Science.gov

Sample records for pixel opto links

  1. Optical links for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stucci, Stefania

    2016-07-01

    With the expected increase in the instantaneous luminosity of the LHC in the next few years, the off-detector optical read-out system of the outer two layers of the Pixel Detector of the ATLAS experiment will reach its bandwidth limits. The bandwidth will be increased with new optical receivers, which had to be redesigned since commercial solutions could not be used. The new design allows for a wider operational range in terms of data frequency and input optical power to match the on-detector transmitters of the present Pixel Detector. We report on the design and testing of prototypes of these components and the plans for the installation in the Pixel Detector read-out chain in 2015.

  2. Optics outreach evolves in southern California as OptoBotics begins to link informal to formal curriculum

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.

    2014-09-01

    For the July 2013 issue of SPIE Professional Magazine, I was invited to and published an article related to this topic. This paper chronicles the progress made since that time and describes our direction towards bringing optics education from the informal programs we have provided for more than 10 years, to incorporating optics and photonics instruction into formal class curriculum. A major educational tool we are using was introduced at this conference two years ago and came to us from Eyestvzw. The Photonics Explorer Kit has been used as a foundation during some OptoBotics courses and it has been provided, a long with a teacher training session, to 10 local high school science teachers in Orange County, CA. The goal of this first phase is to obtain feedback from the teachers as they use the materials in their formal classroom settings and after-school activities; such as science classes and robotics club activities. Results of the teachers' initial feedback will be reviewed and future directions outlined. One clear direction is to understand the changes that will be required to the kits to formally gain acceptance as part of the California state high school science curriculum. Another is to use the Photonics Explorer kits (and other similar tools) to teach students in robotics clubs `how to give their robots eyes."

  3. Linking DICOM pixel data with radiology reports using automatic semantic annotation

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Kim, Woojin; Munasinghe, Indeera; Criminisi, Antonio; White, Steve; Siddiqui, Khan

    2012-02-01

    Improved access to DICOM studies to both physicians and patients is changing the ways medical imaging studies are visualized and interpreted beyond the confines of radiologists' PACS workstations. While radiologists are trained for viewing and image interpretation, a non-radiologist physician relies on the radiologists' reports. Consequently, patients historically have been typically informed about their imaging findings via oral communication with their physicians, even though clinical studies have shown that patients respond to physician's advice significantly better when the individual patients are shown their own actual data. Our previous work on automated semantic annotation of DICOM Computed Tomography (CT) images allows us to further link radiology report with the corresponding images, enabling us to bridge the gap between image data with the human interpreted textual description of the corresponding imaging studies. The mapping of radiology text is facilitated by natural language processing (NLP) based search application. When combined with our automated semantic annotation of images, it enables navigation in large DICOM studies by clicking hyperlinked text in the radiology reports. An added advantage of using semantic annotation is the ability to render the organs to their default window level setting thus eliminating another barrier to image sharing and distribution. We believe such approaches would potentially enable the consumer to have access to their imaging data and navigate them in an informed manner.

  4. Coupled opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor); Maleki, Lute (Inventor)

    1999-01-01

    A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.

  5. Opto-electronic morphological processor

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey W. (Inventor); Chao, Tien-Hsin (Inventor); Cheng, Li J. (Inventor); Psaltis, Demetri (Inventor)

    1993-01-01

    The opto-electronic morphological processor of the present invention is capable of receiving optical inputs and emitting optical outputs. The use of optics allows implementation of parallel input/output, thereby overcoming a major bottleneck in prior art image processing systems. The processor consists of three components, namely, detectors, morphological operators and modulators. The detectors and operators are fabricated on a silicon VLSI chip and implement the optical input and morphological operations. A layer of ferro-electric liquid crystals is integrated with a silicon chip to provide the optical modulation. The implementation of the image processing operators in electronics leads to a wide range of applications and the use of optical connections allows cascadability of these parallel opto-electronic image processing components and high speed operation. Such an opto-electronic morphological processor may be used as the pre-processing stage in an image recognition system. In one example disclosed herein, the optical input/optical output morphological processor of the invention is interfaced with a binary phase-only correlator to produce an image recognition system.

  6. Opto-mechano-fluidic viscometer

    SciTech Connect

    Han, Kewen Zhu, Kaiyuan; Bahl, Gaurav

    2014-07-07

    The recent development of opto-mechano-fluidic resonators has provided—by harnessing photon radiation pressure—a microfluidics platform for the optical sensing of fluid density and bulk modulus. Here, we show that fluid viscosity can also be determined through optomechanical measurement of the vibrational noise spectrum of the resonator mechanical modes. A linear relationship between the spectral linewidth and root-viscosity is predicted and experimentally verified in the low viscosity regime. Our result is a step towards multi-frequency measurement of viscoelasticity of arbitrary fluids, without sample contamination, using highly sensitive optomechanics techniques.

  7. Smart pixels

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    2004-09-01

    Semiconductor technology progresses at a relentless pace, making it possible to provide image sensors and each pixel with an increasing amount of custom analog and digital functionality. As experience with such photosensor functionality grows, an increasing variety of modular building blocks become available for smart pixels, single-chip digital cameras and functional image sensors. Examples include a non-linear pixel response circuit for high-dynamic range imaging with a dynamic range exceeding 180 dB, low-noise amplifiers and avalanche-effect pixels for high-sensitivity detection performance approaching single-photoelectron resolution, lock-in pixels for optical time-of-flight range cameras with sub-centimeter distance resolution and in-pixel demodulation circuits for optical coherence tomography imaging. The future is seen in system-on-a-chip machine vision cameras ("seeing chips"), post-processing with non-silicon materials for the extension of the detection range to the X-ray, ultraviolet and infrared spectrum, the use of organic semiconductors for low-cost large-area photonic microsystems, as well as imaging of fields other than electromagnetic radiation.

  8. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  9. PIXEL PUSHER

    NASA Technical Reports Server (NTRS)

    Stanfill, D. F.

    1994-01-01

    Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.

  10. Pixel Paradise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    PixelVision, Inc., has developed a series of integrated imaging engines capable of high-resolution image capture at dynamic speeds. This technology was used originally at Jet Propulsion Laboratory in a series of imaging engines for a NASA mission to Pluto. By producing this integrated package, Charge-Coupled Device (CCD) technology has been made accessible to a wide range of users.

  11. Opto-Electronic Oscillator and its Applications

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1996-01-01

    We present the theoretical and experimental results of a new class of microwave oscillators called opto-electronic oscillators (OEO). We discuss techniques of achieving high stability single mode operation and demonstrate the applications of OEO in photonic communication systems.

  12. Opto-thermionic refrigeration in semiconductor heterostructures.

    PubMed

    Mal'shukov, A G; Chao, K A

    2001-06-11

    Combining the ideas of laser cooling and thermionic cooling, we have proposed an opto-thermionic cooling process, and investigated its cooling effect caused by the light emission from a quantum well embedded into a semiconductor pn junction. For a GaAs/AlGaAs opto-thermionic refrigerator in which the Auger recombination is the major nonradiative process, cooling can be achieved in a finite range of bias voltage. Using the measured values of the Auger coefficient, our calculated cooling rate is at least several watts/cm(2).

  13. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  14. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect

    Kwon, Jae-Sung; Ravindranath, Sandeep; Kumar, Aloke; Irudayaraj, Joseph; Wereley, Steven T.

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  15. Opto-Electronic Characterization CdTe Solar Cells from TCO to Back Contact with Nano-Scale CL Probe

    SciTech Connect

    Moseley, John; Al-Jassim, Mowafak M.; Paudel, Naba; Mahabaduge, Hasitha; Kuciauskas, Darius; Guthrey, Harvey L.; Duenow, Joel; Yan, Yanfa; Metzger, Wyatt K.; Ahrenkiel, Richard K.

    2015-06-14

    We used cathodoluminescence (CL) (spectrum-per-pixel) imaging on beveled CdTe solar cell sections to investigate the opto-electronic properties of these devices from the TCO to the back contact. We used a nano-scale CL probe to resolve luminescence from grain boundary (GB) and grain interior (GI) locations near the CdS/CdTe interface where the grains are very small. As-deposited, CdCl2-treated, Cu-treated, and (CdCl2+Cu)-treated cells were analyzed. Color-coded CL spectrum imaging maps on bevels illustrate the distribution of the T=6 K luminescence transitions through the depth of devices with unprecedented spatial resolution. The CL at the GBs and GIs is shown to vary significantly from the front to the back of devices and is a sensitive function of processing. Supporting D-SIMS depth profile, TRPL lifetime, and C-V measurements are used to link the CL data to the J-V performance of devices.

  16. Pixel Perfect

    SciTech Connect

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Sowa, Marianne B.

    2005-09-01

    cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.

  17. Block copolymers for opto-electronics

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James H.; Maaref, Shahin; Ledbetter, Abram J.; Bonner, Carl E.

    2004-05-01

    A D(donor)-B(bridge)-A(acceptor)-B(bridge)-type block copolymer system has been developed and preliminarily examined for potential opto-electronic photovoltaic functions. The unique feature of the device includes a primary DBAB-type block copolymer backbone, where D and A are conjugated donor and acceptor polymer blocks, and B is a non-conjugated and flexible chain, a π orbital stacked and conjugated chain self-assembled and ordered "secondary structure", and a donor/acceptor asymmetric layers sandwiched D/A columnar "tertiary structure". This structure is expected to improve photovoltaic power conversion efficiency significantly in comparison to most existing organic or polymeric donor/acceptor binary photovoltaic systems due to the reduction of "exciton loss", the "carrier loss", as well as the "photon loss" via three-dimensional space and energy level optimizations. Preliminary experimental results revealed better morphology and opto-electronic properties of DBAB vs. D/A blends.

  18. The PLATO opto-mechanical unit prototyping and AIV phase

    NASA Astrophysics Data System (ADS)

    Farinato, Jacopo; Viotto, Valentina; Gentile, Giorgia; Dima, Marco; Magrin, Demetrio; Piazza, Daniele; Ragazzoni, Roberto; Piotto, Giampaolo; Pagano, Isabella; Arcidiacono, Carmelo; Basso, Stefano; Benz, Willy; Gambicorti, Lisa; Ghigo, Mauro; Munari, Matteo; Pace, Emanuele; Scuderi, Salvatore; Catala, Claude

    2010-07-01

    PLATO is the acronym of PLAnetary Transits and Oscillations of stars, and it is a mission proposed for the ESA Cosmic Vision program in the Medium size program, with the target to detect and characterize exoplanets by the means of their transit on a bright star. The instrumental overall layout proposed by the Plato Payload Consortium consists in a multitelescope concept instrument, composed by several tens of telescope units, for which we are developing an all refractive optical solution. These devices are characterized by a very large Field of View (more than 20 degrees on one side) with an optical quality that fits most of the energy into a single CCD pixel. Such a goal can be achieved in a variety of solutions, some including aspheric elements as well. A complete prototype of one telescope unit is foreseen to be built initially (during phase B1) to show the alignment feasibility and, only in a second moment (Phase B2), to perform full environmental and functional test. The aim of this article is to describe the alignment, integration and verification strategy of the opto-mechanics of the prototype. Both the approaches of testing the telescope at the target working temperature or to test it at ambient temperature around a displaced zero point, taking into account the effects of thermal deformations, are considered and briefly sketched in this work.

  19. Microfabrication and Applications of Opto-Microfluidic Sensors

    PubMed Central

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  20. MASCARA: opto-mechanical design and integration

    NASA Astrophysics Data System (ADS)

    Spronck, Julien F. P.; Lesage, Anna-Léa.; Stuik, Remko; Bettonvil, Felix; Snellen, Ignas A. G.

    2014-07-01

    MASCARA, the Multi-site All-Sky CAmeRA, consists of several fully-automated stations. Its goal is to find exoplanets transiting the brightest stars, in the mV = 4 to 8 magnitude range. Each station contains five wide- angle cameras monitoring the near-entire sky at each location. The five cameras are located in a temperature- controlled enclosure and look at the sky through five windows. A housing with a moving roof protects MASCARA from the environment. Here, we present the opto-mechanical design of the first MASCARA station.

  1. An Opto-MEMS Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    Kearney, K.; Ninkov, Z.; Zwarg, D.

    2000-05-01

    Optical MEMS (Micro-Electro-Mechanical-Structures) are an enabling technology for a new class of optical instrumentation designs. An opto-MEMS device consists of an array of microfabricated structures, each of which modulates the phase and/or amplitude of an incident light beam. Typically the devices consist of an array of moveable micromirrors - each of which reflects an incident beam in a unique direction (tilt), or with a unique phase shift (piston). One widely available opto-MEMS device is the Texas Instruments' Digital Micromirror Device (DMD). The DMD is an array of 16 micron x 16 micron square mirrors postioned on a 17 micron pitch. Each mirror can tilt +/- 10 degrees from the normal - reflecting a normally incident light beam +/- 20 degrees. By positioning the DMD in an intermediate image plane in an optical system, portions of the image can be directed into- or out-of the input pupil of the follow-on imaging optics. RIT is utilizing the DMD to construct a prototype multiobject spectrograph (RIT-MOS) for visible observations with terrestrial telescopes. The DMD array replaces the input slit of an imaging spectrograph, forming a 'virtual', programmable slit assembly. By acquiring a pre-image of the astronomical field, it is possible to select a multidude of objects, and to program the DMD to pass only those objects into the input optics of the imaging spectrograph. We will report on the design and characterizatotion of the RIT-MOS, as well as preliminary imaging results.

  2. Opto-mechanical design of SCUBA-2

    NASA Astrophysics Data System (ADS)

    Atad-Ettedgui, Eli; Peacocke, Tully; Montgomery, David; Gostick, David; McGregor, Helen; Cliff, Mark; Saunders, Ian J.; Ploeg, Leo; Dorrepaal, Michiel; van Venrooij, Bart

    2006-06-01

    This paper describes the opto-mechanical design of a large instrument for sub-mm, SCUBA-2, to be commissioned at JCMT. The scientific requirements, specially the large fov and the constraints of the telescope mechanical structure, lead to a complex optical design using freeform aluminium mirrors . The mechanical design is also challenging with large modules to be mounted and aligned in the telescope as well as the cryogenic instrument containing the mirrors, the filters, the dichroics and the detector modules. The cryogenic isostatic mounting, the structural and thermal designs are presented. This includes details of the fabrication of the structure and design of a shutter mechanism for operation at 4K. The results of the first AIV cool-down are also presented.

  3. Opto-chiasmatic arachnoiditis in the young.

    PubMed

    Iraci, G; Gerosa, M A; Tomazzoli, L; Pardatscher, K; Fiore, D L; Secchi, A G; Tormene, A P; Javicoli, R; Giordano, R; Olivi, A

    1983-01-01

    14 young patients, operated upon for opto-chiasmatic arachnoiditis by craniotomy are presented. 2 main etiopathogenetic forms (and their respective clinical equivalents) of the disease could be recognized. Only 1 postoperative death occurred, in a patient with a dominant clinical picture of intracranial hypertension. Results of surgery (craniotomy and lysis of adhesions) could be distinguished as positive (functional improvement) in 5 cases, indifferent or negative in the others, with a follow-up duration of up to 23 years. The role of the diagnostic value of the pneumoencephalogram as a basis for surgical indication is discussed: it is felt that this examination, when reported as negative, is not of sufficient value to rule out the diagnosis, which must essentially rely upon clinical data.

  4. Manipulating bacteria with opto-electrokinetic methods

    NASA Astrophysics Data System (ADS)

    Wereley, Steve; Kwon, Jae-Sung; Ravindranath, Sandeep; Irudayaraj, Joseph

    2010-11-01

    Recently we developed an opto-electrokinetic method for manipulating particles and cells called Rapid Electrokinetic Patterning (REP). REP is a very fast method for manipulating thousands of particles simultaneously and controllably owing to the creation of an electrothermal vortex that transports particles rapidly and in parallel to a site determined by the focal point of a laser beam. Whether particles are trapped at the center of the vortex or not is determined by their electrical properties (conductivity and permittivity). In this talk we demonstrate that REP can be used to manipulate the bacterium Shewanella oneidensis MR-1. The bacteria are assembled into large planar arrays of organisms. The dependence of this assembly process on voltage and frequency is quantified. REP can even be used to selectively manipulate and collect live or dead bacteria.

  5. Considerations for opto-mechanical vs. digital stabilization in surveillance systems

    NASA Astrophysics Data System (ADS)

    Kowal, David

    2015-05-01

    Electro-optical surveillance and reconnaissance systems are frequently mounted on unstable or vibrating platforms such as ships, vehicles, aircraft and masts. Mechanical coupling between the platform and the cameras leads to angular vibration of the line of sight. Image motion during detector and eye integration times leads to image smear and a resulting loss of resolution. Additional effects are wavy images for detectors based on a rolling shutter mechanism and annoying movement of the image at low frequencies. A good stabilization system should yield sub-pixel stabilization errors and meet cost and size requirements. There are two main families of LOS stabilization methods: opto-mechanical stabilization and electronic stabilization. Each family, or a combination of both, can be implemented by a number of different techniques of varying complexity, size and cost leading to different levels of stabilization. Opto-mechanical stabilization is typically based on gyro readings, whereas electronic stabilization is typically based on gyro readings or image registration calculations. A few common stabilization techniques, as well as options for different gimbal arrangements will be described and analyzed. The relative merits and drawbacks of the different techniques and their applicability to specific systems and environments will be discussed. Over the years Controp has developed a large number of stabilized electro-optical payloads. A few examples of payloads with unique stabilization mechanisms will be described.

  6. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  7. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  8. Prototype pixel optohybrid for the CMS phase 1 upgraded pixel detector

    NASA Astrophysics Data System (ADS)

    Troska, J.; Detraz, S.; El Nasr-Storey, S. S.; Stejskal, P.; Sigaud, C.; Soos, C.; Vasey, F.

    2012-01-01

    The CMS Pixel detector phase 1 upgrade calls for an optical readout system operating digitally at or above 320 Mb/s. Since the re-use of the existing link components as installed is excluded, we have designed a new Pixel Optohybrid (POH) for use within this system. We report on the design and choice of components as well as their measured performance. In particular, we have studied the impact upon error-free link operation of the way the data are encoded before being transmitted over the link. We have thus demonstrated the feasibility of operating the new POH within the upgraded readout system.

  9. Opto-nanomechanical spectroscopic material characterization

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanical [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.

  10. A Micro-Opto-Mechanical Photoacoustic Spectrometer

    SciTech Connect

    Kotovsky, J

    2008-10-17

    This report describes progress achieved in a one-year LDRD feasibility study of a Photo Acoustic Spectrometer (PAS). Specifically, this team sought to create an all-optical and very small PhotoAcoustic Spectrometer Sensing system (PASS system). The PASS system includes all the hardware needed within a gas environment to analyze the presence of a large variety of molecules. The all-optical PASS system requires only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the gas environment. These systems can be at any distance from the PASS system as signal loss through the optical fibers is very small. The PASS system is intended to be placed in a small space where gases need to be measured and thus must be very small. The size and all-optical constraints placed on the PASS system demand a new design. The PASS system design includes a novel acoustic chamber, optical sensor, power fiber coupling and sensing fiber coupling. Our collaborators at the Atomic Weapons Establishment (AWE) have proven the capabilities of a complete photoacoustic spectrometer that uses a macro-scale PASS system (first 2 references). It was our goal to miniaturize the PASS system and turn it into an all-optical system to allow for its use in confined spaces that prohibit electrical devices. This goal demanded the study of all the system components, selection of an appropriate optical readout system and the design and integration of the optical sensor to the PASS system. A stretch goal was to fabricate a completed PASS system prototype.

  11. Opto-nanomechanical spectroscopic material characterization

    DOE PAGES

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanicalmore » [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.« less

  12. Frequency-locked chaotic opto-RF oscillator.

    PubMed

    Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc

    2016-06-15

    A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.

  13. Spatially resolved imaging of opto-electrical property variations

    DOEpatents

    Nikiforov, Maxim; Darling, Seth B; Suzer, Ozgun; Guest, Jeffrey; Roelofs, Andreas

    2014-09-16

    Systems and methods for opto electric properties are provided. A light source illuminates a sample. A reference detector senses light from the light source. A sample detector receives light from the sample. A positioning fixture allows for relative positioning of the sample or the light source with respect to each other. An electrical signal device measures the electrical properties of the sample. The reference detector, sample detector and electrical signal device provide information that may be processed to determine opto-electric properties of the same.

  14. Hybrid opto-electric manipulation in microfluidics - opportunities and challenges

    SciTech Connect

    Kumar, Aloke; Williams, Stuart J.; Chuang, Han-sheng; Green, Nicolas; Wereley, Steven G.

    2011-01-01

    Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of technologies that employ both optical and electrical forces to achieve particle or fluid manipulation at the micro and nano scale. These technologies, which have emerged primarily over the last decade, have provided a revolutionary and fresh perspective at fundamental electrokinetic processes, as well as have engendered a novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimeter-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various techniques that have emerged over the last decade under a unified umbrella.

  15. Selecting Pixels for Kepler Downlink

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.; Haas, Michael R.

    2010-01-01

    The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.

  16. Opto-mechanical assembly procurement for the National Ignition Facility

    SciTech Connect

    House, W; Simon, T

    1999-07-01

    A large number of the small optics procurements for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be in the form of completely assembled, tested, and cleaned subsystems. These subsystems will be integrated into the NIF at LLNL. To accomplish this task, the procurement packages will include, optical and mechanical drawings, acceptance test and cleanliness requirements. In January 1999, the first such integrated opto-mechanical assembly was received and evaluated at LLNL. With the successful completion of this important trial procurement, we were able to establish the viability of purchasing clean, ready to install, opto-mechanical assemblies from vendors within the optics industry. 32 vendors were chosen from our supplier database for quote, then five were chosen to purchase from. These five vendors represented a cross section of the optics industry. From a ''value'' catalog supplier (that did the whole job internally) to a partnership between three specialty companies, these vendors demonstrated they have the ingenuity and capability to deliver cost competitive, NIF-ready, opto- mechanical assemblies. This paper describes the vendor selection for this procurement, technical requirements including packaging, fabrication, coating, and cleanliness specifications, then testing and verification. It also gives real test results gathered from inspections performed at LLNL that show how our vendors scored on the various requirements. Keywords: Opto-Mechanical, assembly, NIF, packaging, shipping, specifications, procurement, MIL-STD-1246C, surface cleanliness

  17. Magnetometer Based on the Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Strekalov, Dmitry; Maleki, Lute

    2005-01-01

    We theoretically propose and discuss properties of two schemes of an all-optical self-oscillating magnetometer based on an opto-electronic oscillator stabilized with an atomic vapor cell. Proof of the principle DC magnetic field measurements characterized with 2 x 10(exp -7) G sensitivity and 1 - 1000 mG dynamic range in one of the schemes are demonstrated.

  18. STIS CCD Hot Pixel Annealing

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea

    2013-10-01

    This purpose of this activity is to repair radiation induced hot pixel damage to theSTIS CCD by warming the CCD to the ambient instrument temperature and annealing radiation damaged pixels. Radiation damage creates hot pixels in the STIS CCD Detector. Many of these hot pixels can be repaired by warming the CCD from its normal operating temperature near-83 C to the ambient instrument temperature { +5 C} for several hours. The number of hot pixels repaired is a function of annealing temperature. The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects.

  19. Opto-Electronic Oscillator Using Suppressed Phase Modulation

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Yu, Nan

    2007-01-01

    A proposed opto-electronic oscillator (OEO) would generate a microwave signal having degrees of frequency stability and spectral purity greater than those achieved in prior OEOs. The design of this system provides for reduction of noise levels (including the level of phase noise in the final output microwave signal) to below some of the fundamental limits of the prior OEOs while retaining the advantages of photonic generation of microwaves.

  20. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  1. The ALICE Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mercado-Perez, Jorge

    2002-07-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well.

  2. Imaging properties of pixellated scintillators with deep pixels

    NASA Astrophysics Data System (ADS)

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2014-09-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

  3. Dynamic Photorefractive Memory and its Application for Opto-Electronic Neural Networks.

    NASA Astrophysics Data System (ADS)

    Sasaki, Hironori

    This dissertation describes the analysis of the photorefractive crystal dynamics and its application for opto-electronic neural network systems. The realization of the dynamic photorefractive memory is investigated in terms of the following aspects: fast memory update, uniform grating multiplexing schedules and the prevention of the partial erasure of existing gratings. The fast memory update is realized by the selective erasure process that superimposes a new grating on the original one with an appropriate phase shift. The dynamics of the selective erasure process is analyzed using the first-order photorefractive material equations and experimentally confirmed. The effects of beam coupling and fringe bending on the selective erasure dynamics are also analyzed by numerically solving a combination of coupled wave equations and the photorefractive material equation. Incremental recording technique is proposed as a uniform grating multiplexing schedule and compared with the conventional scheduled recording technique in terms of phase distribution in the presence of an external dc electric field, as well as the image gray scale dependence. The theoretical analysis and experimental results proved the superiority of the incremental recording technique over the scheduled recording. Novel recirculating information memory architecture is proposed and experimentally demonstrated to prevent partial degradation of the existing gratings by accessing the memory. Gratings are circulated through a memory feed back loop based on the incremental recording dynamics and demonstrate robust read/write/erase capabilities. The dynamic photorefractive memory is applied to opto-electronic neural network systems. Module architecture based on the page-oriented dynamic photorefractive memory is proposed. This module architecture can implement two complementary interconnection organizations, fan-in and fan-out. The module system scalability and the learning capabilities are theoretically

  4. Pixelation Effects in Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-11-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  5. VCSEL-based flexible opto-fluidic fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Gai, Boju; Yoon, Jongseung

    2016-03-01

    Flexible opto-fluidic fluorescence sensors based on microscale vertical cavity surface emitting lasers (micro-VCSELs) and silicon photodiodes (Si-PDs) are demonstrated, where arrays of 850 nm micro-VCSELs and thin film Si-PDs are heterogeneously integrated on a polyethylene terephthalate (PET) substrate by transfer printing, in conjunction with elastomeric fluidic channel. Enabled with optical isolation trenches together with wavelength- and angle-selective spectral filters implemented to suppress the absorption of excitation light, the integrated flexible fluorescence sensors exhibited significantly enhanced signal-to-background ratio, resulting in a maximum sensitivity of 5 × 10-5 wt% of infrared-absorbing organic dyes.

  6. Phonon number measurements using single photon opto-mechanics

    NASA Astrophysics Data System (ADS)

    Basiri-Esfahani, S.; Akram, U.; Milburn, G. J.

    2012-08-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes-Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements.

  7. Neuromorphic opto-electronic integrated circuits for optical signal processing

    NASA Astrophysics Data System (ADS)

    Romeira, B.; Javaloyes, J.; Balle, S.; Piro, O.; Avó, R.; Figueiredo, J. M. L.

    2014-08-01

    The ability to produce narrow optical pulses has been extensively investigated in laser systems with promising applications in photonics such as clock recovery, pulse reshaping, and recently in photonics artificial neural networks using spiking signal processing. Here, we investigate a neuromorphic opto-electronic integrated circuit (NOEIC) comprising a semiconductor laser driven by a resonant tunneling diode (RTD) photo-detector operating at telecommunication (1550 nm) wavelengths capable of excitable spiking signal generation in response to optical and electrical control signals. The RTD-NOEIC mimics biologically inspired neuronal phenomena and possesses high-speed response and potential for monolithic integration for optical signal processing applications.

  8. A Low-Cost Viscometer from an Opto-Mechanical Mouse

    ERIC Educational Resources Information Center

    Doroodmand, Mohammad Mahdi; Maleki, Norooz; Kazemi, Hojjatollah

    2010-01-01

    A simple, sensitive, and portable viscometer has been designed using an opto-mechanical mouse. The viscosity of a fluid is measured using the infrared light-emitting diodes and the optical diodes of an opto-mechanical mouse. These components are positioned near the top and bottom of a glass tube containing the fluid to be measured. The viscosity…

  9. THE KEPLER PIXEL RESPONSE FUNCTION

    SciTech Connect

    Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.; Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.; Klaus, Todd; Gilliland, Ronald L.

    2010-04-20

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.

  10. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.

  11. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  12. CMS Pixel Data Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Merkel, Petra

    2010-05-01

    We present the CMS Pixel Data Quality Monitoring (DQM) system. The concept and architecture are discussed. The monitored quantities are introduced, and the methods on how to ensure that the detector takes high-quality data with large efficiency are explained. Finally we describe the automated data certification scheme, which is used to certify and classify the data from the Pixel detector for physics analyses.

  13. Local Pixel Bundles: Bringing the Pixels to the People

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2014-12-01

    The automated galaxy-based alignment software package developed for the Frontier Fields program (hst2galign, see Anderson & Ogaz 2014 and http://www.stsci.edu/hst/campaigns/frontier-fields/) produces a direct mapping from the pixels of the flt frame of each science exposure into a common master frame. We can use these mappings to extract the flt-pixels in the vicinity of a source of interest and package them into a convenient "bundle". In addition to the pixels, this data bundle can also contain "meta" information that will allow users to transform positions from the flt pixels to the reference frame and vice-versa. Since the un-resampled pixels in the flt frames are the only true constraints we have on the astronomical scene, the ability to inter-relate these pixels will enable many high-precision studies, such as: point-source-fitting and deconvolution with accurate PSFs, easy exploration of different image-combining algorithms, and accurate faint-source finding and photometry. The data products introduced in this ISR are a very early attempt to provide the flt-level pixel constraints in a package that is accessible to more than the handful of experts in HST astrometry. The hope is that users in the community might begin using them and will provide feedback as to what information they might want to see in the bundles and what general analysis packages they might find useful. For that reason, this document is somewhat informally written, since I know that it will be modified and updated as the products and tools are optimized.

  14. Opto-Electronic Oscillator Stabilized By A Hyperfine Atomic Transition

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Aveline, David; Matsko, Andrey B.; Thompson, Robert; Yu, Nan

    2004-01-01

    Opto-electronic oscillator (OEO) is a closed-loop system with part of the loop is implemented by an optical beam, and the rest by RF circuitry. The technological advantage of this approach over traditional all-RF loops in the gigahertz range comes from the that frequency filtering can be done far more efficiently in the optical range with compact, low power, and have superior stability. In this work, we report our preliminary results on using the phenomenon of coherent population trapping in (87) Rb vapor as an optical filter. Such a filter allows us to stabilize the OEO at the hyperfine splitting frequency of rubidium, thus implementing a novel type of frequency standard.

  15. Opto-mechanical artificial eye with accommodative ability.

    PubMed

    Esteve-Taboada, José J; Del Águila-Carrasco, Antonio J; Marín-Franch, Iván; Bernal-Molina, Paula; Montés-Micó, Robert; López-Gil, Norberto

    2015-07-27

    The purpose of this study was to describe the design and characterization of a new opto-mechanical artificial eye (OMAE) with accommodative ability. The OMAE design is based on a second-pass configuration where a small source of light is used at the artificial retina plane. A lens whose focal length can be changed electronically was used to add the accommodation capability. The changes in the OMAE's aberrations with the lens focal length, which effectively changes the accommodative state of the OMAE, were measured with a commercial aberrometer. Changes in power and aberrations with room temperature were also measured. The OMAE's higher-order aberrations (HOAs) were similar to the ones of the human eye, including the rate at which fourth-order spherical aberration decreased with accommodation. The OMAE design proposed here is simple, and it can be implemented in an optical system to mimic the optics of the human eye.

  16. Ultra-realistic imaging and OptoClones

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Lembessis, Alkiviadis; Sarakinos, Andreas

    2016-03-01

    Recent improvements in solid state CW lasers, recording materials and light sources (such as LED lights) for displaying color holograms are described. Full-color analogue holograms can now be created with substantially better image characteristics than previously possible. To record ultra-realistic images depends on selecting the optimal recording laser wavelengths and employing ultra-fine-grain, silver-halide materials. The image quality is improved by using LED display light with improved spatial coherence. Recording museum artifacts using mobile holographic equipment is described. The most recent recorded such holograms (referred to as OptoClones™) are the Fabergé Eggs at the Fabergé Museum in St. Petersburg, Russia.

  17. Japanese technology assessment: Computer science, opto- and microelectronics mechatronics, biotechnology

    SciTech Connect

    Brandin, D.; Wieder, H.; Spicer, W.; Nevins, J.; Oxender, D.

    1986-01-01

    The series studies Japanese research and development in four high-technology areas - computer science, opto and microelectronics, mechatronics (a term created by the Japanese to describe the union of mechanical and electronic engineering to produce the next generation of machines, robots, and the like), and biotechnology. The evaluations were conducted by panels of U.S. scientists - chosen from academia, government, and industry - actively involved in research in areas of expertise. The studies were prepared for the purpose of aiding the U.S. response to Japan's technological challenge. The main focus of the assessments is on the current status and long-term direction and emphasis of Japanese research and development. Other aspects covered include evolution of the state of the art; identification of Japanese researchers, R and D organizations, and resources; and comparative U.S. efforts. The general time frame of the studies corresponds to future industrial applications and potential commercial impacts spanning approximately the next two decades.

  18. Reliability study of opto-coupled semiconductor devices and Light Emitting Diodes (LED)

    NASA Technical Reports Server (NTRS)

    Maurer, R. C.; Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Opto-coupler and light emitting diode (LED) failure mechanisms and associated activation energies were determind from the results of environmental and accelerated lift tests of over 2,400 devices. The evaluation program included LED phototransistor opto-couplers from three sources, LED photoamplifier opto-couplers from a single source, and discrete infrared emitting LEDs from two sources. Environmental tests to evaluate device mechanical integrity included power cycling (10,000 cycles), temperature cycling (500 cycles) and a sequence of monitored shock, monitored vibration and constant acceleration. Multiple temperature operating life tests were conducted at ambient temperatures between 25 C and 200 C. Opto-couplers were operated in both the 'on' and 'off' states during life testing.

  19. EDFA-based coupled opto-electronic oscillator and its phase noise

    NASA Technical Reports Server (NTRS)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  20. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  1. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  2. Stellar photometry with big pixels

    SciTech Connect

    Buonanno, R.; Iannicola, G.; European Southern Observatory, Garching )

    1989-03-01

    A new software for stellar photometry in crowded fields is presented. This software overcomes the limitations present in a traditional package like ROMAFOT when the pixel size of the detector is comparable to the scale length of point images. This is the case, for instance, with the Hubble Space Telescope-Wide Field Camera and, partially, with the Planetary Camera. The numerical solution presented here is compared to the technical solution of obtaining more exposures of the same field, each shifted by a fraction of pixel. This software will be available in MIDAS. 11 refs.

