 38 {micro}m and is based on semi-insulating liquid-encapsulated Czochralski (LEC) GaAs material. After fabricating and dicing, the detector chips were indium bump flip chip bonded to CMOS readout circuits based on charge integration and finally evaluated. This readout chip was originally designed for the readout of flip chip bonded infrared detectors, but appears to be suitable for X-ray applications as well. A bias voltage between 50 V and 100 V was sufficient to operate the detector at room temperature. The detector array did respond to x-ray radiation by an increase in current due to production of electron hole pairs by the ionization processes. Images of various objects and slit patterns were acquired by using a standard X-ray source for dental imaging. The new X-ray hybrid detector was analyzed with respect to its imaging properties. Due to the high absorption coefficient for X-rays in GaAs and the small pixel size, the sensor shows a high modulation transfer function up to the Nyquist frequency.

  5. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    SciTech Connect

    Gruner, Sol

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  6. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  7. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  8. Simulation of active-edge pixelated CdTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  9. Module production for the Phase 1 upgrade of the CMS forward pixel detector

    NASA Astrophysics Data System (ADS)

    Siado Castaneda, Joaquin

    2017-01-01

    For Run 2 the Large Hadron Collider will run at a much higher instantaneous luminosity, which requires an upgrade of the CMS pixel detector. The detector consists of rectangular silicon sensors, segmented into 100 μm by 150 μm pixels, bonded to readout chips, with one sensor and a 8x2 array of readout chips forming a module. Due to its high granularity and good spatial resolution, about 10 μm for a single hit, the pixel detector is used for track reconstruction, pileup mitigation, and b-quark tagging in many physics analyses. Being the innermost sub-detector of CMS it receives the most radiation damage, and therefore needs to be replaced most often. For the phase 1 upgrade an additional disk in the forward region and increased buffer space in the readout chip will improve the pixel performance by increasing efficiency and reducing fake rates. The University of Nebraska-Lincoln is one of the two sites where modules are being assembled. This talk features the steps of the assembly process as well as challenges encountered and overcome during production of over 500 modules. The CMS Collaboration.

  10. H4RG Near-IR Detectors with 10 micron pixels for WFIRST and Space Astrophysics

    NASA Astrophysics Data System (ADS)

    Kruk, Jeffrey W.; Rauscher, B. J.

    2014-01-01

    Hybrid sensor chip assemblies (SCAs) employing HgCdTe photo-diode arrays integrated with CMOS read-out integrated circuits (ROICs) have become the detector of choice for many cutting-edge ground-based and space-based astronomical instruments operating at near infrared wavelengths. 2Kx2K arrays of 18-micron pixels are in use at many ground-based observatories and will fly on JWST and Euclid later this decade. The Wide-Field Infra-Red Survey Telescope (WFIRST) mission, which will survey large areas of the sky with reasonably-fine sampling, is extending these prior designs by developing 4Kx4K HgCdTe NIR hybrid detectors with 10 micron pixels. These will provide four times as many pixels as the current 2Kx2K detectors in a package that is only slightly larger. Four prototype 4Kx4K devices with conservative pixel designs were produced in 2011; these devices met many though not all WFIRST performance requirements. A Strategic Astrophysics Technology proposal was submitted to further the development of these detectors. This poster describes the technology development plan, progress made in the first year of the program, and plans for the future.

  11. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  12. A Triple-GEM Detector with Pixel Readout for High-Rate Beam Tracking in COMPASS

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Austregesilo, A.; Haas, F.; Ketzer, B.; Konorov, I.; Krämer, M.; Mann, A.; Paul, S.

    2008-06-01

    For its physics program with a high-intensity hadron beam of 2 · 107 particles/s, the COMPASS experiment at CERN requires tracking of charged particles scattered by very small angles with respect to the incident beam direction. While good resolution in time and space is mandatory, the challenge is imposed by the high beam intensity, requiring radiation-hard detectors which add very little material to the beam path in order to minimise secondary interactions. To this end, a set of triple-GEM detectors with pixel readout in the beam region and 2-D strip readout in the periphery is currently being built. The pixel size has been chosen to be 1×1 mm2, which constitutes a compromise between the spatial resolution achievable and the number of readout channels. Surrounding the pixel area, a 2-D strip readout with a pitch of 400 μm has been realised on the same printed circuit foil. In total an active area of 10 × 10 cm2 is covered using 2048 readout channels. Analogue readout by the APV25 ASIC has been chosen in order to profit from amplitude measurements which help to improve the spatial resolution by clustering neighbouring hit strips or pixels. A detector prototype has been tested successfully in the 5 · 107 particles/s COMPASS muon beam, as well as in a focused hadron beam. The design of the detector and first results concerning its performance as a beam tracker will be presented.

  13. Optimal fine ϕ-slicing for single-photon-counting pixel detectors

    PubMed Central

    Mueller, Marcus; Wang, Meitian; Schulze-Briese, Clemens

    2012-01-01

    The data-collection parameters used in a macromolecular diffraction experiment have a strong impact on data quality. A careful choice of parameters leads to better data and can make the difference between success and failure in phasing attempts, and will also result in a more accurate atomic model. The selection of parameters has to account for the application of the data in various phasing methods or high-resolution refinement. Furthermore, experimental factors such as crystal characteristics, available experiment time and the properties of the X-ray source and detector have to be considered. For many years, CCD detectors have been the prevalent type of detectors used in macromolecular crystallography. Recently, hybrid pixel X-ray detectors that operate in single-photon-counting mode have become available. These detectors have fundamentally different characteristics compared with CCD detectors and different data-collection strategies should be applied. Fine ϕ-slicing is a strategy that is particularly well suited to hybrid pixel detectors because of the fast readout time and the absence of readout noise. A large number of data sets were systematically collected from crystals of four different proteins in order to investigate the benefit of fine ϕ-­slicing on data quality with a noise-free detector. The results show that fine ϕ-slicing can substantially improve scaling statistics and anomalous signal provided that the rotation angle is comparable to half the crystal mosaicity. PMID:22194332

  14. Simultaneous real-time visible and infrared video with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-05-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics.

  15. 18k Channels single photon counting readout circuit for hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e- and the equivalent noise charge is 168 e- rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  16. Real-time control of the beam attenuation with XPAD hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Dawiec, A.; Garreau, Y.; Bisou, J.; Hustache, S.; Kanoute, B.; Picca, F.; Renaud, G.; Coati, A.

    2016-12-01

    In order to fully benefit from a beam produced by modern synchrotron light sources, characterised by a wide and continuous energy spectrum, high brightness and a very high intensity, advancement in detector technology has been made over the last decades. However, one of the main limitations of the state-of-the-art counting hybrid pixel detectors is the maximum count-rate that is very often few orders of magnitudes lower than of the incident, reflected or diffracted beam flux. Therefore, direct beam attenuation is mandatory in order to perform the measurements according to the detector's characteristics. In this work we present a major upgrade of a fast attenuation system developed at Synchrotron SOLEIL, which allows for a dynamical change of the beam attenuation as a function of the photon flux received by XPAD S140 photon counting detector. The system performs a cyclic real-time estimation of the flux received by every pixel during acquisition of an image and searches for clusters of at least two pixels that exceed user defined levels of counts/s. The beam attenuation is immediately and automatically changed in order to guarantee that the detector will always operate in its linear range even during a long continuous scan, by acting on the direct attenuators.

  17. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Darbo, Giovanni; Gemme, Claudia; La Rosa, Alessandro; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2011-04-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  18. Analysis of full charge reconstruction algorithms for x-ray pixelated detectors

    SciTech Connect

    Baumbaugh, A.; Carini, G.; Deptuch, G.; Grybos, P.; Hoff, J.; Siddons, P., Maj.; Szczygiel, R.; Trimpl, M.; Yarema, R.; /Fermilab

    2011-11-01

    Existence of the natural diffusive spread of charge carriers on the course of their drift towards collecting electrodes in planar, segmented detectors results in a division of the original cloud of carriers between neighboring channels. This paper presents the analysis of algorithms, implementable with reasonable circuit resources, whose task is to prevent degradation of the detective quantum efficiency in highly granular, digital pixel detectors. The immediate motivation of the work is a photon science application requesting simultaneous timing spectroscopy and 2D position sensitivity. Leading edge discrimination, provided it can be freed from uncertainties associated with the charge sharing, is used for timing the events. Analyzed solutions can naturally be extended to the amplitude spectroscopy with pixel detectors.

  19. Analysis of Full Charge Reconstruction Algorithms for X-Ray Pixelated Detectors

    SciTech Connect

    Baumbaugh, A.; Carini, G.; Deptuch, G.; Grybos, P.; Hoff, J.; Siddons, P., Maj.; Szczygiel, R.; Trimpl, M.; Yarema, R.; /Fermilab

    2012-05-21

    Existence of the natural diffusive spread of charge carriers on the course of their drift towards collecting electrodes in planar, segmented detectors results in a division of the original cloud of carriers between neighboring channels. This paper presents the analysis of algorithms, implementable with reasonable circuit resources, whose task is to prevent degradation of the detective quantum efficiency in highly granular, digital pixel detectors. The immediate motivation of the work is a photon science application requesting simultaneous timing spectroscopy and 2D position sensitivity. Leading edge discrimination, provided it can be freed from uncertainties associated with the charge sharing, is used for timing the events. Analyzed solutions can naturally be extended to the amplitude spectroscopy with pixel detectors.

  20. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  1. Test of a fine pitch SOI pixel detector with laser beam

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Lu, Yunpeng; Ju, Xudong; Qun, Ou-Yang

    2016-01-01

    A silicon pixel detector with fine pitch size of 19 μm × 19 μm, developed based on SOI (silicon-on-insulator) technology, was tested under the illumination of infrared laser pulses. As an alternative method for particle beam tests, the laser pulses were tuned to very short duration and small transverse profile to simulate the tracks of MIPs (minimum ionization particles) in silicon. Hit cluster sizes were measured with focused laser pulses propagating through the SOI detector perpendicular to its surface and most of the induced charge was found to be collected inside the seed pixel. For the first time, the signal amplitude as a function of the applied bias voltage was measured for this SOI detector, deepening understanding of its depletion characteristics. Supported by National Natural Science Foundation of China (11375226)

  2. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  3. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  4. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  5. Production quality characterisation techniques of sensors and prototypes for the BELLE II Pixel Detector

    NASA Astrophysics Data System (ADS)

    Avella, P.; Andricek, L.; Koffmane, C.; Lehmann, R.; Liemann, G.; Moser, H.-G.; Ninkovic, J.; Richter, R. H.; Ritter, A.; Scheugenpflug, E.; Schaller, G.; Schopper, F.; Schnecke, M.; Valentan, M.; Wassatsch, A.

    2015-01-01

    The Belle II detector is a system currently under upgrade at the B-factory SuperKEKB in Tsukuba, Japan. The main novelty is the introduction of an additional position sensitive sub-detector in the vertex detector, between the beam pipe and the strip detector system. The sensor of choice for the Belle II Pixel Detector is the Depleted p-channel Field Effect Transistor (DEPFET) sensor. In this paper the latest production of sensors and prototypes performed at the semiconductor Laboratory of the Max Planck Society, i.e. the PXD9 and the Electrical Multi-Chip Module (EMCM), are described. Wafer-level characterisation methods and techniques for faults in the metal system are also reported.

  6. Comparator threshold settings and the effective pixel width of the PICASSO detector

    NASA Astrophysics Data System (ADS)

    Lopez, F. C. M.; Rigon, L.; Fardin, L.; Arfelli, F.; Bergamaschi, A.; Dreossi, D.; Longo, M.; Schmitt, B.; Vallazza, E.; Longo, R.

    2014-05-01

    Charge sharing plays an important role in the performance of single-photon counting microstrip detectors, since the comparator threshold defines the effective pixel width. In this contribution, the PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) single-photon counting microstrip detector oriented in edge-on configuration has been used to study its spatial resolution as a function of the comparator threshold. The experiment was carried out with monochromatic x-rays at the SYRMEP beamline of the Elettra synchrotron radiation facility in Trieste (Italy). The Edge Spread Function (i.e. the integral of the Line spread Function, LSF) was measured by horizontally translating vertical slits from a bar-pattern test-object in front of the detector, at four different photon energies (19, 20, 22, and 25 keV) and for several different values of the comparator threshold. The effect of charge sharing between strips on the spatial resolution has been quantified by calculating the horizontal Modulation Transfer Function (MTF). Moreover, the composite LSF from neighboring pixels was obtained: this allowed estimating the optimal threshold for each photon energy by selecting the threshold at which the composite LSF would approach unity along the entire width of the pixel. The results show that at thresholds lower than half of the photon energy, charge sharing increases the effective pixel width, causing a drop of the MTF, and it is responsible for the appearance of peaks in the composite LSF. Conversely, at thresholds higher than half of the photon energy, the effective pixel width is reduced and the spatial resolution is increased, but the collection efficiency is compromised, as demonstrated by the presence of valleys in the composite LSF.

  7. Development of a Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Jiang, J.; Matalon, A.; Matthews, J. N.; Motloch, P.; Privitera, P.; Takizawa, Y.; Yamazaki, K.

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECR) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report preliminary results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photo-multiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment.

  8. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor.

    PubMed

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael

    2015-03-01

    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  9. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    SciTech Connect

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  10. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  11. The shunt-LDO regulator to power the upgraded ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Gonella, L.; Barbero, M.; Hügging, F.; Krüger, H.; Wermes, N.

    2012-01-01

    The shunt-LDO regulator is a new regulator concept which combines a shunt and a Low Drop-Out (LDO) regulator. Designed as an improved shunt regulator to match the needs of serially powered detector systems, it can also be used as a pure LDO regulator for general application in powering schemes requiring linear regulation. The flexibility of the design makes the shunt-LDO regulator a good candidate for use in the powering schemes envisaged for the upgrades of the ATLAS pixel detector. Two shunt-LDO regulators integrated in the prototype of the next ATLAS pixel front-end chip, the FE-I4A, are used to demonstrate the feasibility of the proposed powering solutions.

  12. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  13. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    NASA Astrophysics Data System (ADS)

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.

    2016-10-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  14. FITPix data preprocessing pipeline for the Timepix single particle pixel detector

    NASA Astrophysics Data System (ADS)

    Kraus, V.; Holik, M.; Jakubek, J.; Georgiev, V.

    2012-04-01

    The semiconductor pixel detector Timepix contains an array of 256 × 256 square pixels with a pitch of 55 μm. The single quantum counting detector Timepix can also provide information about the energy or arrival time of a particle from every single pixel. This device is a powerful tool for radiation imaging and ionizing particle tracking. The Timepix device can be read-out via a serial or parallel interface enabling speeds of 100 fps or 3200 fps, respectively. The device can be connected to a PC via the USB 2.0 based interface FITPix, which currently supports the serial output of Timepix reaching a speed of 90 fps. FITPix supports adjustable clock frequency and hardware triggering which is a useful tool for the synchronized operation of multiple devices. The FITPix interface can handle up to 16 detectors in daisy chain. The complete system including the FITPix interface and Timepix detector is controlled from the PC by the Pixelman software package. A pipeline structure is now implemented in the new version of the readout interface of FITPix. This version also supports parallel Timepix readout. The pipeline architecture brings the possibility of data preprocessing directly in the hardware. The first pipeline stage converts the raw Timepix data into the form of a matrix or stream of pixel values. Another stage performs further data processing such as event thresholding and data compression. Complex data processing currently performed by Pixelman in the PC is significantly reduced in this way. The described architecture together with the parallel readout increases data throughput reaching a higher frame-rate and reducing the dead time. Significant data compression is performed directly in the hardware especially for sparse data sets from particle tracking applications. The data frame size is typically compressed by factor of 10-100.

  15. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging

    NASA Astrophysics Data System (ADS)

    Ballabriga, R.; Alozy, J.; Campbell, M.; Frojdh, E.; Heijne, E. H. M.; Koenig, T.; Llopart, X.; Marchal, J.; Pennicard, D.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.; Zuber, M.

    2016-01-01

    Semiconductor detector readout chips with pulse processing electronics have made possible spectroscopic X-ray imaging, bringing an improvement in the overall image quality and, in the case of medical imaging, a reduction in the X-ray dose delivered to the patient. In this contribution we review the state of the art in semiconductor-detector readout ASICs for spectroscopic X-ray imaging with emphasis on hybrid pixel detector technology. We discuss how some of the key challenges of the technology (such as dealing with high fluxes, maintaining spectral fidelity, power consumption density) are addressed by the various ASICs. In order to understand the fundamental limits of the technology, the physics of the interaction of radiation with the semiconductor detector and the process of signal induction in the input electrodes of the readout circuit are described. Simulations of the process of signal induction are presented that reveal the importance of making use of the small pixel effect to minimize the impact of the slow motion of holes and hole trapping in the induced signal in high-Z sensor materials. This can contribute to preserve fidelity in the measured spectrum with relatively short values of the shaper peaking time. Simulations also show, on the other hand, the distortion in the energy spectrum due to charge sharing and fluorescence photons when the pixel pitch is decreased. However, using recent measurements from the Medipix3 ASIC, we demonstrate that the spectroscopic information contained in the incoming photon beam can be recovered by the implementation in hardware of an algorithm whereby the signal from a single photon is reconstructed and allocated to the pixel with the largest deposition.

  16. Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL

    NASA Astrophysics Data System (ADS)

    Redford, S.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Ekinci, Y.; Fröjdh, E.; Greiffenberg, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Rajeev, R.; Ramilli, M.; Ruder, C.; Schädler, L.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Zhang, J.

    2016-11-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector under development for photon science applications at free electron laser and synchrotron facilities. In particular, JUNGFRAU detectors will equip the Aramis end stations of SwissFEL, an X-ray free electron laser currently under construction at the Paul Scherrer Institut in Villigen, Switzerland. JUNGFRAU has been designed specifically to meet the challenges of photon science at XFELs, including high frame rates, single photon sensitivity in combination with a high dynamic range, vacuum compatibility and tilable modules. This has resulted in a charge integrating detector with three dynamically adjusting gains, a low noise of 55 ENC RMS, readout speeds in excess of 2 kHz, single photon sensitivity down to 2 keV (with a signal to noise ratio of 10) and a dynamic range covering four orders of magnitude at 12 keV. Each JUNGFRAU module consists of eight chips of 256 × 256 pixels, each 75 × 75 μm2 in size. The chips are arranged in 2 × 4 formation and bump-bonded to a single silicon sensor 320 μm thick, resulting in an active area of approximately 4 × 8 cm2 per module. Multi-module vacuum compatible systems comprising up to 16 Mpixels (32 modules) will be used at SwissFEL. The design of SwissFEL and the JUNGFRAU system for the Aramis end station A will be introduced, together with results from early prototypes and a characterisation using the first batch of final JUNGFRAU modules. Plans and first results of the pixel-by-pixel calibration will also be shown. The vacuum compatibility of the JUNGFRAU module is demonstrated for the first time.

  17. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  18. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Hasegawa, S.

    2016-09-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (-20 °C).

  19. The Belle-II Depfet Pixel Detector at the Superkekb Flavour Factory

    NASA Astrophysics Data System (ADS)

    Heindl, Stefan

    2012-08-01

    The ongoing upgrade of the asymmetric electron positron collider KEKB also requires extensive detector upgrades to cope with the new design luminosity of 8 · 1035 cm-2 · s-1 · Of critical importance is the new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution, crucial for time dependent CP violation measurements. This new detector will consist of two layers of DEPFET pixel seii8ors very close to the interaction point. These sensors combine both particle detection and amplification of the signal by embedding a field effect transistor into a 75 μm thick fully depleted silicon substrate, providing very high signal to noise ratios and excellent spatial resolution. Using this technology satisfies the given requirements of extremely low material and high radiation tolerance at the new Belle II experiment. The power dissipation due to continuous readout at high rate and spatial constraints also give strict requirements for the mechanical support and cooling of the new detector. We will discuss the overall concept of the pixel vertex tracker, its expected performance and the challenging mechanical integration.

  20. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Ott, J.; Mäkelä, M.; Arsenovich, T.; Gädda, A.; Peltola, T.; Tuovinen, E.; Luukka, P.; Tuominen, E.; Junkes, A.; Niinistö, J.; Ritala, M.

    2016-09-01

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al2O3 field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO2, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al2O3 field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al2O3 provides equally low effective surface recombination velocity as thermally oxidized Si/SiO2 interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few μm of physical size required in ultra-fine pitch pixel detectors.

  1. A 65 nm CMOS analog processor with zero dead time for future pixel detectors

    NASA Astrophysics Data System (ADS)

    Gaioni, L.; Braga, D.; Christian, D. C.; Deptuch, G.; Fahim, F.; Nodari, B.; Ratti, L.; Re, V.; Zimmerman, T.

    2017-02-01

    Next generation pixel chips at the High-Luminosity (HL) LHC will be exposed to extremely high levels of radiation and particle rates. In the so-called Phase II upgrade, ATLAS and CMS will need a completely new tracker detector, complying with the very demanding operating conditions and the delivered luminosity (up to 5×1034 cm-2 s-1 in the next decade). This work is concerned with the design of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier featuring a detector leakage compensation circuit, and a compact, single ended comparator that guarantees very good performance in terms of channel-to-channel dispersion of threshold without needing any pixel-level trimming. A flash ADC is exploited for digital conversion immediately after the charge amplifier. A thorough discussion on the design of the charge amplifier and the comparator is provided along with an exhaustive set of simulation results.

  2. The electro-mechanical integration of the NA62 GigaTracker time tagging pixel detector

    NASA Astrophysics Data System (ADS)

    Morel, M.; Kluge, A.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Daguin, J.; Fiorini, M.; Jarron, P.; Kaplon, J.; Mapelli, A.; Marchetto, F.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Riedler, P.

    2010-12-01

    The NA62 GigaTracker is a low mass time tagging hybrid pixel detector operating in a beam with a particle rate of 750 MHz. It consists of three stations with a sensor size of 60 × 27mm2 containing 18000 pixels, each 300 × 300μm2. The active area is connected to a matrix of 2 × 5 pixel ASICs, which time tag the arrival of the particles with a binning of 100 ps. The detector operates in vacuum at -20 to 0°C and the material budget per station must be below 0.5% X0. Due to the high radiation environment of 2 × 1014 1 MeV neutron equivalent cm-2/yr-1 it is planned to exchange the detector modules regularly. The low material budget, cooling requirements and the request for easy module access has driven the electro-mechanical integration of the GigaTracker, which is presented in this paper.

  3. [Reproducibility of dynamic chest radiography with a flat-panel detector - respiratory changes in pixel value].

    PubMed

    Kawashima, Hiroki; Tanaka, Rie; Sanada, Shigeru

    2009-06-20

    Dynamic chest radiography using a flat panel detector (FPD) with a large field of view is expected to be a useful pulmonary functional evaluation method based on the respiratory changes in pixel value. For clinical use as a follow-up and therapeutic evaluation tool, the system must have a high degree of reproducibility in measurements of pixel values. The present study was performed to investigate the reproducibility of respiratory changes in pixel values. Dynamic chest radiographs of five normal subjects and one patient were obtained. Imaging was performed twice in each subject. The slope (X-ray translucency variation) was then calculated from the changes in pixel value from distance lung apex-diaphragm, and the slopes of two sequences were compared. The results showed there were no significant differences in changes in pixel value between the two sequences in all normal subject (5 males, p>0.05). The results indicated that the present method has reproducibility for measuring pulmonary function and also has potential as a tool for follow-up and therapeutic evaluation.

  4. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  5. Fully 3D-Integrated Pixel Detectors for X-Rays

    DOE PAGES

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; ...

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch,more » yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.« less

  6. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Ono, Shun; Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei; Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori

    2017-02-01

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm2 pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  7. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  8. Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications

    NASA Technical Reports Server (NTRS)

    Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.; Pospisil, S.; Turecek, D.; Kitamura, H.

    2014-01-01

    The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.