  3. Oxide semiconductors for organic opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.

    In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the

  4. Further applications for mosaic pixel FPA technology

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  5. Frida integral field unit opto-mechanical design

    NASA Astrophysics Data System (ADS)

    Cuevas, Salvador; Eikenberry, Stephen S.; Bringas, Vicente; Corrales, Adi; Espejo, Carlos; Lucero, Diana; Rodriguez, Alberto; Sánchez, Beatriz; Uribe, Jorge

    2012-09-01

    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system. FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. FRIDA IFU is conformed mainly by 3 mirror blocks with 30 spherical mirrors each. It also has a Schwarzschild relay based on two off axis spherical mirrors and an afocal system of two parabolic off axis mirrors. Including two insertion mirrors the IFU holds 96 metal mirrors. Each block or individual mirror is attached on its own mechanical mounting. In order to study beam interferences with mechanical parts, ghosts and scattered light, an iterative optical-mechanical modeling was developed. In this work this iterative modeling is described including pictures showing actual ray tracing on the opto-mechanical components.

  6. Detection of prostate cancer with opto-acoustic tomography

    NASA Astrophysics Data System (ADS)

    Andreev, Valeri G.; Ponomarev, Anatoly E.; Henrichs, P. M.; Motamedi, Massoud; Orihuela, Eduardo; Eyzaguirre, Eduardo; Oraevsky, Alexander A.

    2003-06-01

    The laser optoacoustic imaging system (LOIS) for prostate cancer detection, localization and characterization with 32-element transducer array was developed and tested. Each transducer was made of 50-μm thick PVDF film with dimensions of 1mm x 10 mm. The thickness of the PVDF film allowed 100-μm axial in-depth resolution. Cylindrical shape of the 5-cm long transducer array provided an improved lateral resolution of 0.35 mm. Original design of low noise preamplifiers and wide band amplifiers was employed. The system was optimized for contrast and sensitivity. An automatic recognition of the opto-acoustic signal detected from the irradiated surface was implemented in order to visualize the prostate surface and improve the accuracy of tumor localization. Radial back-projection algorithm adopting Radon transform was used for image reconstruction. The advantages and limitations various contrast enhancing filters applied to the whole image were studied and discussed. Images were acquired in real time with the rate of one frame per second. The system performance was evaluated initially via acquisition of two-dimensional optoacoustic images of small blood volumes in prostate tissue phantoms. Clinical ex-vivo studies of prostatectomy specimen were also performed and compared with transrectal ultrasound.

  7. Microstamped opto-mechanical actuator for tactile displays

    NASA Astrophysics Data System (ADS)

    Camargo, Carlos J.; Torras, Núria; Campanella, Humberto; Marshall, Jean E.; Zinoviev, Kirill; Campo, Eva M.; Terentjev, Eugene M.; Esteve, Jaume

    2011-10-01

    Over the last few years, several technologies have been adapted for use in tactile displays, such as thermo-pneumatic actuators, piezoelectric polymers and dielectric elastomers. None of these approaches offers high-performance for refreshable Braille display system (RBDS), due to considerations of weight, power efficiency and response speed. Optical actuation offers an attractive alternative to solve limitations of current-art technologies, allowing electromechanical decoupling, elimination of actuation circuits and remote controllability. Creating these opticallydriven devices requires liquid crystal - carbon nanotube (LC-CNT) composites that show a reversible shape change in response to an applied light. This work thus reports on novel opto-actuated Braille dots based on LC-CNT composite and silicon mold microstamping. The manufacturing approach succeeds on producing blisters according to the Braille standard for the visually impaired, by taking shear-aligned LC-CNT films and silicon stamps. For this application, we need to define specifically-shaped structures. Some technologies have succeeded on elastomer microstructuring. Nevertheless, they are not applicable for LC-CNT molding because they do not consider the stretching of the polymer which is required for LC-CNT fabrication. Our process demonstrates that composites micro-molding and their 3-D structuring is feasible by silicon-based stamping. Its work principle involves the mechanical stretching, allowing the LC mesogens alignment.

  8. Opto-electro-fluidics and tip coax conical surface plasmons

    NASA Astrophysics Data System (ADS)

    Miloh, Touvia

    2016-08-01

    The concept of electromagnetic energy enhancement and nanofocusing phenomena near the tip of a metaconical conducting tip by means of a surface plasmon-polaritons mechanism is discussed theoretically. In particular, we consider conical metallic structures with small apex angles and derive the corresponding dispersion relation under optimal (maximal field enhancement) operating conditions. It is demonstrated analytically that the aforementioned conditions can induce large dielectrophoretic forces near the conical tip, which can be harnessed for sorting and controlling nanoparticles in a manner similar to optical tweezers. Similarly, by considering Joule heating effects in the metal and heat conduction in the surrounding solute, it is shown that a considerable (dc) flow convection and mixing can be generated in the aqueous phase near the tip by such ac incited optical means (including common low-input lasers operating in the visible and near-infrared spectrum ranges). Analytic near-field expressions are also obtained for the opto-electro-thermo-induced flow and vorticity distributions in the electrolyte exhibiting a singular behavior near the rounded tip. Using a coax conical metastructure composed of two noble metals, surface-plasmon field enhancement is a technique for the optimal manipulation of dielectric and polarizable nanoparticles as well as for inducing indirect mixing in the liquid around the tip by generating microvortices.

  9. New Schemes for Improved Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yao, Steve; Ji, Yu; Ilchenko, Vladimir

    2000-01-01

    The opto-Electronic Oscillator (OEO) has already demonstrated superior spectral purity as a for microwave and millimeter wave reference signals. Experimental results have produced a performance characterized by noise as low as -50 dBc/Hz at 10 Hz and -140 dBc/Hz for a 10 GHz oscillator. This performance is significant because it was produced by an oscillator that was free running. Since the noise in an OEO is independent of the oscillation frequency, the same performance may also be obtained at higher frequency. The recent work in our laboratory has been focused in three areas: 1) realization of a compact OEO based on semiconductor lasers and modulators, 2) reduction of the close-to-carrier noise of the OEO originating from the 1/f noise of the amplifier, and 3) miniaturization of the OEO. In this paper we report on progress made in these areas, and describe future plans to increase the performance and the efficiency of the OEO.

  10. Opto-mechanical interactions in split ball resonators (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Suchkov, Sergey V.; Miroshnichenko, Andrey E.; Sukhorukov, Andrey A.

    2015-09-01

    We demonstrate that a gold split-ball resonator (SBR) in the form of a spherical nanoparticle with a cut supports both optical magnetic and acoustic modes, which have strong field confinement around the cut. Such localization away from the bottom is expected to lead to an immunity to anchor loss and thus potentially high quality factors of acoustic oscillations when positioned on a substrate. As a result, when a planewave pulse excites the optical resonance, it can then efficiently drive the acoustic vibration through laser heating and/or optical forces. We estimate the overall heat variation by modelling the optical energy dissipation inside the SBR due to the dispersive and absorbing nature of gold at optical wavelengths. The optically induced force is given by the time averaged Lorentz force density. We simulate the mechanical vibrations under the optical excitation through time-dependent simulations using solid mechanics module of COMSOL software. Assuming a moderate quality factor of 10, under a plane wave pulsed laser pump which gives 100K temperature change to the SBR, both the laser heating and optical forces lead to the excitation of the acoustic mode at the same frequency with different magnitudes of 200pm and 10pm, resulting 10% and 0.5% modification of the total optical scattering, respectively. These results show that the SBRs support strong opto-mechanical coupling and are promising in applications such as surface-enhanced Raman spectroscopy and detection of localised strain.

  11. Opto-acoustic behavior of coated fiber Bragg gratings.

    PubMed

    Moccia, Massimo; Pisco, Marco; Cutolo, Antonello; Galdi, Vincenzo; Bevilacqua, Pierantonio; Cusano, Andrea

    2011-09-26

    In this paper, we present the study of the acousto-optic behavior of underwater-acoustic sensors constituted by fiber Bragg gratings (FBGs) coated by ring-shaped overlays. Via full-wave numerical simulations, we study the complex opto-acousto-mechanical interaction among an incident acoustic wave traveling in water, the optical fiber surrounded by the ring shaped coating, and the FBG inscribed the fiber, focusing on the frequency range 0.5-30 kHz of interest for SONAR applications. Our results fully characterize the mechanical behavior of an acoustically driven coated FBG, and highlight the key role played by the coating in enhancing significantly its sensitivity by comparison with a standard uncoated configuration. Furthermore, the hydrophone sensitivity spectrum exhibits characteristic resonances, which strongly improve the sensitivity with respect to its background (i.e., away from resonances) level. Via a three-dimensional modal analysis, we verify that the composite cylindrical structure of the sensor acts as an acoustic resonator tuned at the frequencies of its longitudinal vibration modes. In order to evaluate the sensor performance, we also carry out a comprehensive parametric analysis by varying the geometrical and mechanical properties of the coating, whose results also provide a useful design tool for performance optimization and/or tailoring for specific SONAR applications. Finally, a preliminary validation of the proposed numerical analysis has been carried out through experimental data obtained using polymeric coated FBGs sensors revealing a good agreement and prediction capability.

  12. Organic non-linear optics and opto-electronics

    NASA Astrophysics Data System (ADS)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  13. Single-pixel polarimetric imaging.

    PubMed

    Durán, Vicente; Clemente, Pere; Fernández-Alonso, Mercedes; Tajahuerce, Enrique; Lancis, Jesús

    2012-03-01

    We present an optical system that performs Stokes polarimetric imaging with a single-pixel detector. This fact is possible by applying the theory of compressive sampling to the data acquired by a commercial polarimeter without spatial resolution. The measurement process is governed by a spatial light modulator, which sequentially generates a set of preprogrammed light intensity patterns. Experimental results are presented and discussed for an object that provides an inhomogeneous polarization distribution. PMID:22378406

  14. Representing SAR complex image pixels

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes. Furthermore, these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values, with constituent components comprised of integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  15. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  16. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  17. Atomic Clock Based on Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2005-01-01

    A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a

  18. Design and Synthesis of Microscale Opto-Magnetic Trapping Handles

    NASA Astrophysics Data System (ADS)

    Lawson, Joseph L.

    Opto-Magnetic Trapping (OMT) is a novel micromanipulation technology capable of translating particles with nanometer precision and producing forces on the order of pico-Newtons. OMT combines the benefits of optical trapping (OT) to manipulate handle particles in translational directions and magnetic trapping (MT) to provide rotational control. This combined manipulation technology shows promise for applications ranging from novel single molecule force spectroscopy to advanced manufacturing of smart micro or nano structures. Successful OMT requires handles containing material properties amenable to both OT and MT individually. Since these material properties are traditionally exclusive, novel anisotropic handles must be synthesized to accommodate both micromanipulation technologies. This body of research advances the state of the art in micromanipulation technology by addressing the fundamental material incompatibility issues associated with OMT. Novel micro-scale "patchy" handle particles were fabricated using a glancing angle deposition (GLAD) process. Due to their composite design combining dielectric and ferromagnetic materials, these particles successfully demonstrated OMT manipulation. These particles, along with the developed GLAD fabrication process, improve upon the current state of the art by enabling the robust synthesis of a wider range of particle sizes. Furthermore, the magnetic moments of these particles can be more accurately controlled over a wider range including producing magnetic moments grater than is capable with current techniques. A thorough numerical simulation was also conducted to identify the variation of OT performance of these patchy particles with respect to standard dielectric-only OT handles. While variations in trapping location do exist, they were found to be within an acceptable range for OMT applications and are still capable of manipulation with nanometer precision.

  19. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  20. Dynamic opto-VLSI lens and lenslet generation with programmable focal length

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal E.; Zheng, Rong; Ahderom, Selam

    2004-12-01

    In this paper we present and demonstrate a dynamic lens and lens array generation method with programmable focal length based on an Opto-VLSI processor. The Opto-VLSI is driven by computer generated algorithm to generate a discrete Fresnel lens phase hologram. By optimizing the phase hologram, lenses and lens arrays of different focal lengths ranging from 300mm to infinity can be realized. The optical axis of each lens element can be independently addressed to simultaneously focus and steer an optical beam within an angular range of +/-0.5°.

  1. Introduction to Organic Vapor Phase Deposition (OVPDⓇ) Technology for Organic (Opto-)electronics

    NASA Astrophysics Data System (ADS)

    Keiper, Dietmar; Meyer, Nico; Heuken, Michael

    In this chapter, the organic vapor phase deposition (OVPDⓇ) technology combined with the Close Coupled Showerhead (CCS) technology for the fabrication of sophisticated opto-electronic organic devices based on open literature will be shortly reviewed. Typically, organic (opto-)electronic devices are fabricated by vacuum thermal evaporation (VTE), which is in contrast with the OVPDⓇ technology. The deposition of single organic films, the morphology control by OVPD and the proposed benefits of mixing organic materials, and applying non-sharp interfaces for the overall organic light emitting diode (OLED) performance will be discussed.

  2. Pixelated filters for spatial imaging

    NASA Astrophysics Data System (ADS)

    Mathieu, Karine; Lequime, Michel; Lumeau, Julien; Abel-Tiberini, Laetitia; Savin De Larclause, Isabelle; Berthon, Jacques

    2015-10-01

    Small satellites are often used by spatial agencies to meet scientific spatial mission requirements. Their payloads are composed of various instruments collecting an increasing amount of data, as well as respecting the growing constraints relative to volume and mass; So small-sized integrated camera have taken a favored place among these instruments. To ensure scene specific color information sensing, pixelated filters seem to be more attractive than filter wheels. The work presented here, in collaboration with Institut Fresnel, deals with the manufacturing of this kind of component, based on thin film technologies and photolithography processes. CCD detectors with a pixel pitch about 30 μm were considered. In the configuration where the matrix filters are positioned the closest to the detector, the matrix filters are composed of 2x2 macro pixels (e.g. 4 filters). These 4 filters have a bandwidth about 40 nm and are respectively centered at 550, 700, 770 and 840 nm with a specific rejection rate defined on the visible spectral range [500 - 900 nm]. After an intense design step, 4 thin-film structures have been elaborated with a maximum thickness of 5 μm. A run of tests has allowed us to choose the optimal micro-structuration parameters. The 100x100 matrix filters prototypes have been successfully manufactured with lift-off and ion assisted deposition processes. High spatial and spectral characterization, with a dedicated metrology bench, showed that initial specifications and simulations were globally met. These excellent performances knock down the technological barriers for high-end integrated specific multi spectral imaging.

  3. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  4. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  5. Proceedings of PIXEL98 -- International pixel detector workshop

    SciTech Connect

    Anderson, D.F.; Kwan, S.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  6. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  7. Serial Pixel Analog-to-Digital Converter

    SciTech Connect

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  8. Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics

    NASA Astrophysics Data System (ADS)

    Howe, Richard C. T.; Hu, Guohua; Yang, Zongyin; Hasan, Tawfique

    2015-08-01

    We discuss the emerging role of solution processing and functional ink formulation in the fabrication of devices based on two dimensional (2d) materials. By drawing on examples from our research, we show that these inks allow 2d materials to be exploited in a wide variety of applications, including in photonics and (opto)electronics.

  9. IMaX opto-mechanical integration: the AIV process for a magnetograph

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; González Fernandez, Luis Miguel; Sánchez Rodríguez, Antonio; Pastor Santos, Carmen; Álvarez-Herrero, Alberto

    2008-07-01

    IMaX current status is reported on. IMaX, the Imaging Magnetograph eXperiment developed for a Spanish consortium for the SUNRISE Mission, is a payload that will work simultaneously as a high sensitivity polarimeter, a high resolving spectral power, and a near diffraction limited imager. Once every mechanical element has been purchased, the assembly, integration, alignment and verification processes (AIV process) has been carried out successfully. After a brief description of the IMaX opto-mechanical elements that have been received, the integration sequence as well as the main results obtained during the AIV process are presented. Basically, AIV process consists on the opto-mechanical components assembly on the Optical Bench (OB), the optical elements assembly on the previously integrated optomechanics, the alignment and orientation of the opto-mechanical components, and the two-channels quality evaluation that allows to leave the opto-mechanical components ready for the cameras integration and IMaX performance tests characterization. Actually, the most relevant results related to the AIV process as well as the IMaX performance firsts tests are presented.

  10. Fiber optics and opto-electronics for radar and electronic warfare applications

    NASA Astrophysics Data System (ADS)

    Pan, J. J.

    1987-02-01

    Fiber optics and integrated optic circuits have various applications for radar and electronic warfare systems. Examples such as phased array, radar netting, deceptive jammer, and maximum entropy adaptive filter are presented in this paper. Some of the fiber optic and opto-electronic functional devices and building blocks for signal/data processing are also described.

  11. Penrose Pixels for Super-Resolution.

    PubMed

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  12. Dead pixel replacement in LWIR microgrid polarimeters.

    PubMed

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data. PMID:19547086

  13. Equivalence of a Bit Pixel Image to a Quantum Pixel Image

    NASA Astrophysics Data System (ADS)

    Ortega, Laurel Carlos; Dong, Shi-Hai; Cruz-Irisson, M.

    2015-11-01

    We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight. All qubits are linear superposition, changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit. Classically, these states are just bytes represented in a binary matrix, having code combinations of 1 or 0 at all pixel locations. This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods. Supported partially by the project 20150964-SIP-IPN, Mexico

  14. [Hadamard transform spectrometer mixed pixels' unmixing method].

    PubMed

    Yan, Peng; Hu, Bing-Liang; Liu, Xue-Bin; Sun, Wei; Li, Li-Bo; Feng, Yu-Tao; Liu, Yong-Zheng

    2011-10-01

    Hadamard transform imaging spectrometer is a multi-channel digital transform spectrometer detection technology, this paper based on digital micromirror array device (DMD) of the Hadamard transform spectrometer working principle and instrument structure, obtained by the imaging sensor mixed pixel were analyzed, theory derived the solution of pixel aliasing hybrid method, simulation results show that the method is simple and effective to improve the accuracy of mixed pixel spectrum more than 10% recovery. PMID:22250574

  15. Method for fabricating pixelated silicon device cells

    SciTech Connect

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  16. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  17. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  18. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  19. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    PubMed

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-01

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  20. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  1. Pixel multichip module development at Fermilab

    SciTech Connect

    Turqueti, M A; Cardoso, G; Andresen, J; Appel, J A; Christian, D C; Kwan, S W; Prosser, A; Uplegger, L

    2005-10-01

    At Fermilab, there is an ongoing pixel detector R&D effort for High Energy Physics with the objective of developing high performance vertex detectors suitable for the next generation of HEP experiments. The pixel module presented here is a direct result of work undertaken for the canceled BTeV experiment. It is a very mature piece of hardware, having many characteristics of high performance, low mass and radiation hardness driven by the requirements of the BTeV experiment. The detector presented in this paper consists of three basic devices; the readout integrated circuit (IC) FPIX2A [2][5], the pixel sensor (TESLA p-spray) [6] and the high density interconnect (HDI) flex circuit [1][3] that is capable of supporting eight readout ICs. The characterization of the pixel multichip module prototype as well as the baseline design of the eight chip pixel module and its capabilities are presented. These prototypes were characterized for threshold and noise dispersion. The bump-bonds of the pixel module were examined using an X-ray inspection system. Furthermore, the connectivity of the bump-bonds was tested using a radioactive source ({sup 90}Sr), while the absolute calibration of the modules was achieved using an X-ray source. This paper provides a view of the integration of the three components that together comprise the pixel multichip module.

  2. Micro-Pixel Image Position Sensing Testbed

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; Shao, Michael; Zhai, Chengxing; Erlig, Hernan; Wang, Xu; Goullioud, Renaud

    2011-01-01

    The search for Earth-mass planets in the habitable zones of nearby Sun-like stars is an important goal of astrophysics. This search is not feasible with the current slate of astronomical instruments. We propose a new concept for microarcsecond astrometry which uses a simplified instrument and hence promises to be low cost. The concept employs a telescope with only a primary, laser metrology applied to the focal plane array, and new algorithms for measuring image position and displacement on the focal plane. The required level of accuracy in both the metrology and image position sensing is at a few micro-pixels. We have begun a detailed investigation of the feasibility of our approach using simulations and a micro-pixel image position sensing testbed called MCT. So far we have been able to demonstrate that the pixel-to-pixel distances in a focal plane can be measured with a precision of 20 micro-pixels and image-to-image distances with a precision of 30 micro-pixels. We have also shown using simulations that our image position algorithm can achieve accuracy of 4 micro-pixels in the presence of lambda/20 wavefront errors.

  3. It's not the pixel count, you fool

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  4. Intracavity OptoGalvanic Spectroscopy not suitable for ambient level radiocarbon detection.

    PubMed

    Paul, Dipayan; Meijer, Harro A J

    2015-09-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

  5. Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop

    NASA Technical Reports Server (NTRS)

    Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.

    1994-01-01

    We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.

  6. Optical simulation of photovoltaic modules with multiple textured interfaces using the matrix-based formalism OPTOS.

    PubMed

    Tucher, Nico; Eisenlohr, Johannes; Gebrewold, Habtamu; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2016-07-11

    The OPTOS formalism is a matrix-based approach to determine the optical properties of textured optical sheets. It is extended within this work to enable the modelling of systems with an arbitrary number of textured, plane-parallel interfaces. A matrix-based system description is derived that accounts for the optical reflection and transmission interaction between all textured interfaces. Using OPTOS, we calculate reflectance and absorptance of complete photovoltaic module stacks, which consist of encapsulated silicon solar cells featuring textures that operate in different optical regimes. As exemplary systems, solar cells with and without module encapsulation are shown to exhibit a considerable absorptance gain if the random pyramid front side texture is combined with a diffractive rear side grating. A variation of the sunlight's angle of incidence reveals that the grating gain is almost not affected for incoming polar angles up to 60°. Considering as well the good agreement with alternative simulation techniques, OPTOS is demonstrated to be a versatile and efficient method for the optical analysis of photovoltaic modules. PMID:27410896

  7. Frequency Response Properties of Organic Photo-Detectors as Opto-Electrical Conversion Devices

    NASA Astrophysics Data System (ADS)

    Morimune, Taichiro; Kajii, Hirotake; Ohmori, Yutaka

    2006-06-01

    Frequency performances and sensitivities for three types of organic photo-detector (OPD) were studied for an opto-electrical conversion device. A high efficiency of 19.4% of the external conversion efficiency and a high cutoff frequency response of 16 MHz were achieved using a mixed-layer between copper phthalocyanine (CuPc) and N, N'-bis (2,5-di-tert- butylphenyl) 3,4,9,10-perylene dicarboximide (BPPC) at a reverse bias voltage of 8 V under red incident light. These results were achieved by increasing exciton dissociation and charge carrier generation and to reduce the number of trapped carriers at the interfaces between CuPc and BPPC. The transmission of a moving picture was successfully demonstrated using mixed-layer OPD as an opto-electrical conversion device. These results indicate that it is possible for an OPD to be used as an opto-electrical conversion device in high-speed optical transmission systems.

  8. Optical simulation of photovoltaic modules with multiple textured interfaces using the matrix-based formalism OPTOS.

    PubMed

    Tucher, Nico; Eisenlohr, Johannes; Gebrewold, Habtamu; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2016-07-11

    The OPTOS formalism is a matrix-based approach to determine the optical properties of textured optical sheets. It is extended within this work to enable the modelling of systems with an arbitrary number of textured, plane-parallel interfaces. A matrix-based system description is derived that accounts for the optical reflection and transmission interaction between all textured interfaces. Using OPTOS, we calculate reflectance and absorptance of complete photovoltaic module stacks, which consist of encapsulated silicon solar cells featuring textures that operate in different optical regimes. As exemplary systems, solar cells with and without module encapsulation are shown to exhibit a considerable absorptance gain if the random pyramid front side texture is combined with a diffractive rear side grating. A variation of the sunlight's angle of incidence reveals that the grating gain is almost not affected for incoming polar angles up to 60°. Considering as well the good agreement with alternative simulation techniques, OPTOS is demonstrated to be a versatile and efficient method for the optical analysis of photovoltaic modules.

  9. Opto-Acoustic Data Fusion for Supporting the Guidance of Remotely Operated Underwater Vehicles (ROVs)

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Lagudi, A.; Ritacco, G.; Muzzupappa, M.; Guida, R.

    2015-04-01

    Remotely Operated underwater Vehicles (ROVs) play an important role in a number of operations conducted in shallow and deep water (e.g.: exploration, survey, intervention, etc.), in several application fields like marine science, offshore construction, and underwater archeology. ROVs are usually equipped with different imaging devices, both optical and acoustic. Optical sensors are able to generate better images in close range and clear water conditions, while acoustic systems are usually employed in long range acquisitions and do not suffer from the presence of turbidity, a well-known cause of coarser resolution and harder data extraction. In this work we describe the preliminary steps in the development of an opto-acoustic camera able to provide an on-line 3D reconstruction of the acquired scene. Taking full advantage of the benefits arising from the opto-acoustic data fusion techniques, the system was conceived as a support tool for ROV operators during the navigation in turbid waters, or in operations conducted by means of mechanical manipulators. The paper presents an overview of the device, an ad-hoc methodology for the extrinsic calibration of the system and a custom software developed to control the opto-acoustic camera and supply the operator with visual information.

  10. Opto-injection into single living cells by femtosecond near-infrared laser

    NASA Astrophysics Data System (ADS)

    Peng, Cheng

    This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.

  11. LISe pixel detector for neutron imaging

    NASA Astrophysics Data System (ADS)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  12. Per-Pixel Lighting Data Analysis

    SciTech Connect

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  13. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2016-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  14. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  15. Design of the small pixel pitch ROIC

    NASA Astrophysics Data System (ADS)

    Liang, Qinghua; Jiang, Dazhao; Chen, Honglei; Zhai, Yongcheng; Gao, Lei; Ding, Ruijun

    2014-11-01

    Since the technology trend of the third generation IRFPA towards resolution enhancing has steadily progressed,the pixel pitch of IRFPA has been greatly reduced.A 640×512 readout integrated circuit(ROIC) of IRFPA with 15μm pixel pitch is presented in this paper.The 15μm pixel pitch ROIC design will face many challenges.As we all known,the integrating capacitor is a key performance parameter when considering pixel area,charge capacity and dynamic range,so we adopt the effective method of 2 by 2 pixels sharing an integrating capacitor to solve this problem.The input unit cell architecture will contain two paralleled sample and hold parts,which not only allow the FPA to be operated in full frame snapshot mode but also save relatively unit circuit area.Different applications need more matching input unit circuits. Because the dimension of 2×2 pixels is 30μm×30μm, an input stage based on direct injection (DI) which has medium injection ratio and small layout area is proved to be suitable for middle wave (MW) while BDI with three-transistor cascode amplifier for long wave(LW). By adopting the 0.35μm 2P4M mixed signal process, the circuit architecture can make the effective charge capacity of 7.8Me- per pixel with 2.2V output range for MW and 7.3 Me- per pixel with 2.6V output range for LW. According to the simulation results, this circuit works well under 5V power supply and achieves less than 0.1% nonlinearity.

  16. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  17. Sensor development for the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Bolla, G.; Bortoletto, D.; Horisberger, R.; Kaufmann, R.; Rohe, T.; Roy, A.

    2002-06-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6×10 14 neq/ cm2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an "n in n" concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixels has been implemented by the openings in the p-stop implants surrounding every pixel cell. A prototype of such sensors has been produced by two different companies and especially the properties of these resistors have extensively been tested before and after irradiation.

  18. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  19. Focal plane array with modular pixel array components for scalability

    DOEpatents

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  20. The phase 1 upgrade of the CMS Pixel Front-End Driver

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Pernicka, M.; Steininger, H.

    2010-12-01

    The pixel detector of the CMS experiment at the LHC is read out by analog optical links, sending the data to 9U VME Front-End Driver (FED) boards located in the electronics cavern. There are plans for the phase 1 upgrade of the pixel detector (2016) to add one more layer, while significantly cutting down the overall material budget. At the same time, the optical data transmission will be replaced by a serialized digital scheme. A plug-in board solution with a high-speed digital optical receiver has been developed for the Pixel-FED readout boards and will be presented along with first tests of the future optical link.

  1. Spatial clustering of pixels of a multispectral image

    SciTech Connect

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  2. Pixel Dynamics Analysis of Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2015-04-01

    Recent advances in solar observations have led to higher-resolution surface (photosphere) images that reveal bipolar magnetic features operating near the resolution limit during emerging flux events. Further improvements in resolution are expected to reveal even smaller dynamic features. Such photospheric features provide observable indications of what is happening before, during, and after flux emergence, eruptions in the corona, and other phenomena. Visible changes in photospheric active regions also play a major role in predicting eruptions that are responsible for geomagnetic plasma disturbances. A new method has been developed to extract physical information from photospheric data (e.g., SOLIS Stokes parameters) based on the statistics of pixel-by-pixel variations in spectral (absorption or emission) line quantities such as line profile Doppler shift, width, asymmetry, and flatness. Such properties are determined by the last interaction between detected photons and optically thick photospheric plasmas, and may contain extractable information on local plasma properties at sub-pixel scales. Applying the method to photospheric data with high spectral resolution, our pixel-by-pixel analysis is performed for various regions on the solar disk, ranging from quiet-Sun regions to active regions exhibiting eruptions, characterizing photospheric dynamics using spectral profiles. In particular, the method quantitatively characterizes the time profile of changes in spectral properties in photospheric features and provides improved physical constraints on observed quantities.

  3. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  4. Test beam campaigns for the CMS Phase I Upgrade pixel readout chip

    NASA Astrophysics Data System (ADS)

    Spannagel, S.; CMS Collaboration

    2014-12-01

    The current CMS silicon pixel detector as the innermost component of the CMS experiment is performing well at LHC design luminosity, but would be subject to severe inefficiencies at LHC peak luminosities of 2 × 1034 cm-2 s-1. Therefore, an upgrade of the CMS pixel detector is planned, including a new readout chip. The chip design comprises additional on-chip buffer cells as well as high-speed data links and low-threshold comparators in the pixel cells. With these changes the upgraded pixel detector will be able to maintain or even improve the efficiency of the current detector at the increased requirements imposed by high luminosities and pile-up. The effects of these design changes on e.g. position resolution and charge collection efficiency were studied in detail using a precision tracking telescope at the DESY test beam facilities. The high telescope track resolution enables precise studies of tracking efficiency, charge sharing and collection even within single pixel cells of the device under test. This publication focuses on the improved performance and capabilities of the new pixel readout chip and summarizes results from test beam campaigns with both unirradiated and irradiated devices. The functionality of the chip design with its improved charge threshold, redesigned data transmission and buffering scheme has been verified.

  5. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    EPA Science Inventory

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  6. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Katoh, Kouji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2011-06-01

    Since authors have successfully demonstrated uncooled infrared (IR) focal plane array (FPA) with 23.5 um pixel pitch, it has been widely utilized for commercial applications such as thermography, security camera and so on. One of the key issues for uncooled IR detector technology is to shrink the pixel size. The smaller the pixel pitch, the more the IR camera products become compact and the less cost. This paper proposes a new pixel structure with a diaphragm and beams which are placed in different level, to realize an uncooled IRFPA with smaller pixel pitch )<=17 μm). The upper level consists of diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to place on the adjacent pixels. The test devices of this pixel design with 12 um, 15 um and 17 um pitch have been fabricated on the Si ROIC of QVGA (320 × 240) with 23.5 um pitch. Their performances reveal nearly equal to the IRFPA with 23.5 um pitch. For example, noise equivalent temperature difference (NETD) of 12 μm pixel is 63.1 mK with thermal time constant of 14.5 msec. In addition, this new structure is expected to be more effective for the existing IRFPA with 23.5 um pitch in order to improve the IR responsivity.

  7. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  8. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  9. Power Studies for the CMS Pixel Tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.; /Fermilab

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  10. Vivid, full-color aluminum plasmonic pixels

    PubMed Central

    Olson, Jana; Manjavacas, Alejandro; Liu, Lifei; Chang, Wei-Shun; Foerster, Benjamin; King, Nicholas S.; Knight, Mark W.; Nordlander, Peter; Halas, Naomi J.; Link, Stephan

    2014-01-01

    Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1. PMID:25225385

  11. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  12. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  13. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    PubMed Central

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  14. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  15. Surface acoustic wave opto-mechanical oscillator and frequency comb generator

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  16. Opto-Curling Probe for Simultaneous Monitoring of Optical Emission and Electron Density in Reactive Plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, Anil; Nakamura, Keiji; Sugai, Hideo

    2013-05-01

    An advanced robust probe called opto-curling probe (OCP) is presented, which enables the simultaneous monitoring of electron density and optical emission of reactive plasma. The electron density is obtained from the microwave resonance frequency of a small antenna set on the probe surface while the optical emission spectra are observed through an optical fiber tip located at the probe surface. The ratio of the measured optical emission intensity to the electron density readily provides the radical density without relying on actinometry. The usefulness of OCP was experimentally demonstrated in the oxygen plasma cleaning of a carbonized wall with endpoint detection.

  17. Interactive actuation of multiple opto-thermocapillary flow-addressed bubble microrobots

    PubMed Central

    Hu, Wenqi; Fan, Qihui; Ohta, Aaron T

    2014-01-01

    Opto-thermocapillary flow-addressed bubble (OFB) microrobots are a potential tool for the efficient transportation of micro-objects. This microrobot system uses light patterns to generate thermal gradients within a liquid medium, creating thermocapillary forces that actuate the bubble microrobots. An interactive control system that includes scanning mirrors and a touchscreen interface was developed to address up to ten OFB microrobots. Using this system, the parallel and cooperative transportation of 20-μm-diameter polystyrene beads was demonstrated. PMID:25678988

  18. Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing.

    PubMed

    Vela, Emir; Hafez, Moustapha; Régnier, Stéphane

    2014-05-01

    This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 μm in diameter moving in parallel at speeds in the range of mm/s was demonstrated.

  19. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect

    Gras, S.; Blair, D. G.; Ju, L.