  9. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm‑1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  10. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm(-1)) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  11. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Amar-Youcef, S.; Besson, A.; Claus, G.; Colledani, C.; Dorokhov, M.; Dritsa, C.; Dulinski, W.; Fröhlich, I.; Goffe, M.; Grandjean, D.; Heini, S.; Himmi, A.; Hu, C.; Jaaskelainen, K.; Müntz, C.; Shabetai, A.; Stroth, J.; Szelezniak, M.; Valin, I.; Winter, M.

    2010-12-01

    CMOS monolithic active pixel sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the dead time free, so-called self bias pixel. Moreover, we introduce radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.

  12. Charge sharing in common-grid pixelated CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Kim, Jae Cheon; Anderson, Stephen E.; Kaye, Willy; Zhang, Feng; Zhu, Yuefeng; Kaye, Sonal Joshi; He, Zhong

    2011-10-01

    The charge sharing effect in pixelated CdZnTe (CZT) detectors with a common anode steering grid has been studied. The impact on energy resolution of weighting potential cross-talk and ballistic deficit due to cathode signal shaping has been investigated. A detailed system modeling package considering charge induction, electronic noise, pulse shaping, and ASIC triggering procedures has been developed to study the characteristics of common-grid CZT detectors coupled to the VAS_UM/TAT4 ASIC. Besides an actual common-grid CZT detector coupled to VAS_UM/TAT4 ASIC, a prototype digital read-out system has been developed to better understand the nature of the charge sharing effect.

  13. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  14. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    NASA Astrophysics Data System (ADS)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, F.; Moreno Barbosa, E.

    2014-11-01

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  15. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    SciTech Connect

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E.; Moreno Barbosa, F.

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  16. New concept of a submillimetric pixellated Silicon detector for intracerebral application

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Märk, J.; Weiss, P.; Benoit, D.; Clemens, J. C.; Fougeron, D.; Janvier, B.; Jevaud, M.; Karkar, S.; Menouni, M.; Pain, F.; Pinot, L.; Morel, C.; Laniece, P.

    2011-12-01

    A new beta+ radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a volume of brain tissue of a few mm3 has been developed recently. This project expands the concept of the previously designed beta microprobe, which has been validated extensively in neurobiological experiments performed on anesthetized animals. Due to its limitations considering recordings on awake and freely moving animals, we have proposed to develop a wireless setup that can be worn by an animal without constraining its movements. To that aim, we have chosen a highly beta sensitive Silicon-based detector to devise a compact pixellated probe. Miniaturized wireless electronics is used to read-out and transfer the measurement data. Initial Monte-Carlo simulations showed that high resistive Silicon pixels are appropriate for this purpose, with their dimensions to be adapted to our specific signals. More precisely, we demonstrated that 200 μm thick pixels with an area of 200 μm×500 μm are optimized in terms of beta+sensitivity versus relative transparency to the gamma background. Based on this theoretical study, we now present the development of the novel sensor, including the system simulations with technology computer-assisted design (TCAD) to investigate specific configurations of guard rings and their potential to increase the electrical isolation and stabilization of the pixel, as well as the corresponding physical tests to validate the particular geometries of this new sensor.

  17. Development of an X-ray imaging system with SOI pixel detectors

    NASA Astrophysics Data System (ADS)

    Nishimura, Ryutaro; Arai, Yasuo; Miyoshi, Toshinobu; Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo

    2016-09-01

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented.

  18. Front-end electronics for DEPFET pixel detectors at SuperBelle (BELLE II)

    NASA Astrophysics Data System (ADS)

    Krüger, Hans; Depfet Collaboration

    2010-05-01

    This article gives an overview of the front-end electronics development for the DEPFET pixel vertex detector at the Super KEK-B experiment (BELLE II). The planned upgrade of the KEK-B factory will lead to a peak luminosity of 8×1035 cm-2 s-1. This increase in luminosity (×50 compared to the existing experiment) will make high demands on the performance of the vertex detector. The proposed two layer vertex detector consists of 'all-silicon' modules: the read-out and control ASICs will be bump bonded on the rigid edges of the DEPFET substrate whereas in the region of the active pixel matrix the substrate will be thinned down to 50 μm. The front-end electronics is subdivided in three different ASIC types: one chip will provide up to 20 V output swing for the control voltages of the DEPFET matrix (SWITCHER), the current signals are being digitized by a multichannel ADC chip (DCD) and the processing of the digital data and module control functionality is implemented in a data handling chip (DHP). An overview of the module concept and the status of the developments including results of current prototype chips will be given.

  19. Impact of the Belle II pixel detector on the analysis of CP-violation

    NASA Astrophysics Data System (ADS)

    Abudinén, F.

    2017-03-01

    The new asymmetric electron positron collider SuperKEKB in Tsukuba, Japan, is currently being commissioned. With a design luminosity of 8 · 1035 cm‑2 s‑1, leading ultimately to an integrated luminosity of about 50 ab‑1, it will overtake by almost two orders of magnitude the record integrated luminosity reached by its predecessor KEKB. With the upgrade, the beam energy asymmetry will be reduced resulting in a lower boost. Thus, the increase in luminosity and the reduction of the boost set stringent requirements on the performance of the Belle II detector, currently under construction, in order to cope with the expected large physics rates. Consisting of two layers mounted at 14 mm and 22 mm radius from the interaction point, the new Belle II pixel vertex detector based on DEPFET technology will provide the necessary three dimensional high precision position measurements of the trajectories of charged particles. This will allow the precise reconstruction of short lived particle vertices. The physics performance of the Belle II pixel vertex detector and its impact in the reduction of experimental uncertainties will be discussed focusing on the measurement of the CP-violating parameters in B-meson decay.

  20. Studies of the possibility to use Gas Pixel Detector as a fast trigger tracking device

    NASA Astrophysics Data System (ADS)

    Sinev, N.; Bashindzhagyan, G.; Korotkova, N.; Romaniouk, A.; Tikhomirov, V.

    2016-02-01

    Gas Pixel Detector (GPD) technology offers new possibilities, which make them very attractive for application in existing and future accelerator experiments and beyond. GPDs combine advantages of silicon and gaseous detectors. They can be produced radiation hard and with low power consumption using relatively cheap technology. Low capacitance of the individual pixel channel allows us to obtain a large signal to noise ratio. Using a time projection method for GPD readout one obtains 3D track image with precise coordinate (31 µm) and angular information (0.40°). This feature would allow us to achieve performance of one GPD layer equal to a few layers of silicon detectors. Implementation of a fast readout and data processing at the front-end level allows one to reconstruct a track segment in less than 1 μs, and to use this information for the first level trigger generation. The relevant algorithms of data acquisition and analysis are described and the results of simulations are presented in this paper.

  1. Integration of front-end electronics with GaAs pixel detectors: Experimental and feasibility analysis

    SciTech Connect

    Bertuccio, G.; Longoni, A.; De Geronimo, G.; Canali, C.; Lanzieri, C.; Nava, F.

    1999-08-01

    This work aims to study the feasibility of the integration, on the same chip, of GaAs pixel detectors and frontend electronics employing GaAs metal semiconductor FET`s (MESFET`s) or high electron mobility transistors (HEMT`s). The interest of fully integrated GaAs systems lies in X and {gamma}-ray spectroscopy and Imaging for scientific, industrial, and medical applications. The system design criteria and the prediction of the performance have been derived on the basis of recent experimental results on semi-insulating GaAs pixel detectors. Measurements of the relevant parameters of GaAs FET`s suitable for the stringent requirements of a specroscopy-grade frontend amplifier are analyzed. It is shown that an optimized GaAs integrated system can reach an electronic noise level below 100 electrons rms (<1 keV FWHM) even at room temperature. Some open problems regarding the detector-electronics integration are highlighted and discussed.

  2. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    PubMed

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18)F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8.

  3. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    PubMed Central

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 104 Bq source activities with equal efficiency and is completely saturated at 109 Bq. The efficiency of the system is evaluated using a simulated 18F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  4. Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether

    NASA Astrophysics Data System (ADS)

    Muleri, F.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Brez, A.; Costa, E.; Fabiani, S.; Krummenacher, F.; Latronico, L.; Lazzarotto, F.; Minuti, M.; Pinchera, M.; Rubini, A.; Sgró, C.; Spandre, G.

    2010-08-01

    The Gas Pixel Detector belongs to the very limited class of gas detectors optimized for the measurement of X-ray polarization in the emission of astrophysical sources. The choice of the mixture in which X-ray photons are absorbed and photoelectrons propagate, deeply affects both the energy range of the instrument and its performance in terms of gain, track dimension and ultimately, polarimetric sensitivity. Here we present the characterization of the Gas Pixel Detector with a 1 cm thick cell filled with dimethyl ether (DME) at 0.79 atm, selected among other mixtures for the very low diffusion coefficient. Almost completely polarized and monochromatic photons were produced at the calibration facility built at INAF/IASF-Rome exploiting Bragg diffraction at nearly 45°. For the first time ever, we measured the modulation factor and the spectral capabilities of the instrument at energies as low as 2.0 keV, but also at 2.6, 3.7, 4.0, 5.2 and 7.8 keV. These measurements cover almost completely the energy range of the instrument and allows to compare the sensitivity achieved with that of the standard mixture, composed of helium and DME.

  5. Energy calibration and gain correction of pixelated spectroscopic x-ray detectors using correlation optimised warping

    NASA Astrophysics Data System (ADS)

    Egan, C. K.; Scuffham, J. W.; Veale, M. C.; Wilson, M. D.; Seller, P.; Cernik, R. J.

    2017-01-01

    We describe the implementation of a reliable, robust and flexible gain correction and energy calibration algorithm for pixelated spectroscopic x-ray detectors. This algorithm uses a data processing method known as correlation optimised warping which aligns shifted datasets by means of a segmental linear stretching and compression of the spectral data in order to best correlate with a reference spectrum. We found the algorithm to be very robust against low-count spectroscopy, and was reliable in a range of different spectroscopic applications. Analysis of the integrated spectrum over all pixels for a Cerium K-alpha x-ray emission (at 34.72 keV) yielded a peak width of 2.45 keV before alignment and 1.11 keV after alignment. This compares favourably with the best in class pixel peak width of 0.76 keV and the mean peak width for all pixels of 1.00 keV. We also found the algorithm to be more user friendly than other peak-search algorithms because there is less external input. A key advantage of this algorithm is that it requires no prior knowledge of the input spectral characteristics, shape or quality of the data. This therefore lends itself to being useful for in-line processing and potentially removes the need for a separate calibration standard (e.g. a radioactive source). This algorithm can be used for any system that simultaneously collects large numbers of spectral data—including multi-element detectors.

  6. Optimizing Pinhole and Parallel Hole Collimation for Scintimammography With Compact Pixellated Detectors

    SciTech Connect

    Mark F. Smith; Stan Majewski; Andrew G. Weisenberger

    2002-11-01

    The relative resolution and sensitivity advantages of pinhole and parallel hole collimators for planar scintimammography with compact, pixellated gamma detectors were investigated using analytic models. Collimator design was studied as follows. A desired object resolution was specified for a pixellated detector with a given crystal size and intrinsic spatial resolution and for a given object-to- collimator distance. Using analytic formulas, pinhole and parallel hole collimator parameters were calculated that satisfy this object resolution with optimal geometric sensitivity. Analyses were performed for 15 cm x 20 cm field of view detectors with crystal elements 1.0, 2.0 and 3.0 mm on a side and 140 keV incident photons. The sensitivity for a given object resolution was greater for pinhole collimation at smaller distances, as expected. The object distance at which the pinhole and parallel hole sensitivity curves cross each other is important. The crossover distances increased with larger crystal size for a constant object resolution and increased as the desired object resolution decreases for a constant crystal size. For example, for 4 mm object resolution and a pinhole collimator with focal length 13 cm, these distances were 5.5 cm, 6.5 cm and 8 cm for the 1 mm, 2 mm and 3 mm crystal detectors, respectively. The results suggest a strategy of parallel hole collimation for whole breast imaging and pinhole collimation for imaging focal uptake. This could be accomplished with a dual detector system with a different collimator type on each head or a single head system equipped with two collimators and a rapid switching mechanism.

  7. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  8. Development of an Indium bump bond process for silicon pixel detectors at PSI

    NASA Astrophysics Data System (ADS)

    Broennimann, Ch.; Glaus, F.; Gobrecht, J.; Heising, S.; Horisberger, M.; Horisberger, R.; Kästli, H. C.; Lehmann, J.; Rohe, T.; Streuli, S.

    2006-09-01

    The hybrid pixel detectors used in the high-energy physics experiments currently under construction use a vertical connection technique, the so-called bump bonding. As the pitch below 100 μm, required in these applications, cannot be fulfilled with standard industrial processes (e.g. the IBM C4 process), an in-house bump bond process using reflowed indium bumps was developed at PSI as part of the R&D for the CMS-pixel detector. The bump deposition on the sensor is performed in two subsequent lift-off steps. As the first photolithographic step a thin under bump metalization (UBM) is sputtered onto bump pads. It is wettable by indium and defines the diameter of the bump. The indium is evaporated via a second photolithographic step with larger openings and is reflowed afterwards. The height of the balls is defined by the volume of the indium. On the readout chip only one photolithographic step is carried out to deposit the UBM and a thin indium layer for better adhesion. After mating both parts a second reflow is performed for self-alignment and obtaining high mechanical strength. For the placement of the chips a manual and an automatic machine were constructed. The former is very flexible in handling different chip and module geometries but has a limited throughput while the latter features a much higher grade of automatization and is therefore much more suited for producing hundreds of modules with a well-defined geometry. The reliability of this process was proven by the successful construction of the PILATUS detector. The construction of PILATUS 6M (60 modules) and the CMS pixel barrel (roughly 800 modules) has started in early 2006.

  9. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  10. Assembly and test of the gas pixel detector for X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Li, H.; Feng, H.; Muleri, F.; Bellazzini, R.; Minuti, M.; Soffitta, P.; Brez, A.; Spandre, G.; Pinchera, M.; Sgró, C.; Baldini, L.; She, R.; Costa, E.

    2015-12-01

    The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30 ± 0.15 % at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%. The position resolution of the detector is about 80 μm in FWHM, consistent with previous studies and sufficient for XIPE requirements.

  11. Material specific X-ray imaging using an energy-dispersive pixel detector

    NASA Astrophysics Data System (ADS)

    Egan, Christopher K.; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Jacques, Simon D. M.; Cernik, Robert J.

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  12. Nanopillar optical antenna nBn detectors for subwavelength infrared pixels

    NASA Astrophysics Data System (ADS)

    Hung, Chung Hong; Senanayake, Pradeep; Lee, Wook-Jae; Farrell, Alan; Hsieh, Nick; Huffaker, Diana L.

    2015-06-01

    The size, weight and power (SWaP) of state of the art infrared focal plane arrays are limited by the pixel size approaching the diffraction limit. We investigate a novel detector architecture which allows improvements in detectivity by shrinking the absorber volume while maintaining high quantum efficiency and wide field of view (FOV). It has been previously shown that the Nanopillar Optical Antenna (NOA) utilizes 3D plasmonic modes to funnel light into a subwavelength nanopillar absorber. We show detailed electro-optical simulations for the NOA-nBn architecture for overcoming generation recombination current with suitable surface passivation to achieve background limited infrared performance.

  13. Characterization of a module with pixelated CdTe detectors for possible PET, PEM and compton camera applications

    NASA Astrophysics Data System (ADS)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Puigdengoles, C.; Martínez, R.; Cabruja, E.

    2014-05-01

    We present the measurement of the energy resolution and the impact of charge sharing for a pixel CdTe detector. This detector will be used in a novel conceptual design for diagnostic systems in the field of nuclear medicine such as positron emission tomography (PET), positron emission mammography (PEM) and Compton camera. The detector dimensions are 10 mm × 10 mm × 2 mm and with a pixel pitch of 1 mm × 1 mm. The pixel CdTe detector is a Schottky diode and it was tested at a bias of -1000 V. The VATAGP7.1 frontend ASIC was used for the readout of the pixel detector and the corresponding single channel electronic noise was found to be σ < 2 keV for all the pixels. We have achieved an energy resolution, FWHM/Epeak, of 7.1%, 4.5% and 0.98% for 59.5, 122 and 511 keV respectively. The study of the charge sharing shows that 16% of the events deposit part of their energy in the adjacent pixel.

  14. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    NASA Astrophysics Data System (ADS)

    Cai, Liang; Meng, Ling-Jian

    2013-02-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X-Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2-5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  15. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system.

    PubMed

    Cai, Liang; Meng, Ling-Jian

    2013-02-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X-Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2-5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  16. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    PubMed Central

    Cai, Liang; Meng, Ling-Jian

    2013-01-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X–Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2–5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper. PMID:24371365

  17. A synchronous analog very front-end in 65 nm CMOS with local fast ToT encoding for pixel detectors at HL-LHC

    NASA Astrophysics Data System (ADS)

    Monteil, E.; Pacher, L.; Paternò, A.; Demaria, N.; Rivetti, A.; Da Rocha Rolo, M.; Rotondo, F.; Leng, C.; Chai, J.

    2017-03-01

    This work describes the design, in 65 nm CMOS, of a very compact, low power, low threshold synchronous analog front-end for pixel detectors at HL-LHC . Threshold trimming is avoided using offset compensation techniques. Fast ToT encoding is possible, as the comparator can be turned into a Local Oscillator up to several hundreds MHz. Two small prototypes have been submitted and tested; a X-ray irradiation up to 600 Mrad has been performed. Detailed results in terms of gain, noise, ToT and threshold dispersion are presented. This design will be part of the CHIPIX65 demonstrator and of the RD53A chip.

  18. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE PAGES

    Apresyan, A.; Los, S.; Pena, C.; ...

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  19. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    SciTech Connect

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  20. Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications

    PubMed Central

    Rozler, Mike; Liang, Haoning; Chang, Wei

    2013-01-01

    A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436

  1. The NA62 Gigatracker: Detector properties and pixel read-out architectures

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Noy, M.; Petrucci, F.; Riedler, P.; Rivetti, A.; Tiuraniemi, S.

    2010-12-01

    The beam spectrometer of the NA62 experiment, named Gigatracker, has to perform single track reconstruction with unprecedented time resolution (150 ps rms) in a harsh radiation environment. To meet these requirements, and in order to reduce material budget to a minimum, three hybrid silicon pixel detector stations will be installed in vacuum. An adequate strategy to compensate for the discriminator time-walk must be implemented and R&D investigating two different options is ongoing. Two read-out chip prototypes have been designed in order to compare their performance: one approach is based on the use of a constant-fraction discriminator followed by an on-pixel TDC, while the other one is based on the use of a time-over-threshold circuit followed by a TDC shared by a group of pixels. This paper describes the Gigatracker system, presents the global architectures of both read-out ASICs and reviews the current status of the R&D project.

  2. Multiple-image encryption scheme with a single-pixel detector

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Liu, Xuemei; Zhou, Xin; Li, Zhongyang

    2016-08-01

    A multiple-image encryption (MIE) scheme with a single-pixel detector has been proposed according to the principle of ghost imaging. In this scheme, each of the spatially coherent laser beams is modified by a set of phase-mask keys and illuminates on a secret image. All of the transmitted lights are recorded together by a single-pixel (bucket) detector to obtain a ciphertext, but anyone of the secret images can be decrypted from the ciphertext independently without any mutually overlapped despite some noise in them. The MIE scheme will bring convenience for data storage and transmission, especially in the case that different secret images need to be distributed to different authorized users, because the ciphertext is a real-valued function and this scheme can effectively avoid the secret images being extracted mutually. The basic principle of the MIE scheme is described theoretically and verified by computer simulations. Finally, the feasibility, robustness and encryption capacity are also tested numerically.

  3. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    NASA Astrophysics Data System (ADS)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  4. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs.

    PubMed

    De Lorenzo, G; Chmeissani, M; Uzun, D; Kolstein, M; Ozsahin, I; Mikhaylova, E; Arce, P; Cañadas, M; Ariño, G; Calderón, Y

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  5. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    PubMed Central

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events. PMID:23750176

  6. Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Bellazzini, R.; Minuti, M.; Brez, A.; Pinchera, M.; Spandre, G.; Moss, R.; Speller, R. D.

    2017-01-01

    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined.

  7. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  8. DETECTORS AND EXPERIMENTAL METHODS: Study of the characteristics of a scintillation array and single pixels for nuclear medicine imaging applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zong

    2009-04-01

    By using a pixelized Nal(Tl) crystal array coupled to a R2486 PSPMT, the characteristics of the array and of a single pixel, such as the light output, energy resolution, peak-to-valley ratio (P/V) and imaging performance of the detector were studied. The pixel size of the NaI(TI) scintillation pixel array is 2 mm×2 mm×5 mm. There are in total 484 pixels in a 22 × 22 matrix. In the pixel spectrum an average peak-to-valley ratio (P/V) of 16 was obtained. In the image of all the pixels, good values for the Peak-to-Valley ratios could be achieved, namely a mean of 17, a maximum of 45 and the average peak FWHM (the average value of intrinsic spatial resolution) of 2.3 mm. However, the PSPMT non-uniform response and the scintillation pixels array inhomogeneities degrade the imaging performance of the detector.

  9. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    PubMed Central

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  10. The Gas Pixel Detector as a solar X-ray polarimeter and imager

    NASA Astrophysics Data System (ADS)

    Fabiani, Sergio; Bellazzini, Ronaldo; Brez, Alessandro; di Cosimo, Sergio; Lazzarotto, Francesco; Muleri, Fabio; Rubini, Alda; Soffitta, Paolo; Spandre, Gloria

    The sun is the nearest astrophysical source with an interesting emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in literature numerous studies published about polarization predictions, for a wide range of solar flare models. All these models involve emission from thermal and/or nonthermal processes. Furthermore, results of flare observations in the X-ray band have never been exhaustive. We want to present a new kind of instrument with polarimetric and imaging capabilities in the X-ray band. This instrument is the Gas Pixel Detector (GPD). It has been developed by the INFN and the IASF-Roma / INAF Italian research institutes. The GPD was born to achieve X-ray polarimetric measurements as well as X-ray images for astrophysical sources. It has a good spectroscopic sensitivity thanks to an energy resolution of some per cent and it allows also to perform timing measurements. Differently from all the other kinds of today's polarimeters, it doesn't need rotation! The GPD exploits the dependence of photoelectric cross section to photon polarization direction to the aim of measuring polarization. This instrument is essentially a ionization chamber: a cell filled by gas into which radiation enters through a window of 1.5 cm x 1.5 cm. The cell has a depth of some centimeters: typically from 1 to 2 cm. Every time that a photon is absorbed by the gas, a photoelectron is emitted with more probability in the direction of the electric vector of the photon absorbed. The photoelectron propagates and produces a track of ionization that is drifted, amplified and actually collected on a fine sub-divided pixeled detector, whose pixels have a dimension of 50 µm. At the present the chip integrates more than 16.5 millions of transistors. It has an active area of 105600 pixels organized in a honeycomb matrix 300x352. It is a self triggered system able to select itself the

  11. CZT pixel detectors equipped with effective Ohmic contacts; their spectroscopic performance and the enigma of why they thus behave

    NASA Astrophysics Data System (ADS)

    El-Hanany, Uri; Shahar, Allon; Tsigelman, A.

    1999-10-01

    The performance of CZT pixel detectors, with dedicated ICs and electronic processors, have been demonstrated. These nuclear imaging modules, developed primarily for the medical market, may be utilized for other applications, such as large area nuclear spectrometers. An improved crystal growth technique ensures a practical supply of wafers of which high performance detectors are fabricated. We believe that the high spectroscopic quality of these detectors stems from their effective Ohmic behavior, coupled with the geometrical, 'small pixel' effect. The Ohmic operation of these detectors has been described in a schematic way only, where the detailed non-equilibrium mechanism, responsible for it, still remains to be explained in detail. The IMARAD detector type 2, with contacts which strongly limit the dark current, exhibit even improved spectroscopic behavior, due to a dynamic Ohmic behavior of these contacts.

  12. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging

    PubMed Central

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2014-01-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector’s and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ-rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution. PMID:25378898

  13. Detailed Studies of Pixelated CZT Detectors Grown with the Modified Horizontal Bridgman Method

    NASA Technical Reports Server (NTRS)

    Jung, I.; Krawczynski, H.; Burger, A.; Guo, M.; Groza, M.