    2010-02-15

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  20. Organic/inorganic-polyimide nanohybrid materials for advanced opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Ando, Shinji

    2009-02-01

    Nano-hybridization techniques based on the pyrolytic reactions of organo-soluble metallic precursors dissolved in poly(amic acid)s followed by spontaneous precipitation of metal/inorganic nano-particles in solid polyimide (PI) films is facile and effective for functionalization of PI optical and electronic materials. The organic/inorganinc PI nanohybrid materials, which were recently developed by the authors, having a variety of functionalities such as a) high refractive indices, b) low refractive indices, c) controlled thermo-optical property and its anisotropy, d) high polarizing property, and e) high thermal conductivity are reviewed with future prospects on their advanced opto-electronic applications.

  1. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  2. Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing.

    PubMed

    Vela, Emir; Hafez, Moustapha; Régnier, Stéphane

    2014-05-01

    This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 μm in diameter moving in parallel at speeds in the range of mm/s was demonstrated. PMID:24880415

  3. An opto-isolator based linearization technique of a typical thyristor driven pump.

    PubMed

    Bera, S C; Sarkar, R; Mandal, N

    2012-01-01

    A thyristor driven pump is operated by varying the DC input signal in the firing circuit of thyristor drive. This operation suffers from difficulties due to the nonlinear relation between thyristor output and DC input. In the present paper, an opto-isolator based linearization technique of a typical thyristor driven pump has been proposed. The design, fabrication and the necessary circuit diagram along with theoretical explanations of the resultant output has been described. The operation of the linearized thyristor driven pump has been studied experimentally and the experimental data before and after linearization are reported. The characteristic graphs are found to have very good linearity.

  4. Shaping volumetric light distribution through turbid media using real-time three-dimensional opto-acoustic feedback.

    PubMed

    Deán-Ben, X Luís; Estrada, Héctor; Razansky, Daniel

    2015-02-15

    Focusing light through turbid media represents a highly fascinating challenge in modern biophotonics. The unique capability of opto-acoustics for high-resolution imaging of light absorption contrast in deep tissues can provide a natural and efficient feedback to control light delivery in a scattering medium. While the basic feasibility of using opto-acoustic readings as a feedback mechanism for wavefront shaping has been recently reported, the suggested approaches may require long acquisition times, making them challenging to be translated into realistic tissue environments. In an attempt to significantly accelerate dynamic wavefront shaping capabilities, we present here a feedback-based approach using real-time three-dimensional opto-acoustic imaging assisted with genetic-algorithm-based optimization. The new technique offers robust performance in the presence of noisy measurements and can simultaneously control the scattered wave field in an entire volumetric region. PMID:25680120

  5. Development of a CMOS SOI Pixel Detector

    SciTech Connect

    Arai, Y.; Hazumi, M.; Ikegami, Y.; Kohriki, T.; Tajima, O.; Terada, S.; Tsuboyama, T.; Unno, Y.; Ushiroda, Y.; Ikeda, H.; Hara, K.; Ishino, H.; Kawasaki, T.; Miyake, H.; Martin, E.; Varner, G.; Tajima, H.; Ohno, M.; Fukuda, K.; Komatsubara, H.; Ida, J.; /NONE - OKI ELECTR INDUST TOKYO

    2008-08-19

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 {micro}m fully-depleted-SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5 mm{sup 2} consisting of 20 x 20 {micro}m{sup 2} pixels have been designed and manufactured. Performance tests with a laser light illumination and a {beta} ray radioactive source indicate successful operation of the detector. We also briefly discuss the back gate effect as well as the simulation study.

  6. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  7. Opto-mechanical estimation of micro-trap with cold atoms via nonlinear stimulated Raman scattering spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Lin

    2013-05-01

    High-gain resonant nonlinear Raman spectrum on trapped cold atoms within a high-finesse optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap is presented. The enhancement of this scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms with nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman spectrum is conducted.

  8. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2015-12-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R&D, not hiding the difficulties.

  9. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  10. STIS CCD Hot Pixel Annealing Cycle 11

    NASA Astrophysics Data System (ADS)

    Proffitt, Charles

    2002-07-01

    The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects. In addition CTE performance is examined by looking for traps in a low signal level flat. Follows on from proposal 8906.

  11. STIS CCD Hot Pixel Annealing Cycle 12

    NASA Astrophysics Data System (ADS)

    Maiz Apellaniz, Jesus

    2003-07-01

    The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects. In addition CTE performance is examined by looking for traps in a low signal level flat. Follows on from proposal 9612.

  12. Digital-pixel focal plane array development

    NASA Astrophysics Data System (ADS)

    Brown, Matthew G.; Baker, Justin; Colonero, Curtis; Costa, Joe; Gardner, Tom; Kelly, Mike; Schultz, Ken; Tyrrell, Brian; Wey, Jim

    2010-01-01

    Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.

  13. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Sang, Xin-Zhu; Yan, Bin-Bin; Ai, Qi; Li, Yan; Chen, Xiao; Zhang, Ying; Chen, Gen-Xiang; Song, Fei-Jun; Zhang, Xia; Wang, Kui-Ru; Yuan, Jin-Hui; Yu, Chong-Xiu; Xiao, Feng; Alameh, Kamal

    2014-06-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.

  14. Nano opto-mechanical systems (NOMS) as a proposal for tactile displays

    NASA Astrophysics Data System (ADS)

    Campo, E. M.; Roig, J.; Roeder, B.; Wenn, D.; Mamojka, B.; Omastova, M.; Terentjev, E. M.; Esteve, J.

    2011-10-01

    For over a decade, special emphasis has been placed in the convergence of different fields of science and technology, in an effort to serve human needs by way of enhancing human capabilities. The convergence of the Nano-Bio-Info-Cogni (NBIC) quartet will provide unique solutions to specific needs. This is the case of, Nano-opto mechanical Systems (NOMS), presented as a solution to tactile perception, both for the visually-impaired and for the general public. NOMS, based on photoactive polymer actuators and devices, is a much sought-after technology. In this scheme, light sources promote mechanical actuation producing a variety of nano-opto mechanical systems such as nano-grippers. In this paper, we will provide a series of specifications that the NOMS team is targeting towards the development of a tactile display using optically-activated smart materials. Indeed, tactile displays remain mainly mechanical, compromising reload speeds and resolution which inhibit 3D tactile representation of web interfaces. We will also discuss how advantageous NOMS tactile displays could be for the general public. Tactile processing based on stimulation delivered through the NOMS tablet, will be tested using neuropsychology methods, in particular event-related brain potentials. Additionally, the NOMS tablet will be instrumental to the development of basic neuroscience research.

  15. Experiences with Opto-Mechanical Systems that Affect Optical Surfaces at the Sub-Nanometer Level

    SciTech Connect

    Hale, L C; Taylor, J S

    2008-04-03

    Projection optical systems built for Extreme Ultraviolet Lithography (EUVL) demonstrated the ability to produce, support and position reflective optical surfaces for achieving transmitted wavefront errors of 1 nm or less. Principal challenges included optical interferometry, optical manufacturing processes, multi-layer coating technology and opto mechanics. Our group was responsible for designing, building and aligning two different projection optical systems: a full-field, 0.1 NA, four-mirror system for 70 nm features and a small-field, 0.3 NA, two-mirror system for 30 nm features. Other than physical size and configuration, the two systems were very similar in the way they were designed, built and aligned. A key difference exists in the optic mounts, driven primarily by constraints from the metrology equipment used by different optics manufacturers. As mechanical stability and deterministic position control of optics will continue to play an essential role in future systems, we focus our discussion on opto-mechanics and primarily the optic mounts.

  16. Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    NASA Astrophysics Data System (ADS)

    Rezek, Bohuslav; Čermák, Jan; Kromka, Alexander; Ledinský, Martin; Hubík, Pavel; Mareš, Jiří J.; Purkrt, Adam; Cimrová, Vĕra; Fejfar, Antonín; Kočka, Jan

    2011-12-01

    Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond.

  17. Opto-Mechanical Coupling in Interfaces under Static and Propagative Conditions and Its Biological Implications

    PubMed Central

    Shrivastava, Shamit; Schneider, Matthias F.

    2013-01-01

    Fluorescent dyes are vital for studying static and dynamic patterns and pattern formation in cell biology. Emission properties of the dyes incorporated in a biological interface are known to be sensitive to their local environment. We report that the fluorescence intensity of dye molecules embedded in lipid interfaces is indeed a thermodynamic observable of the system. Opto-mechanical coupling of lipid-dye system was measured as a function of the thermodynamic state of the interface. The corresponding state diagrams quantify the thermodynamic coupling between intensity I and lateral pressure π. We further demonstrate that the coupling is conserved upon varying the temperature T. Notably, the observed opto-mechanical coupling is not limited to equilibrium conditions, but also holds for propagating pressure pulses. The non-equilibrium data show, that fluorescence is especially sensitive to dynamic changes in state such as the LE-LC phase transition. We conclude that variations in the thermodynamic state (here π and T, in general pH, membrane potential V, etc also) of lipid membranes are capable of controlling fluorescence intensity. Therefore, interfacial thermodynamic state diagrams of I should be obtained for a proper interpretation of intensity data. PMID:23861769

  18. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan

    2015-02-01

    The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.

  19. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo

    NASA Astrophysics Data System (ADS)

    Razansky, Daniel; Distel, Martin; Vinegoni, Claudio; Ma, Rui; Perrimon, Norbert; Köster, Reinhard W.; Ntziachristos, Vasilis

    2009-07-01

    Fluorescent proteins have become essential reporter molecules for studying life at the cellular and sub-cellular level, re-defining the ways in which we investigate biology. However, because of intense light scattering, most organisms and tissues remain inaccessible to current fluorescence microscopy techniques at depths beyond several hundred micrometres. We describe a multispectral opto-acoustic tomography technique capable of high-resolution visualization of fluorescent proteins deep within highly light-scattering living organisms. The method uses multiwavelength illumination over multiple projections combined with selective-plane opto-acoustic detection for artifact-free data collection. Accurate image reconstruction is enabled by making use of wavelength-dependent light propagation models in tissue. By performing whole-body imaging of two biologically important and optically diffuse model organisms, Drosophila melanogaster pupae and adult zebrafish, we demonstrate the facility to resolve tissue-specific expression of eGFP and mCherrry fluorescent proteins for precise morphological and functional observations in vivo.

  20. A generic readout environment for prototype pixel detectors

    NASA Astrophysics Data System (ADS)

    Turqueti, Marcos; Rivera, Ryan; Prosser, Alan; Kwan, Simon

    2010-11-01

    Pixel detectors for experimental particle physics research have been implemented with a variety of readout formats and potentially generate massive amounts of data. Examples include the PSI46 device for the Compact Muon Solenoid (CMS) experiment which implements an analog readout, the Fermilab FPIX2.1 device with a digital readout, and the Fermilab Vertically Integrated Pixel device. The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the various needs of these devices to support laboratory test bench as well as test beam applications. The system is called CAPTAN (Compact And Programmable daTa Acquisition Node) and is characterized by its flexibility, versatility and scalability by virtue of several key architectural features. These include a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and a core group of boards that provide specific processing and readout capabilities for the system. System software based on distributed computing techniques supports an expandable network of CAPTANs. In this paper, we describe the system architecture and give an overview of its capabilities.

  1. Amplifier based broadband pixel for sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  2. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    NASA Astrophysics Data System (ADS)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  3. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    SciTech Connect

    Fahim, Farah

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  4. Hardware solutions for the 65k pixel X-ray camera module of 75 μm pixel size

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Maj, P.; Grybos, P.; Koziol, A.

    2016-02-01

    We present three hardware solutions designed for a detector module built with a 2 cm × 2 cm hybrid pixel detector built from a single 320 or 450 μ m thick silicon sensor designed and fabricated by Hamamatsu and two UFXC32k readout integrated circuits (128 × 256 pixels with 75μ m pitch, designed in CMOS 130 nm at AGH-UST). The chips work in a single photon counting mode and provide ultra-fast X-ray imaging. The presented hardware modules are designed according to requirements of various tests and applications: ṡDevice A: a fast and flexible system for tests with various radiation sources. ṡDevice B: a standalone, all-in-one imaging device providing three standard interfaces (USB 2.0, Ethernet, Camera Link) and up to 640 MB/s bandwidth. ṡDevice C: a prototype large-area imaging system. The paper shows the readout system structure for each case with highlighted circuit board designs with details on power distribution and cooling on both FR4 and LTCC (low temperature co-fired ceramic) based circuits.

  5. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    SciTech Connect

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  6. Opto-mechanical subsystem of a 10 micrometer wavelength receiver terminal. Waveguide laser local oscillator. Servo system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An engineering model opto-mechanical subsystem for a 10.6-micrometer laser heterodyne receiver is developed, and a CO2 waveguide local oscillator and servo electronics are provided for the receiver. Design goals are presented for the subsystems and overall package design is described. Thermal and mechanical distortion loading tests were performed and the results are included.

  7. Impact of CT detector pixel-to-pixel crosstalk on image quality

    NASA Astrophysics Data System (ADS)

    Engel, Klaus J.; Spies, Lothar; Vogtmeier, Gereon; Luhta, Randy

    2006-03-01

    In Computed Tomography (CT), the image quality sensitively depends on the accuracy of the X-ray projection signal, which is acquired by a two-dimensional array of pixel cells in the detector. If the signal of X-ray photons is spread out to neighboring pixels (crosstalk), a decrease of spatial resolution may result. Moreover, streak and ring artifacts may emerge. Deploying system simulations for state-of-the-art CT detector configurations, we characterize origin and appearance of these artifacts in the reconstructed CT images for different scenarios. A uniform pixel-to-pixel crosstalk results in a loss of spatial resolution only. The Modulation Transfer Function (MTF) is attenuated, without affecting the limiting resolution, which is defined as the first zero of the MTF. Additional streak and ring artifacts appear, if the pixel-to-pixel crosstalk is non-uniform. Parallel to the system simulations we developed an analytical model. The model explains resolution loss and artifact level using the first and second derivative of the X-ray profile acquired by the detector. Simulations and analytical model are in agreement to each other. We discuss the perceptibility of ring and streak artifacts within noisy images if no crosstalk correction is applied.

  8. Empirical formula for rates of hot pixel defects based on pixel size, sensor area, and ISO

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Thomas, Rohit; Koren, Zahava; Koren, Israel

    2013-02-01

    Experimentally, image sensors measurements show a continuous development of in-field permanent hot pixel defects increasing in numbers over time. In our tests we accumulated data on defects in cameras ranging from large area (<300 sq mm) DSLR's, medium sized (~40 sq mm) point and shoot, and small (20 sq mm) cell phone cameras. The results show that the rate of defects depends on the technology (APS or CCD), and on design parameters like imager area, pixel size (from 1.5 to 7 um), and gain (from ISO100 to 1600). Comparing different sensor sizes with similar pixel sizes has shown that defect rates scale linearly with sensor area, suggesting the metric of defects/year/sq mm, which we call defect density. A search was made to model this defect density as a function of the two parameters pixel size and ISO. The best empirical fit was obtained by a power law curve. For CCD imagers, the defect densities are proportional to the pixel size to the power of -2.25 times the ISO to the power of 0.69. For APS (CMOS) sensors the power law had the defect densities proportional to the pixel size to the power of -3.07 times the ISO raised to the power of 0.5. Extending our empirical formula to include ISO allows us to predict the expected defect development rate for a wide set of sensor parameters.

  9. ACS/WFC Pixel Stability - Bringing the Pixels Back to the Science

    NASA Astrophysics Data System (ADS)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  10. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    NASA Astrophysics Data System (ADS)

    Korol, I.

    2015-10-01

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb-1 of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation.

  11. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  12. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  13. Active-Pixel Cosmic-Ray Sensor

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Cunningham, Thomas J.; Holtzman, Melinda J.

    1994-01-01

    Cosmic-ray sensor comprises planar rectangular array of lateral bipolar npn floating-base transistors each of which defines pixel. Collector contacts of all transistors in each row connected to same X (column) line conductor; emitter contacts of all transistors in each column connected to same Y (row) line conductor; and current in each row and column line sensed by amplifier, output of which fed to signal-processing circuits.

  14. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  15. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  16. Status of the CMS pixel project

    SciTech Connect

    Uplegger, Lorenzo; /Fermilab

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance.

  17. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  18. Photovoltaic retinal prosthesis with high pixel density

    NASA Astrophysics Data System (ADS)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  19. Photovoltaic Retinal Prosthesis with High Pixel Density.

    PubMed

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I; Galambos, Ludwig; Smith, Richard; Harris, James S; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the "image capturing" photoreceptors, while neurons in the "image processing" inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm(2), two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density.

  20. Development of silicon micropattern pixel detectors

    NASA Astrophysics Data System (ADS)

    Heijne, E. H. M.; Antinori, F.; Beker, H.; Batignani, G.; Beusch, W.; Bonvicini, V.; Bosisio, L.; Boutonnet, C.; Burger, P.; Campbell, M.; Cantoni, P.; Catanesi, M. G.; Chesi, E.; Claeys, C.; Clemens, J. C.; Cohen Solal, M.; Darbo, G.; Da Via, C.; Debusschere, I.; Delpierre, P.; Di Bari, D.; Di Liberto, S.; Dierickx, B.; Enz, C. C.; Focardi, E.; Forti, F.; Gally, Y.; Glaser, M.; Gys, T.; Habrard, M. C.; Hallewell, G.; Hermans, L.; Heuser, J.; Hurst, R.; Inzani, P.; Jæger, J. J.; Jarron, P.; Karttaavi, T.; Kersten, S.; Krummenacher, F.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lokajicek, M.; Loukas, D.; Macdermott, M.; Maggi, G.; Manzari, V.; Martinengo, P.; Meddeler, G.; Meddi, F.; Mekkaoui, A.; Menetrey, A.; Middelkamp, P.; Morando, M.; Munns, A.; Musico, P.; Nava, P.; Navach, F.; Neyer, C.; Pellegrini, F.; Pengg, F.; Perego, R.; Pindo, M.; Pospisil, S.; Potheau, R.; Quercigh, E.; Redaelli, N.; Ridky, J.; Rossi, L.; Sauvage, D.; Segato, G.; Simone, S.; Sopko, B.; Stefanini, G.; Strakos, V.; Tempesta, P.; Tonelli, G.; Vegni, G.; Verweij, H.; Viertel, G. M.; Vrba, V.; Waisbard, J.; CERN RD19 Collaboration

    1994-09-01

    Successive versions of high speed, active silicon pixel detectors with integrated readout electronics have been developed for particle physics experiments using monolithic and hybrid technologies. Various matrices with binary output as well as a linear detector with analog output have been made. The hybrid binary matrix with 1024 cells (dimension 75 μm×500 μm) can capture events at ˜5 MHz and a selected event can then be read out in < 10 μs. In different beam tests at CERN a precision of 25 μm has been achieved and the efficiency was better than 99.2%. Detector thicknesses of 300 μm and 150 μm of silicon have been used. In a test with a 109Cd source a noise level of 170 e - r.m.s. (1.4 keV fwhm) has been measured with a threshold non-uniformity of 750 e - r.m.s. Objectives of the development work are the increase of the size of detecting area without loss of efficiency, the design of an appropriate readout architecture for collider operation, the reduction of material thickness in the detector, understanding of the threshold non-uniformity, study of the sensitivity of the pixel matrices to light and low energy electrons for scintillating fiber detector readout and last but not least, the optimization of cost and yield of the pixel detectors in production.

  1. Photovoltaic Retinal Prosthesis with High Pixel Density

    PubMed Central

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-01-01

    Retinal degenerative diseases lead to blindness due to loss of the “image capturing” photoreceptors, while neurons in the “image processing” inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density. PMID:23049619

  2. A PFM based digital pixel with off-pixel residue measurement for 15μm pitch MWIR FPAs

    NASA Astrophysics Data System (ADS)

    Abbasi, Shahbaz; Shafique, Atia; Galioglu, Arman; Ceylan, Omer; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    Digital pixels based on pulse frequency modulation (PFM) employ counting techniques to achieve very high charge handling capability compared to their analog counterparts. Moreover, extended counting methods making use of leftover charge (residue) on the integration capacitor help improve the noise performance of these pixels. However, medium wave infrared (MWIR) focal plane arrays (FPAs) having smaller pixel pitch are constrained in terms of pixel area which makes it difficult to add extended counting circuitry to the pixel. Thus, this paper investigates the performance of digital pixels employing off-pixel residue measurement. A circuit prototype of such a pixel has been designed for 15μm pixel pitch and fabricated in 90nm CMOS. The prototype is composed of a pixel front-end based on a PFM loop. The frontend is a modified version of conventional design providing a means for buffering the signal that needs to be converted to a digital value by an off-pixel ADC. The pixel has an integration phase and a residue measurement phase. Measured integration performance of the pixel has been reported in this paper for various detector currents and integration times.

  3. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  4. Opto-Thermal Transient Emission Radiometry (OTTER) to image diffusion in nails in vivo.

    PubMed

    Xiao, P; Zheng, X; Imhof, R E; Hirata, K; McAuley, W J; Mateus, R; Hadgraft, J; Lane, M E

    2011-03-15

    This work describes the first application of Opto-Thermal Transient Emission Radiometry (OTTER), an infrared remote sensing technique, to probe the extent to which solvents permeate the human nail in vivo. Decanol, glycerol and butyl acetate were selected as model solvents. After application of the solvents, individually, to human volunteers, OTTER was used to depth profile the solvents. The permeation rate of the solvents was ranked as glycerol>decanol>butyl acetate. It is possible that some of the butyl acetate may have evaporated during the experiment. The ability of decanol to extract lipids from biological tissue is also considered. These preliminary results demonstrate the potential of OTTER as a tool to identify optimal excipients with which to target drugs to the nail. PMID:21251961

  5. Rapid discrimination of DNA strands using an opto-calorimetric microcantilever sensor.

    PubMed

    Lee, Dongkyu; Hwang, Kyo Seon; Kim, Seonghwan; Thundat, Thomas

    2014-12-21

    A rapid technique for quantitative detection and discrimination of DNA strands without using immobilized probe molecules is demonstrated using an opto-calorimetric, self-powered sensor based on a Pb(Zr(0.52)Ti(0.48))O3 (PZT) microcantilever. Microcalorimetric infrared (IR) spectroscopy provides excellent chemical selectivity based on the unique molecular vibrational characteristics of each nucleotide in the mid IR region. The piezoelectric and pyroelectric properties of the PZT microcantilever were exploited in the quantitative detection and discrimination of adsorbed DNA strands with their spectral characteristics. We report the unique spectral characteristics of different DNA nucleotides that are monitored by wavelength-dependent temperature variations for different relative molar ratio of each nucleotide. This approach offers a fast, label-free technique which is highly sensitive and selective for the detection of single nucleotide differences in DNA strands and has the potential to be used as a rapid prescreening biosensor for various biomolecules.

  6. Temperature tracking SPICE macro-model for laser and LED driven opto-coupler assemblies

    SciTech Connect

    Deveney, M.F.

    1992-09-01

    SPICE 2G.6 compatible models were required for two opto-coupler assemblies in order to perform simulations to assess the design margins of the circuits in which they are used. Both of these assemblies are made up of discrete components, with one employing a laser diode as the light source, while the second uses a LED. Although, in use, these assemblies couple digital-like pulse trains, they are analog devices capable of operating over wider ranges of voltage than digital devices. Robust models which accurately simulate over these voltage ranges were desired. Also for ease of use, models that would track the operation of each of the assemblies over the entire specified temperature range were preferred. In addition to simulating the assembles in their intended mode of operation, it was necessary to reproduce an unwanted noise signal transfer that was observed in an early prototype circuit.

  7. Temperature tracking SPICE macro-model for laser and LED driven opto-coupler assemblies

    SciTech Connect

    Deveney, M.F.

    1992-01-01

    SPICE 2G.6 compatible models were required for two opto-coupler assemblies in order to perform simulations to assess the design margins of the circuits in which they are used. Both of these assemblies are made up of discrete components, with one employing a laser diode as the light source, while the second uses a LED. Although, in use, these assemblies couple digital-like pulse trains, they are analog devices capable of operating over wider ranges of voltage than digital devices. Robust models which accurately simulate over these voltage ranges were desired. Also for ease of use, models that would track the operation of each of the assemblies over the entire specified temperature range were preferred. In addition to simulating the assembles in their intended mode of operation, it was necessary to reproduce an unwanted noise signal transfer that was observed in an early prototype circuit.

  8. An opto-magneto-mechanical quantum interface between distant superconducting qubits

    NASA Astrophysics Data System (ADS)

    Xia, Keyu; Vanner, Michael R.; Twamley, Jason

    2014-07-01

    A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss.

  9. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity.

    PubMed

    Pitanti, Alessandro; Fink, Johannes M; Safavi-Naeini, Amir H; Hill, Jeff T; Lei, Chan U; Tredicucci, Alessandro; Painter, Oskar

    2015-02-01

    We fabricate and characterize a microscale silicon opto-electromechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental ω(m)/2π = 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.

  10. Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization

    NASA Astrophysics Data System (ADS)

    Itobe, Hiroki; Nakagawa, Yosuke; Mizumoto, Yuta; Kangawa, Hiroi; Kakinuma, Yasuhiro; Tanabe, Takasumi

    2016-05-01

    We fabricated a calcium fluoride (CaF2) whispering gallery mode (WGM) microcavity with a computer controlled ultra-precision cutting process. We observed a thermo-opto-mechanical (TOM) oscillation in the CaF2 WGM microcavity, which may influence the stability of the optical output when the cavity is employed for Kerr comb generation. We studied experimentally and numerically the mechanism of the TOM oscillation and showed that it is strongly dependent on cavity diameter. In addition, our numerical study suggests that a microcavity structure fabricated with a hybrid material (i.e. CaF2 and silicon), which is compatible with an ultra-high Q and high thermal conductivity, will allow us to reduce the TOM oscillation and stabilize the optical output.

  11. Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss

    SciTech Connect

    Schmidsfeld, A. von Reichling, M.

    2015-09-21

    In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavity via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.

  12. Opto-Thermal Transient Emission Radiometry (OTTER) to image diffusion in nails in vivo.

    PubMed

    Xiao, P; Zheng, X; Imhof, R E; Hirata, K; McAuley, W J; Mateus, R; Hadgraft, J; Lane, M E

    2011-03-15

    This work describes the first application of Opto-Thermal Transient Emission Radiometry (OTTER), an infrared remote sensing technique, to probe the extent to which solvents permeate the human nail in vivo. Decanol, glycerol and butyl acetate were selected as model solvents. After application of the solvents, individually, to human volunteers, OTTER was used to depth profile the solvents. The permeation rate of the solvents was ranked as glycerol>decanol>butyl acetate. It is possible that some of the butyl acetate may have evaporated during the experiment. The ability of decanol to extract lipids from biological tissue is also considered. These preliminary results demonstrate the potential of OTTER as a tool to identify optimal excipients with which to target drugs to the nail.

  13. Integration of an opto-chemical detector based on group III-nitride nanowire heterostructures.

    PubMed

    Kleindienst, R; Becker, P; Cimalla, V; Grewe, A; Hille, P; Krüger, M; Schörmann, J; Schwarz, U T; Teubert, J; Eickhoff, M; Sinzinger, S

    2015-02-01

    The photoluminescence intensity of group III nitrides, nanowires, and heterostructures (NWHs) strongly depends on the environmental H(2) and O(2) concentration. We used this opto-chemical transducer principle for the realization of a gas detector. To make this technology prospectively available to commercial gas-monitoring applications, a large-scale laboratory setup was miniaturized. To this end the gas-sensitive NWHs were integrated with electro-optical components for optical addressing and read out within a compact and robust sensor system. This paper covers the entire realization process of the device from its conceptual draft and optical design to its fabrication and assembly. The applied approaches are verified with intermediate results of profilometric characterizations and optical performance measurements of subsystems. Finally the gas-sensing capabilities of the integrated detector are experimentally proven and optimized.

  14. An opto-magneto-mechanical quantum interface between distant superconducting qubits

    PubMed Central

    Xia, Keyu; Vanner, Michael R.; Twamley, Jason

    2014-01-01

    A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss. PMID:24994063

  15. Non-contact opto-fluidics-based liquid level sensor for harsh environments

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Reza, Syed Azer

    2010-04-01

    This paper presents a non-intrusive, non-contact liquid level sensor. The proposed sensor is a free-space-based optical sensor that uses opto-fluidic technology-based agile optics to direct light from a laser source to the Liquid Under Test (LUT). The presented design makes the proposed sensor ideal for use in environments where levels have to be determined for caustic or toxic liquids having a small window interface on the containers carrying them. The proposed design uses very low optical power levels (< 100 μW) making it useful for measuring levels of combustible liquids (e.g., jet fuels) which have a danger of being ignited at higher power levels. The proposed sensor can find potential applications in transportation, chemical and aerospace industries.

  16. Application of flexure structures to active and adaptive opto-mechanical mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar; Morschel, Joseph

    1997-03-01

    Active and adaptive structures, also commonly called 'smart' structures, combine in one integrated system various functions such as load carrying and structural function, mechanical (cinematic) functions, sensing, control and actuating. Originally developed for high accuracy opto-mechanical applications, CSEM's technology of flexure structures and flexible mechanisms is particularly suited to solve many structural and mechanical issues found in such active/adaptive mechanisms. The paper illustrates some recent flexure structures developments at CSEM and outlines the comprehensive know-how involved in this technology. This comprises in particular the elaboration of optimal design guidelines, related to the geometry, kinematics and dynamics issues (for instance, the minimization of spurious high frequency effects), the evaluation and predictability of all performance quantities relevant to the utilization of flexure structures in space (reliability, fatigue, static and dynamic modeling, etc.). material issues and manufacturing procedures.

  17. Localized Opto-Mechanical Control of Protein Adsorption onto Carbon Nanotubes

    PubMed Central

    O'Dell, Dakota; Serey, Xavier; Kang, Pilgyu; Erickson, David

    2014-01-01

    Chemical reactions can be described by an energy diagram along a reaction coordinate in which an activation barrier limits the rate at which reactants can be transformed into products. This reaction impedance can be overcome by reducing the magnitude of the barrier through the use of catalysis, increasing the thermal energy of the system, or through macroscopic mechanical processes. Here, we demonstrate direct molecular-scale control of a reaction through the precise application of opto-mechanical work. The method uses optical gradient forces generated in the evanescent field surrounding hybrid photonic-plasmonic structures to drive an otherwise unlikely adsorption reaction between proteins and carbon nanotubes. The adsorption of immunoglobulins on carbon nanotubes is used as a model reaction and investigated with an extended DLVO theory. The technique is also used to force a Förster resonance energy transfer between fluorophores on mismatched immunoglobulin proteins and is expected to lead to novel forms of chemical synthesis. PMID:25330911

  18. Dynamic opto-rheological study of estane copolymers using step-scan FTIR spectroscopy

    SciTech Connect

    Wang, H.; Palmer, R.A.; Graff, D.K.; Schoonover, J.R.

    1998-07-01

    Polyurethane copolymers generally consist of linear segments of polyurethane and polyester (or polyether). At room temperature, these polymers undergo a micro-phase separation, in which the polyurethane segments form hard domains while the polyester segments form relatively soft domains that act as the crosslinks between the hard cores. A wide variety of techniques has been utilized to characterize the microscopic (molecular) structure of polymeric materials. Recently, the dynamic infrared opto-rheological method has been developed, which involves the combination of dynamic mechanical analysis (DMA) and time-resolved infrared (IR) spectroscopy to study the real time IR spectral changes in polymer films under sinusoidal (or impulse) tensile stress of small amplitude. Phase-locked electronics are used to record the dynamic infrared spectral change in-phase and in-quadrature with the applied mechanical field. The result provides insight on the response to the external stress on the molecular and submolecular scale. While for relatively narrow spectral ranges this experiment is efficiently carried out by use of a dispersive spectrometer, for measurements over broader spectral windows, the use of step-scan Fourier transform infrared (S{sup 2}FT-IR) has proved to be more effective. In the study reported here, dynamic opto-rheology using S{sup 2}FT-IR spectroscopy has been applied to the polyurethane/polyester copolymer Estane 5703. Dynamic in-phase and quadrature spectra in the mid-IR region at two orthogonal polarizations have been collected, and dynamic dichroic spectra calculated and interpreted.

  19. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, <30% of drugs withdrawals from the market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  20. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  1. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2004-06-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  2. Detection and evaluation of mixed pixels in Landsat agricultural scenes

    NASA Technical Reports Server (NTRS)

    Merickel, M. B.; Lundgren, J. C.; Lennington, R. K.

    1982-01-01

    A major problem area encountered in the identification and estimation of agricultural crop proportions in Landsat imagery involves the large proportion of the pixels which are mixed pixels, whose spectral response is influenced by more than one ground cover type. The development of methods for the detection and estimation of crop proportions in mixed pixels is presently reported. The procedure designated CASCADE, based on the estimation of the gradient image for the detection of mixed pixels, considers the consequences of a linear mixing model and is found to provide a method for the allocation of mixed pixels to the surrounding homogeneous region.

  3. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  4. How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2011-01-01

    In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will

  5. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  6. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  7. Single-pixel complementary compressive sampling spectrometer

    NASA Astrophysics Data System (ADS)

    Lan, Ruo-Ming; Liu, Xue-Feng; Yao, Xu-Ri; Yu, Wen-Kai; Zhai, Guang-Jie

    2016-05-01

    A new type of compressive spectroscopy technique employing a complementary sampling strategy is reported. In a single sequence of spectral compressive sampling, positive and negative measurements are performed, in which sensing matrices with a complementary relationship are used. The restricted isometry property condition necessary for accurate recovery of compressive sampling theory is satisfied mathematically. Compared with the conventional single-pixel spectroscopy technique, the complementary compressive sampling strategy can achieve spectral recovery of considerably higher quality within a shorter sampling time. We also investigate the influence of the sampling ratio and integration time on the recovery quality.

  8. Small pixel uncooled imaging FPAs and applications

    NASA Astrophysics Data System (ADS)

    Blackwell, Richard; Franks, Glen; Lacroix, Daniel; Hyland, Sandra; Murphy, Robert

    2010-04-01

    BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper will review the latest advancements in microbolometer technology at BAE Systems, including the development status of 17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon stations, vehicle situational awareness sensors and mast/pole mounted sensors.

  9. Pixel-Level Simulation of Imaging Data

    NASA Astrophysics Data System (ADS)

    Stoughton, C.; Kuropatkin, N. P.; Neilsen, E., Jr.; Harms, D. C.