    2007-01-01

    The detector material Cadmium Zinc Telluride (CZT) achieves excellent spatial resolution and good energy resolution over a broad energy range, several keV up to some MeV. Presently, there are two main methods to grow CZT crystals, the Modified High-Pressure Bridgman (MHB) and the High-Pressure Bridgman (HPB) process. The study presented in this paper is based on MHB CZT substrates from the company Orbotech Medical Solutions Ltd. [Orbotech Medical Solutions Ltd., 10 Plaut St., Park Rabin, P.O. Box 2489, Rehovot, Israel, 76124]. Former studies have shown that high-work-function materials on the cathode side reduce the leakage current and, therefore, improve the energy resolution at lower energies. None of the studies have emphasized on the anode contact material. Therefore, we present in this paper the result of a detailed study in which for the first time the cathode material was kept constant and the anode material was varied. We used four different anode materials: Indium, Titanium, Chromium and Gold, metals with work-functions between 4.1 eV and 5.1 eV. The detector size was 2.0 x 2.0 x 0.5 cu cm with 8 x 8 pixels and a pitch of 2.46 mm. The best performance was achieved with the low-work-function materials Indium and Titanium with energy resolutions of 2.0 keV (at 59 keV) and 1.9 keV (at 122 keV) for Titanium and 2.1 keV (at 59 keV) and 2.9 keV (at 122 keV) for Indium. Taking into account the large pixel pitch of 2.46 mm, these resolutions are very competitive in comparison to those achieved with detectors made of material produced with the more expensive conventional HPB method. We present a detailed comparison of our detector response with 3D simulations. The latter comparisons allow us to determine the mobility-lifetime-products (mu tau-products) for electrons and holes. Finally, we evaluated the temperature dependency of the detector performance and ls-products. For many applications temperature dependence is important, therefore, we extended the scope of

  14. Imaging of Ra-223 with a small-pixel CdTe detector

    NASA Astrophysics Data System (ADS)

    Scuffham, J. W.; Pani, S.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.; Cernik, R. J.

    2015-01-01

    Ra-223 Dichloride (Xofigo™) is a promising new radiopharmaceutical offering survival benefit and palliation of painful bone metastases in patients with hormone-refractory prostate cancer [1]. The response to radionuclide therapy and toxicity are directly linked to the absorbed radiation doses to the tumour and organs at risk respectively. Accurate dosimetry necessitates quantitative imaging of the biodistribution and kinetics of the radiopharmaceutical. Although primarily an alpha-emitter, Ra-223 also has some low-abundance X-ray and gamma emissions, which enable imaging of the biodistribution in the patient. However, the low spectral resolution of conventional gamma camera detectors makes in-vivo imaging of Ra-223 challenging. In this work, we present spectra and image data of anthropomorphic phantoms containing Ra-223 acquired with a small-pixel CdTe detector (HEXITEC) [2] with a pinhole collimator. Comparison is made with similar data acquired using a clinical gamma camera. The results demonstrate the advantages of the solid state detector in terms of scatter rejection and quantitative accuracy of the images. However, optimised collimation is needed in order for the sensitivity to rival current clinical systems. As different dosage levels and administration regimens for this drug are explored in current clinical trials, there is a clear need to develop improved imaging technologies that will enable personalised treatments to be designed for patients.

  15. Comparison of allocation algorithms for unambiguous registration of hits in presence of charge sharing in pixel detectors

    NASA Astrophysics Data System (ADS)

    Otfinowski, P.; Maj, P.; Deptuch, G.; Fahim, F.; Hoff, J.

    2017-01-01

    Charge sharing is the fractional collection of the charge cloud generated in a detector by two or more adjacent pixels. It may lead to excessive or inefficient registration of hits comparing to the number of impinging photons depending on how discrimination thresholds are set in typical photon counting pixel detector. The problems are particularly exposed for fine pixel sizes and/or for thick planar detectors. Presence of charge sharing is one of the limiting factors that discourages decreasing sizes of pixels in photon counting mode X-ray radiation imaging systems. Currently, a few different approaches tackling with the charge sharing problem exist (e.g. Medipix3RX, PIXIE, miniVIPIC or PIX45). The general idea is, first, to reconstruct the entire signal from adjacent pixels and, secondly, to allocate the hit to a single pixel. This paper focuses on the latter part of the process, i.e. on a comparison of how different hit allocation algorithms affect the spatial accuracy and false registration vs. missed hit probability. Different hit allocation algorithms were simulated, including standard photon counting (no full signal reconstruction) and the C8P1 algorithm. Also, a novel approach, based on a detection of patterns, with significantly limited analog signal processing, was proposed and characterized.

  16. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e−RMS at maximum gain and negative polarity conditions has been measured at room temperature. PMID:26744545

  17. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-10-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e(-)RMS at maximum gain and negative polarity conditions has been measured at room temperature.

  18. Distortion of the per-pixel signal in the Timepix detector observed in high energy carbon ion beams

    NASA Astrophysics Data System (ADS)

    Hartmann, B.; Soukup, P.; Granja, C.; Jakubek, J.; Pospíšil, S.; Jäkel, O.; Martišíková, M.

    2014-09-01

    Within the application of the pixelated semiconductor Timepix detector for ion beam therapy purposes, distortion and non-linearity in the spectrometric pixel response to high energy carbon ions were observed. In this contribution, these effects are studied in detail. A distinct correlation between the arrival time of a particle during the exposure time and the respective detector signal was found. The hypothesis to explain these findings by oscillations in the pixel electronics leading to a second rise of the preamplifier output above threshold is discussed. Depending on the particle arrival time, the distortions can result in an artificially increased counter value and consequently an enlarged detector signal in energy mode. The effect appears when the signal per-pixel is above approximately 1 MeV, therefore becomig especially significant for measurements with heavy ions. The results presented in this publication are part of: B. Hartmann, A Novel Approach to Ion Spectroscopy of Therapeutic Ion Beams Using a Pixelated Semiconductor Detector, Ph.D. thesis, University of Heidelberg, Germany (2013).

  19. Signal formation in irradiated silicon detectors

    NASA Astrophysics Data System (ADS)

    Baldassarri, B.; Cartiglia, N.; Cenna, F.; Sadrozinski, H.; Seiden, A.

    2017-02-01

    In this paper we present an initial study on the effects induced by radiation on the signal generated by a minimum ionising particle in silicon detector. The results are obtained by implementing in the simulation programme Weightfield2 (WF2) charge carrier trapping and non linear distribution of the electric field. Results of sample simulations are presented, along with a discussion of the limitations of the current approach and ideas for future improvements.

  20. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    SciTech Connect

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-09-15

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  1. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  2. Pixel detector Timepix operated in pile-up mode for pulsed imaging with ultra-soft X-rays

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Jakubek, J.; Kroupa, M.; Bruza, P.; Panek, D.

    2012-12-01

    The hybrid semiconductor pixel detector Timepix operated in the Time-over-Threshold mode (ToT) enables direct energy measurement in each pixel. The advantage of noiseless position sensitive detection combined with per pixel spectroscopic capability opens the way to numerous new applications, which were till now, however, restricted to detection of radiation which is basically above the detector energy threshold (typically 3-4 keV). This limitation excludes application of the hybrid pixel technology to highly interesting fields such as plasma diagnostics or X-ray microscopy. In this contribution we demonstrate how the Timepix detector working in ToT mode can be operated as a detector for particles which are in principle below the detector threshold, namely for soft X-ray photons with energy typically 0.5 keV. The approach is based on the detection of a larger number of photons incoming in the pixel signal processing chain in a time significantly shorter than the shaping time of the pixel electronics, i.e. forming signal pile-up. The proposed approach enables a CCD-like integrating operation with the many advantages of the hybrid counting technology (direct conversion, high sensitivity, dark-current free, room temperature operation, fully digital output and possibility to utilize various read-out architectures). Using the proposed approach we performed single-shot X-ray radiography with a laser-induced plasma source in the spectral region of water window. The same technique was used for the characterization of the source itself.

  3. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C. J.; Sardo, A.; Trevisiol, E.

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25∗25 cm2. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  4. A vertically integrated pixel readout device for the Vertex Detector at the International Linear Collider

    SciTech Connect

    Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2008-12-01

    3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.

  5. Serial powering: Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    NASA Astrophysics Data System (ADS)

    Ta, D. B.; Stockmanns, T.; Hügging, F.; Fischer, P.; Grosse-Knetter, J.; Runolfsson, Ö.; Wermes, N.

    2006-02-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensively tested in the lab and in test beams and have been compared to those powered in parallel with respect to noise and threshold stability performance. Finally, the equivalent of a pixel ladder consisting of six serially powered pixel modules with about 0.3 Mpixels has been built and the performance with respect to operation failures has been studied.

  6. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Aruntinov, D.; Barbero, M.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Wermes, N.; Breugnon, P.; Chantepie, B.; Clemens, J. C.; Fei, R.; Fougeron, D.; Godiot, S.; Pangaud, P.; Rozanov, A.; Garcia-Sciveres, M.; Mekkaoui, A.

    2013-12-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  7. Similarities and differences of recent hybrid pixel detectors for X-ray and high energy physics developed at the Paul Scherrer Institut

    NASA Astrophysics Data System (ADS)

    Tinti, G.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Horisberger, R.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.

    2015-04-01

    Hybrid pixel detectors are being developed for both photon science and high energy physics. The article will cover similarities and differences in pixel detectors for both applications using two of the pixel detectors developed at the Paul Scherrer Institute (Switzerland) as examples: the EIGER photon counting detector and the psi46dig chip, which has been developed for the Compact Muon Solenoid (CMS) tracking pixel detector upgrade. EIGER is a single photon counting hybrid pixel detector for applications at synchrotron light sources in the energy range from a few to 25 keV. It is characterized by a small pixel size (75 × 75 μm2), high count rate capability (106 counts/pixel/s) and very high data rate, which reaches 6 Gb/s for a 256 × 256 pixel chip. The CMS pixel detector is designed to provide charge information from the pixels in the harsh radiation environment at the Large Hadron Collider. The short time between bunches of 25 ns and the high event rate at luminosity up to 2 × 1034cm-2s-1 require a detector with high hit efficiency, with good timing resolution and the ability to retain timestamp information for the hits. The readout architecture is based on the transfer of hits from the pixels to the periphery, where the trigger validation is performed before data transfer. The data rates of the digitized output reach 160 Mb/s for a 52×80 pixel chip.The specific timing and rate requirements for the detectors, the analog performances (minimum threshold and noise), the power consumption and the radiation hardness will be compared. An overview on future developments based on mutual learning and common solutions will be discussed.

  8. The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

    NASA Astrophysics Data System (ADS)

    Macculi, Claudio; Piro, Luigi; Cea, Donatella; Colasanti, Luca; Lotti, Simone; Natalucci, Lorenzo; Gatti, Flavio; Bagliani, Daniela; Biasotti, Michele; Corsini, Dario; Pizzigoni, Giulio; Torrioli, Guido; Barbera, Marco; Mineo, Teresa; Perinati, Emanuele

    2014-07-01

    "The Hot and Energetic Universe" is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called "Integral field spectroscopy", by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5' in diameter) with an angular resolution of 5" and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy in the 0.2-12 keV range. Some goals is the detection of faint and diffuse sources as Warm Hot Intergalactic Medium (WHIM) or galaxies outskirts. To reach its challenging scientific aims, it is necessary to shield efficiently the X-IFU instrument against background induced by external particles: the goal is 0.005 cts/cm^2/s/keV. This scientific requirement can be met by using an active Cryogenic AntiCoincidence (CryoAC) detector placed very close to X-IFU (~ 1 mm below). This is shown by our GEANT4 simulation of the expected background at L2 orbit. The CryoAC is a TES based detector as the X-IFU sharing with it thermal and mechanical interfaces, so increasing the Technology Readiness Level (TRL) of the payload. It is a 2x2 array of microcalorimeter detectors made by Silicon absorber (each of about 80 mm^2 and 300 μm thick) and sensed by an Ir TES. This choice shows that it is possible to operate such a detector in the so-called athermal regime which gives a response faster than the X-IFU (< 30 μs), and low energy threshold (above few keV). Our consortium has developed and tested several samples, some of these also featured by the presence of Al-fins to efficiently collect the athermal phonons, and increased x-ray absorber area (up to 1 cm^2). Here the results of deep test

  9. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging

    PubMed Central

    Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2014-01-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010

  10. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo; Liu, Peng

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 μm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 μm×150 μm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-μm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e- rms after bump bonding and a threshold dispersion of 55 e- rms after calibration.

  11. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  12. Charge collection studies in irradiated HV-CMOS particle detectors

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  13. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  14. Development of a rest gas ionisation profile monitor for the CERN Proton Synchrotron based on a Timepix3 pixel detector

    NASA Astrophysics Data System (ADS)

    Levasseur, S.; Dehning, B.; Gibson, S.; Sandberg, H.; Sapinski, M.; Sato, K.; Schneider, G.; Storey, J.

    2017-02-01

    A fast non-destructive transverse profile monitor, named PS Beam Gas Ionization monitor (PS- BGI), is under development at CERN for the Proton Synchrotron (PS). This monitor infers the beam profile from the transverse distribution of electrons created by the ionisation of rest gas molecules by the high energy beam particles. The distribution is measured by accelerating the electrons onto an imaging detector based on Timepix3 (TPX3). This detector consists of hybrid pixel detector assemblies mounted on a ceramic carrier board and flexible printed circuit cables which have been developed specifically for operation in an ultra high vacuum environment.

  15. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    NASA Astrophysics Data System (ADS)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  16. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  17. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-01

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, ‘4-PMC’ indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, 99mTc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  18. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    SciTech Connect

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A.; Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G.; Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O.; Burwitz, V.; Burkert, W.; and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  19. Large area pixel detector WIDEPIX with full area sensitivity composed of 100 Timepix assemblies with edgeless sensors

    NASA Astrophysics Data System (ADS)

    Jakubek, J.; Jakubek, M.; Platkevic, M.; Soukup, P.; Turecek, D.; Sykora, V.; Vavrik, D.

    2014-04-01

    The superior properties of the single particle counting semiconductor pixel detectors in radiation imaging are well known. They are namely: very high dynamic range due to digital counting, absence of integration and read-out noise, high spatial resolution and energy sensitivity. The major disadvantage of current pixel devices preventing their broad exploitation has been their relatively small sensitive area of few cm2. This disadvantage is often solved using tiling method placing many detector units side by side forming a large matrix. The current tiling techniques require rather large gaps of few millimeters between tiles. These gaps stand as areas insensitive to radiation which is acceptable only in some applications such as diffraction imaging. However standard transmission radiography requires fully continuous area sensitivity. In this article we present the new large area device WIDEPIX composed of a matrix of 10 × 10 tiles of silicon pixel detectors Timepix (each of 256 × 256 pixels with pitch of 55 μm) having fully sensitive area of 14.3 × 14.3 cm2 without any gaps between the tiles. The device contains a total of 6.5 mega pixels. This achievement was reached thanks to new technology of edgeless semiconductor sensors together with precise alignment technique and multilevel architecture of readout electronics. The mechanical construction of the device is fully modular and scalable. This concept allows replacing any single detector tile which significantly improves production yield. The first results in the field of X-ray radiography and material sensitive X-ray radiography are presented in this article.

  20. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  1. Fabrication of 721-pixel silicon lens array of a microwave kinetic inductance detector camera

    NASA Astrophysics Data System (ADS)

    Mitsui, Kenji; Nitta, Tom; Okada, Norio; Sekimoto, Yutaro; Karatsu, Kenichi; Sekiguchi, Shigeyuki; Sekine, Masakazu; Noguchi, Takashi

    2015-04-01

    We have been developed a lens-integrated superconducting camera for millimeter and submillimeter astronomy. High-purity silicon (Si) is suitable for the lens array of the microwave kinetic inductance detector camera due to its high refractive index and low dielectric loss at low temperatures. The camera is an antenna-coupled Al coplanar waveguide on a Si substrate. Thus the lens and the device are made of the same material. We report a fabrication method of a 721-pixel Si lens array with an antireflection (AR) coating. The Si lens array was fabricated with an ultraprecision cutting machine. It uses TiAlN-coated carbide end mills attached with a high-speed spindle. The shape accuracy was less than 50 μm peak-to-valley and the surface roughness was arithmetic average roughness (Ra) of 1.8 μm. The mixed epoxy was used as an AR coating to adjust the refractive index. It was shaved to yield a thickness of 185 μm for 220 GHz. Narrow grooves were made between the lenses to prevent cracking due to the different thermal expansion coefficients of Si and the epoxy. The surface roughness of the AR coating was Ra of 2.4 to 4.2 μm.

  2. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    NASA Astrophysics Data System (ADS)

    Rescigno, R.; Finck, Ch.; Juliani, D.; Spiriti, E.; Baudot, J.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Krimmer, J.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Tropea, S.; Vanstalle, M.; Younis, H.

    2014-12-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  3. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, Ch; Hu, Y.

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm2.

  4. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    DOE PAGES

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less

  5. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    SciTech Connect

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; Murfitt, Matthew F.; Jones, Lewys; Nellist, Peter D.

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.

  6. Construction and testing of a pixellated CZT detector and shield for a hard x-ray astronomy balloon flight

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Narita, Tomohiko; Jenkins, Jonathan A.; Grindlay, Jonathan E.

    2000-12-01

    We report on the construction and laboratory testing of pixellated CZT detectors mounted in a flip-chip, tiled fashion and read out by an ASIC, as required for proposed hard X-ray astronomy missions. Two 10 mm X 10 mm X 5 mm detectors were fabricated, one out of standard eV Products high-pressure Bridgman CZT and one out of IMARAD horizontal Bridgman CZT. Each was fashioned with a 4 X 4 array of gold pixels on 2.5 mm pitch with a surrounding guard ring. The detectors were mounted side by side on a carrier card, such that the pixel pitch was preserved, and read out by a 32-channel VA-TA ASIC from IDE AS Corp. controlled by a PC/104 single-board computer. A passive shield/collimator surrounded by plastic scintillator encloses the detectors on five sides and provides an approximately 40 degree field of view. Thus this experiment tests key techniques required for future hard X-ray survey instruments. The experiment was taken to Ft. Sumner, NM in May 2000 in preparation for a scientific balloon flight aboard the joint Harvard-MSFC EXITE2/HERO payload. Although we did not receive a flight opportunity, and are currently scheduled to fly in September 2000, we present our calibration data in the flight configuration together with data analysis techniques and simulations of the expected flight background spectrum.

  7. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    NASA Astrophysics Data System (ADS)

    Pinto, M.; da Silva, R. M. Curado; Maia, J. M.; Simões, N.; Marques, J.; Pereira, L.; Trindade, A. M. F.; Caroli, E.; Auricchio, N.; Stephen, J. B.; Gonçalves, P.

    2016-12-01

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a 22Na (511 keV) radioactive source. The polarized beam cross section was 1 cm2, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level ( 40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  8. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  9. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    NASA Astrophysics Data System (ADS)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  10. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector.

    PubMed

    Kleymenov, Evgeny; van Bokhoven, Jeroen A; David, Christian; Glatzel, Pieter; Janousch, Markus; Alonso-Mori, Roberto; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten

    2011-06-01

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60°-88°. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu Kα(1) line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  11. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector

    SciTech Connect

    Kleymenov, Evgeny; Bokhoven, Jeroen A. van; David, Christian; Janousch, Markus; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten; Glatzel, Pieter; Alonso-Mori, Roberto

    2011-06-15

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60 deg. - 88 deg. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu K{alpha}{sub 1} line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  12. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

  13. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    SciTech Connect

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; De Geronimo, G.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; Soldner, S.; Vernon, E.; Yang, G.; James, R. B.

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.

  14. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; De Geronimo, G.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; Soldner, S.; Vernon, E.; Yang, G.; James, R. B.

    2016-01-01

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.

  15. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    SciTech Connect

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A.

    1995-08-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer.

  16. Nuclear resonant scattering measurements on {sup 57}Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector

    SciTech Connect

    Kishimoto, S. Haruki, R.; Mitsui, T.; Yoda, Y.; Taniguchi, T.; Shimazaki, S.; Ikeno, M.; Saito, M.; Tanaka, M.

    2014-11-15

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.

  17. Preliminary test results of a new high-energy-resolution silicon and CdZnTe pixel detectors for application to x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Sushkov, V. V.; Hamilton, William J.; Hurley, Kevin; Maeding, Dale G.; Ogelman, Hakki; Paulos, Robert J.; Puetter, Richard C.; Tumer, Tumay O.; Zweerink, Jeffrey

    1999-10-01

    New, high spatial resolution CdZnTe (CZT) and silicon (Si) pixel detectors are highly suitable for x-ray astronomy. These detectors are planned for use in wide field of view, imaging x-ray, and low energy gamma-ray all-sky monitor (AXGAM) in a future space mission. The high stopping power of CZT detectors combined with low-noise front-end readout makes possible an order of magnitude improvement in spatial and energy resolution in x-ray detection. The AXGAM instrument will be built in the form of a fine coded aperture placed over two-dimensional, high spatial resolution and low energy threshold CZT pixel detector array. The preliminary result of CZT and silicon pixel detector test with low-noise readout electronics system are presented. These detectors may also be used with or without modification for medical and industrial imaging.

  18. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  19. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

    NASA Astrophysics Data System (ADS)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Ruff, J. P. C.; Gruner, S. M.

    2016-12-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods < 150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128 × 128 pixel array with (150 μm)2 pixels.

  20. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    DOE PAGES

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixelmore » sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  1. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  2. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.

    2011-02-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( <0.5% X0 per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 μm CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.

  3. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  4. iPadPix—A novel educational tool to visualise radioactivity measured by a hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Keller, O.; Schmeling, S.; Müller, A.; Benoit, M.

    2016-11-01

    With the ability to attribute signatures of ionising radiation to certain particle types, pixel detectors offer a unique advantage over the traditional use of Geiger-Müller tubes also in educational settings. We demonstrate in this work how a Timepix readout chip combined with a standard 300μm pixelated silicon sensor can be used to visualise radioactivity in real-time and by means of augmented reality. The chip family is the result of technology transfer from High Energy Physics at CERN and facilitated by the Medipix Collaboration. This article summarises the development of a prototype based on an iPad mini and open source software detailed in ref. [1]. Appropriate experimental activities that explore natural radioactivity and everyday objects are given to demonstrate the use of this new tool in educational settings.

  5. Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array

    NASA Astrophysics Data System (ADS)

    Ducros, M.; Laubscher, M.; Karamata, B.; Bourquin, S.; Lasser, T.; Salathé, R. P.

    2002-02-01

    Parallel optical coherence tomography in scattering samples is demonstrated using a 58×58 smart-pixel detector array. A femtosecond mode-locked Ti:Sapphire laser in combination with a free space Michelson interferometer was employed to achieve 4 μm longitudinal resolution and 9 μm transverse resolution on a 260×260 μm2 field of view. We imaged a resolution target covered by an intralipid solution with different scattering coefficients as well as onion cells.

  6. Linear analysis of signal and noise characteristics of a nonlinear CMOS active-pixel detector for mammography

    NASA Astrophysics Data System (ADS)

    Yun, Seungman; Kim, Ho Kyung; Han, Jong Chul; Kam, Soohwa; Youn, Hanbean; Cunningham, Ian A.

    2017-03-01

    The imaging properties of a complementary metal-oxide-semiconductor (CMOS) active-pixel photodiode array coupled to a thin gadolinium-based granular phosphor screen with a fiber-optic faceplate are investigated. It is shown that this system has a nonlinear response at low detector exposure levels (<10 mR), resulting in an over-estimation of the detective quantum efficiency (DQE) by a factor of two in some cases. Errors in performance metrics on this scale make it difficult to compare new technologies with established systems and predict performance benchmarks that can be achieved in practice and help understand performance bottlenecks. It is shown the CMOS response is described by a power-law model that can be used to linearize image data. Linearization removed an unexpected dependence of the DQE on detector exposure level.