    2007-10-01

    We are preparing a set of Java packages to facilitate the design and operation of imaging surveys. The packages use shapelets to describe shapes of astronomical sources, optical distortions, and shear from weak gravitational lensing. We introduce noise, bad pixels, cosmic rays, the pupil image, saturation, and other observational effects. A set of utility classes handles I/O, plotting, and interfaces to existing packages: nom.tam.fits for FITS I/O; uk.ac.starlink.table for tables; and cern.colt for algorithms. The packages have been used to generate images for the Dark Energy Survey data challenges, and will be used by SNAP to continue evaluating its design.

  10. The link in Linking

    PubMed Central

    Caldwell, Jane C; Chiale, Pablo A; Gonzalez, Mario D; Baranchuk, Adrian

    2013-01-01

    We present 2 cases of the slow-fast form of AVNRT with initially narrow QRS complexes followed by sudden unexpected transition to persistently wide QRS complexes due to aberrant intraventricular conduction. Introduction of a properly timed extrastimulus in one case and critical oscillations in cycle length due to short-long coupling in the second case set the stage for the initial bundle branch block. However, persistence of the aberrancy pattern once the initial event abated was maintained by the "linking" phenomenon. Delayed, retrograde concealed activation from the contralateral bundle branch perpetuated the initial bundle branch block. PMID:23840106

  11. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    NASA Astrophysics Data System (ADS)

    Sadygov, Z.; Ahmadov, F.; Khorev, S.; Sadigov, A.; Suleymanov, S.; Madatov, R.; Mehdiyeva, R.; Zerrouk, F.

    2016-07-01

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  12. RF Photonic Technology in Optical Fiber Links

    NASA Astrophysics Data System (ADS)

    Chang, William S. C.

    2007-06-01

    List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.

  13. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  14. Efficient single pixel imaging in Fourier space

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai

    2016-08-01

    Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.

  15. Opto-Mechanics of the Constellation-X SXT Mirrors: Challenges in Mounting and Assembling the Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn

    2008-01-01

    The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.

  16. Direct opto-acoustic in vitro measurement of the spatial distribution of laser radiation in biological media

    SciTech Connect

    Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A

    2006-12-31

    The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)

  17. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.

    PubMed

    Shen, Mingya; Xiao, Feng; Alameh, Kamal

    2009-12-01

    A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below -36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

  18. Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation

    NASA Astrophysics Data System (ADS)

    Gao, Qinquan; Asthana, Akshay; Tong, Tong; Rueckert, Daniel; Edwards, Philip "Eddie"

    2014-03-01

    We propose a learning-based approach to segment the seminal vesicles (SV) via random forest classifiers. The proposed discriminative approach relies on the decision forest using high-dimensional multi-scale context-aware spatial, textual and descriptor-based features at both pixel and super-pixel level. After affine transformation to a template space, the relevant high-dimensional multi-scale features are extracted and random forest classifiers are learned based on the masked region of the seminal vesicles from the most similar atlases. Using these classifiers, an intermediate probabilistic segmentation is obtained for the test images. Then, a graph-cut based refinement is applied to this intermediate probabilistic representation of each voxel to get the final segmentation. We apply this approach to segment the seminal vesicles from 30 MRI T2 training images of the prostate, which presents a particularly challenging segmentation task. The results show that the multi-scale approach and the augmentation of the pixel based features with the super-pixel based features enhances the discriminative power of the learnt classifier which leads to a better quality segmentation in some very difficult cases. The results are compared to the radiologist labeled ground truth using leave-one-out cross-validation. Overall, the Dice metric of 0:7249 and Hausdorff surface distance of 7:0803 mm are achieved for this difficult task.

  19. Geometrical modulation transfer function for different pixel active area shapes

    NASA Astrophysics Data System (ADS)

    Yadid-Pecht, Orly

    2000-04-01

    In this work we consider the effect of the pixel active area geometrical shape on the modulation transfer function (MTF) of an image sensor. When designing a CMOS Active Pixel Sensor, or a CCD or CID sensor for this matter, the active area of the pixel would have a certain geometrical shape which might not cover the whole pixel area. To improve the device performance, it is important to understand the effect this has on the pixel sensitivity and on the resulting MTF. We perform a theoretical analysis of the MTF for the active area shape and derive explicit formulas for the transfer function for pixel arrays with a square, a rectangular and an L shaped active area (most commonly used), and generalize for any connected active area shape. Preliminary experimental results of subpixel scanning sensitivity maps and the corresponding MTFs have also bee obtained, which confirm the theoretical derivations. Both the simulation results and the MTF calculated from the point spread function measurements of the actual pixel arrays show that the active area shape contributes significantly to the behavior of the overall MTF. The results also indicate that for any potential pixel active area shape, the effect of its diversion from the square pixel could be calculated, so that tradeoff between the conflicting requirements, such as SNR and MTF, could be compared per each pixel design for better overall sensor performance.

  20. Pixel response function experimental techniques and analysis of active pixel sensor star cameras

    NASA Astrophysics Data System (ADS)

    Fumo, Patrick; Waldron, Erik; Laine, Juha-Pekka; Evans, Gary

    2015-04-01

    The pixel response function (PRF) of a pixel within a focal plane is defined as the pixel intensity with respect to the position of a point source within the pixel. One of its main applications is in the field of astrometry, which is a branch of astronomy that deals with positioning data of a celestial body for tracking movement or adjusting the attitude of a spacecraft. Complementary metal oxide semiconductor (CMOS) image sensors generally offer better radiation tolerance to protons and heavy ions than CCDs making them ideal candidates for space applications aboard satellites, but like all image sensors they are limited by their spatial frequency response, better known as the modulation transfer function. Having a well-calibrated PRF allows us to eliminate some of the uncertainty in the spatial response of the system providing better resolution and a more accurate centroid estimation. This paper describes the experimental setup for determining the PRF of a CMOS image sensor and analyzes the effect on the oversampled point spread function (PSF) of an image intensifier, as well as the effects due to the wavelength of light used as a point source. It was found that using electron bombarded active pixel sensor (EBAPS) intensification technology had a significant impact on the PRF of the camera being tested as a result of an increase in the amount of carrier diffusion between collection sites generated by the intensification process. Taking the full width at half maximum (FWHM) of the resulting data, it was found that the intensified version of a CMOS camera exhibited a PSF roughly 16.42% larger than its nonintensified counterpart.

  1. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  2. A non-linear preprocessing for opto-digital image encryption using multiple-parameter discrete fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Azoug, Seif Eddine; Bouguezel, Saad

    2016-01-01

    In this paper, a novel opto-digital image encryption technique is proposed by introducing a new non-linear preprocessing and using the multiple-parameter discrete fractional Fourier transform (MPDFrFT). The non-linear preprocessing is performed digitally on the input image in the spatial domain using a piecewise linear chaotic map (PLCM) coupled with the bitwise exclusive OR (XOR). The resulting image is multiplied by a random phase mask before applying the MPDFrFT to whiten the image. Then, a chaotic permutation is performed on the output of the MPDFrFT using another PLCM different from the one used in the spatial domain. Finally, another MPDFrFT is applied to obtain the encrypted image. The parameters of the PLCMs together with the multiple fractional orders of the MPDFrFTs constitute the secret key for the proposed cryptosystem. Computer simulation results and security analysis are presented to show the robustness of the proposed opto-digital image encryption technique and the great importance of the new non-linear preprocessing introduced to enhance the security of the cryptosystem and overcome the problem of linearity encountered in the existing permutation-based opto-digital image encryption schemes.

  3. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  4. Experimental control of a fast chaotic time-delay opto-electronic device

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan Neal

    2003-10-01

    The focus of this thesis is the experimental investigation of the dynamics and control of a new type of fast chaotic opto-electronic device: an active interferometer with electronic bandpass filtered delayed feedback displaying chaotic oscillations with a fundamental frequency as high as 100 MHz. To stabilize the system, I introduce a new form of delayed feedback control suitable for fast time-delay systems. The method provides a new tool for the fundamental study of fast dynamical systems as well as for technological exploitation of chaos. The new opto-electronic device consists of a semiconductor laser, a Mach-Zehnder interferometer, and an electronic feedback loop. The device offers a high degree of design flexibility at a much lower cost than other known sources of fast optical chaos. Both the nonlinearity and the timescale of the oscillations are easily manipulated experimentally. To characterize the dynamics of the system, I observe experimentally its behavior in the time and frequency domains as the feedback-loop gain is varied. The system displays a route to chaos that begins with a Hopf bifurcation from a steady state to a periodic oscillation at the so-called fundamental frequency. Further bifurcations give rise to a chaotic regime with a broad, flattened power spectrum. I develop a mathematical model of the device that shows very good agreement with the observed dynamics. To control chaos in the device, I introduce a new control method suitable for fast time-delay systems, in particular. The method is a modification of a well known control approach called time-delay autosynchronization (TDAS) in which the control perturbation is formed by comparing the current value of a system variable to its value at a time in the past equal to the period of the orbit to be stabilized. The current state of a time-delay dynamical system retains a memory of the state of the system one feedback delay time in the past. As a result, the past state of the system can be used

  5. Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh

    This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating

  6. Design strategies of opto-mechanical micro oscillators for the detection of the ponderomotive squeezing

    NASA Astrophysics Data System (ADS)

    Borrielli, A.; Bonaldi, M.; Serra, E.; Bagolini, A.; Boscardin, M.; Cataliotti, F. S.; Marin, F.; Marino, F.; Pontin, A.; Prodi, G. A.

    2013-05-01

    The interaction of the radiation pressure with micro-mechanical oscillators is earning a growing interest for its wide-range applications (including high sensitivity measurements of force and position) and for fundamental research (entanglement, ponderomotive squeezing, quantum non-demolition measurements). In this contribution we describe the fabrication of a family of opto-mechanical devices specifically designed to ease the detection of ponderomotive squeezing and of entanglement between macroscopic objects and light. These phenomena are not easily observed, due to the overwhelming effects of classical noise sources of thermal origin with respect to the weak quantum fluctuations of the radiation pressure. Therefore, a low thermal noise background is required, together with a weak interaction between the micro-mirror and this background (i.e. high mechanical quality factors). The device should also be capable to manage a relatively large amount of dissipated power at cryogenic temperatures, as the use of a laser with power up to a ten of mW can be useful to enhance radiation pressure effects. In the development of our opto-mechanical devices, we are exploring an approach focused on relatively thick silicon oscillators with high reflectivity coating. The relatively high mass is compensated by the capability to manage high power at low temperatures, owing to a favourable geometric factor (thicker connectors) and the excellent thermal conductivity of silicon crystals at cryogenic temperature. We have measured at cryogenic temperatures mechanical quality factors up to 105 in a micro-oscillator designed to reduce as much as possible the strain in the coating layer and the consequent energy dissipation. This design improves an approach applied in micro-mirror and micro-cantilevers, where the coated surface is reduced as much as possible to improve the quality factor. The deposition of the highly reflective coating layer has been carefully integrated in the

  7. How big is an OMI pixel?

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Sihler, Holger; Tilstra, Lieuwe G.; Stammes, Piet

    2016-08-01

    The Ozone Monitoring Instrument (OMI) is a push-broom imaging spectrometer, observing solar radiation backscattered by the Earth's atmosphere and surface. The incoming radiation is detected using a static imaging CCD (charge-coupled device) detector array with no moving parts, as opposed to most of the previous satellite spectrometers, which used a moving mirror to scan the Earth in the across-track direction. The field of view (FoV) of detector pixels is the solid angle from which radiation is observed, averaged over the integration time of a measurement. The OMI FoV is not quadrangular, which is common for scanning instruments, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels. This has consequences for pixel-area-dependent applications, like cloud fraction products, and visualisation.The shapes and sizes of OMI FoVs were determined pre-flight by theoretical and experimental tests but never verified after launch. In this paper the OMI FoV is characterised using collocated MODerate resolution Imaging Spectroradiometer (MODIS) reflectance measurements. MODIS measurements have a much higher spatial resolution than OMI measurements and spectrally overlap at 469 nm. The OMI FoV was verified by finding the highest correlation between MODIS and OMI reflectances in cloud-free scenes, assuming a 2-D super-Gaussian function with varying size and shape to represent the OMI FoV. Our results show that the OMPIXCOR product 75FoV corner coordinates are accurate as the full width at half maximum (FWHM) of a super-Gaussian FoV model when this function is assumed. The softness of the function edges, modelled by the super-Gaussian exponents, is different in both directions and is view angle dependent.The optimal overlap function between OMI and MODIS reflectances is scene dependent and highly dependent on time differences between overpasses, especially with clouds in the scene. For partially clouded scenes, the optimal overlap function was

  8. Development of pixel detectors for SSC vertex tracking

    SciTech Connect

    Kramer, G. . Electro-Optical and Data Systems Group); Atlas, E.L.; Augustine, F.; Barken, O.; Collins, T.; Marking, W.L.; Worley, S.; Yacoub, G.Y. ) Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Nygren,

    1991-04-01

    A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 {times} 256 pixels, each 30 {mu}m square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs.

  9. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  10. Pixel-level plasmonic microcavity infrared photodetector

    NASA Astrophysics Data System (ADS)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-05-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging.

  11. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout

    NASA Astrophysics Data System (ADS)

    Poikela, T.; Plosila, J.; Westerlund, T.; Campbell, M.; De Gaspari, M.; Llopart, X.; Gromov, V.; Kluit, R.; van Beuzekom, M.; Zappon, F.; Zivkovic, V.; Brezina, C.; Desch, K.; Fu, Y.; Kruth, A.

    2014-05-01

    The Timepix3, hybrid pixel detector (HPD) readout chip, a successor to the Timepix \\cite{timepix2007} chip, can record time-of-arrival (ToA) and time-over-threshold (ToT) simultaneously in each pixel. ToA information is recorded in a 14-bit register at 40 MHz and can be refined by a further 4 bits with a nominal resolution of 1.5625 ns (640 MHz). ToT is recorded in a 10-bit overflow controlled counter at 40 MHz. Pixels can be programmed to record 14 bits of integral ToT and 10 bits of event counting, both at 40 MHz. The chip is designed in 130 nm CMOS and contains 256 × 256 pixel channels (55 × 55 μm2). The chip, which has more than 170 M transistors, has been conceived as a general-purpose readout chip for HPDs used in a wide range of applications. Common requirements of these applications are operation without a trigger signal, and sparse readout where only pixels containing event information are read out. A new architecture has been designed for sparse readout and can achieve a throughput of up to 40 Mhits/s/cm2. The flexible architecture offers readout schemes ranging from serial (one link) readout (40 Mbps) to faster parallel (up to 8 links) readout of 5.12 Gbps. In the ToA/ToT operation mode, readout is simultaneous with data acquisition thus keeping pixels sensitive at all times. The pixel matrix is formed by super pixel (SP) structures of 2 × 4 pixels. This optimizes resources by sharing the pixel readout logic which transports data from SPs to End-of-Column (EoC) using a 2-phase handshake protocol. To reduce power consumption in applications with a low duty cycle, an on-chip power pulsing scheme has been implemented. The logic switches bias currents of the analog front-ends in a sequential manner, and all front-ends can be switched in 800 ns. The digital design uses a mixture of commercial and custom standard cell libraries and was verified using Open Verification Methodology (OVM) and commercial timing analysis tools. The analog front-end and a

  12. Distribution fitting-based pixel labeling for histology image segmentation

    NASA Astrophysics Data System (ADS)

    He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George

    2011-03-01

    This paper presents a new pixel labeling algorithm for complex histology image segmentation. For each image pixel, a Gaussian mixture model is applied to estimate its neighborhood intensity distributions. With this local distribution fitting, a set of pixels having a full set of source classes (e.g. nuclei, stroma, connective tissue, and background) in their neighborhoods are identified as the seeds for pixel labeling. A seed pixel is labeled by measuring its intensity distance to each of its neighborhood distributions, and the one with the shortest distance is selected to label the seed. For non-seed pixels, we propose two different labeling schemes: global voting and local clustering. In global voting each seed classifies a non-seed pixel into one of the seed's local distributions, i.e., it casts one vote; the final label for the non-seed pixel is the class which gets the most votes, across all the seeds. In local clustering, each non-seed pixel is labeled by one of its own neighborhood distributions. Because the local distributions in a non-seed pixel neighborhood do not necessarily correspond to distinct source classes (i.e., two or more local distributions may be produced by the same source class), we first identify the "true" source class of each local distribution by using the source classes of the seed pixels and a minimum distance criterion to determine the closest source class. The pixel can then be labeled as belonging to this class. With both labeling schemes, experiments on a set of uterine cervix histology images show encouraging performance of our algorithm when compared with traditional multithresholding and K-means clustering, as well as state-of-the-art mean shift clustering, multiphase active contours, and Markov random field-based algorithms.

  13. Steganography on quantum pixel images using Shannon entropy

    NASA Astrophysics Data System (ADS)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  14. Data encoding efficiency in pixel detector readout with charge information

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wang, Xinkang

    2016-04-01

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  15. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  16. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  17. Tidal volume measurements in infants: Opto-electronic plethysmography versus pneumotachograph.

    PubMed

    Reinaux, Cyda Maria Albuquerque; Aliverti, Andrea; da Silva, Lívia Gabriely Melo; da Silva, Rafael Justino; Gonçalves, Juliane Neves; Noronha, Jessica Brito; Filho, José Eulálio Cabral; de Andrade, Armèle Dornelas; de Amorim Britto, Murilo Carlos

    2016-08-01

    Tidal breathing measurements by Opto-Electronic Plethysmography (OEP) has been reported for infants limited to protocols with two chest wall compartments. Standard protocol for the analysis of adults, with three compartments of chest wall, has been unavailable for analysis of infants. We aimed to study the agreement of simultaneous measurements of tidal volume by OEP (VT,OEP ) and a heated pneumotachograph (PNT) (VT,PNT ) performed during sleeping in 20 infants (gestational age 35.1 ± 4.6 weeks) at 3-4 months postconceptual age with a three compartment protocol. From PNT and OEP measurements, tidal volume corrected (VT,PNT ) for ambient conditions were calculated with a total number of 200 breaths. The two methods were in good agreement with tidal volume mean difference of 0.02 ml and limit of agreement -4.11 to 4.08 ml (95%CI), no relationship was found between differences and means of OEP and PNT measurements. Pulmonary rib cage, abdominal rib cage and abdomen contributed by 12.4 ± 9.7%, 5.2 ± 5.1%, and 82.4 ± 11.4% to VT,OEP , respectively. The OEP experimental protocol based on 52 markers and a three-compartment model of the chest wall could be used in spontaneously sleeping infants. Pediatr Pulmonol. 2016;51:850-857. © 2016 Wiley Periodicals, Inc.

  18. Opto-mechanisms design of extreme-ultraviolet camera onboard Chang E lunar lander.

    PubMed

    Li, Zhaohui; Chen, Bo; Song, Kefei; Wang, Xiaodong; Liu, Shijie; Yang, Liang; Hu, Qinglong; Qiao, Ke; Zhang, Liping; Wu, Guodong; Yu, Ping

    2014-06-30

    The extreme-ultraviolet camera mounted on the Lander of China Chang-E lunar exploration project launched in 2013 is the first instrument used to imaging from the lunar surface to the whole plasmasphere around the earth. Taking into account both the lunar environment conditions and the weight and volume constraints, a single spherical mirror and a spherical microchannel plate detector make up the compact optical system. An optimized opto-mechanical design was presented using Finite Element Analysis Model, and the detail design for the important assemblies of the 2-axis platform, the primary mirror, the aperture door mechanism and MCP detector were all specially addressed for their environmental adaptability and reliability. Tests of mechanical characteristics have demonstrated that the position and pointing accuracy and its stability meets the operation requirements of 2'. Vibration results have shown that the EUVC has adequate stiffness and strength safety margin to survive in launch and the moon environments. The imaging performance with the resolution of 0.08° is measured after vibration, in agreement with the predicted performance. PMID:24977848

  19. Laser Opto-Electronic Correlator for Robotic Vision Automated Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville

    1995-01-01

    A compact laser opto-electronic correlator for pattern recognition has been designed, fabricated, and tested. Specifically it is a translation sensitivity adjustable compact optical correlator (TSACOC) utilizing convergent laser beams for the holographic filter. Its properties and performance, including the location of the correlation peak and the effects of lateral and longitudinal displacements for both filters and input images, are systematically analyzed based on the nonparaxial approximation for the reference beam. The theoretical analyses have been verified in experiments. In applying the TSACOC to important practical problems including fingerprint identification, we have found that the tolerance of the system to the input lateral displacement can be conveniently increased by changing a geometric factor of the system. The system can be compactly packaged using the miniature laser diode sources and can be used in space by the National Aeronautics and Space Administration (NASA) and ground commercial applications which include robotic vision, and industrial inspection of automated quality control operations. The personnel of Standard International will work closely with the Jet Propulsion Laboratory (JPL) to transfer the technology to the commercial market. Prototype systems will be fabricated to test the market and perfect the product. Large production will follow after successful results are achieved.

  20. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    NASA Astrophysics Data System (ADS)

    Belsito, L.; Vannacci, E.; Mancarella, F.; Ferri, M.; Veronese, G. P.; Biagi, E.; Roncaglia, A.

    2014-08-01

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices.

  1. Opto-mechanisms design of extreme-ultraviolet camera onboard Chang E lunar lander.

    PubMed

    Li, Zhaohui; Chen, Bo; Song, Kefei; Wang, Xiaodong; Liu, Shijie; Yang, Liang; Hu, Qinglong; Qiao, Ke; Zhang, Liping; Wu, Guodong; Yu, Ping

    2014-06-30

    The extreme-ultraviolet camera mounted on the Lander of China Chang-E lunar exploration project launched in 2013 is the first instrument used to imaging from the lunar surface to the whole plasmasphere around the earth. Taking into account both the lunar environment conditions and the weight and volume constraints, a single spherical mirror and a spherical microchannel plate detector make up the compact optical system. An optimized opto-mechanical design was presented using Finite Element Analysis Model, and the detail design for the important assemblies of the 2-axis platform, the primary mirror, the aperture door mechanism and MCP detector were all specially addressed for their environmental adaptability and reliability. Tests of mechanical characteristics have demonstrated that the position and pointing accuracy and its stability meets the operation requirements of 2'. Vibration results have shown that the EUVC has adequate stiffness and strength safety margin to survive in launch and the moon environments. The imaging performance with the resolution of 0.08° is measured after vibration, in agreement with the predicted performance.

  2. Opto-electronic properties of Ta3N5: a joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Morbec, Juliana; Rocca, Dario; Pinaud, Blaise; Jaramillo, Thomas; Galli, Giulia

    2014-03-01

    Tantalum nitride (Ta3N5) is considered a promising material for use in photoelectrochemical cells, due to its suitable band gap for visible light absorption and favorable band-edge positions for water splitting. However, Ta3N5 films have been recently shown to exhibit low photocurrent (i.e. less than 50% of the theoretical limit). We report a joint experimental and ab initio theoretical study of the opto-electronic properties of Ta3N5, aimed at understanding possible reasons for the limited photocurrent. Our experimental optical spectra of films with different thicknesses show two absorption edges at 2.1 and 2.5 eV. To provide an interpretation of these features, we performed ab initio calculations, at several levels of theory, of the electronic band structure and optical absorption spectra of Ta3N5. We employed density functional theory with semi-local (PBE/LDA) and hybrid (PBE0/HSE06) functionals and many body perturbation theory at the G0W0 level, and we obtained optical spectra by solving the Bethe-Salpeter equation within density matrix perturbation theory. Work supported by DOE/BES DE-FG02-06ER46262 and NSF-CHE-1305124. Computing resources are partially provided by NERSC.

  3. Acousto-opto-mechanical theory for polarization maintaining optical fibers in Brillouin based sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Ansari, Farhad; Meng, Dewei; Bao, Tengfei

    2015-01-01

    Change in phase or wavelength for interferometric and fiber Bragg Gratings (FBG) based sensors can be described by strain-optic effects. In Brillouin sensors, strain sensitivity need to be expressed in terms of acousto-opto-mechanical properties of fibers. It is then possible to formulate theoretical relationships that lead to the evaluation of strain sensitivities and establishment of gauge factors for Brillouin based sensors. This article reports on the derivation of generalized relationships describing the strain sensitivity in terms of acousto-optic effects in optical fibers. In particular, the formulations correspond to polarization maintaining fibers at various polarization angles with respect to the slow axis of the fiber. The scope of research encompassed theoretical and experimental studies involving both single mode as well as polarization maintaining optical fibers subjected to strain under isothermal conditions. A high resolution BOTDA was employed in the experiments in order to verify the validity of theoretical relationships between strain and Brillouin frequency shifts for different polarization angles.

  4. Broadband opto-electro-mechanical effective refractive index tuning on a chip.

    PubMed

    Pruessner, Marcel W; Park, Doweon; Stievater, Todd H; Kozak, Dmitry A; Rabinovich, William S

    2016-06-27

    Photonic integrated circuits have enabled progressively active functionality in compact devices with the potential for large-scale integration. To date the lowest loss photonic circuits are achieved with silica or silicon nitride-based platforms. However, these materials generally lack reconfigurability. In this work we present a platform for achieving active functionality in any dielectric waveguide via large-scale opto-electro-mechanical tuning of the effective refractive index (Δneff≈0.01-0.1) and phase (Δϕ>2π). A suspended microbridge weakly interacts with the evanescent field of a low-mode confinement waveguide to tune the effective refractive index and phase with minimal loss. Metal-coated bridges enable electrostatic actuation to displace the microbridge to dynamically tune nEFF. In a second implementation we place a non-metallized dielectric microbridge in a gradient electric field to achieve actuation and tuning. Both approaches are broadband, universally applicable to any waveguide, and pave the way for adding active functionality to many passive optical materials. PMID:27410554

  5. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    PubMed Central

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  6. Broadband opto-electro-mechanical effective refractive index tuning on a chip.

    PubMed

    Pruessner, Marcel W; Park, Doweon; Stievater, Todd H; Kozak, Dmitry A; Rabinovich, William S

    2016-06-27

    Photonic integrated circuits have enabled progressively active functionality in compact devices with the potential for large-scale integration. To date the lowest loss photonic circuits are achieved with silica or silicon nitride-based platforms. However, these materials generally lack reconfigurability. In this work we present a platform for achieving active functionality in any dielectric waveguide via large-scale opto-electro-mechanical tuning of the effective refractive index (Δneff≈0.01-0.1) and phase (Δϕ>2π). A suspended microbridge weakly interacts with the evanescent field of a low-mode confinement waveguide to tune the effective refractive index and phase with minimal loss. Metal-coated bridges enable electrostatic actuation to displace the microbridge to dynamically tune nEFF. In a second implementation we place a non-metallized dielectric microbridge in a gradient electric field to achieve actuation and tuning. Both approaches are broadband, universally applicable to any waveguide, and pave the way for adding active functionality to many passive optical materials.

  7. Development of an opto-electronic fiber device with multiple nano-probes

    NASA Astrophysics Data System (ADS)

    Mehta, N.; Cocking, A.; Zhang, C.; Ma, D.; Xu, Y.; Liu, Z.

    2016-11-01

    We present the fabrication and characterization of an opto-electronic fiber device which can allow for both electromechanical functionality and optical waveguiding capability. The air holes of a photonic crystal fiber are selectively sealed and then pumped with molten metal under pressure. The metal filled holes act as electrodes to which individual carbon nanotubes (CNT) are attached precisely by a laser-welding technique or a focused ion beam assisted pick-and-bond technique. The optical modal profile and the group velocity dispersion of the fabricated device are studied both numerically and experimentally. We also present preliminary experimental proof showing the feasibility of electric actuation of a pair of nanotubes by applying up to 40 V potential difference between the filled electrodes. Furthermore, numerical simulations are carried out which agree with the experimentally observed displacement of the CNT upon electric actuation. The unique aspect of our device is that it provides optical waveguiding and electromechanical nano-probing capability in a single package. Such combined functionality can potentially enable simultaneous electrical and optical manipulation and interrogation at the nanoscale.

  8. A universal label-free biosensing platform based on opto-fluidic ring resonators

    NASA Astrophysics Data System (ADS)

    Zhu, Hongying; White, Ian M.; Suter, Jonathan D.; Gohring, John; Fan, Xudong

    2009-02-01

    Rapid and accurate detection of biomolecules is important for medical diagnosis, pharmaceuticals, homeland security, food quality control, and environmental protection. A simple, low cost and highly sensitive label-free optical biosensor based on opto-fluidic ring resonator (OFRR) has been developed that naturally integrates microfluidics with ring resonators. The OFRR employs a piece of fused silica capillary with a diameter around 100 micrometers. The circular cross section of the capillary forms the ring resonator and light repeatedly travels along the resonator circumference in the form of whispering gallery modes (WGMs) through total internal reflection. When the capillary wall is as thin as a couple of micrometers (< 4 μm), an evanescent field of the WGMs exists at the OFRR inner surface and interacts with the sample when it flows through the OFRR. In order to detect the target molecules with high specificity, the OFRR inner surface is functionalized with receptors, such as antibodies, peptide-displayed bacteriophage or oligonucleotide DNA probes. The WGM spectral position shifts when biomolecules bind to the OFRR inner surface and change the local refractive index, which provides quantitative and kinetic information about the biomolecule interaction near the OFRR inner surface. The OFRR has been successfully demonstrated for detection of various types of biomoelcuels. Here, we will first introduce the basic operation principle of the OFRR as a sensor and then application examples of the OFRR in the detection of proteins, disease biomarkers, virus, DNA molecules, and cells with high sensitivities will be presented.

  9. Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer.

    PubMed

    Shopova, Siyka I; Cupps, Jay M; Zhang, Po; Henderson, Edward P; Lacey, Scott; Fan, Xudong

    2007-10-01

    We demonstrate an opto-fluidic ring resonator dye laser using highly efficient energy transfer. The active lasing material consists of a donor and acceptor mixture and flows in a fused silica capillary whose circular cross section forms a ring resonator and supports the whispering gallery modes (WGMs) of high Q-factors (>107). The excited states are created in the donor and transferred to the acceptor through the fluorescence resonant energy transfer (FRET), whose emission is coupled into the WGM. Due to the high energy transfer efficiency and high Q-factors, the acceptor exhibits a lasing threshold as low as 0.3 muJ/mm2. We further analyze the energy transfer mechanisms and find that non-radiative Förster transfer is the dominant effect to support the acceptor lasing. FRET lasers using cascade energy transfer and using quantum dots (QDs) as the donor are also presented. Our study will not only lead to development of novel microfluidic lasers with low lasing thresholds and excitation/emission flexibility, but also open an avenue for future laser intra-cavity bio/chemical sensing.

  10. New melt-processable thermoplastic polyimides for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Aditya; Haralur, Gurulingamurthy

    2012-10-01

    The rapid development and adoption of digital technology is leading to an increase in demand for smaller, faster digital data devices and faster digital telecommunication networks. This trend requires increased network bandwidth to handle large amounts of data and seamless integration of network devices with compatible end-user devices. This need is being met by using fiber-optic and photonics technology, infra-red (IR) signals to transmit information, and is fundamental changing the communication industry, thereby creating a need for new polymeric materials. New ULTEM* polyetherimide (PEI) and EXTEM* thermoplastic polyimide (TPI) resins meet the material requirements for the optoelectronics industry. These resins have building blocks enabling IR light transmission without degrading signal quality. They can be injection-molded into thin, precision optical lenses and connectors. ULTEM* resins are been widely used in this industry as fiber-optic components in trans-receivers. EXTEM* resins are amenable to lead-free soldering (LFS), a greener industrial assembly process. While still being IR-transparent, EXTEM* resin is an ideal material for LFS capable substrates, connectors and lenses. An optical product portfolio has been developed and is being presented as a solution to the opto-electronics component industry and some of the successful applications therein.

  11. Micro-opto-mechanical devices and systems using epitaxial lift off

    NASA Technical Reports Server (NTRS)

    Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.

    1993-01-01

    The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.

  12. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    NASA Astrophysics Data System (ADS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn3O4, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20-30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 - 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9-10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  13. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  14. Dead pixel correction techniques for dual-band infrared imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong T.; Mould, Nick; Regens, James L.

    2015-07-01

    We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

  15. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  16. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    SciTech Connect

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-09-15

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  17. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  18. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  19. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  20. Novel integrated CMOS pixel structures for vertex detectors

    SciTech Connect

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  1. Development of a pixel readout chip for BTeV

    SciTech Connect

    D.C. Christian et al.

    1998-11-01

    A description is given of the R&D program underway at Fermilab to develop a pixel readout ASIC appropriate for use at the Tevatron collider. Results are presentetd frOm tests performed on the first prototype pixel readout chip deigned at Fermilab, and a new readout architecture is described.

  2. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  3. Singlet mega-pixel resolution lens

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Hung; Lin, Hoang Yan; Chang, Horng

    2008-03-01

    There always exist some new challenges for lens designers to keep their old-line technology update. To minimize lens volume is one of the most notified examples. In this paper we designed a single thick lens, constructed by using one oblique (reflective) surface, apart from two conventional refractive surfaces, to bend the optical path of the optical system to achieve this goal. Detail design procedure, including system layout and lens performance diagrams, will be presented. Following the first order layout, we applied aspherical form to the two refractive surfaces in order to correct the spherical aberration up to an acceptable condition. Then, the reduced aberrations such as coma, astigmatism, field curvature and distortion can easily be corrected with some calculations related to spherical aberration as shown in the publication of H. H. Hopkins (1950). Plastic material is used in the design, because the aspherical surfaces can then be manufactured in a more cost effective way. The final specification of the design is: EFL is 4.6 mm, the F number is 2.8, the over all thickness of lens is 3.6 mm, its MTF is 0.3 at 227 lp/mm in center field and chief ray angle is less than 15 degrees. Lens data as well as optical performance curves are also presented in the paper. In conclusion we have successfully finished a mega-pixel resolution lens design and its overall thickness is compatible with the state of the art.

  4. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  5. DC-DC powering for the CMS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  6. Attenuating Stereo Pixel-Locking via Affine Window Adaptation

    NASA Technical Reports Server (NTRS)

    Stein, Andrew N.; Huertas, Andres; Matthies, Larry H.

    2006-01-01

    For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as 'pixel-locking,' which produces artificially-peaked histograms of sub-pixel disparity. These peaks correspond to the introduction of erroneous ripples or waves in the 3D reconstruction of truly Rat surfaces. Since stereo vision is a common input modality for autonomous vehicles, these inaccuracies can pose a problem for safe, reliable navigation. This paper proposes a new method for sub-pixel stereo disparity estimation, based on ideas from Lucas-Kanade tracking and optical flow, which substantially reduces the pixel-locking effect. In addition, it has the ability to correct much larger initial disparity errors than previous approaches and is more general as it applies not only to the ground plane.