  7. Correction of complex nonlinear signal response from a pixel array detector

    DOE PAGES

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; ...

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less

  8. Correction of complex nonlinear signal response from a pixel array detector

    PubMed Central

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-01-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics. PMID:25931072

  9. Correction of complex nonlinear signal response from a pixel array detector

    SciTech Connect

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  10. Radiation tolerance studies of neutron irradiated double sided silicon microstrip detectors

    NASA Astrophysics Data System (ADS)

    Singla, M.; Larionov, P.; Balog, T.; Heuser, J.; Malygina, H.; Momot, I.; Sorokin, I.; Sturm, C.

    2016-07-01

    Radiation tolerance studies were made on double-sided silicon microstrip detectors for the Silicon Tracking System of the Compressed Baryonic Matter experiment at FAIR. The prototype detectors from two different vendors were irradiated to twice the highest expected fluence (1 ×1014 1 MeVneqcm-2) in the CBM experimental runs of several years. Test results from these prototype detectors both before and after irradiations have been discussed.

  11. Development of Superconducting Tunnel Junction X-ray Detector with High Absorption Yields Utilizing Silicon Pixel Absorbers

    NASA Astrophysics Data System (ADS)

    Shiki, Shigetomo; Fujii, Go; Ukibe, Masahiro; Kitajima, Yoshinori; Ohkubo, Masataka

    2016-07-01

    A superconducting tunnel junction (STJ) array detector along with silicon pixel absorbers (STJ-SPA) is fabricated to achieve high detection efficiency at X-ray energies below 10 keV. The STJ pixels have dimensions of 100 \\upmu m × 100 \\upmu m and are composed of Nb-Al/AlOX/Al-Nb thin layers. The SPAs are also 100 \\upmu m × 100 \\upmu m and have a depth of 400 \\upmu m, and are isolated from each other by a deep trench with a depth of 350 \\upmu m. The detection efficiency of the STJ-SPA exceeds 95 % at X-ray energies below 10 keV, and its energy resolution is 82 eV FWHM, as measured at the Si K\\upalpha line at 1740 eV. By means of the STJ-SPA detector, the X-ray absorption spectrum of the light element sulfur with a concentration of less than 0.1 wt% in a soda-lime glass sample was successfully acquired.

  12. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  13. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    PubMed

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  14. X-ray tests of a Pixel Array Detector for coherent x-ray imaging at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Koerner, L. J.; Philipp, H. T.; Hromalik, M. S.; Tate, M. W.; Gruner, S. M.

    2009-03-01

    Test results are presented of a pixel array detector (PAD) developed for x-ray imaging at the Stanford Linear Coherent Light Source (LCLS). The basic module of the PAD consists of two bump-bonded chips: a reverse-biased silicon diode chip of 185 × 194 pixels, each of which is coupled by bump-bonds to a charge integrating CMOS ASIC with digitization in each pixel. The LCLS experiment requires a high signal-to-noise ratio for detection of single 8 keV x-rays, a pixel full-well exceeding 1,000 8 keV x-rays, a frame-rate of 120 Hz, and the ability to handle the arrival of thousands of x-rays per pixel in tens of femtoseconds. Measurements have verified a pixel full-well value of 2,700 8 keV x-rays. Single 8 keV photon detection has been shown with a signal-to-noise ratio of >6. Line-spread response measurements confirmed charge spreading to be limited to nearest neighbor pixels. Modules still functioned after dosages up to 75 Mrad(Si) at the detector face. Work is proceeding to incorporate an array of modules into a large-area detector.

  15. Development of n+-in-p planar pixel sensors for extremely high radiation environments, designed to retain high efficiency after irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Yajima, K.; Yamauchi, Y.; Hirose, M.; Homma, Y.; Jinnouchi, O.; Kimura, K.; Motohashi, K.; Sato, S.; Sawai, H.; Todome, K.; Yamaguchi, D.; Hara, K.; Sato, Kz.; Sato, Kj.; Hagihara, M.; Iwabuchi, S.

    2016-09-01

    We have developed n+-in-p pixel sensors to obtain highly radiation tolerant sensors for extremely high radiation environments such as those found at the high-luminosity LHC. We have designed novel pixel structures to eliminate the sources of efficiency loss under the bias rails after irradiation by removing the bias rail out of the boundary region and routing the bias resistors inside the area of the pixel electrodes. After irradiation by protons with the fluence of approximately 3 ×1015neq /cm2, the pixel structure with the polysilicon bias resistor and the bias rails removed far away from the boundary shows an efficiency loss of < 0.5 % per pixel at the boundary region, which is as efficient as the pixel structure without a biasing structure. The pixel structure with the bias rails at the boundary and the widened p-stop's underneath the bias rail also exhibits an improved loss of approximately 1% per pixel at the boundary region. We have elucidated the physical mechanisms behind the efficiency loss under the bias rail with TCAD simulations. The efficiency loss is due to the interplay of the bias rail acting as a charge collecting electrode with the region of low electric field in the silicon near the surface at the boundary. The region acts as a "shield" for the electrode. After irradiation, the strong applied electric field nearly eliminates the region. The TCAD simulations have shown that wide p-stop and large Si-SiO2 interface charge (inversion layer, specifically) act to shield the weighting potential. The pixel sensor of the old design irradiated by γ-rays at 2.4 MGy is confirmed to exhibit only a slight efficiency loss at the boundary.

  16. A PCIe DAQ board prototype for Pixel Detector in high energy physics

    NASA Astrophysics Data System (ADS)

    Lama, L.; Balbi, G.; Falchieri, D.; Pellegrini, G.; Preti, C.; Gabrielli, A.

    2017-01-01

    We present the design of the Pixel-ROD board, which is a PCIe data acquisition circuit designed to push data coming from custom links (like GBT) into the host computer memory. The board is designed in order to be flexible and highly-configurable, making it usable with different front end electronics devices via optical or electrical connections. The PCIe interface provides a high-bandwidth link towards the memory of a PC.

  17. Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application

    NASA Astrophysics Data System (ADS)

    Galvèz, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-07-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of novae and supernovae in X and gamma-rays, with the use of space missions. We have also been involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae and Classical Novae. In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm with a pixel pitch of 1mm x 1mm. Two kinds of CdTe pixel detectors with different contacts have been tested: ohmic and Schottky. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout VATAGP7.1 ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. The study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the detector design. We will report on the spectroscopy characterisation of the CdTe detector module as well as the study of charge sharing.

  18. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  19. ATLAS IBL Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Atlas Ibl Collaboration

    2011-06-01

    The upgrade for ATLAS detector will undergo different phases towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on the pixel module is presented in this paper.

  20. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models.

    PubMed

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L

    2016-02-07

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  1. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  2. FDM Readout Assembly with Flexible, Superconducting Connection to Cryogenic kilo-Pixel TES Detectors

    NASA Astrophysics Data System (ADS)

    Bruijn, M. P.; van der Linden, A. J.; Ridder, M. L.; van Weers, H. J.

    2016-07-01

    We describe a new fabrication process for a superconducting, flexible, and demountable connector to a kilo-pixel transition edge sensor. The demountable part contains planar coils for inductive coupling, in particular suited for AC-biased frequency domain multiplexed readout. A fixed connection to a chip with superconducting LC filters and SQUID readout is made by gold bump bonding with a connection resistance of 1.1 {× } 10^{-4} Ω . The Nb-based connecting lines on the flexible part show a superconducting transition around 7 K, which enables testing of connectors and LC filters in a simple L-He setup.

  3. PILATUS: A single photon counting pixel detector for X-ray applications

    NASA Astrophysics Data System (ADS)

    Henrich, B.; Bergamaschi, A.; Broennimann, C.; Dinapoli, R.; Eikenberry, E. F.; Johnson, I.; Kobas, M.; Kraft, P.; Mozzanica, A.; Schmitt, B.

    2009-08-01

    The hybrid pixel technology combines silicon sensors with CMOS-processing chips by a 2D micro bump-bonding interconnection technology developed at Paul Scherrer Institute [C. Broennimann, E.F. Eikenberry, B. Henrich, R. Horisberger, G. Huelsen, E. Pohl, B. Schmitt, C. Schulze-Briese, M. Suzuki, T. Tomizaki, H. Toyokawa, A. Wagner. J. Synchrotron Rad. 13 (2005) 120 [1]; T. Rohe, C. Broennimann, F. Glaus, J. Gobrecht, S. Heising, M. Horisberger, R. Horisberger, H.C. Kaestl, J. Lehmann, S. Streuli, Nucl. Instr. and Meth. Phys. Res. A 565 (2006) 303 [2

  4. Prototype of a gigabit data transmitter in 65 nm CMOS for DEPFET pixel detectors at Belle-II

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Krüger, H.; Hemperek, T.; Lemarenko, M.; Koch, M.; Gronewald, M.; Wermes, N.

    2013-08-01

    This paper describes the recent development of a gigabit data transmitter for the Belle-II pixel detector (PXD). The PXD is an innermost detector currently under development for the upgraded KEK-B factory in Japan. The PXD consists of two layers of DEPFET sensor modules located at 1.8 and 2.2 cm radii. Each module is equipped with three different ASIC types mounted on the detector substrate with a flip-chip technique: (a) SWITCHER for generating steering signals for the DEPFET sensors, (b) DCD for digitizing the signal currents, and (c) DHP for performing data processing and sending the data off the module to the back-end data handling hybrid via ∼ 40 cm Kapton flex and 12-15 m twisted pair (TWP) cables. To meet the requirements of the PXD data transmission, a prototype of the DHP data transmitter has been developed in a 65-nm standard CMOS technology. The transmitter test chip consists of current-mode logic (CML) drivers and a phase-locked loop (PLL) which generates a clock signal for a 1.6 Gbit/s output data stream from an 80 cm reference clock. A programmable pre-emphasis circuit is also implemented in the CML driver to compensate signal losses in the long cable by shaping the transmitted pulse response. The jitter performance was measured as 25 ps (1 σ distribution) by connecting the chip with 38 cm flex and 10 m TWP cables.

  5. Development of a CdTe pixel detector with a window comparator ASIC for high energy X-ray applications

    NASA Astrophysics Data System (ADS)

    Hirono, T.; Toyokawa, H.; Furukawa, Y.; Honma, T.; Ikeda, H.; Kawase, M.; Koganezawa, T.; Ohata, T.; Sato, M.; Sato, G.; Takagaki, M.; Takahashi, T.; Watanabe, S.

    2011-09-01

    We have developed a photon-counting-type CdTe pixel detector (SP8-01). SP8-01 was designed as a prototype of a high-energy X-ray imaging detector for experiments using synchrotron radiation. SP8-01 has a CdTe sensor of 500 μm thickness, which has an absorption efficiency of almost 100% up to 50 keV and 45% even at 100 keV. A full-custom application specific integrated circuit (ASIC) was designed as a readout circuit of SP8-01, which is equipped with a window-type discriminator. The upper discriminator realizes a low-background measurement, because X-ray beams from the monochromator contain higher-order components beside the fundamental X-rays in general. ASIC chips were fabricated with a TSMC 0.25 μm CMOS process, and CdTe sensors were bump-bonded to the ASIC chips by a gold-stud bonding technique. Beam tests were performed at SPring-8. SP8-01 detected X-rays up to 120 keV. The capability of SP8-01 as an imaging detector for high-energy X-ray synchrotron radiation was evaluated with its performance characteristics.

  6. Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices.

    PubMed

    Llosá, G; Barrio, J; Lacasta, C; Bisogni, M G; Del Guerra, A; Marcatili, S; Barrillon, P; Bondil-Blin, S; de la Taille, C; Piemonte, C

    2010-12-07

    The characterization of a PET detector head based on continuous LYSO crystals and silicon photomultiplier (SiPM) arrays as photodetectors has been carried out for its use in the development of a small animal PET prototype. The detector heads are composed of a continuous crystal and a SiPM matrix with 64 pixels in a common substrate, fabricated specifically for this project. Three crystals of 12 mm × 12 mm × 5 mm size with different types of painting have been tested: white, black and black on the sides but white on the back of the crystal. The best energy resolution, obtained with the white crystal, is 16% FWHM. The detector response is linear up to 1275 keV. Tests with different position determination algorithms have been carried out with the three crystals. The spatial resolution obtained with the center of gravity algorithm is around 0.9 mm FWHM for the three crystals. As expected, the use of this algorithm results in the displacement of the reconstructed position toward the center of the crystal, more pronounced in the case of the white crystal. A maximum likelihood algorithm has been tested that can reconstruct correctly the interaction position of the photons also in the case of the white crystal.

  7. Test-beam results of a silicon pixel detector with Time-over-Threshold read-out having ultra-precise time resolution

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Cortina Gil, E.; Fiorini, M.; Kaplon, J.; Kluge, A.; Marchetto, F.; Albarran, M. E. Martin; Morel, M.; Noy, M.; Perktold, L.; Tiuraniem, S.; Velghe, B.

    2015-12-01

    A time-tagging hybrid silicon pixel detector developed for beam tracking in the NA62 experiment has been tested in a dedicated test-beam at CERN with 10 GeV/c hadrons. Measurements include time resolution, detection efficiency and charge sharing between pixels, as well as effects due to bias voltage variations. A time resolution of less than 150 ps has been measured with a 200 μm thick silicon sensor, using an on-pixel amplifier-discriminator and an end-of-column DLL-based time-to-digital converter.

  8. Development of 36M-pixel x-ray detector for large field of view and high-resolution micro-CT

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kawata, Yoshiki; Niki, Noboru

    2016-10-01

    A high-resolution and large field-of-view micro-CT system is indispensable for the visualization of fine threedimensional (3-D) structures of a large specimen. Such a system drastically increases the overall number of effective sensor pixels. At SPring-8 over a decade ago, a micro-CT system based on a 10M-pixel CCD camera was developed for 3-D specimen imaging of centimeter-sized objects with approximately 7 μm spatial resolution. Subsequently, more recent studies have required systems with higher spatial resolution and a wider field-of-view. Detectors with spatial resolution of around 5 μm can visualize capillaries. However, such detectors make it extremely expensive to develop a new x-ray detector with several tens of megapixels in a conventional manner. Fortunately, dizzying advances in image sensor technology for consumer appliances have enabled the development of x-ray detectors with spatial resolution of around 5 μm using a commercial digital single-lens reflex camera fitted with a 36M-pixel CMOS image sensor for the visualization of fine 3-D structures of large human lung specimens. This paper describes a comparison of the performance offered by the new 36M-pixel micro-CT system and the 10M-pixel system.

  9. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Anastasios C.; Szafraniec, Magdalena B.; Speller, Robert D.; Olivo, Alessandro

    2012-10-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors (APS) have been introduced recently in many scientific applications. This work reports on the performance (in terms of signal and noise transfer) of an X-ray detector that uses a novel CMOS APS which was developed for medical X-ray imaging applications. For a full evaluation of the detector's performance, electro-optical and X-ray characterizations were carried out. The former included measuring read noise, full well capacity and dynamic range. The latter, which included measuring X-ray sensitivity, presampling modulation transfer function (pMTF), noise power spectrum (NPS) and the resulting detective quantum efficiency (DQE), was assessed under three beam qualities (28 kV, 50 kV (RQA3) and 70 kV (RQA5) using W/Al) all in accordance with the IEC standard. The detector features an in-pixel option for switching the full well capacity between two distinct modes, high full well (HFW) and low full well (LFW). Two structured CsI:Tl scintillators of different thickness (a “thin” one for high resolution and a thicker one for high light efficiency) were optically coupled to the sensor array to optimize the performance of the system for different medical applications. The electro-optical performance evaluation of the sensor results in relatively high read noise (∼360 e-), high full well capacity (∼1.5×106 e-) and wide dynamic range (∼73 dB) under HFW mode operation. When the LFW mode is used, the read noise is lower (∼165) at the expense of a reduced full well capacity (∼0.5×106 e-) and dynamic range (∼69 dB). The maximum DQE values at low frequencies (i.e. 0.5 lp/mm) are high for both HFW (0.69 for 28 kV, 0.71 for 50 kV and 0.75 for 70 kV) and LFW (0.69 for 28 kV and 0.7 for 50 kV) modes. The X-ray performance of the studied detector compares well to that of other mammography and general radiography systems, obtained under similar experimental conditions. This demonstrates the suitability

  10. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    PubMed Central

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed. PMID:27140146

  11. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. As a result, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  12. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    SciTech Connect

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. As a result, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  13. A pixel unit-cell targeting 16 ns resolution and radiation hardness in a column read-out particle vertex detector

    SciTech Connect

    Wright, M.; Millaud, J.; Nygren, D.

    1992-10-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here, emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application.

  14. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  15. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  16. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  17. SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors

    SciTech Connect

    Joshi, S; Kaye, W; Jaworski, J; He, Z

    2015-06-15

    Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinhole camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired for

  18. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    NASA Astrophysics Data System (ADS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  19. Preliminary results of 3D-DDTC pixel detectors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200um, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110um to 150um. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am241 gamma-ray sources, charge collection tests with Sr90 beta-source and an overview of preliminary results from the CERN beam test.

  20. Development of Pixelated Linear Avalanche Integration Detector Using Silicon on Insulator Technology

    NASA Astrophysics Data System (ADS)

    Koyama, Akihiro; Shimazoe, Kenji; Takahashi, Hiroyuki; Hamasaki, Ryutaro; Orita, Tadashi; Onuki, Yoshiyuki; Otani, Wataru; Takeshita, Tohru; Kurachi, Ikuo; Miyoshi, Toshinobu; Nakamura, Isamu; Arai, Yasuo

    In various X-ray imaging applications such as single photon counting X-ray CT, micrometer scale spatial resolution and high detection efficiency possibility using structured porous scintillator took great interests. In order to achieve precise energy- and timing information measurements, high sensitive separately readable photo detector needs to be coupled to porous crystal. Therefore, we fabricated test element group (TEG) of micro sized linear avalanche integration detector (Plaid) on a silicon on insulator (SOI) wafer and inspected performance of each device. Measurements results showed guard ring structure achieved avalanche gain of magnitude from 10 to 1000 with lower gain saturation effect than non-guard ring structure. We concluded guard ring structure is desirable to achieve stable gain performance toward various optical powers and efficient to use for scintillation light read out.

  1. Enhancing spatial resolution of (18)F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine.

    PubMed

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-07-07

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  2. Scanning transient current study of the I-V stabilization phenomena in silicon detectors irradiated by fast neutrons

    SciTech Connect

    Eremin, V.; Verbitskaya, E.; Li, Z.; Sidorov, A.; Fretwurst, E.; Lindstrom, G.

    1996-03-01

    Investigation of the I-V stabilization phenomena in neutron irradiated silicon detectors has been carried out using scanning transient current technique (STCT) on non-irradiated PP{sup +}-p-n{sup +} detectors. The PP{sup +}-p-n{sup +} detectors were used to simulate the PP{sup +}-n-n{sup +} detectors irradiated beyond the space charge sign inversion (SCSI). Two mechanisms partially responsible for the I- V stabilization have been identified.

  3. Solar irradiance measurements by means of optical fibers and silicon detectors.

    PubMed

    Corrons, A; Pons, A

    1979-08-15

    An experimental system has been constructed for the continuous measurement of solar irradiance using silicon diode detectors not directly exposed to solar radiation. The received incident solar radiation is conducted from the roof of the building to the detectors by an optical fiber. An electronic computer receives the signal and processes it, introducing the necessary corrections to calculate the total solar irradiance in W m(-2). The system measures with a proved accuracy to better than 3%.

  4. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.

    2017-02-01

    IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.

  5. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  6. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    PubMed Central

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented. PMID:23814604

  7. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels.

    PubMed

    Kolstein, M; De Lorenzo, G; Mikhaylova, E; Chmeissani, M; Ariño, G; Calderón, Y; Ozsahin, I; Uzun, D

    2013-04-29

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 10(6)). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  8. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e(-) RMS at room temperature.

  9. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-01-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event’s time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e− RMS at room temperature. PMID:24187382

  10. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector

    PubMed Central

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M.; Hobson, Peter A.; Gibson, Graham M.; Padgett, Miles J.; Hendry, Euan

    2016-01-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm2) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging. PMID:27386577

  11. Performance studies of Micro Pixel Chamber for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Komai, H.; Ochi, A.; Homma, Y.; Edo, Y.; Yamaguchi, T.

    2013-03-01

    The Micro Pixel Chamber (μ-PIC) is being developed as a muon chamber of the ATLAS experiment in an HL-LHC environment. In the ATLAS muon system, a high flux of fast neutron background causes instability operation of the detectors. We performed neutron irradiation tests with μ-PIC to optimize the operation gas and detector structure. In addition, we studied neutron interactions with the detector, in order to understand the effect of fast neutrons.

  12. The overvoltage protection module for the power supply system for the pixel detector at Belle II experiment at KEK

    SciTech Connect

    Kapusta, P.; Kisielewski, B.

    2015-07-01

    In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experiment as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)

  13. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    NASA Astrophysics Data System (ADS)

    Bertsche, David

    2016-11-01

    The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP) 2015 [1].

  14. Performance of thin pixel sensors irradiated up to a fluence of 1016 neq cm-2 and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Moser, H.-G.; Nisius, R.; Richter, R. H.; Weigell, P.

    2011-09-01

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R&D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150 μm has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  15. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  16. Avalanche Effect in Si Heavily Irradiated Detectors: Physical Model and Perspectives for Application

    SciTech Connect

    Eremin V.; Li Z.; Verbitskaya, E.; Zabrodskii, A.; Harkonen, J.

    2011-05-07

    The model explaining an enhanced collected charge in detectors irradiated to 10{sup 15}-10{sup 16} n{sub eq}/cm{sup 2} is developed. This effect was first revealed in heavily irradiated n-on-p detectors operated at high bias voltage ranging from 900 to 1700 V. The model is based on the fundamental effect of carrier avalanche multiplication in the space charge region and in our case is extended with a consideration of p-n junctions with a high concentration of the deep levels. It is shown that the efficient trapping of free carriers from the bulk generation current to the deep levels of radiation induced defects leads to the stabilization of the irradiated detector operation in avalanche multiplication mode due to the reduction of the electric field at the junction. The charge collection efficiency and the detector reverse current dependences on the applied bias have been numerically simulated in this study and they well correlate to the recent experimental results of CERN RD50 collaboration. The developed model of enhanced collected charge predicts a controllable operation of heavily irradiated detectors that is promising for the detector application in the upcoming experiments in a high luminosity collider.

  17. Crater Detection Algorithms Based on Pixel-Difference, Separated-Pixel-Difference, Roberts, Prewitt, Sobel and Frei-Chen Gradient Edge Detectors

    NASA Astrophysics Data System (ADS)

    Novosel, H.; Salamuniccar, G.; Loncaric, S.

    2007-03-01

    Implementations of six different crater detection algorithms based on six different well-known gradient edge detectors are presented. They are analyzed and compared using free-response receiver operating characteristics.

  18. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    NASA Astrophysics Data System (ADS)

    Marchal, J.; Horswell, I.; Willis, B.; Plackett, R.; Gimenez, E. N.; Spiers, J.; Ballard, D.; Booker, P.; Thompson, J. A.; Gibbons, P.; Burge, S. R.; Nicholls, T.; Lipp, J.; Tartoni, N.

    2013-03-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  19. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    SciTech Connect

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Hatsui, Takaki; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  20. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C

    PubMed Central

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    Aim In this work we present a methodology to produce an “imprint” of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. Background The distribution and concentration of 10B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. Materials and Methods A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. Results A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. Conclusions It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake. PMID:26933396

  1. Continued Development of Small-Pixel CZT and CdTe Detectors for Future High-Angular-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer Mission was launched in June 2012 and has demonstrated the technical feasibility and high scientific impact of hard X-ray astronomy. We propose to continue our current R&D program to develop finely pixelated semiconductor detectors and the associated readout electronics for the focal plane of a NuSTAR follow-up mission. The detector-ASIC (Application Specific Integrated Circuit) package will be ideally matched to the new generation of low-cost, low-mass X-ray mirrors which achieve an order of magnitude better angular resolution than the NuSTAR mirrors. As part of this program, the Washington University group will optimize the contacts of 2x2 cm^2 footprint Cadmium Zinc Telluride (CZT) and Cadmium Telluride (CdTe) detectors contacted with 100x116 hexagonal pixels at a next-neighbor pitch of 200 microns. The Brookhaven National Laboratory group will design, fabricate, and test the next generation of the HEXID ASIC matched to the new X-ray mirrors and the detectors, providing a low-power 100x116 channel ASIC with extremely low readout noise (i.e. with a root mean square noise of 13 electrons). The detectors will be tested with radioactive sources and in the focal plane of high-angular-resolution X-ray mirrors at the X-ray beam facilities at the Goddard and Marshall Space Flight Centers.