  7. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    SciTech Connect

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  8. Using an Active Pixel Sensor In A Vertex Detector

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Chen, Yandong; Gareus, Robin; Kleinfelder, Stuart; Oldenburg, Markus; Retiere, Fabrice; Ritter, HansGeorg; Wieman, Howard H.; Wurzel, Samuel E.; Yamamoto, Eugene

    2004-04-22

    Research has shown that Active Pixel CMOS sensors can detect charged particles. We have been studying whether this process can be used in a collider environment. In particular, we studied the effect of radiation with 55 MeV protons. These results show that a fluence of about 2 x 10{sup 12} protons/cm{sup 2} reduces the signal by a factor of two while the noise increases by 25%. A measurement 6 months after exposure shows that the silicon lattice naturally repairs itself. Heating the silicon to 100 C reduced the shot noise and increased the collected charge. CMOS sensors have a reduced signal to noise ratio per pixel because charge diffuses to neighboring pixels. We have constructed a photogate to see if this structure can collect more charge per pixel. Results show that a photogate does collect charge in fewer pixels, but it takes about 15 ms to collect all of the electrons produced by a pulse of light.

  9. Detector apparatus having a hybrid pixel-waveform readout system

    DOEpatents

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  10. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  11. COMBINE*: An integrated opto-mechanical tool for laser performance modeling

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Di Nicola, J. M.

    2015-02-01

    Accurate modeling of thermal, mechanical and optical processes is important for achieving reliable, high-performance high energy lasers such as those at the National Ignition Facility [1] (NIF). The need for this capability is even more critical for high average power, high repetition rate applications. Modeling the effects of stresses and temperature fields on optical properties allows for optimal design of optical components and more generally of the architecture of the laser system itself. Stresses change the indices of refractions and induce inhomogeneities and anisotropy. We present a modern, integrated analysis tool that efficiently produces reliable results that are used in our laser propagation tools such as VBL [5]. COMBINE is built on and supplants the existing legacy tools developed for the previous generations of lasers at LLNL but also uses commercially available mechanical finite element codes ANSYS or COMSOL (including computational fluid dynamics). The COMBINE code computes birefringence and wave front distortions due to mechanical stresses on lenses and slabs of arbitrary geometry. The stresses calculated typically originate from mounting support, vacuum load, gravity, heat absorption and/or attending cooling. Of particular importance are the depolarization and detuning effects of nonlinear crystals due to thermal loading. Results are given in the form of Jones matrices, depolarization maps and wave front distributions. An incremental evaluation of Jones matrices and ray propagation in a 3D mesh with a stress and temperature field is performed. Wavefront and depolarization maps are available at the optical aperture and at slices within the optical element. The suite is validated, user friendly, supported, documented and amenable to collaborative development. * COMBINE stands for Code for Opto-Mechanical Birefringence Integrated Numerical Evaluations.

  12. A dynamic opto-physiological model to effectively interpret retinal microvascular circulation

    NASA Astrophysics Data System (ADS)

    Hassan, Harnani; Hu, Sijung; Dwyer, Vincent M.

    2015-03-01

    The demand of non-invasive ocular screening is rapidly growing due to an increase of age related eye diseases worldwide. An indeed in-depth understanding of optical properties is required to elucidate nature of retinal tissue. The research aims to investigate an effective biomedical engineering approach to allow process region of interests (ROIs) in eyes to reveal physiological status. A dynamic opto-physiological model (DOPM) representing retinal microvascular circulation underlying a diffusion approximation to solve radiative transport theorem (RTT) has being developed to interpret patho-physiological phenomena. DOPM is being applied in imaging photoplethysmography (iPPG) to extract PPG signals from a series of 2D matrix images to access blood perfusion and oxygen saturation distributions. A variation of microvascular circulation could be mapped for an effectively diagnostic screening. The work presents mathematical modelling based ten layers of ocular tissue tested with four set of controlled parameters demontrated detection ratio between normal tissue damage or abnormal tissue and significant change of AC signal amplitude in these tissues. The result shows signicant change of AC signal amplitude in abnormal tissue. The preliminary results show extractable PPG signals from eye fundus video; experimented at five ROIs: whole fundus, optical disk, main vein vessel, lesion area and affected area. The outcome shows optical disk region gave a better performance compared to whole fundus region and main vein vessel. The robustness, miniaturization and artefact reduction capability of DOPM to discriminate oxygenation levels in retina could offer a new insight to access retinal patho-physiological status.

  13. A 6 D.O.F. opto-inertial tracker for virtual reality experiments in microgravity

    NASA Astrophysics Data System (ADS)

    Zaoui, Mohamed; Wormell, Dean; Altshuler, Yury; Foxlin, Eric; McIntyre, Joseph

    2001-08-01

    Gravity plays a role in many different levels of human motor behavior. It dictates the laws of motion of our body and limbs, as well as of the objects in the external world with which we wish to interact. The dynamic interaction of our body with the world is molded within gravity's constraints. The role played by gravity in the perception of visual stimuli and the elaboration of human movement is an active research theme in the field of Neurophysiology. Conditions of microgravity, coupled with techniques from the world of virtual reality, provide a unique opportunity to address these questions concerning the function of the human sensorimotor system [1]. The ability to measure movements of the head and to update in real time the visual scene presented to the subject based on these measurements is a key element in producing a realistic virtual environment. A variety of head-tracking hardware exists on the market today [2-4], but none seem particularly well suited to the constraints of working with a space station environment. Nor can any of the existing commercial systems meet the more stringent requirements for physiological experimentation (high accuracy, high resolution, low jitter, low lag) in a wireless configuration. To this end, we have developed and tested a hybrid opto-inertial 6 degree-of-freedom tracker based on existing inertial technology [5-8]. To confirm that the inertial components and algorithms will function properly, this system was tested in the microgravity conditions of parabolic flight. Here we present the design goals of this tracker, the system configuration and the results of 0g and 1g testing.

  14. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    SciTech Connect

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  15. A micro opto-mechanical displacement sensor based on micro-diffraction gratings: design and characterization.

    PubMed

    Accoto, D; Schena, E; Cidda, M; Francomano, M; Saccomandi, P; Silvestri, S

    2013-01-01

    A micro opto-mechanical displacement sensor is here presented. It is constituted by a sensing element based on two overlapped micro-diffraction gratings (MDGs). They present a platinum layer (45 nm of thick) on a glass substrate, a period of 525 µm constituted by a width of 150 µm of platinum separated (71.4% duty cycle). The working principle is based on the modulation of light intensity induced by the relative displacement between the MDGs: when a laser light perpendicularly hits the MDGs, the intensity of the transmitted light is a periodic function of the relative displacement between the two MDGs. A fiber optic is used to transport the transmitted light to a photodetector in order to avoid concerns related to the alignment between the optical components. The sensor's output is the ratio between the light intensity measured by the photodetector during the displacement of the MDGs and largest light intensity values measured in the whole range of measurement, therefore, it is lower than 1. The proposed sensor allows to discriminate displacement lower than 10 µm, using a cost effective micro-fabrication process implemented by the technique of Lift-Off. It shows a good linear behaviour in two ranges covering about one half of the MDGs period. Within the linear ranges it shows high sensitivity (about 0.5%/µm) and good accuracy (lower than 4% in the whole range of calibration); furthermore, the results show that a design with a duty cycle of 50% overcomes the marked decrease of sensitivity in a range of measurement corresponding to a grating period.

  16. A 6 D.O.F. opto-inertial tracker for virtual reality experiments in microgravity.

    PubMed

    Zaoui, M; Wormell, D; Altshuler, Y; Foxlin, E; McIntyre, J

    2001-01-01

    Gravity plays a role in many different levels of human motor behavior. It dictates the laws of motion of our body and limbs, as well as of the objects in the external world with which we wish to interact. The dynamic interaction of our body with the world is molded within gravity's constraints. The role played by gravity in the perception of visual stimuli and the elaboration of human movement is an active research theme in the field of Neurophysiology. Conditions of microgravity, coupled with techniques from the world of virtual reality, provide a unique opportunity to address these questions concerning the function of the human sensorimotor system. The ability to measure movements of the head and to update in real time the visual scene presented to the subject based on these measurements is a key element in producing a realistic virtual environment. A variety of head-tracking hardware exists on the market today, but none seem particularly well suited to the constraints of working with a space station environment. Nor can any of the existing commercial systems meet the more stringent requirements for physiological experimentation (high accuracy, high resolution, low jitter, low lag) in a wireless configuration. To this end, we have developed and tested a hybrid opto-inertial 6 degree-of-freedom tracker based on existing inertial technology. To confirm that the inertial components and algorithms will function properly, this system was tested in the microgravity conditions of parabolic flight. Here we present the design goals of this tracker, the system configuration and the results of 0g and 1g testing. PMID:11669131

  17. Organic polymer-metal nano-composites for opto-electronic sensing of chemicals in agriculture

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2013-03-01

    Recent research findings led the team to conclude that a long lasting and inexpensive colorimetric sensor for monitoring ammonia emission from manure in confined animal feeding operations could eventually become feasible. The sensor uses robust method of opto-electronic spectroscopic measurement of the reversible change of the color of a sensitive nano-composite reagent film in response to ammonia. The film is made of a metal (gold, platinum, or palladium) nano-colloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption in the region 550 to 650 nm) is enhanced by the nano-particles (~10 nm in size) in two ways: (a) concentration of the optical field near the nano-particle due to the plasmon resonance; and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to make a miniature and rugged sensing element without compromising its sensitivity of less than 1 ppm for the range 0 to 100 ppm. The sensor underwent field tests in commercial broiler farms in Georgia, Alabama, and Arkansas and was compared against a commercial photoacoustic gas analyzer. The sensor output correlated well with the data from the photoacoustic analyzer (correlation coefficient not less than 0.9 and the linear regression slope after calibration close to 1.0) for several weeks of continuous operation. The sources of errors were analyzed and the conclusions on the necessary improvements and the potential use of the proposed device were made.

  18. Characterizing opto-electret based paper speakers by using a real-time projection Moiré metrology system

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Ling; Hsu, Kuan-Yu; Lee, Chih-Kung

    2016-03-01

    Advancement of distributed piezo-electret sensors and actuators facilitates various smart systems development, which include paper speakers, opto-piezo/electret bio-chips, etc. The array-based loudspeaker system possess several advantages over conventional coil speakers, such as light-weightness, flexibility, low power consumption, directivity, etc. With the understanding that the performance of the large-area piezo-electret loudspeakers or even the microfluidic biochip transport behavior could be tailored by changing their dynamic behaviors, a full-field real-time high-resolution non-contact metrology system was developed. In this paper, influence of the resonance modes and the transient vibrations of an arraybased loudspeaker system on the acoustic effect were measured by using a real-time projection moiré metrology system and microphones. To make the paper speaker even more versatile, we combine the photosensitive material TiOPc into the original electret loudspeaker. The vibration of this newly developed opto-electret loudspeaker could be manipulated by illuminating different light-intensity patterns. Trying to facilitate the tailoring process of the opto-electret loudspeaker, projection moiré was adopted to measure its vibration. By recording the projected fringes which are modulated by the contours of the testing sample, the phase unwrapping algorithm can give us a continuous phase distribution which is proportional to the object height variations. With the aid of the projection moiré metrology system, the vibrations associated with each distinctive light pattern could be characterized. Therefore, we expect that the overall acoustic performance could be improved by finding the suitable illuminating patterns. In this manuscript, the system performance of the projection moiré and the optoelectret paper speakers were cross-examined and verified by the experimental results obtained.

  19. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Torheim, O.; Hu-Guo, C.; Degerli, Y.; Hu, Y.

    2013-03-01

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13 μm CMOS technology. The functionalities of this chip have been verified through experimental characterization.

  20. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  1. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  2. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Chen, J.; Pevtsov, A. A.

    2015-12-01

    Continued advances in solar observations have led to higher-resolution magnetograms and surface (photospheric) images, revealing bipolar magnetic features operating near the resolution limit during emerging flux events and other phenomena used to predict solar eruptions responsible for geomagnetic plasma disturbances. However, line of sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A pixel dynamics model utilizing Stokes I spectral profiles was previously-used to quantify changes in the Doppler shift, width, asymmetry, and tail flatness of Fe I lines at 6301.5 and 6302.5 Å and used pixel-by-pixel line profile fluctuations to characterize quiet and active regions on the Sun. We use this pixel dynamics model with circularly polarized photospheric data (e.g., SOLIS data) to estimate plasma dynamic properties at a sub-pixel level. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties on sub-pixel scales.

  3. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  4. A digital readout system for the CMS Phase I Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Stringer, R.

    2015-04-01

    The Phase I Upgrade to the CMS Pixel Detector at the LHC features a new 400 Mb/s digital readout system. This new system utilizes upgraded custom ASICs, PSI46digv2.1 Read Out Chips and Token Bit Manager for data packaging, new optical links and changes to the Front End Drivers. We are reporting on the new architecture of the full readout chain, the new schema for data encoding/transmission, and the results of preliminary testing of the new optical components.

  5. Monolithic pixel detectors with 0.2 μm FD-SOI pixel process technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Chiba, Tadashi; Fujita, Yowichi; Hara, Kazuhiko; Honda, Shunsuke; Igarashi, Yasushi; Ikegami, Yoichi; Ikemoto, Yukiko; Kohriki, Takashi; Ohno, Morifumi; Ono, Yoshimasa; Shinoda, Naoyuki; Takeda, Ayaki; Tauchi, Kazuya; Tsuboyama, Toru; Tadokoro, Hirofumi; Unno, Yoshinobu; Yanagihara, Masashi

    2013-12-01

    Truly monolithic pixel detectors were fabricated with 0.2 μm SOI pixel process technology by collaborating with LAPIS Semiconductor Co., Ltd. for particle tracking experiment, X-ray imaging and medical applications. CMOS circuits were fabricated on a thin SOI layer and connected to diodes formed in the silicon handle wafer through the buried oxide layer. We can choose the handle wafer and therefore high-resistivity silicon is also available. Double SOI (D-SOI) wafers fabricated from Czochralski (CZ)-SOI wafers were newly obtained and successfully processed in 2012. The top SOI layers are used as electric circuits and the middle SOI layers used as a shield layer against the back-gate effect and cross-talk between sensors and CMOS circuits, and as an electrode to compensate for the total ionizing dose (TID) effect. In 2012, we developed two SOI detectors, INTPIX5 and INTPIX3g. A spatial resolution study was done with INTPIX5 and it showed excellent performance. The TID effect study with D-SOI INTPIX3g detectors was done and we confirmed improvement of TID tolerance in D-SOI sensors.

  6. Vertically integrated pixel readout chip for high energy physics

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  7. Pixel detectors in 3D technologies for high energy physics

    SciTech Connect

    Deptuch, G.; Demarteau, M.; Hoff, J.; Lipton, R.; Shenai, A.; Yarema, R.; Zimmerman, T.; /Fermilab

    2010-10-01

    This paper reports on the current status of the development of International Linear Collider vertex detector pixel readout chips based on multi-tier vertically integrated electronics. Initial testing results of the VIP2a prototype are presented. The chip is the second embodiment of the prototype data-pushed readout concept developed at Fermilab. The device was fabricated in the MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  8. Dual collection mode optical microscope with single-pixel detection

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  9. Consequences of Mixed Pixels on Temperature Emissivity Separation

    SciTech Connect

    Heasler, Patrick G.; Foley, Michael G.; Thompson, Sandra E.

    2007-02-01

    This report investigates the effect that a mixed pixel can have on temperature/emissivity seperation (i.e. temperature/emissivity estimation using long-wave infra-red data). Almost all temperature/emissivity estimation methods are based on a model that assumes both temperature and emissivity within the imaged pixel is homogeneous. A mixed pixel has heterogeneous temperature/emissivity and therefore does not satisfy the assumption. Needless to say, this heterogeneity causes biases in the estimates and this report quantifies the magnitude of the biases.

  10. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  11. Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures.

    PubMed

    Rebello, A; Adeyeye, A O

    2016-01-01

    Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of preparation of these planar structures make them attractive for integration with current circuit technologies and various novel opto-electrical applications. PMID:27294614

  12. Effect of hydrophilic silica nanoparticles on the magnetorheological properties of ferrofluids: a study using opto-magnetorheometer.

    PubMed

    Felicia, Leona J; Philip, John

    2015-03-24

    For many technological applications of ferrofluids, the magnetorheological properties require being precisely controlled. We study the effect of hydrophilic silica on the magnetorheology of an oil-based ferrofluid containing Fe3O4 nanoparticles of size ∼10 nm. We observe that the presence of silica nanoparticles lowers the yield stresses, viscoelastic moduli, and shear thinning behavior of the ferrofluid because of the weakening of dipolar interactions, which was evident from the observed lower yield stresses exponent (<2). The ferrofluid containing silica exhibits a dominant elastic behavior, a reduced hysteresis during the forward and reverse magnetic field sweeps, and a longer linear viscoelastic regime under nonlinear deformation. The Mason number plots at low shear rates and magnetic fields show deviations from the master curve in the presence of silica. The magnetic field induced microstructures, visualized using opto-magnetorheometer, showed columnar aggregate structures along the field directions, which are reoriented along the shear flow direction at high shear rates. The image analysis shows that the average thickness of the columnar aggregates in pure ferrofluid is much larger than that of the mixed system, which suggests that the intervening silica matrix hampers the zippering transition of columns at higher magnetic field and shear rates. Our results suggest that optimization of rheological properties of ferrofluids is possible by carefully adding suitable silica nanoparticles, which may find practical applications such as dynamic seals, heat transfer, sensors, and opto-fluidic devices, etc.

  13. Opto-thermal study of cooling strategies for high-luminance white-light solid-state sources

    NASA Astrophysics Data System (ADS)

    Correia, António; Hanselaer, Peter; Meuret, Youri

    2016-06-01

    Solid-state sources have become ubiquitous is many lighting applications. For general lighting, phosphors are typically employed to produce white light from the narrowband light emitted from solid-state sources. As the optical output power from solid-state sources keeps increasing, increasingly higher luminance can be obtained, which, unfortunately, also increases the phosphor's temperature. These materials' colour conversion potential, encoded by the quantum yield, has complex dependencies with temperature. To obtain an accurate assessment of the performance of a high-luminance white light source configuration based on individual solid-state sources, it is imperative to accurately model the temperature distribution inside the phosphor material and consider the effect of temperature on the quantum yield of the phosphor. In addition, the feedback of the varying quantum yield on the generated heat inside the phosphor should also be considered. An opto-thermal framework has been previously proposed to accurately simulate the opto-thermal effects in phosphors when designing lighting systems. In this paper, this framework is applied to a novel optical configuration to investigate thermal bottlenecks and test cooling strategies to avoid them. For the specific configuration tested, using an active cooling strategy and concentrating the laser light on the phosphor region with the best thermal dissipation proved to be the best solutions.

  14. Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures

    NASA Astrophysics Data System (ADS)

    Rebello, A.; Adeyeye, A. O.

    2016-06-01

    Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of preparation of these planar structures make them attractive for integration with current circuit technologies and various novel opto-electrical applications.

  15. Effect of hydrophilic silica nanoparticles on the magnetorheological properties of ferrofluids: a study using opto-magnetorheometer.

    PubMed

    Felicia, Leona J; Philip, John

    2015-03-24

    For many technological applications of ferrofluids, the magnetorheological properties require being precisely controlled. We study the effect of hydrophilic silica on the magnetorheology of an oil-based ferrofluid containing Fe3O4 nanoparticles of size ∼10 nm. We observe that the presence of silica nanoparticles lowers the yield stresses, viscoelastic moduli, and shear thinning behavior of the ferrofluid because of the weakening of dipolar interactions, which was evident from the observed lower yield stresses exponent (<2). The ferrofluid containing silica exhibits a dominant elastic behavior, a reduced hysteresis during the forward and reverse magnetic field sweeps, and a longer linear viscoelastic regime under nonlinear deformation. The Mason number plots at low shear rates and magnetic fields show deviations from the master curve in the presence of silica. The magnetic field induced microstructures, visualized using opto-magnetorheometer, showed columnar aggregate structures along the field directions, which are reoriented along the shear flow direction at high shear rates. The image analysis shows that the average thickness of the columnar aggregates in pure ferrofluid is much larger than that of the mixed system, which suggests that the intervening silica matrix hampers the zippering transition of columns at higher magnetic field and shear rates. Our results suggest that optimization of rheological properties of ferrofluids is possible by carefully adding suitable silica nanoparticles, which may find practical applications such as dynamic seals, heat transfer, sensors, and opto-fluidic devices, etc. PMID:25734232

  16. Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures

    PubMed Central

    Rebello, A.; Adeyeye, A. O.

    2016-01-01

    Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of preparation of these planar structures make them attractive for integration with current circuit technologies and various novel opto-electrical applications. PMID:27294614

  17. Prototype characterization of the JUNGFRAU pixel detector for SwissFEL

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann, J.; Maliakal, D.; Mezza, D.; Ruder, C.; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-05-01

    The SwissFEL, a free electron laser (FEL) based next generation X-ray source, is being built at PSI. An XFEL poses several challenges to the detector development: in particular the single photon counting readout, a successful scheme in case of synchrotron sources, can not be used. At the same time the data quality of photon counting systems, i.e. the low noise and the high dynamic range, is essential from an experimental point of view. Detectors with these features are under development for the EU-XFEL in Hamburg, with the PSI SLS Detector group being involved in one of these efforts (AGIPD). The pulse train time structure of the EU-XFEL machine forces the need of in pixel image storage, resulting in pixel pitches in the 200 μm range. Since the SwissFEL is a 100 Hz repetition rate machine, this constrain is relaxed. For this reason, PSI is developing a 75 μm pitch pixel detector that, thanks to its automatic gain switching technique, will achieve single photon resolution and a high dynamic range. The detector is modular, with each module consisting of a 4 × 8 cm2 active sensor bump bonded to 8 readout ASICs (Application Specific Integrated Circuit), connected to a single printed circuit readout board with 10GbE link capabilities for data download. We have designed and tested a 48 × 48 pixel prototype produced in UMC110 nm technology. In this paper we present the general detector and ASIC design as well as the results of the prototype characterization measurements.

  18. Radiation-hard/high-speed data transmission using optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Abi, B.; Fernando, W.; Kagan, H. P.; Kass, R. D.; Lebbai, M. R. M.; Moore, J. R.; Rizatdinova, F.; Skubic, P. L.; Smith, D. S.

    2009-12-01

    The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We investigate the radiation-hardness of various components for possible application in the data transmission upgrade. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs from various sources using 24 GeV/c protons at CERN. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, especially for the GaAs devices. We have designed the ASICs for the opto-link applications and find that the degradation with radiation is acceptable.

  19. Characterization of a three side abuttable CMOS pixel sensor with digital pixel and data compression for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Guilloux, F.; Değerli, Y.; Flouzat, C.; Lachkar, M.; Monmarthe, E.; Orsini, F.; Venault, P.

    2016-02-01

    CMOS monolithic pixel sensor technology has been chosen to equip the new ALICE trackers for HL-LHC . PIXAM is the final prototype from an R&D program specific to the Muon Forward Tracker which intends to push significantly forward the performances of the mature rolling shutter architecture. By implementing a digital pixel allowing to readout of a group of rows in parallel, the PIXAM sensor increases the rolling shutter readout speed while keeping the same power consumption as that of analogue pixel sensors. This paper will describe shortly the ASIC architecture and will focus on the analogue and digital performances of the sensor, obtained from laboratory measurements.

  20. Coherence experiments in single-pixel digital holography.

    PubMed

    Liu, Jung-Ping; Guo, Chia-Hao; Hsiao, Wei-Jen; Poon, Ting-Chung; Tsang, Peter

    2015-05-15

    In optical scanning holography (OSH), the coherence properties of the acquired holograms depend on the single-pixel size, i.e., the active area of the photodetector. For the first time, to the best of our knowledge, we have demonstrated coherent, partial coherent, and incoherent three-dimensional (3D) imaging by experiment in such a single-pixel digital holographic recording system. We have found, for the incoherent mode of OSH, in which the detector of the largest active area is applied, the 3D location of a diffusely reflecting object can be successfully retrieved without speckle noise. For the partial coherent mode employing a smaller pixel size of the detector, significant speckles and randomly distributed bright spots appear among the reconstructed images. For the coherent mode of OSH when the size of the pixel is vanishingly small, the bright spots disappear. However, the speckle remains and the signal-to-noise ratio is low. PMID:26393741

  1. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  2. DAQ hardware and software development for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  3. Two-dimensional pixel array image sensor for protein crystallography

    SciTech Connect

    Beuville, E.; Beche, J.-F.; Cork, C.

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  4. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  5. A Chip and Pixel Qualification Methodology on Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Petkov, Mihail; Nguyen, Duc N.; Novak, Frank

    2004-01-01

    This paper presents a qualification methodology on imaging sensors. In addition to overall chip reliability characterization based on sensor s overall figure of merit, such as Dark Rate, Linearity, Dark Current Non-Uniformity, Fixed Pattern Noise and Photon Response Non-Uniformity, a simulation technique is proposed and used to project pixel reliability. The projected pixel reliability is directly related to imaging quality and provides additional sensor reliability information and performance control.

  6. Pixel readout electronics for LHC and biomedical applications

    NASA Astrophysics Data System (ADS)

    Blanquart, L.; Bonzom, V.; Comes, G.; Delpierre, P.; Fischer, P.; Hausmann, J.; Keil, M.; Lindner, M.; Meuser, S.; Wermes, N.

    2000-01-01

    The demanding requirements for pixel readout electronics for high-energy physics experiments and biomedical applications are reviewed. Some examples of the measured analog performance of prototype chips are given. The readout architectures of the PIxel Readout for the ATlas Experiment (PIRATE) chip suited for LHC experiments and of the Multi Picture Element Counter (MPEC) counting chip targeted for biomedical applications are presented. First results with complete chip-sensor assemblies are also shown.

  7. FPIX2, the BTeV pixel readout chip

    SciTech Connect

    David C. Christian et al.

    2003-12-10

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  8. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  9. Frequency distribution signatures and classification of within-object pixels

    PubMed Central

    Stow, Douglas A.; Toure, Sory I.; Lippitt, Christopher D.; Lippitt, Caitlin L.; Lee, Chung-rui

    2011-01-01

    The premise of geographic object-based image analysis (GEOBIA) is that image objects are composed of aggregates of pixels that correspond to earth surface features of interest. Most commonly, image-derived objects (segments) or objects associated with predefined land units (e.g., agricultural fields) are classified using parametric statistical characteristics (e.g., mean and standard deviation) of the within-object pixels. The objective of this exploratory study was to examine the between- and within-class variability of frequency distributions of multispectral pixel values, and to evaluate a quantitative measure and classification rule that exploits the full pixel frequency distribution of within object pixels (i.e., histogram signatures) compared to simple parametric statistical characteristics. High spatial resolution Quickbird satellite multispectral data of Accra, Ghana were evaluated in the context of mapping land cover and land use and socioeconomic status. Results show that image objects associated with land cover and land use types can have characteristic, non-normal frequency distributions (histograms). Signatures of most image objects tended to match closely the training signature of a single class or sub-class. Curve matching approaches to classifying multi-pixel frequency distributions were found to be slightly more effective than standard statistical classifiers based on a nearest neighbor classifier. PMID:22408575

  10. CMOS Active Pixel Sensor (APS) Imager for Scientific Applications

    NASA Astrophysics Data System (ADS)

    Ay, Suat U.; Lesser, Michael P.; Fossum, Eric R.

    2002-12-01

    A 512×512 CMOS Active Pixel Sensor (APS) imager has been designed, fabricate, and tested for frontside illumination suitable for use in astronomy specifically in telescope guider systems as a replacement of CCD chips. The imager features a high-speed differential analog readout, 15 μm pixel pitch, 75 % fill factor (FF), 62 dB dynamic range, 315Ke- pixel capacity, less than 0.25% fixed pattern noise (FPN), 45 dB signal to noise ratio (SNR) and frame rate of up to 40 FPS. Design was implemented in a standard 0.5 μm CMOS process technology consuming less than 200mWatts on a single 5 Volt power supply. CMOS Active Pixel Sensor (APS) imager was developed with pixel structure suitable for both frontside and backside illumination holding large number of electron in relatively small pixel pitch of 15 μm. High-speed readout and signal processing circuits were designed to achieve low fixed pattern noise (FPN) and non-uniformity to provide CCD-like analog outputs. Target spectrum range of operation for the imager is in near ultraviolet (300-400 nm) with high quantum efficiency. This device is going to be used as a test vehicle to develop backside-thinning process.

  11. High frame rate measurements of semiconductor pixel detector readout IC

    NASA Astrophysics Data System (ADS)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  12. Inter-pixel Size Variations as Source of Spitzer Systematics

    NASA Astrophysics Data System (ADS)

    Himes, Michael David; Harrington, Joseph; Lust, Nathaniel B.

    2016-10-01

    In the astrophysical sciences imaging devices are commonly assumed to contain evenly sized pixels, with each pixel converting light to signal with a slightly different efficiency. These variations are accounted for by exposing the detector to a uniform light source and comparing each value to the mean of the exposure and dividing by the result (flatfielding) . If the detector instead had pixels which varied in size, the same variations to uniform illumination would be recorded and subsequently removed. However, in the presence of a flux gradient such as a star, the flatfielding will alter these flux values which in turn affects any analysis of the data. This alteration would be due to varying size pixels being corrected to a unit area through the flatfield, when the pixels themselves rightfully record a non-uniform area of the point-spread function (PSF). We believe that this may be the source of Spitzer's systematic error attributed to gain variations. We demonstrate what an imaging device with inter-pixel size differences looks like from a data standpoint, its effects on estimating the widths of a point source, and investigations to properly account for size variations without altering flux values.

  13. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  14. Polycrystalline CVD diamond pixel array detector for nuclear particles monitoring

    NASA Astrophysics Data System (ADS)

    Pacilli, M.; Allegrini, P.; Girolami, M.; Conte, G.; Spiriti, E.; Ralchenko, V. G.; Komlenok, M. S.; Khomic, A. A.; Konov, V. I.

    2013-02-01

    We report the 90Sr beta response of a polycrystalline diamond pixel detector fabricated using metal-less graphitic ohmic contacts. Laser induced graphitization was used to realize multiple squared conductive contacts with 1mm × 1mm area, 0.2 mm apart, on one detector side while on the other side, for biasing, a 9mm × 9mm large graphite contact was realized. A proximity board was used to wire bonding nine pixels at a time and evaluate the charge collection homogeneity among the 36 detector pixels. Different configurations of biasing were experimented to test the charge collection and noise performance: connecting the pixel at the ground potential of the charge amplifier led to best results and minimum noise pedestal. The expected exponential trend typical of beta particles has been observed. Reversing the bias polarity the pulse height distribution (PHD) does not changes and signal saturation of any pixel was observed around ±200V (0.4 V/μm). Reasonable pixels response uniformity has been evidenced even if smaller pitch 50÷100 μm structures need to be tested.

  15. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  16. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  17. Optics and cryogenics for the 1.1 THz multi-pixel heterodyne receiver for APEX

    NASA Astrophysics Data System (ADS)

    Hurtado, Norma; Graf, Urs U.; Adams, Henning; Honingh, C. E.; Jacobs, Karl; Pütz, Patrick; Güsten, Rolf; Stutzki, Jürgen

    2014-08-01

    The 1.1 THz multi-pixel heterodyne receiver will be mounted in the Nasmyth A cabin of the 12 m APEX telescope on the Chajnantor plateau, 5000 meters altitude in northern Chile. The receiver will cover the spectral window of 1000 - 1080 GHz, where important spectral lines like CO 9-8 at 1036.9 GHz, a tracer of warm and dense gas and OH+ at 1033 GHz and NH+ at 1012.6 GHz, both important for the study of chemical networks in the ISM, are located. The multi-pixel receiver greatly enhances the science output under the difficult observing conditions in this frequency range. Two 9-pixel focal plane sub-arrays on orthogonal polarizations are installed in easily removable cartridges. We developed a new thermal link to connect the cartridges to the cryostat. Our thermal link is an all-metal design: aluminum and Invar. All the optics is fully reflective, thus avoiding the absorption and reflection losses of dielectric lenses and reducing standing waves in the receiver. To guaranty internal optics alignment, we employ a monolithic integrated optics approach for the cold optics and the Focal Plane Unit (FPU) optics modeled after the CHARM (Compact Heterodyne Array Receiver Module) concept. The receiver uses synthesizer-driven solid-state local oscillators (LO) and the mixers will be balanced SIS mixers, which are essentially based on the design of the on-chip balanced SIS mixers at 490 GHz developed in our institute. Singleended HEB mixers are used for the laboratory tests of the optics. The LO power distribution is accommodated behind the FPU optics. It is composed of the LO optics, which includes a collimating Fourier grating, and an LO distribution plate to supply LO signal to each of the 9 pixels of the sub-array. Different options for the LO coupling design and fabrication are being analyzed and will be based on in-house hybrid waveguide/planar technology. We summarize the receiver project with emphasis on the cryogenics and the optics and present laboratory test results

  18. Community Links

    ERIC Educational Resources Information Center

    Nelson, Mary

    1975-01-01

    At Moraine Valley Community College (Illinois), a chain of events, programs, activities, and services has linked the college and community in such areas as fine arts, ethnic groups, public services, community action, community service, and community education. (Author/NHM)

  19. Link Analysis

    NASA Astrophysics Data System (ADS)

    Donoho, Steve

    Link analysis is a collection of techniques that operate on data that can be represented as nodes and links. This chapter surveys a variety of techniques including subgraph matching, finding cliques and K-plexes, maximizing spread of influence, visualization, finding hubs and authorities, and combining with traditional techniques (classification, clustering, etc). It also surveys applications including social network analysis, viral marketing, Internet search, fraud detection, and crime prevention.

  20. Introducing sub-wavelength pixel THz camera for the understanding of close pixel-to-wavelength imaging challenges

    NASA Astrophysics Data System (ADS)

    Bergeron, A.; Marchese, L.; Bolduc, M.; Terroux, M.; Dufour, D.; Savard, E.; Tremblay, B.; Oulachgar, H.; Doucet, M.; Le Noc, L.; Alain, C.; Jerominek, H.

    2012-06-01

    Conventional guidelines and approximations useful in macro-scale system design can become invalidated when applied to the smaller scales. An illustration of this is when camera pixel size becomes smaller than the diffraction-limited resolution of the incident light. It is sometimes believed that there is no benefit in having a pixel width smaller than the resolving limit defined by the Raleigh criterion, 1.22 λ F/#. Though this rarely occurs in today's imaging technology, terahertz (THz) imaging is one emerging area where the pixel dimensions can be made smaller than the imaging wavelength. With terahertz camera technology, we are able to achieve sub-wavelength pixel sampling pitch, and therefore capable of directly measuring if there are image quality benefits to be derived from sub-wavelength sampling. Interest in terahertz imaging is high due to potential uses in security applications because of the greater penetration depth of terahertz radiation compared to the infrared and the visible. This paper discusses the modification by INO of its infrared MEMS microbolometer detector technology toward a THz imaging platform yielding a sub-wavelength pixel THz camera. Images obtained with this camera are reviewed in this paper. Measurements were also obtained using microscanning to increase sampling resolution. Parameters such as imaging resolution and sampling are addressed. A comparison is also made with results obtained with an 8-12 μm band camera having a pixel pitch close to the diffractionlimit.

  1. Deployment of the CMS Tracker AMC as backend for the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Auzinger, G.

    2016-01-01

    The silicon pixel detector of the CMS experiment at CERN will be replaced with an upgraded version at the beginning of 2017 with the new detector featuring an additional barrel- and end-cap layer resulting in an increased number of fully digital read-out links running at 400 Mbps. New versions of the PSI46 Read-Out Chip and Token Bit Manager have been developed to operate at higher rates and reduce data loss. Front-End Controller and Front-End Driver boards, based on the μTCA compatible CMS Tracker AMC, a variant of the FC7 card, are being developed using different mezzanines to host the optical links for the digital read-out and control system. An overview of the system architecture is presented, with details on the implementation, and first results obtained from test systems.

  2. VeloPix: the pixel ASIC for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Poikela, T.; De Gaspari, M.; Plosila, J.; Westerlund, T.; Ballabriga, R.; Buytaert, J.; Campbell, M.; Llopart, X.; Wyllie, K.; Gromov, V.; van Beuzekom, M.; Zivkovic, V.

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 along with the other subsystems of LHCb in order to enable full readout at 40 MHz, with the data fed directly to the software triggering algorithms. The upgraded VELO is a lightweight hybrid pixel detector operating in vacuum in close proximity to the LHC beams. The readout will be provided by a dedicated front-end ASIC, dubbed VeloPix, matched to the LHCb readout requirements and the 55 × 55 μm VELO pixel dimensions. The chip is closely related to the Timepix3, from the Medipix family of ASICs. The principal challenge that the chip has to meet is a hit rate of up to 900 Mhits/s, resulting in a required output bandwidth of more than 16 Gbit/s. The occupancy across the chip is also very non-uniform, and the radiation levels reach an integrated 400 Mrad over the lifetime of the detector.VeloPix is a binary pixel readout chip with a data driven readout, designed in 130 nm CMOS technology. The pixels are combined into groups of 2 × 4 super pixels, enabling a shared logic and a reduction of bandwidth due to combined address and time stamp information. The pixel hits are combined with other simultaneous hits in the same super pixel, time stamped, and immediately driven off-chip. The analog front-end must be sufficiently fast to accurately time stamp the data, with a small enough dead time to minimize data loss in the most occupied regions of the chip. The data is driven off chip with a custom designed high speed serialiser. The current status of the ASIC design, the chip architecture and the simulations will be described.

  3. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    NASA Astrophysics Data System (ADS)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  4. Smart pixel imaging with computational-imaging arrays

    NASA Astrophysics Data System (ADS)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  5. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  6. Opto-thermal performance of high power LEDs: Packaging and materials dependence

    NASA Astrophysics Data System (ADS)

    You, Jiun-Pyng

    The first part of this work is focusing on the thermal management of light-emitting diode (LED) packages. The diode forward voltage technique is utilized to characterize the thermal performance of power LEDs. We have evaluated thermal characteristics of commercial die attach adhesives (DAA) in terms of p-n junction temperature and thermal resistance from the junction to the board in the LED packages. For a given LED package, the results show that the thermal impact is minimal when the thermal conductivities of DAA are larger than 5 W(mK)-1 for 1 W blue LEDs. We also developed the DAA with thin bondline by preparing polymer filled with nano-sized silver particles. Although the thermal conductivity of nano silver DAA is low, the thermal resistance from the junction to printed circuit board is just 1.6 KW-1 with the bondline thickness of 5.3 mum, which is comparable with the best commercial DAA. In high power LED thermal design, low thermal resistance can be achieved not only with high thermal conductivity of DAA but also with thin bondline thickness. In the second part, the phosphor concentration effects on opto-thermal characteristics of power phosphor-converted white LEDs (pc-WLEDs) are investigated. It is found that the phosphor conversion efficiency of white LEDs driven under constant current is lower than under pulse current. In addition, the pc-WLEDs driven under constant current exhibit a higher junction temperature than under pulse current, and the difference depends the phosphor concentration. Moreover, it is found that the phosphor conversion efficiency linearly decreases with the junction temperature. For both pulse and constant current modes, pc-WLEDs with a relatively higher phosphor concentration show relatively stable optical characteristics under a large drive current range. At a relatively higher phosphor concentration, the correlated color temperature (CCT) and the chromaticity coordinates have also been observed to be relatively stable for white

  7. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    NASA Astrophysics Data System (ADS)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  8. Super pixel density based clustering automatic image classification method

    NASA Astrophysics Data System (ADS)

    Xu, Mingxing; Zhang, Chuan; Zhang, Tianxu

    2015-12-01

    The image classification is an important means of image segmentation and data mining, how to achieve rapid automated image classification has been the focus of research. In this paper, based on the super pixel density of cluster centers algorithm for automatic image classification and identify outlier. The use of the image pixel location coordinates and gray value computing density and distance, to achieve automatic image classification and outlier extraction. Due to the increased pixel dramatically increase the computational complexity, consider the method of ultra-pixel image preprocessing, divided into a small number of super-pixel sub-blocks after the density and distance calculations, while the design of a normalized density and distance discrimination law, to achieve automatic classification and clustering center selection, whereby the image automatically classify and identify outlier. After a lot of experiments, our method does not require human intervention, can automatically categorize images computing speed than the density clustering algorithm, the image can be effectively automated classification and outlier extraction.

  9. Multiport solid-state imager characterization at variable pixel rates

    SciTech Connect

    Yates, G.J.; Albright, K.A.; Turko, B.T.

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  10. Pixel classification based color image segmentation using quaternion exponent moments.

    PubMed

    Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying

    2016-02-01

    Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature.

  11. PIXSCAN: Pixel detector CT-scanner for small animal imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.; Debarbieux, F.; Basolo, S.; Berar, J. F.; Bonissent, A.; Boudet, N.; Breugnon, P.; Caillot, B.; Cassol Brunner, F.; Chantepie, B.; Clemens, J. C.; Dinkespiler, B.; Khouri, R.; Koudobine, I.; Mararazzo, V.; Meessen, C.; Menouni, M.; Morel, C.; Mouget, C.; Pangaud, P.; Peyrin, F.; Rougon, G.; Sappey-Marinier, D.; Valton, S.; Vigeolas, E.

    2007-02-01

    The PIXSCAN is a small animal CT-scanner based on hybrid pixel detectors. These detectors provide very large dynamic range of photons counting at very low detector noise. They also provide high counting rates with fast image readout. Detection efficiency can be optimized by selecting the sensor medium according to the working energy range. Indeed, the use of CdTe allows a detection efficiency of 100% up to 50 keV. Altogether these characteristics are expected to improve the contrast of the CT-scanner, especially for soft tissues, and to reduce both the scan duration and the absorbed dose. A proof of principle has been performed by assembling into a PIXSCAN-XPAD2 prototype the photon counting pixel detector initially built for detection of X-ray synchrotron radiations. Despite the relatively large pixel size of this detector (330×330 μm 2), we can present three-dimensional tomographic reconstruction of mice at good contrast and spatial resolution. A new photon counting chip (XPAD3) is designed in sub-micronique technology to achieve 130×130 μm 2 pixels. This improved circuit has been equipped with an energy selection circuit to act as a band-pass emission filter. Furthermore, the PIXSCAN-XPAD3 hybrid pixel detectors will be combined with the Lausanne ClearPET scanner demonstrator. CT image reconstruction in this non-conventional geometry is under study for this purpose.

  12. Pixel classification based color image segmentation using quaternion exponent moments.

    PubMed

    Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying

    2016-02-01

    Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature. PMID:26618250

  13. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  14. Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

    NASA Astrophysics Data System (ADS)

    Conti, E.; Marconi, S.; Christiansen, J.; Placidi, P.; Hemperek, T.

    2016-01-01

    The simulation and verification framework developed by the RD53 collaboration is a powerful tool for global architecture optimization and design verification of next generation hybrid pixel readout chips. In this paper the framework is used for studying digital pixel chip architectures at behavioral level. This is carried out by simulating a dedicated, highly parameterized pixel chip description, which makes it possible to investigate different grouping strategies between pixels and different latency buffering and arbitration schemes. The pixel hit information used as simulation input can be either generated internally in the framework or imported from external Monte Carlo detector simulation data. The latter have been provided by both the CMS and ATLAS experiments, featuring HL-LHC operating conditions and the specifications related to the Phase 2 upgrade. Pixel regions and double columns were simulated using such Monte Carlo data as inputs: the performance of different latency buffering architectures was compared and the compliance of different link speeds with the expected column data rate was verified.

  15. Recent Progress In Lithium Niobate Integrated Optics Technology Under A Collaborative Joint Opto-Electronics Research Scheme (JOERS) Programme

    NASA Astrophysics Data System (ADS)

    Grant, M. F.; Donaldson, A.; Gibson, D. R.; Wale, M.

    1988-01-01

    In January 1984, a United Kingdom Joint Opto-Electronics Research Scheme (JOERS) on LiNbO3 technology for integrated optics commenced. This 65 man-year programme, which ended in April 1987, was undertaken jointly by four industrial companies and four universities, representing almost all of the LiNbO3 integrated optics expertise in the U.K. at that time. The aim of the programme was twofold: to develop high quality LiNbO3 wafers for integrated optics applications through close collaboration between the material manufacturers and the material users and to establish a strong technology base in device design and fabrication. This paper outlines some of the main achievements of the programme. Topics covered include work on LiNbO3 material optimisation, waveguide fabrication technology (Ti-indiffused, proton-exchanged, and ion-implanted waveguides), and waveguide interconnection technology (low loss curves, modal profile variation), and fibre-guide coupling.

  16. High-precision opto-mechanical lens system for space applications assembled by innovative local soldering technique

    NASA Astrophysics Data System (ADS)

    Ribes, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.

    2016-02-01

    Solder joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard taking as input specifications the requirements found for the optical beam expander for the European Space Agency (ESA) EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands; handling high mechanical and thermal loads without losing its optical performances. Finally a high-precision opto-mechanical lens mount has been assembled with a minimal localized stress (<1 MPa) showing outstanding performances in terms of wave-front error measurements and beam depolarization ratio before and after environmental tests.

  17. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.

  18. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  19. Strained layer (1. 5 [mu]m) InP/InGaAsP lasing opto-electronic switch (LOES)

    SciTech Connect

    Swoger, J.H.; Qiu, C.; Simmons, J.G.; Thompson, D.A. . Centre for Electrophotonic Materials and Devices); Sheperd, F.; Beckett, D.; Cleroux, M. )

    1994-08-01

    The authors present for the first time a Lasing Opto-Electronic Switch (LOES) fabricated in the InP/InGaAsP system. In this device the active region is composed of four 63 [angstrom] compressively strained quantum wells. A lasing threshold of 104 mA, or 6933 A/cm[sup 2], has been observed at a temperature of 298 K, with an external differential quantum efficiency of 14%. The lasing wavelength is centered at 1.52 [mu]m. The current-voltage characteristics manifest pronounced differential negative resistance, characterized by switching and holding voltages of 6.8 V and 1.6 V, respectively, and a switching current density of 33 A/cm[sup 2]. The OFF and ON state resistances are approximately 150 k[Omega] and 4 [Omega], respectively.

  20. Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates

    NASA Astrophysics Data System (ADS)

    Chang, R. C.; Li, T. C.; Lin, C. W.

    2012-02-01

    Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.

  1. Method and apparatus of high dynamic range image sensor with individual pixel reset

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)

    2001-01-01

    A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.

  2. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    NASA Astrophysics Data System (ADS)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  3. Polymer opto-chemical-electronic based module as a detection system for volatile analytes on a foil substrate

    NASA Astrophysics Data System (ADS)

    Bose, Indranil; Ohlander, Anna; Stich, Matthias I. J.; Kiesl, Christian; Hemmetzberger, Dieter; Klink, Gerhard; Trupp, Sabine; Bock, Karlheinz

    2012-10-01

    In this paper, we report on a novel device that addresses the needs for an efficient, field deployable and disposable system in the field of bio-chemical sensors using organic semiconductors. The Fraunhofer Institute has enabled a complete roll-to-roll manufactured polymer-opto-chemical-electronic module on a foil substrate, wherein an electroluminescent light source has been hetero-integrated together with an organic TFT, working as a photo detector. A chemically sensitive, colour changing film is sandwiched in between the two elements to form an optical detection system for volatile analytes such as amines. The setup, henceforth referred to as the "PolyOpto" module, comprises of a dye coated layer that can detect specific chemical reactions by colour change inserted in between the EL light source and the OTFT photo-detector. A hole is laser cut through the system to allow the sensor layer to come in contact with the gases, which then through a chemical reaction, changes colour and initiates a different response in the output of the organic transistor. Hence, this allows for a disposable chemo-analytical system that can be used in various application fields. As compared to conventional systems, the advantage here lies in the direct integration of the different functionalities without any advanced assembly steps, simultaneous use of coatings for both components (transparent electrode and wiring layer) and roll-to-roll compatibility, thus rendering a disposable system. We believe that it aptly demonstrates the capabilities of polytronics in functional integration for low-cost bio-sensor manufacturing.

  4. Virus based Full Colour Pixels using a Microheater.

    PubMed

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-01-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature's inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future. PMID:26334322

  5. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  6. Calibration analysis software for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  7. Depleted CMOS pixels for LHC proton-proton experiments

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2016-07-01

    While so far monolithic pixel detectors have remained in the realm of comparatively low rate and radiation applications outside LHC, new developments exploiting high resistivity substrates with three or four well CMOS process options allow reasonably large depletion depths and full CMOS circuitry in a monolithic structure. This opens up the possibility to target CMOS pixel detectors also for high radiation pp-experiments at the LHC upgrade, either in a hybrid-type fashion or even fully monolithic. Several pixel matrices have been prototyped with high ohmic substrates, high voltage options, and full CMOS electronics. They were characterized in the lab and in test beams. An overview of the necessary development steps and different approaches as well as prototype results are presented in this paper.

  8. Introducing a 384x288 pixel terahertz camera core

    NASA Astrophysics Data System (ADS)

    Chevalier, C.; Mercier, L.,; Duchesne, F.; Gagnon, L.; Tremblay, B.; Terroux, M.; Généreux, F.; Paultre, J.-E.; Provençal, F.; Desroches, Y.; Marchese, L.; Jerominek, H.; Alain, C.; Bergeron, A.

    2013-03-01

    Terahertz is a field in expansion with the emergence of various security needs such as parcel inspection and through-camouflage vision. Terahertz wavebands are characterized by long wavelengths compared to the traditional infrared and visible spectra. However, it has recently been demonstrated that a 52 μm pixel pitch microscanned down to an efficient sampling pitch of 26 μm could provide useful information even using a 118.83 μm wavelength. With this in mind, INO has developed a terahertz camera core based on a 384x288 pixel 35 μm pixel pitch uncooled bolometric terahertz detector. The camera core provides full 16-bit output video rate.

  9. Virus based Full Colour Pixels using a Microheater

    NASA Astrophysics Data System (ADS)

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-09-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future.

  10. Planar pixel sensors for the ATLAS upgrade: beam tests results

    NASA Astrophysics Data System (ADS)

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoska, Z.; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-10-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  11. Virus based Full Colour Pixels using a Microheater

    PubMed Central

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-01-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future. PMID:26334322

  12. Imaging by photon counting with 256x256 pixel matrix

    NASA Astrophysics Data System (ADS)

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H. M.; Llopart, Xavier

    2004-09-01

    Using 0.25µm standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256x256 square 55µm pixels intended for X-ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise ~150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3x10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13-bit register. The serial readout takes 5-10 ms. A parallel readout of ~300 µs could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to the homogeneous response over a large sensor area. The sensor material can be adapted to the energy of the X-rays. Best results have been obtained with high-resistivity silicon detectors, but also CdTe and GaAs detectors have been used. The lowest detectable X-ray energy was about 4 keV. Background measurements have been made, as well as measurements of the uniformity of imaging by photon counting. Very low photon count rates are feasible and noise-free at room temperature. The readout matrix can be used also with visible photons if an energy or charge intensifier structure is interposed such as a gaseous amplification layer or a microchannel plate or acceleration field in vacuum.

  13. Mapping Pixel Windows To Vectors For Parallel Processing

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    1996-01-01

    Mapping performed by matrices of transistor switches. Arrays of transistor switches devised for use in forming simultaneous connections from square subarray (window) of n x n pixels within electronic imaging device containing np x np array of pixels to linear array of n(sup2) input terminals of electronic neural network or other parallel-processing circuit. Method helps to realize potential for rapidity in parallel processing for such applications as enhancement of images and recognition of patterns. In providing simultaneous connections, overcomes timing bottleneck or older multiplexing, serial-switching, and sample-and-hold methods.

  14. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  15. The BTeV pixel detector and trigger system

    SciTech Connect

    Simon Kwan

    2002-12-03

    BTeV is an approved forward collider experiment at the Fermilab Tevatron dedicated to the precision studies of CP violation, mixing, and rare decays of beauty and charm hadrons. The BTeV detector has been designed to achieve these goals. One of the unique features of BTeV is a state-of-the-art pixel detector system, designed to provide accurate measurements of the decay vertices of heavy flavor hadrons that can be used in the first trigger level. The pixel vertex detector and the trigger design are described. Recent results on some of the achievements in the R and D effort are presented.

  16. Highly Reflective Multi-stable Electrofluidic Display Pixels

    NASA Astrophysics Data System (ADS)

    Yang, Shu

    Electronic papers (E-papers) refer to the displays that mimic the appearance of printed papers, but still owning the features of conventional electronic displays, such as the abilities of browsing websites and playing videos. The motivation of creating paper-like displays is inspired by the truths that reading on a paper caused least eye fatigue due to the paper's reflective and light diffusive nature, and, unlike the existing commercial displays, there is no cost of any form of energy for sustaining the displayed image. To achieve the equivalent visual effect of a paper print, an ideal E-paper has to be a highly reflective with good contrast ratio and full-color capability. To sustain the image with zero power consumption, the display pixels need to be bistable, which means the "on" and "off" states are both lowest energy states. Pixel can change its state only when sufficient external energy is given. There are many emerging technologies competing to demonstrate the first ideal E-paper device. However, none is able to achieve satisfactory visual effect, bistability and video speed at the same time. Challenges come from either the inherent physical/chemical properties or the fabrication process. Electrofluidic display is one of the most promising E-paper technologies. It has successfully demonstrated high reflectivity, brilliant color and video speed operation by moving colored pigment dispersion between visible and invisible places with electrowetting force. However, the pixel design did not allow the image bistability. Presented in this dissertation are the multi-stable electrofluidic display pixels that are able to sustain grayscale levels without any power consumption, while keeping the favorable features of the previous generation electrofluidic display. The pixel design, fabrication method using multiple layer dry film photoresist lamination, and physical/optical characterizations are discussed in details. Based on the pixel structure, the preliminary

  17. Sensor design for the ATLAS-pixel detector

    NASA Astrophysics Data System (ADS)

    Rohe, T.; Hügging, F.; Lutz, G.; Richter, R. H.; Wunstorf, R.

    1998-02-01

    The inner detector of the ATLAS experiment will contain three layers of pixel detectors. The first prototype of the sensor part will be an n +n-device in order to allow partial depleted operation after bulk inversion and a guard-ring scheme keeping the entire detector surface close to the electronic chip on ground potential. Further, a bias structure is introduced providing testability of the sensors before mounting them to the electronics. The design of the single pixel cell is the result of a detailed device simulation study.

  18. The BTeV pixel and microstrip detector

    SciTech Connect

    Simon W Kwan

    2003-06-04

    The BTeV pixel detector is one of the most crucial elements in the BTeV experiment. While the pixel detector is technically challenging, we have made great progress towards identifying viable solutions for individual components of the system. The forward silicon tracker is based on more mature technology and its design has benefited from the experience of other experiments. Nevertheless, we have started an R&D program on the forward silicon tracker and first results are expected some time next year.

  19. Development of a high density pixel multichip module at Fermilab

    SciTech Connect

    Cardoso, G.

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  20. Pixel multichip module design for a high energy physics experiment

    SciTech Connect

    Guilherme Cardoso et al.

    2003-11-05

    At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

  1. Development of a high density pixel multichip module at Fermilab

    SciTech Connect

    Sergio Zimmermann et al.

    2001-09-11

    At Fermilab, a pixel detector multichip module is being developed for the BTeV experiment. The module is composed of three layers. The lowest layer is formed by the readout integrated circuits (ICs). The back of the ICs is in thermal contact with the supporting structure, while the top is flip-chip bump-bonded to the pixel sensor. A low mass flex-circuit interconnect is glued on the top of this assembly, and the readout IC pads are wire-bounded to the circuit. This paper presents recent results on the development of a multichip module prototype and summarizes its performance characteristics.

  2. How spectroscopic x-ray imaging benefits from inter-pixel communication

    NASA Astrophysics Data System (ADS)

    Koenig, Thomas; Zuber, Marcus; Hamann, Elias; Cecilia, Angelica; Ballabriga, Rafael; Campbell, Michael; Ruat, Marie; Tlustos, Lukas; Fauler, Alex; Fiederle, Michael; Baumbach, Tilo

    2014-10-01

    Spectroscopic x-ray imaging based on pixellated semiconductor detectors can be sensitive to charge sharing and K-fluorescence, depending on the sensor material used, its thickness and the pixel pitch employed. As a consequence, spectroscopic resolution is partially lost. In this paper, we study a new detector ASIC, the Medipix3RX, that offers a novel feature called charge summing, which is established by making adjacent pixels communicate with each other. Consequently, single photon interactions resulting in multiple hits are almost completely avoided. We investigate this charge summing mode with respect to those of its imaging properties that are of interest in medical physics and benchmark them against the case without charge summing. In particular, we review its influence on spectroscopic resolution and find that the low energy bias normally present when recording energy spectra is dramatically reduced. Furthermore, we show that charge summing provides a modulation transfer function which is almost independent of the energy threshold setting, which is in contrast to approaches common so far. We demonstrate that this property is directly linked to the detective quantum efficiency, which is found to increase by a factor of three or more when the energy threshold approaches the photon energy and when using charge summing. As a consequence, the contrast-to-noise ratio is found to double at elevated threshold levels and the dynamic range increases for a given counter depth. All these effects are shown to lead to an improved ability to perform material discrimination in spectroscopic CT, using iodine and gadolinium contrast agents. Hence, when compared to conventional photon counting detectors, these benefits carry the potential of substantially reducing the imaging dose a patient is exposed to during diagnostic CT examinations.

  3. Sub-pixel phase-measuring interferometry with interlace stitching

    NASA Technical Reports Server (NTRS)

    Mooney, James T.

    2005-01-01

    Measurement of mid spatial frequency figure error is critical to large precision optics for missions such as TPF-C. This presentation introduces a technique for increasing the spatial sampling resolution to meet these requirements using conventional video resolution phase-measuring interferometer. Technique involves sub-pixel data shifts, interlaced stitching and PSF deconvolution.

  4. The NUC and blind pixel eliminating in the DTDI application

    NASA Astrophysics Data System (ADS)

    Su, Xiao Feng; Chen, Fan Sheng; Pan, Sheng Da; Gong, Xue Yi; Dong, Yu Cui

    2013-12-01

    AS infrared CMOS Digital TDI (Time Delay and integrate) has a simple structure, excellent performance and flexible operation, it has been used in more and more applications. Because of the limitation of the Production process level, the plane array of the infrared detector has a large NU (non-uniformity) and a certain blind pixel rate. Both of the two will raise the noise and lead to the TDI works not very well. In this paper, for the impact of the system performance, the most important elements are analyzed, which are the NU of the optical system, the NU of the Plane array and the blind pixel in the Plane array. Here a reasonable algorithm which considers the background removal and the linear response model of the infrared detector is used to do the NUC (Non-uniformity correction) process, when the infrared detector array is used as a Digital TDI. In order to eliminate the impact of the blind pixel, the concept of surplus pixel method is introduced in, through the method, the SNR (signal to noise ratio) can be improved and the spatial and temporal resolution will not be changed. Finally we use a MWIR (Medium Ware Infrared) detector to do the experiment and the result proves the effectiveness of the method.

  5. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  6. Transversal-readout CMOS active pixel image sensor

    NASA Astrophysics Data System (ADS)

    Miyatake, Shigehiro; Ishida, Kouichi; Morimoto, Takashi; Masaki, Yasuo; Tanabe, Hideki

    2001-05-01

    This paper presents a CMOS active pixel image sensor (APS) with a transversal readout architecture that eliminates the vertically striped fixed pattern noise (FPN). There are two kinds of FPNs for CMOS APSs. One originates form the pixel- to-pixel variation in dark current and source-follower threshold voltage, and the other from the column-to-column variation in column readout structures. The former may become invisible in the future due to process improvements. However, the latter, which result sin a vertically striped FPN, is and will be conspicuous without some subtraction because of the correlation in the vertical direction. The pixel consists of a photodiode, a row- and a column-reset transistor, a source follower input transistor, and a column-select transistor instead of the row-select transistor in conventional CMOS APSs. The column-select transistor is connected to a signal line, which runs horizontally instead of vertically. Every horizontal signal line is merged into a single vertical signal line via a row- select transistor, which can be made large enough to make its on-resistence variation negligible because of its low driving frequency. Therefore, the sensor has neither a vertical nor horizontal stripe FPN.

  7. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  8. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-05-01

    Recent observations of the photosphere using high spatial and temporal resolutions show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A new pixel dynamics method uses spectrographic images to characterize photospheric absorption line profiles by variations in line displacement, width, asymmetry, and peakedness and is applied to quiet-sun regions, active regions with no eruption, and an active region with an ongoing eruption. Using Stokes I images from SOLIS/VSM on 2012 March 13, variations in line width and peakedness of Fe I 6301.5 Å are shown to have a strong spatial and temporal relationship with an M7.9 X-ray flare originating from NOAA 11429. This relationship is observed as a flattening in the line profile as the X-ray flare approaches peak intensity and was not present in area scans of a non-eruptive active region on 2011 April 14. These results are used to estimate dynamic plasma properties on sub-pixel scales and provide both spatial and temporal information of sub-pixel activity at the photosphere. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties.

  9. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGES

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; et al

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixelmore » cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  10. Experimental tests of a hybrid pixellated detector for gamma imaging

    NASA Astrophysics Data System (ADS)

    Gal, O.; Mikulec, B.; Million, M.

    2001-03-01

    In the framework of the MEDIPIX Collaboration, a hybrid pixel detector has been developed primarily for X-ray radiography. This detector consists of a 64×64 pixel photon counting chip (PCC), bump bonded to a 200 μm thick GaAs substrate. The PCC is optimised for energy depositions in the range of a few keV to a few tens of keV. The aim of this study is to evaluate the detector for applications in decommissioning of nuclear power plants where typical sources have energies in range of a few hundred keV. Tests were realised using a 137Cs gamma source (660 keV). At this energy, Monte-Carlo simulations predict that, on average, for more than 60% of primary interactions, there is at least one pixel on which the deposited energy exceeds 100 keV. Simulations also allow modelling of the spatial energy spreading. The comparison of the simulation results with experimental data should indicate if there is a significant contribution of electrical cross-coupling between pixels to the cluster size of the detected hits. The results obtained demonstrate promising perspectives for this kind of detector towards gamma imaging applications.

  11. Optimization of Focusing by Strip and Pixel Arrays

    SciTech Connect

    Burke, G J; White, D A; Thompson, C A

    2005-06-30

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting strips and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.

  12. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    PubMed

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  13. Sub-pixel localization of highways in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda

    1995-01-01

    Roads and highways show up clearly in many bands of AVIRIS images. A typical lane in the U.S. is 12 feet wide, and the total width of a four lane highway, including 18 feet of paved shoulders, is 19.8 m. Such a highway will cover only a portion of any 20x20 m AVIRIS pixel that it traverses. The other portion of these pixels wil be usually covered by vegetation. An interesting problem is to precisely determine the location of a highway within the AVIRIS pixels that it traverses. This information may be used for alignment and spatial calibration of AVIRIS images. Also, since the reflection properties of highway surfaces do not change with time, and they can be determined once and for all, such information can be of help in calculating and filtering out the atmospheric noise that contaminates AVIRIS measurements. The purpose of this report is to describe a method for sub-pixel localization of highways.

  14. Silicon avalanche pixel sensor for high precision tracking

    NASA Astrophysics Data System (ADS)

    D'Ascenzo, N.; Marrocchesi, P. S.; Moon, C. S.; Morsani, F.; Ratti, L.; Saveliev, V.; Savoy Navarro, A.; Xie, Q.

    2014-03-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of the large track occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS processes and integration of processing electronics.

  15. Overview of the BTeV Pixel Detector

    SciTech Connect

    Jeffrey A Appel

    2002-12-10

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton

  16. Remote Sensing Classification Uncertainty: Validating Probabilistic Pixel Level Classification

    NASA Astrophysics Data System (ADS)

    Vrettas, Michail; Cornford, Dan; Bastin, Lucy; Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Ninyerola, Miquel

    2013-04-01

    There already exists an extensive literature on classification of remotely sensed imagery, and indeed classification more widely, that considers a wide range of probabilistic and non-probabilistic classification methodologies. Although for many probabilistic classification methodologies posterior class probabilities are produced per pixel (observation) these are often not communicated at the pixel level, and typically not validated at the pixel level. Most often the probabilistic classification in converted into a hard classification (of the most probable class) and the accuracy of the resulting classification is reported in terms of a global confusion matrix, or some score derived from this. For applications where classification accuracy is spatially variable and where pixel level estimates of uncertainty can be meaningfully exploited in workflows that propagate uncertainty validating and communicating the pixel level uncertainty opens opportunities for more refined and accountable modelling. In this work we describe our recent work applying and validation of a range of probabilistic classifiers. Using a multi-temporal Landsat data set of the Ebro Delta in Catalonia, which has been carefully radiometrically and geometrically corrected, we present a range of Bayesian classifiers from simple Bayesian linear discriminant analysis to a complex variational Gaussian process based classifier. Field study derived labelled data, classified into 8 classes, which primarily consider land use and the degree of flooding in what is a rice growing region, are used to train the pixel level classifiers. Our focus is not so much on the classification accuracy, but rather the validation of the probabilistic classification made by all methods. We present a range of validation plots and scores, many of which are used for probabilistic weather forecast verification, but are new to remote sensing classification including of course the standard measures of misclassification, but also

  17. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; French, M.; Manolopoulos, S.; Tyndel, M.; Allport, P.; Bates, R.; O'Shea, V.; Hall, G.; Raymond, M.

    2003-03-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to tape. Because of the large number of pixels, data reduction is needed on the sensor itself or just outside. This brings in stringent requirements on the temporal noise as well as to the sensor uniformity, expressed as a Fixed Pattern Noise (FPN). A pixel architecture with an additional transistor is proposed. This architecture, coupled to correlated double sampling of the signal will allow cancellation of the two dominant noise sources, namely the reset or kTC noise and the FPN. A prototype has been designed in a standard 0.25 μm CMOS technology. It has also a structure for electrical calibration of the sensor. The prototype is functional and detailed tests are under way.

  18. Dependent video coding using a tree representation of pixel dependencies

    NASA Astrophysics Data System (ADS)

    Amati, Luca; Valenzise, Giuseppe; Ortega, Antonio; Tubaro, Stefano

    2011-09-01

    Motion-compensated prediction induces a chain of coding dependencies between pixels in video. In principle, an optimal selection of encoding parameters (motion vectors, quantization parameters, coding modes) should take into account the whole temporal horizon of a GOP. However, in practical coding schemes, these choices are made on a frame-by-frame basis, thus with a possible loss of performance. In this paper we describe a tree-based model for pixelwise coding dependencies: each pixel in a frame is the child of a pixel in a previous reference frame. We show that some tree structures are more favorable than others from a rate-distortion perspective, e.g., because they entail a large descendance of pixels which are well predicted from a common ancestor. In those cases, a higher quality has to be assigned to pixels at the top of such trees. We promote the creation of these structures by adding a special discount term to the conventional Lagrangian cost adopted at the encoder. The proposed model can be implemented through a double-pass encoding procedure. Specifically, we devise heuristic cost functions to drive the selection of quantization parameters and of motion vectors, which can be readily implemented into a state-of-the-art H.264/AVC encoder. Our experiments demonstrate that coding efficiency is improved for video sequences with low motion, while there are no apparent gains for more complex motion. We argue that this is due to both the presence of complex encoder features not captured by the model, and to the complexity of the source to be encoded.

  19. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  20. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  1. OptoGluNAM4.1, a Photoswitchable Allosteric Antagonist for Real-Time Control of mGlu4 Receptor Activity.

    PubMed

    Rovira, Xavier; Trapero, Ana; Pittolo, Silvia; Zussy, Charleine; Faucherre, Adèle; Jopling, Chris; Giraldo, Jesús; Pin, Jean-Philippe; Gorostiza, Pau; Goudet, Cyril; Llebaria, Amadeu

    2016-08-18

    OptoGluNAM4.1, a negative allosteric modulator (NAM) of metabotropic glutamate receptor 4 (mGlu4) contains a reactive group that covalently binds to the receptor and a blue-light-activated, fast-relaxing azobenzene group that allows reversible receptor activity photocontrol in vitro and in vivo. OptoGluNAM4.1 induces light-dependent behavior in zebrafish and reverses the activity of the mGlu4 agonist LSP4-2022 in a mice model of chronic pain, defining a photopharmacological tool to better elucidate the physiological roles of the mGlu4 receptor in the nervous system. PMID:27478159

  2. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool

    PubMed Central

    van Wyk, Michiel; Pielecka-Fortuna, Justyna; Löwel, Siegrid; Kleinlogel, Sonja

    2015-01-01

    Photoreceptor degeneration is one of the most prevalent causes of blindness. Despite photoreceptor loss, the inner retina and central visual pathways remain intact over an extended time period, which has led to creative optogenetic approaches to restore light sensitivity in the surviving inner retina. The major drawbacks of all optogenetic tools recently developed and tested in mouse models are their low light sensitivity and lack of physiological compatibility. Here we introduce a next-generation optogenetic tool, Opto-mGluR6, designed for retinal ON-bipolar cells, which overcomes these limitations. We show that Opto-mGluR6, a chimeric protein consisting of the intracellular domains of the ON-bipolar cell–specific metabotropic glutamate receptor mGluR6 and the light-sensing domains of melanopsin, reliably recovers vision at the retinal, cortical, and behavioral levels under moderate daylight illumination. PMID:25950461

  3. Hardware architecture of high-performance digital hologram generator on the basis of a pixel-by-pixel calculation scheme.

    PubMed

    Seo, Young-Ho; Lee, Yoon-Hyuk; Yoo, Ji-Sang; Kim, Dong-Wook

    2012-06-20

    In this paper we propose a hardware architecture for high-speed computer-generated hologram generation that significantly reduces the number of memory access times to avoid the bottleneck in the memory access operation. For this, we use three main schemes. The first is pixel-by-pixel calculation, rather than light source-by-source calculation. The second is a parallel calculation scheme extracted by modifying the previous recursive calculation scheme. The last scheme is a fully pipelined calculation scheme and exactly structured timing scheduling, achieved by adjusting the hardware. The proposed hardware is structured to calculate a row of a computer-generated hologram in parallel and each hologram pixel in a row is calculated independently. It consists of and input interface, an initial parameter calculator, hologram pixel calculators, a line buffer, and a memory controller. The implemented hardware to calculate a row of a 1920×1080 computer-generated hologram in parallel uses 168,960 lookup tables, 153,944 registers, and 19,212 digital signal processing blocks in an Altera field programmable gate array environment. It can stably operate at 198 MHz. Because of three schemes, external memory bandwidth is reduced to approximately 1/20,000 of the previous ones at the same calculation speed.

  4. A virtual pixel technology to enhance the resolution of monitors and for other purposes

    NASA Astrophysics Data System (ADS)

    Kading, Benjamin; Straub, Jeremy

    2015-05-01

    Current monitor and television displays utilize pixels to display an approximation of the real world collected by a camera or generated computationally. This paper proposes a virtual pixel technology which incorporates coloring LCD combination. Each physical pixel's configuration is based on a weighted average of the virtual pixels it contributes to. This allows lower pixel density displays to produce the approximation of a higher pixel density, while lowering production cost. The paper provides an overview of the proposed technology, discusses its application to monitors and extension to other areas and concludes with a discussion of the next steps to its development.

  5. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  6. Multiprocessor data acquisition system for a 256x256-pixel infrared camera

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Rodriguez-Mora, A.; Sosa, Nicolas A.; Diaz, Jose J.; Joven-Alvarez, Enrique

    1993-04-01

    The Department of Detectors of the Instituto de Astrofisica de Canarias, Spain is developing a data acquisition system (DAS) for an infrared camera based in a 256 X 256 InSb detector. The camera is going to work from 1 to 5 microns wavelength, with a scale on the sky of 0.5 arcsec per pixel, and will be installed as a common user instrument at the Carlos Sanchez Telescope in the Observatorio del Teide (Canary Island, Spain). A multiprocessor architecture has been chosen for the DAS, due to the very tight requirements on real time processing, and high speed storage capability (20 images per second readout rate, 2 images per second storage rate). The complete system is split into two main parts, the front end electronics and the user workstation. They are interconnected through an ETHERNET link.

  7. High throughput optoelectronic smart pixel systems using diffractive optics

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  8. Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture

    PubMed Central

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-01-01

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia. PMID:23959239

  9. Digital mammography: tradeoffs between 50- and 100-micron pixel size

    NASA Astrophysics Data System (ADS)

    Freedman, Matthew T.; Steller Artz, Dorothy E.; Jafroudi, Hamid; Lo, Shih-Chung B.; Zuurbier, Rebecca A.; Katial, Raj; Hayes, Wendelin S.; Wu, Chris Y.; Lin, Jyh-Shyan; Steinman, Richard M.; Tohme, Walid G.; Mun, Seong K.

    1995-05-01

    Improvements in mammography equipment related to a decrease in pixel size of digital mammography detectors raise questions of the possible effects of these new detectors. Mathematical modeling suggested that the benefits of moving from 100 to 50 micron detectors were slight and might not justify the cost of these new units. Experiments comparing screen film mammography, a storage phosphor 100 micron digital detector, a 50 micron digital breast spot device, 100 micron film digitization and 50 micron film digitization suggests that object conspicuity should be better for digital compared to conventional systems, but that there seemed to be minimal advantage to going from 100 to 50 microns. The 50 micron pixel system appears to provide a slight advantage in object contrast and perhaps in shape definition, but did not allow smaller objects to be detected.

  10. Measurement results of DIPIX pixel sensor developed in SOI technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed Imran; Arai, Yasuo; Idzik, Marek; Kapusta, Piotr; Miyoshi, Toshinobu; Turala, Michal

    2013-08-01

    The development of integration type pixel detectors presents interest for physics communities because it brings optimization of design, simplicity of production-which means smaller cost, and reduction of detector material budget. During the last decade a lot of research and development activities took place in the field of CMOS Silicon-On-Insulator (SOI) technology resulting in improvement in wafer size, wafer resistivity and MIM capacitance. Several ideas have been tested successfully and are gradually entering into the application phase. Some of the novel concepts exploring SOI technology are pursued at KEK; several prototypes of dual mode integration type pixel (DIPIX) have been recently produced and described. This report presents initial test results of some of the prototypes including tests obtained with the infrared laser beams and Americium (Am-241) source. The Equivalent Noise Charge (ENC) of 86 e - has been measured. The measured performance demonstrates that SOI technology is a feasible choice for future applications.

  11. Development of prototype pixellated PIN CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Narita, Tomohiko; Bloser, Peter F.; Grindlay, Jonathan E.; Sudharsanan, R.; Reiche, C.; Stenstrom, Claudia

    1998-07-01

    We report initial results from the design and evaluation of two pixellated PIN Cadmium Zinc Telluride detectors and an ASIC-based readout system. The prototype imaging PIN detectors consist of 4 X 4 1.5 mm square indium anode contacts with 0.2 mm spacing and a solid cathode plane on 10 X 10 mm CdZnTe substrates of thickness 2 mm and 5 mm. The detector readout system, based on low noise preamplifier ASICs, allows for parallel readout of all channels upon cathode trigger. This prototype is under development for use in future astrophysical hard X-ray imagers with 10 - 600 keV energy response. Measurements of the detector uniformity, spatial resolution, and spectral resolution will be discussed and compared with a similar pixellated MSM detector. Finally, a prototype design for a large imaging array is outlined.

  12. Bonding techniques for hybrid active pixel sensors (HAPS)

    NASA Astrophysics Data System (ADS)

    Bigas, M.; Cabruja, E.; Lozano, M.

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  13. Using Trained Pixel Classifiers to Select Images of Interest

    NASA Technical Reports Server (NTRS)

    Mazzoni, D.; Wagstaff, K.; Castano, R.

    2004-01-01

    We present a machine-learning-based approach to ranking images based on learned priorities. Unlike previous methods for image evaluation, which typically assess the value of each image based on the presence of predetermined specific features, this method involves using two levels of machine-learning classifiers: one level is used to classify each pixel as belonging to one of a group of rather generic classes, and another level is used to rank the images based on these pixel classifications, given some example rankings from a scientist as a guide. Initial results indicate that the technique works well, producing new rankings that match the scientist's rankings significantly better than would be expected by chance. The method is demonstrated for a set of images collected by a Mars field-test rover.

  14. Current progress on pixel level packaging for uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, G.; Rabaud, W.; Yon, J.-J.; Carle, L.; Goudon, V.; Vialle, C.; Becker, Sébastien; Hamelin, Antoine; Arnaud, A.

    2012-06-01

    Vacuum packaging is definitely a major cost driver for uncooled IRFPA and a technological breakthrough is still expected to comply with the very low cost infrared camera market. To address this key issue, CEA-LETI is developing a Pixel Level Packaging (PLP) technology which basically consists in capping each pixel under vacuum in the direct continuation of the wafer level bolometer process. Previous CEA-LETI works have yet shown the feasibility of PLP based microbolometers that exhibit the required thermal insulation and vacuum achievement. CEA-LETI is still pushing the technology which has been now applied for the first time on a CMOS readout circuit. The paper will report on the recent progress obtained on PLP technology with particular emphasis on the optical efficiency of the PLP arrangement compared to the traditional microbolometer packaging. Results including optical performances, aging studies and compatibility with CMOS readout circuit are extensively presented.

  15. Compressive sensing spectroscopy with a single pixel camera.

    PubMed

    Starling, David J; Storer, Ian; Howland, Gregory A

    2016-07-01

    Spectrometry requires high spectral resolution and high photometric precision while also balancing cost and complexity. We address these requirements by employing a compressive-sensing camera capable of improving signal acquisition speed and sensitivity in limited signal scenarios. In particular, we implement a fast single pixel spectrophotometer with no moving parts and measure absorption and emission spectra comparable with commercial products. Our method utilizes Hadamard matrices to sample the spectra and then minimizes the total variation of the signal. The experimental setup includes standard optics and a grating, a low-cost digital micromirror device, and an intensity detector. The resulting spectrometer produces a 512 pixel spectrum with low mean-squared error and up to a 90% reduction in data acquisition time when compared with a standard spectrophotometer.

  16. New SOFRADIR 10μm pixel pitch infrared products

    NASA Astrophysics Data System (ADS)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  17. Characterization of indium and solder bump bonding for pixel detectors

    SciTech Connect

    Selcuk Cihangir and Simon Kwan

    2000-09-28

    A review of different bump-bonding processes used for pixel detectors is given. A large scale test on daisy-chained components from two vendors has been carried out at Fermilab to characterize the yield of these processes. The vendors are Advanced Interconnect Technology Ltd. (AIT) of Hong Kong and MCNC in North Carolina, US. The results from this test are presented and technical challenges encountered are discussed.

  18. Planar slim-edge pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Lapsien, T.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2012-02-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n+-implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  19. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  20. Validity Assessment of Pixel Linear Spectral Mixing Through Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mobasheri, M. R.; Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    In order to understand the characteristics of the data collected by hyperspectral imaging systems, it is important to discuss the physics behind the scene radiance field incident on the imaging system. A dominant effect in hyperspectral remote sensing is the mixing of radiant energies contributed from different materials present in a given pixel. The basic assumption of mixture modelling is that within a given scene, the surface is covered by a small number of distinct materials that have relatively constant spectral properties. It is most common to assume that the radiance reflected by different materials in a pixel can spectrally combine in a linear additive manner to produce the pixel radiance/reflectance, even when that might not be the case e.g. where the mixing process leads to nonlinear combinations of the radiance and where the linear assumption fails to hold. This can occur where there is significant relative three-dimensional structure within a given pixel. Without detailed knowledge of the dimensional structure, it can be very difficult to correctly ``un-mix'' the contributions of the various materials. This work aims to evaluate the correctness of the linear assumption in the mixture modelling using some laboratory measurements. Study was conducted using some sheets made of cellulose materials of different colours in 400-800 nm spectral range. Experimental results have shown that a correction term must be applied to the gains and offsets in the linear model. The obtained results can be extended to satellite sensors that acquire images in the above mentioned spectral range.

  1. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  2. Analysis of the production of ATLAS indium bonded pixel modules

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Bulgheroni, A.; Corda, G.; Di Gioia, S.; Fiorello, A.; Gemme, C.; Koziel, M.; Manca, F.; Meroni, C.; Nechaeva, P.; Paoloni, A.; Rossi, L.; Rovani, A.; Ruscino, E.

    2006-09-01

    The ATLAS collaboration is currently building 1500 pixel modules using the indium bump bonding technique developed by SELEX Sistemi Integrati (former AMS). The indium deposition and flip-chip process are described together with an overview of the chip stripping machine that allows defective modules to be reworked. The production is half-way through at the time of this writing. This paper also discusses the problems encountered during production and the adopted solutions.

  3. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping

    2009-07-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in

  4. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    SciTech Connect

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao Qihua; Li Yixin; Street, Robert A.; Lu Jengping

    2009-07-15

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of {approx}10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical

  5. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping

    2009-01-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill

  6. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    PubMed Central

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-01-01

    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate. PMID:26473860

  7. A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction

    PubMed Central

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente

    2015-01-01

    This paper presents a comparative study in physiological monitoring between a wearable opto-electronic patch sensor (OEPS) comprising a three-axis Microelectromechanical systems (MEMs) accelerometer (3MA) and commercial devices. The study aims to effectively capture critical physiological parameters, for instance, oxygen saturation, heart rate, respiration rate and heart rate variability, as extracted from the pulsatile waveforms captured by OEPS against motion artefacts when using the commercial probe. The protocol involved 16 healthy subjects and was designed to test the features of OEPS, with emphasis on the effective reduction of motion artefacts through the utilization of a 3MA as a movement reference. The results show significant agreement between the heart rates from the reference measurements and the recovered signals. Significance of standard deviation and error of mean yield values of 2.27 and 0.65 beats per minute, respectively; and a high correlation (0.97) between the results of the commercial sensor and OEPS. T, Wilcoxon and Bland-Altman with 95% limit of agreement tests were also applied in the comparison of heart rates extracted from these sensors, yielding a mean difference (MD: 0.08). The outcome of the present work incites the prospects of OEPS on physiological monitoring during physical activities. PMID:26061828

  8. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  9. A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction.

    PubMed

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente

    2015-06-08

    This paper presents a comparative study in physiological monitoring between a wearable opto-electronic patch sensor (OEPS) comprising a three-axis Microelectromechanical systems (MEMs) accelerometer (3MA) and commercial devices. The study aims to effectively capture critical physiological parameters, for instance, oxygen saturation, heart rate, respiration rate and heart rate variability, as extracted from the pulsatile waveforms captured by OEPS against motion artefacts when using the commercial probe. The protocol involved 16 healthy subjects and was designed to test the features of OEPS, with emphasis on the effective reduction of motion artefacts through the utilization of a 3MA as a movement reference. The results show significant agreement between the heart rates from the reference measurements and the recovered signals. Significance of standard deviation and error of mean yield values of 2.27 and 0.65 beats per minute, respectively; and a high correlation (0.97) between the results of the commercial sensor and OEPS. T, Wilcoxon and Bland-Altman with 95% limit of agreement tests were also applied in the comparison of heart rates extracted from these sensors, yielding a mean difference (MD: 0.08). The outcome of the present work incites the prospects of OEPS on physiological monitoring during physical activities.

  10. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology.

    PubMed

    Klimas, Aleksandra; Ambrosi, Christina M; Yu, Jinzhu; Williams, John C; Bien, Harold; Entcheva, Emilia

    2016-01-01

    The improvement of preclinical cardiotoxicity testing, discovery of new ion-channel-targeted drugs, and phenotyping and use of stem cell-derived cardiomyocytes and other biologics all necessitate high-throughput (HT), cellular-level electrophysiological interrogation tools. Optical techniques for actuation and sensing provide instant parallelism, enabling contactless dynamic HT testing of cells and small-tissue constructs, not affordable by other means. Here we show, computationally and experimentally, the limits of all-optical electrophysiology when applied to drug testing, then implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We validate optical actuation by virally introducing optogenetic drivers in rat and human cardiomyocytes or through the modular use of dedicated light-sensitive somatic 'spark' cells. We show that this automated all-optical approach provides HT means of cellular interrogation, that is, allows for dynamic testing of >600 multicellular samples or compounds per hour, and yields high-content information about the action of a drug over time, space and doses. PMID:27161419

  11. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles.

    PubMed

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-09

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  12. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  13. A theoretical study of a nano-opto-mechanical sensor using a photonic crystal-cantilever cavity

    NASA Astrophysics Data System (ADS)

    Mao, Depeng; Liu, Peng; Ho, Kai-Ming; Dong, Liang

    2012-07-01

    In this simulation study, integration of a nanocantilever inside a two-dimensional (2D) photonic crystal (PC) cavity resulted in a unique photonic crystal-cantilever cavity (PC3), where the cantilever served as a tunable mechanical defect of the PC slab. Strong nano-opto-mechanical interactions between the cantilever and the defect-mode field inside the PC3 gave rise to a high sensitivity of the resonance wavelength to surface stress-induced cantilever deflection. Mechanical and optical responses of the PC3 to surface stress changes on the cantilever surface were studied by using a finite-element method (FEM) and a finite-difference time-domain (FDTD) method, respectively. Theoretical analysis revealed that the devised PC3 sensor could resolve a conservative minimum surface stress at the level of ˜0.8 mN m-1, representing state-of-the-art cantilever sensor performance. Also, the PC3 sensor design used an ultracompact structure with an on-chip optical length of only several microns, while a conventional reflected laser beam detection scheme requires a ˜1 m long free-space optical path.

  14. A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction.

    PubMed

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente

    2015-06-01

    This paper presents a comparative study in physiological monitoring between a wearable opto-electronic patch sensor (OEPS) comprising a three-axis Microelectromechanical systems (MEMs) accelerometer (3MA) and commercial devices. The study aims to effectively capture critical physiological parameters, for instance, oxygen saturation, heart rate, respiration rate and heart rate variability, as extracted from the pulsatile waveforms captured by OEPS against motion artefacts when using the commercial probe. The protocol involved 16 healthy subjects and was designed to test the features of OEPS, with emphasis on the effective reduction of motion artefacts through the utilization of a 3MA as a movement reference. The results show significant agreement between the heart rates from the reference measurements and the recovered signals. Significance of standard deviation and error of mean yield values of 2.27 and 0.65 beats per minute, respectively; and a high correlation (0.97) between the results of the commercial sensor and OEPS. T, Wilcoxon and Bland-Altman with 95% limit of agreement tests were also applied in the comparison of heart rates extracted from these sensors, yielding a mean difference (MD: 0.08). The outcome of the present work incites the prospects of OEPS on physiological monitoring during physical activities. PMID:26061828

  15. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology

    PubMed Central

    Klimas, Aleksandra; Ambrosi, Christina M.; Yu, Jinzhu; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-01-01

    The improvement of preclinical cardiotoxicity testing, discovery of new ion-channel-targeted drugs, and phenotyping and use of stem cell-derived cardiomyocytes and other biologics all necessitate high-throughput (HT), cellular-level electrophysiological interrogation tools. Optical techniques for actuation and sensing provide instant parallelism, enabling contactless dynamic HT testing of cells and small-tissue constructs, not affordable by other means. Here we show, computationally and experimentally, the limits of all-optical electrophysiology when applied to drug testing, then implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We validate optical actuation by virally introducing optogenetic drivers in rat and human cardiomyocytes or through the modular use of dedicated light-sensitive somatic ‘spark' cells. We show that this automated all-optical approach provides HT means of cellular interrogation, that is, allows for dynamic testing of >600 multicellular samples or compounds per hour, and yields high-content information about the action of a drug over time, space and doses. PMID:27161419

  16. Design and implementation of automatic opto-electrical detection system for spheroidal graphite cast iron metallographic phase

    NASA Astrophysics Data System (ADS)

    Meng, Qing-xin; Xiao, Ze-xin; Deng, Shi-chao

    2010-11-01

    Spheroidal graphite cast iron,with excellent mechanical properties,is widely used in manufacturing many advanced castings,such as crankshaft,gears,pistons,and a variety of machine parts.Its microstructure morphology reflects the quality performance of the products,which leads to an urgent need for a simple,accurate and automatic microstructure morphology detection technique for detecting the quality of spheroidal graphite cast iron.In this paper,opto-electrical detection technique is employed for designing a spheroidal graphite cast iron microstructure automatic detection system,in which the microstructure is imaged by optical microscopy system,and the digital images are obtained by industrial cameras and sent to the computer.A series of digital image processing algorithms,including gray transformation, binarization,edge detection,image morphology and seed filling etc,are adopted to calculate and analyze the microstructure images.The morphology and microstructure analysis methods are combined to obtain the characteristic parameters such as the size of the graphite,the ball classification,the number of graphite nodules and so on.The experiment results show that this method is simple,fast,and accurate and can be employed for assessment of the spheroidal graphite cast iron metallographic phase instead of manual detection.

  17. A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise.

    PubMed

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-10-12

    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from -17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from -15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.

  18. A theoretical study of a nano-opto-mechanical sensor using a photonic crystal-cantilever cavity

    SciTech Connect

    Mao, Depeng; Liu, Peng; Ho, Kai-Ming; Dong, Liang

    2012-07-09

    In this simulation study, integration of a nanocantilever inside a two-dimensional (2D) photonic crystal (PC) cavity resulted in a unique photonic crystal-cantilever cavity (PC3), where the cantilever served as a tunable mechanical defect of the PC slab. Strong nano-opto-mechanical interactions between the cantilever and the defect-mode field inside the PC3 gave rise to a high sensitivity of the resonance wavelength to surface stress-induced cantilever deflection. Mechanical and optical responses of the PC3 to surface stress changes on the cantilever surface were studied by using a finite-element method (FEM) and a finite-difference time-domain (FDTD) method, respectively. Theoretical analysis revealed that the devised PC3 sensor could resolve a conservative minimum surface stress at the level of ~0.8 mN m−1, representing state-of-the-art cantilever sensor performance. Also, the PC3 sensor design used an ultracompact structure with an on-chip optical length of only several microns, while a conventional reflected laser beam detection scheme requires a ~1 m long free-space optical path.

  19. A Cherenkov camera with integrated electronics based on the ``Smart Pixel'' concept

    NASA Astrophysics Data System (ADS)

    Bulian, Norbert; Hirsch, Thomas; Hofmann, Werner; Kihm, Thomas; Kohnle, Antje; Panter, Michael; Stein, Michael

    2000-06-01

    An option for the cameras of the HESS telescopes, the concept of a modular camera based on ``Smart Pixels'' was developed. A Smart Pixel contains the photomultiplier, the high voltage supply for the photomultiplier, a dual-gain sample-and-hold circuit with a 14 bit dynamic range, a time-to-voltage converter, a trigger discriminator, trigger logic to detect a coincidence of X=1...7 neighboring pixels, and an analog ratemeter. The Smart Pixels plug into a common backplane which provides power, communicates trigger signals between neighboring pixels, and holds a digital control bus as well as an analog bus for multiplexed readout of pixel signals. The performance of the Smart Pixels has been studied using a 19-pixel test camera. .

  20. High-precision measurement of pixel positions in a charge-coupled device.

    PubMed

    Shaklan, S; Sharman, M C; Pravdo, S H

    1995-10-10

    The high level of spatial uniformity in modern CCD's makes them excellent devices for astrometric instruments. However, at the level of accuracy envisioned by the more ambitious projects such as the Astrometric Imaging Telescope, current technology produces CCD's with significant pixel registration errors. We describe a technique for making high-precision measurements of relative pixel positions. We measured CCD's manufactured for the Wide Field Planetary Camera II installed in the Hubble Space Telescope. These CCD's are shown to have significant step-and-repeat errors of 0.033 pixel along every 34th row, as well as a 0.003-pixel curvature along 34-pixel stripes. The source of these errors is described. Our experiments achieved a per-pixel accuracy of 0.011 pixel. The ultimate shot-noise limited precision of the method is less than 0.001 pixel.

  1. Pixelated spectral filter for integrated focal plane array in the long-wave IR

    NASA Astrophysics Data System (ADS)

    Kemme, S. A.; Boye, R. R.; Cruz-Cabrera, A. A.; Briggs, R. D.; Carter, T. R.; Samora, S.

    2010-04-01

    We present the design, fabrication, and characterization of a pixelated, hyperspectral arrayed component for Focal Plane Array (FPA) integration in the Long-Wave IR. This device contains tens of pixels within a single super-pixel which is tiled across the extent of the FPA. Each spectral pixel maps to a single FPA pixel with a spectral FWHM of 200nm. With this arrayed approach, remote sensing data may be accumulated with a non-scanning, "snapshot" imaging system. This technology is flexible with respect to individual pixel center wavelength and to pixel position within the array. Moreover, the entire pixel area has a single wavelength response, not the integrated linear response of a graded cavity thickness design. These requirements bar tilted, linear array technologies where the cavity length monotonically increases across the device.

  2. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  3. Digital pixel readout integrated circuit architectures for LWIR

    NASA Astrophysics Data System (ADS)

    Shafique, Atia; Yazici, Melik; Kayahan, Huseyin; Ceylan, Omer; Gurbuz, Yasar

    2015-06-01

    This paper presents and discusses digital pixel readout integrated circuit architectures for long wavelength infrared (LWIR) in CMOS technology. Presented architectures are designed for scanning and staring arrays type detectors respectively. For scanning arrays, digital time delay integration (TDI) is implemented on 8 pixels with sampling rate up to 3 using CMOS 180nm technology. Input referred noise of ROIC is below 750 rms electron meanwhile power dissipation is appreciably under 30mW. ROIC design is optimized to perform at room as well as cryogenic temperatures. For staring type arrays, a digital pixel architecture relying on coarse quantization with pulse frequency modulation (PFM) and novel approach of extended integration is presented. It can achieve extreme charge handling capacity of 2.04Ge- with 20 bit output resolution and power dissipation below 350 nW in CMOS 90nm technology. Efficient mechanism of measuring the time to estimate the remaining charge on integration capacitor in order to achieve low SNR has employed.

  4. Development of thin edgeless silicon pixel sensors on epitaxial wafers

    NASA Astrophysics Data System (ADS)

    Boscardin, M.; Bosisio, L.; Contin, G.; Giacomini, G.; Manzari, V.; Orzan, G.; Rashevskaya, I.; Ronchin, S.; Zorzi, N.

    2014-09-01

    The paper reports on the development of novel p-on-n thin edgeless planar pixel sensors, compatible with ALICE front-end electronics, fabricated by FBK on epitaxial material. The focus of the activity is the minimization of the material budget required for hybrid pixel detectors. This goal has been addressed in two different stages. In the first one, planar pixel detectors fabricated on epitaxial wafers have been thinned and bonded to the readout chips. The second stage is described by the present paper: the `active edge' concept has been studied for the reduction of the dead area at the periphery of the devices. An overview of the key technological steps and of the electrical characterization of the fabricated sensors is given. In addition, the preliminary results on the static behavior of test sensors after neutron irradiation at different fluences (up to 2.5 × 1015 1 MeV-neq/cm2) are reported. The results demonstrate that these kinds of devices are a viable solution for the reduction of the material budget while maintaining the typical electrical characteristics expected from radiation silicon sensors.

  5. Demosaiced pixel super-resolution for multiplexed holographic color imaging.

    PubMed

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  6. Sub pixel location identification using super resolved multilooking CHRIS data

    NASA Astrophysics Data System (ADS)

    Sahithi, V. S.; Agrawal, S.

    2014-11-01

    CHRIS /Proba is a multiviewing hyperspectral sensor that monitors the earth in five different zenith angles +55°, +36°, nadir, -36° and -55° with a spatial resolution of 17 m and within a spectral range of 400-1050 nm in mode 3. These multiviewing images are suitable for constructing a super resolved high resolution image that can reveal the mixed pixel of the hyperspectral image. In the present work, an attempt is made to find the location of various features constituted within the 17m mixed pixel of the CHRIS image using various super resolution reconstruction techniques. Four different super resolution reconstruction techniques namely interpolation, iterative back projection, projection on to convex sets (POCS) and robust super resolution were tried on the -36, nadir and +36 images to construct a super resolved high resolution 5.6 m image. The results of super resolution reconstruction were compared with the scaled nadir image and bicubic convoluted image for comparision of the spatial and spectral property preservance. A support vector machine classification of the best super resolved high resolution image was performed to analyse the location of the sub pixel features. Validation of the obtained results was performed using the spectral unmixing fraction images and the 5.6 m classified LISS IV image.

  7. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    PubMed Central

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  8. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-06-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired.

  9. Pixel diamond detectors for excimer laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  10. Simulation of charge transport in pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  11. Demosaiced pixel super-resolution for multiplexed holographic color imaging.

    PubMed

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-06-29

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired.

  12. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  13. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction

    PubMed Central

    Feng, Bing; Zeng, Gengsheng L.

    2014-01-01

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO2) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts. PMID:25574058

  14. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  15. Building Detector Modules for the (S)CMS Pixel Barrel Detector

    NASA Astrophysics Data System (ADS)

    König, S.; PSI Pixel Group

    2009-12-01

    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article gives the production results of the module assembly for the CMS experiment and shows the evolution of the barrel pixel module design for the first phase of the LHC luminosity upgrade.

  16. Performance of Pixel-Readout Micro-Pixel Chamber with Analog-Readout System Used as X-ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Katagiri, Hideaki; Ono, Kenichi; Uchiyama, Hideki; Tsuru, Takeshi Go; Matsumoto, Hironori; Hyodo, Yoshiaki; Kubo, Hidetoshi; Miuchi, Kentaro; Tanimori, Toru

    2007-12-01

    We developed an analog-readout system for a pixel-readout micro-pixel chamber (μ-PIC) to be used as an astronomical X-ray polarimeter, and demonstrated that the sensitivity of the new system reached up to that predicted by a simulation. A pixel-readout μ-PIC is a micro-pattern gaseous detector with a fine position resolution and good stability at sufficient gain operation, and is suited for astronomical X-ray polarimetry. However, as shown by Katagiri et al. (2007), the sensitivity to X-ray polarization was found to be statistically lower by a significant amount than that expected from the simulation of Ueno et al. [Nucl. Instrum. Methods Phys. Res., Sect. A 525 (2004) 28] because of the readout system and background produced by the scattering of the X-ray beam in air. We therefore developed a new readout system and carried out a beam test with aluminum tubes that reduced the background. As a result, we demonstrated that for collimated beams, the modulation factors, which are indicators of the sensitivity to X-ray polarization, were 0.24± 0.08 at 8 keV and 0.18± 0.07 at 15 keV in a neon-based gas mixture, and 0.18± 0.04 at 15 keV in an argon-based mixture. These values are consistent with those predicted by the simulation within errors.

  17. Sub-pixel calibration for Weak Lensing and Astrometry

    NASA Astrophysics Data System (ADS)

    Shao, Michael

    We have recently developed and demonstrated a new method of sub-pixel detector calibration that offers orders of magnitude improvement in astrometry with CCD focal planes. Using this technique we have demonstrated centroiding of images to 1e 5 lambda/D in laboratory conditions. Our method allows reconstructing the true optical point spread function (PSF) of a telescope from pixelated stellar images. Although this technique was originally developed for centroiding of images across a large focal plane, it can also be applied to weak lensing program on WFIRST. We use a laser metrology technique to measure geometric imperfections in the focal plane array from pixel placement errors to non-uniform quantum efficiency (QE) within every pixel. With precise sub-pixel calibration one can use dithered images (e.g., a 2×2 dither) to derive Nyquist-sampled image of stars. The WFIRST telescope has a large 0.28 sq.deg field of view (FOV) with theoretical PSF varying considerably over that FOV. However, even at high galactic latitude there will be over 1,000 stars brighter than 16 mag and, with Nyquist-sampled images, it should be possible to calculate the spatially varying PSF at 1,000 locations in the focal plane. With knowledge of the optical PSF and sub-pixel calibration of the detector, one can remove biases in the shapes of galaxies introduced by the spatially varying PSF. The technique of sub-pixel calibration has so far only been demonstrated in with visible CCD detectors and applied to achieve ultra-precise image centroiding. The purpose of this proposal is to extend the technique of removing biases in the shape of galaxies due to pixilation and spatially varying PSF and to extend the calibration of visible detectors to NIR detectors. The new technique could be used to enable 4 10 microarcsecond (μas) astrometry within the 0.28 sq.deg FOV of the WFIRST telescope. Using the upcoming Gaia catalogue accurate to ~10 μas, we will be able to stitch the HgCdTe arrays on

  18. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system.

    PubMed

    An, Yatong; Hyun, Jae-Sang; Zhang, Song

    2016-08-01

    This paper presents a method to unwrap phase pixel by pixel by solely using geometric constraints of the structured light system without requiring additional image acquisition or another camera. Specifically, an artificial absolute phase map, Φmin, at a given virtual depth plane z = zmin, is created from geometric constraints of the calibrated structured light system; the wrapped phase is pixel-by-pixel unwrapped by referring to Φmin. Since Φmin is defined in the projector space, the unwrapped phase obtained from this method is absolute for each pixel. Experimental results demonstrate the success of this proposed novel absolute phase unwrapping method. PMID:27505808

  19. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  20. Investigation of Ga substitution in ZnO powder and opto-electronic properties.

    PubMed

    Serier, Hélène; Demourgues, Alain; Gaudon, Manuel

    2010-08-01

    Two sets of Ga-doped ZnO powders were synthesized via solid-state and Pechini routes with a substitution rate varying from 0 to 4 mol %. The gallium solubility limit is strongly dependent on the synthesis history. Indeed, a low temperature annealing allows incorporating about 1.5 mol % (X-ray diffraction (XRD), inductive coupled plasma spectroscopy (ICP), optical properties) whereas under 0.1% of dopant is introduced after thermal treatment at high temperature: 1500 degrees C (from XRD and pellets conductivity). The incorporation of gallium leads to an anisotropic distortion of the zincite crystal lattice (a and c parameters increase and decrease, respectively, versus the Ga content leading to a decrease of the c/a ratio) which can be explained from the valence bond model. XRD analysis, chemical titration by ICP, and conductivity measurements (on pellets obtained at high temperature) allow determining accurately the maximum Ga content in the zincite. The optical properties (IR absorption efficiency) linked to electron carriers are directly correlated to the gallium rate introduced in ZnO oxide; nevertheless, the non linear correlation between these two parameters tends to show that the concentration of charge carriers in the system is not equal to the amount of Ga(3+) atoms inserted per ZnO volume unit. A saturation regime is observed and was here explained once again on the basis of the valence band model by the increase of inhibiting p type defects with the increase of (n-type donors) Ga(3+) concentration. PMID:20593782

  1. Photonic and Opto-Electronic Applications of Polydiacetylene Films Photodeposited from Solution and Polydiacetylene Copolymer Networks

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Witherow, William K.; Addeldeyem, Hossin A.; Wolfe, Daniel B.

    1998-01-01

    Polydiacetylenes (PDAS) are attractive materials for both electronic and photonic applications because of their highly conjugated electronic structures. They have been investigated for applications as both one-dimensional (linear chain) conductors and nonlinear optical (NLO) materials. One of the chief limitations to the use of PDAs has been the inability to readily process them into useful forms such as films and fibers. In our laboratory we have developed a novel process for obtaining amorphous films of a PDA derived from 2-methyl4-nitroaniline using photodeposition with Ultraviolet (UV) light from monomer solutions onto transparent substrates. Photodeposition from solution provides a simple technique for obtaining PDA films in any desired pattern with good optical quality. This technique has been used to produce PDA films that show potential for optical applications such as holographic memory storage and optical limiting, as well as third-order NLO applications such as all-optical refractive index modulation, phase modulation and switching. Additionally, copolymerization of diacetylenes with other monomers such as methacrylates provides a means to obtain materials with good processibility. Such copolymers can be spin cast to form films, or drawn by either melt or solution extrusion into fibers. These films or fibers can then be irradiated with UV to photopolymerize the diacetylene units to form a highly stable cross-linked PDA-copolymer network. If such films are electrically poled while being irradiated, they can achieve the asymmetry necessary for second-order NLO applications such as electro-optic switching. On Earth, formation of PDAs by the above mentioned techniques suffers from defects and inhomogeneities caused by convective flows that can arise during processing. By studying the formation of these materials in the reduced-convection, diffusion-controlled environment of space we hope to better understand the factors that affect their processing, and

  2. CMOS Hybrid Pixel Detectors for Scientific, Industrial and Medical Applications

    NASA Astrophysics Data System (ADS)

    Broennimann, Christian

    2009-03-01

    Crystallography is the principal technique for determining macromolecular structures at atomic resolution and uses advantageously the high intensity of 3rd generation synchrotron X-ray sources . Macromolecular crystallography experiments benefit from excellent beamline equipment, recent software advances and modern X-ray detectors. However, the latter do not take full advantage of the brightness of modern synchrotron sources. CMOS Hybrid pixel array detectors, originally developed for high energy physics experiments, meet these requirements. X-rays are recorded in single photon counting mode and data thus are stored digitally at the earliest possible stage. This architecture leads to several advantages over current detectors: No detector noise is added to the signal. Readout time is reduced to a few milliseconds. The counting rates are matched to beam intensities at protein crystallography beamlines at 3rd generation synchrotrons. The detector is not sensitive to X-rays during readout; therefore no mechanical shutter is required. The detector has a very sharp point spread function (PSF) of one pixel, which allows better resolution of adjacent reflections. Low energy X-rays can be suppressed by the comparator At the Paul Scherrer Institute (PSI) in Switzerland the first and largest array based on this technology was constructed: The Pilatus 6M detector. The detector covers an area of 43.1 x 44.8 cm2 , has 6 million pixels and is read out noise free in 3.7 ms. Since June 2007 the detector is in routine operation at the beamline 6S of the Swiss Light Source (SLS). The company DETCRIS Ltd, has licensed the technology from PSI and is commercially offering the PILATUS detectors. Examples of the wide application range of the detectors will be shown.

  3. Optical differentiation wavefront sensor based on binary pixelated transmission filters

    NASA Astrophysics Data System (ADS)

    Qiao, J.; Travinsky, A.; Ding, G.; Dorrer, C.

    2015-03-01

    High-resolution wavefront sensors are used in a wide range of applications. The Shack-Hartmann sensor is the industry standard and mostly used for this kind of analysis. However, with this sensor the analysis can only be performed for narrowband radiation, the recoverable curvature of the wavefront slopes is also restricted by the size of a single lens in the microlens array. The high-resolution Shack Hartmann wavefront sensor (>128×128) is also significantly expensive. The optical differentiation wavefront sensor, on the other hand, consists of only simple and therefore inexpensive components, offers greater signal to noise ratio, allows for high-resolution analysis of wavefront curvature, and is potentially capable of performing broadband measurements. When a transmission mask with linear attenuation along a spatial direction modulates the far field of an optical wave, the spatial wavefront slope along that direction can be recovered from the fluence in the near field after modulation. With two orthogonal measurements one can recover the complete wavefront of the optical wave. In this study the characteristics of such a wavefront sensor are investigated when the linear transmission modulation is implemented with a pixelated binary filter. Such a filter can be produced as a gray-scale quasi-continuous transmission pattern constructed using arrays of small (e.g., 10-micron) transparent or opaque pixels and therefore it can simply be fabricated by conventional lithography techniques. Simulations demonstrate the potential ability of such a pixelated filter to match the performance of a filter with continuously varying transmission, while offering the advantage of better transmission control and reduction of fabrication costs.

  4. Single-pixel camera with one graphene photodetector.

    PubMed

    Li, Gongxin; Wang, Wenxue; Wang, Yuechao; Yang, Wenguang; Liu, Lianqing

    2016-01-11

    Consumer cameras in the megapixel range are ubiquitous, but the improvement of them is hindered by the poor performance and high cost of traditional photodetectors. Graphene, a two-dimensional micro-/nano-material, recently has exhibited exceptional properties as a sensing element in a photodetector over traditional materials. However, it is difficult to fabricate a large-scale array of graphene photodetectors to replace the traditional photodetector array. To take full advantage of the unique characteristics of the graphene photodetector, in this study we integrated a graphene photodetector in a single-pixel camera based on compressive sensing. To begin with, we introduced a method called laser scribing for fabrication the graphene. It produces the graphene components in arbitrary patterns more quickly without photoresist contamination as do traditional methods. Next, we proposed a system for calibrating the optoelectrical properties of micro/nano photodetectors based on a digital micromirror device (DMD), which changes the light intensity by controlling the number of individual micromirrors positioned at + 12°. The calibration sensitivity is driven by the sum of all micromirrors of the DMD and can be as high as 10(-5)A/W. Finally, the single-pixel camera integrated with one graphene photodetector was used to recover a static image to demonstrate the feasibility of the single-pixel imaging system with the graphene photodetector. A high-resolution image can be recovered with the camera at a sampling rate much less than Nyquist rate. The study was the first demonstration for ever record of a macroscopic camera with a graphene photodetector. The camera has the potential for high-speed and high-resolution imaging at much less cost than traditional megapixel cameras.

  5. Study of silicon pixel sensor for synchrotron radiation detection

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Jie; Jia, Yun-Cong; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2016-03-01

    The silicon pixel sensor (SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection (SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process, excellent SPS characteristics with dark current of 2 nA/cm2, full depletion voltage < 50 V and breakdown voltage >150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high (<20% for X-ray photon energy >10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. Supported by Prefabrication Research of Beijing Advanced Photon Source (R&D for BAPS) and National Natural Science Foundation of China (11335010)

  6. Charge amplitude distribution of the Gossip gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S. M.; Timmermans, J.; Visschers, J. L.

    2007-12-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2/DME (dimethyl-ether) and Ar/iC 4H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  7. Raman Laser Spectrometer internal Optical Head current status: opto-mechanical redesign to minimize the excitation laser trace

    NASA Astrophysics Data System (ADS)

    Sanz, Miguel; Ramos, Gonzalo; Moral, Andoni; Pérez, Carlos; Belenguer, Tomás; del Rosario Canchal, María; Zuluaga, Pablo; Rodriguez, Jose Antonio; Santiago, Amaia; Rull, Fernando; Instituto Nacional de Técnica Aeroespacial (INTA), Universidad de Valladolid (UVa), Ingeniería de Sistemas para la Defesa de España S.A. (ISDEFE)

    2016-10-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instruments of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). The original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks.The investigation revealing that the laser trace was not properly filtered as well as the iOH opto-mechanical redesign are reported on. After the study of the Long Pass Filters Optical Density (OD) as a function of the filtering stage to the detector distance, a new set of filters (Notch filters) was decided to be evaluated. Finally, and in order to minimize the laser trace, a new collection path design (mainly consisting on that the collimation and filtering stages are now separated in two barrels, and on the kind of filters to be used) was required. Distance between filters and collimation stage first lens was increased, increasing the OD. With this new design and using two Notch filters, the laser trace was reduced to assumable values, as can be observed in the functional test comparison also reported on this paper.

  8. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Dai, Tianhong; Pikkula, Brian M.; Wang, Lihong V.; Anvari, Bahman

    2004-11-01

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the opto-thermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  9. A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image

    PubMed Central

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606

  10. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing.

    PubMed

    Sandeau, Laure; Vuillaume, Cassandre; Contié, Sylvain; Grinenval, Eva; Belloni, Federico; Rigneault, Hervé; Owens, Roisin M; Fournet, Margaret Brennan

    2015-02-01

    A novel CMOS bio-pixel array which integrates assay substrate and assay readout is demonstrated for multiplex and multireplicate detection of a triplicate of cytokines with single digit pg ml(-1) sensitivities. Uniquely designed large area bio-pixels enable individual assays to be dedicated to and addressed by single pixels. A capability to simultaneously measure a large number of targets is provided by the 128 available pixels. Chemiluminescent assays are carried out directly on the pixel surface which also detects the emitted chemiluminescent photons, facilitating a highly compact sensor and reader format. The high sensitivity of the bio-pixel array is enabled by the high refractive index of silicon based pixels. This in turn generates a strong supercritical angle luminescence response significantly increasing the efficiency of the photon collection over conventional farfield modalities. PMID:25490928

  11. A new pixels flipping method for huge watermarking capacity of the invoice font image.

    PubMed

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Xu, Qishuai; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity.

  12. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  13. A new pixels flipping method for huge watermarking capacity of the invoice font image.

    PubMed

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Xu, Qishuai; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606

  14. Extraction of electrical characteristics from pixels of multifrequency EIT images.

    PubMed

    Fitzgerald, A J; Thomas, B J; Cornish, B H; Michael, G J; Ward, L C

    1997-05-01

    Computer modelling has shown that electrical characteristics of individual pixels may be extracted from within multiple-frequency electrical impedance tomography (MFEIT) images formed using a reference data set obtained from a purely resistive, homogeneous medium. In some applications it is desirable to extract the electrical characteristics of individual pixels from images where a purely resistive, homogeneous reference data set is not available. One such application of the technique of MFEIT is to allow the acquisition of in vivo images using reference data sets obtained from a non-homogeneous medium with a reactive component. However, the reactive component of the reference data set introduces difficulties with the extraction of the true electrical characteristics from the image pixels. This study was a preliminary investigation of a technique to extract electrical parameters from multifrequency images when the reference data set has a reactive component. Unlike the situation in which a homogeneous, resistive data set is available, it is not possible to obtain the impedance and phase information directly from the image pixel values of the MFEIT images data set, as the phase of the reactive reference is not known. The method reported here to extract the electrical characteristics (the Cole-Cole plot) initially assumes that this phase angle is zero. With this assumption, an impedance spectrum can be directly extracted from the image set. To obtain the true Cole-Cole plot a correction must be applied to account for the inherent rotation of the extracted impedance spectrum about the origin, which is a result of the assumption. This work shows that the angle of rotation associated with the reactive component of the reference data set may be determined using a priori knowledge of the distribution of frequencies of the Cole-Cole plot. Using this angle of rotation, the true Cole-Cole plot can be obtained from the impedance spectrum extracted from the MFEIT image data

  15. Independent pixel and Monte Carlo estimates of stratocumulus albedo

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Gollmer, Steven; HARSHVARDHAN

    1994-01-01

    Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the class of 'bounded cascade' models. In this model the cloud top and base are fixed, so that all variations in cloud shape are ignored. The model generates random variations in liquid water along a single horizontal direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated. The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the mesoscale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus, horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models. This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the smaller

  16. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  17. Monolithic pixel detectors in a deep submicron SOI process

    SciTech Connect

    Deptuch, Grzegorz; /Fermilab

    2009-10-01

    A compact charge-signal processing chain, composed of a two-stage semi-gaussian preamplifier-signal shaping filter, a discriminator and a binary counter, implemented in a prototype pixel detector using 0.20 {micro}m CMOS Silicon on Insulator process, is presented. The gain of the analog chain was measured 0.76 V/fC at the signal peaking time about 300 ns and the equivalent noise charge referred to the input of 80 e{sup -1}.

  18. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties

    NASA Astrophysics Data System (ADS)

    Kiran, Vankayala; Sampath, Srinivasan

    2013-10-01

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the

  19. Wurtzite ZnO (001) films grown on cubic MgO (001) with bulk-like opto-electronic properties

    SciTech Connect

    Zhou Hua; Wang Huiqiong; Chen Xiaohang; Zhan Huahan; Kang Junyong; Wu Lijun; Zhu Yimei; Zhang Lihua; Kisslinger, Kim

    2011-10-03

    We report the growth of ZnO (001) wurtzite thin films with bulk-like opto-electronic properties on MgO (001) cubic substrates using plasma-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction patterns and ex situ high resolution transmission electron microscopy images indicate that the structure transition from the cubic MgO substrates to the hexagonal films involves 6 ZnO variants that have the same structure but different orientations. This work demonstrates the possibility of integrating wurtzite ZnO films and functional cubic substrates while maintaining their bulk-like properties.

  20. A CMOS Active Pixel Sensor for Charged Particle Detection

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  1. Pixelated transmission-mode diamond X-ray detector

    PubMed Central

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-01-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼1 kHz, which leads to an image sampling rate of ∼30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10−2 to 90 W mm−2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). PMID:26524304

  2. Pixelated transmission-mode diamond X-ray detector.

    PubMed

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-11-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  3. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  4. Memory color assisted illuminant estimation through pixel clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Quan, Shuxue

    2010-01-01

    The under constrained nature of illuminant estimation determines that in order to resolve the problem, certain assumptions are needed, such as the gray world theory. Including more constraints in this process may help explore the useful information in an image and improve the accuracy of the estimated illuminant, providing that the constraints hold. Based on the observation that most personal images have contents of one or more of the following categories: neutral objects, human beings, sky, and plants, we propose a method for illuminant estimation through the clustering of pixels of gray and three dominant memory colors: skin tone, sky blue, and foliage green. Analysis shows that samples of the above colors cluster around small areas under different illuminants and their characteristics can be used to effectively detect pixels falling into each of the categories. The algorithm requires the knowledge of the spectral sensitivity response of the camera, and a spectral database consisted of the CIE standard illuminants and reflectance or radiance database of samples of the above colors.

  5. pPXF: Penalized Pixel-Fitting stellar kinematics extraction

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2012-10-01

    pPXF is an IDL (and free GDL or FL) program which extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include: Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

  6. The pixel detector for the CMS phase-II upgrade

    NASA Astrophysics Data System (ADS)

    Dinardo, M. E.

    2015-04-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb-1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R&D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R&D effort are presented and discussed in this article.

  7. Multilayer fluorescence imaging on a single-pixel detector.

    PubMed

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-07-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect. PMID:27446679

  8. A new design for the gas pixel detector

    NASA Astrophysics Data System (ADS)

    Muleri, Fabio; Bellazzini, Ronaldo; Brez, Alessandro; Costa, Enrico; Fabiani, Sergio; Minuti, Massimo; Pinchera, Michele; Rubini, Alda; Soffitta, Paolo; Spandre, Gloria

    2012-09-01

    The Gas Pixel Detector, developed and continuously improved by Pisa INFN in collaboration with INAF-IAPS, can visualize the tracks produced within a low Z gas by photoelectrons of few keV. By reconstructing the impact point and the original direction of the photoelectrons, the GPD can measure the linear polarization of X-rays, while preserving the information on the absorption point, the energy and the time of arrival of individual photons. The Gas Pixel Detector filled with He-DME mixture at 1 bar is sensitive in the 2-10 keV energy range and this configuration has been the basis of a number of mission proposals, such as POLARIX or XPOL on-board XEUS/IXO, or the X-ray Imaging Polarimetry Explorer (XIPE) submitted in response to ESA small mission call in 2012. We have recently improved the design by modifying the geometry of the absorption cell to minimize any systematic effect which could leave a residual polarization signal for non polarized source. We report on the testing of this new concept with preliminary results on the new design performance.

  9. Large format, small pixel pitch and hot detectors at SOFRADIR

    NASA Astrophysics Data System (ADS)

    Reibel, Y.; Rouvie, A.; Nedelcu, A.; Augey, T.; Pere-Laperne, N.; Rubaldo, L.; Billon-Lanfrey, D.; Gravrand, O.; Rothman, J.; Destefanis, G.

    2013-10-01

    Recently Sofradir joined a very small circle of IR detector manufacturers with expertise every aspect of the cooled and uncooled IR technologies, all under one roof by consolidating all IR technologies available in France. These different technologies are complementary and are used depending of the needs of the applications mainly concerning the detection range needs as well as their ability to detect in bad weather environmental conditions. SNAKE (InGaAs) and SCORPIO LW (MCT) expand Sofradir's line of small pixel pitch TV format IR detectors from the mid-wavelength to the short and long wavelengths. Our dual band MW-LW QWIP detectors (25μm, 384×288 pixels) benefit to tactical platforms giving an all-weather performance and increasing flexibility in the presence of battlefield obscurants. In parallel we have been pursuing further infrared developments on future MWIR detectors, such as the VGA format HOT detector that consumes 2W and the 10μm pitch IR detector which gives us a leading position in innovation. These detectors are designed for long-range surveillance equipment, commander or gunner sights, ground-to-ground missile launchers and other applications that require higher resolution and sensitivity to improve reconnaissance and target identification. This paper discusses the system level performance in each detector type.

  10. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  11. Photon crosstalk in pixel array for x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kim, Myung Soo; Kim, Giyoon; Kang, Dong-uk; Lee, Daehee; Cho, Gyuseong

    2014-09-01

    A large-area X-ray CMOS image sensor (LXCIS) is widely used in mammography, non-destructive inspection, and animal CT. For LXCIS, in spite of weakness such as low spatial and energy resolution, a Indirect method using scintillator like CsI(Tl) or Gd2O2S is still well-used because of low cost and easy manufacture. A photo-diode for X-ray imaging has large area about 50 ~ 200 um as compared with vision image sensors. That is because X-ray has feature of straight and very small light emission of a scintillator. Moreover, notwithstanding several structure like columnar, the scintillator still emit a diffusible light. This diffusible light from scintillator can make spatial crosstalk in X-ray photodiode array because of a large incidence angle. Moreover, comparing with vision image sensors, X-ray sensor doesn't have micro lens for gathering the photons to photo-diode. In this study, we simulated the affection of spatial crosstalk in X-ray sensor by comparing optical sensor. Additionally, the chip, which was fabricated in 0.18 um 1P5M process by Hynix in Korea, was tested to know the effect of spatial crosstalk by changing design parameters. From these works, we found out that spatial crosstalk is affected by pixel pitch, incident angle of photons, and micro lens on each pixels.

  12. The effect of split pixel HDR image sensor technology on MTF measurements

    NASA Astrophysics Data System (ADS)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  13. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel

  14. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.

    PubMed

    Kwon, Ki Yong; Sirowatka, Brenton; Weber, Arthur; Li, Wen

    2013-10-01

    Electrocorticogram (ECoG) recordings, taken from electrodes placed on the surface of the cortex, have been successfully implemented for control of brain machine interfaces (BMIs). Optogenetics, direct optical stimulation of neurons in brain tissue genetically modified to express channelrhodopsin-2 (ChR2), enables targeting of specific types of neurons with sub-millisecond temporal precision. In this work, we developed a BMI device, called an Opto- μECoG array, which combines ECoG recording and optogenetics-based stimulation to enable multichannel, bi-directional interactions with neurons. The Opto- μECoG array comprises two sub-arrays, each containing a 4 × 4 distribution of micro-epidural transparent electrodes ( ∼ 200 μm diameter) and embedded light-emitting diodes (LEDs) for optical neural stimulation on a 2.5 × 2.5 mm² footprint to match the bilateral hemispherical area of the visual cortex in a rat. The transparent electrodes were fabricated with indium tin oxide (ITO). Parylene-C served as the main structural and packaging material for flexibility and biocompatibility. Optical, electrical, and thermal characteristics of the fabricated device were investigated and in vivo experiments were performed to evaluate the efficacy of the device.

  15. Quantification and adjustment of pixel-locking in particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Hearst, R. J.; Ganapathisubramani, B.

    2015-10-01

    A quantification metric is provided to determine the degree to which a particle image velocimetry data set is pixel-locked. The metric is calculated by integrating the histogram equalization transfer function and normalizing by the worst-case scenario to return the percentage pixel-locked. When this metric is calculated for each position in the vector field, it is shown that pixel-locking is non-uniform across the field. Hence, pixel-locking adjustments should be made on a vector-by-vector basis rather than uniformly across a field, although the latter is the common practice. A methodology is provided to compensate for the effects of pixel-locking on a vector-by-vector basis. This includes applying a Gaussian filter directly to the images, processing the images with window deformation, ensuring the vector fields are in pixel displacements, applying histogram equalization calculated at each vector coordinate, and mapping the adjusted vector fields to physical space.

  16. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  17. Measurement of pixel response functions of a fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Hara, Takuji; Yamada, Yoshiyuki

    2014-07-01

    We describe the measurement of detailed and precise Pixel Response Functions (PRFs) of a fully depleted CCD. Measurements were performed under different physical conditions, such as different wavelength light sources or CCD operating temperatures. We determined the relations between these physical conditions and the forms of the PRF. We employ two types of PRFs: one is the model PRF (mPRF) that can represent the shape of a PRF with one characteristic parameter and the other is the simulated PRF (sPRF) that is the resultant PRF from simulating physical phenomena. By using measured, model, and simulated PRFs, we determined the relations between operational parameters and the PRFs. Using the obtained relations, we can now estimate a PRF under conditions that will be encountered during the course of Nano-JASMINE observations. These estimated PRFs will be utilized in the analysis of the Nano-JASMINE data.

  18. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  19. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry

    SciTech Connect

    Zhang, Zhigang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan E-mail: wgchu@nanoctr.cn; Wu, Xiaoping; Dong, Fengliang; Chu, Weiguo E-mail: wgchu@nanoctr.cn

    2014-10-15

    Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.

  20. Simulation of the dynamic inefficiency of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Bartók, M.

    2015-05-01

    The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to prevail in the harshest environment in terms of particle fluence and radiation. There are several mechanisms that may decrease the efficiency of the detector. These are mainly caused by data acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of instantaneous luminosity the inefficiency reached 2% (in the region closest to the interaction point) which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-driven method has been developed to simulate dynamic inefficiency, which has been shown to successfully simulate the effects.

  1. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. PMID:26256630

  2. CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Fant, A.; Gasiorek, P.; Esbrand, C.; Griffiths, J. A.; Metaxas, M. G.; Royle, G. J.; Speller, R.; Venanzi, C.; van der Stelt, P. F.; Verheij, H.; Li, G.; Theodoridis, S.; Georgiou, H.; Cavouras, D.; Hall, G.; Noy, M.; Jones, J.; Leaver, J.; Machin, D.; Greenwood, S.; Khaleeq, M.; Schulerud, H.; Østby, J. M.; Triantis, F.; Asimidis, A.; Bolanakis, D.; Manthos, N.; Longo, R.; Bergamaschi, A.

    2007-12-01

    Re-invented in the early 1990s, on both sides of the Atlantic, Monolithic Active Pixel Sensors (MAPS) in a CMOS technology are today the most sold solid-state imaging devices, overtaking the traditional technology of Charge-Coupled Devices (CCD). The slow uptake of CMOS MAPS started with low-end applications, for example web-cams, and is slowly pervading the high-end applications, for example in prosumer digital cameras. Higher specifications are required for scientific applications: very low noise, high speed, high dynamic range, large format and radiation hardness are some of these requirements. This paper will present a brief overview of the CMOS Image Sensor technology and of the requirements for scientific applications. As an example, a sensor for X-ray imaging will be presented. This sensor was developed within a European FP6 Consortium, intelligent imaging sensors (I-ImaS).

  3. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  4. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.

    PubMed

    Fuchs, Franz G; Hjelmervik, Jon M

    2016-02-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results. PMID:26731454

  5. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.

    PubMed

    Fuchs, Franz G; Hjelmervik, Jon M

    2016-02-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results.

  6. Spatial optical phase-modulating metadevice with subwavelength pixelation.

    PubMed

    Cencillo-Abad, Pablo; Plum, Eric; Rogers, Edward T F; Zheludev, Nikolay I

    2016-08-01

    Dynamic control over optical wavefronts enables focusing, diffraction and redirection of light on demand, however, sub-wavelength resolution is required to avoid unwanted diffracted beams that are present in commercial spatial light modulators. Here we propose a realistic metadevice that dynamically controls the optical phase of reflected beams with sub-wavelength pixelation in one dimension. Based on reconfigurable metamaterials and nanomembrane technology, it consists of individually moveable metallic nanowire actuators that control the phase of reflected light by modulating the optical path length. We demonstrate that the metadevice can provide on-demand optical wavefront shaping functionalities of diffraction gratings, beam splitters, phase-gradient metasurfaces, cylindrical mirrors and mirror arrays - with variable focal distance and numerical aperture - without unwanted diffraction.

  7. Spatial optical phase-modulating metadevice with subwavelength pixelation.

    PubMed

    Cencillo-Abad, Pablo; Plum, Eric; Rogers, Edward T F; Zheludev, Nikolay I

    2016-08-01

    Dynamic control over optical wavefronts enables focusing, diffraction and redirection of light on demand, however, sub-wavelength resolution is required to avoid unwanted diffracted beams that are present in commercial spatial light modulators. Here we propose a realistic metadevice that dynamically controls the optical phase of reflected beams with sub-wavelength pixelation in one dimension. Based on reconfigurable metamaterials and nanomembrane technology, it consists of individually moveable metallic nanowire actuators that control the phase of reflected light by modulating the optical path length. We demonstrate that the metadevice can provide on-demand optical wavefront shaping functionalities of diffraction gratings, beam splitters, phase-gradient metasurfaces, cylindrical mirrors and mirror arrays - with variable focal distance and numerical aperture - without unwanted diffraction. PMID:27505842

  8. Pixel color feature enhancement for road signs detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qieshi; Kamata, Sei-ichiro

    2010-02-01

    Road signs play an important role in our daily life which used to guide drivers to notice variety of road conditions and cautions. They provide important visual information that can help drivers operating their vehicles in a manner for enhancing traffic safety. The occurrence of some accidents can be reduced by using automatic road signs recognition system which can alert the drivers. This research attempts to develop a warning system to alert the drivers to notice the important road signs early enough to refrain road accidents from happening. For solving this, a non-linear weighted color enhancement method by pixels is presented. Due to the advantage of proposed method, different road signs can be detected from videos effectively. With suitably coefficients and operations, the experimental results have proved that the proposed method is robust, accurate and powerful in road signs detection.

  9. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured −10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62–3.63 GHz) and 14.63% (2.85–3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  10. Transillumination imaging through biological tissue by single-pixel detection

    NASA Astrophysics Data System (ADS)

    Durán, Vicente; Soldevila, Fernando; Irles, Esther; Clemente, Pere; Tajahuerce, Enrique; Andrés, Pedro; Lancis, Jesús

    2015-07-01

    One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection and benefits from the compressive sensing strategy. As a proof of concept, we experimentally retrieve the image of a transilluminated target both sandwiched between two holographic diffusers and embedded in a 6mm-thick sample of chicken breast.

  11. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors. PMID:27519099

  12. Signal processing algorithms for staring single pixel hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris; Rossacci, Michael; O'Donnell, Erin; D'Amico, Francis M.

    2006-08-01

    Remote sensing of chemical warfare agents (CWA) with stand-off hyperspectral sensors has a wide range of civilian and military applications. These sensors exploit the spectral changes in the ambient photon flux produced thermal emission or absorption after passage through a region containing the CWA cloud. In this work we focus on (a) staring single-pixel sensors that sample their field of view at regular intervals of time to produce a time series of spectra and (b) scanning single or multiple pixel sensors that sample their FOV as they scan. The main objective of signal processing algorithms is to determine if and when a CWA enters the FOV of the sensor. We shall first develop and evaluate algorithms for staring sensors following two different approaches. First, we will assume that no threat information is available and we design an adaptive anomaly detection algorithm to detect a statistically-significant change in the observed spectrum. The algorithm processes the observed spectra sequentially-in-time, estimates adaptively the background, and checks whether the next spectrum differs significantly from the background based on the Mahalanobis distance or the distance from the background subspace. In the second approach, we will assume that we know the spectral signature of the CWA and develop sequential-in-time adaptive matched filter detectors. In both cases, we assume that the sensor starts its operation before the release of the CWA; otherwise, staring at a nearby CWA-free area is required for background estimation. Experimental evaluation and comparison of the proposed algorithms is accomplished using data from a long-wave infrared (LWIR) Fourier transform spectrometer.

  13. 2D Sub-Pixel Disparity Measurement Using QPEC / Medicis

    NASA Astrophysics Data System (ADS)

    Cournet, M.; Giros, A.; Dumas, L.; Delvit, J. M.; Greslou, D.; Languille, F.; Blanchet, G.; May, S.; Michel, J.

    2016-06-01

    In the frame of its earth observation missions, CNES created a library called QPEC, and one of its launcher called Medicis. QPEC / Medicis is a sub-pixel two-dimensional stereo matching algorithm that works on an image pair. This tool is a block matching algorithm, which means that it is based on a local method. Moreover it does not regularize the results found. It proposes several matching costs, such as the Zero mean Normalised Cross-Correlation or statistical measures (the Mutual Information being one of them), and different match validation flags. QPEC / Medicis is able to compute a two-dimensional dense disparity map with a subpixel precision. Hence, it is more versatile than disparity estimation methods found in computer vision literature, which often assume an epipolar geometry. CNES uses Medicis, among other applications, during the in-orbit image quality commissioning of earth observation satellites. For instance the Pléiades-HR 1A & 1B and the Sentinel-2 geometric calibrations are based on this block matching algorithm. Over the years, it has become a common tool in ground segments for in-flight monitoring purposes. For these two kinds of applications, the two-dimensional search and the local sub-pixel measure without regularization can be essential. This tool is also used to generate automatic digital elevation models, for which it was not initially dedicated. This paper deals with the QPEC / Medicis algorithm. It also presents some of its CNES applications (in-orbit commissioning, in flight monitoring or digital elevation model generation). Medicis software is distributed outside the CNES as well. This paper finally describes some of these external applications using Medicis, such as ground displacement measurement, or intra-oral scanner in the dental domain.

  14. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    NASA Technical Reports Server (NTRS)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post

  15. Method of anti-aliasing with the use of the new pixel model

    NASA Astrophysics Data System (ADS)

    Romanyuk, Olexander N.; Pavlov, Sergii V.; Melnyk, Olexander V.; Romanyuk, Sergii O.; Smolarz, Andrzej; Bazarova, Madina

    2015-12-01

    The paper proposes additional evaluation functions to mark the segment area that cuts straight line to determine the intensity of the color pixel. For anti-aliasing purposes a twelve-angle pixel model is suggested. Additional evaluation functions are used to identify the pixel color intensity. These functions can be calculated independently. A structure of a device is proposed for hardware implementation of anti-aliasing.

  16. IV and CV curves for irradiated prototype BTeV silicon pixel sensors

    SciTech Connect

    Maria R. Coluccia et al.

    2002-07-16

    The authors present IV and CV curves for irradiated prototype n{sup +}/n/p{sup +} silicon pixel sensors, intended for use in the BTeV experiment at Fermilab. They tested pixel sensors from various vendors and with two pixel isolation layouts: p-stop and p-spray. Results are based on exposure with 200 MeV protons up to 6 x 10{sup 14} protons/cm{sup 2}.

  17. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    PubMed Central

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed. PMID:22389592

  18. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  19. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy

    PubMed Central

    Greenbaum, Alon; Luo, Wei; Khademhosseinieh, Bahar; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2013-01-01

    Pixel-size limitation of lensfree on-chip microscopy can be circumvented by utilizing pixel-super-resolution techniques to synthesize a smaller effective pixel, improving the resolution. Here we report that by using the two-dimensional pixel-function of an image sensor-array as an input to lensfree image reconstruction, pixel-super-resolution can improve the numerical aperture of the reconstructed image by ~3 fold compared to a raw lensfree image. This improvement was confirmed using two different sensor-arrays that significantly vary in their pixel-sizes, circuit architectures and digital/optical readout mechanisms, empirically pointing to roughly the same space-bandwidth improvement factor regardless of the sensor-array employed in our set-up. Furthermore, such a pixel-count increase also renders our on-chip microscope into a Giga-pixel imager, where an effective pixel count of ~1.6–2.5 billion can be obtained with different sensors. Finally, using an ultra-violet light-emitting-diode, this platform resolves 225 nm grating lines and can be useful for wide-field on-chip imaging of nano-scale objects, e.g., multi-walled-carbon-nanotubes.

  20. Enhanced correction methods for high density hot pixel defects in digital imagers

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Thomas, Rahul; Thomas, Rohit; Koren, Zahava; Koren, Israel

    2015-03-01

    Our previous research has found that the main defects in digital cameras are "Hot Pixels" which increase at a nearly constant temporal rate. Defect rates have been shown to grow as a power law of the pixel size and ISO, potentially causing hundreds to thousands of defects per year in cameras with <2 micron pixels, thus making image correction crucial. This paper discusses a novel correction method that uses a weighted combination of two terms - traditional interpolation and hot pixel parameters correction. The weights are based on defect severity, ISO, exposure time and complexity of the image. For the hot pixel parameters component, we have studied the behavior of hot pixels under illumination and have created a new correction model that takes this behavior into account. We show that for an image with a slowly changing background, the classic interpolation performs well. However, for more complex scenes, the correction improves when a weighted combination of both components is used. To test our algorithm's accuracy, we devised a novel laboratory experimental method for extracting the true value of the pixel that currently experiences a hot pixel defect. This method involves a simple translation of the imager based on the pixel size and other optical distances.