  2. Simulation of the expected performance of a seamless scanner for brain PET based on highly pixelated CdTe detectors.

    PubMed

    Mikhaylova, Ekaterina; De Lorenzo, Gianluca; Chmeissani, Mokhtar; Kolstein, Machiel; Cañadas, Mario; Arce, Pedro; Calderón, Yonatan; Uzun, Dilber; Ariño, Gerard; Macias-Montero, José Gabriel; Martinez, Ricardo; Puigdengoles, Carles; Cabruja, Enric

    2014-02-01

    The aim of this work is the evaluation of the design for a nonconventional PET scanner, the voxel imaging PET (VIP), based on pixelated room-temperature CdTe detectors yielding a true 3-D impact point with a density of 450 channels/cm(3), for a total 6 336 000 channels in a seamless ring shaped volume. The system is simulated and evaluated following the prescriptions of the NEMA NU 2-2001 and the NEMA NU 4-2008 standards. Results show that the excellent energy resolution of the CdTe detectors (1.6% for 511 keV photons), together with the small voxel pitch (1 × 1 × 2 mm(3)), and the crack-free ring geometry, give the design the potential to overcome the current limitations of PET scanners and to approach the intrinsic image resolution limits set by physics. The VIP is expected to reach a competitive sensitivity and a superior signal purity with respect to values commonly quoted for state-of-the-art scintillating crystal PETs. The system can provide 14 cps/kBq with a scatter fraction of 3.95% and 21 cps/kBq with a scatter fraction of 0.73% according to NEMA NU 2-2001 and NEMA NU 4-2008, respectively. The calculated NEC curve has a peak value of 122 kcps at 5.3 kBq/mL for NEMA NU 2-2001 and 908 kcps at 1.6 MBq/mL for NEMA NU 4-2008. The proposed scanner can achieve an image resolution of ~ 1 mm full-width at half-maximum in all directions. The virtually noise-free data sample leads to direct positive impact on the quality of the reconstructed images. As a consequence, high-quality high-resolution images can be obtained with significantly lower number of events compared to conventional scanners. Overall, simulation results suggest the VIP scanner can be operated either at normal dose for fast scanning and high patient throughput, or at low dose to decrease the patient radioactivity exposure. The design evaluation presented in this work is driving the development and the optimization of a fully operative prototype to prove the feasibility of the VIP concept.

  3. Simulation of the Expected Performance of a Seamless Scanner for Brain PET Based on Highly Pixelated CdTe Detectors

    PubMed Central

    Mikhaylova, Ekaterina; De Lorenzo, Gianluca; Chmeissani, Mokhtar; Kolstein, Machiel; Cañadas, Mario; Arce, Pedro; Calderón, Yonatan; Uzun, Dilber; Ariño, Gerard; Macias-Montero, José Gabriel; Martinez, Ricardo; Puigdengoles, Carles; Cabruja, Enric

    2014-01-01

    The aim of this work is the evaluation of the design for a nonconventional PET scanner, the voxel imaging PET (VIP), based on pixelated room-temperature CdTe detectors yielding a true 3-D impact point with a density of 450 channels cm3, for a total 6 336 000 channels in a seamless ring shaped volume. The system is simulated and evaluated following the prescriptions of the NEMA NU 2-2001 and the NEMA NU 4-2008 standards. Results show that the excellent energy resolution of the CdTe detectors (1.6% for 511 keV photons), together with the small voxel pitch (1×1×2 mm3), and the crack-free ring geometry, give the design the potential to overcome the current limitations of PET scanners and to approach the intrinsic image resolution limits set by physics. The VIP is expected to reach a competitive sensitivity and a superior signal purity with respect to values commonly quoted for state-of-the-art scintillating crystal PETs. The system can provide 14 cps/kBq with a scatter fraction of 3.95% and 21 cps/kBq with a scatter fraction of 0.73% according to NEMA NU 2-2001 and NEMA NU 4-2008, respectively. The calculated NEC curve has a peak value of 122 kcps at 5.3 kBq/mL for NEMA NU 2-2001 and 908 kcps at 1.6 MBq/mL for NEMA NU 4-2008. The proposed scanner can achieve an image resolution of ~ 1 mm full-width at half-maximum in all directions. The virtually noise-free data sample leads to direct positive impact on the quality of the reconstructed images. As a consequence, high-quality high-resolution images can be obtained with significantly lower number of events compared to conventional scanners. Overall, simulation results suggest the VIP scanner can be operated either at normal dose for fast scanning and high patient throughput, or at low dose to decrease the patient radioactivity exposure. The design evaluation presented in this work is driving the development and the optimization of a fully operative prototype to prove the feasibility of the VIP concept. PMID:24108750

  4. The Cryogenic AntiCoincidence Detector for the ATHENA X-IFU: Design Aspects by Geant4 Simulation and Preliminary Characterization of the New Single Pixel

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Orlando, A.; Torrioli, G.

    2016-08-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015-2025, scheduled to be launched on 2028 at L2 orbit. One of the two planned focal plane instruments is the X-ray Integral Field Unit (X-IFU), which will be able to perform simultaneous high-grade energy spectroscopy and imaging over the 5 arcmin FoV by means of a kilo-pixel array of transition-edge sensor (TES) microcalorimeters, coupled to a high-quality X-ray optics. The X-IFU sensitivity is degraded by the particle background, induced by primary protons of both solar and cosmic rays' origin and secondary electrons. A Cryogenic AntiCoincidence (CryoAC) TES-based detector, located <1 mm below the TES array, will allow the mission to reach the background level that enables its scientific goals. The CryoAC is a 4-pixel detector made of Silicon absorbers sensed by Iridium TESs. We currently achieve a TRL = 3-4 at the single-pixel level. We have designed and developed two further prototypes in order to reach TRL = 4. The design of the CryoAC has been also optimized using the Geant4 simulation tool. Here we will describe some results from the Geant4 simulations performed to optimize the design and preliminary test results from the first of the two detectors, 1 cm2 area, made of 65 Ir TESs.

  5. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    SciTech Connect

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V{sub fd}), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V{sub fd}*, which is the full depletion voltage traditionally determined by the extrapolation of the fast comopnent amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V{sub fd}) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V{sub fd} for highly irradiated detectors.

  6. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    NASA Astrophysics Data System (ADS)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  7. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods

  8. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations

    NASA Astrophysics Data System (ADS)

    BenMoussa, A.; Soltani, A.; Gerbedoen, J.-C.; Saito, T.; Averin, S.; Gissot, S.; Giordanengo, B.; Berger, G.; Kroth, U.; De Jaeger, J.-C.; Gottwald, A.

    2013-10-01

    For next generation spaceborne solar ultraviolet radiometers, innovative metal-semiconductor-metal detectors based on wurtzite aluminum nitride are being developed and characterized. A set of measurement campaigns and proton irradiation damage tests was carried out to obtain their ultraviolet-to-visible characterization and degradation mechanisms. First results on large area prototypes up to 4.3 mm diameter are presented here. In the wavelength range of interest, this detector is reasonably sensitive and stable under brief irradiation with a negligible low dark current (3-6 pA/cm2). No significant degradation of the detector performance was observed after exposure to protons of 14.4 MeV energy, showing a good radiation tolerance up to fluences of 1 × 1011 protons/cm2.

  9. Testbeam and laboratory characterization of CMS 3D pixel sensors

    NASA Astrophysics Data System (ADS)

    Bubna, M.; Bortoletto, D.; Alagoz, E.; Krzywda, A.; Arndt, K.; Shipsey, I.; Bolla, G.; Hinton, N.; Kok, A.; Hansen, T.-E.; Summanwar, A.; Brom, J. M.; Boscardin, M.; Chramowicz, J.; Cumalat, J.; Dalla Betta, G. F.; Dinardo, M.; Godshalk, A.; Jones, M.; Krohn, M. D.; Kumar, A.; Lei, C. M.; Mendicino, R.; Moroni, L.; Perera, L.; Povoli, M.; Prosser, A.; Rivera, R.; Solano, A.; Obertino, M. M.; Kwan, S.; Uplegger, L.; Vigani, L.; Wagner, S.

    2014-07-01

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected at the High-Luminosity LHC (HL-LHC). As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements of CMS 3D pixel sensors with different electrode configurations from different vendors. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties of silicon sensors, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  10. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC

  11. Characterisation of the UFXC32k hybrid pixel detector for time-resolved pump-probe diffraction experiments at Synchrotron SOLEIL

    NASA Astrophysics Data System (ADS)

    Dawiec, A.; Maj, P.; Ciavardini, A.; Gryboś, P.; Laulhé, C.; Menneglier, C.; Szczygieł, R.

    2017-03-01

    The experimental set-up for time-resolved studies of ultra-fast photo-induced structural dynamics at the Synchrotron SOLEIL is based on a general pump-probe scheme that has been developed and implemented on the CRISTAL hard X-ray diffraction beamline [1,2]. In a so-called pump-probe cycle, the sample is excited with an ultra-short laser pulse of ≈40 fs duration (the pump), and induced changes in its atomic structure are studied by measuring, with a precisely controlled delay, a diffraction pattern from a single pulse of synchrotron radiation (the probe) with a 2-D pixel detector. An improvement to the classical scheme is proposed, where the sample's response is probed at two different delays after each laser excitation. The first measurement at short delays allows studying the photo-induced dynamics. The second one is a reference measurement taken after sample's relaxation, which permits detection of drifts in the experimental conditions (e.g. beam misalignment, sample degradation). A hybrid pixel detector with a very fast readout time, a high dynamic range and extended linearity was tested to achieve the experiment objectives. In this paper, the first results obtained with the UFXC32k single photon counting detector are presented.

  12. Bad pixel mapping

    NASA Astrophysics Data System (ADS)

    Smith, Roger M.; Hale, David; Wizinowich, Peter

    2014-07-01

    Bad pixels are generally treated as a loss of useable area and then excluded from averaged performance metrics. The definition and detection of "bad pixels" or "cosmetic defects" are seldom discussed, perhaps because they are considered self-evident or of minor consequence for any scientific grade detector, however the ramifications can be more serious than generally appreciated. While the definition of pixel performance is generally understood, the classification of pixels as useable is highly application-specific, as are the consequences of ignoring or interpolating over such pixels. CMOS sensors (including NIR detectors) exhibit less compact distributions of pixel properties than CCDs. The extended tails in these distributions result in a steeper increase in bad pixel counts as performance thresholds are tightened which comes as a surprise to many users. To illustrate how some applications are much more sensitive to bad pixels than others, we present a bad pixel mapping exercise for the Teledyne H2RG used as the NIR tip-tilt sensor in the Keck-1 Adaptive Optics system. We use this example to illustrate the wide range of metrics by which a pixel might be judged inadequate. These include pixel bump bond connectivity, vignetting, addressing faults in the mux, severe sensitivity deficiency of some pixels, non linearity, poor signal linearity, low full well, poor mean-variance linearity, excessive noise and high dark current. Some pixels appear bad by multiple metrics. We also discuss the importance of distinguishing true performance outliers from measurement errors. We note how the complexity of these issues has ramifications for sensor procurement and acceptance testing strategies.

  13. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators.

    PubMed

    Rodrigues, Ary A; Vieira, Jose M; Hamada, Margarida M

    2010-01-01

    A 1 cm(3) cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a (60)Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  14. Submission of the first full scale prototype chip for upgraded ATLAS pixel detector at LHC, FE-I4A

    NASA Astrophysics Data System (ADS)

    Barbero, Marlon; Arutinov, David; Beccherle, Roberto; Darbo, Giovanni; Dube, Sourabh; Elledge, David; Fleury, Julien; Fougeron, Denis; Garcia-Sciveres, Maurice; Gensolen, Fabrice; Gnani, Dario; Gromov, Vladimir; Jensen, Frank; Hemperek, Tomasz; Karagounis, Michael; Kluit, Ruud; Kruth, Andre; Mekkaoui, Abderrezak; Menouni, Mohsine; Schipper, Jan David; Wermes, Norbert; Zivkovic, Vladimir

    2011-09-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences between the FE-I4A IC and the final FE-I4 as envisioned for IBL.

  15. Commissioning of the read-out driver (ROD) card for the ATLAS IBL detector and upgrade studies for the pixel Layers 1 and 2

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bindi, M.; Falchieri, D.; Gabrielli, A.; Travaglini, R.; Chen, S.-P.; Hsu, S.-C.; Hauck, S.; Kugel, A.

    2014-11-01

    The higher luminosity that is expected for the LHC after future upgrades will require better performance by the data acquisition system, especially in terms of throughput. In particular, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector will be equipped with a fourth layer - the Insertable B-Layer or IBL - located at a radius smaller than the present three layers. Consequently, a new front end ASIC (FE-I4) was designed as well as a new off-detector chain. The latter is composed mainly of two 9U-VME cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Actual production of another 15 ROD cards is ongoing in Fall 2013, and commissioning is scheduled in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards will be produced for a total of 20 boards. This paper describes some integration tests that were performed and our plan to test the production of the ROD cards. Slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. This contribution will report also one view on the possible adoption of the IBL ROD for ATLAS Pixel Detector Layer 2 (firstly) and, possibly, in the future, for Layer 1.

  16. Cosmic-ray Detector with Interdigitated-Finger Pixels for two-dimensional Position Information from a Singel Wafer Side

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Mazed, Mohammad; Holtzman, Melinda J.; Fossum, Eric R.

    1993-01-01

    This paper describes a type of cosmic ray detector for isotopic and energy detection of energetic nuclei which derives both dimensions of position information from one side of the detector. This simplifies the required readout electronics, since only one precision amplifier connected to the other side is required for an accurate detection of the energy loss.

  17. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    NASA Astrophysics Data System (ADS)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-03-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  18. Measurement of the Charge Collection Efficiency After Heavy Non-Uniform Irradiation in BABAR Silicon Detectors

    SciTech Connect

    Bettarini, S.; Bondioli, M.; Calderini, G.; Forti, F.; Marchiori, G.; Rizzo, G.; Giorgi, M.A.; Bosisio, L.; Dittongo, S.; Campagnari, C.; /UC, Santa Barbara

    2006-03-01

    We have investigated the depletion voltage changes, leakage current increase and charge collection efficiency of a silicon microstrip detector identical to those used in the inner layers of the BABAR Silicon Vertex Tracker (SVT) after heavy nonuniform irradiation. A full SVT module with the front-end electronics connected has been irradiated with a 0.9 GeV electron beam up to a peak fluence of 3.5 x 10{sup 14} e{sup -}/cm{sup 2}, well beyond the level causing substrate type inversion. We have irradiated the silicon with a nonuniform profile having {sigma} = 1.4 mm that simulates the conditions encountered in the BABAR experiment by the modules intersecting the horizontal machine plane. The position dependence of the charge collection properties and the depletion voltage have been investigated in detail using a 1060 nm LED and an innovative measuring technique based only on the digital output of the chip.

  19. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    SciTech Connect

    Ahsan, M.; Bolton, T.; Carnes, K.; Demarteau, M.; Demina, R.; Gray, T.; Korjenevski, S.; Lehner, F.; Lipton, R.; Mao, H.S.; McCarthy, R.; /SUNY, Stony Brook /Kansas State U. /Fermilab

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10{sup 14} p/cm{sup 2} at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  20. Color changes in X-ray irradiated PM-355 and Makrofol DE 7-2 nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Nouh, Samir A.; Mohamed, Amal; Bahareth, Radiyah Ahmed; Abutalib, Maymona M.; Benthami, Kaoutar

    2014-03-01

    Effects of X-ray irradiation on the color changes of PM-355 and Makrofol DE 7-2 nuclear track detectors have been investigated. Samples from PM-355 and Makrofol DE 7-2 polycarbonates were irradiated with X-ray doses at levels between 10 and 250 kGy. The transmission of these samples in the wavelength range 370-780 nm, as well as any color changes, was studied. The Commission International de E'Claire (CIE units x, y and z) methodology was used in this work for the description of colored samples. The color differences between the non-irradiated sample and those irradiated with different X-ray doses were calculated. The results indicate that both PM-355 and Makrofol DE 7-2 detectors acquire color changes under X-ray irradiation, but the PM-355 detector has more response to color change than that of Makrofol DE 7-2.

  1. Spectroscopic performance of DEPFET active pixel sensor prototypes suitable for the high count rate Athena WFI detector

    NASA Astrophysics Data System (ADS)

    Müller-Seidlitz, Johannes; Andritschke, Robert; Bähr, Alexander; Meidinger, Norbert; Ott, Sabine; Richter, Rainer H.; Treberspurg, Wolfgang; Treis, Johannes

    2016-07-01

    The focal plane of the WFI of Athena consists of two sensors. One features a large field of view of 40' X 40' and one is forseen to be used for bright point like sources. Both parts base on DEPFET active pixel sensors. To fulfil the count rate requirement for the smaller sensor of less than 1% pile-up for a one Crab source it has to have a sufficient high frame rate. Since therefore the readout becomes a large fraction of the total photon integration time, the probability of measurements with incomplete signals increases. A shutter would solve the problem of these so called misfits but is not in agreement with the required high throughput of more than 80%. The Infinipix design has implemented a storage in addition to separate the collection and the readout of the charges without discarding them. Its working principle was successfully shown by Bähr et al.1 on single pixel level. For the further development three layout variants were tested on a 32 X 32 pixel array scale. The measurements of the spectroscopic performance show very promising results even for the intended readout speed for the Athena WFI of 2:5 μs per sensor row. Although, there are still layout and technology improvements necessary to ensure the reliability needed for space missions. In this paper we present the measurement results on the comparison of the three prototype layout variants.

  2. Testbeam and laboratory characterization of 3D CMS pixel sensors

    NASA Astrophysics Data System (ADS)

    Bubna, Mayur; Krzwyda, Alex; Alagoz, Enver; Bortoletto, Daniela

    2013-04-01

    Future generations of colliders, like High Luminosity Large Hadron Collider (HL-LHC) at CERN will deliver much higher radiation doses to the particle detectors, specifically those closer to the beam line. Inner tracker detectors will be the most affected part, causing increased occupancy and radiation damage to Silicon detectors. Planar Silicon sensors have not shown enough radiation hardness for the innermost layers where the radiation doses can reach values around 10^16 neq/cm^2. As a possible replacement of planar pixel sensors, 3D Silicon technology is under consideration as they show higher radiation hardness, and efficiencies comparable to planar sensors. Several 3D CMS pixel designs were fabricated at FBK, CNM, and SINTEF. They were bump bonded to the CMS pixel readout chip and characterized in the laboratory using radioactive source (Sr90), and at Fermilab MTEST beam test facility. Sensors were also irradiated with 800 MeV protons at Los Alamos National Lab to study post-irradiation behavior. In addition, several diodes and test structures from FBK were studied before and after irradiation. We report the laboratory and testbeam measurement results for the irradiated 3D devices.

  3. Study of the response of PICASSO bubble detectors to neutron irradiation

    NASA Astrophysics Data System (ADS)

    Marlisov, Daniiar

    The objective of this work was to simulate the PICASSO experiment and to study the detector response to neutron irradiation. The results of the simulation show the rock neutron rate to be 1-2 neutrons/day for the setup used until 2009 and less than 0.1 neutrons/day for the setup used after 2010. The shielding efficiency was calculated to be 98% and 99.6% for the two setups respectively. The detector response to an AmBe source was simulated. Neutron rates differ for two AmBe source spectra from the literature. The observed data rate is in agreement with the rate from the simulation. The detector stability was examined and found to be stable. The source position and orientation affect the detector efficiency creating a systematic uncertainity on the order of 10-35%. This uncertainity was eliminated with a source holder. The localisation of recorded events inside the detector and the simulated neutron distribution agree.

  4. Characterization of irradiated detectors fabricated on p-type silicon substrates for super-LHC

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Campabadal, F.; Escobar, C.; García, C.; González, S.; Lacasta, C.; Lozano, M.; Martí i García, S.; Pellegrini, G.; Rafí, J. M.; Ullán, M.

    2007-12-01

    An upgrade of the large hadron collider (LHC), the Super-LHC (SLHC), towards higher luminosities is currently being discussed as an extension of the LHC physics program. The goal of the SLHC is to operate at a luminosity of 10 35 cm -2 s -1 (10 times larger than that of the LHC one). Thus, the operation of the SLHC implies a need to upgrade the detectors of the LHC experiments. The current tracking system of ATLAS will not cope with that luminosity. New solutions must be investigated to improve the radiation tolerance of the semiconductor detector. p-Type bulk sensors are being considered for the ATLAS tracking system for the SLHC. Microstrip detectors fabricated by CNM-IMB on p-type high-resistivity float zone silicon have been irradiated with neutrons at the TRIGA Mark II reactor in Ljubljana up to a fluence of 10 16 cm -2 (as expected in the innermost region of the ATLAS upgrade) and have been characterized at IFIC Laboratory. The collected charge, after irradiation, has been measured by infrared laser illumination. The leakage current of those sensors is also reported.

  5. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  6. Irradiation of 4H-SiC UV detectors with heavy ions

    SciTech Connect

    Kalinina, E. V. Lebedev, A. A.; Bogdanova, E.; Berenquier, B.; Ottaviani, L.; Violina, G. N.; Skuratov, V. A.

    2015-04-15

    Ultraviolet (UV) photodetectors based on Schottky barriers to 4H-SiC are formed on lightly doped n-type epitaxial layers grown by the chemical vapor deposition method on commercial substrates. The diode structures are irradiated at 25°C by 167-MeV Xe ions with a mass of 131 amu at a fluence of 6 × 10{sup 9} cm{sup −2}. Comparative studies of the optical and electrical properties of as-grown and irradiated structures with Schottky barriers are carried out in the temperature range 23–180°C. The specific features of changes in the photosensitivity and electrical characteristics of the detector structures are accounted for by the capture of photogenerated carriers into traps formed due to fluctuations of the conduction-band bottom and valence-band top, with subsequent thermal dissociation.

  7. Comparison of Direct Normal Irradiance Derived from Silicon and Thermopile Global Hemispherical Radiation Detectors: Preprint

    SciTech Connect

    Myers, D. R.

    2010-01-01

    Concentrating solar applications utilize direct normal irradiance (DNI) radiation, a measurement rarely available. The solar concentrator industry has begun to deploy numerous measurement stations to prospect for suitable system deployment sites. Rotating shadowband radiometers (RSR) using silicon photodiodes as detectors are typically deployed. This paper compares direct beam estimates from RSR to a total hemispherical measuring radiometer (SPN1) multiple fast thermopiles. These detectors simultaneously measure total and diffuse radiation from which DNI can be computed. Both the SPN1 and RSR-derived DNI are compared to DNI measured with thermopile pyrheliometers. Our comparison shows that the SPN1 radiometer DNI estimated uncertainty is somewhat greater than, and on the same order as, the RSR DNI estimates for DNI magnitudes useful to concentrator technologies.

  8. A 4096-pixel MAPS detector used to investigate the single-electron distribution in a Young-Feynman two-slit interference experiment

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Giorgi, F. M.; Semprini, N.; Villa, M.; Zoccoli, A.; Matteucci, G.; Pozzi, G.; Frabboni, S.; Gazzadi, G. C.

    2013-01-01

    A monolithic CMOS detector, made of 4096 active pixels developed for HEP collider experiments, has been used in the Young-Feynman two-slit experiment with single electrons. The experiment has been carried out by inserting two nanometric slits in a transmission electron microscope that provided the electron beam source and the electro-optical lenses for projecting and focusing the interference pattern on the sensor. The fast readout of the sensor, in principle capable to manage up to 106 frames per second, allowed to record single-electron frames spaced by several empty frames. In this way, for the first time in a single-electron two-slit experiment, the time distribution of electron arrivals has been measured with a resolution of 165 μs. In addition, high statistics samples of single-electron events were collected within a time interval short enough to be compatible with the stability of the system and coherence conditions of the illumination.

  9. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  10. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  11. Planar slim-edge pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Lapsien, T.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2012-02-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n+-implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  12. Simulation of Low Gain Avalanche Detector characteristics based on the concept of negative feedback in irradiated silicon detectors with carrier impact ionization

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Luukka, P.

    2016-12-01

    In this study the main characteristics of silicon Low Gain Avalanche Detectors (LGAD), the dependencies of the collected charge versus bias voltage and fluence, are calculated to fit experimental data. The calculations are based on two previously developed Ioffe Institute models of radiation degradation in Si detectors: 1) a model of two effective energy levels of radiation-induced defects, and 2) a mechanism of internal negative feedback responsible for the gain degradation in irradiated Si detectors originating from the avalanche multiplication at the detector junction. The combination of these models describes well the properties of irradiated p-i-n detectors in a wide range of fluences. For simulating the LGAD characteristics the models are adapted to its n+-pbi-p-p+ structure, where the built-in boron-doped layer pbi produces high electric field sufficient for carrier impact ionization. It is shown that the developed models give adequate quantitative description of the experimental results for the LGADs up to the fluence of 2×1015 n/cm2 including the detector pulse response; however, additional boron removal from the pbi layer is required to have the best correlation with the experimental data. Similar to the physical model developed for silicon strip detectors operated at high voltage, the results are interpreted in terms of the internal negative feedback mechanism. It is shown that in irradiated LGADs this feedback leads to the transfer of a significant fraction of the potential drop from the built-in layer toward the p+ contact. It initiates two negative effects, which both cause the gain degradation with irradiation: the lowering of the electric field in the n+-pbi region that reduces the multiplication probability, and the increase of the collection time and trapping-related charge losses.

  13. Study of bulk damage in high resistivity silicon detectors irradiated by high dose of {sup 60}Co {gamma}-radiation

    SciTech Connect

    Li, Z.; Li, C.J.

    1996-04-01

    High dose (> 200 Mrad) {gamma}-radiation induced displacement damage (or bulk damage) in high resistivity (6--10 k{Omega}-cm) silicon detectors has been studied. It has been found that detector bulk leakage current increases with {gamma} dose at a rate of 3.3 {times} 10{sup {minus}7} A/cm{sup 3}/Mrad. This introduction rate of bulk leakage current makes the introduction of generation centers by 210 Mrad of {gamma}-radiation comparable to that by 1 {times} 10{sup 12} n/cm{sup 2} of neutron radiation. Significant carrier removal (or donor removal), about 100%, was found in detectors irradiated to 215 Mrad. Space charge sign inversion (SCSI) (or type inversion) was observed in detectors irradiated to {ge} 215 Mrad using transient current technique (TCT). As many as seven deep levels have been observed by current deep level transient spectroscopy (I-DLTS). There was little or no annealing (or reverse annealing) for detectors irradiated to 215 Mrad. Some annealing for detectors irradiated to 500 Mrad have been observed.

  14. The effect of irradiation with high-energy protons on 4H-SiC detectors

    SciTech Connect

    Kazukauskas, V. Jasiulionis, R.; Kalendra, V.; Vaitkus, J.-V.

    2007-03-15

    The effect of irradiation of 4H-SiC ionizing-radiation detectors with various doses (as high as 10{sup 16} cm{sup -2}) of 24-GeV protons is studied. Isotopes of B, Be, Li, He, and H were produced in the nuclear spallation reactions of protons with carbon. Isotopes of Al, Mg, Na, Ne, F, O, and N were produced in the reactions of protons with silicon. The total amount of the produced stable isotopes varied in proportion with the radiation dose from 1.2 x 10{sup 11} to 5.9 x 10{sup 13} cm{sup -2}. It is shown that, at high radiation doses, the contact characteristics of the detectors change appreciably. The potential-barrier height increased from the initial value of 0.7-0.75 eV to 0.85 eV; the rectifying characteristics of the Schottky contacts deteriorated appreciably. These effects are attributed to the formation of a disordered structure of the material as a result of irradiation.

  15. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  16. Quantum dosimetry and online visualization of X-ray and charged particle radiation in commercial aircraft at operational flight altitudes with the pixel detector Timepix

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Pospisil, Stanislav

    2014-07-01

    We investigate the application of the hybrid semiconductor pixel detector Timepix for precise characterization, quantum sensitivity dosimetry and visualization of the charged particle radiation and X-ray field inside commercial aircraft at operational flight altitudes. The quantum counting capability and granularity of Timepix provides the composition and spectral-characteristics of the X-ray and charged-particle field with high sensitivity, wide dynamic range, high spatial resolution and particle type resolving power. For energetic charged particles the direction of trajectory and linear energy transfer can be measured. The detector is operated by the integrated readout interface FITPix for power, control and data acquisition together with the software package Pixelman for online visualization and real-time data processing. The compact and portable radiation camera can be deployed remotely being controlled simply by a laptop computer. The device performs continuous monitoring and accurate time-dependent measurements in wide dynamic range of particle fluxes, deposited energy, absorbed dose and equivalent dose rates. Results are presented for in-flight measurements at altitudes up to 12 km in various flights selected in the period 2006-2013.

  17. High-flux ptychographic imaging using the new 55 µm-pixel detector ‘Lambda’ based on the Medipix3 readout chip

    SciTech Connect

    Wilke, R. N. Wallentin, J.; Osterhoff, M.; Pennicard, D.; Zozulya, A.; Sprung, M.; Salditt, T.

    2014-11-01

    The Large Area Medipix-Based Detector Array (Lambda) has been used in a ptychographic imaging experiment on solar-cell nanowires. By using a semi-transparent central stop, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high-resolution phase reconstructions. Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 10{sup 5} photons nm{sup −2} s{sup −1} or a flux of ∼10{sup 10} photons s{sup −1} on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

  18. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect

    Sun, Cheng-Jun Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-04-15

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  19. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector.

    PubMed

    Epple, Franz M; Ehn, Sebastian; Thibault, Pierre; Koehler, Thomas; Potdevin, Guillaume; Herzen, Julia; Pennicard, David; Graafsma, Heinz; Noël, Peter B; Pfeiffer, Franz

    2015-03-01

    Grating-based differential phase-contrast imaging has proven to be feasible with conventional X-ray sources. The polychromatic spectrum generally limits the performance of the interferometer but benefit can be gained with an energy-sensitive detector. In the presented work, we employ the energy-discrimination capability to correct for phase-wrapping artefacts. We propose to use the phase shifts, which are measured in distinct energy bins, to estimate the optimal phase shift in the sense of maximum likelihood. We demonstrate that our method is able to correct for phase-wrapping artefacts, to improve the contrast-to-noise ratio and to reduce beam hardening due to the modelled energy dependency. The method is evaluated on experimental data which are measured with a laboratory Talbot-Lau interferometer equipped with a conventional polychromatic X-ray source and an energy-sensitive photon-counting pixel detector. Our work shows, that spectral imaging is an important step to move differential phase-contrast imaging closer to pre-clinical and clinical applications, where phase wrapping is particularly problematic.

  20. A method for the dynamic range extension of a pixelated Silicon detector beam profilometer based on the incomplete reset mechanism

    NASA Astrophysics Data System (ADS)

    Caccia, M.; Santoro, R.; Antonello, M.

    2017-03-01

    The SUCIMA collaboration, within a project supported by the European Commission in the Fifth Framework Program, developed a sensor for non-disruptive real-time beam profilometry for hadron therapy centres. The sensor, named MIMOTERA, has been used at different European facilities, imaging beams by direct impact on the sensor and by the detection of secondary electrons emitted by thin targets. In 2015, the detector has been thinned to 50 μm, integrated in a high vacuum and cryogenic temperature compliant assembly and successfully commissioned as antiproton beam monitor for the AEbar gIS experiment at CERN. The detector contributed to the optimisation of the experiment functionality providing the shape and position of the beam on a spill-by-spill basis. However, it failed in measuring the fluctuations of the beam intensity because the deposited energy exceeded the full well capacity and saturated the output signal. In order to recover this information, a method was developed based on the persistence of the signal in a series of frames that follows the one corresponding to the beam impact, due to the incomplete sensor reset. A laboratory test that makes use of a laser with tuneable intensity was designed and the method was qualified. This paper reports the description of the procedure and the main outcomes.

  1. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    PubMed

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers.

  2. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  3. Development and high temperature testing by 14 MeV neutron irradiation of single crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Pilotti, R.; Angelone, M.; Pagano, G.; Loreti, S.; Pillon, M.; Sarto, F.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2016-06-01

    In the present paper, the performances of single crystal diamond detectors "ad hoc" designed to operate at high temperature are reported. The detectors were realized using commercial CVD single crystal diamond films, 500 micron thick with metal contacts deposited by sputtering method on each side. The new detector layout is based upon mechanical contacts between the diamond film and the electric ground. The detector was first characterized by measuring the leakage current as function of temperature and applied biasing voltage (I-V characteristics). The results obtained using two different metal contacts, Pt and Ag respectively, while irradiated with 14 MeV neutrons at the Frascati neutron generator (FNG) are reported and compared. It is shown that diamond detectors with Ag metal contacts can be properly operated in spectrometric mode up to 240oC with energy resolution (FWHM) of about 3.5%.

  4. High-flux ptychographic imaging using the new 55 µm-pixel detector ‘Lambda’ based on the Medipix3 readout chip

    PubMed Central

    Wilke, R. N.; Wallentin, J.; Osterhoff, M.; Pennicard, D.; Zozulya, A.; Sprung, M.; Salditt, T.

    2014-01-01

    Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 105 photons nm−2 s−1 or a flux of ∼1010 photons s−1 on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

  5. A novel gamma-ray detector with submillimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Miura, T.; Matsuda, H.; Kishimoto, A.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Nakamura, S.; Kawabata, N.; Ikeda, H.; Yamamoto, S.; Kamada, K.

    2013-01-01

    We have developed a large-area monolithic Multi-Pixel Photon Counter (MPPC) array consisting of 4×4 channels with a three-side buttable package. Each channel has a photosensitive area of 3×3 mm2 and 3600 Geiger mode avalanche photodiodes (APDs). For typical operational gain of 7.5×105 at +20 °C, gain fluctuation over the entire MPPC device is only ±5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤400 kcps per channel. We first fabricated a gamma-ray camera consisting of the MPPC array with one-to-one coupling to a Ce-doped (Lu, Y)2(SiO4)O (Ce:LYSO) crystal array (4×4 array of 3×3×10 mm3 crystals). Energy and time resolutions of 11.5±0.5% (FWHM at 662 keV) and 493±22 ps were obtained, respectively. When using the charge division resistor network, which compiles signals into four position-encoded analog outputs, the ultimate positional resolution is estimated as 0.19 mm in both X and Y directions, while energy resolution of 10.2±0.4% (FWHM) was obtained. Finally, we fabricated submillimeter Ce:LYSO and Ce-doped Gd3Ga3Al2O12 (Ce:GGAG) scintillator matrices each consisting of 1.0×1.0, 0.7×0.7 and 0.5×0.5 mm2 pixels, to further improve the spatial resolution. In all types of Ce:LYSO and Ce:GGAG matrices, each crystal was clearly resolved in the position histograms when irradiated by a 137Cs source. The energy resolutions for 662 keV gamma-rays for each Ce:LYSO and Ce:GGAG scintillator matrix were ≤14.3%. These results suggest excellent potential for its use as a high spatial medical imaging device, particularly in positron emission tomography (PET).

  6. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  7. Influence of alpha irradiation on pre and post solar exposed PM-355 polymeric nuclear track detector sheets

    NASA Astrophysics Data System (ADS)

    Alsalhi, M. S.; Baig, M. R.; Alfaramawi, K.; Alrasheedi, Mariam G.

    2017-01-01

    The effect of alpha irradiation before and after solar exposed PM-355 polymeric SSNTDs films was investigated. The absorption spectra for both non-irradiated and irradiated samples at different solar exposure time in different months showed a shift in the absorption edge towards lower wavelengths as the solar exposure time increases. This is probably ascribed to the presence of conjugate bonds. The fluorescence spectra indicated three distinguished peaks at approximately 330, 415 and 465 nm respectively. The first peak is attributed to the band gap while the other two peaks due to a probable formation of solid defects. The structure analysis using X-ray diffraction (XRD) proved the partial crystalline nature of the polymer with dominant amorphous phase. There was a slight increase in the XRD peak intensity for the sample irradiated by alpha particles indicating that the polymeric detector structure becomes more crystalline with a change in the crystallite size.

  8. Results from irradiation tests on D0 Run 2a silicon detectors at the Radiation Damage Facility at Fermilab

    SciTech Connect

    Gardner, J.; Cerber, C.; Ke, Z.; Korjanevsky, S.; Leflat, A.; Lehner, F.; Lipton, R.; Lackey, J.; Merkin, M.; Rapidis, P.; Rykalin, V.; Shabalina, E.; Spiegel, L.; Stutte, L.; Webber, B.; /Kansas U. /Kansas State U. /Illinois U., Chicago /Fermilab /Moscow State U. /Zurich U. /NICADD, DeKalb

    2006-03-01

    Several different spare modules of the D0 experiment Silicon Microstrip Tracker (SMT) have been irradiated at the Fermilab Booster Radiation Damage Facility (RDF). The total dose received was 2.1 MRads with a proton flux of {approx} 3 {center_dot} 10{sup 11} p/cm{sup 2} sec. The irradiation was carried out in steps of 0.3 or 0.6 MRad, with several days between the steps to allow for annealing and measurements. The leakage currents and depletion voltages of the devices increased with dose, as expected from bulk radiation damage. The double sided, double metal devices showed worse degradation than the less complex detectors.

  9. PIXEL PUSHER

    NASA Technical Reports Server (NTRS)

    Stanfill, D. F.

    1994-01-01

    Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.

  10. Imaging properties of pixellated scintillators with deep pixels

    PubMed Central

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2015-01-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors. PMID:26236070

  11. Imaging properties of pixellated scintillators with deep pixels

    NASA Astrophysics Data System (ADS)

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2014-09-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

  12. Imaging properties of pixellated scintillators with deep pixels.

    PubMed

    Barber, H Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P; Furenlid, Lars R; Miller, Brian W; Parkhurst, Philip; Nagarkar, Vivek V

    2014-08-17

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of (176)Lu in LSO:Ce and LYSO:Ce detectors.

  13. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Ruddy, Frank H.; Seidel, John G.

    2007-10-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 °C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress.

  14. Diamond pixel modules and the ATLAS beam conditions monitor

    NASA Astrophysics Data System (ADS)

    Dobos, D.; Pernegger, Heinz; RD42 Collaboration; ATLAS Diamond Pixel Upgrade Collaboration; ATLAS Beam Conditions Monitor Collaborations

    2011-02-01

    Chemical vapor deposition diamonds are considered among possible sensor materials for the next pixel upgrade in ATLAS. Full size diamond pixel modules have been constructed to the specification of the ATLAS Pixel Detector using poly-crystalline CVD diamond sensors to develop the production techniques required for industrial production. Those modules were tested in the lab and testbeam. Additionally we will present results of diamond pixel modules using single-crystal diamonds and results of proton irradiations up to 1.8 ×10 16 protons/cm 2. The ATLAS Beam Conditions Monitors (BCM) main purpose is to protect the experiments silicon tracker from beam incidents. In total 16 1×1 cm2 500 μm thick diamond pCVD sensors are used in eight positions around the LHC interaction point. They perform time difference measurements with sub nanosecond resolution to distinguish between particles from a collision and spray particles from a beam incident; an abundance of the latter can lead the BCM to provoke an abort of LHC beam. The BCM diamond detector modules, their readout system and the algorithms used to detect beam incidents are described. Results of the BCM operation with circulating LHC beams and its commissioning with first LHC collisions are reported.

  15. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  16. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  17. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  18. The INFN-FBK pixel R&D program for HL-LHC

    NASA Astrophysics Data System (ADS)

    Meschini, M.; Dalla Betta, G. F.; Boscardin, M.; Calderini, G.; Darbo, G.; Giacomini, G.; Messineo, A.; Ronchin, S.

    2016-09-01

    We report on the ATLAS and CMS joint research activity, which is aiming at the development of new, thin silicon pixel detectors for the Large Hadron Collider Phase-2 detector upgrades. This R&D is performed under special agreement between Istituto Nazionale di Fisica Nucleare and FBK foundation (Trento, Italy). New generations of 3D and planar pixel sensors with active edges are being developed in the R&D project, and will be fabricated at FBK. A first planar pixel batch, which was produced by the end of year 2014, will be described in this paper. First clean room measurement results on planar sensors obtained before and after neutron irradiation will be presented.

  19. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    SciTech Connect

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  20. Elevated temperature annealing behaviors of bulk resistivity and space charge density (Neff) of neutron irradiated silicon detectors and materials

    NASA Astrophysics Data System (ADS)

    Z., Li

    1996-02-01

    The bulk resistivity of neutron irradiated detector grade silicon material has been measured under the condition of no or low electrical filed (electrical neutral bulk or ENB condition) after elevated temperature (T = 110°C) anneals (ETA). The ENB resistivity (ρ) for as-irradiated silicon material increases with neutron fluence at low fluences (Φn > 1013 n/cm2). The saturation of the ENB resistivity near the intrinsic value can be explained by the near perfect compensation of all neutron induced deep donors and acceptors in the ENB. After ETA, it has been observed that ρ increases with annealing time for silicon materials irradiated below the saturation and decreases with annealing time for those irradiated after saturation. For those irradiated near the saturation point, ρ increases with annealing time initially and decreases thereafter. This ETA behavior of ρ may be explained by the increase of net acceptor-like deep levels in silicon during the anneal, qualitatively consistent with the observed reverse annealing effect of the space charge density (Neff) in silicon detectors which is an increase of negative space charge density (acceptors) after long term room temperature (RTA) anneal and/or ETA. However, the amount of the increase of net hole concentration (p) of about 5 × 1011 cm-3, corresponding to 20 hours of ETA at 110°C for a fluence of 1.5 × 1014 n/cm2, is still much less than the corresponding increase of Neff of about 1.5 × 1013 cm-3. This suggests that while the ETA restores some of the free carrier concentration (namely holes), there is still a large degree of compensation. The space charge density is still dominated by the deep levels and Neff ≠ p.

  1. Characterization of the energy resolution and the tracking capabilities of a hybrid pixel detector with CdTe-sensor layer for a possible use in a neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Durst, Jürgen; Michel, Thilo

    2013-04-01

    Many different experiments are being developed to explore the existence of the neutrinoless double beta decay (0 νββ) since it would imply fundamental consequences for particle physics. In this work we present results on the evaluation of Timepix detectors with cadmium-telluride sensor material to search for 0 νββ in 116Cd. This work was carried out with the COBRA collaboration and the Medipix collaboration. Due to the relatively small pixel dimension of 110×110×1000 μm3 the energy deposited by particles typically extends over several detector pixels leading to a track in the pixel matrix. We investigated the separation power regarding different event-types like α-particles, atmospheric muons, single electrons and electron-positron pairs produced at a single vertex. We achieved excellent classification power for α-particles and muons. In addition, we achieved good separation power between single electron and electron-positron pair production events. These separation abilities indicate a very good background reduction for the 0 νββ search. Further, in order to distinguish between 2 νββ and 0 νββ, the energy resolution is of particular importance. We carried out simulations which demonstrate that an energy resolution of 0.43 % is achievable at the Q-value for 0 νββ of 116Cd at 2.814 MeV. We measured an energy resolution of 1.6 % at a nominal energy of 1589 keV for electron-positron tracks which is about two times worse that predicted by our simulations. This deviation is probably due to the problem of detector calibration at energies above 122 keV which is discussed in this paper as well.

  2. The DEPFET Sensor-Amplifier Structure: A Method to Beat 1/f Noise and Reach Sub-Electron Noise in Pixel Detectors

    PubMed Central

    Lutz, Gerhard; Porro, Matteo; Aschauer, Stefan; Wölfel, Stefan; Strüder, Lothar

    2016-01-01

    Depleted field effect transistors (DEPFET) are used to achieve very low noise signal charge readout with sub-electron measurement precision. This is accomplished by repeatedly reading an identical charge, thereby suppressing not only the white serial noise but also the usually constant 1/f noise. The repetitive non-destructive readout (RNDR) DEPFET is an ideal central element for an active pixel sensor (APS) pixel. The theory has been derived thoroughly and results have been verified on RNDR-DEPFET prototypes. A charge measurement precision of 0.18 electrons has been achieved. The device is well-suited for spectroscopic X-ray imaging and for optical photon counting in pixel sensors, even at high photon numbers in the same cell. PMID:27136549

  3. Irradiation of 4''x4'' NaI(Tl) detector by the 14 MeV neutrons.

    PubMed

    Sudac, D; Valkovic, V

    2010-01-01

    Within the EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) project, a new Tagged Neutron Inspection System (TNIS) has been developed and installed in the Port of Rijeka in Croatia. The system was based on the examination of sea containers with the 14 MeV neutron beam. During the operation the characteristic gamma rays were produced and measured by several 5''x5''x10'' NaI(Tl) detectors. During this procedure some of the detectors were exposed to an intensive neutron beam radiation. It was necessary to check for possible radiation damage of the NaI(Tl) scintillator during the gamma detector selection phase of the project. The 4''x4'' NaI(Tl) detector was exposed to 14 MeV neutrons for 20 h. From the presented results on energy resolution and activation measurements it could be concluded that there are no significant differences in energy resolution before and after the irradiation by 4.7x10(11) of 14 MeV neutrons. The only problem could be the high level of medium and long term induced activity in the energy region below 2 MeV.

  4. Randomized SUSAN edge detector

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Wang, Ping; Gao, Ying-Hui; Wang, Peng

    2011-11-01

    A speed up technique for the SUSAN edge detector based on random sampling is proposed. Instead of sliding the mask pixel by pixel on an image as the SUSAN edge detector does, the proposed scheme places the mask randomly on pixels to find edges in the image; we hereby name it randomized SUSAN edge detector (R-SUSAN). Specifically, the R-SUSAN edge detector adopts three approaches in the framework of random sampling to accelerate a SUSAN edge detector: procedure integration of response computation and nonmaxima suppression, reduction of unnecessary processing for obvious nonedge pixels, and early termination. Experimental results demonstrate the effectiveness of the proposed method.

  5. Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    NASA Astrophysics Data System (ADS)

    Backhaus, M.

    2012-01-01

    The ATLAS Insertable B-Layer (IBL) collaboration plans to insert a fourth pixel layer inside the present Pixel Detector to recover from eventual failures in the current pixel system, especially the b-layer. Additionally the IBL will ensure excellent tracking, vertexing and b-tagging performance during the LHC phase I and add robustness in tracking with high luminosity pile-up. The expected peak luminosity for IBL is 2 to 3·1034 cm-2s-1 and IBL is designed for an integrated luminosity of 700 fb-1. This corresponds to an expected fluence of 5·1015 1 MeV neqcm-2 and a total ionizing dose of 250 MRad. In order to cope with these requirements, two new module concepts are under investigation, both based on a new front end IC, called FE-I4. This IC was designed as readout chip for future ATLAS Pixel Detectors and its first application will be the IBL. The planar pixel sensor (PPS) based module concept benefits from its well understood design, which is kept as similar as possible to the design of the current ATLAS Pixel Detector sensor. The second approach of the new three dimensional (3D) silicon sensor technology benefits from the shorter charge carrier drift distance to the electrodes, which completely penetrate the sensor bulk. Prototype modules of both sensor concepts have been build and tested in laboratory and test beam environment before and after irradiation. Both concepts show very high performance even after irradiation to 5·1015 1 MeV neqcm-2 and meet the IBL specifications in terms of hit efficiency being larger than 97%. Lowest operational threshold studies have been effected and prove independent of the used sensor concept the excellent performance of FE-I4 based module concepts in terms of noise hit occupancy at low thresholds.

  6. Simulation and design of various configurations of silicon detectors for high irradiation tolerance up to 6x10{sup 14} n/cm{sup 2} in LHC application

    SciTech Connect

    Li, Z.; Chen, W.; Beuttenmuller, R.

    1997-06-01

    Various new configurations (n{sup +}/p/p{sup +}, n{sup +}/n/p{sup +}, and p{sup +}/n/n{sup +}) of silicon detector designs have been simulated using processing and device simulation tools, before and after irradiation to various fluences. The aim of material selection and detector design is to ensure adequate charge collection after being irradiated up to 10{sup 15} n/cm{sup 2} (or 6x10{sup 14}{pi}/cm{sup 2}) in LHC environment, which corresponds to a net increase (with long term anneal) of space charge of 7x10{sup 13} cm{sup -3}. Starting materials selected for simulations include high resistivity p-type silicon, medium and low resistivity n-type silicon. Design of multi-guard-rings structure for high voltage operation is also considered. First irradiation data of low resistivity silicon detector is presented.

  7. Depth of interaction and bias voltage depenence of the spectral response in a pixellated CdTe detector operating in time-over-threshold mode subjected to monochromatic X-rays

    NASA Astrophysics Data System (ADS)

    Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Maneuski, D.; Marchal, J.; Norlin, B.; O'Shea, V.; Stewart, G.; Wilhelm, H.; Modh Zain, R.; Thungström, G.

    2012-03-01

    High stopping power is one of the most important figures of merit for X-ray detectors. CdTe is a promising material but suffers from: material defects, non-ideal charge transport and long range X-ray fluorescence. Those factors reduce the image quality and deteriorate spectral information. In this project we used a monochromatic pencil beam collimated through a 20μm pinhole to measure the detector spectral response in dependance on the depth of interaction. The sensor was a 1mm thick CdTe detector with a pixel pitch of 110μm, bump bonded to a Timepix readout chip operating in Time-Over-Threshold mode. The measurements were carried out at the Extreme Conditions beamline I15 of the Diamond Light Source. The beam was entering the sensor at an angle of \\texttildelow20 degrees to the surface and then passed through \\texttildelow25 pixels before leaving through the bottom of the sensor. The photon energy was tuned to 77keV giving a variation in the beam intensity of about three orders of magnitude along the beam path. Spectra in Time-over-Threshold (ToT) mode were recorded showing each individual interaction. The bias voltage was varied between -30V and -300V to investigate how the electric field affected the spectral information. For this setup it is worth noticing the large impact of fluorescence. At -300V the photo peak and escape peak are of similar height. For high bias voltages the spectra remains clear throughout the whole depth but for lower voltages as -50V, only the bottom part of the sensor carries spectral information. This is an effect of the low hole mobility and the longer range the electrons have to travel in a low field.

  8. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    NASA Astrophysics Data System (ADS)

    Ochi, Atsuhiko; Homma, Yasuhiro; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    The Micro Pixel Chamber(μ-PIC)isbeingdevelopedasacandidateforthe muonsystemoftheATLAS detectorfor upgrading in LHC experiments. The μ-PICisa micro-patterngaseous detector that doesn'thave floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to theATLAS cavern. Spark rates are measured using severalgas mixtures under7MeV neutron irradiation, andgoodpropertieswereobservedusingneon,ethane,andCF4mixtureofgases.Usingresistivematerialsas electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  9. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  10. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  11. WFC3 Pixel Area Maps

    NASA Astrophysics Data System (ADS)

    Kalirai, J. S.; Cox, C.; Dressel, L.; Fruchter, A.; Hack, W.; Kozhurina-Platais, V.; Mack, J.

    2010-04-01

    We present the pixel area maps (PAMs) for the WFC3/UVIS and WFC3/IR detectors, and discuss the normalization of these images. HST processed flt images suffer from geometric distortion and therefore have pixel areas that vary on the sky. The counts (electrons) measured for a source on these images depends on the position of the source on the detector, an effect that is implicitly corrected when these images are multidrizzled into drz files. The flt images can be multiplied by the PAMs to yield correct and uniform counts for a given source irrespective of its location on the image. To ensure consistency between the count rate measured for sources in drz images and near the center of flt images, we set the normalization of the PAMs to unity at a reference pixel near the center of the UVIS mosaic and IR detector, and set the SCALE in the IDCTAB equal to the square root of the area of this reference pixel. The implications of this choice for photometric measurements are discussed.

  12. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  13. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Savic, N.; Beyer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.

    2016-12-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more radiation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 μm recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of these modules is investigated at beam tests and the results on edge efficiency will be shown.

  14. Preliminary demonstration of an IonCCD as an alternative pixelated anode for direct MCP readout in a compact MS-based detector.

    PubMed

    Hadjar, Omar; Fowler, William K; Kibelka, Gottfried; Schnute, William C

    2012-02-01

    We report on the preliminary testing of a new position-sensitive detector (PSD) by combining a microchannel plate (MCP) and a charge-sensitive pixilated anode with a direct readout based on charge-coupled detector (CCD) technology, which will be referred to as IonCCD (Hadjar et al. J Am Soc Mass Spectrom 22(4):612-623, 2011; Johnson et al. J Am Soc Mass Spectrom 22(8):1388-1394, 2011; Hadjar et al. J Am Soc Mass Spectrom 22(10):1872-1884, 2011). This work exploits the recently discovered electron detection capability of the IonCCD (Hadjar et al. J Am Soc Mass Spectrom 22(4):612-623, 2011), allowing it to be used directly behind an MC. This MCP-IonCCD configuration potentially obviates the need for electro-optical ion detector systems (EOIDs), which typically feature a relatively difficult-to-implement 5-kV power source as well as a phosphorus screen behind the MCP for conversion of electrons to photons prior to signal generation in a photosensitive CCD. Thus, the new system (MCP-IonCCD) has the potential to be smaller, simpler, more robust, and more cost efficient than EOID-based technologies in many applications. The use of the IonCCD as direct MCP readout anode, as opposed to its direct use as an ion detector, will benefit from the instant three-to-four-order-of-magnitude gain of the MCP with virtually no additional noise. The signal/noise gain can be used for either sensitivity or speed enhancement of the detector. The speed enhancement may motivate the development of faster IonCCD readout speeds (currently at 2.7 ms) to achieve the 2 kHz frame rate for which the IonCCD chip was designed, a must for transient signal applications. The presented detector exhibits clear potential not only as a trace analysis detector in scan-free mass spectrometry and electron spectroscopy but also as a compact detector for photon and particle imaging applications.

  15. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Benoit, M.; Dinu, N.; Lounis, A.; Marchiori, G.

    2011-04-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their influence on the detector depletion at the edge and on its internal electric field distribution in order to optimize the layout parameters. Simulations indicate that the number of guard rings can be reduced by a few hundred microns with respect to the layout used for the present ATLAS sensors, with a corresponding extension of the active area of the sensors. A study of the inter-pixel capacitance and of the capacitance between the implants and the high-voltage contact as a function of several parameters affecting the geometry and the doping level of the implants was also carried out. The results are needed in order to evaluate the noise and the cross-talk among neighboring pixels when connected to the front-end electronics.

  16. Pixel Perfect

    SciTech Connect

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Sowa, Marianne B.

    2005-09-01

    cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.

  17. Planar n +-in-n silicon pixel sensors for the ATLAS IBL upgrade

    NASA Astrophysics Data System (ADS)

    Goessling, C.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2011-09-01

    The ATLAS experiment at the LHC is planning to upgrade its pixel detector by the installation of a 4th pixel layer, the insertable b-layer IBL with a mean sensor radius of only 32 mm from the beam axis. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5×10 15 n eq cm -2 at their end-of-life. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for IBL fluences, n +-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a 90Sr source in the laboratory. The collected charge was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. With an expected threshold of 3000-4000 electrons, this result suggests that planar n +-in-n pixel sensors are radiation hard enough to be used as IBL sensor technology.

  18. Pixelated neutron image plates

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  19. Thermal kinetic inductance detector

    DOEpatents

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  20. Single-pixel hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Wang, Yuwang; Bian, Liheng; Dai, Qionghai

    2016-10-01

    Conventional multispectral imaging methods detect photons of a 3D hyperspectral data cube separately either in the spatial or spectral dimension using array detectors, and are thus photon inefficient and spectrum range limited. Besides, they are usually bulky and highly expensive. To address these issues, this paper presents single-pixel multispectral imaging techniques, which are of high sensitivity, wide spectrum range, low cost and light weight. Two mechanisms are proposed, and experimental validation are also reported.

  1. Radiation hardness studies of n + -in-n planar pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2011-12-01

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with the increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 to about 3000 fb -1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5×1015 neq cm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2×1016 neq cm-2. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for these fluences, n +-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a 90Sr source in the laboratory. The collected charge after IBL fluences was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. After SLHC fluences, still reliable operation of the devices could be observed with a collected charge of more than 5000 electrons per MIP.

  2. HV-CMOS detectors in BCD8 technology

    NASA Astrophysics Data System (ADS)

    Andreazza, A.; Castoldi, A.; Ceriale, V.; Chiodini, G.; Citterio, M.; Darbo, G.; Gariano, G.; Gaudiello, A.; Guazzoni, C.; Joshi, A.; Liberali, V.; Passadore, S.; Ragusa, F.; Ruscino, E.; Sbarra, C.; Shrimali, H.; Sidoti, A.; Stabile, A.; Yadav, I.; Zaffaroni, E.

    2016-11-01

    This paper presents the first pixel detector realized using the BCD8 technology of STMicroelectronics. The BCD8 is a 160 nm process with bipolar, CMOS and DMOS devices; mainly targeted for an automotive application. The silicon particle detector is realized as a pixel sensor diode with a dimension of 250 × 50 μm2. To support the signal sensitivity of pixel diode, the circuit simulations have been performed with a substrate voltage of 50 V. The analog signal processing circuitry and the digital operation of the circuit is designed with the supply voltage of 1.8 V. Moreover, an analog processing part of the pixel detector circuit is confined in a unit pixel (diode sensor) to achieve 100 % fill factor. As a first phase of the design, an array of 8 pixels and 4 passive diodes have been designed and measured experimentally. The entire analog circuitry including passive diodes is implemented in a single chip. This chip has been tested experimentally with 70 V voltage capability, to evaluate its suitability. The sensor on a 125 Ωcm resistivity substrate has been characterized in the laboratory. The CMOS sensor realizes a depleted region of several tens of micrometer. The characterization shows a uniform breakdown at 70 V before irradiation and an approximate capacitance of 80 fF at 50 V of reverse bias voltage. The response to ionizing radiation is tested using radioactive sources and an X-ray tube.

  3. Development activities of a CdTe/CdZnTe pixel detector for gamma-ray spectrometry with imaging and polarimetry capability in astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; Álvarez, L.; La Torre, M.; Caroli, E.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2013-05-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN).Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) are very attractive materials for gamma-ray detection, since they have already demonstrated their great performance onboard current space missions, such as IBIS/INTEGRAL and BAT/SWIFT, and future projects like ASIM onboard the ISS. However, the energy coverage of these instruments is limited up to a few hundred keV, and there has not been yet a dedicated instrument for polarimetry.Our research and development activities aim to study a gamma-ray imaging spectrometer in the MeV range based on CdTe detectors, suited either for the focal plane of a focusing mission or as a calorimeter for a Compton camera. In addition, our undergoing detector design is proposed as the baseline for the payload of a balloon-borne experiment dedicated to hard X- and soft gamma-ray polarimetry, currently under study and called CμSP (CZT μ-Spectrometer Polarimeter). Other research institutes such as INAF-IASF, DTU Space, LIP, INEM/CNR, CEA, are involved in this proposal. We will report on the main features of the prototype we are developing at the Institute of Space Sciences, a gamma-ray detector with imaging and polarimetry capabilities in order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution driven by the science.

  4. Simulation of Charge Collection in Diamond Detectors Irradiated with Deuteron-Triton Neutron Sources

    SciTech Connect

    Milocco, Alberto; Trkov, Andrej; Pillon, Mario

    2011-12-13

    Diamond-based neutron spectrometers exhibit outstanding properties such as radiation hardness, low sensitivity to gamma rays, fast response and high-energy resolution. They represent a very promising application of diamonds for plasma diagnostics in fusion devices. The measured pulse height spectrum is obtained from the collection of helium and beryllium ions produced by the reactions on {sup 12}C. An original code is developed to simulate the production and the transport of charged particles inside the diamond detector. The ion transport methodology is based on the well-known TRIM code. The reactions of interest are triggered using the ENDF/B-VII.0 nuclear data for the neutron interactions on carbon. The model is implemented in the TALLYX subroutine of the MCNP5 and MCNPX codes. Measurements with diamond detectors in a {approx}14 MeV neutron field have been performed at the FNG (Rome, Italy) and IRMM (Geel, Belgium) facilities. The comparison of the experimental data with the simulations validates the proposed model.

  5. Principle and modelling of Transient Current Technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding

    NASA Astrophysics Data System (ADS)

    Bronuzzi, J.; Mapelli, A.; Moll, M.; Sallese, J. M.

    2016-08-01

    In the framework of monolithic silicon radiation detectors, a fabrication process based on a recently developed silicon wafer bonding technique at low temperature was proposed. Ideally, this new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer, which is expected to present many advantages since it would combine high performance IC's with high sensitive ultra-low doped bulk silicon detectors. But electrical properties of the bonded interface are critical for this kind of application since the mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface in order to be collected by the read-out electronics. In this work, we propose to explore and develop a model for the so-called Transient Current Technique (TCT) to identify the presence of deep traps at the bonded interface. For this purpose, we consider a simple PIN diode reversely biased where the ultra-low doped active region of interest is set in full depletion. In a first step, Synopsys Sentaurus TCAD is used to evaluate the soundness of this technique for interface traps characterization such as it may happen in bonded interfaces. Next, an analytical model is developed in details to give a better insight into the physics behind the TCT for interface layers. Further, this can be used as a simple tool to evidence what are the relevant parameters influencing the TCT signal and to set the basis for preliminary characterizations.

  6. Status and Construction of the Belle II DEPFET pixel system

    NASA Astrophysics Data System (ADS)

    Lütticke, Florian

    2014-06-01

    DEpleted P-channel Field Effect Transistor (DEPFET) active pixel detectors combine detection with a first amplification stage in a fully depleted detector, resulting in an superb signal-to-noise ratio even for thin sensors. Two layers of thin (75 micron) silicon DEPFET pixels will be used as the innermost vertex system, very close to the beam pipe in the Belle II detector at the SuperKEKB facility. The status of the 8 million DEPFET pixels detector, latest developments and current system tests will be discussed.

  7. A CMOS Active Pixel Sensor for Charged Particle Detection

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  8. Evaluation of testing strategies for the radiation tolerant ATLAS n +-in-n pixel sensor

    NASA Astrophysics Data System (ADS)

    Klaiber-Lodewigs, Jonas M.; Atlas Pixel Collaboration

    2003-10-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m2 with 1.1×10 8 read-out channels usable for a particle fluence up to 10 15 cm-2 ( 1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n +-in-n silicon pixel cell design with a standard cell size of 50×400 μm2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operation in the ATLAS experiment. The specific set of tests discussed in detail measures sensor depletion, interface generation velocity, p-spray dose and biasing by punch-through mechanism and is designed to give insights into effects of irradiation with ionizing particles.

  9. Effects of gamma irradiation on some chemicals using an NaI (Tl) detector

    NASA Astrophysics Data System (ADS)

    Bhosale, R. R.; Gaikwad, D. K.; Pawar, P. P.; Rode, M. N.

    2016-05-01

    The present work was carried out to find out the gamma ray shielding properties and to study the effects using an NaI (Tl) detector using radioactive sources 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na at energies 122, 356, 511, 662, 840, 1170, 1275 and 1330 keV, for some chemicals, namely, sodium thiosulfate (Na2S2O3), benzoic acid (C7H6O2), sodium hydroxide (NaOH), poly vinyl alcohol (PVA) (C2H4O), potassium nitrate (KNO3), naphthalene (C10H8). Mass attenuation coefficient (µm) values obtained from the experiment were used to determine the effective atomic numbers (Zeff) and effective electron densities (Neff), atomic cross-sections (σt) and electronic cross-sections (σe); it will be observed from the present work that the variation in the obtained values is only due to the increase or decrease in the gamma ray energy and the chemical composition of the sample. It was seen that the calculated and obtained values showed good agreement. The investigated data are useful in the electronic industry, plastic industry, building materials and agriculture fields. From the present work it was found that the PVA could be used as a better gamma shielding material.

  10. Pixel isolation of low dark-current large-format InAs/GaSb superlattice complementary barrier infrared detector focal plane arrays with high fill factor

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Hill, Cory J.; Rafol, Don; Keo, Sam; Soibel, Alexander; Ting, David Z.-Y.; Mumolo, Jason; Liu, John; Gunapala, Sarath D.

    2011-01-01

    Low dark current and high fill factor are two crucial characteristics for the realization of the InAs/GaSb superlattice (SL) technology as third generation focal plane arrays (FPAs). Recent development proved high performance results for the complementary barrier infrared detector (CBIRD) design, and a high-quality etch technique is required to minimize surface leakage currents. We report on a n-CBIRD with 10.3 μm cutoff, exhibiting a responsivity of 1.7 A/W and dark current density of 1×10-5 A/cm2 at 77K under 0.2 V bias, without AR coating and without passivation. Results from four different mesa isolation techniques are compared on single element diodes: chemical wet etch using C4H6O6:H3PO4:H2O2:H2O, BCl3/Ar inductively coupled plasma (ICP), CH4/H2/Ar ICP, and CH4/H2/BCl3/Cl2/Ar ICP. The CH4/H2/BCl3/Cl2/Ar etched structures yielded more than 2.5 times improvement in dark current density and nearvertical sidewalls. Using this etching technique, we then implement a 1k x 1k p-CBIRD array with 11.5 μm cutoff and peak responsivity of 3 A/W. Operating at T = 80K, the array yielded a 81% fill factor with 98% operability and performance results of 21% quantum efficiency, 53 mK NE▵T, and NEI of 6.9×1013 photons/sec-cm2.

  11. Test beam evaluation of newly developed n-in-p planar pixel sensors for use in a high radiation environment

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Yamaguchi, D.; Motohashi, K.; Nakamura, K.; Unno, Y.; Jinnouchi, O.; Altenheiner, S.; Blue, A.; Bomben, M.; Butter, A.; Cervelli, A.; Crawley, S.; Ducourthial, A.; Gisen, A.; Hagihara, M.; Hanagaki, K.; Hara, K.; Hirose, M.; Homma, Y.; Ikegami, Y.; Kamada, S.; Kono, T.; Macchiolo, A.; Marchiori, G.; Meloni, F.; Milovanovic, M.; Morton, A.; Mullier, G.; Munoz, F. J.; Nellist, C.; Paschen, B.; Quadt, A.; Rashid, T.; Rieger, J.; Rummler, A.; Sato, K.; Sato, K.; Savic, N.; Sawai, H.; Sexton, K.; Stramaglia, M. E.; Swiatlowski, M.; Takashima, R.; Takubo, Y.; Terzo, S.; Todome, K.; Tojo, J.; Houten, K. Van; Weingarten, J.; Wonsak, S.; Wraight, K.; Yamamura, K.

    2016-09-01

    Radiation-tolerant n-in-p planar pixel sensors have been under development in cooperation with Hamamatsu Photonics K.K. (HPK). This is geared towards applications in high-radiation environments, such as for the future Inner Tracker (ITk) placed in the innermost part of the ATLAS detector in the high luminosity LHC (HL-LHC) experiment. Prototypes of those sensors have been produced, irradiated, and evaluated over the last few years. In the previous studies, it was reported that significant drops in the detection efficiency were observed after irradiation, especially under bias structures. The bias structures are made up of poly-Si or Al bias rails and poly-Si bias resistors. The structure is implemented on the sensors to allow quality checks to be performed before the bump-bonding process, and to ensure that charge generated in floating pixels due to non-contacting or missing bump-bonds is dumped in a controlled way in order to avoid noise. To minimize the efficiency drop, several new pixel structures have been designed with bias rails and bias resistors relocated. Several test beams have been carried out to evaluate the drops in the detection efficiency of the new sensor structures after irradiation. Newly developed sensor modules were irradiated with proton-beams at the Cyclotron and Radio-Isotope Center (CYRIC) in Tohoku University to see the effect of sensor-bulk damage and surface charge-up. An irradiation with γ-rays was also carried out at Takasaki Advanced Radiation Research Center, with the goal of decoupling the effect of surface charge-up from that of bulk damage. Those irradiated sensors have been evaluated with particle beams at DESY and CERN. Comparison between different sensor structures confirmed significant improvements in minimizing efficiency loss under the bias structures after irradiation. The results from γ-irradiation also enabled cross-checking the results of a semiconductor technology simulation program (TCAD).

  12. High-temperature long-lasting stability assessment of a single-crystal diamond detector under high-flux neutron irradiation

    NASA Astrophysics Data System (ADS)

    Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.

    2016-11-01

    An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.

  13. A PFM based digital pixel with off-pixel residue measurement for 15μm pitch MWIR FPAs

    NASA Astrophysics Data System (ADS)

    Abbasi, Shahbaz; Shafique, Atia; Galioglu, Arman; Ceylan, Omer; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    Digital pixels based on pulse frequency modulation (PFM) employ counting techniques to achieve very high charge handling capability compared to their analog counterparts. Moreover, extended counting methods making use of leftover charge (residue) on the integration capacitor help improve the noise performance of these pixels. However, medium wave infrared (MWIR) focal plane arrays (FPAs) having smaller pixel pitch are constrained in terms of pixel area which makes it difficult to add extended counting circuitry to the pixel. Thus, this paper investigates the performance of digital pixels employing off-pixel residue measurement. A circuit prototype of such a pixel has been designed for 15μm pixel pitch and fabricated in 90nm CMOS. The prototype is composed of a pixel front-end based on a PFM loop. The frontend is a modified version of conventional design providing a means for buffering the signal that needs to be converted to a digital value by an off-pixel ADC. The pixel has an integration phase and a residue measurement phase. Measured integration performance of the pixel has been reported in this paper for various detector currents and integration times.

  14. The NA62 Gigatracker pixel detector system

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Noy, M.; Petrucci, F.; Riedler, P.; Rivetti, A.; Tiuraniemi, S.

    2010-05-01

    The silicon tracker for the NA62 experiment has to provide both a time resolution of 150 ps rms and a space resolution of about 100 μm rms. These challenging specifications require the development of a new readout electronics in order to address the problem of measuring the tracks arrival time with such a high channel density. Moreover, the high particle density (up to 1.5 MHz/mm2 in the center and 0.8-1 GHz in total) requires a high speed measurement and data transmission in order to keep the dead time below 1%.

  15. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  16. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R. H.

    2011-04-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut für Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied.The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  17. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  18. Status of the CMS pixel project

    SciTech Connect

    Uplegger, Lorenzo; /Fermilab

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance.

  19. Pixel frontend electronics in a radiation hard technology for hybrid and monolithic applications

    SciTech Connect

    Pengg, F. |; Campbell, M.; Heijne, E.H.M.; Snoeys, W.

    1996-06-01

    Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation is 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.

  20. Detector requirements for space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Wright, E. L.

    1986-01-01

    Requirements for background-limited (BLIP) detectors are discussed in terms of number of photons falling on each pixel, dark current, high detective quantum efficiencies, large numbers of pixels, and array size.

  1. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  2. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  3. Pixel telescope test in STAR at RHIC

    NASA Astrophysics Data System (ADS)

    Sun, Xiangming; Szelezniak, Michal; Greiner, Leo; Matis, Howard; Vu, Chinh; Stezelberger, Thorsten; Wieman, Howard

    2007-10-01

    The STAR experiment at RHIC is designing a new inner vertex detector called the Heavy Flavor Tracker (HFT). The HFT's innermost two layers is called the PIXEL detector which uses Monolithic Active Pixel Sensor technology (MAPS). To test the MAPS technology, we just constructed and tested a telescope. The telescope uses a stack of three MIMOSTAR2 chips, Each MIMOSTAR2 sensor, which was designed by IPHC, is an array of 132x128 pixels with a square pixel size of 30 μ. The readout of the telescope makes use of the ALICE DDL/SIU cards, which is compatible with the future STAR data acquisition system called DAQ1000. The telescope was first studied in a 1.2 GeV/c electron beam at LBNL's Advanced Light Source. Afterwards, the telescope was outside the STAR magnet, and then later inside it, 145 cm away from STAR's center. We will describe this first test of MAPS technology in a collider environment, and report on the occupancy, particle flux, and performance of the telescope.

  4. [Study on the reflected and hyperspectral mixed-pixel character of aquatic plants and water].

    PubMed

    Sun, Tian-lin; Zhao, Yun-sheng; Liang, Ren-feng; Zhang, Xia

    2012-02-01

    A study on the reflected and hyperspectral mixed-pixel of aquatic plants and water was given by using a orthogonal experimental design with three factors and two levels. The results of F test suggest that for the single factors, the band and the area ratio of mixed-pixel on the reflected and hyperspectral mixed-pixel of the reflection effects are particularly significant, however, the detector angle had no significant effect under these experimental conditions; For the interaction, the band and the area ratio of mixed-pixel, the detector and the area ratio of mixed-pixel, the effects of these two interactions on the reflected and hyperspectral mixed-pixel are also particularly significant, This study did quantitative analysis of the factors affecting the reflected and hyperspectral mixed-pixel character and their interaction, and provided a new method for the indepth study of mixed-pixel.

  5. Fiber pixelated image database

    NASA Astrophysics Data System (ADS)

    Shinde, Anant; Perinchery, Sandeep Menon; Matham, Murukeshan Vadakke

    2016-08-01

    Imaging of physically inaccessible parts of the body such as the colon at micron-level resolution is highly important in diagnostic medical imaging. Though flexible endoscopes based on the imaging fiber bundle are used for such diagnostic procedures, their inherent honeycomb-like structure creates fiber pixelation effects. This impedes the observer from perceiving the information from an image captured and hinders the direct use of image processing and machine intelligence techniques on the recorded signal. Significant efforts have been made by researchers in the recent past in the development and implementation of pixelation removal techniques. However, researchers have often used their own set of images without making source data available which subdued their usage and adaptability universally. A database of pixelated images is the current requirement to meet the growing diagnostic needs in the healthcare arena. An innovative fiber pixelated image database is presented, which consists of pixelated images that are synthetically generated and experimentally acquired. Sample space encompasses test patterns of different scales, sizes, and shapes. It is envisaged that this proposed database will alleviate the current limitations associated with relevant research and development and would be of great help for researchers working on comb structure removal algorithms.

  6. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  7. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  8. Selecting Pixels for Kepler Downlink

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.; Haas, Michael R.

    2010-01-01

    The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.

  9. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    SciTech Connect

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa; Szalkai, Dora; Klix, Axel; Vermeeren, Ludo; Saenger, Richard; Lyoussi, Abadallah

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  10. Studies of deep levels in high resistivity silicon detectors irradiated by high fluence fast neutrons using a thermally stimulated current spectrometer

    SciTech Connect

    Li, Z.; Kraner, H.W.; Chen, W.; Beuttenmuller, R.; Biggeri, U.; Bruzzi, M.; Borchi, E.; Baldini, A.; Spillantini, P. |

    1993-04-01

    Measurements of deep level spectrum of high resistivity silicon detectors irradiated by high fluence fast neutrons ({Phi}{sub n}: 2 {times} 10{sup 12}n/cm{sup 2}) have been made using a thermally stimulated current (TSC) spectrometer. It has been found that at least nine new defect levels, with peaking temperature of 19K, 27K, 36K, 44K, 49K, 83K, 93K, 105K, and 120K, begin to appear when {Phi}{sub n} {ge} 1 {times} 10{sup 13}n/cm. All peaks have strong dependences on the filling voltage (V{sub fill}, forward bias) or injection current especially for high fluence ({Phi}{sub n} {ge} 10{sup 13} n/cm{sup 2}) situations. The defect concentration, energy level in the band gap, and cross section of each deep level, totaling, at least 13, have been studied systematically and possible identifications of the levels have been discussed.

  11. Achievements of the ATLAS upgrade Planar Pixel Sensors R&D Project

    NASA Astrophysics Data System (ADS)

    Nellist, C.

    2015-01-01

    In the framework of the HL-LHC upgrade, the ATLAS experiment plans to introduce an all-silicon inner tracker to cope with the elevated occupancy. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project (PPS) was established comprising 19 institutes and more than 90 scientists. The paper provides an overview of the research and development project and highlights accomplishments, among them: beam test results with planar sensors up to innermost layer fluences (>1016 neq cm-2) measurements obtained with irradiated thin edgeless n-in-p pixel assemblies; recent studies of the SCP technique to obtain almost active edges by post-processing already existing sensors based on scribing, cleaving and edge passivation; an update on prototyping efforts for large areas: sensor design improvements and concepts for low-cost hybridisation; comparison between Secondary Ion Mass Spectrometry results and TCAD simulations. Together, these results allow an assessment of the state-of-the-art with respect to radiation-hard position-sensitive tracking detectors suited for the instrumentation of large areas.

  12. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  13. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  14. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R&D Project

    NASA Astrophysics Data System (ADS)

    George, M.

    2014-05-01

    After the foreseen upgrade of the LHC towards the HL-LHC, coming along with higher beam energies and increased peak luminosities, the experiments have to upgrade their detector systems to cope with the expected higher occupancies and radiation damages. In case of the ATLAS experiment a new Inner Tracker will be installed in this context. The ATLAS Planar Pixel Sensor R&D Project (PPS) is investigating the possibilities to cope with these new requirements, using planar pixel silicon sensors, working in a collaboration of 17 institutions and more than 80 scientists. Since the new Inner Tracker is supposed to have an active area on the order of 8 m2 on the one side and has to withstand extreme irradiation on the other side, the PPS community is working on several approaches to reduce production costs, while increasing the radiation tolerance of the sensors. Another challenge is to produce sensors in such large quantities. During the production of the Insertable b-Layer (IBL) modules, the PPS community has proven to be able to produce a large scale production of planar silicon sensors with a high yield. For cost reduction reasons, it is desirable to produce larger sensors. There the PPS community is working on so called quad- and hex-modules, which have a size of four, respectively six FE-I4 readout chips. To cope with smaller radii and strict material budget requirements for the new pixel layers, developments towards sensors with small inactive areas are in the focus of research. Different production techniques, which even allow the production of sensors with active edges, have been investigated and the designs were qualified using lab and testbeam measurements. The short distance between the new innermost pixel layers and the interaction point, combined with the increase in luminosity, requires designs which are more radiation tolerant. Since charge collection on the one hand decreases with irradiation and on the other hand is not uniform within the pixel cells

  15. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  16. Detection of thermal neutrons with a CMOS pixel sensor for a future dosemeter

    SciTech Connect

    Vanstalle, M.; Husson, D.; Higueret, S.; Le, T. D.; Nourreddine, A. M.

    2011-07-01

    The RaMsEs group (Radioprotection et Mesures Environnementales) is developing a new compact device for operational neutron dosimetry. The electronic part of the detector is made of an integrated active pixel sensor, originally designed for tracking in particle physics. This device has useful features for neutrons, such as high detection efficiency for charged particles, good radiation resistance, high readout speed, low power consumption and high rejection of photon background. A good response of the device to fast neutrons has already been demonstrated [1]. In order to test the sensibility of the detector to thermal neutrons, experiments have been carried out with a 512 x 512 pixel CMOS sensor on a californium source moderated with heavy water (Cf.D{sub 2}O) on the Van Gogh irradiator at the LMDN, IRSN, Cadarache (France)). A thin boron converter is used to benefit from the significant cross section of the {sup 10}B (n,{alpha}) {sup 7}Li reaction. Results show a high detection efficiency (around 10{sup -3}) of the device to thermal neutrons. Our measurements are in good agreement with GEANT4 Monte Carlo simulations. (authors)

  17. Total Body Irradiation, Toward Optimal Individual Delivery: Dose Evaluation With Metal Oxide Field Effect Transistors, Thermoluminescence Detectors, and a Treatment Planning System

    SciTech Connect

    Bloemen-van Gurp, Esther J. Mijnheer, Ben J.; Verschueren, Tom A.M.; Lambin, Philippe

    2007-11-15

    Purpose: To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. Methods and Materials: A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. Results: The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. Conclusions: The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  18. Silicon pixel R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e‑ Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1–2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm–500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  19. Simulation of Caliste-SO single pixel response

    NASA Astrophysics Data System (ADS)

    Barylak, J.; Barylak, A.; Mrozek, T.; Podgórski, P.; Steślicki, M.; Ścisłowski, D.

    2016-09-01

    The paper presents a method for determining the pixel response using Geant4 package. The response is calculated for cadmium telluride sensor of Caliste-SO detector. Caliste-SO will be used in STIX instrument on board Solar Orbiter, which is M-class mission of the ESA's program Cosmic Vision 2015-2025. Solar Orbiter is to be launched in October 2018. STIX instrument will provide imaging spectroscopy of solar hard X-ray emissions (4 - 150 keV) using a Fourier-imaging technique. Response of pixels in pixelized Caliste-SO detector vary between each other due to different sizes and locations. This can influence the scientific data obtained from STIX. Additionally, in the simulation we considered detector effects, like: hole tailing, damage layer, Fano and electronic noise.

  20. Diamond detectors with laser induced surface graphite electrodes

    NASA Astrophysics Data System (ADS)

    Komlenok, M.; Bolshakov, A.; Ralchenko, V.; Konov, V.; Conte, G.; Girolami, M.; Oliva, P.; Salvatori, S.

    2016-11-01

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm2 pixels was realized on one side of a 10.0×10.0×0.5 mm3 polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 μm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  1. Kinetics of the current response in TlBr detectors under a high dose rate of {gamma}-ray irradiation

    SciTech Connect

    Gazizov, I. M.; Zaletin, V. M.; Kukushkin, V. M.; Kuznetsov, M. S.; Lisitsky, I. S.

    2012-03-15

    The kinetics of the photocurrent response in doped and undoped TlBr samples subjected to irradiation with {gamma}-ray photons from a {sup 137}Cs source with the dose rate 0.033 to 3.84 Gy/min are studied. The crystals were grown by the directional crystallization of the melt method using the Bridgman-Stockbarger technique. The Pb impurity mass fraction introduced into the doped TlBr crystals was 1-10 ppm and amounted to 150 ppm for the Ca impurity. The crystals were grown in a vacuum, in bromine vapors, in a hydrogen atmosphere, and in air. Decay of the photocurrent is observed for extrinsic semiconductor crystals doped with bivalent cations (irrespective of the growth atmosphere), and also for crystals grown in hydrogen and crystals grown in an excess of thallium. The time constant of photocurrent decay {tau} amounted to 30-1400 s and was proportional to resistivity. It is shown that the current response can be related to photolysis in the TlBr crystals during irradiation with {gamma}-ray photons. The energy of hole traps responsible for a slow increase in the photo-current has been estimated and found to be equal to 0.6-0.85 eV.

  2. Vertically integrated pixel readout chip for high energy physics

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  3. Performance limits of a single photon counting pixel system

    NASA Astrophysics Data System (ADS)

    Chmeissani, M.; Mikulec, B.

    2001-03-01

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 μm) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes. The Medipix2 collaboration consists of groups from Barcelona, Cagliari, CEA/Leti DEIN, CERN, Freiburg, Glasgow, Mitthögskolan, Napoli, NIKHEF, MRC lab Cambridge, Pisa, Prague and Sassari.

  4. A new ATLAS pixel front-end IC for upgraded LHC luminosity

    NASA Astrophysics Data System (ADS)

    Barbero, M.; Arutinov, D.; Beccherle, R.; Darbo, G.; Ely, R.; Fougeron, D.; Garcia-Sciveres, M.; Gnani, D.; Hemperek, T.; Karagounis, M.; Kluit, R.; Kostioukhine, V.; Mekkaoui, A.; Menouni, M.; Schipper, J.-D.

    2009-06-01

    A new pixel Front-End (FE) IC is being developed in a 130 nm technology for use in the upgraded ATLAS pixel detector. The new pixel FE will be made of smaller pixels (50×250 μm vs. 50×400 μm for the present FE, FE-I3), a much improved active area over inactive area ratio, and a new analog pixel chain tuned for low power and new detector input capacitance. The higher luminosity for which this IC is tuned implies a complete redefinition of the digital architecture logic, which will not be based on End-of-Column data buffering but on local pixel logic and local pixel data storage. An overview of the new FE is given with particular emphasis on the new digital logic architecture and possible architecture variations.

  5. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  6. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography

    SciTech Connect

    Seco, Joao; Depauw, Nicolas

    2011-02-15

    Purpose: Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). Methods: A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Results: Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Conclusion: Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the

  7. ``The Read-Out Driver'' ROD card for the Insertable B-layer (IBL) detector of the ATLAS experiment: commissioning and upgrade studies for the Pixel Layers 1 and 2

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Gabrielli, A.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Morettini, P.; Travaglini, R.; Wensing, M.

    2014-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called the Insertable B-layer (IBL). The IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered for testing with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this paper system setups and results will be described, as well as preliminary studies on changes needed to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  8. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  9. Observation of Wavelength Dependant Features of Latent Tracks in Polyallydiglycol Detector Irradiated with Nd:YAG(UV) Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Baig, M. R.; ALSalhi, M. S.; AL-Faraikh, A. H.; Al-Ghamdi, S. S.

    2011-10-01

    Samples of CR-39 polyallydiglycol polymer after irradiation with Am-241 alpha particles were exposed to Nd:YAG(UV) laser pulses with different wavelengths (λ = 355nm and λ = 266nm with same repetition rate of 10Hz and pulse duration of 8 nano seconds). In order to investigate the changes occurred in the original morphology of the latent tracks, samples were etched in 6M NaOH at 70° C for different periods. Our results indicate significant changes in track sizes, shapes and chain-like structures. The enlargement of average track diameters leading to overlapping of tracks as a function of exposure time and energy was observed. The increase in circular annealed central area around the laser pulses and disappearance of tracks from this area as a function of energy was observed. The results can best be explained by considering that absorption of UV photons by organic molecules which give rise to electronic excitation. It is believed that when a polymer is excited with photons of higher energy, the decomposition and ablation is predominantly photochemical, being caused by the excitation and dissociation of bonds. The result is scission of bonds and the production of a large number of small volatile fragments during the absorption of the UV radiation. Surface morphology and microstructure changes observed are wavelength and exposure time dependent.

  10. Development of a pixel ionization chamber for beam monitor in proton therapy

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Garella, M. A.; Attili, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Giordanengo, S.; Givehchi, N.; Marchetto, F.; Mazza, G.; Meyroneinc, S.; Pecka, A.; Peroni, C.; Pittà, G.

    2007-03-01

    We have developed a detector to be used as monitor for proton therapy beam lines. The detector is a 2-D parallel plate ionization chamber, with the anode segmented in 1024 square pixels arranged in a 32×32 matrix. The detector characterization is presented.

  11. Small pixel uncooled imaging FPAs and applications

    NASA Astrophysics Data System (ADS)

    Blackwell, Richard; Franks, Glen; Lacroix, Daniel; Hyland, Sandra; Murphy, Robert

    2010-04-01

    BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper will review the latest advancements in microbolometer technology at BAE Systems, including the development status of 17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon stations, vehicle situational awareness sensors and mast/pole mounted sensors.

  12. Development of the Continuous Acquisition Pixel (CAP) sensor for high luminosity lepton colliders

    NASA Astrophysics Data System (ADS)

    Varner, G.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Martin, E.; Mueller, J.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanič, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Yang, Q.; Yarema, R.

    2006-09-01

    A future higher luminosity B-factory detector and concept study detectors for the proposed International Linear Collider require precision vertex reconstruction while coping with high track densities and radiation exposures. Compared with current silicon strip and hybrid pixels, a significant reduction in the overall detector material thickness is needed to achieve the desired vertex resolution. Considerable progress in the development of thin CMOS-based Monolithic Active Pixel Sensors (MAPS) in recent years makes them a viable technology option and feasibility studies are being actively pursued. The most serious concerns are their radiation hardness and their readout speed. To address these, several prototypes denoted as the Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25 μm process with a 5-deep Correlated Double Sample (CDS) pair pipeline in each pixel. A setup with several CAP3 sensors is under evaluation to assess the performance of a full-scale pixel readout system running at realistic readout speed. Given the similarity in the occupancy numbers and hit throughput requirements, per unit area, between a Belle vertex detector upgradation and the requirements for a future ILC pixel detector, this effort can be considered a small-scale functioning prototype for such a future system. The results and plans for the next stages of R&D towards a full Belle Pixel Vertex Detector (PVD) are presented.

  13. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  14. VeloPix: the pixel ASIC for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Poikela, T.; De Gaspari, M.; Plosila, J.; Westerlund, T.; Ballabriga, R.; Buytaert, J.; Campbell, M.; Llopart, X.; Wyllie, K.; Gromov, V.; van Beuzekom, M.; Zivkovic, V.

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 along with the other subsystems of LHCb in order to enable full readout at 40 MHz, with the data fed directly to the software triggering algorithms. The upgraded VELO is a lightweight hybrid pixel detector operating in vacuum in close proximity to the LHC beams. The readout will be provided by a dedicated front-end ASIC, dubbed VeloPix, matched to the LHCb readout requirements and the 55 × 55 μm VELO pixel dimensions. The chip is closely related to the Timepix3, from the Medipix family of ASICs. The principal challenge that the chip has to meet is a hit rate of up to 900 Mhits/s, resulting in a required output bandwidth of more than 16 Gbit/s. The occupancy across the chip is also very non-uniform, and the radiation levels reach an integrated 400 Mrad over the lifetime of the detector.VeloPix is a binary pixel readout chip with a data driven readout, designed in 130 nm CMOS technology. The pixels are combined into groups of 2 × 4 super pixels, enabling a shared logic and a reduction of bandwidth due to combined address and time stamp information. The pixel hits are combined with other simultaneous hits in the same super pixel, time stamped, and immediately driven off-chip. The analog front-end must be sufficiently fast to accurately time stamp the data, with a small enough dead time to minimize data loss in the most occupied regions of the chip. The data is driven off chip with a custom designed high speed serialiser. The current status of the ASIC design, the chip architecture and the simulations will be described.

  15. Photovoltaic Retinal Prosthesis with High Pixel Density

    PubMed Central

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-01-01

    Retinal degenerative diseases lead to blindness due to loss of the “image capturing” photoreceptors, while neurons in the “image processing” inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density. PMID:23049619

  16. Photovoltaic retinal prosthesis with high pixel density

    NASA Astrophysics Data System (ADS)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  17. A 65 nm pixel readout ASIC with quick transverse momentum discrimination capabilities for the CMS Tracker at HL-LHC

    NASA Astrophysics Data System (ADS)

    Ceresa, D.; Kaplon, J.; Francisco, R.; Caratelli, A.; Kloukinas, K.; Marchioro, A.

    2016-01-01

    A readout ASIC for the hybrid pixel detector with the capability of performing quick recognition of particles with high transverse momentum has been designed for the requirements of the CMS Outer Tracker at the High Luminosity LHC . The particle momentum dicrimination capability represents the main challenge for this design together with the low power requirement: the constraint of low mass for the new tracker dictates a total power budget of less than 100 mW/cm2. The choice of a 65 nm CMOS technology has made it possible to satisfy this power requirement despite the fairly large amount of logic necessary to perform the momentum discrimination and the continuous operation at 40 MHz. Several techniques for low power have been used to implement this logic that performs cluster reduction, position offset correction and coordinate encoding. A prototype chip including a large part of the final functionality and the full front-end has been realized and comprises a matrix of 16 by 3 rectangular pixels of 100 μm × 1446 μm, providing 7.65 mm2 of segmented active area. Measurements of the analog front-end characteristics closely match the simulations and confirm the consumption of < 30 μA per pixel. Front-end characterization and irradiation results up to 150 MRad are also reported.

  18. Development of n+-in-p planar pixel quadsensor flip-chipped with FE-I4 readout ASICs

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Yamamoto, H.; Hanagaki, K.; Hori, R.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Nagai, R.; Saito, S.; Sugibayashi, K.; Hirose, M.; Jinnouchi, O.; Sato, S.; Sawai, H.; Hara, K.; Sato, Kz.; Sato, Kj.; Iwabuchi, S.; Suzuki, J.

    2017-01-01

    We have developed flip-chip modules applicable to the pixel detector for the HL-LHC. New radiation-tolerant n+-in-p planar pixel sensors of a size of four FE-I4 application-specific integrated circuits (ASICs) are laid out in a 6-in wafer. Variation in readout connection for the pixels at the boundary of ASICs is implemented in the design of quadsensors. Bump bonding technology is developed for four ASICs onto one quadsensor. Both sensors and ASICs are thinned to 150 μm before bump bonding, and are held flat with vacuum chucks. Using lead-free SnAg solder bumps, we encounter deficiency with large areas of disconnected bumps after thermal stress treatment, including irradiation. Surface oxidation of the solder bumps is identified as a critical source of this deficiency after bump bonding trials, using SnAg bumps with solder flux, indium bumps, and SnAg bumps with a newly-introduced hydrogen-reflow process. With hydrogen-reflow, we establish flux-less bump bonding technology with SnAg bumps, appropriate for mass production of the flip-chip modules with thin sensors and thin ASICs.

  19. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  20. Achievements of the ATLAS upgrade planar pixel sensors R&D project

    NASA Astrophysics Data System (ADS)

    Calderini, G.

    2014-11-01

    This paper reports on recent accomplishments and ongoing work of the ATLAS Planar Pixel Sensors R&D project. Special attention is given in particular to new testbeam results obtained with highly irradiated sensors, developments in the field of slim and active edges and first step towards prototypes of future pixel modules.

  1. Pixel electronics for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2001-06-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2×5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm×60.8 mm which include an n + on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode the pin diode signal and to drive the VCSEL laser diodes of the optical links.

  2. Pixelation Effects in Weak Lensing

    NASA Technical Reports Server (NTRS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-01-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  3. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Giacomini, Gabriele; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2013-06-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015 neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb-1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  4. Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey

    2013-04-01

    This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.

  5. THE KEPLER PIXEL RESPONSE FUNCTION

    SciTech Connect

    Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.; Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.; Klaus, Todd; Gilliland, Ronald L.

    2010-04-20

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.

  6. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  7. Imaging by photon counting with 256x256 pixel matrix

    NASA Astrophysics Data System (ADS)

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H. M.; Llopart, Xavier

    2004-09-01

    Using 0.25µm standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256x256 square 55µm pixels intended for X-ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise ~150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3x10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13-bit register. The serial readout takes 5-10 ms. A parallel readout of ~300 µs could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to the homogeneous response over a large sensor area. The sensor material can be adapted to the energy of the X-rays. Best results have been obtained with high-resistivity silicon detectors, but also CdTe and GaAs detectors have been used. The lowest detectable X-ray energy was about 4 keV. Background measurements have been made, as well as measurements of the uniformity of imaging by photon counting. Very low photon count rates are feasible and noise-free at room temperature. The readout matrix can be used also with visible photons if an energy or charge intensifier structure is interposed such as a gaseous amplification layer or a microchannel plate or acceleration field in vacuum.

  8. Characterization of a 2-mm thick, 16x16 Cadmium-Zinc-Telluride Pixel Array

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Richardson, Georgia; Mitchell, Shannon; Ramsey, Brian; Seller, Paul; Sharma, Dharma

    2003-01-01

    The detector under study is a 2-mm-thick, 16x16 Cadmium-Zinc-Telluride pixel array with a pixel pitch of 300 microns and inter-pixel gap of 50 microns. This detector is a precursor to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolutio