Pixel-based image fusion with false color mapping
NASA Astrophysics Data System (ADS)
Zhao, Wei; Mao, Shiyi
2003-06-01
In this paper, we propose a pixel-based image fusion algorithm that combines the gray-level image fusion method with the false color mapping. This algorithm integrates two gray-level images presenting different sensor modalities or at different frequencies and produces a fused false-color image. The resulting image has higher information content than each of the original images. The objects in the fused color image are easy to be recognized. This algorithm has three steps: first, obtaining the fused gray-level image of two original images; second, giving the generalized high-boost filtering images between fused gray-level image and two source images respectively; third, generating the fused false-color image. We use the hybrid averaging and selection fusion method to obtain the fused gray-level image. The fused gray-level image will provide better details than two original images and reduce noise at the same time. But the fused gray-level image can't contain all detail information in two source images. At the same time, the details in gray-level image cannot be discerned as easy as in a color image. So a color fused image is necessary. In order to create color variation and enhance details in the final fusion image, we produce three generalized high-boost filtering images. These three images are displayed through red, green and blue channel respectively. A fused color image is produced finally. This method is used to fuse two SAR images acquired on the San Francisco area (California, USA). The result shows that fused false-color image enhances the visibility of certain details. The resolution of the final false-color image is the same as the resolution of the input images.
Ghost detection and removal based on super-pixel grouping in exposure fusion
NASA Astrophysics Data System (ADS)
Jiang, Shenyu; Xu, Zhihai; Li, Qi; Chen, Yueting; Feng, Huajun
2014-09-01
A novel multi-exposure images fusion method for dynamic scenes is proposed. The commonly used techniques for high dynamic range (HDR) imaging are based on the combination of multiple differently exposed images of the same scene. The drawback of these methods is that ghosting artifacts will be introduced into the final HDR image if the scene is not static. In this paper, a super-pixel grouping based method is proposed to detect the ghost in the image sequences. We introduce the zero mean normalized cross correlation (ZNCC) as a measure of similarity between a given exposure image and the reference. The calculation of ZNCC is implemented in super-pixel level, and the super-pixels which have low correlation with the reference are excluded by adjusting the weight maps for fusion. Without any prior information on camera response function or exposure settings, the proposed method generates low dynamic range (LDR) images which can be shown on conventional display devices directly with details preserving and ghost effects reduced. Experimental results show that the proposed method generates high quality images which have less ghost artifacts and provide a better visual quality than previous approaches.
PET-CT image fusion using random forest and à-trous wavelet transform.
Seal, Ayan; Bhattacharjee, Debotosh; Nasipuri, Mita; Rodríguez-Esparragón, Dionisio; Menasalvas, Ernestina; Gonzalo-Martin, Consuelo
2018-03-01
New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. Copyright © 2017 John Wiley & Sons, Ltd.
Weber-aware weighted mutual information evaluation for infrared-visible image fusion
NASA Astrophysics Data System (ADS)
Luo, Xiaoyan; Wang, Shining; Yuan, Ding
2016-10-01
A performance metric for infrared and visible image fusion is proposed based on Weber's law. To indicate the stimulus of source images, two Weber components are provided. One is differential excitation to reflect the spectral signal of visible and infrared images, and the other is orientation to capture the scene structure feature. By comparing the corresponding Weber component in infrared and visible images, the source pixels can be marked with different dominant properties in intensity or structure. If the pixels have the same dominant property label, the pixels are grouped to calculate the mutual information (MI) on the corresponding Weber components between dominant source and fused images. Then, the final fusion metric is obtained via weighting the group-wise MI values according to the number of pixels in different groups. Experimental results demonstrate that the proposed metric performs well on popular image fusion cases and outperforms other image fusion metrics.
Enhancement of low light level images using color-plus-mono dual camera.
Jung, Yong Ju
2017-05-15
In digital photography, the improvement of imaging quality in low light shooting is one of the users' needs. Unfortunately, conventional smartphone cameras that use a single, small image sensor cannot provide satisfactory quality in low light level images. A color-plus-mono dual camera that consists of two horizontally separate image sensors, which simultaneously captures both a color and mono image pair of the same scene, could be useful for improving the quality of low light level images. However, an incorrect image fusion between the color and mono image pair could also have negative effects, such as the introduction of severe visual artifacts in the fused images. This paper proposes a selective image fusion technique that applies an adaptive guided filter-based denoising and selective detail transfer to only those pixels deemed reliable with respect to binocular image fusion. We employ a dissimilarity measure and binocular just-noticeable-difference (BJND) analysis to identify unreliable pixels that are likely to cause visual artifacts during image fusion via joint color image denoising and detail transfer from the mono image. By constructing an experimental system of color-plus-mono camera, we demonstrate that the BJND-aware denoising and selective detail transfer is helpful in improving the image quality during low light shooting.
A research on radiation calibration of high dynamic range based on the dual channel CMOS
NASA Astrophysics Data System (ADS)
Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua
2017-10-01
The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.
Fast single image dehazing based on image fusion
NASA Astrophysics Data System (ADS)
Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian
2015-01-01
Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.
Some new classification methods for hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia
2006-10-01
Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D
2015-05-08
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.
2015-01-01
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Angiogram, fundus, and oxygen saturation optic nerve head image fusion
NASA Astrophysics Data System (ADS)
Cao, Hua; Khoobehi, Bahram
2009-02-01
A novel multi-modality optic nerve head image fusion approach has been successfully designed. The new approach has been applied on three ophthalmologic modalities: angiogram, fundus, and oxygen saturation retinal optic nerve head images. It has achieved an excellent result by giving the visualization of fundus or oxygen saturation images with a complete angiogram overlay. During this study, two contributions have been made in terms of novelty, efficiency, and accuracy. The first contribution is the automated control point detection algorithm for multi-sensor images. The new method employs retina vasculature and bifurcation features by identifying the initial good-guess of control points using the Adaptive Exploratory Algorithm. The second contribution is the heuristic optimization fusion algorithm. In order to maximize the objective function (Mutual-Pixel-Count), the iteration algorithm adjusts the initial guess of the control points at the sub-pixel level. A refinement of the parameter set is obtained at the end of each loop, and finally an optimal fused image is generated at the end of the iteration. It is the first time that Mutual-Pixel-Count concept has been introduced into biomedical image fusion area. By locking the images in one place, the fused image allows ophthalmologists to match the same eye over time and get a sense of disease progress and pinpoint surgical tools. The new algorithm can be easily expanded to human or animals' 3D eye, brain, or body image registration and fusion.
Study on polarization image methods in turbid medium
NASA Astrophysics Data System (ADS)
Fu, Qiang; Mo, Chunhe; Liu, Boyu; Duan, Jin; Zhang, Su; Zhu, Yong
2014-11-01
Polarization imaging detection technology in addition to the traditional imaging information, also can get polarization multi-dimensional information, thus improve the probability of target detection and recognition.Image fusion in turbid medium target polarization image research, is helpful to obtain high quality images. Based on visible light wavelength of light wavelength of laser polarization imaging, through the rotation Angle of polaroid get corresponding linear polarized light intensity, respectively to obtain the concentration range from 5% to 10% of turbid medium target stocks of polarization parameters, introduces the processing of image fusion technology, main research on access to the polarization of the image by using different polarization image fusion methods for image processing, discusses several kinds of turbid medium has superior performance of polarization image fusion method, and gives the treatment effect and analysis of data tables. Then use pixel level, feature level and decision level fusion algorithm on three levels of information fusion, DOLP polarization image fusion, the results show that: with the increase of the polarization Angle, polarization image will be more and more fuzzy, quality worse and worse. Than a single fused image contrast of the image be improved obviously, the finally analysis on reasons of the increase the image contrast and polarized light.
Twofold processing for denoising ultrasound medical images.
Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y
2015-01-01
Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Effective Multifocus Image Fusion Based on HVS and BP Neural Network
Yang, Yong
2014-01-01
The aim of multifocus image fusion is to fuse the images taken from the same scene with different focuses to obtain a resultant image with all objects in focus. In this paper, a novel multifocus image fusion method based on human visual system (HVS) and back propagation (BP) neural network is presented. Three features which reflect the clarity of a pixel are firstly extracted and used to train a BP neural network to determine which pixel is clearer. The clearer pixels are then used to construct the initial fused image. Thirdly, the focused regions are detected by measuring the similarity between the source images and the initial fused image followed by morphological opening and closing operations. Finally, the final fused image is obtained by a fusion rule for those focused regions. Experimental results show that the proposed method can provide better performance and outperform several existing popular fusion methods in terms of both objective and subjective evaluations. PMID:24683327
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
The fusion of large scale classified side-scan sonar image mosaics.
Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan
2006-07-01
This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.
A fast fusion scheme for infrared and visible light images in NSCT domain
NASA Astrophysics Data System (ADS)
Zhao, Chunhui; Guo, Yunting; Wang, Yulei
2015-09-01
Fusion of infrared and visible light images is an effective way to obtain a simultaneous visualization of details of background provided by visible light image and hiding target information provided by infrared image, which is more suitable for browsing and further processing. Two crucial components for infrared and visual light image fusion are improving its fusion performance as well as reducing its computational burden. In this paper, a novel fusion algorithm named pixel information estimation is proposed, which determines the weights by evaluating the information of pixel and is well applied in visible light and infrared image fusion with better fusion quality and lower time-consumption. Besides, a fast realization of non-subsampled contourlet transform is also proposed in this paper to improve the computational efficiency. To verify the advantage of the proposed method, this paper compares it with several popular ones in six evaluation metrics over four different image groups. Experimental results show that the proposed algorithm gets a more effective result with much less time consuming and performs well in both subjective evaluation and objective indicators.
NASA Astrophysics Data System (ADS)
Lebedev, M. A.; Stepaniants, D. G.; Komarov, D. V.; Vygolov, O. V.; Vizilter, Yu. V.; Zheltov, S. Yu.
2014-08-01
The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors.
Formulation of image fusion as a constrained least squares optimization problem
Dwork, Nicholas; Lasry, Eric M.; Pauly, John M.; Balbás, Jorge
2017-01-01
Abstract. Fusing a lower resolution color image with a higher resolution monochrome image is a common practice in medical imaging. By incorporating spatial context and/or improving the signal-to-noise ratio, it provides clinicians with a single frame of the most complete information for diagnosis. In this paper, image fusion is formulated as a convex optimization problem that avoids image decomposition and permits operations at the pixel level. This results in a highly efficient and embarrassingly parallelizable algorithm based on widely available robust and simple numerical methods that realizes the fused image as the global minimizer of the convex optimization problem. PMID:28331885
NASA Astrophysics Data System (ADS)
Kong, J.; Ryu, Y.
2017-12-01
Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.
Ellmauthaler, Andreas; Pagliari, Carla L; da Silva, Eduardo A B
2013-03-01
Multiscale transforms are among the most popular techniques in the field of pixel-level image fusion. However, the fusion performance of these methods often deteriorates for images derived from different sensor modalities. In this paper, we demonstrate that for such images, results can be improved using a novel undecimated wavelet transform (UWT)-based fusion scheme, which splits the image decomposition process into two successive filtering operations using spectral factorization of the analysis filters. The actual fusion takes place after convolution with the first filter pair. Its significantly smaller support size leads to the minimization of the unwanted spreading of coefficient values around overlapping image singularities. This usually complicates the feature selection process and may lead to the introduction of reconstruction errors in the fused image. Moreover, we will show that the nonsubsampled nature of the UWT allows the design of nonorthogonal filter banks, which are more robust to artifacts introduced during fusion, additionally improving the obtained results. The combination of these techniques leads to a fusion framework, which provides clear advantages over traditional multiscale fusion approaches, independent of the underlying fusion rule, and reduces unwanted side effects such as ringing artifacts in the fused reconstruction.
Region-based multifocus image fusion for the precise acquisition of Pap smear images.
Tello-Mijares, Santiago; Bescós, Jesús
2018-05-01
A multifocus image fusion method to obtain a single focused image from a sequence of microscopic high-magnification Papanicolau source (Pap smear) images is presented. These images, captured each in a different position of the microscope lens, frequently show partially focused cells or parts of cells, which makes them unpractical for the direct application of image analysis techniques. The proposed method obtains a focused image with a high preservation of original pixels information while achieving a negligible visibility of the fusion artifacts. The method starts by identifying the best-focused image of the sequence; then, it performs a mean-shift segmentation over this image; the focus level of the segmented regions is evaluated in all the images of the sequence, and best-focused regions are merged in a single combined image; finally, this image is processed with an adaptive artifact removal process. The combination of a region-oriented approach, instead of block-based approaches, and a minimum modification of the value of focused pixels in the original images achieve a highly contrasted image with no visible artifacts, which makes this method especially convenient for the medical imaging domain. The proposed method is compared with several state-of-the-art alternatives over a representative dataset. The experimental results show that our proposal obtains the best and more stable quality indicators. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
a Study of the Impact of Insolation on Remote Sensing-Based Landcover and Landuse Data Extraction
NASA Astrophysics Data System (ADS)
Becek, K.; Borkowski, A.; Mekik, Ç.
2016-06-01
We examined the dependency of the pixel reflectance of hyperspectral imaging spectrometer data (HISD) on a normalized total insolation index (NTII). The NTII was estimated using a light detection and ranging (LiDAR)-derived digital surface model (DSM). The NTII and the pixel reflectance were dependent, to various degrees, on the band considered, and on the properties of the objects. The findings could be used to improve land cover (LC)/land use (LU) classification, using indices constructed from the spectral bands of imaging spectrometer data (ISD). To study this possibility, we investigated the normalized difference vegetation index (NDVI) at various NTII levels. The results also suggest that the dependency of the pixel reflectance and NTII could be used to mitigate the shadows in ISD. This project was carried out using data provided by the Hyperspectral Image Analysis Group and the NSF-funded Centre for Airborne Laser Mapping (NCALM), University of Houston, for the purpose of organizing the 2013 Data Fusion Contest (IEEE 2014). This contest was organized by the IEEE GRSS Data Fusion Technical Committee.
Computational polarization difference underwater imaging based on image fusion
NASA Astrophysics Data System (ADS)
Han, Hongwei; Zhang, Xiaohui; Guan, Feng
2016-01-01
Polarization difference imaging can improve the quality of images acquired underwater, whether the background and veiling light are unpolarized or partial polarized. Computational polarization difference imaging technique which replaces the mechanical rotation of polarization analyzer and shortens the time spent to select the optimum orthogonal ǁ and ⊥axes is the improvement of the conventional PDI. But it originally gets the output image by setting the weight coefficient manually to an identical constant for all pixels. In this paper, a kind of algorithm is proposed to combine the Q and U parameters of the Stokes vector through pixel-level image fusion theory based on non-subsample contourlet transform. The experimental system built by the green LED array with polarizer to illuminate a piece of flat target merged in water and the CCD with polarization analyzer to obtain target image under different angle is used to verify the effect of the proposed algorithm. The results showed that the output processed by our algorithm could show more details of the flat target and had higher contrast compared to original computational polarization difference imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugh, Brige Paul; Krishnan, Kalpagam; Liu, Jeff
2014-08-15
Integration of biological conductivity information provided by Electrical Impedance Tomography (EIT) with anatomical information provided by Computed Tomography (CT) imaging could improve the ability to characterize tissues in clinical applications. In this paper, we report results of our study which compared the fusion of EIT with CT using three different image fusion algorithms, namely: weighted averaging, wavelet fusion, and ROI indexing. The ROI indexing method of fusion involves segmenting the regions of interest from the CT image and replacing the pixels with the pixels of the EIT image. The three algorithms were applied to a CT and EIT image ofmore » an anthropomorphic phantom, constructed out of five acrylic contrast targets with varying diameter embedded in a base of gelatin bolus. The imaging performance was assessed using Detectability and Structural Similarity Index Measure (SSIM). Wavelet fusion and ROI-indexing resulted in lower Detectability (by 35% and 47%, respectively) yet higher SSIM (by 66% and 73%, respectively) than weighted averaging. Our results suggest that wavelet fusion and ROI-indexing yielded more consistent and optimal fusion performance than weighted averaging.« less
Segment fusion of ToF-SIMS images.
Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A
2016-06-08
The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
NASA Astrophysics Data System (ADS)
Jin, Y.; Lee, D.
2017-12-01
North Korea (the Democratic People's Republic of Korea, DPRK) is known to have some of the most degraded forest in the world. The characteristics of forest landscape in North Korea is complex and heterogeneous, the major vegetation cover types in the forest are hillside farm, unstocked forest, natural forest, and plateau vegetation. Better classification of types in high spatial resolution of deforested areas could provide essential information for decisions about forest management priorities and restoration of deforested areas. For mapping heterogeneous vegetation covers, the phenology-based indices are helpful to overcome the reflectance value confusion that occurs when using one season images. Coarse spatial resolution images may be acquired with a high repetition rate and it is useful for analyzing phenology characteristics, but may not capture the spatial detail of the land cover mosaic of the region of interest. Previous spatial-temporal fusion methods were only capture the temporal change, or focused on both temporal change and spatial change but with low accuracy in heterogeneous landscapes and small patches. In this study, a new concept for spatial-temporal image fusion method focus on heterogeneous landscape was proposed to produce fine resolution images at both fine spatial and temporal resolution. We classified the three types of pixels between the base image and target image, the first type is only reflectance changed caused by phenology, this type of pixels supply the reflectance, shape and texture information; the second type is both reflectance and spectrum changed in some bands caused by phenology like rice paddy or farmland, this type of pixels only supply shape and texture information; the third type is reflectance and spectrum changed caused by land cover type change, this type of pixels don't provide any information because we can't know how land cover changed in target image; and each type of pixels were applied different prediction methods. Results show that both STARFM and FSDAF predicted in low accuracy in second type pixels and small patches. Classification results used spatial-temporal image fusion method proposed in this study showed overall classification accuracy of 89.38%, with corresponding kappa coefficients of 0.87.
Blob-level active-passive data fusion for Benthic classification
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady
2012-06-01
We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.
Shadow-free single-pixel imaging
NASA Astrophysics Data System (ADS)
Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang
2017-11-01
Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.
A dual-channel fusion system of visual and infrared images based on color transfer
NASA Astrophysics Data System (ADS)
Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong
2013-09-01
A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.
Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing
NASA Astrophysics Data System (ADS)
Fan, Lei
Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.
Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT.
Mazaheri, Samaneh; Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah
2015-01-01
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.
Multi-focus image fusion based on window empirical mode decomposition
NASA Astrophysics Data System (ADS)
Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao
2017-09-01
In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.
Matovic, Milovan; Jankovic, Milica; Barjaktarovic, Marko; Jeremic, Marija
2017-01-01
After radioiodine therapy of differentiated thyroid cancer (DTC) patients, whole body scintigraphy (WBS) is standard procedure before releasing the patient from the hospital. A common problem is the precise localization of regions where the iod-avide tissue is located. Sometimes is practically impossible to perform precise topographic localization of such regions. In order to face this problem, we have developed a low-cost Vision-Fusion system for web-camera image acquisition simultaneously with routine scintigraphic whole body acquisition including the algorithm for fusion of images given from both cameras. For image acquisition in the gamma part of the spectra we used e.cam dual head gamma camera (Siemens, Erlangen, Germany) in WBS modality, with matrix size of 256×1024 pixels and bed speed of 6cm/min, equipped with high energy collimator. For optical image acquisition in visible part of spectra we have used web-camera model C905 (Logitech, USA) with Carl Zeiss® optics, native resolution 1600×1200 pixels, 34 o field of view, 30g weight, with autofocus option turned "off" and auto white balance turned "on". Web camera is connected to upper head of gamma camera (GC) by a holder of lightweight aluminum rod and a plexiglas adapter. Our own Vision-Fusion software for image acquisition and coregistration was developed using NI LabVIEW programming environment 2015 (National Instruments, Texas, USA) and two additional LabVIEW modules: NI Vision Acquisition Software (VAS) and NI Vision Development Module (VDM). Vision acquisition software enables communication and control between laptop computer and web-camera. Vision development module is image processing library used for image preprocessing and fusion. Software starts the web-camera image acquisition before starting image acquisition on GC and stops it when GC completes the acquisition. Web-camera is in continuous acquisition mode with frame rate f depending on speed of patient bed movement v (f=v/∆ cm , where ∆ cm is a displacement step that can be changed in Settings option of Vision-Fusion software; by default, ∆ cm is set to 1cm corresponding to ∆ p =15 pixels). All images captured while patient's bed is moving are processed. Movement of patient's bed is checked using cross-correlation of two successive images. After each image capturing, algorithm extracts the central region of interest (ROI) of the image, with the same width as captured image (1600 pixels) and the height that is equal to the ∆ p displacement in pixels. All extracted central ROI are placed next to each other in the overall whole-body image. Stacking of narrow central ROI introduces negligible distortion in the overall whole-body image. The first step for fusion of the scintigram and the optical image was determination of spatial transformation between them. We have made an experiment with two markers (point radioactivity sources of 99m Tc pertechnetate 1MBq) visible in both images (WBS and optical) to find transformation of coordinates between images. The distance between point markers is used for spatial coregistration of the gamma and optical images. At the end of coregistration process, gamma image is rescaled in spatial domain and added to the optical image (green or red channel, amplification changeable from user interface). We tested our system for 10 patients with DTC who received radioiodine therapy (8 women and two men, with average age of 50.10±12.26 years). Five patients received 5.55Gbq, three 3.70GBq and two 1.85GBq. Whole-body scintigraphy and optical image acquisition were performed 72 hours after application of radioiodine therapy. Based on our first results during clinical testing of our system, we can conclude that our system can improve diagnostic possibility of whole body scintigraphy to detect thyroid remnant tissue in patients with DTC after radioiodine therapy.
A coarse-to-fine approach for medical hyperspectral image classification with sparse representation
NASA Astrophysics Data System (ADS)
Chang, Lan; Zhang, Mengmeng; Li, Wei
2017-10-01
A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.
A multi-focus image fusion method via region mosaicking on Laplacian pyramids
Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong
2018-01-01
In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912
Autofocus and fusion using nonlinear correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabazos-Marín, Alma Rocío; Álvarez-Borrego, Josué, E-mail: josue@cicese.mx; Coronel-Beltrán, Ángel
2014-10-06
In this work a new algorithm is proposed for auto focusing and images fusion captured by microscope's CCD. The proposed algorithm for auto focusing implements the spiral scanning of each image in the stack f(x, y){sub w} to define the V{sub w} vector. The spectrum of the vector FV{sub w} is calculated by fast Fourier transform. The best in-focus image is determined by a focus measure that is obtained by the FV{sub 1} nonlinear correlation vector, of the reference image, with each other FV{sub W} images in the stack. In addition, fusion is performed with a subset of selected imagesmore » f(x, y){sub SBF} like the images with best focus measurement. Fusion creates a new improved image f(x, y){sub F} with the selection of pixels of higher intensity.« less
Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT
Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah
2015-01-01
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics. PMID:26089965
NASA Astrophysics Data System (ADS)
Janesick, James; Elliott, Tom; Andrews, James; Tower, John; Bell, Perry; Teruya, Alan; Kimbrough, Joe; Bishop, Jeanne
2014-09-01
Our paper will describe a recently designed Mk x Nk x 10 um pixel CMOS gated imager intended to be first employed at the LLNL National Ignition Facility (NIF). Fabrication involves stitching MxN 1024x1024x10 um pixel blocks together into a monolithic imager (where M = 1, 2, . .10 and N = 1, 2, . . 10). The imager has been designed for either NMOS or PMOS pixel fabrication using a base 0.18 um/3.3V CMOS process. Details behind the design are discussed with emphasis on a custom global reset feature which erases the imager of unwanted charge in ~1 us during the fusion ignition process followed by an exposure to obtain useful data. Performance data generated by prototype imagers designed similar to the Mk x Nk sensor is presented.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
Imaging properties of pixellated scintillators with deep pixels
Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.
2015-01-01
We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors. PMID:26236070
Imaging properties of pixellated scintillators with deep pixels
NASA Astrophysics Data System (ADS)
Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.
2014-09-01
We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.
New false color mapping for image fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Walraven, Jan
1996-03-01
A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).
Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion
NASA Astrophysics Data System (ADS)
Pan, Yue; Xu, Xiping; Qiao, Yang
2018-06-01
In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Li, Huafeng; Yu, Zhengtao; Kong, Yingchun
2015-07-01
An efficient multifocus image fusion scheme in nonsubsampled contourlet transform (NSCT) domain is proposed. Based on the property of optical imaging and the theory of defocused image, we present a selection principle for lowpass frequency coefficients and also investigate the connection between a low-frequency image and the defocused image. Generally, the NSCT algorithm decomposes detail image information indwells in different scales and different directions in the bandpass subband coefficient. In order to correctly pick out the prefused bandpass directional coefficients, we introduce multiscale curvature, which not only inherits the advantages of windows with different sizes, but also correctly recognizes the focused pixels from source images, and then develop a new fusion scheme of the bandpass subband coefficients. The fused image can be obtained by inverse NSCT with the different fused coefficients. Several multifocus image fusion methods are compared with the proposed scheme. The experimental results clearly indicate the validity and superiority of the proposed scheme in terms of both the visual qualities and the quantitative evaluation.
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Xu, Ru
2018-02-01
Integrating synthetic aperture radar (SAR) and optical data to improve urban land cover classification has been identified as a promising approach. However, which integration level is the most suitable remains unclear but important to many researchers and engineers. This study aimed to compare different integration levels for providing a scientific reference for a wide range of studies using optical and SAR data. SAR data from TerraSAR-X and ENVISAT ASAR in both WSM and IMP modes were used to be combined with optical data at pixel level, feature level and decision levels using four typical machine learning methods. The experimental results indicated that: 1) feature level that used both the original images and extracted features achieved a significant improvement of up to 10% compared to that using optical data alone; 2) different levels of fusion required different suitable methods depending on the data distribution and data resolution. For instance, support vector machine was the most stable at both the feature and decision levels, while random forest was suitable at the pixel level but not suitable at the decision level. 3) By examining the distribution of SAR features, some features (e.g., homogeneity) exhibited a close-to-normal distribution, explaining the improvement from the maximum likelihood method at the feature and decision levels. This indicated the benefits of using texture features from SAR data when being combined with optical data for land cover classification. Additionally, the research also shown that combining optical and SAR data does not guarantee improvement compared with using single data source for urban land cover classification, depending on the selection of appropriate fusion levels and fusion methods.
Quantitative image fusion in infrared radiometry
NASA Astrophysics Data System (ADS)
Romm, Iliya; Cukurel, Beni
2018-05-01
Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.
Heideklang, René; Shokouhi, Parisa
2016-01-01
This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200
[An improved low spectral distortion PCA fusion method].
Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong
2013-10-01
Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.
Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu
2014-03-20
A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.
Image Edge Extraction via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)
2008-01-01
A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.
Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem
NASA Astrophysics Data System (ADS)
Zhang, Caiyun
2015-06-01
Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.
NASA Astrophysics Data System (ADS)
Prasad, S.; Bruce, L. M.
2007-04-01
There is a growing interest in using multiple sources for automatic target recognition (ATR) applications. One approach is to take multiple, independent observations of a phenomenon and perform a feature level or a decision level fusion for ATR. This paper proposes a method to utilize these types of multi-source fusion techniques to exploit hyperspectral data when only a small number of training pixels are available. Conventional hyperspectral image based ATR techniques project the high dimensional reflectance signature onto a lower dimensional subspace using techniques such as Principal Components Analysis (PCA), Fisher's linear discriminant analysis (LDA), subspace LDA and stepwise LDA. While some of these techniques attempt to solve the curse of dimensionality, or small sample size problem, these are not necessarily optimal projections. In this paper, we present a divide and conquer approach to address the small sample size problem. The hyperspectral space is partitioned into contiguous subspaces such that the discriminative information within each subspace is maximized, and the statistical dependence between subspaces is minimized. We then treat each subspace as a separate source in a multi-source multi-classifier setup and test various decision fusion schemes to determine their efficacy. Unlike previous approaches which use correlation between variables for band grouping, we study the efficacy of higher order statistical information (using average mutual information) for a bottom up band grouping. We also propose a confidence measure based decision fusion technique, where the weights associated with various classifiers are based on their confidence in recognizing the training data. To this end, training accuracies of all classifiers are used for weight assignment in the fusion process of test pixels. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies.
Yang, Guocheng; Li, Meiling; Chen, Leiting; Yu, Jie
2015-01-01
We propose a novel medical image fusion scheme based on the statistical dependencies between coefficients in the nonsubsampled contourlet transform (NSCT) domain, in which the probability density function of the NSCT coefficients is concisely fitted using generalized Gaussian density (GGD), as well as the similarity measurement of two subbands is accurately computed by Jensen-Shannon divergence of two GGDs. To preserve more useful information from source images, the new fusion rules are developed to combine the subbands with the varied frequencies. That is, the low frequency subbands are fused by utilizing two activity measures based on the regional standard deviation and Shannon entropy and the high frequency subbands are merged together via weight maps which are determined by the saliency values of pixels. The experimental results demonstrate that the proposed method significantly outperforms the conventional NSCT based medical image fusion approaches in both visual perception and evaluation indices. PMID:26557871
Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck
2008-04-10
One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.
Graphene metamaterial spatial light modulator for infrared single pixel imaging.
Fan, Kebin; Suen, Jonathan Y; Padilla, Willie J
2017-10-16
High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.
Dual-band QWIP MWIR/LWIR focal plane array test results
NASA Astrophysics Data System (ADS)
Goldberg, Arnold C.; Fischer, Theodore; Kennerly, Stephen; Wang, Samuel C.; Sundaram, Mani; Uppal, Parvez; Winn, Michael L.; Milne, Gregory L.; Stevens, Mark A.
2000-07-01
We report on the results of laboratory and field tests on a pixel-registered, 2-color MWIR/LWIR 256 X 256 QWIP FPA with simultaneous integrating capability. The FPA studied contained stacked QWIP structures with spectral peaks at 5.1 micrometer and 9.0 micrometer. Normally incident radiation was coupled into the devices using a diffraction grating designed to operate in both spectral bands. Each pixel is connected to the read-out integrated circuit by three bumps to permit the application of separate bias levels to each QWIP stack and allow simultaneous integration of the signal current in each band. We found the FPA to have high pixel operability, well balanced response, good imaging performance, high optical fill factor, and low spectral crosstalk. We present data on measurements of the noise-equivalent temperature difference of the FPA in both bands as functions of temperature and bias. The FPA data are compared to single-pixel data taken on devices from the same wafer. We also present data on the sensitivity of this FPA to polarized light. It is found that the LWIR portion of the device is very sensitive to the direction of polarization of the incident light. The MWIR part of the device is relatively insensitive to the polarization. In addition, imagery was taken with this FPA of military targets in the field. Image fusion techniques were applied to the resulting images.
Intensity-hue-saturation-based image fusion using iterative linear regression
NASA Astrophysics Data System (ADS)
Cetin, Mufit; Tepecik, Abdulkadir
2016-10-01
The image fusion process basically produces a high-resolution image by combining the superior features of a low-resolution spatial image and a high-resolution panchromatic image. Despite its common usage due to its fast computing capability and high sharpening ability, the intensity-hue-saturation (IHS) fusion method may cause some color distortions, especially when a large number of gray value differences exist among the images to be combined. This paper proposes a spatially adaptive IHS (SA-IHS) technique to avoid these distortions by automatically adjusting the exact spatial information to be injected into the multispectral image during the fusion process. The SA-IHS method essentially suppresses the effects of those pixels that cause the spectral distortions by assigning weaker weights to them and avoiding a large number of redundancies on the fused image. The experimental database consists of IKONOS images, and the experimental results both visually and statistically prove the enhancement of the proposed algorithm when compared with the several other IHS-like methods such as IHS, generalized IHS, fast IHS, and generalized adaptive IHS.
2007-03-31
Unlimited, Nivisys, Insight technology, Elcan, FLIR Systems, Stanford photonics Hardware Sensor fusion processors Video processing boards Image, video...Engineering The SPIE Digital Library is a resource for optics and photonics information. It contains more than 70,000 full-text papers from SPIE...conditions Top row: Stanford Photonics XR-Mega-10 Extreme 1400 x 1024 pixels ICCD detector, 33 msec exposure, no binning. Middle row: Andor EEV iXon
Segmentation via fusion of edge and needle map
NASA Astrophysics Data System (ADS)
Ahn, Hong-Young; Tou, Julius T.
1991-03-01
This paper presents an integrated image segmentation method using edge and needle map which compensates deficiencies of using either edge-based approach or region-based approach. Segmentation of an image is the first and most difficult step toward symbolic transformation of a raw image, which is essential in image understanding. In industrial applications, the task is further complicated by the ubiquitous presence of specularity in most industrial parts. Three images taken from three different illumination directions were used to separate specular and Lambertian components in the images. Needle map is generated from Lambertian component images using photometric stereo technique. In one channel, edges are extracted and linked from the averaged Lambertian images providing one source of segmentation. The other channel, Gaussian curvature and mean curvature values are estimated at each pixel from least square local surface fit of needle map. Labeled surface type image is then generated using the signs of Gaussian and mean curvatures, where one of ten surface types is assigned to each pixel. Connected regions of identical surface type pixels provide the first level grouping, a rough initial segmentation. Edge information and initial segmentation of surface type are fed to an integration module which interprets the edges and regions in a consistent way. During interpretation regions are merged or split, edges are discarded or generated depending upon global surface fit error and consistency with neighboring regions. The output of integrated segmentation is an explicit description of surface type and contours of each region which facilitates recognition, localization and attitude determination of objects in the image.
Multispectral image fusion based on fractal features
NASA Astrophysics Data System (ADS)
Tian, Jie; Chen, Jie; Zhang, Chunhua
2004-01-01
Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.
Shamwell, E Jared; Nothwang, William D; Perlis, Donald
2018-05-04
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.
NASA Astrophysics Data System (ADS)
Yao, Wei; van Aardt, Jan; Messinger, David
2017-05-01
The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel size of x/r, can be reconstructed from the multi-temporal set. The algorithm was applied to data from NASA's classic Airborne Visible and Infrared Imaging Spectrometer (AVIRIS-C; GSD 18m), collected between 2013-2015 (summer and fall) over our study area (NEON's Southwest Pacific Domain; Fresno, CA) to generate higher spatial resolution imagery (GSD 9m). The reconstructed data set was validated via comparison to NEON's imaging spectrometer (NIS) data (GSD 1m). The results showed that algorithm worked well with the AVIRIS-C data and could be applied to the HyspIRI data.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis
2012-10-01
While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility.
Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion
Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang
2016-01-01
Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313
Joint image registration and fusion method with a gradient strength regularization
NASA Astrophysics Data System (ADS)
Lidong, Huang; Wei, Zhao; Jun, Wang
2015-05-01
Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.
Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges
Lemeshewsky, George P.; Schowengerdt, Robert A.
2000-01-01
Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.
A scalable multi-DLP pico-projector system for virtual reality
NASA Astrophysics Data System (ADS)
Teubl, F.; Kurashima, C.; Cabral, M.; Fels, S.; Lopes, R.; Zuffo, M.
2014-03-01
Virtual Reality (VR) environments can offer immersion, interaction and realistic images to users. A VR system is usually expensive and requires special equipment in a complex setup. One approach is to use Commodity-Off-The-Shelf (COTS) desktop multi-projectors manually or camera based calibrated to reduce the cost of VR systems without significant decrease of the visual experience. Additionally, for non-planar screen shapes, special optics such as lenses and mirrors are required thus increasing costs. We propose a low-cost, scalable, flexible and mobile solution that allows building complex VR systems that projects images onto a variety of arbitrary surfaces such as planar, cylindrical and spherical surfaces. This approach combines three key aspects: 1) clusters of DLP-picoprojectors to provide homogeneous and continuous pixel density upon arbitrary surfaces without additional optics; 2) LED lighting technology for energy efficiency and light control; 3) smaller physical footprint for flexibility purposes. Therefore, the proposed system is scalable in terms of pixel density, energy and physical space. To achieve these goals, we developed a multi-projector software library called FastFusion that calibrates all projectors in a uniform image that is presented to viewers. FastFusion uses a camera to automatically calibrate geometric and photometric correction of projected images from ad-hoc positioned projectors, the only requirement is some few pixels overlapping amongst them. We present results with eight Pico-projectors, with 7 lumens (LED) and DLP 0.17 HVGA Chipset.
Pulse-coupled neural network sensor fusion
NASA Astrophysics Data System (ADS)
Johnson, John L.; Schamschula, Marius P.; Inguva, Ramarao; Caulfield, H. John
1998-03-01
Perception is assisted by sensed impressions of the outside world but not determined by them. The primary organ of perception is the brain and, in particular, the cortex. With that in mind, we have sought to see how a computer-modeled cortex--the PCNN or Pulse Coupled Neural Network--performs as a sensor fusing element. In essence, the PCNN is comprised of an array of integrate-and-fire neurons with one neuron for each input pixel. In such a system, the neurons corresponding to bright pixels reach firing threshold faster than the neurons corresponding to duller pixels. Thus, firing rate is proportional to brightness. In PCNNs, when a neuron fires it sends some of the resulting signal to its neighbors. This linking can cause a near-threshold neuron to fire earlier than it would have otherwise. This leads to synchronization of the pulses across large regions of the image. We can simplify the 3D PCNN output by integrating out the time dimension. Over a long enough time interval, the resulting 2D (x,y) pattern IS the input image. The PCNN has taken it apart and put it back together again. The shorter- term time integrals are interesting in themselves and will be commented upon in the paper. The main thrust of this paper is the use of multiple PCNNs mutually coupled in various ways to assemble a single 2D pattern or fused image. Results of experiments on PCNN image fusion and an evaluation of its advantages are our primary objectives.
Fully Convolutional Network-Based Multifocus Image Fusion.
Guo, Xiaopeng; Nie, Rencan; Cao, Jinde; Zhou, Dongming; Qian, Wenhua
2018-07-01
As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar
NASA Astrophysics Data System (ADS)
Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.
2017-05-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.
Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach
NASA Astrophysics Data System (ADS)
Jazaeri, Amin
High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.
[Research Progress of Multi-Model Medical Image Fusion at Feature Level].
Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun
2016-04-01
Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.
Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment.
Goiffon, V; Girard, S; Chabane, A; Paillet, P; Magnan, P; Cervantes, P; Martin-Gonthier, P; Baggio, J; Estribeau, M; Bourgade, J-L; Darbon, S; Rousseau, A; Glebov, V Yu; Pien, G; Sangster, T C
2012-08-27
CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.
A CMOS image sensor with programmable pixel-level analog processing.
Massari, Nicola; Gottardi, Massimo; Gonzo, Lorenzo; Stoppa, David; Simoni, Andrea
2005-11-01
A prototype of a 34 x 34 pixel image sensor, implementing real-time analog image processing, is presented. Edge detection, motion detection, image amplification, and dynamic-range boosting are executed at pixel level by means of a highly interconnected pixel architecture based on the absolute value of the difference among neighbor pixels. The analog operations are performed over a kernel of 3 x 3 pixels. The square pixel, consisting of 30 transistors, has a pitch of 35 microm with a fill-factor of 20%. The chip was fabricated in a 0.35 microm CMOS technology, and its power consumption is 6 mW with 3.3 V power supply. The device was fully characterized and achieves a dynamic range of 50 dB with a light power density of 150 nW/mm2 and a frame rate of 30 frame/s. The measured fixed pattern noise corresponds to 1.1% of the saturation level. The sensor's dynamic range can be extended up to 96 dB using the double-sampling technique.
Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging
NASA Astrophysics Data System (ADS)
Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.
2012-10-01
Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.
Fusion of Geophysical Images in the Study of Archaeological Sites
NASA Astrophysics Data System (ADS)
Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.
2011-12-01
This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image. In the resultant image appear clear linear and ellipsoid features corresponding to potential archaeological relics.
CMOS image sensors: State-of-the-art
NASA Astrophysics Data System (ADS)
Theuwissen, Albert J. P.
2008-09-01
This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.
Introducing two Random Forest based methods for cloud detection in remote sensing images
NASA Astrophysics Data System (ADS)
Ghasemian, Nafiseh; Akhoondzadeh, Mehdi
2018-07-01
Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.
A color fusion method of infrared and low-light-level images based on visual perception
NASA Astrophysics Data System (ADS)
Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa
2014-11-01
The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.
Joint sparsity based heterogeneous data-level fusion for target detection and estimation
NASA Astrophysics Data System (ADS)
Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe
2017-05-01
Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.
NASA Astrophysics Data System (ADS)
Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.
2016-12-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.
Intershot Analysis of Flows in DIII-D
NASA Astrophysics Data System (ADS)
Meyer, W. H.; Allen, S. L.; Samuell, C. M.; Howard, J.
2016-10-01
Analysis of the DIII-D flow diagnostic data require demodulation of interference images, and inversion of the resultant line integrated emissivity and flow (phase) images. Four response matrices are pre-calculated: the emissivity line integral and the line integral of the scalar product of the lines-of-site with the orthogonal unit vectors of parallel flow. Equilibrium data determines the relative weight of the component matrices used in the final flow inversion matrix. Serial processing has been used for the lower divertor viewing flow camera 800x600 pixel image. The full cross section viewing camera will require parallel processing of the 2160x2560 pixel image. We will discuss using a Posix thread pool and a Tesla K40c GPU in the processing of this data. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Fusion Energy Sciences.
Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems.
Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier; Garcia-Pedrero, Angel; Rodriguez-Esparragon, Dionisio
2017-01-25
Ecosystems provide a wide variety of useful resources that enhance human welfare, but these resources are declining due to climate change and anthropogenic pressure. In this work, three vulnerable ecosystems, including shrublands, coastal areas with dunes systems and areas of shallow water, are studied. As far as these resources' reduction is concerned, remote sensing and image processing techniques could contribute to the management of these natural resources in a practical and cost-effective way, although some improvements are needed for obtaining a higher quality of the information available. An important quality improvement is the fusion at the pixel level. Hence, the objective of this work is to assess which pansharpening technique provides the best fused image for the different types of ecosystems. After a preliminary evaluation of twelve classic and novel fusion algorithms, a total of four pansharpening algorithms was analyzed using six quality indices. The quality assessment was implemented not only for the whole set of multispectral bands, but also for the subset of spectral bands covered by the wavelength range of the panchromatic image and outside of it. A better quality result is observed in the fused image using only the bands covered by the panchromatic band range. It is important to highlight the use of these techniques not only in land and urban areas, but a novel analysis in areas of shallow water ecosystems. Although the algorithms do not show a high difference in land and coastal areas, coastal ecosystems require simpler algorithms, such as fast intensity hue saturation, whereas more heterogeneous ecosystems need advanced algorithms, as weighted wavelet ' à trous ' through fractal dimension maps for shrublands and mixed ecosystems. Moreover, quality map analysis was carried out in order to study the fusion result in each band at the local level. Finally, to demonstrate the performance of these pansharpening techniques, advanced Object-Based (OBIA) support vector machine classification was applied, and a thematic map for the shrubland ecosystem was obtained, which corroborates wavelet ' à trous ' through fractal dimension maps as the best fusion algorithm for this ecosystem.
Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems
Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier; Garcia-Pedrero, Angel; Rodriguez-Esparragon, Dionisio
2017-01-01
Ecosystems provide a wide variety of useful resources that enhance human welfare, but these resources are declining due to climate change and anthropogenic pressure. In this work, three vulnerable ecosystems, including shrublands, coastal areas with dunes systems and areas of shallow water, are studied. As far as these resources’ reduction is concerned, remote sensing and image processing techniques could contribute to the management of these natural resources in a practical and cost-effective way, although some improvements are needed for obtaining a higher quality of the information available. An important quality improvement is the fusion at the pixel level. Hence, the objective of this work is to assess which pansharpening technique provides the best fused image for the different types of ecosystems. After a preliminary evaluation of twelve classic and novel fusion algorithms, a total of four pansharpening algorithms was analyzed using six quality indices. The quality assessment was implemented not only for the whole set of multispectral bands, but also for the subset of spectral bands covered by the wavelength range of the panchromatic image and outside of it. A better quality result is observed in the fused image using only the bands covered by the panchromatic band range. It is important to highlight the use of these techniques not only in land and urban areas, but a novel analysis in areas of shallow water ecosystems. Although the algorithms do not show a high difference in land and coastal areas, coastal ecosystems require simpler algorithms, such as fast intensity hue saturation, whereas more heterogeneous ecosystems need advanced algorithms, as weighted wavelet ‘à trous’ through fractal dimension maps for shrublands and mixed ecosystems. Moreover, quality map analysis was carried out in order to study the fusion result in each band at the local level. Finally, to demonstrate the performance of these pansharpening techniques, advanced Object-Based (OBIA) support vector machine classification was applied, and a thematic map for the shrubland ecosystem was obtained, which corroborates wavelet ‘à trous’ through fractal dimension maps as the best fusion algorithm for this ecosystem. PMID:28125055
Supervised classification of aerial imagery and multi-source data fusion for flood assessment
NASA Astrophysics Data System (ADS)
Sava, E.; Harding, L.; Cervone, G.
2015-12-01
Floods are among the most devastating natural hazards and the ability to produce an accurate and timely flood assessment before, during, and after an event is critical for their mitigation and response. Remote sensing technologies have become the de-facto approach for observing the Earth and its environment. However, satellite remote sensing data are not always available. For these reasons, it is crucial to develop new techniques in order to produce flood assessments during and after an event. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. This research presents a fusion technique using satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and tweets. A new computational methodology is proposed based on machine learning algorithms to automatically identify water pixels in CAP imagery. Specifically, wavelet transformations are paired with multiple classifiers, run in parallel, to build models discriminating water and non-water regions. The learned classification models are first tested against a set of control cases, and then used to automatically classify each image separately. A measure of uncertainty is computed for each pixel in an image proportional to the number of models classifying the pixel as water. Geo-tagged tweets are continuously harvested and stored on a MongoDB and queried in real time. They are fused with CAP classified data, and with satellite remote sensing derived flood extent results to produce comprehensive flood assessment maps. The final maps are then compared with FEMA generated flood extents to assess their accuracy. The proposed methodology is applied on two test cases, relative to the 2013 floods in Boulder CO, and the 2015 floods in Texas.
A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
1997-01-01
A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.
NASA Astrophysics Data System (ADS)
Xie, Huan; Luo, Xin; Xu, Xiong; Wang, Chen; Pan, Haiyan; Tong, Xiaohua; Liu, Shijie
2016-10-01
Water body is a fundamental element in urban ecosystems and water mapping is critical for urban and landscape planning and management. As remote sensing has increasingly been used for water mapping in rural areas, this spatially explicit approach applied in urban area is also a challenging work due to the water bodies mainly distributed in a small size and the spectral confusion widely exists between water and complex features in the urban environment. Water index is the most common method for water extraction at pixel level, and spectral mixture analysis (SMA) has been widely employed in analyzing urban environment at subpixel level recently. In this paper, we introduce an automatic subpixel water mapping method in urban areas using multispectral remote sensing data. The objectives of this research consist of: (1) developing an automatic land-water mixed pixels extraction technique by water index; (2) deriving the most representative endmembers of water and land by utilizing neighboring water pixels and adaptive iterative optimal neighboring land pixel for respectively; (3) applying a linear unmixing model for subpixel water fraction estimation. Specifically, to automatically extract land-water pixels, the locally weighted scatter plot smoothing is firstly used to the original histogram curve of WI image . And then the Ostu threshold is derived as the start point to select land-water pixels based on histogram of the WI image with the land threshold and water threshold determination through the slopes of histogram curve . Based on the previous process at pixel level, the image is divided into three parts: water pixels, land pixels, and mixed land-water pixels. Then the spectral mixture analysis (SMA) is applied to land-water mixed pixels for water fraction estimation at subpixel level. With the assumption that the endmember signature of a target pixel should be more similar to adjacent pixels due to spatial dependence, the endmember of water and land are determined by neighboring pure land or pure water pixels within a distance. To obtaining the most representative endmembers in SMA, we designed an adaptive iterative endmember selection method based on the spatial similarity of adjacent pixels. According to the spectral similarity in a spatial adjacent region, the spectrum of land endmember is determined by selecting the most representative land pixel in a local window, and the spectrum of water endmember is determined by calculating an average of the water pixels in the local window. The proposed hierarchical processing method based on WI and SMA (WISMA) is applied to urban areas for reliability evaluation using the Landsat-8 Operational Land Imager (OLI) images. For comparison, four methods at pixel level and subpixel level were chosen respectively. Results indicate that the water maps generated by the proposed method correspond as closely with the truth water maps with subpixel precision. And the results showed that the WISMA achieved the best performance in water mapping with comprehensive analysis of different accuracy evaluation indexes (RMSE and SE).
Investigation of Joint Visibility Between SAR and Optical Images of Urban Environments
NASA Astrophysics Data System (ADS)
Hughes, L. H.; Auer, S.; Schmitt, M.
2018-05-01
In this paper, we present a work-flow to investigate the joint visibility between very-high-resolution SAR and optical images of urban scenes. For this task, we extend the simulation framework SimGeoI to enable a simulation of individual pixels rather than complete images. Using the extended SimGeoI simulator, we carry out a case study using a TerraSAR-X staring spotlight image and a Worldview-2 panchromatic image acquired over the city of Munich, Germany. The results of this study indicate that about 55 % of the scene are visible in both images and are thus suitable for matching and data fusion endeavours, while about 25 % of the scene are affected by either radar shadow or optical occlusion. Taking the image acquisition parameters into account, our findings can provide support regarding the definition of upper bounds for image fusion tasks, as well as help to improve acquisition planning with respect to different application goals.
Resolution Enhancement of MODIS-derived Water Indices for Studying Persistent Flooding
NASA Astrophysics Data System (ADS)
Underwood, L. W.; Kalcic, M. T.; Fletcher, R. M.
2012-12-01
Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250-m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.
Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding
NASA Technical Reports Server (NTRS)
Underwood, L. W.; Kalcic, Maria; Fletcher, Rose
2012-01-01
Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250-m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja
2012-03-01
Determining the age of latent fingerprint traces found at crime scenes is an unresolved research issue since decades. Solving this issue could provide criminal investigators with the specific time a fingerprint trace was left on a surface, and therefore would enable them to link potential suspects to the time a crime took place as well as to reconstruct the sequence of events or eliminate irrelevant fingerprints to ensure privacy constraints. Transferring imaging techniques from different application areas, such as 3D image acquisition, surface measurement and chemical analysis to the domain of lifting latent biometric fingerprint traces is an upcoming trend in forensics. Such non-destructive sensor devices might help to solve the challenge of determining the age of a latent fingerprint trace, since it provides the opportunity to create time series and process them using pattern recognition techniques and statistical methods on digitized 2D, 3D and chemical data, rather than classical, contact-based capturing techniques, which alter the fingerprint trace and therefore make continuous scans impossible. In prior work, we have suggested to use a feature called binary pixel, which is a novel approach in the working field of fingerprint age determination. The feature uses a Chromatic White Light (CWL) image sensor to continuously scan a fingerprint trace over time and retrieves a characteristic logarithmic aging tendency for 2D-intensity as well as 3D-topographic images from the sensor. In this paper, we propose to combine such two characteristic aging features with other 2D and 3D features from the domains of surface measurement, microscopy, photography and spectroscopy, to achieve an increase in accuracy and reliability of a potential future age determination scheme. Discussing the feasibility of such variety of sensor devices and possible aging features, we propose a general fusion approach, which might combine promising features to a joint age determination scheme in future. We furthermore demonstrate the feasibility of the introduced approach by exemplary fusing the binary pixel features based on 2D-intensity and 3D-topographic images of the mentioned CWL sensor. We conclude that a formula based age determination approach requires very precise image data, which cannot be achieved at the moment, whereas a machine learning based classification approach seems to be feasible, if an adequate amount of features can be provided.
Fusion of light-field and photogrammetric surface form data
NASA Astrophysics Data System (ADS)
Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard K.
2017-08-01
Photogrammetry based systems are able to produce 3D reconstructions of an object given a set of images taken from different orientations. In this paper, we implement a light-field camera within a photogrammetry system in order to capture additional depth information, as well as the photogrammetric point cloud. Compared to a traditional camera that only captures the intensity of the incident light, a light-field camera also provides angular information for each pixel. In principle, this additional information allows 2D images to be reconstructed at a given focal plane, and hence a depth map can be computed. Through the fusion of light-field and photogrammetric data, we show that it is possible to improve the measurement uncertainty of a millimetre scale 3D object, compared to that from the individual systems. By imaging a series of test artefacts from various positions, individual point clouds were produced from depth-map information and triangulation of corresponding features between images. Using both measurements, data fusion methods were implemented in order to provide a single point cloud with reduced measurement uncertainty.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Cellular Neural Network for Real Time Image Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vagliasindi, G.; Arena, P.; Fortuna, L.
2008-03-12
Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information formore » plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)« less
NASA Astrophysics Data System (ADS)
Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott
2006-05-01
Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.
A 256×256 low-light-level CMOS imaging sensor with digital CDS
NASA Astrophysics Data System (ADS)
Zou, Mei; Chen, Nan; Zhong, Shengyou; Li, Zhengfen; Zhang, Jicun; Yao, Li-bin
2016-10-01
In order to achieve high sensitivity for low-light-level CMOS image sensors (CIS), a capacitive transimpedance amplifier (CTIA) pixel circuit with a small integration capacitor is used. As the pixel and the column area are highly constrained, it is difficult to achieve analog correlated double sampling (CDS) to remove the noise for low-light-level CIS. So a digital CDS is adopted, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise and part of the column fixed-pattern noise (FPN) can be greatly reduced. A 256×256 CIS with CTIA array and digital CDS is implemented in the 0.35μm CMOS technology. The chip size is 7.7mm×6.75mm, and the pixel size is 15μm×15μm with a fill factor of 20.6%. The measured pixel noise is 24LSB with digital CDS in RMS value at dark condition, which shows 7.8× reduction compared to the image sensor without digital CDS. Running at 7fps, this low-light-level CIS can capture recognizable images with the illumination down to 0.1lux.
NASA Astrophysics Data System (ADS)
Luo, Yuan; Wang, Bo-yu; Zhang, Yi; Zhao, Li-ming
2018-03-01
In this paper, under different illuminations and random noises, focusing on the local texture feature's defects of a face image that cannot be completely described because the threshold of local ternary pattern (LTP) cannot be calculated adaptively, a local three-value model of improved adaptive local ternary pattern (IALTP) is proposed. Firstly, the difference function between the center pixel and the neighborhood pixel weight is established to obtain the statistical characteristics of the central pixel and the neighborhood pixel. Secondly, the adaptively gradient descent iterative function is established to calculate the difference coefficient which is defined to be the threshold of the IALTP operator. Finally, the mean and standard deviation of the pixel weight of the local region are used as the coding mode of IALTP. In order to reflect the overall properties of the face and reduce the dimension of features, the two-directional two-dimensional PCA ((2D)2PCA) is adopted. The IALTP is used to extract local texture features of eyes and mouth area. After combining the global features and local features, the fusion features (IALTP+) are obtained. The experimental results on the Extended Yale B and AR standard face databases indicate that under different illuminations and random noises, the algorithm proposed in this paper is more robust than others, and the feature's dimension is smaller. The shortest running time reaches 0.329 6 s, and the highest recognition rate reaches 97.39%.
NASA Astrophysics Data System (ADS)
Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo
2014-02-01
In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.
A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.
Mignotte, Max
2010-06-01
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
Fusion: ultra-high-speed and IR image sensors
NASA Astrophysics Data System (ADS)
Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.
2015-08-01
Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
NASA Astrophysics Data System (ADS)
Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang
2008-03-01
Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.
NASA Astrophysics Data System (ADS)
Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.
2016-11-01
In order to reduce the “salt and pepper” in pixel-based urban land cover classification and expand the application of fusion of multi-source data in the field of urban remote sensing, WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data were used to improve the classification of urban land cover. An approach of object- oriented hierarchical classification was proposed in our study. The processing of proposed method consisted of two hierarchies. (1) In the first hierarchy, LiDAR Normalized Digital Surface Model (nDSM) image was segmented to objects. The NDVI, Costal Blue and nDSM thresholds were set for extracting building objects. (2) In the second hierarchy, after removing building objects, WorldView-2 fused imagery was obtained by Haze-ratio-based (HR) fusion, and was segmented. A SVM classifier was applied to generate road/parking lot, vegetation and bare soil objects. (3) Trees and grasslands were split based on an nDSM threshold (2.4 meter). The results showed that compared with pixel-based and non-hierarchical object-oriented approach, proposed method provided a better performance of urban land cover classification, the overall accuracy (OA) and overall kappa (OK) improved up to 92.75% and 0.90. Furthermore, proposed method reduced “salt and pepper” in pixel-based classification, improved the extraction accuracy of buildings based on LiDAR nDSM image segmentation, and reduced the confusion between trees and grasslands through setting nDSM threshold.
Boucheron, Laura E
2013-07-16
Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.
Using Trained Pixel Classifiers to Select Images of Interest
NASA Technical Reports Server (NTRS)
Mazzoni, D.; Wagstaff, K.; Castano, R.
2004-01-01
We present a machine-learning-based approach to ranking images based on learned priorities. Unlike previous methods for image evaluation, which typically assess the value of each image based on the presence of predetermined specific features, this method involves using two levels of machine-learning classifiers: one level is used to classify each pixel as belonging to one of a group of rather generic classes, and another level is used to rank the images based on these pixel classifications, given some example rankings from a scientist as a guide. Initial results indicate that the technique works well, producing new rankings that match the scientist's rankings significantly better than would be expected by chance. The method is demonstrated for a set of images collected by a Mars field-test rover.
NASA Astrophysics Data System (ADS)
Wu, Bo; Liu, Wai Chung; Grumpe, Arne; Wöhler, Christian
2018-06-01
Lunar Digital Elevation Model (DEM) is important for lunar successful landing and exploration missions. Lunar DEMs are typically generated by photogrammetry or laser altimetry approaches. Photogrammetric methods require multiple stereo images of the region of interest and it may not be applicable in cases where stereo coverage is not available. In contrast, reflectance based shape reconstruction techniques, such as shape from shading (SfS) and shape and albedo from shading (SAfS), apply monocular images to generate DEMs with pixel-level resolution. We present a novel hierarchical SAfS method that refines a lower-resolution DEM to pixel-level resolution given a monocular image with known light source. We also estimate the corresponding pixel-wise albedo map in the process and based on that to regularize the shape reconstruction with pixel-level resolution based on the low-resolution DEM. In this study, a Lunar-Lambertian reflectance model is applied to estimate the albedo map. Experiments were carried out using monocular images from the Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC), with spatial resolution of 0.5-1.5 m per pixel, constrained by the Selenological and Engineering Explorer and LRO Elevation Model (SLDEM), with spatial resolution of 60 m. The results indicate that local details are well recovered by the proposed algorithm with plausible albedo estimation. The low-frequency topographic consistency depends on the quality of low-resolution DEM and the resolution difference between the image and the low-resolution DEM.
Medical image registration based on normalized multidimensional mutual information
NASA Astrophysics Data System (ADS)
Li, Qi; Ji, Hongbing; Tong, Ming
2009-10-01
Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
A robust color image fusion for low light level and infrared images
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Xiao-hui; Hu, Qing-ping; Chen, Yong-kang
2016-09-01
The low light level and infrared color fusion technology has achieved great success in the field of night vision, the technology is designed to make the hot target of fused image pop out with intenser colors, represent the background details with a nearest color appearance to nature, and improve the ability in target discovery, detection and identification. The low light level images have great noise under low illumination, and that the existing color fusion methods are easily to be influenced by low light level channel noise. To be explicit, when the low light level image noise is very large, the quality of the fused image decreases significantly, and even targets in infrared image would be submerged by the noise. This paper proposes an adaptive color night vision technology, the noise evaluation parameters of low light level image is introduced into fusion process, which improve the robustness of the color fusion. The color fuse results are still very good in low-light situations, which shows that this method can effectively improve the quality of low light level and infrared fused image under low illumination conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altunbas, Cem, E-mail: caltunbas@gmail.com; Lai, Chao-Jen; Zhong, Yuncheng
Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrancemore » exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.« less
Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion
NASA Astrophysics Data System (ADS)
Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas
2014-12-01
The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu
2017-11-01
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.
A summary of image segmentation techniques
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
1993-01-01
Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough details to facilitate implementation and experimentation.
Daily monitoring of 30 m crop condition over complex agricultural landscapes
NASA Astrophysics Data System (ADS)
Sun, L.; Gao, F.; Xie, D.; Anderson, M. C.; Yang, Y.
2017-12-01
Crop progress provides information necessary for efficient irrigation, scheduling fertilization and harvesting operations at optimal times for achieving higher yields. In the United States, crop progress reports are released online weekly by US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS). However, the ground data collection is time consuming and subjective, and these reports are provided at either district (multiple counties) or state level. Remote sensing technologies have been widely used to map crop conditions, to extract crop phenology, and to predict crop yield. However, for current satellite-based sensors, it is difficult to acquire both high spatial resolution and frequent coverage. For example, Landsat satellites are capable to capture 30 m resolution images, while the long revisit cycles, cloud contamination further limited their use in detecting rapid surface changes. On the other hand, MODIS can provide daily observations, but with coarse spatial resolutions range from 250 to 1000 m. In recent years, multi-satellite data fusion technology such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been used to combine the spatial resolution of Landsat with the temporal frequency of MODIS. It has been found that this synthetic dataset could provide more valuable information compared to the images acquired from only one single sensor. However, accuracy of STARFM depends on heterogeneity of landscape and available clear image pairs of MODIS and Landsat. In this study, a new fusion method was developed using the crop vegetation index (VI) timeseries extracted from "pure" MODIS pixels and Landsat overpass images to generate daily 30 m VI for crops. The fusion accuracy was validated by comparing to the original Landsat images. Results show that the relative error in non-rapid growing period is around 3-5% and in rapid growing period is around 6-8% . The accuracy is much better than that of STARFM which is 4-9% in non-rapid growing period and 10-16% in rapid growing period based on 13 image pairs. The predicted VI from this approach looks consistent and smooth in the SLC-off gap stripes of Landsat 7 ETM+ image. The new fusion results will be used to map crop phenology and to predict crop yield at field scale in the complex agricultural landscapes.
Forest Stand Segmentation Using Airborne LIDAR Data and Very High Resolution Multispectral Imagery
NASA Astrophysics Data System (ADS)
Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet, Valérie; Hervieu, Alexandre
2016-06-01
Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this paper, a method based on the fusion of airborne laser scanning data (or lidar) and very high resolution multispectral imagery for automatic forest stand delineation and forest land-cover database update is proposed. The multispectral images give access to the tree species whereas 3D lidar point clouds provide geometric information on the trees. Therefore, multi-modal features are computed, both at pixel and object levels. The objects are individual trees extracted from lidar data. A supervised classification is performed at the object level on the computed features in order to coarsely discriminate the existing tree species in the area of interest. The analysis at tree level is particularly relevant since it significantly improves the tree species classification. A probability map is generated through the tree species classification and inserted with the pixel-based features map in an energetical framework. The proposed energy is then minimized using a standard graph-cut method (namely QPBO with α-expansion) in order to produce a segmentation map with a controlled level of details. Comparison with an existing forest land cover database shows that our method provides satisfactory results both in terms of stand labelling and delineation (matching ranges between 94% and 99%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Yi; Zhang, Xinyuan; Wang, Ningli, E-mail: wningli@vip.163.com, E-mail: puj@upmc.edu
2014-09-15
Purpose: A novel algorithm is presented to automatically identify the retinal vessels depicted in color fundus photographs. Methods: The proposed algorithm quantifies the contrast of each pixel in retinal images at multiple scales and fuses the resulting consequent contrast images in a progressive manner by leveraging their spatial difference and continuity. The multiscale strategy is to deal with the variety of retinal vessels in width, intensity, resolution, and orientation; and the progressive fusion is to combine consequent images and meanwhile avoid a sudden fusion of image noise and/or artifacts in space. To quantitatively assess the performance of the algorithm, wemore » tested it on three publicly available databases, namely, DRIVE, STARE, and HRF. The agreement between the computer results and the manual delineation in these databases were quantified by computing their overlapping in both area and length (centerline). The measures include sensitivity, specificity, and accuracy. Results: For the DRIVE database, the sensitivities in identifying vessels in area and length were around 90% and 70%, respectively, the accuracy in pixel classification was around 99%, and the precisions in terms of both area and length were around 94%. For the STARE database, the sensitivities in identifying vessels were around 90% in area and 70% in length, and the accuracy in pixel classification was around 97%. For the HRF database, the sensitivities in identifying vessels were around 92% in area and 83% in length for the healthy subgroup, around 92% in area and 75% in length for the glaucomatous subgroup, around 91% in area and 73% in length for the diabetic retinopathy subgroup. For all three subgroups, the accuracy was around 98%. Conclusions: The experimental results demonstrate that the developed algorithm is capable of identifying retinal vessels depicted in color fundus photographs in a relatively reliable manner.« less
LWIR pupil imaging and longer-term calibration stability
NASA Astrophysics Data System (ADS)
LeVan, Paul D.; Sakoglu, Ünal
2016-09-01
A previous paper described LWIR pupil imaging, and an improved understanding of the behavior of this type of sensor for which the high-sensitivity focal plane array (FPA) operated at higher flux levels includes a reversal in signal integration polarity. We have since considered a candidate methodology for efficient, long-term calibration stability that exploits the following two properties of pupil imaging: (1) a fixed pupil position on the FPA, and (2) signal levels from the scene imposed on significant but fixed LWIR background levels. These two properties serve to keep each pixel operating over a limited dynamic range that corresponds to its location in the pupil and to the signal levels generated at this location by the lower and upper calibration flux levels. Exploiting this property for which each pixel of the Pupil Imager operates over its limited dynamic range, the signal polarity reversal between low and high flux pixels, which occurs for a circular region of pixels near the upper edges of the pupil illumination profile, can be rectified to unipolar integration with a two-level non-uniformity correction (NUC). Images corrected real-time with standard non-uniformity correction (NUC) techniques, are still subject to longer-term drifts in pixel offsets between recalibrations. Long-term calibration stability might then be achieved using either a scene-based non-uniformity correction approach, or with periodic repointing for off-source background estimation and subtraction. Either approach requires dithering of the field of view, by sub-pixel amounts for the first method, or by large off-source motions outside the 0.38 milliradian FOV for the latter method. We report on the results of investigations along both these lines.
SVM Pixel Classification on Colour Image Segmentation
NASA Astrophysics Data System (ADS)
Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.
2018-04-01
The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.
A kind of color image segmentation algorithm based on super-pixel and PCNN
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.
Adaptive Electronic Camouflage Using Texture Synthesis
2012-04-01
algorithm begins by computing the GLCMs, GIN and GOUT , of the input image (e.g., image of local environment) and output image (randomly generated...respectively. The algorithm randomly selects a pixel from the output image and cycles its gray-level through all values. For each value, GOUT is updated...The value of the selected pixel is permanently changed to the gray-level value that minimizes the error between GIN and GOUT . Without selecting a
Multiscale infrared and visible image fusion using gradient domain guided image filtering
NASA Astrophysics Data System (ADS)
Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia
2018-03-01
For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.
NASA Astrophysics Data System (ADS)
Gouverneur, B.; Verstockt, S.; Pauwels, E.; Han, J.; de Zeeuw, P. M.; Vermeiren, J.
2012-10-01
Various visible and infrared cameras have been tested for the early detection of wildfires to protect archeological treasures. This analysis was possible thanks to the EU Firesense project (FP7-244088). Although visible cameras are low cost and give good results during daytime for smoke detection, they fall short under bad visibility conditions. In order to improve the fire detection probability and reduce the false alarms, several infrared bands are tested ranging from the NIR to the LWIR. The SWIR and the LWIR band are helpful to locate the fire through smoke if there is a direct Line Of Sight. The Emphasis is also put on the physical and the electro-optical system modeling for forest fire detection at short and longer ranges. The fusion in three bands (Visible, SWIR, LWIR) is discussed at the pixel level for image enhancement and for fire detection.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E; Moran, Emilio
2008-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio
2009-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion
NASA Astrophysics Data System (ADS)
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei
2017-02-01
Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.
Multifocus watermarking approach based on discrete cosine transform.
Waheed, Safa Riyadh; Alkawaz, Mohammed Hazim; Rehman, Amjad; Almazyad, Abdulaziz S; Saba, Tanzila
2016-05-01
Image fusion process consolidates data and information from various images of same sight into a solitary image. Each of the source images might speak to a fractional perspective of the scene, and contains both "pertinent" and "immaterial" information. In this study, a new image fusion method is proposed utilizing the Discrete Cosine Transform (DCT) to join the source image into a solitary minimized image containing more exact depiction of the sight than any of the individual source images. In addition, the fused image comes out with most ideal quality image without bending appearance or loss of data. DCT algorithm is considered efficient in image fusion. The proposed scheme is performed in five steps: (1) RGB colour image (input image) is split into three channels R, G, and B for source images. (2) DCT algorithm is applied to each channel (R, G, and B). (3) The variance values are computed for the corresponding 8 × 8 blocks of each channel. (4) Each block of R of source images is compared with each other based on the variance value and then the block with maximum variance value is selected to be the block in the new image. This process is repeated for all channels of source images. (5) Inverse discrete cosine transform is applied on each fused channel to convert coefficient values to pixel values, and then combined all the channels to generate the fused image. The proposed technique can potentially solve the problem of unwanted side effects such as blurring or blocking artifacts by reducing the quality of the subsequent image in image fusion process. The proposed approach is evaluated using three measurement units: the average of Q(abf), standard deviation, and peak Signal Noise Rate. The experimental results of this proposed technique have shown good results as compared with older techniques. © 2016 Wiley Periodicals, Inc.
Fiber pixelated image database
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Matham, Murukeshan Vadakke
2016-08-01
Imaging of physically inaccessible parts of the body such as the colon at micron-level resolution is highly important in diagnostic medical imaging. Though flexible endoscopes based on the imaging fiber bundle are used for such diagnostic procedures, their inherent honeycomb-like structure creates fiber pixelation effects. This impedes the observer from perceiving the information from an image captured and hinders the direct use of image processing and machine intelligence techniques on the recorded signal. Significant efforts have been made by researchers in the recent past in the development and implementation of pixelation removal techniques. However, researchers have often used their own set of images without making source data available which subdued their usage and adaptability universally. A database of pixelated images is the current requirement to meet the growing diagnostic needs in the healthcare arena. An innovative fiber pixelated image database is presented, which consists of pixelated images that are synthetically generated and experimentally acquired. Sample space encompasses test patterns of different scales, sizes, and shapes. It is envisaged that this proposed database will alleviate the current limitations associated with relevant research and development and would be of great help for researchers working on comb structure removal algorithms.
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.
2015-12-01
The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
Fusion of shallow and deep features for classification of high-resolution remote sensing images
NASA Astrophysics Data System (ADS)
Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang
2018-02-01
Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.
A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl
2017-10-01
The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.
Novel cooperative neural fusion algorithms for image restoration and image fusion.
Xia, Youshen; Kamel, Mohamed S
2007-02-01
To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.
Real-Time Symbol Extraction From Grey-Level Images
NASA Astrophysics Data System (ADS)
Massen, R.; Simnacher, M.; Rosch, J.; Herre, E.; Wuhrer, H. W.
1988-04-01
A VME-bus image pipeline processor for extracting vectorized contours from grey-level images in real-time is presented. This 3 Giga operation per second processor uses large kernel convolvers and new non-linear neighbourhood processing algorithms to compute true 1-pixel wide and noise-free contours without thresholding even from grey-level images with quite varying edge sharpness. The local edge orientation is used as an additional cue to compute a list of vectors describing the closed and open contours in real-time and to dump a CAD-like symbolic image description into a symbol memory at pixel clock rate.
Moving object detection using dynamic motion modelling from UAV aerial images.
Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid
2014-01-01
Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.
Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion
Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas
2014-01-01
The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images, but also by detection sensitivity. As the probe size is reduced to below 1 µm, for example, a low signal in each pixel limits lateral resolution due to counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432
Saliency-Guided Change Detection of Remotely Sensed Images Using Random Forest
NASA Astrophysics Data System (ADS)
Feng, W.; Sui, H.; Chen, X.
2018-04-01
Studies based on object-based image analysis (OBIA) representing the paradigm shift in change detection (CD) have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF), as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA). Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA) algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM) clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3) multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.
A hyperspectral image projector for hyperspectral imagers
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.
2007-04-01
We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.
A new optimal seam method for seamless image stitching
NASA Astrophysics Data System (ADS)
Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng
2017-07-01
A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.
The effect of lossy image compression on image classification
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.
Fusion of GEDI, ICESAT2 & NISAR data for above ground biomass mapping in Sonoma County, California
NASA Astrophysics Data System (ADS)
Duncanson, L.; Simard, M.; Thomas, N. M.; Neuenschwander, A. L.; Hancock, S.; Armston, J.; Dubayah, R.; Hofton, M. A.; Huang, W.; Tang, H.; Marselis, S.; Fatoyinbo, T.
2017-12-01
Several upcoming NASA missions will collect data sensitive to forest structure (GEDI, ICESAT-2 & NISAR). The LiDAR and SAR data collected by these missions will be used in coming years to map forest aboveground biomass at various resolutions. This research focuses on developing and testing multi-sensor data fusion approaches in advance of these missions. Here, we present the first case study of a CMS-16 grant with results from Sonoma County, California. We simulate lidar and SAR datasets from GEDI, ICESAT-2 and NISAR using airborne discrete return lidar and UAVSAR data, respectively. GEDI and ICESAT-2 signals are simulated from high point density discrete return lidar that was acquired over the entire county in 2014 through a previous CMS project (Dubayah & Hurtt, CMS-13). NISAR is simulated from L-band UAVSAR data collected in 2014. These simulations are empirically related to 300 field plots of aboveground biomass as well as a 30m biomass map produced from the 2014 airborne lidar data. We model biomass independently for each simulated mission dataset and then test two fusion methods for County-wide mapping 1) a pixel based approach and 2) an object oriented approach. In the pixel-based approach, GEDI and ICESAT-2 biomass models are calibrated over field plots and applied in orbital simulations for a 2-year period of the GEDI and ICESAT-2 missions. These simulated samples are then used to calibrate UAVSAR data to produce a 0.25 ha map. In the object oriented approach, the GEDI and ICESAT-2 data are identical to the pixel-based approach, but calibrate image objects of similar L-band backscatter rather than uniform pixels. The results of this research demonstrate the estimated ability for each of these three missions to independently map biomass in a temperate, high biomass system, as well as the potential improvement expected through combining mission datasets.
Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery.
Sarkar, Anjan; Banerjee, Anjan; Banerjee, Nilanjan; Brahma, Siddhartha; Kartikeyan, B; Chakraborty, Manab; Majumder, K L
2005-05-01
This work deals with multisensor data fusion to obtain landcover classification. The role of feature-level fusion using the Dempster-Shafer rule and that of data-level fusion in the MRF context is studied in this paper to obtain an optimally segmented image. Subsequently, segments are validated and classification accuracy for the test data is evaluated. Two examples of data fusion of optical images and a synthetic aperture radar image are presented, each set having been acquired on different dates. Classification accuracies of the technique proposed are compared with those of some recent techniques in literature for the same image data.
Linear dynamic range enhancement in a CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2008-01-01
A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.
Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera
Majewski, Stanislaw [Morgantown, VA; Umeno, Marc M [Woodinville, WA
2011-09-13
A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.
Small target detection using bilateral filter and temporal cross product in infrared images
NASA Astrophysics Data System (ADS)
Bae, Tae-Wuk
2011-09-01
We introduce a spatial and temporal target detection method using spatial bilateral filter (BF) and temporal cross product (TCP) of temporal pixels in infrared (IR) image sequences. At first, the TCP is presented to extract the characteristics of temporal pixels by using temporal profile in respective spatial coordinates of pixels. The TCP represents the cross product values by the gray level distance vector of a current temporal pixel and the adjacent temporal pixel, as well as the horizontal distance vector of the current temporal pixel and a temporal pixel corresponding to potential target center. The summation of TCP values of temporal pixels in spatial coordinates makes the temporal target image (TTI), which represents the temporal target information of temporal pixels in spatial coordinates. And then the proposed BF filter is used to extract the spatial target information. In order to predict background without targets, the proposed BF filter uses standard deviations obtained by an exponential mapping of the TCP value corresponding to the coordinate of a pixel processed spatially. The spatial target image (STI) is made by subtracting the predicted image from the original image. Thus, the spatial and temporal target image (STTI) is achieved by multiplying the STI and the TTI, and then targets finally are detected in STTI. In experimental result, the receiver operating characteristics (ROC) curves were computed experimentally to compare the objective performance. From the results, the proposed algorithm shows better discrimination of target and clutters and lower false alarm rates than the existing target detection methods.
NASA Astrophysics Data System (ADS)
Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith
2017-02-01
The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
Wavelet imaging cleaning method for atmospheric Cherenkov telescopes
NASA Astrophysics Data System (ADS)
Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.
2002-07-01
We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.
NASA Astrophysics Data System (ADS)
Yao, W.; Poleswki, P.; Krzystek, P.
2016-06-01
The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.
Pixel-based meshfree modelling of skeletal muscles.
Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu
2016-01-01
This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.
Salt-and-pepper noise removal using modified mean filter and total variation minimization
NASA Astrophysics Data System (ADS)
Aghajarian, Mickael; McInroy, John E.; Wright, Cameron H. G.
2018-01-01
The search for effective noise removal algorithms is still a real challenge in the field of image processing. An efficient image denoising method is proposed for images that are corrupted by salt-and-pepper noise. Salt-and-pepper noise takes either the minimum or maximum intensity, so the proposed method restores the image by processing the pixels whose values are either 0 or 255 (assuming an 8-bit/pixel image). For low levels of noise corruption (less than or equal to 50% noise density), the method employs the modified mean filter (MMF), while for heavy noise corruption, noisy pixels values are replaced by the weighted average of the MMF and the total variation of corrupted pixels, which is minimized using convex optimization. Two fuzzy systems are used to determine the weights for taking average. To evaluate the performance of the algorithm, several test images with different noise levels are restored, and the results are quantitatively measured by peak signal-to-noise ratio and mean absolute error. The results show that the proposed scheme gives considerable noise suppression up to a noise density of 90%, while almost completely maintaining edges and fine details of the original image.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
NASA Astrophysics Data System (ADS)
Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.
2018-06-01
The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.
A design of optical modulation system with pixel-level modulation accuracy
NASA Astrophysics Data System (ADS)
Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu
2018-01-01
Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.
Self-amplified CMOS image sensor using a current-mode readout circuit
NASA Astrophysics Data System (ADS)
Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick
2014-05-01
The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
Active-Pixel Image Sensor With Analog-To-Digital Converters
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.
1995-01-01
Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.
Fundamental performance differences of CMOS and CCD imagers: part V
NASA Astrophysics Data System (ADS)
Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff
2013-02-01
Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.
Thermodynamic free-energy minimization for unsupervised fusion of dual-color infrared breast images
NASA Astrophysics Data System (ADS)
Szu, Harold; Miao, Lidan; Qi, Hairong
2006-04-01
This paper presents algorithmic details of an unsupervised neural network and unbiased diagnostic methodology, that is, no lookup table is needed that labels the input training data with desired outputs. We deploy the smart algorithm on two satellite-grade infrared (IR) cameras. Although an early malignant tumor must be small in size and cannot be resolved by a single pixel that images about hundreds cells, these cells reveal themselves physiologically by emitting spontaneously thermal radiation due to the rapid cell growth angiogenesis effect (In Greek: vessels generation for increasing tumor blood supply), shifting toward, according to physics, a shorter IR wavelengths emission band. If we use those exceedingly sensitive IR spectral band cameras, we can in principle detect whether or not the breast tumor is perhaps malignant through a thin blouse in a close-up dark room. If this protocol turns out to be reliable in a large scale follow-on Vatican experiment in 2006, which might generate business investment interests of nano-engineering manufacture of nano-camera made of 1-D Carbon Nano-Tubes without traditional liquid Nitrogen coolant for Mid IR camera, then one can accumulate the probability of any type of malignant tumor at every pixel over time in the comfort of privacy without religious or other concerns. Such a non-intrusive protocol alone may not have enough information to make the decision, but the changes tracked over time will be surely becoming significant. Such an ill-posed inverse heat source transfer problem can be solved because of the universal constraint of equilibrium physics governing the blackbody Planck radiation distribution, to be spatio-temporally sampled. Thus, we must gather two snapshots with two IR cameras to form a vector data X(t) per pixel to invert the matrix-vector equation X=[A]S pixel-by-pixel independently, known as a single-pixel blind sources separation (BSS). Because the unknown heat transfer matrix or the impulse response function [A] may vary from the point tumor to its neighborhood, we could not rely on neighborhood statistics as did in a popular unsupervised independent component analysis (ICA) mathematical statistical method, we instead impose the physics equilibrium condition of the minimum of Helmholtz free-energy, H = E - T °S. In case of the point breast cancer, we can assume the constant ground state energy E ° to be normalized by those benign neighborhood tissue, and then the excited state can be computed by means of Taylor series expansion in terms of the pixel I/O data. We can augment the X-ray mammogram technique with passive IR imaging to reduce the unwanted X-rays during the chemotherapy recovery. When the sequence is animated into a movie, and the recovery dynamics is played backward in time, the movie simulates the cameras' potential for early detection without suffering the PD=0.1 search uncertainty. In summary, we applied two satellite-grade dual-color IR imaging cameras and advanced military (automatic target recognition) ATR spectrum fusion algorithm at the middle wavelength IR (3 - 5μm) and long wavelength IR (8 - 12μm), which are capable to screen malignant tumors proved by the time-reverse fashion of the animated movie experiments. On the contrary, the traditional thermal breast scanning/imaging, known as thermograms over decades, was IR spectrum-blind, and limited to a single night-vision camera and the necessary waiting for the cool down period for taking a second look for change detection suffers too many environmental and personnel variabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, H; Yoon, D; Jung, J
Purpose: The purpose of this study is to suggest a tumor monitoring technique using prompt gamma rays emitted during the reaction between an antiproton and a boron particle, and to verify the increase of the therapeutic effectiveness of the antiproton boron fusion therapy using Monte Carlo simulation code. Methods: We acquired the percentage depth dose of the antiproton beam from a water phantom with and without three boron uptake regions (region A, B, and C) using F6 tally of MCNPX. The tomographic image was reconstructed using prompt gamma ray events from the reaction between the antiproton and boron during themore » treatment from 32 projections (reconstruction algorithm: MLEM). For the image reconstruction, we were performed using a 80 × 80 pixel matrix with a pixel size of 5 mm. The energy window was set as a 10 % energy window. Results: The prompt gamma ray peak for imaging was observed at 719 keV in the energy spectrum using the F8 tally fuction (energy deposition tally) of the MCNPX code. The tomographic image shows that the boron uptake regions were successfully identified from the simulation results. In terms of the receiver operating characteristic curve analysis, the area under the curve values were 0.647 (region A), 0.679 (region B), and 0.632 (region C). The SNR values increased as the tumor diameter increased. The CNR indicated the relative signal intensity within different regions. The CNR values also increased as the different of BURs diamter increased. Conclusion: We confirmed the feasibility of tumor monitoring during the antiproton therapy as well as the superior therapeutic effect of the antiproton boron fusion therapy. This result can be beneficial for the development of a more accurate particle therapy.« less
Musculoskeletal imaging with a prototype photon-counting detector.
Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F
2012-01-01
To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.
Biometric image enhancement using decision rule based image fusion techniques
NASA Astrophysics Data System (ADS)
Sagayee, G. Mary Amirtha; Arumugam, S.
2010-02-01
Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.
High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors
Kim, Sungho
2015-01-01
This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448
Image encryption using a synchronous permutation-diffusion technique
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey
2017-03-01
In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.
Model Development and Testing for THEMIS Controlled Mars Mosaics
NASA Technical Reports Server (NTRS)
Archinal, B. A.; Sides, S.; Weller, L.; Cushing, G.; Titus, T.; Kirk, R. L.; Soderblom, L. A.; Duxbury, T. C.
2005-01-01
As part of our work [1] to develop techniques and procedures to create regional and eventually global THEMIS mosaics of Mars, we are developing algorithms and software to photogrammetrically control THEMIS IR line scanner camera images. We have found from comparison of a limited number of images to MOLA digital image models (DIMs) [2] that the a priori geometry information (i.e. SPICE [3]) for THEMIS images generally allows their relative positions to be specified at the several pixel level (e.g. approx.5 to 13 pixels). However a need for controlled solutions to improve this geometry to the sub-pixel level still exists. Only with such solutions can seamless mosaics be obtained and likely distortion from spacecraft motion during image collection removed at such levels. Past experience has shown clearly that such mosaics are in heavy demand by users for operational and scientific use, and that they are needed over large areas or globally (as opposed to being available only on a limited basis via labor intensive custom mapping projects). Uses include spacecraft navigation, landing site planning and mapping, registration of multiple data types and image sets, registration of multispectral images, registration of images with topographic information, recovery of thermal properties, change detection searches, etc.
Thermal-to-visible transducer (TVT) for thermal-IR imaging
NASA Astrophysics Data System (ADS)
Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven
2008-04-01
We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.
Connecting Swath Satellite Data With Imagery in Mapping Applications
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Hall, J. R.; Penteado, P. F.; Roberts, J. T.; Zhou, A. Y.
2016-12-01
Visualizations of gridded science data products (referred to as Level 3 or Level 4) typically provide a straightforward correlation between image pixels and the source science data. This direct relationship allows users to make initial inferences based on imagery values, facilitating additional operations on the underlying data values, such as data subsetting and analysis. However, that same pixel-to-data relationship for ungridded science data products (referred to as Level 2) is significantly more challenging. These products, also referred to as "swath products", are in orbital "instrument space" and raster visualization pixels do not directly correlate to science data values. Interpolation algorithms are often employed during the gridding or projection of a science dataset prior to image generation, introducing intermediary values that separate the image from the source data values. NASA's Global Imagery Browse Services (GIBS) is researching techniques for efficiently serving "image-ready" data allowing client-side dynamic visualization and analysis capabilities. This presentation will cover some GIBS prototyping work designed to maintain connectivity between Level 2 swath data and its corresponding raster visualizations. Specifically, we discuss the DAta-to-Image-SYstem (DAISY), an indexing approach for Level 2 swath data, and the mechanisms whereby a client may dynamically visualize the data in raster form.
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua
2017-05-01
In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.
Multiscale Medical Image Fusion in Wavelet Domain
Khare, Ashish
2013-01-01
Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868
Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model
NASA Astrophysics Data System (ADS)
Li, X. L.; Zhao, Q. H.; Li, Y.
2017-09-01
Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao
2015-02-01
Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.
Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William
2009-01-01
Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous photodiode arrays was observed to result in no degradation in MTF due to charge sharing between pixels. While the continuous designs exhibited relatively high levels of charge trapping and release, as well as shorter ranges of linearity, it is possible that these behaviors can be addressed through further refinements to pixel design. Both the continuous and the most recent discrete photodiode designs accommodate more sophisticated pixel circuitry than is present on conventional AMFPIs – such as a pixel clamp circuit, which is demonstrated to limit signal saturation under conditions corresponding to high exposures. It is anticipated that photodiode structures such as the ones reported in this study will enable the development of even more complex pixel circuitry, such as pixel-level amplifiers, that will lead to further significant improvements in imager performance. PMID:19673228
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor); Bryan, ThomasC. (Inventor); Book, Michael L. (Inventor)
2004-01-01
A method and system for processing an image including capturing an image and storing the image as image pixel data. Each image pixel datum is stored in a respective memory location having a corresponding address. Threshold pixel data is selected from the image pixel data and linear spot segments are identified from the threshold pixel data selected.. Ihe positions of only a first pixel and a last pixel for each linear segment are saved. Movement of one or more objects are tracked by comparing the positions of fust and last pixels of a linear segment present in the captured image with respective first and last pixel positions in subsequent captured images. Alternatively, additional data for each linear data segment is saved such as sum of pixels and the weighted sum of pixels i.e., each threshold pixel value is multiplied by that pixel's x-location).
Improved detection probability of low level light and infrared image fusion system
NASA Astrophysics Data System (ADS)
Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang
2018-02-01
Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.
Infrared and visible image fusion scheme based on NSCT and low-level visual features
NASA Astrophysics Data System (ADS)
Li, Huafeng; Qiu, Hongmei; Yu, Zhengtao; Zhang, Yafei
2016-05-01
Multi-scale transform (MST) is an efficient tool for image fusion. Recently, many fusion methods have been developed based on different MSTs, and they have shown potential application in many fields. In this paper, we propose an effective infrared and visible image fusion scheme in nonsubsampled contourlet transform (NSCT) domain, in which the NSCT is firstly employed to decompose each of the source images into a series of high frequency subbands and one low frequency subband. To improve the fusion performance we designed two new activity measures for fusion of the lowpass subbands and the highpass subbands. These measures are developed based on the fact that the human visual system (HVS) percept the image quality mainly according to its some low-level features. Then, the selection principles of different subbands are presented based on the corresponding activity measures. Finally, the merged subbands are constructed according to the selection principles, and the final fused image is produced by applying the inverse NSCT on these merged subbands. Experimental results demonstrate the effectiveness and superiority of the proposed method over the state-of-the-art fusion methods in terms of both visual effect and objective evaluation results.
An enhanced fast scanning algorithm for image segmentation
NASA Astrophysics Data System (ADS)
Ismael, Ahmed Naser; Yusof, Yuhanis binti
2015-12-01
Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.
Prostate cancer detection: Fusion of cytological and textural features.
Nguyen, Kien; Jain, Anil K; Sabata, Bikash
2011-01-01
A computer-assisted system for histological prostate cancer diagnosis can assist pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies on this topic have primarily addressed the second stage by classifying the preselected tissue regions. In this paper, we address the first stage by presenting a cancer detection approach for the whole slide tissue image. We propose a novel method to extract a cytological feature, namely the presence of cancer nuclei (nuclei with prominent nucleoli) in the tissue, and apply this feature to detect the cancer regions. Additionally, conventional image texture features which have been widely used in the literature are also considered. The performance comparison among the proposed cytological textural feature combination method, the texture-based method and the cytological feature-based method demonstrates the robustness of the extracted cytological feature. At a false positive rate of 6%, the proposed method is able to achieve a sensitivity of 78% on a dataset including six training images (each of which has approximately 4,000×7,000 pixels) and 1 1 whole-slide test images (each of which has approximately 5,000×23,000 pixels). All images are at 20X magnification.
Prostate cancer detection: Fusion of cytological and textural features
Nguyen, Kien; Jain, Anil K.; Sabata, Bikash
2011-01-01
A computer-assisted system for histological prostate cancer diagnosis can assist pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies on this topic have primarily addressed the second stage by classifying the preselected tissue regions. In this paper, we address the first stage by presenting a cancer detection approach for the whole slide tissue image. We propose a novel method to extract a cytological feature, namely the presence of cancer nuclei (nuclei with prominent nucleoli) in the tissue, and apply this feature to detect the cancer regions. Additionally, conventional image texture features which have been widely used in the literature are also considered. The performance comparison among the proposed cytological textural feature combination method, the texture-based method and the cytological feature-based method demonstrates the robustness of the extracted cytological feature. At a false positive rate of 6%, the proposed method is able to achieve a sensitivity of 78% on a dataset including six training images (each of which has approximately 4,000×7,000 pixels) and 1 1 whole-slide test images (each of which has approximately 5,000×23,000 pixels). All images are at 20X magnification. PMID:22811959
Video image stabilization and registration--plus
NASA Technical Reports Server (NTRS)
Hathaway, David H. (Inventor)
2009-01-01
A method of stabilizing a video image displayed in multiple video fields of a video sequence includes the steps of: subdividing a selected area of a first video field into nested pixel blocks; determining horizontal and vertical translation of each of the pixel blocks in each of the pixel block subdivision levels from the first video field to a second video field; and determining translation of the image from the first video field to the second video field by determining a change in magnification of the image from the first video field to the second video field in each of horizontal and vertical directions, and determining shear of the image from the first video field to the second video field in each of the horizontal and vertical directions.
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2018-03-01
In this paper, enhancement of an existing optical simultaneous fusion, compression and encryption (SFCE) scheme in terms of real-time requirements, bandwidth occupation and encryption robustness is proposed. We have used and approximate form of the DCT to decrease the computational resources. Then, a novel chaos-based encryption algorithm is introduced in order to achieve the confusion and diffusion effects. In the confusion phase, Henon map is used for row and column permutations, where the initial condition is related to the original image. Furthermore, the Skew Tent map is employed to generate another random matrix in order to carry out pixel scrambling. Finally, an adaptation of a classical diffusion process scheme is employed to strengthen security of the cryptosystem against statistical, differential, and chosen plaintext attacks. Analyses of key space, histogram, adjacent pixel correlation, sensitivity, and encryption speed of the encryption scheme are provided, and favorably compared to those of the existing crypto-compression system. The proposed method has been found to be digital/optical implementation-friendly which facilitates the integration of the crypto-compression system on a very broad range of scenarios.
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Yang, Guang; Ortiz, Monico; Wrigley, Christopher; Hancock, Bruce; Cunningham, Thomas
2000-01-01
Noise in photodiode-type CMOS active pixel sensors (APS) is primarily due to the reset (kTC) noise at the sense node, since it is difficult to implement in-pixel correlated double sampling for a 2-D array. Signal integrated on the photodiode sense node (SENSE) is calculated by measuring difference between the voltage on the column bus (COL) - before and after the reset (RST) is pulsed. Lower than kTC noise can be achieved with photodiode-type pixels by employing "softreset" technique. Soft-reset refers to resetting with both drain and gate of the n-channel reset transistor kept at the same potential, causing the sense node to be reset using sub-threshold MOSFET current. However, lowering of noise is achieved only at the expense higher image lag and low-light-level non-linearity. In this paper, we present an analysis to explain the noise behavior, show evidence of degraded performance under low-light levels, and describe new pixels that eliminate non-linearity and lag without compromising noise.
NASA Astrophysics Data System (ADS)
Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad
2018-06-01
Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.
High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Mohammad Hadi; Karim, Karim S.
2006-05-15
The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltagesmore » at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.« less
An FPGA-based heterogeneous image fusion system design method
NASA Astrophysics Data System (ADS)
Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong
2011-08-01
Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.
Rule-driven defect detection in CT images of hardwood logs
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt
2000-01-01
This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (...
Preliminary investigations of active pixel sensors in Nuclear Medicine imaging
NASA Astrophysics Data System (ADS)
Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.
2009-06-01
Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.
Digital identification of cartographic control points
NASA Technical Reports Server (NTRS)
Gaskell, R. W.
1988-01-01
Techniques have been developed for the sub-pixel location of control points in satellite images returned by the Voyager spacecraft. The procedure uses digital imaging data in the neighborhood of the point to form a multipicture model of a piece of the surface. Comparison of this model with the digital image in each picture determines the control point locations to about a tenth of a pixel. At this level of precision, previously insignificant effects must be considered, including chromatic aberration, high level imaging distortions, and systematic errors due to navigation uncertainties. Use of these methods in the study of Jupiter's satellite Io has proven very fruitful.
CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems
NASA Technical Reports Server (NTRS)
Fossum, Eric R.
1996-01-01
The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.
The algorithm of fast image stitching based on multi-feature extraction
NASA Astrophysics Data System (ADS)
Yang, Chunde; Wu, Ge; Shi, Jing
2018-05-01
This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
Image processing on the image with pixel noise bits removed
NASA Astrophysics Data System (ADS)
Chuang, Keh-Shih; Wu, Christine
1992-06-01
Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.
G-Channel Restoration for RWB CFA with Double-Exposed W Channel
Park, Chulhee; Song, Ki Sun; Kang, Moon Gi
2017-01-01
In this paper, we propose a green (G)-channel restoration for a red–white–blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red–blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels. PMID:28165425
G-Channel Restoration for RWB CFA with Double-Exposed W Channel.
Park, Chulhee; Song, Ki Sun; Kang, Moon Gi
2017-02-05
In this paper, we propose a green (G)-channel restoration for a red-white-blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red-blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels.
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
Score Fusion and Decision Fusion for the Performance Improvement of Face Recognition
2013-07-01
0.1). A Hamming distance (HD) [7] is calculated with the FP-CGF to measure the similarities among faces. The matched face has the shortest HD from...then put into a face pattern byte (FPB) pixel- by-pixel. A HD is calculated with the FPB to measure the similarities among faces, and recognition is...all query users are included in the database), the recognition performance can be measured by a verification rate (VR), the percentage of the
NASA Astrophysics Data System (ADS)
Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.
2007-09-01
When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
NASA Astrophysics Data System (ADS)
Boss, Stephen K.
1996-11-01
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise.
NASA Astrophysics Data System (ADS)
Cloninger, Alexander; Czaja, Wojciech; Doster, Timothy
2017-07-01
As the popularity of non-linear manifold learning techniques such as kernel PCA and Laplacian Eigenmaps grows, vast improvements have been seen in many areas of data processing, including heterogeneous data fusion and integration. One problem with the non-linear techniques, however, is the lack of an easily calculable pre-image. Existence of such pre-image would allow visualization of the fused data not only in the embedded space, but also in the original data space. The ability to make such comparisons can be crucial for data analysts and other subject matter experts who are the end users of novel mathematical algorithms. In this paper, we propose a pre-image algorithm for Laplacian Eigenmaps. Our method offers major improvements over existing techniques, which allow us to address the problem of noisy inputs and the issue of how to calculate the pre-image of a point outside the convex hull of training samples; both of which have been overlooked in previous studies in this field. We conclude by showing that our pre-image algorithm, combined with feature space rotations, allows us to recover occluded pixels of an imaging modality based off knowledge of that image measured by heterogeneous modalities. We demonstrate this data recovery on heterogeneous hyperspectral (HS) cameras, as well as by recovering LIDAR measurements from HS data.
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
NASA Astrophysics Data System (ADS)
Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian
2016-06-01
Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) (0.5 m spatial resolution), constrained by the SELENE and LRO Elevation Model (SLDEM 2015) of 60 m spatial resolution. The results indicate that local details are largely recovered by the algorithm while low frequency topographic consistency is affected by the low-resolution DEM.
Radiometric calibration and SNR calculation of a SWIR imaging telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Ozgur; Turk, Fethi; Selimoglu, Ozgur
2012-09-06
Radiometric calibration of an imaging telescope is usually made using a uniform illumination sphere in a laboratory. In this study, we used the open-sky images taken during bright day conditions to calibrate our telescope. We found a dark signal offset value and a linear response coefficient value for each pixel by using three different algorithms. Then we applied these coefficients to the taken images, and considerably lowered the image non-uniformity. Calibration can be repeated during the operation of telescope with an object that has better uniformity than open-sky. Also SNR (Signal to Noise Ratio) of each pixel was calculated frommore » the open-sky images using the temporal mean and standard deviations. It is found that SNR is greater than 80 for all pixels even at low light levels.« less
Computation Methods for NASA Data-streams for Agricultural Efficiency Applications
NASA Astrophysics Data System (ADS)
Shrestha, B.; O'Hara, C. G.; Mali, P.
2007-12-01
Temporal Map Algebra (TMA) is a novel technique for analyzing time-series of satellite imageries using simple algebraic operators that treats time-series imageries as a three-dimensional dataset, where two dimensions encode planimetric position on earth surface and the third dimension encodes time. Spatio-temporal analytical processing methods such as TMA that utilize moderate spatial resolution satellite imagery having high temporal resolution to create multi-temporal composites are data intensive as well as computationally intensive. TMA analysis for multi-temporal composites provides dramatically enhanced usefulness that will yield previously unavailable capabilities to user communities, if deployment is coupled with significant High Performance Computing (HPC) capabilities; and interfaces are designed to deliver the full potential for these new technological developments. In this research, cross-platform data fusion and adaptive filtering using TMA was employed to create highly useful daily datasets and cloud-free high-temporal resolution vegetation index (VI) composites with enhanced information content for vegetation and bio-productivity monitoring, surveillance, and modeling. Fusion of Normalized Difference Vegetation Index (NDVI) data created from Aqua and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) surface-reflectance data (MOD09) enables the creation of daily composites which are of immense value to a broad spectrum of global and national applications. Additionally these products are highly desired by many natural resources agencies like USDA/FAS/PECAD. Utilizing data streams collected by similar sensors on different platforms that transit the same areas at slightly different times of the day offers the opportunity to develop fused data products that have enhanced cloud-free and reduced noise characteristics. Establishing a Fusion Quality Confidence Code (FQCC) provides a metadata product that quantifies the method of fusion for a given pixel and enables a relative quality and confidence factor to be established for a given daily pixel value. When coupled with metadata that quantify the source sensor, day and time of acquisition, and the fusion method of each pixel to create the daily product; a wealth of information is available to assist in deriving new data and information products. These newly developed abilities to create highly useful daily data sets imply that temporal composites for a geographic area of interest may be created for user-defined temporal intervals that emphasize a user designated day of interest. At GeoResources Institute, Mississippi State University, solutions have been developed to create custom composites and cross-platform satellite data fusion using TMA which are useful for National Aeronautics and Space Administration (NASA) Rapid Prototyping Capability (RPC) and Integrated System Solutions (ISS) experiments for agricultural applications.
NASA Astrophysics Data System (ADS)
Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang
2012-01-01
The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.
From data to information and knowledge for geospatial applications
NASA Astrophysics Data System (ADS)
Schenk, T.; Csatho, B.; Yoon, T.
2006-12-01
An ever-increasing number of airborne and spaceborne data-acquisition missions with various sensors produce a glut of data. Sensory data rarely contains information in a explicit form such that an application can directly use it. The processing and analyzing of data constitutes a real bottleneck; therefore, automating the processes of gaining useful information and knowledge from the raw data is of paramount interest. This presentation is concerned with the transition from data to information and knowledge. With data we refer to the sensor output and we notice that data provide very rarely direct answers for applications. For example, a pixel in a digital image or a laser point from a LIDAR system (data) have no direct relationship with elevation changes of topographic surfaces or the velocity of a glacier (information, knowledge). We propose to employ the computer vision paradigm to extract information and knowledge as it pertains to a wide range of geoscience applications. After introducing the paradigm we describe the major steps to be undertaken for extracting information and knowledge from sensory input data. Features play an important role in this process. Thus we focus on extracting features and their perceptual organization to higher order constructs. We demonstrate these concepts with imaging data and laser point clouds. The second part of the presentation addresses the problem of combining data obtained by different sensors. An absolute prerequisite for successful fusion is to establish a common reference frame. We elaborate on the concept of sensor invariant features that allow the registration of such disparate data sets as aerial/satellite imagery, 3D laser point clouds, and multi/hyperspectral imagery. Fusion takes place on the data level (sensor registration) and on the information level. We show how fusion increases the degree of automation for reconstructing topographic surfaces. Moreover, fused information gained from the three sensors results in a more abstract surface representation with a rich set of explicit surface information that can be readily used by an analyst for applications such as change detection.
a New Object-Based Framework to Detect Shodows in High-Resolution Satellite Imagery Over Urban Areas
NASA Astrophysics Data System (ADS)
Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.
2015-12-01
In this paper a new object-based framework to detect shadow areas in high resolution satellite images is proposed. To produce shadow map in pixel level state of the art supervised machine learning algorithms are employed. Automatic ground truth generation based on Otsu thresholding on shadow and non-shadow indices is used to train the classifiers. It is followed by segmenting the image scene and create image objects. To detect shadow objects, a majority voting on pixel-based shadow detection result is designed. GeoEye-1 multi-spectral image over an urban area in Qom city of Iran is used in the experiments. Results shows the superiority of our proposed method over traditional pixel-based, visually and quantitatively.
Characterization and correction of charge-induced pixel shifts in DECam
Gruen, D.; Bernstein, G. M.; Jarvis, M.; ...
2015-05-28
Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law r -2.5 with pixel separation r, are isotropic except for an asymmetry in themore » direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.« less
BP fusion model for the detection of oil spills on the sea by remote sensing
NASA Astrophysics Data System (ADS)
Chen, Weiwei; An, Jubai; Zhang, Hande; Lin, Bin
2003-06-01
Oil spills are very serious marine pollution in many countries. In order to detect and identify the oil-spilled on the sea by remote sensor, scientists have to conduct a research work on the remote sensing image. As to the detection of oil spills on the sea, edge detection is an important technology in image processing. There are many algorithms of edge detection developed for image processing. These edge detection algorithms always have their own advantages and disadvantages in the image processing. Based on the primary requirements of edge detection of the oil spills" image on the sea, computation time and detection accuracy, we developed a fusion model. The model employed a BP neural net to fuse the detection results of simple operators. The reason we selected BP neural net as the fusion technology is that the relation between simple operators" result of edge gray level and the image"s true edge gray level is nonlinear, while BP neural net is good at solving the nonlinear identification problem. Therefore in this paper we trained a BP neural net by some oil spill images, then applied the BP fusion model on the edge detection of other oil spill images and obtained a good result. In this paper the detection result of some gradient operators and Laplacian operator are also compared with the result of BP fusion model to analysis the fusion effect. At last the paper pointed out that the fusion model has higher accuracy and higher speed in the processing oil spill image"s edge detection.
Design and implementation of non-linear image processing functions for CMOS image sensor
NASA Astrophysics Data System (ADS)
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
Fusion of local and global detection systems to detect tuberculosis in chest radiographs.
Hogeweg, Laurens; Mol, Christian; de Jong, Pim A; Dawson, Rodney; Ayles, Helen; van Ginneken, Bramin
2010-01-01
Automatic detection of tuberculosis (TB) on chest radiographs is a difficult problem because of the diverse presentation of the disease. A combination of detection systems for abnormalities and normal anatomy is used to improve detection performance. A textural abnormality detection system operating at the pixel level is combined with a clavicle detection system to suppress false positive responses. The output of a shape abnormality detection system operating at the image level is combined in a next step to further improve performance by reducing false negatives. Strategies for combining systems based on serial and parallel configurations were evaluated using the minimum, maximum, product, and mean probability combination rules. The performance of TB detection increased, as measured using the area under the ROC curve, from 0.67 for the textural abnormality detection system alone to 0.86 when the three systems were combined. The best result was achieved using the sum and product rule in a parallel combination of outputs.
Adaptive neuro-heuristic hybrid model for fruit peel defects detection.
Woźniak, Marcin; Połap, Dawid
2018-02-01
Fusion of machine learning methods benefits in decision support systems. A composition of approaches gives a possibility to use the most efficient features composed into one solution. In this article we would like to present an approach to the development of adaptive method based on fusion of proposed novel neural architecture and heuristic search into one co-working solution. We propose a developed neural network architecture that adapts to processed input co-working with heuristic method used to precisely detect areas of interest. Input images are first decomposed into segments. This is to make processing easier, since in smaller images (decomposed segments) developed Adaptive Artificial Neural Network (AANN) processes less information what makes numerical calculations more precise. For each segment a descriptor vector is composed to be presented to the proposed AANN architecture. Evaluation is run adaptively, where the developed AANN adapts to inputs and their features by composed architecture. After evaluation, selected segments are forwarded to heuristic search, which detects areas of interest. As a result the system returns the image with pixels located over peel damages. Presented experimental research results on the developed solution are discussed and compared with other commonly used methods to validate the efficacy and the impact of the proposed fusion in the system structure and training process on classification results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Event-driven charge-coupled device design and applications therefor
NASA Technical Reports Server (NTRS)
Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)
2005-01-01
An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.
NASA Astrophysics Data System (ADS)
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.
Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less
Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai
2013-05-01
Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less
A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging.
Li, Chong; Grant, James; Wang, Jue; Cumming, David R S
2013-10-21
We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.
Gabler, Anja S; Kühnel, Christian; Winkens, Thomas; Freesmeyer, Martin
2016-08-01
This study aimed to assess a hypothetical minimum administered activity of (124)I required to achieve comparability between pretherapeutic radioiodine uptake (RAIU) measurements by (124)I PET/CT and by (131)I RAIU probe, the clinical standard. In addition, the impact of different reconstruction algorithms on (124)I RAIU and the evaluation of pixel noise as a parameter for image quality were investigated. Different scan durations were simulated by different reconstruction intervals of 600-s list-mode PET datasets (including 15 intervals up to 600 s and 5 different reconstruction algorithms: filtered-backprojection and 4 iterative techniques) acquired 30 h after administration of 1 MBq of (124)I. The Bland-Altman method was used to compare mean (124)I RAIU levels versus mean 3-MBq (131)I RAIU levels (clinical standard). The data of 37 patients with benign thyroid diseases were assessed. The impact of different reconstruction lengths on pixel noise was investigated for all 5 of the (124)I PET reconstruction algorithms. A hypothetical minimum activity was sought by means of a proportion equation, considering that the length of a reconstruction interval equates to a hypothetical activity. Mean (124)I RAIU and (131)I RAIU already showed high levels of agreement for reconstruction intervals of as short as 10 s, corresponding to a hypothetical minimum activity of 0.017 MBq of (124)I. The iterative algorithms proved generally superior to the filtered-backprojection algorithm. (124)I RAIU showed a trend toward higher levels than (131)I RAIU if the influence of retrosternal tissue was not considered, which was proven to be the cause of a slight overestimation by (124)I RAIU measurement. A hypothetical minimum activity of 0.5 MBq of (124)I obtained with iterative reconstruction appeared sufficient both visually and with regard to pixel noise. This study confirms the potential of (124)I RAIU measurement as an alternative method for (131)I RAIU measurement in benign thyroid disease and suggests that reducing the administered activity is an option. CT information is particularly important in cases of retrosternal expansion. The results are relevant because (124)I PET/CT allows additional diagnostic means, that is, the possibility of performing fusion imaging with ultrasound. (124)I PET/CT might be an alternative, especially when hybrid (123)I SPECT/CT is not available. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L
2012-10-01
High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.
A unified tensor level set for image segmentation.
Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong
2010-06-01
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
Foreign object detection and removal to improve automated analysis of chest radiographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogeweg, Laurens; Sanchez, Clara I.; Melendez, Jaime
2013-07-15
Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The methodmore » is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A{sub z} value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis.« less
Pulsed excitation terahertz tomography - multiparametric approach
NASA Astrophysics Data System (ADS)
Lopato, Przemyslaw
2018-04-01
This article deals with pulsed excitation terahertz computed tomography (THz CT). Opposite to x-ray CT, where just a single value (pixel) is obtained, in case of pulsed THz CT the time signal is acquired for each position. Recorded waveform can be parametrized - many features carrying various information about examined structure can be calculated. Based on this, multiparametric reconstruction algorithm was proposed: inverse Radon transform based reconstruction is applied for each parameter and then fusion of results is utilized. Performance of the proposed imaging scheme was experimentally verified using dielectric phantoms.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding
Xiao, Rui; Gao, Junbin; Bossomaier, Terry
2016-01-01
A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102
Varying ultrasound power level to distinguish surgical instruments and tissue.
Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E
2018-03-01
We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph
2006-01-01
PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.
An RBF-based compression method for image-based relighting.
Leung, Chi-Sing; Wong, Tien-Tsin; Lam, Ping-Man; Choy, Kwok-Hung
2006-04-01
In image-based relighting, a pixel is associated with a number of sampled radiance values. This paper presents a two-level compression method. In the first level, the plenoptic property of a pixel is approximated by a spherical radial basis function (SRBF) network. That means that the spherical plenoptic function of each pixel is represented by a number of SRBF weights. In the second level, we apply a wavelet-based method to compress these SRBF weights. To reduce the visual artifact due to quantization noise, we develop a constrained method for estimating the SRBF weights. Our proposed approach is superior to JPEG, JPEG2000, and MPEG. Compared with the spherical harmonics approach, our approach has a lower complexity, while the visual quality is comparable. The real-time rendering method for our SRBF representation is also discussed.
Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion
NASA Technical Reports Server (NTRS)
Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.
1993-01-01
The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.
Superpixel-Augmented Endmember Detection for Hyperspectral Images
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Gilmore, Martha
2011-01-01
Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.
QWT: Retrospective and New Applications
NASA Astrophysics Data System (ADS)
Xu, Yi; Yang, Xiaokang; Song, Li; Traversoni, Leonardo; Lu, Wei
Quaternion wavelet transform (QWT) achieves much attention in recent years as a new image analysis tool. In most cases, it is an extension of the real wavelet transform and complex wavelet transform (CWT) by using the quaternion algebra and the 2D Hilbert transform of filter theory, where analytic signal representation is desirable to retrieve phase-magnitude description of intrinsically 2D geometric structures in a grayscale image. In the context of color image processing, however, it is adapted to analyze the image pattern and color information as a whole unit by mapping sequential color pixels to a quaternion-valued vector signal. This paper provides a retrospective of QWT and investigates its potential use in the domain of image registration, image fusion, and color image recognition. It is indicated that it is important for QWT to induce the mechanism of adaptive scale representation of geometric features, which is further clarified through two application instances of uncalibrated stereo matching and optical flow estimation. Moreover, quaternionic phase congruency model is defined based on analytic signal representation so as to operate as an invariant feature detector for image registration. To achieve better localization of edges and textures in image fusion task, we incorporate directional filter bank (DFB) into the quaternion wavelet decomposition scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally, the strong potential use of QWT in color image recognition is materialized in a chromatic face recognition system by establishing invariant color features. Extensive experimental results are presented to highlight the exciting properties of QWT.
NASA Astrophysics Data System (ADS)
Zhu, Zhe
2017-08-01
The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.
Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor
Hirvonen, Liisa M.; Suhling, Klaus
2016-01-01
Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
A comparative study of multi-focus image fusion validation metrics
NASA Astrophysics Data System (ADS)
Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael
2016-05-01
Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
Optical design considerations when imaging the fundus with an adaptive optics correction
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.
2008-06-01
Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.
[Glossary of terms used by radiologists in image processing].
Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P
1995-01-01
We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.
Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong
2017-06-01
The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.
NASA Astrophysics Data System (ADS)
Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong
2017-06-01
The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.
Baek, Jihye; Huh, Jangyoung; Kim, Myungsoo; Hyun An, So; Oh, Yoonjin; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena
2013-02-01
To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Volume measurement, using 3D US, shows a 2.8 ± 1.5% error, 4.4 ± 3.0% error for CT, and 3.1 ± 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.
NASA Technical Reports Server (NTRS)
1996-01-01
PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.
A novel snapshot polarimetric imager
NASA Astrophysics Data System (ADS)
Wong, Gerald; McMaster, Ciaran; Struthers, Robert; Gorman, Alistair; Sinclair, Peter; Lamb, Robert; Harvey, Andrew R.
2012-10-01
Polarimetric imaging (PI) is of increasing importance in determining additional scene information beyond that of conventional images. For very long-range surveillance, image quality is degraded due to turbulence. Furthermore, the high magnification required to create images with sufficient spatial resolution suitable for object recognition and identification require long focal length optical systems. These are incompatible with the size and weight restrictions for aircraft. Techniques which allow detection and recognition of an object at the single pixel level are therefore likely to provide advance warning of approaching threats or long-range object cueing. PI is a technique that has the potential to detect object signatures at the pixel level. Early attempts to develop PI used rotating polarisers (and spectral filters) which recorded sequential polarized images from which the complete Stokes matrix could be derived. This approach has built-in latency between frames and requires accurate registration of consecutive frames to analyze real-time video of moving objects. Alternatively, multiple optical systems and cameras have been demonstrated to remove latency, but this approach increases cost and bulk of the imaging system. In our investigation we present a simplified imaging system that divides an image into two orthogonal polarimetric components which are then simultaneously projected onto a single detector array. Thus polarimetric data is recorded without latency on a single snapshot. We further show that, for pixel-level objects, the data derived from only two orthogonal states (H and V) is sufficient to increase the probability of detection whilst reducing false alarms compared to conventional unpolarised imaging.
Multisensor fusion for 3D target tracking using track-before-detect particle filter
NASA Astrophysics Data System (ADS)
Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.
2015-05-01
This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian
2018-01-01
In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.
Estimation of saturated pixel values in digital color imaging
Zhang, Xuemei; Brainard, David H.
2007-01-01
Pixel saturation, where the incident light at a pixel causes one of the color channels of the camera sensor to respond at its maximum value, can produce undesirable artifacts in digital color images. We present a Bayesian algorithm that estimates what the saturated channel's value would have been in the absence of saturation. The algorithm uses the non-saturated responses from the other color channels, together with a multivariate Normal prior that captures the correlation in response across color channels. The appropriate parameters for the prior may be estimated directly from the image data, since most image pixels are not saturated. Given the prior, the responses of the non-saturated channels, and the fact that the true response of the saturated channel is known to be greater than the saturation level, the algorithm returns the optimal expected mean square estimate for the true response. Extensions of the algorithm to the case where more than one channel is saturated are also discussed. Both simulations and examples with real images are presented to show that the algorithm is effective. PMID:15603065
A programmable computational image sensor for high-speed vision
NASA Astrophysics Data System (ADS)
Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian
2013-08-01
In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.
Increasing Linear Dynamic Range of a CMOS Image Sensor
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2007-01-01
A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon the built-in offset in each pixel and in each comparator, the point at which the gain change occurs will be different, adding gain-dependent fixed pattern noise in each pixel. The offset, and hence the fixed pattern noise, is eliminated by sampling the pixel readout charge four times by use of four capacitors (instead of two such capacitors as in conventional design) connected to the bottom of the column via electronic switches SHS1, SHR1, SHS2, and SHR2, respectively, corresponding to high and low values of the signals TSR and RST. The samples are combined in an appropriate fashion to cancel offset-induced errors, and provide spurious-free imaging with extended dynamic range.
Rowlands, J A; Hunter, D M; Araj, N
1991-01-01
A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.
Sub-pixel mineral mapping using EO-1 Hyperion hyperspectral data
NASA Astrophysics Data System (ADS)
Kumar, C.; Shetty, A.; Raval, S.; Champatiray, P. K.; Sharma, R.
2014-11-01
This study describes the utility of Earth Observation (EO)-1 Hyperion data for sub-pixel mineral investigation using Mixture Tuned Target Constrained Interference Minimized Filter (MTTCIMF) algorithm in hostile mountainous terrain of Rajsamand district of Rajasthan, which hosts economic mineralization such as lead, zinc, and copper etc. The study encompasses pre-processing, data reduction, Pixel Purity Index (PPI) and endmember extraction from reflectance image of surface minerals such as illite, montmorillonite, phlogopite, dolomite and chlorite. These endmembers were then assessed with USGS mineral spectral library and lab spectra of rock samples collected from field for spectral inspection. Subsequently, MTTCIMF algorithm was implemented on processed image to obtain mineral distribution map of each detected mineral. A virtual verification method has been adopted to evaluate the classified image, which uses directly image information to evaluate the result and confirm the overall accuracy and kappa coefficient of 68 % and 0.6 respectively. The sub-pixel level mineral information with reasonable accuracy could be a valuable guide to geological and exploration community for expensive ground and/or lab experiments to discover economic deposits. Thus, the study demonstrates the feasibility of Hyperion data for sub-pixel mineral mapping using MTTCIMF algorithm with cost and time effective approach.
Vectorized image segmentation via trixel agglomeration
Prasad, Lakshman [Los Alamos, NM; Skourikhine, Alexei N [Los Alamos, NM
2006-10-24
A computer implemented method transforms an image comprised of pixels into a vectorized image specified by a plurality of polygons that can be subsequently used to aid in image processing and understanding. The pixelated image is processed to extract edge pixels that separate different colors and a constrained Delaunay triangulation of the edge pixels forms a plurality of triangles having edges that cover the pixelated image. A color for each one of the plurality of triangles is determined from the color pixels within each triangle. A filter is formed with a set of grouping rules related to features of the pixelated image and applied to the plurality of triangle edges to merge adjacent triangles consistent with the filter into polygons having a plurality of vertices. The pixelated image may be then reformed into an array of the polygons, that can be represented collectively and efficiently by standard vector image.
Multispectral image fusion for illumination-invariant palmprint recognition
Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064
Multispectral image fusion for illumination-invariant palmprint recognition.
Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.
Ares, Manuel
2014-02-01
Here we describe some practical concerns surrounding the scanning of microarray slides that have been hybridized with fluorescent dyes. We use a laser scanner that has two lasers, each set to excite a different fluor, and separate detectors to capture emission from each fluor. The laser passes over an address (position on the scanned surface) and the detectors capture photons emitted from each address. Two superimposed image files are written that carry intensities for each channel for each pixel of the image scan. These are the raw data. Image analysis software is used to identify and summarize the intensities of the pixels that make up each spot. After comparison to background pixels, the processed intensity levels representing the gene expression measurements are associated with the identity of each spot.
Fusion of infrared and visible images based on BEMD and NSDFB
NASA Astrophysics Data System (ADS)
Zhu, Pan; Huang, Zhanhua; Lei, Hai
2016-07-01
This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.
Selective document image data compression technique
Fu, C.Y.; Petrich, L.I.
1998-05-19
A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.
Selective document image data compression technique
Fu, Chi-Yung; Petrich, Loren I.
1998-01-01
A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)
Image Processing for Binarization Enhancement via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A. (Inventor)
2009-01-01
A technique for enhancing a gray-scale image to improve conversions of the image to binary employs fuzzy reasoning. In the technique, pixels in the image are analyzed by comparing the pixel's gray scale value, which is indicative of its relative brightness, to the values of pixels immediately surrounding the selected pixel. The degree to which each pixel in the image differs in value from the values of surrounding pixels is employed as the variable in a fuzzy reasoning-based analysis that determines an appropriate amount by which the selected pixel's value should be adjusted to reduce vagueness and ambiguity in the image and improve retention of information during binarization of the enhanced gray-scale image.
Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing
2015-02-01
Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of spectra and images meanwhile considering their accuracy and rapidity and improving weeds detection range in the full range that could detect weeds between and within crop rows, the above method contributes relevant analysis tools and means to the application field requiring the accurate information of plants in agricultural precision management
Different source image fusion based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Xiao; Piao, Yan
2016-03-01
The fusion technology of video image is to make the video obtained by different image sensors complementary to each other by some technical means, so as to obtain the video information which is rich in information and suitable for the human eye system. Infrared cameras in harsh environments such as when smoke, fog and low light situations penetrating power, but the ability to obtain the details of the image is poor, does not meet the human visual system. Single visible light imaging can be rich in detail, high resolution images and for the visual system, but the visible image easily affected by the external environment. Infrared image and visible image fusion process involved in the video image fusion algorithm complexity and high calculation capacity, have occupied more memory resources, high clock rate requirements, such as software, c ++, c, etc. to achieve more, but based on Hardware platform less. In this paper, based on the imaging characteristics of infrared images and visible light images, the software and hardware are combined to obtain the registration parameters through software matlab, and the gray level weighted average method is used to implement the hardware platform. Information fusion, and finally the fusion image can achieve the goal of effectively improving the acquisition of information to increase the amount of information in the image.
Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors
Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian
2016-01-01
This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.
Fundamental performance differences between CMOS and CCD imagers, part IV
NASA Astrophysics Data System (ADS)
Janesick, James; Pinter, Jeff; Potter, Robert; Elliott, Tom; Andrews, James; Tower, John; Grygon, Mark; Keller, Dave
2010-07-01
This paper is a continuation of past papers written on fundamental performance differences of scientific CMOS and CCD imagers. New characterization results presented below include: 1). a new 1536 × 1536 × 8μm 5TPPD pixel CMOS imager, 2). buried channel MOSFETs for random telegraph noise (RTN) and threshold reduction, 3) sub-electron noise pixels, 4) 'MIM pixel' for pixel sensitivity (V/e-) control, 5) '5TPPD RING pixel' for large pixel, high-speed charge transfer applications, 6) pixel-to-pixel blooming control, 7) buried channel photo gate pixels and CMOSCCDs, 8) substrate bias for deep depletion CMOS imagers, 9) CMOS dark spikes and dark current issues and 10) high energy radiation damage test data. Discussions are also given to a 1024 × 1024 × 16 um 5TPPD pixel imager currently in fabrication and new stitched CMOS imagers that are in the design phase including 4k × 4k × 10 μm and 10k × 10k × 10 um imager formats.
Acquisition of STEM Images by Adaptive Compressive Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Weiyi; Feng, Qianli; Srinivasan, Ramprakash
Compressive Sensing (CS) allows a signal to be sparsely measured first and accurately recovered later in software [1]. In scanning transmission electron microscopy (STEM), it is possible to compress an image spatially by reducing the number of measured pixels, which decreases electron dose and increases sensing speed [2,3,4]. The two requirements for CS to work are: (1) sparsity of basis coefficients and (2) incoherence of the sensing system and the representation system. However, when pixels are missing from the image, it is difficult to have an incoherent sensing matrix. Nevertheless, dictionary learning techniques such as Beta-Process Factor Analysis (BPFA) [5]more » are able to simultaneously discover a basis and the sparse coefficients in the case of missing pixels. On top of CS, we would like to apply active learning [6,7] to further reduce the proportion of pixels being measured, while maintaining image reconstruction quality. Suppose we initially sample 10% of random pixels. We wish to select the next 1% of pixels that are most useful in recovering the image. Now, we have 11% of pixels, and we want to decide the next 1% of “most informative” pixels. Active learning methods are online and sequential in nature. Our goal is to adaptively discover the best sensing mask during acquisition using feedback about the structures in the image. In the end, we hope to recover a high quality reconstruction with a dose reduction relative to the non-adaptive (random) sensing scheme. In doing this, we try three metrics applied to the partial reconstructions for selecting the new set of pixels: (1) variance, (2) Kullback-Leibler (KL) divergence using a Radial Basis Function (RBF) kernel, and (3) entropy. Figs. 1 and 2 display the comparison of Peak Signal-to-Noise (PSNR) using these three different active learning methods at different percentages of sampled pixels. At 20% level, all the three active learning methods underperform the original CS without active learning. However, they all beat the original CS as more of the “most informative” pixels are sampled. One can also argue that CS equipped with active learning requires less sampled pixels to achieve the same value of PSNR than CS with pixels randomly sampled, since all the three PSNR curves with active learning grow at a faster pace than that without active learning. For this particular STEM image, by observing the reconstructed images and the sensing masks, we find that while the method based on RBF kernel acquires samples more uniformly, the one on entropy samples more areas of significant change, thus less uniformly. The KL-divergence method performs the best in terms of reconstruction error (PSNR) for this example [8].« less
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
NASA Astrophysics Data System (ADS)
Anugu, N.; Garcia, P.
2016-04-01
Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.
A Multi-modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling.
Asif, Umar; Bennamoun, Mohammed; Sohel, Ferdous
2017-08-30
While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multimodal data, and the spatial variability in images of objects remain to be major challenges. To address these problems, this paper proposes a novel framework to learn a discriminative and spatially invariant classification model for object and indoor scene recognition using multimodal RGB-D imagery. This is achieved through three postulates: 1) spatial invariance - this is achieved by combining a spatial transformer network with a deep convolutional neural network to learn features which are invariant to spatial translations, rotations, and scale changes, 2) high discriminative capability - this is achieved by introducing Fisher encoding within the CNN architecture to learn features which have small inter-class similarities and large intra-class compactness, and 3) multimodal hierarchical fusion - this is achieved through the regularization of semantic segmentation to a multi-modal CNN architecture, where class probabilities are estimated at different hierarchical levels (i.e., imageand pixel-levels), and fused into a Conditional Random Field (CRF)- based inference hypothesis, the optimization of which produces consistent class labels in RGB-D images. Extensive experimental evaluations on RGB-D object and scene datasets, and live video streams (acquired from Kinect) show that our framework produces superior object and scene classification results compared to the state-of-the-art methods.
Penrose high-dynamic-range imaging
NASA Astrophysics Data System (ADS)
Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian
2016-05-01
High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.
Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel
2014-01-01
Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990
Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector
NASA Astrophysics Data System (ADS)
Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.
2017-01-01
MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.
Hexagonal Pixels and Indexing Scheme for Binary Images
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
2004-01-01
A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.
Threshold selection for classification of MR brain images by clustering method
NASA Astrophysics Data System (ADS)
Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita
2015-12-01
Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.
Feature level fusion of hand and face biometrics
NASA Astrophysics Data System (ADS)
Ross, Arun A.; Govindarajan, Rohin
2005-03-01
Multibiometric systems utilize the evidence presented by multiple biometric sources (e.g., face and fingerprint, multiple fingers of a user, multiple matchers, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in several distinct levels, including the feature extraction level, match score level and decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. In this paper we discuss fusion at the feature level in 3 different scenarios: (i) fusion of PCA and LDA coefficients of face; (ii) fusion of LDA coefficients corresponding to the R,G,B channels of a face image; (iii) fusion of face and hand modalities. Preliminary results are encouraging and help in highlighting the pros and cons of performing fusion at this level. The primary motivation of this work is to demonstrate the viability of such a fusion and to underscore the importance of pursuing further research in this direction.
Multisensor data fusion for IED threat detection
NASA Astrophysics Data System (ADS)
Mees, Wim; Heremans, Roel
2012-10-01
In this paper we present the multi-sensor registration and fusion algorithms that were developed for a force protection research project in order to detect threats against military patrol vehicles. The fusion is performed at object level, using a hierarchical evidence aggregation approach. It first uses expert domain knowledge about the features used to characterize the detected threats, that is implemented in the form of a fuzzy expert system. The next level consists in fusing intra-sensor and inter-sensor information. Here an ordered weighted averaging operator is used. The object level fusion between candidate threats that are detected asynchronously on a moving vehicle by sensors with different imaging geometries, requires an accurate sensor to world coordinate transformation. This image registration will also be discussed in this paper.
A comparative study of 2 computer-assisted methods of quantifying brightfield microscopy images.
Tse, George H; Marson, Lorna P
2013-10-01
Immunohistochemistry continues to be a powerful tool for the detection of antigens. There are several commercially available software packages that allow image analysis; however, these can be complex, require relatively high level of computer skills, and can be expensive. We compared 2 commonly available software packages, Adobe Photoshop CS6 and ImageJ, in their ability to quantify percentage positive area after picrosirius red (PSR) staining and 3,3'-diaminobenzidine (DAB) staining. On analysis of DAB-stained B cells in the mouse spleen, with a biotinylated primary rat anti-mouse-B220 antibody, there was no significant difference on converting images from brightfield microscopy to binary images to measure black and white pixels using ImageJ compared with measuring a range of brown pixels with Photoshop (Student t test, P=0.243, correlation r=0.985). When analyzing mouse kidney allografts stained with PSR, Photoshop achieved a greater interquartile range while maintaining a lower 10th percentile value compared with analysis with ImageJ. A lower 10% percentile reflects that Photoshop analysis is better at analyzing tissues with low levels of positive pixels; particularly relevant for control tissues or negative controls, whereas after ImageJ analysis the same images would result in spuriously high levels of positivity. Furthermore comparing the 2 methods by Bland-Altman plot revealed that these 2 methodologies did not agree when measuring images with a higher percentage of positive staining and correlation was poor (r=0.804). We conclude that for computer-assisted analysis of images of DAB-stained tissue there is no difference between using Photoshop or ImageJ. However, for analysis of color images where differentiation into a binary pattern is not easy, such as with PSR, Photoshop is superior at identifying higher levels of positivity while maintaining differentiation of low levels of positive staining.
Guggenberger, R; Winklhofer, S; Osterhoff, G; Wanner, G A; Fortunati, M; Andreisek, G; Alkadhi, H; Stolzmann, P
2012-11-01
To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels. Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105 keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level. Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81-1.00, κ = 0.54-0.77). HU values of spinal fusion implants were significantly different among vendors (P < 0.001), spine levels (P < 0.01) and among SECT, monoenergetic DECT of 64, 69, 88, 105 keV and OPTkeV (P < 0.01). Image quality was significantly (P < 0.001) different between datasets and improved with higher monoenergies of DECT compared with SECT (V = 0.58, P < 0.001). Artefacts decreased significantly (V = 0.51, P < 0.001) at higher monoenergies. OPTkeV values ranged from 123-141 keV. OPTkeV according to vendor and spine level are presented herein. Monoenergetic DECT provides significantly better image quality and less metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended. • Artefacts pose problems for CT following posterior spinal fusion implants. • CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT. • DECT extrapolation improves image quality and reduces metallic artefacts over SECT. • There were considerable differences in monoenergy values among vendors and spine levels. • Use of individualised monoenergy values is indicated for different metallic hardware devices.
Development of a prototype infrared imaging bolometer for NSTX-U
NASA Astrophysics Data System (ADS)
van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration
2015-11-01
Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
NASA Astrophysics Data System (ADS)
Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.
2016-12-01
Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.
Surface composition of Mars: A Viking multispectral view
NASA Technical Reports Server (NTRS)
Adams, John B.; Smith, Milton O.; Arvidson, Raymond E.; Dale-Bannister, Mary; Guinness, Edward A.; Singer, Robert; Adams, John B.
1987-01-01
A new method of analyzing multispectral images takes advantage of the spectral variation from pixel to pixel that is typical for natural planetary surfaces, and treats all pixels as potential mixtures of spectrally distinct materials. For Viking Lander images, mixtures of only three spectral end members (rock, soil, and shade) are sufficient to explain the observed spectral variation to the level of instrumental noise. It was concluded that a large portion of the Martian surface consists of only two spectrally distinct materials, basalt and palgonitic soil. It is emphasized, however, that as viewed through the three broad bandpasses of Viking Orbiter, other materials cannot be distinguished from the mixtures.
Hierarchical tone mapping for high dynamic range image visualization
NASA Astrophysics Data System (ADS)
Qiu, Guoping; Duan, Jiang
2005-07-01
In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.
Image acquisition system using on sensor compressed sampling technique
NASA Astrophysics Data System (ADS)
Gupta, Pravir Singh; Choi, Gwan Seong
2018-01-01
Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.
The fragmented nature of tundra landscape
NASA Astrophysics Data System (ADS)
Virtanen, Tarmo; Ek, Malin
2014-04-01
The vegetation and land cover structure of tundra areas is fragmented when compared to other biomes. Thus, satellite images of high resolution are required for producing land cover classifications, in order to reveal the actual distribution of land cover types across these large and remote areas. We produced and compared different land cover classifications using three satellite images (QuickBird, Aster and Landsat TM5) with different pixel sizes (2.4 m, 15 m and 30 m pixel size, respectively). The study area, in north-eastern European Russia, was visited in July 2007 to obtain ground reference data. The QuickBird image was classified using supervised segmentation techniques, while the Aster and Landsat TM5 images were classified using a pixel-based supervised classification method. The QuickBird classification showed the highest accuracy when tested against field data, while the Aster image was generally more problematic to classify than the Landsat TM5 image. Use of smaller pixel sized images distinguished much greater levels of landscape fragmentation. The overall mean patch sizes in the QuickBird, Aster, and Landsat TM5-classifications were 871 m2, 2141 m2 and 7433 m2, respectively. In the QuickBird classification, the mean patch size of all the tundra and peatland vegetation classes was smaller than one pixel of the Landsat TM5 image. Water bodies and fens in particular occur in the landscape in small or elongated patches, and thus cannot be realistically classified from larger pixel sized images. Land cover patterns vary considerably at such a fine-scale, so that a lot of information is lost if only medium resolution satellite images are used. It is crucial to know the amount and spatial distribution of different vegetation types in arctic landscapes, as carbon dynamics and other climate related physical, geological and biological processes are known to vary greatly between vegetation types.
Xiao, Xun; Geyer, Veikko F.; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F.
2016-01-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582
Super-pixel extraction based on multi-channel pulse coupled neural network
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.
Fu, C.Y.; Petrich, L.I.
1997-03-25
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.
Application of low-noise CID imagers in scientific instrumentation cameras
NASA Astrophysics Data System (ADS)
Carbone, Joseph; Hutton, J.; Arnold, Frank S.; Zarnowski, Jeffrey J.; Vangorden, Steven; Pilon, Michael J.; Wadsworth, Mark V.
1991-07-01
CIDTEC has developed a PC-based instrumentation camera incorporating a preamplifier per row CID imager and a microprocessor/LCA camera controller. The camera takes advantage of CID X-Y addressability to randomly read individual pixels and potentially overlapping pixel subsets in true nondestructive (NDRO) as well as destructive readout modes. Using an oxy- nitride fabricated CID and the NDRO readout technique, pixel full well and noise levels of approximately 1*10(superscript 6) and 40 electrons, respectively, were measured. Data taken from test structures indicates noise levels (which appear to be 1/f limited) can be reduced by a factor of two by eliminating the nitride under the preamplifier gate. Due to software programmability, versatile readout capabilities, wide dynamic range, and extended UV/IR capability, this camera appears to be ideally suited for use in spectroscopy and other scientific applications.
Simulating urban land cover changes at sub-pixel level in a coastal city
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang
2014-10-01
The simulation of urban expansion or land cover changes is a major theme in both geographic information science and landscape ecology. Yet till now, almost all of previous studies were based on grid computations at pixel level. With the prevalence of spectral mixture analysis in urban land cover research, the simulation of urban land cover at sub-pixel level is being put into agenda. This study provided a new approach of land cover simulation at sub-pixel level. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover data through supervised classification. Then the two classified land cover data were utilized to extract the transformation rule between 2002 and 2007 using logistic regression. The transformation possibility of each land cover type in a certain pixel was taken as its percent in the same pixel after normalization. And cellular automata (CA) based grid computation was carried out to acquire simulated land cover on 2007. The simulated 2007 sub-pixel land cover was testified with a validated sub-pixel land cover achieved by spectral mixture analysis in our previous studies on the same date. And finally the sub-pixel land cover of 2017 was simulated for urban planning and management. The results showed that our method is useful in land cover simulation at sub-pixel level. Although the simulation accuracy is not quite satisfactory for all the land cover types, it provides an important idea and a good start in the CA-based urban land cover simulation.
A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image
Li, Li; Hou, Qingzheng; Lu, Jianfeng; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen
2014-01-01
Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606
Face-iris multimodal biometric scheme based on feature level fusion
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei
2015-11-01
Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
Pneumothorax detection in chest radiographs using convolutional neural networks
NASA Astrophysics Data System (ADS)
Blumenfeld, Aviel; Konen, Eli; Greenspan, Hayit
2018-02-01
This study presents a computer assisted diagnosis system for the detection of pneumothorax (PTX) in chest radiographs based on a convolutional neural network (CNN) for pixel classification. Using a pixel classification approach allows utilization of the texture information in the local environment of each pixel while training a CNN model on millions of training patches extracted from a relatively small dataset. The proposed system uses a pre-processing step of lung field segmentation to overcome the large variability in the input images coming from a variety of imaging sources and protocols. Using a CNN classification, suspected pixel candidates are extracted within each lung segment. A postprocessing step follows to remove non-physiological suspected regions and noisy connected components. The overall percentage of suspected PTX area was used as a robust global decision for the presence of PTX in each lung. The system was trained on a set of 117 chest x-ray images with ground truth segmentations of the PTX regions. The system was tested on a set of 86 images and reached diagnosis accuracy of AUC=0.95. Overall preliminary results are promising and indicate the growing ability of CAD based systems to detect findings in medical imaging on a clinical level accuracy.
Desai, Atman; Pendharkar, Arjun V; Swienckowski, Jessica G; Ball, Perry A; Lollis, Scott; Simmons, Nathan E
2015-11-23
Construct failure is an uncommon but well-recognized complication following anterior cervical corpectomy and fusion (ACCF). In order to screen for these complications, many centers routinely image patients at outpatient visits following surgery. There remains, however, little data on the utility of such imaging. The electronic medical record of all patients undergoing anterior cervical corpectomy and fusion at Dartmouth-Hitchcock Medical Center between 2004 and 2009 were reviewed. All patients had routine cervical spine radiographs performed perioperatively. Follow-up visits up to two years postoperatively were analyzed. Sixty-five patients (mean age 52.2) underwent surgery during the time period. Eighteen patients were female. Forty patients had surgery performed for spondylosis, 20 for trauma, three for tumor, and two for infection. Forty-three patients underwent one-level corpectomy, 20 underwent two-level corpectomy, and two underwent three-level corpectomy, using an allograft, autograft, or both. Sixty-two of the fusions were instrumented using a plate and 13 had posterior augmentation. Fifty-seven patients had follow-up with imaging at four to 12 weeks following surgery, 54 with plain radiographs, two with CT scans, and one with an MRI scan. Unexpected findings were noted in six cases. One of those patients, found to have asymptomatic recurrent kyphosis following a two-level corpectomy, had repeat surgery because of those findings. Only one further patient was found to have abnormal imaging up to two years, and this patient required no further intervention. Routine imaging after ACCF can demonstrate asymptomatic occurrences of clinically significant instrument failure. In 43 consecutive single-level ACCF however, routine imaging did not change management, even when an abnormality was discovered. This may suggest a limited role for routine imaging after ACCF in longer constructs involving multiple levels.
ImgLib2--generic image processing in Java.
Pietzsch, Tobias; Preibisch, Stephan; Tomancák, Pavel; Saalfeld, Stephan
2012-11-15
ImgLib2 is an open-source Java library for n-dimensional data representation and manipulation with focus on image processing. It aims at minimizing code duplication by cleanly separating pixel-algebra, data access and data representation in memory. Algorithms can be implemented for classes of pixel types and generic access patterns by which they become independent of the specific dimensionality, pixel type and data representation. ImgLib2 illustrates that an elegant high-level programming interface can be achieved without sacrificing performance. It provides efficient implementations of common data types, storage layouts and algorithms. It is the data model underlying ImageJ2, the KNIME Image Processing toolbox and an increasing number of Fiji-Plugins. ImgLib2 is licensed under BSD. Documentation and source code are available at http://imglib2.net and in a public repository at https://github.com/imagej/imglib. Supplementary data are available at Bioinformatics Online. saalfeld@mpi-cbg.de
Subpixel target detection and enhancement in hyperspectral images
NASA Astrophysics Data System (ADS)
Tiwari, K. C.; Arora, M.; Singh, D.
2011-06-01
Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.
Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, V.; Gopalan, A.
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.
Microlens performance limits in sub-2mum pixel CMOS image sensors.
Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B
2010-03-15
CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.
Cellular image segmentation using n-agent cooperative game theory
NASA Astrophysics Data System (ADS)
Dimock, Ian B.; Wan, Justin W. L.
2016-03-01
Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.
Theory and applications of structured light single pixel imaging
NASA Astrophysics Data System (ADS)
Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.
2018-02-01
Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.
Impact of defective pixels in AMLCDs on the perception of medical images
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Sneyders, Yuri
2006-03-01
With LCD displays, each pixel has its own individual transistor that controls the transmittance of that pixel. Occasionally, these individual transistors will short or alternatively malfunction, resulting in a defective pixel that always shows the same brightness. With ever increasing resolution of displays the number of defect pixels per display increases accordingly. State of the art processes are capable of producing displays with no more than one faulty transistor out of 3 million. A five Mega Pixel medical LCD panel contains 15 million individual sub pixels (3 sub pixels per pixel), each having an individual transistor. This means that a five Mega Pixel display on average will have 5 failing pixels. This paper investigates the visibility of defective pixels and analyzes the possible impact of defective pixels on the perception of medical images. JND simulations were done to study the effect of defective pixels on medical images. Our results indicate that defective LCD pixels can mask subtle features in medical images in an unexpectedly broad area around the defect and therefore may reduce the quality of diagnosis for specific high-demanding areas such as mammography. As a second contribution an innovative solution is proposed. A specialized image processing algorithm can make defective pixels completely invisible and moreover can also recover the information of the defect so that the radiologist perceives the medical image correctly. This correction algorithm has been validated with both JND simulations and psycho visual tests.
Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A
2012-09-01
Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.
Method and System for Temporal Filtering in Video Compression Systems
NASA Technical Reports Server (NTRS)
Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim
2011-01-01
Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.
On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis
NASA Technical Reports Server (NTRS)
Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa
2011-01-01
This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.
Generating High-Temporal and Spatial Resolution TIR Image Data
NASA Astrophysics Data System (ADS)
Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.
2017-09-01
Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.
MRO's High Resolution Imaging Science Experiment (HiRISE): Polar Science Expectations
NASA Technical Reports Server (NTRS)
McEwen, A.; Herkenhoff, K.; Hansen, C.; Bridges, N.; Delamere, W. A.; Eliason, E.; Grant, J.; Gulick, V.; Keszthelyi, L.; Kirk, R.
2003-01-01
The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.
NASA Astrophysics Data System (ADS)
Simon, Patrick; Schneider, Peter
2017-08-01
In weak gravitational lensing, weighted quadrupole moments of the brightness profile in galaxy images are a common way to estimate gravitational shear. We have employed general adaptive moments (GLAM ) to study causes of shear bias on a fundamental level and for a practical definition of an image ellipticity. The GLAM ellipticity has useful properties for any chosen weight profile: the weighted ellipticity is identical to that of isophotes of elliptical images, and in absence of noise and pixellation it is always an unbiased estimator of reduced shear. We show that moment-based techniques, adaptive or unweighted, are similar to a model-based approach in the sense that they can be seen as imperfect fit of an elliptical profile to the image. Due to residuals in the fit, moment-based estimates of ellipticities are prone to underfitting bias when inferred from observed images. The estimation is fundamentally limited mainly by pixellation which destroys information on the original, pre-seeing image. We give an optimised estimator for the pre-seeing GLAM ellipticity and quantify its bias for noise-free images. To deal with images where pixel noise is prominent, we consider a Bayesian approach to infer GLAM ellipticity where, similar to the noise-free case, the ellipticity posterior can be inconsistent with the true ellipticity if we do not properly account for our ignorance about fit residuals. This underfitting bias, quantified in the paper, does not vary with the overall noise level but changes with the pre-seeing brightness profile and the correlation or heterogeneity of pixel noise over the image. Furthermore, when inferring a constant ellipticity or, more relevantly, constant shear from a source sample with a distribution of intrinsic properties (sizes, centroid positions, intrinsic shapes), an additional, now noise-dependent bias arises towards low signal-to-noise if incorrect prior densities for the intrinsic properties are used. We discuss the origin of this prior bias. With regard to a fully-Bayesian lensing analysis, we point out that passing tests with source samples subject to constant shear may not be sufficient for an analysis of sources with varying shear.
Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System
Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae
2016-01-01
A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128
Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.
Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae
2016-03-02
A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.
Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Sadda, Srinivas R
2015-01-01
Geographic atrophy (GA) is a manifestation of the advanced or late stage of age-related macular degeneration (AMD). AMD is the leading cause of blindness in people over the age of 65 in the western world. The purpose of this study is to develop a fully automated supervised pixel classification approach for segmenting GA, including uni- and multifocal patches in fundus autofluorescene (FAF) images. The image features include region-wise intensity measures, gray-level co-occurrence matrix measures, and Gaussian filter banks. A [Formula: see text]-nearest-neighbor pixel classifier is applied to obtain a GA probability map, representing the likelihood that the image pixel belongs to GA. Sixteen randomly chosen FAF images were obtained from 16 subjects with GA. The algorithm-defined GA regions are compared with manual delineation performed by a certified image reading center grader. Eight-fold cross-validation is applied to evaluate the algorithm performance. The mean overlap ratio (OR), area correlation (Pearson's [Formula: see text]), accuracy (ACC), true positive rate (TPR), specificity (SPC), positive predictive value (PPV), and false discovery rate (FDR) between the algorithm- and manually defined GA regions are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively.
Computational imaging with a single-pixel detector and a consumer video projector
NASA Astrophysics Data System (ADS)
Sych, D.; Aksenov, M.
2018-02-01
Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.
Obstacle Detection Algorithms for Rotorcraft Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.; Huang, Ying; Narasimhamurthy, Anand; Pande, Nitin; Ahumada, Albert (Technical Monitor)
2001-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter.
Fluorescence imaging to quantify crop residue cover
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.
1994-01-01
Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.
Threshold selection for classification of MR brain images by clustering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldovanu, Simona; Dumitru Moţoc High School, 15 Milcov St., 800509, Galaţi; Obreja, Cristian
Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzedmore » images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.« less
Sub-pixel image classification for forest types in East Texas
NASA Astrophysics Data System (ADS)
Westbrook, Joey
Sub-pixel classification is the extraction of information about the proportion of individual materials of interest within a pixel. Landcover classification at the sub-pixel scale provides more discrimination than traditional per-pixel multispectral classifiers for pixels where the material of interest is mixed with other materials. It allows for the un-mixing of pixels to show the proportion of each material of interest. The materials of interest for this study are pine, hardwood, mixed forest and non-forest. The goal of this project was to perform a sub-pixel classification, which allows a pixel to have multiple labels, and compare the result to a traditional supervised classification, which allows a pixel to have only one label. The satellite image used was a Landsat 5 Thematic Mapper (TM) scene of the Stephen F. Austin Experimental Forest in Nacogdoches County, Texas and the four cover type classes are pine, hardwood, mixed forest and non-forest. Once classified, a multi-layer raster datasets was created that comprised four raster layers where each layer showed the percentage of that cover type within the pixel area. Percentage cover type maps were then produced and the accuracy of each was assessed using a fuzzy error matrix for the sub-pixel classifications, and the results were compared to the supervised classification in which a traditional error matrix was used. The overall accuracy of the sub-pixel classification using the aerial photo for both training and reference data had the highest (65% overall) out of the three sub-pixel classifications. This was understandable because the analyst can visually observe the cover types actually on the ground for training data and reference data, whereas using the FIA (Forest Inventory and Analysis) plot data, the analyst must assume that an entire pixel contains the exact percentage of a cover type found in a plot. An increase in accuracy was found after reclassifying each sub-pixel classification from nine classes with 10 percent interval each to five classes with 20 percent interval each. When compared to the supervised classification which has a satisfactory overall accuracy of 90%, none of the sub-pixel classification achieved the same level. However, since traditional per-pixel classifiers assign only one label to pixels throughout the landscape while sub-pixel classifications assign multiple labels to each pixel, the traditional 85% accuracy of acceptance for pixel-based classifications should not apply to sub-pixel classifications. More research is needed in order to define the level of accuracy that is deemed acceptable for sub-pixel classifications.
A time-resolved image sensor for tubeless streak cameras
NASA Astrophysics Data System (ADS)
Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji
2014-03-01
This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .
Alignment by Maximization of Mutual Information
1995-06-01
Davi Geiger, David Chapman, Jose Robles, Tao Alter, Misha Bolotski, Jonathan Connel, Karen Sarachik, Maja Mataric , Ian Horswill, Colin Angle...the same pose. These images are very different and are in fact anti-correlated: bright pixels in the left image correspond to dark pixels in the right...image; dark pixels in the left image correspond to bright pixels in the right image. No variant of correlation could match these images together
Technique for ship/wake detection
Roskovensky, John K [Albuquerque, NM
2012-05-01
An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.
Integrated sensor with frame memory and programmable resolution for light adaptive imaging
NASA Technical Reports Server (NTRS)
Zhou, Zhimin (Inventor); Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)
2004-01-01
An image sensor operable to vary the output spatial resolution according to a received light level while maintaining a desired signal-to-noise ratio. Signals from neighboring pixels in a pixel patch with an adjustable size are added to increase both the image brightness and signal-to-noise ratio. One embodiment comprises a sensor array for receiving input signals, a frame memory array for temporarily storing a full frame, and an array of self-calibration column integrators for uniform column-parallel signal summation. The column integrators are capable of substantially canceling fixed pattern noise.
El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping
2009-01-01
Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of ∼560 e (rms) for PSI-3. PMID:19673229
El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping
2009-07-01
Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of approximately 560 e (rms) for PSI-3.
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
Steganography on quantum pixel images using Shannon entropy
NASA Astrophysics Data System (ADS)
Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.
2016-07-01
This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.
Thermal wake/vessel detection technique
Roskovensky, John K [Albuquerque, NM; Nandy, Prabal [Albuquerque, NM; Post, Brian N [Albuquerque, NM
2012-01-10
A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.
NASA Astrophysics Data System (ADS)
Liu, Haijian; Wu, Changshan
2018-06-01
Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.
Case-based fracture image retrieval.
Zhou, Xin; Stern, Richard; Müller, Henning
2012-05-01
Case-based fracture image retrieval can assist surgeons in decisions regarding new cases by supplying visually similar past cases. This tool may guide fracture fixation and management through comparison of long-term outcomes in similar cases. A fracture image database collected over 10 years at the orthopedic service of the University Hospitals of Geneva was used. This database contains 2,690 fracture cases associated with 43 classes (based on the AO/OTA classification). A case-based retrieval engine was developed and evaluated using retrieval precision as a performance metric. Only cases in the same class as the query case are considered as relevant. The scale-invariant feature transform (SIFT) is used for image analysis. Performance evaluation was computed in terms of mean average precision (MAP) and early precision (P10, P30). Retrieval results produced with the GNU image finding tool (GIFT) were used as a baseline. Two sampling strategies were evaluated. One used a dense 40 × 40 pixel grid sampling, and the second one used the standard SIFT features. Based on dense pixel grid sampling, three unsupervised feature selection strategies were introduced to further improve retrieval performance. With dense pixel grid sampling, the image is divided into 1,600 (40 × 40) square blocks. The goal is to emphasize the salient regions (blocks) and ignore irrelevant regions. Regions are considered as important when a high variance of the visual features is found. The first strategy is to calculate the variance of all descriptors on the global database. The second strategy is to calculate the variance of all descriptors for each case. A third strategy is to perform a thumbnail image clustering in a first step and then to calculate the variance for each cluster. Finally, a fusion between a SIFT-based system and GIFT is performed. A first comparison on the selection of sampling strategies using SIFT features shows that dense sampling using a pixel grid (MAP = 0.18) outperformed the SIFT detector-based sampling approach (MAP = 0.10). In a second step, three unsupervised feature selection strategies were evaluated. A grid parameter search is applied to optimize parameters for feature selection and clustering. Results show that using half of the regions (700 or 800) obtains the best performance for all three strategies. Increasing the number of clusters in clustering can also improve the retrieval performance. The SIFT descriptor variance in each case gave the best indication of saliency for the regions (MAP = 0.23), better than the other two strategies (MAP = 0.20 and 0.21). Combining GIFT (MAP = 0.23) and the best SIFT strategy (MAP = 0.23) produced significantly better results (MAP = 0.27) than each system alone. A case-based fracture retrieval engine was developed and is available for online demonstration. SIFT is used to extract local features, and three feature selection strategies were introduced and evaluated. A baseline using the GIFT system was used to evaluate the salient point-based approaches. Without supervised learning, SIFT-based systems with optimized parameters slightly outperformed the GIFT system. A fusion of the two approaches shows that the information contained in the two approaches is complementary. Supervised learning on the feature space is foreseen as the next step of this study.
High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces
NASA Astrophysics Data System (ADS)
Jiang, Hongzhi; Zhao, Huijie; Li, Xudong
2012-10-01
This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.
Fast Fiber-Coupled Imaging Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockington, Samuel; Case, Andrew; Witherspoon, Franklin Douglas
HyperV Technologies Corp. has successfully designed, built and experimentally demonstrated a full scale 1024 pixel 100 MegaFrames/s fiber coupled camera with 12 or 14 bits, and record lengths of 32K frames, exceeding our original performance objectives. This high-pixel-count, fiber optically-coupled, imaging diagnostic can be used for investigating fast, bright plasma events. In Phase 1 of this effort, a 100 pixel fiber-coupled fast streak camera for imaging plasma jet profiles was constructed and successfully demonstrated. The resulting response from outside plasma physics researchers emphasized development of increased pixel performance as a higher priority over increasing pixel count. In this Phase 2more » effort, HyperV therefore focused on increasing the sample rate and bit-depth of the photodiode pixel designed in Phase 1, while still maintaining a long record length and holding the cost per channel to levels which allowed up to 1024 pixels to be constructed. Cost per channel was 53.31 dollars, very close to our original target of $50 per channel. The system consists of an imaging "camera head" coupled to a photodiode bank with an array of optical fibers. The output of these fast photodiodes is then digitized at 100 Megaframes per second and stored in record lengths of 32,768 samples with bit depths of 12 to 14 bits per pixel. Longer record lengths are possible with additional memory. A prototype imaging system with up to 1024 pixels was designed and constructed and used to successfully take movies of very fast moving plasma jets as a demonstration of the camera performance capabilities. Some faulty electrical components on the 64 circuit boards resulted in only 1008 functional channels out of 1024 on this first generation prototype system. We experimentally observed backlit high speed fan blades in initial camera testing and then followed that with full movies and streak images of free flowing high speed plasma jets (at 30-50 km/s). Jet structure and jet collisions onto metal pillars in the path of the plasma jets were recorded in a single shot. This new fast imaging system is an attractive alternative to conventional fast framing cameras for applications and experiments where imaging events using existing techniques are inefficient or impossible. The development of HyperV's new diagnostic was split into two tracks: a next generation camera track, in which HyperV built, tested, and demonstrated a prototype 1024 channel camera at its own facility, and a second plasma community beta test track, where selected plasma physics programs received small systems of a few test pixels to evaluate the expected performance of a full scale camera on their experiments. These evaluations were performed as part of an unfunded collaboration with researchers at Los Alamos National Laboratory and the University of California at Davis. Results from the prototype 1024-pixel camera are discussed, as well as results from the collaborations with test pixel system deployment sites.« less
Single-Scale Fusion: An Effective Approach to Merging Images.
Ancuti, Codruta O; Ancuti, Cosmin; De Vleeschouwer, Christophe; Bovik, Alan C
2017-01-01
Due to its robustness and effectiveness, multi-scale fusion (MSF) based on the Laplacian pyramid decomposition has emerged as a popular technique that has shown utility in many applications. Guided by several intuitive measures (weight maps) the MSF process is versatile and straightforward to be implemented. However, the number of pyramid levels increases with the image size, which implies sophisticated data management and memory accesses, as well as additional computations. Here, we introduce a simplified formulation that reduces MSF to only a single level process. Starting from the MSF decomposition, we explain both mathematically and intuitively (visually) a way to simplify the classical MSF approach with minimal loss of information. The resulting single-scale fusion (SSF) solution is a close approximation of the MSF process that eliminates important redundant computations. It also provides insights regarding why MSF is so effective. While our simplified expression is derived in the context of high dynamic range imaging, we show its generality on several well-known fusion-based applications, such as image compositing, extended depth of field, medical imaging, and blending thermal (infrared) images with visible light. Besides visual validation, quantitative evaluations demonstrate that our SSF strategy is able to yield results that are highly competitive with traditional MSF approaches.
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.
Terahertz imaging with compressive sensing
NASA Astrophysics Data System (ADS)
Chan, Wai Lam
Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.
Combined use of iterative reconstruction and monochromatic imaging in spinal fusion CT images.
Wang, Fengdan; Zhang, Yan; Xue, Huadan; Han, Wei; Yang, Xianda; Jin, Zhengyu; Zwar, Richard
2017-01-01
Spinal fusion surgery is an important procedure for treating spinal diseases and computed tomography (CT) is a critical tool for postoperative evaluation. However, CT image quality is considerably impaired by metal artifacts and image noise. To explore whether metal artifacts and image noise can be reduced by combining two technologies, adaptive statistical iterative reconstruction (ASIR) and monochromatic imaging generated by gemstone spectral imaging (GSI) dual-energy CT. A total of 51 patients with 318 spinal pedicle screws were prospectively scanned by dual-energy CT using fast kV-switching GSI between 80 and 140 kVp. Monochromatic GSI images at 110 keV were reconstructed either without or with various levels of ASIR (30%, 50%, 70%, and 100%). The quality of five sets of images was objectively and subjectively assessed. With objective image quality assessment, metal artifacts decreased when increasing levels of ASIR were applied (P < 0.001). Moreover, adding ASIR to GSI also decreased image noise (P < 0.001) and improved the signal-to-noise ratio (P < 0.001). The subjective image quality analysis showed good inter-reader concordance, with intra-class correlation coefficients between 0.89 and 0.99. The visualization of peri-implant soft tissue was improved at higher ASIR levels (P < 0.001). Combined use of ASIR and GSI decreased image noise and improved image quality in post-spinal fusion CT scans. Optimal results were achieved with ASIR levels ≥70%. © The Foundation Acta Radiologica 2016.
NASA Astrophysics Data System (ADS)
Hussnain, Zille; Oude Elberink, Sander; Vosselman, George
2016-06-01
In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.
Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F
2016-08-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-05
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-01
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749
Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P
2004-11-01
Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2018-02-13
In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.
Adaptive structured dictionary learning for image fusion based on group-sparse-representation
NASA Astrophysics Data System (ADS)
Yang, Jiajie; Sun, Bin; Luo, Chengwei; Wu, Yuzhong; Xu, Limei
2018-04-01
Dictionary learning is the key process of sparse representation which is one of the most widely used image representation theories in image fusion. The existing dictionary learning method does not use the group structure information and the sparse coefficients well. In this paper, we propose a new adaptive structured dictionary learning algorithm and a l1-norm maximum fusion rule that innovatively utilizes grouped sparse coefficients to merge the images. In the dictionary learning algorithm, we do not need prior knowledge about any group structure of the dictionary. By using the characteristics of the dictionary in expressing the signal, our algorithm can automatically find the desired potential structure information that hidden in the dictionary. The fusion rule takes the physical meaning of the group structure dictionary, and makes activity-level judgement on the structure information when the images are being merged. Therefore, the fused image can retain more significant information. Comparisons have been made with several state-of-the-art dictionary learning methods and fusion rules. The experimental results demonstrate that, the dictionary learning algorithm and the fusion rule both outperform others in terms of several objective evaluation metrics.
Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.
2011-01-01
We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687
A digital pixel cell for address event representation image convolution processing
NASA Astrophysics Data System (ADS)
Camunas-Mesa, Luis; Acosta-Jimenez, Antonio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe
2005-06-01
Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number of neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate events according to their information levels. Neurons with more information (activity, derivative of activities, contrast, motion, edges,...) generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. AER technology has been used and reported for the implementation of various type of image sensors or retinae: luminance with local agc, contrast retinae, motion retinae,... Also, there has been a proposal for realizing programmable kernel image convolution chips. Such convolution chips would contain an array of pixels that perform weighted addition of events. Once a pixel has added sufficient event contributions to reach a fixed threshold, the pixel fires an event, which is then routed out of the chip for further processing. Such convolution chips have been proposed to be implemented using pulsed current mode mixed analog and digital circuit techniques. In this paper we present a fully digital pixel implementation to perform the weighted additions and fire the events. This way, for a given technology, there is a fully digital implementation reference against which compare the mixed signal implementations. We have designed, implemented and tested a fully digital AER convolution pixel. This pixel will be used to implement a full AER convolution chip for programmable kernel image convolution processing.
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spacially filtered to enforce local consensus among neighboring pixels and the spacially filtered image is output.
Multisource image fusion method using support value transform.
Zheng, Sheng; Shi, Wen-Zhong; Liu, Jian; Zhu, Guang-Xi; Tian, Jin-Wen
2007-07-01
With the development of numerous imaging sensors, many images can be simultaneously pictured by various sensors. However, there are many scenarios where no one sensor can give the complete picture. Image fusion is an important approach to solve this problem and produces a single image which preserves all relevant information from a set of different sensors. In this paper, we proposed a new image fusion method using the support value transform, which uses the support value to represent the salient features of image. This is based on the fact that, in support vector machines (SVMs), the data with larger support values have a physical meaning in the sense that they reveal relative more importance of the data points for contributing to the SVM model. The mapped least squares SVM (mapped LS-SVM) is used to efficiently compute the support values of image. The support value analysis is developed by using a series of multiscale support value filters, which are obtained by filling zeros in the basic support value filter deduced from the mapped LS-SVM to match the resolution of the desired level. Compared with the widely used image fusion methods, such as the Laplacian pyramid, discrete wavelet transform methods, the proposed method is an undecimated transform-based approach. The fusion experiments are undertaken on multisource images. The results demonstrate that the proposed approach is effective and is superior to the conventional image fusion methods in terms of the pertained quantitative fusion evaluation indexes, such as quality of visual information (Q(AB/F)), the mutual information, etc.
Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2008-01-01
Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.
Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy
NASA Astrophysics Data System (ADS)
Mehrubeoglu, Mehrube; McLauchlan, Lifford
2010-08-01
In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.
Bit-level plane image encryption based on coupled map lattice with time-varying delay
NASA Astrophysics Data System (ADS)
Lv, Xiupin; Liao, Xiaofeng; Yang, Bo
2018-04-01
Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.
NASA Astrophysics Data System (ADS)
Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet-Brunet, Valérie
2017-04-01
Forest stands are the basic units for forest inventory and mapping. Stands are defined as large forested areas (e.g., ⩾ 2 ha) of homogeneous tree species composition and age. Their accurate delineation is usually performed by human operators through visual analysis of very high resolution (VHR) infra-red images. This task is tedious, highly time consuming, and should be automated for scalability and efficient updating purposes. In this paper, a method based on the fusion of airborne lidar data and VHR multispectral images is proposed for the automatic delineation of forest stands containing one dominant species (purity superior to 75%). This is the key preliminary task for forest land-cover database update. The multispectral images give information about the tree species whereas 3D lidar point clouds provide geometric information on the trees and allow their individual extraction. Multi-modal features are computed, both at pixel and object levels: the objects are individual trees extracted from lidar data. A supervised classification is then performed at the object level in order to coarsely discriminate the existing tree species in each area of interest. The classification results are further processed to obtain homogeneous areas with smooth borders by employing an energy minimum framework, where additional constraints are joined to form the energy function. The experimental results show that the proposed method provides very satisfactory results both in terms of stand labeling and delineation (overall accuracy ranges between 84 % and 99 %).
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1990-01-01
Various papers on human and machine strategies in sensor fusion are presented. The general topics addressed include: active vision, measurement and analysis of visual motion, decision models for sensor fusion, implementation of sensor fusion algorithms, applying sensor fusion to image analysis, perceptual modules and their fusion, perceptual organization and object recognition, planning and the integration of high-level knowledge with perception, using prior knowledge and context in sensor fusion.
Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L
2016-11-01
A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.
Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)
2002-01-01
A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang- Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.
Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)
2002-01-01
A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang-Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.
Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carlisle; Woo, Bryana Lynn
This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infraredmore » imagers.« less
High-sensitivity, high-speed continuous imaging system
Watson, Scott A; Bender, III, Howard A
2014-11-18
A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.
Cerebral hypoxia during cardiopulmonary bypass: a magnetic resonance imaging study.
Mutch, W A; Ryner, L N; Kozlowski, P; Scarth, G; Warrian, R K; Lefevre, G R; Wong, T G; Thiessen, D B; Girling, L G; Doiron, L; McCudden, C; Saunders, J K
1997-09-01
Neurocognitive deficits after open heart operations have been correlated to jugular venous oxygen desaturation on rewarming from hypothermic cardiopulmonary bypass (CPB). Using a porcine model, we looked for evidence of cerebral hypoxia by magnetic resonance imaging during CPB. Brain oxygenation was assessed by T2*-weighted imaging, based on the blood oxygenation level-dependent effect (decreased T2*-weighted signal intensity with increased tissue concentrations of deoxyhemoglobin). Pigs were placed on normothermic CPB, then cooled to 28 degrees C for 2 hours of hypothermic CPB, then rewarmed to baseline temperature. T2*-weighted, imaging was undertaken before CPB, during normothermic CPB, at 30-minute intervals during hypothermic CPB, after rewarming, and then 15 minutes after death. Imaging was with a Bruker 7.0 Tesla, 40-cm bore magnetic resonance scanner with actively shielded gradient coils. Regions of interest from the magnetic resonance images were analyzed to identify parenchymal hypoxia and correlated with jugular venous oxygen saturation. Post-hoc fuzzy clustering analysis was used to examine spatially distributed regions of interest whose pixels followed similar time courses. Attention was paid to pixels showing decreased T2* signal intensity over time. T2* signal intensity decreased with rewarming and in five of seven experiments correlated with the decrease in jugular venous oxygen saturation. T2* imaging with fuzzy clustering analysis revealed two diffusely distributed pixel groups during CPB. One large group of pixels (50% +/- 13% of total pixel count) showed increased T2* signal intensity (well-oxygenated tissue) during hypothermia, with decreased intensity on rewarming. Changes in a second group of pixels (34% +/- 8% of total pixel count) showed a progressive decrease in T2* signal intensity, independent of temperature, suggestive of increased brain hypoxia during CPB. Decreased T2* signal intensity in a diffuse spatial distribution indicates that a large proportion of cerebral parenchyma is hypoxic (evidenced by an increased proportion of tissue deoxyhemoglobin) during CPB in this porcine model. Neuronal damage secondary to parenchymal hypoxia may explain the postoperative neuropsychological dysfunction after cardiac operations.
NASA Technical Reports Server (NTRS)
Bryant, Nevin A.; Logan, Thomas L.; Zobrist, Albert L.
2006-01-01
Improvements to the automated co-registration and change detection software package, AFIDS (Automatic Fusion of Image Data System) has recently completed development for and validation by NGA/GIAT. The improvements involve the integration of the AFIDS ultra-fine gridding technique for horizontal displacement compensation with the recently evolved use of Rational Polynomial Functions/ Coefficients (RPFs/RPCs) for image raster pixel position to Latitude/Longitude indexing. Mapping and orthorectification (correction for elevation effects) of satellite imagery defies exact projective solutions because the data are not obtained from a single point (like a camera), but as a continuous process from the orbital path. Standard image processing techniques can apply approximate solutions, but advances in the state-of-the-art had to be made for precision change-detection and time-series applications where relief offsets become a controlling factor. The earlier AFIDS procedure required the availability of a camera model and knowledge of the satellite platform ephemeredes. The recent design advances connect the spacecraft sensor Rational Polynomial Function, a deductively developed model, with the AFIDS ultrafine grid, an inductively developed representation of the relationship raster pixel position to latitude /longitude. As a result, RPCs can be updated by AFIDS, a situation often necessary due to the accuracy limits of spacecraft navigation systems. An example of precision change detection will be presented from Quickbird.
Virtual reality 3D headset based on DMD light modulators
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
2014-06-01
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.
Spatial light modulator array with heat minimization and image enhancement features
Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY
2007-01-30
An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.
Supervised pixel classification using a feature space derived from an artificial visual system
NASA Technical Reports Server (NTRS)
Baxter, Lisa C.; Coggins, James M.
1991-01-01
Image segmentation involves labelling pixels according to their membership in image regions. This requires the understanding of what a region is. Using supervised pixel classification, the paper investigates how groups of pixels labelled manually according to perceived image semantics map onto the feature space created by an Artificial Visual System. Multiscale structure of regions are investigated and it is shown that pixels form clusters based on their geometric roles in the image intensity function, not by image semantics. A tentative abstract definition of a 'region' is proposed based on this behavior.
Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern
Doerry, Armin W.
2013-04-30
Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.
A novel image encryption algorithm using chaos and reversible cellular automata
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Luan, Dapeng
2013-11-01
In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.
Multispectral imaging approach for simplified non-invasive in-vivo evaluation of gingival erythema
NASA Astrophysics Data System (ADS)
Eckhard, Timo; Valero, Eva M.; Nieves, Juan L.; Gallegos-Rueda, José M.; Mesa, Francisco
2012-03-01
Erythema is a common visual sign of gingivitis. In this work, a new and simple low-cost image capture and analysis method for erythema assessment is proposed. The method is based on digital still images of gingivae and applied on a pixel-by-pixel basis. Multispectral images are acquired with a conventional digital camera and multiplexed LED illumination panels at 460nm and 630nm peak wavelength. An automatic work-flow segments teeth from gingiva regions in the images and creates a map of local blood oxygenation levels, which relates to the presence of erythema. The map is computed from the ratio of the two spectral images. An advantage of the proposed approach is that the whole process is easy to manage by dental health care professionals in clinical environment.
Fast Pixel Buffer For Processing With Lookup Tables
NASA Technical Reports Server (NTRS)
Fisher, Timothy E.
1992-01-01
Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.
NASA Astrophysics Data System (ADS)
Seo, Sang-Ho; Kim, Kyoung-Do; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung
2007-02-01
In this paper, a new CMOS image sensor is presented, which uses a PMOSFET-type photodetector with a transfer gate that has a high and variable sensitivity. The proposed CMOS image sensor has been fabricated using a 0.35 μm 2-poly 4- metal standard CMOS technology and is composed of a 256 × 256 array of 7.05 × 7.10 μm pixels. The unit pixel has a configuration of a pseudo 3-transistor active pixel sensor (APS) with the PMOSFET-type photodetector with a transfer gate, which has a function of conventional 4-transistor APS. The generated photocurrent is controlled by the transfer gate of the PMOSFET-type photodetector. The maximum responsivity of the photodetector is larger than 1.0 × 10 3 A/W without any optical lens. Fabricated 256 × 256 CMOS image sensor exhibits a good response to low-level illumination as low as 5 lux.
NASA Astrophysics Data System (ADS)
Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua
2018-05-01
Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
Apostolou, N; Papazoglou, Th; Koutsouris, D
2006-01-01
Image fusion is a process of combining information from multiple sensors. It is a useful tool implemented in the treatment planning programme of Gamma Knife Radiosurgery. In this paper we evaluate advanced image fusion algorithms for Matlab platform and head images. We develop nine level grayscale image fusion methods: average, principal component analysis (PCA), discrete wavelet transform (DWT) and Laplacian, filter - subtract - decimate (FSD), contrast, gradient, morphological pyramid and a shift invariant discrete wavelet transform (SIDWT) method in Matlab platform. We test these methods qualitatively and quantitatively. The quantitative criteria we use are the Root Mean Square Error (RMSE), the Mutual Information (MI), the Standard Deviation (STD), the Entropy (H), the Difference Entropy (DH) and the Cross Entropy (CEN). The qualitative are: natural appearance, brilliance contrast, presence of complementary features and enhancement of common features. Finally we make clinically useful suggestions.
Imaging through scattering media by Fourier filtering and single-pixel detection
NASA Astrophysics Data System (ADS)
Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.
2018-02-01
We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.
Mapping spatial patterns with morphological image processing
Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham
2006-01-01
We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...
Estimating rice yield from MODIS-Landsat fusion data in Taiwan
NASA Astrophysics Data System (ADS)
Chen, C. R.; Chen, C. F.; Nguyen, S. T.
2017-12-01
Rice production monitoring with remote sensing is an important activity in Taiwan due to official initiatives. Yield estimation is a challenge in Taiwan because rice fields are small and fragmental. High spatiotemporal satellite data providing phenological information of rice crops is thus required for this monitoring purpose. This research aims to develop data fusion approaches to integrate daily Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat data for rice yield estimation in Taiwan. In this study, the low-resolution MODIS LST and emissivity data are used as reference data sources to obtain the high-resolution LST from Landsat data using the mixed-pixel analysis technique, and the time-series EVI data were derived the fusion of MODIS and Landsat spectral band data using STARFM method. The LST and EVI simulated results showed the close agreement between the LST and EVI obtained by the proposed methods with the reference data. The rice-yield model was established using EVI and LST data based on information of rice crop phenology collected from 371 ground survey sites across the country in 2014. The results achieved from the fusion datasets compared with the reference data indicated the close relationship between the two datasets with the correlation coefficient (R2) of 0.75 and root mean square error (RMSE) of 338.7 kgs, which were more accurate than those using the coarse-resolution MODIS LST data (R2 = 0.71 and RMSE = 623.82 kgs). For the comparison of total production, 64 towns located in the west part of Taiwan were used. The results also confirmed that the model using fusion datasets produced more accurate results (R2 = 0.95 and RMSE = 1,243 tons) than that using the course-resolution MODIS data (R2 = 0.91 and RMSE = 1,749 tons). This study demonstrates the application of MODIS-Landsat fusion data for rice yield estimation at the township level in Taiwan. The results obtained from the methods used in this study could be useful to policymakers; and thus, the methods can be transferable to other regions in the world for rice yield estimation.
Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro
2016-01-01
Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image analysis.
NASA Astrophysics Data System (ADS)
Câmara, F.; Oliveira, J.; Hormigo, T.; Araújo, J.; Ribeiro, R.; Falcão, A.; Gomes, M.; Dubois-Matra, O.; Vijendran, S.
2015-06-01
This paper discusses the design and evaluation of data fusion strategies to perform tiered fusion of several heterogeneous sensors and a priori data. The aim is to increase robustness and performance of hazard detection and avoidance systems, while enabling safe planetary and small body landings anytime, anywhere. The focus is on Mars and asteroid landing mission scenarios and three distinct data fusion algorithms are introduced and compared. The first algorithm consists of a hybrid camera-LIDAR hazard detection and avoidance system, the H2DAS, in which data fusion is performed at both sensor-level data (reconstruction of the point cloud obtained with a scanning LIDAR using the navigation motion states and correcting the image for motion compensation using IMU data), feature-level data (concatenation of multiple digital elevation maps, obtained from consecutive LIDAR images, to achieve higher accuracy and resolution maps while enabling relative positioning) as well as decision-level data (fusing hazard maps from multiple sensors onto a single image space, with a single grid orientation and spacing). The second method presented is a hybrid reasoning fusion, the HRF, in which innovative algorithms replace the decision-level functions of the previous method, by combining three different reasoning engines—a fuzzy reasoning engine, a probabilistic reasoning engine and an evidential reasoning engine—to produce safety maps. Finally, the third method presented is called Intelligent Planetary Site Selection, the IPSIS, an innovative multi-criteria, dynamic decision-level data fusion algorithm that takes into account historical information for the selection of landing sites and a piloting function with a non-exhaustive landing site search capability, i.e., capable of finding local optima by searching a reduced set of global maps. All the discussed data fusion strategies and algorithms have been integrated, verified and validated in a closed-loop simulation environment. Monte Carlo simulation campaigns were performed for the algorithms performance assessment and benchmarking. The simulations results comprise the landing phases of Mars and Phobos landing mission scenarios.
NASA Astrophysics Data System (ADS)
Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.
2018-01-01
An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.
Statistical image quantification toward optimal scan fusion and change quantification
NASA Astrophysics Data System (ADS)
Potesil, Vaclav; Zhou, Xiang Sean
2007-03-01
Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.
Wu, Guorong; Kim, Minjeong; Sanroma, Gerard; Wang, Qian; Munsell, Brent C.; Shen, Dinggang
2014-01-01
Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images, after registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape appearance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that they often apply a fixed size image patch throughout the entire label fusion procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-art by adding three new label fusion contributions: First, each image patch now characterized by a multi-scale feature representation that encodes both local and semi-local image information. Doing so will increase the accuracy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity measurement being wrongly guided by the presence of multiple anatomical structures in the same image patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according to the existing labels. Since image information has now been semantically divided into different patterns, these new label-specific atlas patches make the label fusion process more specific and flexible. Lastly, in order to correct target points that are mislabeled during label fusion, a hierarchically approach is used to improve the label fusion results. In particular, a coarse-to-fine iterative label fusion approach is used that gradually reduces the patch size. To evaluate the accuracy of our label fusion approach, the proposed method was used to segment the hippocampus in the ADNI dataset and 7.0 tesla MR images, sub-cortical regions in LONI LBPA40 dataset, mid-brain regions in SATA dataset from MICCAI 2013 segmentation challenge, and a set of key internal gray matter structures in IXI dataset. In all experiments, the segmentation results of the proposed hierarchical label fusion method with multi-scale feature representations and label-specific atlas patches are more accurate than several well-known state-of-the-art label fusion methods. PMID:25463474
All-passive pixel super-resolution of time-stretch imaging
Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.
2017-01-01
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936
Tradeoff between picture element dimensions and noncoherent averaging in side-looking airborne radar
NASA Technical Reports Server (NTRS)
Moore, R. K.
1979-01-01
An experiment was performed in which three synthetic-aperture images and one real-aperture image were successively degraded in spatial resolution, both retaining the same number of independent samples per pixel and using the spatial degradation to allow averaging of different numbers of independent samples within each pixel. The original and degraded images were provided to three interpreters familiar with both aerial photographs and radar images. The interpreters were asked to grade each image in terms of their ability to interpret various specified features on the image. The numerical interpretability grades were then used as a quantitative measure of the utility of the different kinds of image processing and different resolutions. The experiment demonstrated empirically that the interpretability is related exponentially to the SGL volume which is the product of azimuth, range, and gray-level resolution.
NASA Astrophysics Data System (ADS)
Marson, Avishai; Stern, Adrian
2015-05-01
One of the main limitations of horizontal parallax autostereoscopic displays is the horizontal resolution loss due the need to repartition the pixels of the display panel among the multiple views. Recently we have shown that this problem can be alleviated by applying a color sub-pixel rendering technique1. Interpolated views are generated by down-sampling the panel pixels at sub-pixel level, thus increasing the number of views. The method takes advantage of lower acuity of the human eye to chromatic resolution. Here we supply further support of the technique by analyzing the spectra of the subsampled images.
A Hierarchical Convolutional Neural Network for vesicle fusion event classification.
Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke
2017-09-01
Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
A fast image encryption algorithm based on only blocks in cipher text
NASA Astrophysics Data System (ADS)
Wang, Xing-Yuan; Wang, Qian
2014-03-01
In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simultaneously. The cipher-text image is divided into blocks and each block has k ×k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed according to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.
Mapping Electrical Crosstalk in Pixelated Sensor Arrays
NASA Technical Reports Server (NTRS)
Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)
2017-01-01
The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.
Mapping Electrical Crosstalk in Pixelated Sensor Arrays
NASA Technical Reports Server (NTRS)
Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor); Cole, David (Inventor); Seshadri, Suresh (Inventor)
2013-01-01
The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.
How Many Pixels Does It Take to Make a Good 4"×6" Print? Pixel Count Wars Revisited
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
Digital still cameras emerged following the introduction of the Sony Mavica analog prototype camera in 1981. These early cameras produced poor image quality and did not challenge film cameras for overall quality. By 1995 digital still cameras in expensive SLR formats had 6 mega-pixels and produced high quality images (with significant image processing). In 2005 significant improvement in image quality was apparent and lower prices for digital still cameras (DSCs) started a rapid decline in film usage and film camera sells. By 2010 film usage was mostly limited to professionals and the motion picture industry. The rise of DSCs was marked by a “pixel war” where the driving feature of the cameras was the pixel count where even moderate cost, ˜120, DSCs would have 14 mega-pixels. The improvement of CMOS technology pushed this trend of lower prices and higher pixel counts. Only the single lens reflex cameras had large sensors and large pixels. The drive for smaller pixels hurt the quality aspects of the final image (sharpness, noise, speed, and exposure latitude). Only today are camera manufactures starting to reverse their course and producing DSCs with larger sensors and pixels. This paper will explore why larger pixels and sensors are key to the future of DSCs.
The effect of split pixel HDR image sensor technology on MTF measurements
NASA Astrophysics Data System (ADS)
Deegan, Brian M.
2014-03-01
Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.
Dynamically re-configurable CMOS imagers for an active vision system
NASA Technical Reports Server (NTRS)
Yang, Guang (Inventor); Pain, Bedabrata (Inventor)
2005-01-01
A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.
Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing
NASA Technical Reports Server (NTRS)
Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.
1994-01-01
It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.
Results From the New NIF Gated LEH imager
NASA Astrophysics Data System (ADS)
Chen, Hui; Amendt, P.; Barrios, M.; Bradley, D.; Casey, D.; Hinkel, D.; Berzak Hopkins, L.; Kilkenny, J.; Kritcher, A.; Landen, O.; Jones, O.; Ma, T.; Milovich, J.; Michel, P.; Moody, J.; Ralph, J.; Pak, A.; Palmer, N.; Schneider, M.
2016-10-01
A novel ns-gated Laser Entrance Hole (G-LEH) diagnostic has been successfully implemented at the National Ignition Facility (NIF). This diagnostic has successfully acquired images from various experimental campaigns, providing critical information for inertial confinement fusion experiments. The G-LEH diagnostic which takes time-resolved gated images along a single line-of-sight, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories into the existing Static X-ray Imager diagnostic at NIF. It is capable of capturing two laser-entrance-hole images per shot on its 1024x448 pixel photo-detector array, with integration times as short as 2 ns per frame. The results that will be presented include the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52- 07NA27344.
Precision measurements from very-large scale aerial digital imagery.
Booth, D Terrance; Cox, Samuel E; Berryman, Robert D
2006-01-01
Managers need measurements and resource managers need the length/width of a variety of items including that of animals, logs, streams, plant canopies, man-made objects, riparian habitat, vegetation patches and other things important in resource monitoring and land inspection. These types of measurements can now be easily and accurately obtained from very large scale aerial (VLSA) imagery having spatial resolutions as fine as 1 millimeter per pixel by using the three new software programs described here. VLSA images have small fields of view and are used for intermittent sampling across extensive landscapes. Pixel-coverage among images is influenced by small changes in airplane altitude above ground level (AGL) and orientation relative to the ground, as well as by changes in topography. These factors affect the object-to-camera distance used for image-resolution calculations. 'ImageMeasurement' offers a user-friendly interface for accounting for pixel-coverage variation among images by utilizing a database. 'LaserLOG' records and displays airplane altitude AGL measured from a high frequency laser rangefinder, and displays the vertical velocity. 'Merge' sorts through large amounts of data generated by LaserLOG and matches precise airplane altitudes with camera trigger times for input to the ImageMeasurement database. We discuss application of these tools, including error estimates. We found measurements from aerial images (collection resolution: 5-26 mm/pixel as projected on the ground) using ImageMeasurement, LaserLOG, and Merge, were accurate to centimeters with an error less than 10%. We recommend these software packages as a means for expanding the utility of aerial image data.
NASA Astrophysics Data System (ADS)
Evans, Aaron H.
Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel evapotranspiration. Data fusion techniques only slightly outperformed linear interpolation. Eddy covariance comparison and temporal interpolation produced acceptable bias error for most cases suggesting automated calibration and interpolation could be used to predict monthly or annual ET. Maps demonstrating spatial patterns of evapotranspiration at field scale were successfully produced, but only for limited spatial extents. A framework has been established for producing larger maps by creating a mosaic of smaller individual maps.
Bo, Xiao-Wan; Xu, Hui-Xiong; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun
2016-11-01
To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging is better than both conventional ultrasound and ultrasound-CECT/CEMRI fusion imaging for lesion visualization and improves the operator confidence, thus it should be recommended to be used as a routine in ultrasound-guided percutaneous RFA procedures for liver cancer.
Bo, Xiao-Wan; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun
2016-01-01
Objective: To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. Methods: 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. Results: On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Conclusion: Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging is better than both conventional ultrasound and ultrasound-CECT/CEMRI fusion imaging for lesion visualization and improves the operator confidence, thus it should be recommended to be used as a routine in ultrasound-guided percutaneous RFA procedures for liver cancer. PMID:27626506
In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.
Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L
2009-10-01
To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the evaluation of radiolabeled hypoxia tracers.
NASA Technical Reports Server (NTRS)
Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John
2016-01-01
In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.
Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.
Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K
2014-07-07
Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, x-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications.
Detection of buried objects by fusing dual-band infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-11-01
We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less
Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture
Zheng, Guoan; Wang, Yingmin; Yang, Changhuei
2010-01-01
The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038
Image Segmentation for Connectomics Using Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng
Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesiclesmore » and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.« less
Wu, Yiming; Zhang, Xiujuan; Pan, Huanhuan; Deng, Wei; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng
2013-01-01
Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area patterned growth of cross-aligned single-crystalline organic NW arrays and their in-situ device integration for optical image sensors. The integrated image sensor circuitry contained a 10 × 10 pixel array in an area of 1.3 × 1.3 mm2, showing high spatial resolution, excellent stability and reproducibility. More importantly, 100% of the pixels successfully operated at a high response speed and relatively small pixel-to-pixel variation. The high yield and high spatial resolution of the operational pixels, along with the high integration level of the device, clearly demonstrate the great potential of the one-step organic NW array growth and device construction approach for large-scale optoelectronic device integration. PMID:24287887
Pixel parallel localized driver design for a 128 x 256 pixel array 3D 1Gfps image sensor
NASA Astrophysics Data System (ADS)
Zhang, C.; Dao, V. T. S.; Etoh, T. G.; Charbon, E.
2017-02-01
In this paper, a 3D 1Gfps BSI image sensor is proposed, where 128 × 256 pixels are located in the top-tier chip and a 32 × 32 localized driver array in the bottom-tier chip. Pixels are designed with Multiple Collection Gates (MCG), which collects photons selectively with different collection gates being active at intervals of 1ns to achieve 1Gfps. For the drivers, a global PLL is designed, which consists of a ring oscillator with 6-stage current starved differential inverters, achieving a wide frequency tuning range from 40MHz to 360MHz (20ps rms jitter). The drivers are the replicas of the ring oscillator that operates within a PLL. Together with level shifters and XNOR gates, continuous 3.3V pulses are generated with desired pulse width, which is 1/12 of the PLL clock period. The driver array is activated by a START signal, which propagates through a highly balanced clock tree, to activate all the pixels at the same time with virtually negligible skew.
Level set method for image segmentation based on moment competition
NASA Astrophysics Data System (ADS)
Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai
2015-05-01
We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.
Visual saliency in MPEG-4 AVC video stream
NASA Astrophysics Data System (ADS)
Ammar, M.; Mitrea, M.; Hasnaoui, M.; Le Callet, P.
2015-03-01
Visual saliency maps already proved their efficiency in a large variety of image/video communication application fields, covering from selective compression and channel coding to watermarking. Such saliency maps are generally based on different visual characteristics (like color, intensity, orientation, motion,…) computed from the pixel representation of the visual content. This paper resumes and extends our previous work devoted to the definition of a saliency map solely extracted from the MPEG-4 AVC stream syntax elements. The MPEG-4 AVC saliency map thus defined is a fusion of static and dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion techniques allowing their combination plays a critical role in the final result and makes the object of the proposed study. A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated. The performances of the obtained maps are evaluated on a public database organized at IRCCyN, by computing two objective metrics: the Kullback-Leibler divergence and the area under curve.
Land cover mapping at sub-pixel scales
NASA Astrophysics Data System (ADS)
Makido, Yasuyo Kato
One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Andrew; Browning, Nigel D.
Traditionally, microscopists have worked with the Nyquist-Shannon theory of sampling, which states that to be able to reconstruct the image fully it needs to be sampled at a rate of at least twice the highest spatial frequency in the image. This sampling rate assumes that the image is sampled at regular intervals and that every pixel contains information that is crucial for the image (it even assumes that noise is important). Images in general, and especially low dose S/TEM images, contain significantly less information than can be encoded by a grid of pixels (which is why image compression works). Mathematicallymore » speaking, the image data has a low dimensional or sparse representation. Through the application of compressive sensing methods [1,2,3] this representation can be found using pre-designed measurements that are usually random for implementation simplicity. These measurements and the compressive sensing reconstruction algorithms have the added benefit of reducing noise. This reconstruction approach can be extended into higher dimensions, whereby the random sampling in each 2-D image can be extended into: a sequence of tomographic projections (i.e. tilt images); a sequence of video frames (i.e. incorporating temporal resolution and dynamics); spectral resolution (i.e. energy filtering an image to see the distribution of elements); and ptychography (i.e. sampling a full diffraction image at each location in a 2-D grid across the sample). This approach has been employed experimentally for materials science samples requiring low-dose imaging [2], and can be readily applied to biological samples. Figure 1 shows the resolution possible in a complex biological system, mouse pancreatic islet beta cells [4], when tomogram slices are reconstructed using subsampling. Reducing the number of pixels (1/6 pix and 1/3*1/3) shows minimal degradation compared to the reconstructions using all pixels (all data and 1/3 tilt). Although subsampling 1/6 of the tilts (1/6 of overall dose) degrades the reconstruction to the point that the cellular structures cannot be identified. Using 1/3 of both the pixels and the tilts provides a high quality image at 1/9 the overall dose even for this most basic and rapid demonstration of the CS methods. Figure 2 demonstrates the theoretical tomogram reconstruction quality (vertical axis) as undersampling (horizontal axis) is increased; we examined subsampling pixels and tilt-angles individually and a combined approach in which both pixels and tilts are sub-sampled. Note that subsampling pixels maintains high quality reconstructions (solid lines). Using the inpainting algorithm to obtain tomograms can automatically reduce the dose applied to the system by an order of magnitude. Perhaps the best way to understand the impact is to consider that by using inpainting (and with minimal hardware changes), a sample that can normally withstand a dose of ~10 e/Å2 can potentially be imaged with an “equivalent quality” to a dose level of 103 e/Å2. To put this in perspective, this is approaching the dose level used for the most advanced images, in terms of spatial resolution, for inorganic systems. While there are issues for biological specimens beyond dose (structural complexity being the most important one), this sampling approach allows the methods that are traditionally used for materials science to be applied to biological systems [5]. References: [1] A Stevens, H Yang, L Carin et al. Microscopy 63(1), (2014), pp. 41. [2] L Kovarik, A Stevens, A Liyu et al. Appl. Phys. Lett. 109, 164102 (2016) [3] A Stevens, L Kovarik, P Abellan et al. Adv. Structural and Chemical Imaging 1(10), (2015), pp. 1. [4] MD Guay, W Czaja, MA Aronova et al. Scientific Reports 6, 27614 (2016) [5] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion Initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.« less
NASA Astrophysics Data System (ADS)
Massich, Joan; Lemaître, Guillaume; Martí, Joan; Mériaudeau, Fabrice
2015-04-01
Breast cancer is the second most common cancer and the leading cause of cancer death among women. Medical imaging has become an indispensable tool for its diagnosis and follow up. During the last decade, the medical community has promoted to incorporate Ultra-Sound (US) screening as part of the standard routine. The main reason for using US imaging is its capability to differentiate benign from malignant masses, when compared to other imaging techniques. The increasing usage of US imaging encourages the development of Computer Aided Diagnosis (CAD) systems applied to Breast Ultra-Sound (BUS) images. However accurate delineations of the lesions and structures of the breast are essential for CAD systems in order to extract information needed to perform diagnosis. This article proposes a highly modular and flexible framework for segmenting lesions and tissues present in BUS images. The proposal takes advantage of optimization strategies using super-pixels and high-level descriptors, which are analogous to the visual cues used by radiologists. Qualitative and quantitative results are provided stating a performance within the range of the state-of-the-art.
Wobser, Hella; Wiest, Reiner; Salzberger, Bernd; Wohlgemuth, Walter Alexander; Stroszczynski, Christian; Jung, Ernst-Michael
2014-01-01
To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.
Half-unit weighted bilinear algorithm for image contrast enhancement in capsule endoscopy
NASA Astrophysics Data System (ADS)
Rukundo, Olivier
2018-04-01
This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.
BOREAS RSS-14 Level-1a GOES-8 Visible, IR and Water Vapor Images
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Faysash, David; Cooper, Harry J.; Smith, Eric A.
2000-01-01
The BOREAS RSS-14 team collected and processed several GOES-7 and GOES-8 image data sets that covered the BOREAS study region. The level-1a GOES-8 images were created by BORIS personnel from the level-1 images delivered by FSU personnel. The data cover 14-Jul-1995 to 21-Sep-1995 and 12-Feb-1996 to 03-Oct-1996. The data start out as three bands with 8-bit pixel values and end up as five bands with 10-bit pixel values. No major problems with the data have been identified. The differences between the level-1 and level-1a GOES-8 data are the formatting and packaging of the data. The images missing from the temporal series of level-1 GOES-8 images were zero-filled by BORIS staff to create files consistent in size and format. In addition, BORIS staff packaged all the images of a given type from a given day into a single file, removed the header information from the individual level-1 files, and placed it into a single descriptive ASCII header file. The data are contained in binary image format files. Due to the large size of the images, the level-1a GOES-8 data are not contained on the BOREAS CD-ROM set. An inventory listing file is supplied on the CD-ROM to inform users of what data were collected. The level-1a GOES-8 image data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). See sections 15 and 16 for more information. The data files are available on a CD-ROM (see document number 20010000884).
Method and apparatus of high dynamic range image sensor with individual pixel reset
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)
2001-01-01
A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.
Entangled-photon compressive ghost imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.
2011-12-15
We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.
NASA Astrophysics Data System (ADS)
de Villiers, Jason; Jermy, Robert; Nicolls, Fred
2014-06-01
This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Brown's classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.
IR CMOS: near infrared enhanced digital imaging (Presentation Recording)
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani
2015-08-01
SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km
New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications
NASA Astrophysics Data System (ADS)
Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.
1998-07-01
This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance, readout amplifier design, optimized timing, and noise cancellation techniques, we achieve 1,000e to 2,000e of noise for the page size and large size arrays, respectively. This allows for true 12-bit performance and quantum limited images over a wide range of x-ray exposures. Various approaches to reducing line correlated noise have been implemented and will be discussed. Images documenting the improved performance will be presented. Avenues for improvement are under development, including higher resolution 97 micrometer pixel imagers, further improvements in detective quantum efficiency, and characterization of dynamic behavior.
Dynamic Black-Level Correction and Artifact Flagging in the Kepler Data Pipeline
NASA Technical Reports Server (NTRS)
Clarke, B. D.; Kolodziejczak, J. J.; Caldwell, D. A.
2013-01-01
Instrument-induced artifacts in the raw Kepler pixel data include time-varying crosstalk from the fine guidance sensor (FGS) clock signals, manifestations of drifting moiré pattern as locally correlated nonstationary noise and rolling bands in the images which find their way into the calibrated pixel time series and ultimately into the calibrated target flux time series. Using a combination of raw science pixel data, full frame images, reverse-clocked pixel data and ancillary temperature data the Keplerpipeline models and removes the FGS crosstalk artifacts by dynamically adjusting the black level correction. By examining the residuals to the model fits, the pipeline detects and flags spatial regions and time intervals of strong time-varying blacklevel (rolling bands ) on a per row per cadence basis. These flags are made available to downstream users of the data since the uncorrected rolling band artifacts could complicate processing or lead to misinterpretation of instrument behavior as stellar. This model fitting and artifact flagging is performed within the new stand-alone pipeline model called Dynablack. We discuss the implementation of Dynablack in the Kepler data pipeline and present results regarding the improvement in calibrated pixels and the expected improvement in cotrending performances as a result of including FGS corrections in the calibration. We also discuss the effectiveness of the rolling band flagging for downstream users and illustrate with some affected light curves.
Spatial resolution and chest nodule detection: an interesting incidental finding
NASA Astrophysics Data System (ADS)
Toomey, R. J.; McEntee, M. F.; Ryan, J. T.; Evanoff, M. G.; Hayes, A.; Brennan, P. C.
2010-02-01
This study reports an incidental finding from a larger work. It examines the relationship between spatial resolution and nodule detection for chest radiographs. Twelve examining radiologists with the American Board of Radiology read thirty chest radiographs in two conditions - full (1500 × 1500 pixel) resolution, and 300 × 300 pixel resolution linearly interpolated to 1500 × 1500 pixels. All images were surrounded by a 10-pixel sharp grey border to aid in focussing the observer's eye when viewing the comparatively unsharp interpolated images. Fifteen of the images contained a single simulated pulmonary nodule. Observers were asked to rate their confidence that a nodule was present on each radiograph on a scale of 1 (least confidence, certain no lesion is present) to 6 (most confidence, certain a lesion was present). All other abnormalities were to be ignored. No windowing, levelling or magnification of the images was permitted and viewing distance was constrained to approximately 70cm. Images were displayed on a 3 megapixel greyscale monitor. Receiver operating characteristic (ROC) analysis was applied to the results of the readings using the Dorfman-Berbaum-Metz multiplereader, multiple-case method. No statistically significant differences were found with either readers and cases treated as random or with cases treated as fixed. Low spatial frequency information appears to be sufficient for the detection of chest lesion of the type used in this study.
NASA Astrophysics Data System (ADS)
Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.
1993-08-01
An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.
2015-01-01
Biological assays formatted as microarrays have become a critical tool for the generation of the comprehensive data sets required for systems-level understanding of biological processes. Manual annotation of data extracted from images of microarrays, however, remains a significant bottleneck, particularly for protein microarrays due to the sensitivity of this technology to weak artifact signal. In order to automate the extraction and curation of data from protein microarrays, we describe an algorithm called Crossword that logically combines information from multiple approaches to fully automate microarray segmentation. Automated artifact removal is also accomplished by segregating structured pixels from the background noise using iterative clustering and pixel connectivity. Correlation of the location of structured pixels across image channels is used to identify and remove artifact pixels from the image prior to data extraction. This component improves the accuracy of data sets while reducing the requirement for time-consuming visual inspection of the data. Crossword enables a fully automated protocol that is robust to significant spatial and intensity aberrations. Overall, the average amount of user intervention is reduced by an order of magnitude and the data quality is increased through artifact removal and reduced user variability. The increase in throughput should aid the further implementation of microarray technologies in clinical studies. PMID:24417579
Imaging with a small number of photons
Morris, Peter A.; Aspden, Reuben S.; Bell, Jessica E. C.; Boyd, Robert W.; Padgett, Miles J.
2015-01-01
Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel. PMID:25557090
Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-11-01
Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.
Plenoptic camera image simulation for reconstruction algorithm verification
NASA Astrophysics Data System (ADS)
Schwiegerling, Jim
2014-09-01
Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. Two distinct camera forms have been proposed in the literature. The first has the camera image focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The second plenoptic form has the lenslet array relaying the image formed by the camera lens to the sensor. We have developed a raytracing package that can simulate images formed by a generalized version of the plenoptic camera. Several rays from each sensor pixel are traced backwards through the system to define a cone of rays emanating from the entrance pupil of the camera lens. Objects that lie within this cone are integrated to lead to a color and exposure level for that pixel. To speed processing three-dimensional objects are approximated as a series of planes at different depths. Repeating this process for each pixel in the sensor leads to a simulated plenoptic image on which different reconstruction algorithms can be tested.
Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.
Li, Haiyan; Wu, Jun; Miao, Aimin; Yu, Pengfei; Chen, Jianhua; Zhang, Yufeng
2017-04-17
Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and added with Gaussian distributed noise. Meanwhile clinical breast ultrasound images are used to visually evaluate the effectiveness of the method. To examine the performance, comparison tests between the proposed RSBF and six state-of-the-art methods for ultrasound speckle removal are performed on simulated ultrasound images with various noise and speckle levels. The results of the proposed RSBF are satisfying since the Gaussian noise and the Rayleigh speckle are greatly suppressed. The proposed method can improve the SNRs of the enhanced images to nearly 15 and 13 dB compared with images corrupted by speckle as well as images contaminated by speckle and noise under various SNR levels, respectively. The RSBF is effective in enhancing edge while smoothing the speckle and noise in clinical ultrasound images. In the comparison experiments, the proposed method demonstrates its superiority in accuracy and robustness for denoising and edge preserving under various levels of noise and speckle in terms of visual quality as well as numeric metrics, such as peak signal to noise ratio, SNR and root mean squared error. The experimental results show that the proposed method is effective for removing the speckle and the background noise in ultrasound images. The main reason is that it performs a "detect and replace" two-step mechanism. The advantages of the proposed RBSF lie in two aspects. Firstly, each central pixel is classified as noise, speckle or noise-free texture according to the absolute difference between the target pixel and the reference median. Subsequently, the Rayleigh-maximum-likelihood filter and the bilateral filter are switched to eliminate speckle and noise, respectively, while the noise-free pixels are unaltered. Therefore, it is implemented with better accuracy and robustness than the traditional methods. Generally, these traits declare that the proposed RSBF would have significant clinical application.
Method for removing RFI from SAR images
Doerry, Armin W.
2003-08-19
A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soyoung
Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanelmore » of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two calibration methods. With wavelet analysis, defective pixels and inter-subpanel flat-fielding artifacts were clearly identified as spikes after thresholding the inversely transformed images. Conclusions: The proposed local NPS (r-square values) showed superior sensitivity to the noise level variations of individual subpanels compared with global quantitative metrics such as MTF, NPS, and DQE. Wavelet analysis was effective in detecting isolated defective pixels and inter-subpanel flat-fielding artifacts. The proposed methods are promising for the early detection of imaging artifacts of EPIDs.« less
Huang, Yan; Bi, Duyan; Wu, Dongpeng
2018-04-11
There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods.
Huang, Yan; Bi, Duyan; Wu, Dongpeng
2018-01-01
There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods. PMID:29641505
Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector
NASA Astrophysics Data System (ADS)
Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan
2014-02-01
A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.
Improvement of Reliability of Diffusion Tensor Metrics in Thigh Skeletal Muscles.
Keller, Sarah; Chhabra, Avneesh; Ahmed, Shaheen; Kim, Anne C; Chia, Jonathan M; Yamamura, Jin; Wang, Zhiyue J
2018-05-01
Quantitative diffusion tensor imaging (DTI) of skeletal muscles is challenging due to the bias in DTI metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), related to insufficient signal-to-noise ratio (SNR). This study compares the bias of DTI metrics in skeletal muscles via pixel-based and region-of-interest (ROI)-based analysis. DTI of the thigh muscles was conducted on a 3.0-T system in N = 11 volunteers using a fat-suppressed single-shot spin-echo echo planar imaging (SS SE-EPI) sequence with eight repetitions (number of signal averages (NSA) = 4 or 8 for each repeat). The SNR was calculated for different NSAs and estimated for the composite images combining all data (effective NSA = 48) as standard reference. The bias of MD and FA derived by pixel-based and ROI-based quantification were compared at different NSAs. An "intra-ROI diffusion direction dispersion angle (IRDDDA)" was calculated to assess the uniformity of diffusion within the ROI. Using our standard reference image with NSA = 48, the ROI-based and pixel-based measurements agreed for FA and MD. Larger disagreements were observed for the pixel-based quantification at NSA = 4. MD was less sensitive than FA to the noise level. The IRDDDA decreased with higher NSA. At NSA = 4, ROI-based FA showed a lower average bias (0.9% vs. 37.4%) and narrower 95% limits of agreement compared to the pixel-based method. The ROI-based estimation of FA is less prone to bias than the pixel-based estimations when SNR is low. The IRDDDA can be applied as a quantitative quality measure to assess reliability of ROI-based DTI metrics. Copyright © 2018 Elsevier B.V. All rights reserved.
A Hopfield neural network for image change detection.
Pajares, Gonzalo
2006-09-01
This paper outlines an optimization relaxation approach based on the analog Hopfield neural network (HNN) for solving the image change detection problem between two images. A difference image is obtained by subtracting pixel by pixel both images. The network topology is built so that each pixel in the difference image is a node in the network. Each node is characterized by its state, which determines if a pixel has changed. An energy function is derived, so that the network converges to stable states. The analog Hopfield's model allows each node to take on analog state values. Unlike most widely used approaches, where binary labels (changed/unchanged) are assigned to each pixel, the analog property provides the strength of the change. The main contribution of this paper is reflected in the customization of the analog Hopfield neural network to derive an automatic image change detection approach. When a pixel is being processed, some existing image change detection procedures consider only interpixel relations on its neighborhood. The main drawback of such approaches is the labeling of this pixel as changed or unchanged according to the information supplied by its neighbors, where its own information is ignored. The Hopfield model overcomes this drawback and for each pixel allows a tradeoff between the influence of its neighborhood and its own criterion. This is mapped under the energy function to be minimized. The performance of the proposed method is illustrated by comparative analysis against some existing image change detection methods.
Quick probabilistic binary image matching: changing the rules of the game
NASA Astrophysics Data System (ADS)
Mustafa, Adnan A. Y.
2016-09-01
A Probabilistic Matching Model for Binary Images (PMMBI) is presented that predicts the probability of matching binary images with any level of similarity. The model relates the number of mappings, the amount of similarity between the images and the detection confidence. We show the advantage of using a probabilistic approach to matching in similarity space as opposed to a linear search in size space. With PMMBI a complete model is available to predict the quick detection of dissimilar binary images. Furthermore, the similarity between the images can be measured to a good degree if the images are highly similar. PMMBI shows that only a few pixels need to be compared to detect dissimilarity between images, as low as two pixels in some cases. PMMBI is image size invariant; images of any size can be matched at the same quick speed. Near-duplicate images can also be detected without much difficulty. We present tests on real images that show the prediction accuracy of the model.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Smuk, Gábor; Tornóczky, Tamás; Pajor, László; Chudoba, Ilse; Kajtár, Béla; Sárosi, Veronika; Pajor, Gábor
2018-05-19
EML4-ALK gene fusion (inv2(p21p23)) of non-small cell lung cancer (NSCLC) predisposes to tyrosine kinase inhibitor treatment. One of the gold standard diagnostics is the dual color (DC) break-apart (BA) FISH technique, however, the unusual closeness of the involved genes has been suggested to raise likelihood of random co-localization (RCL) of signals. Although this is suspected to decrease sensitivity (often to as low as 40-70%), the exact level and effect of RCL has not been revealed thus far. Signal distances were analyzed to the 0.1 µm precision in more than 25,000 nuclei, via automated high content-image cytometry. Negative and positive controls were created using conventional DC BA-, and inv2(p21p23) mimicking probe-sets, respectively. Average distance between red and green signals was 9.72 pixels (px) (±5.14px) and 3.28px (±2.44px), in positives and negatives, respectively; overlap in distribution being 41%. Specificity and sensitivity of correctly determining ALK status was 97% and 29%, respectively. When investigating inv2(p21p23) with DC BA FISH, specificity is high, but seven out of ten aberrant nuclei are inevitably falsely classified as negative, due to the extreme level of RCL. Together with genetic heterogeneity and dilution effect of non-tumor cells in NSCLC, this immense analytical false negativity is the primary cause behind the often described low diagnostic sensitivity. These results convincingly suggest that if FISH is to remain a gold standard for detecting the therapy relevant inv(2), either a modified evaluation protocol, or a more reliable probe-design should be considered than the current DC BA one. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less
Adaptive box filters for removal of random noise from digital images
Eliason, E.M.; McEwen, A.S.
1990-01-01
We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors
NASA Astrophysics Data System (ADS)
Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe
2010-04-01
CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.
Nighttime images fusion based on Laplacian pyramid
NASA Astrophysics Data System (ADS)
Wu, Cong; Zhan, Jinhao; Jin, Jicheng
2018-02-01
This paper expounds method of the average weighted fusion, image pyramid fusion, the wavelet transform and apply these methods on the fusion of multiple exposures nighttime images. Through calculating information entropy and cross entropy of fusion images, we can evaluate the effect of different fusion. Experiments showed that Laplacian pyramid image fusion algorithm is suitable for processing nighttime images fusion, it can reduce the halo while preserving image details.
NASA Technical Reports Server (NTRS)
Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Bandera, Cesar (Inventor); Xia, Shu (Inventor)
2002-01-01
A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.
Rapid Disaster Damage Estimation
NASA Astrophysics Data System (ADS)
Vu, T. T.
2012-07-01
The experiences from recent disaster events showed that detailed information derived from high-resolution satellite images could accommodate the requirements from damage analysts and disaster management practitioners. Richer information contained in such high-resolution images, however, increases the complexity of image analysis. As a result, few image analysis solutions can be practically used under time pressure in the context of post-disaster and emergency responses. To fill the gap in employment of remote sensing in disaster response, this research develops a rapid high-resolution satellite mapping solution built upon a dual-scale contextual framework to support damage estimation after a catastrophe. The target objects are building (or building blocks) and their condition. On the coarse processing level, statistical region merging deployed to group pixels into a number of coarse clusters. Based on majority rule of vegetation index, water and shadow index, it is possible to eliminate the irrelevant clusters. The remaining clusters likely consist of building structures and others. On the fine processing level details, within each considering clusters, smaller objects are formed using morphological analysis. Numerous indicators including spectral, textural and shape indices are computed to be used in a rule-based object classification. Computation time of raster-based analysis highly depends on the image size or number of processed pixels in order words. Breaking into 2 level processing helps to reduce the processed number of pixels and the redundancy of processing irrelevant information. In addition, it allows a data- and tasks- based parallel implementation. The performance is demonstrated with QuickBird images captured a disaster-affected area of Phanga, Thailand by the 2004 Indian Ocean tsunami are used for demonstration of the performance. The developed solution will be implemented in different platforms as well as a web processing service for operational uses.
Report on recent results of the PERCIVAL soft X-ray imager
NASA Astrophysics Data System (ADS)
Khromova, A.; Cautero, G.; Giuressi, D.; Menk, R.; Pinaroli, G.; Stebel, L.; Correa, J.; Marras, A.; Wunderer, C. B.; Lange, S.; Tennert, M.; Niemann, M.; Hirsemann, H.; Smoljanin, S.; Reza, S.; Graafsma, H.; Göttlicher, P.; Shevyakov, I.; Supra, J.; Xia, Q.; Zimmer, M.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Nicholls, T.; Turchetta, R.; Pedersen, U.; Tartoni, N.; Hyun, H. J.; Kim, K. S.; Rah, S. Y.; Hoenk, M. E.; Jewell, A. D.; Jones, T. J.; Nikzad, S.
2016-11-01
The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125-1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10-120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10-120 Hz range an average noise floor of 14e- has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 · 106 e- or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.
Segmentation of suspicious objects in an x-ray image using automated region filling approach
NASA Astrophysics Data System (ADS)
Fu, Kenneth; Guest, Clark; Das, Pankaj
2009-08-01
To accommodate the flow of commerce, cargo inspection systems require a high probability of detection and low false alarm rate while still maintaining a minimum scan speed. Since objects of interest (high atomic-number metals) will often be heavily shielded to avoid detection, any detection algorithm must be able to identify such objects despite the shielding. Since pixels of a shielded object have a greater opacity than the shielding, we use a clustering method to classify objects in the image by pixel intensity levels. We then look within each intensity level region for sub-clusters of pixels with greater opacity than the surrounding region. A region containing an object has an enclosed-contour region (a hole) inside of it. We apply a region filling technique to fill in the hole, which represents a shielded object of potential interest. One method for region filling is seed-growing, which puts a "seed" starting point in the hole area and uses a selected structural element to fill out that region. However, automatic seed point selection is a hard problem; it requires additional information to decide if a pixel is within an enclosed region. Here, we propose a simple, robust method for region filling that avoids the problem of seed point selection. In our approach, we calculate the gradient Gx and Gy at each pixel in a binary image, and fill in 1s between a pair of x1 Gx(x1,y)=-1 and x2 Gx(x2,y)=1, and do the same thing in y-direction. The intersection of the two results will be filled region. We give a detailed discussion of our algorithm, discuss the strengths this method has over other methods, and show results of using our method.
Color constancy using bright-neutral pixels
NASA Astrophysics Data System (ADS)
Wang, Yanfang; Luo, Yupin
2014-03-01
An effective illuminant-estimation approach for color constancy is proposed. Bright and near-neutral pixels are selected to jointly represent the illuminant color and utilized for illuminant estimation. To assess the representing capability of pixels, bright-neutral strength (BNS) is proposed by combining pixel chroma and brightness. Accordingly, a certain percentage of pixels with the largest BNS is selected to be the representative set. For every input image, a proper percentage value is determined via an iterative strategy by seeking the optimal color-corrected image. To compare various color-corrected images of an input image, image color-cast degree (ICCD) is devised using means and standard deviations of RGB channels. Experimental evaluation on standard real-world datasets validates the effectiveness of the proposed approach.
Algorithm for Detecting a Bright Spot in an Image
NASA Technical Reports Server (NTRS)
2009-01-01
An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)
An intermediate significant bit (ISB) watermarking technique using neural networks.
Zeki, Akram; Abubakar, Adamu; Chiroma, Haruna
2016-01-01
Prior research studies have shown that the peak signal to noise ratio (PSNR) is the most frequent watermarked image quality metric that is used for determining the levels of strength and weakness of watermarking algorithms. Conversely, normalised cross correlation (NCC) is the most common metric used after attacks were applied to a watermarked image to verify the strength of the algorithm used. Many researchers have used these approaches to evaluate their algorithms. These strategies have been used for a long time, however, which unfortunately limits the value of PSNR and NCC in reflecting the strength and weakness of the watermarking algorithms. This paper considers this issue to determine the threshold values of these two parameters in reflecting the amount of strength and weakness of the watermarking algorithms. We used our novel watermarking technique for embedding four watermarks in intermediate significant bits (ISB) of six image files one-by-one through replacing the image pixels with new pixels and, at the same time, keeping the new pixels very close to the original pixels. This approach gains an improved robustness based on the PSNR and NCC values that were gathered. A neural network model was built that uses the image quality metrics (PSNR and NCC) values obtained from the watermarking of six grey-scale images that use ISB as the desired output and that are trained for each watermarked image's PSNR and NCC. The neural network predicts the watermarked image's PSNR together with NCC after the attacks when a portion of the output of the same or different types of image quality metrics (PSNR and NCC) are obtained. The results indicate that the NCC metric fluctuates before the PSNR values deteriorate.
Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display.
Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu
2015-05-18
We present a image quality improvement in a parallax barrier (PB)-based multiview autostereoscopic 3D display system under a real-time tracking of positions of a viewer's eyes. The system presented exploits a parallax barrier engineered to offer significantly improved quality of three-dimensional images for a moving viewer without an eyewear under the dynamic eye tracking. The improved image quality includes enhanced uniformity of image brightness, reduced point crosstalk, and no pseudoscopic effects. We control the relative ratio between two parameters i.e., a pixel size and the aperture of a parallax barrier slit to improve uniformity of image brightness at a viewing zone. The eye tracking that monitors positions of a viewer's eyes enables pixel data control software to turn on only pixels for view images near the viewer's eyes (the other pixels turned off), thus reducing point crosstalk. The eye tracking combined software provides right images for the respective eyes, therefore producing no pseudoscopic effects at its zone boundaries. The viewing zone can be spanned over area larger than the central viewing zone offered by a conventional PB-based multiview autostereoscopic 3D display (no eye tracking). Our 3D display system also provides multiviews for motion parallax under eye tracking. More importantly, we demonstrate substantial reduction of point crosstalk of images at the viewing zone, its level being comparable to that of a commercialized eyewear-assisted 3D display system. The multiview autostereoscopic 3D display presented can greatly resolve the point crosstalk problem, which is one of the critical factors that make it difficult for previous technologies for a multiview autostereoscopic 3D display to replace an eyewear-assisted counterpart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Julian; Tate, Mark W.; Shanks, Katherine S.
Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame,more » in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.« less
A neural net based architecture for the segmentation of mixed gray-level and binary pictures
NASA Technical Reports Server (NTRS)
Tabatabai, Ali; Troudet, Terry P.
1991-01-01
A neural-net-based architecture is proposed to perform segmentation in real time for mixed gray-level and binary pictures. In this approach, the composite picture is divided into 16 x 16 pixel blocks, which are identified as character blocks or image blocks on the basis of a dichotomy measure computed by an adaptive 16 x 16 neural net. For compression purposes, each image block is further divided into 4 x 4 subblocks; a one-bit nonparametric quantizer is used to encode 16 x 16 character and 4 x 4 image blocks; and the binary map and quantizer levels are obtained through a neural net segmentor over each block. The efficiency of the neural segmentation in terms of computational speed, data compression, and quality of the compressed picture is demonstrated. The effect of weight quantization is also discussed. VLSI implementations of such adaptive neural nets in CMOS technology are described and simulated in real time for a maximum block size of 256 pixels.
Kieper, Douglas Arthur [Seattle, WA; Majewski, Stanislaw [Morgantown, WV; Welch, Benjamin L [Hampton, VA
2012-07-03
An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.
Kieper, Douglas Arthur [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; Welch, Benjamin L [Hampton, VA
2008-10-28
An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.
Estimating pixel variances in the scenes of staring sensors
Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM
2012-01-24
A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.
Variable waveband infrared imager
Hunter, Scott R.
2013-06-11
A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Photodiode area effect on performance of X-ray CMOS active pixel sensors
NASA Astrophysics Data System (ADS)
Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.
2018-02-01
Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.
Semantic segmentation of mFISH images using convolutional networks.
Pardo, Esteban; Morgado, José Mário T; Malpica, Norberto
2018-04-30
Multicolor in situ hybridization (mFISH) is a karyotyping technique used to detect major chromosomal alterations using fluorescent probes and imaging techniques. Manual interpretation of mFISH images is a time consuming step that can be automated using machine learning; in previous works, pixel or patch wise classification was employed, overlooking spatial information which can help identify chromosomes. In this work, we propose a fully convolutional semantic segmentation network for the interpretation of mFISH images, which uses both spatial and spectral information to classify each pixel in an end-to-end fashion. The semantic segmentation network developed was tested on samples extracted from a public dataset using cross validation. Despite having no labeling information of the image it was tested on, our algorithm yielded an average correct classification ratio (CCR) of 87.41%. Previously, this level of accuracy was only achieved with state of the art algorithms when classifying pixels from the same image in which the classifier has been trained. These results provide evidence that fully convolutional semantic segmentation networks may be employed in the computer aided diagnosis of genetic diseases with improved performance over the current image analysis methods. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
Zeitoun, Rania; Hussein, Manar
2017-11-01
To reach a practical approach to interpret MDCT findings in post-operative spine cases and to change the false belief of CT failure in the setting of instruments secondary to related artefacts. We performed observational retrospective analysis of premier, early and late MDCT scans in 68 post-operative spine patients, with emphasis on instruments related complications and osseous fusion status. We used a grading system for assessment of osseous fusion in 35 patients and we further analysed the findings in failure of fusion, grade (D). We observed a variety of instruments related complications (mostly screws medially penetrating the pedicle) and osseous fusion status in late scans. We graded 11 interbody and 14 posterolateral levels as osseous fusion failure, showing additional instruments related complications, end plates erosive changes, adjacent segments spondylosis and malalignment. Modern MDCT scanners provide high quality images and are strongly recommended in assessment of the instruments and status of osseous fusion. In post-operative imaging of the spine, it is essential to be aware for what you are looking for, in relevance to the date of surgery. Advances in knowledge: Modern MDCT scanners allow assessment of instruments position and integrity and osseous fusion status in post-operative spine. We propose a helpful algorithm to simplify interpreting post-operative spine imaging.
Spectral CT imaging in patients with Budd-Chiari syndrome: investigation of image quality.
Su, Lei; Dong, Junqiang; Sun, Qiang; Liu, Jie; Lv, Peijie; Hu, Lili; Yan, Liangliang; Gao, Jianbo
2014-11-01
To assess the image quality of monochromatic imaging from spectral CT in patients with Budd-Chiari syndrome (BCS), fifty patients with BCS underwent spectral CT to generate conventional 140 kVp polychromatic images (group A) and monochromatic images, with energy levels from 40 to 80, 40 + 70, and 50 + 70 keV fusion images (group B) during the portal venous phase (PVP) and the hepatic venous phase (HVP). Two-sample t tests compared vessel-to-liver contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) for the portal vein (PV), hepatic vein (HV), inferior vena cava. Readers' subjective evaluations of the image quality were recorded. The highest SNR values in group B were distributed at 50 keV; the highest CNR values in group B were distributed at 40 keV. The higher CNR values and SNR values were obtained though PVP of PV (SNR 18.39 ± 6.13 vs. 10.56 ± 3.31, CNR 7.81 ± 3.40 vs. 3.58 ± 1.31) and HVP of HV (3.89 ± 2.08 vs. 1.27 ± 1.55) in the group B; the lower image noise for group B was at 70 keV and 50 + 70 keV (15.54 ± 8.39 vs. 18.40 ± 4.97, P = 0.0004 and 18.97 ± 7.61 vs. 18.40 ± 4.97, P = 0.0691); the results show that the 50 + 70 keV fusion image quality was better than that in group A. Monochromatic energy levels of 40-70, 40 + 70, and 50 + 70 keV fusion image can increase vascular contrast and that will be helpful for the diagnosis of BCS, we select the 50 + 70 keV fusion image to acquire the best BCS images.
A novel imaging method for photonic crystal fiber fusion splicer
NASA Astrophysics Data System (ADS)
Bi, Weihong; Fu, Guangwei; Guo, Xuan
2007-01-01
Because the structure of Photonic Crystal Fiber (PCF) is very complex, and it is very difficult that traditional fiber fusion splice obtains optical axial information of PCF. Therefore, we must search for a bran-new optical imaging method to get section information of Photonic Crystal Fiber. Based on complex trait of PCF, a novel high-precision optics imaging system is presented in this article. The system uses a thinned electron-bombarded CCD (EBCCD) which is a kind of image sensor as imaging element, the thinned electron-bombarded CCD can offer low light level performance superior to conventional image intensifier coupled CCD approaches, this high-performance device can provide high contrast high resolution in low light level surveillance imaging; in order to realize precision focusing of image, we use a ultra-highprecision pace motor to adjust position of imaging lens. In this way, we can obtain legible section information of PCF. We may realize further concrete analysis for section information of PCF by digital image processing technology. Using this section information may distinguish different sorts of PCF, compute some parameters such as the size of PCF ventage, cladding structure of PCF and so on, and provide necessary analysis data for PCF fixation, adjustment, regulation, fusion and cutting system.
Hierarchical rendering of trees from precomputed multi-layer z-buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, N.
1996-02-01
Chen and Williams show how precomputed z-buffer images from different fixed viewing positions can be reprojected to produce an image for a new viewpoint. Here images are precomputed for twigs and branches at various levels in the hierarchical structure of a tree, and adaptively combined, depending on the position of the new viewpoint. The precomputed images contain multiple z levels to avoid missing pixels in the reconstruction, subpixel masks for anti-aliasing, and colors and normals for shading after reprojection.
High dynamic range vision sensor for automotive applications
NASA Astrophysics Data System (ADS)
Grenet, Eric; Gyger, Steve; Heim, Pascal; Heitger, Friedrich; Kaess, Francois; Nussbaum, Pascal; Ruedi, Pierre-Francois
2005-02-01
A 128 x 128 pixels, 120 dB vision sensor extracting at the pixel level the contrast magnitude and direction of local image features is used to implement a lane tracking system. The contrast representation (relative change of illumination) delivered by the sensor is independent of the illumination level. Together with the high dynamic range of the sensor, it ensures a very stable image feature representation even with high spatial and temporal inhomogeneities of the illumination. Dispatching off chip image feature is done according to the contrast magnitude, prioritizing features with high contrast magnitude. This allows to reduce drastically the amount of data transmitted out of the chip, hence the processing power required for subsequent processing stages. To compensate for the low fill factor (9%) of the sensor, micro-lenses have been deposited which increase the sensitivity by a factor of 5, corresponding to an equivalent of 2000 ASA. An algorithm exploiting the contrast representation output by the vision sensor has been developed to estimate the position of a vehicle relative to the road markings. The algorithm first detects the road markings based on the contrast direction map. Then, it performs quadratic fits on selected kernel of 3 by 3 pixels to achieve sub-pixel accuracy on the estimation of the lane marking positions. The resulting precision on the estimation of the vehicle lateral position is 1 cm. The algorithm performs efficiently under a wide variety of environmental conditions, including night and rainy conditions.
Evaluation of the MTF for a-Si:H imaging arrays
NASA Astrophysics Data System (ADS)
Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef
1994-05-01
Hydrogenated amorphous silicon imaging arrays are being developed for numerous applications in medical imaging. Diagnostic and megavoltage images have previously been reported and a number of the intrinsic properties of the arrays have been investigated. This paper reports on the first attempt to characterize the intrinsic spatial resolution of the imaging pixels on a 450 micrometers pitch, n-i-p imaging array fabricated at Xerox P.A.R.C. The pre- sampled modulation transfer function was measured by scanning a approximately 25 micrometers wide slit of visible wavelength light across a pixel in both the DATA and FET directions. The results show that the response of the pixel in these orthogonal directions is well described by a simple model that accounts for asymmetries in the pixel response due to geometric aspects of the pixel design.
Multiple image encryption scheme based on pixel exchange operation and vector decomposition
NASA Astrophysics Data System (ADS)
Xiong, Y.; Quan, C.; Tay, C. J.
2018-02-01
We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.
Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei
2014-09-11
Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.
Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei
2014-01-01
Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities. PMID:25208580
Color filter array pattern identification using variance of color difference image
NASA Astrophysics Data System (ADS)
Shin, Hyun Jun; Jeon, Jong Ju; Eom, Il Kyu
2017-07-01
A color filter array is placed on the image sensor of a digital camera to acquire color images. Each pixel uses only one color, since the image sensor can measure only one color per pixel. Therefore, empty pixels are filled using an interpolation process called demosaicing. The original and the interpolated pixels have different statistical characteristics. If the image is modified by manipulation or forgery, the color filter array pattern is altered. This pattern change can be a clue for image forgery detection. However, most forgery detection algorithms have the disadvantage of assuming the color filter array pattern. We present an identification method of the color filter array pattern. Initially, the local mean is eliminated to remove the background effect. Subsequently, the color difference block is constructed to emphasize the difference between the original pixel and the interpolated pixel. The variance measure of the color difference image is proposed as a means of estimating the color filter array configuration. The experimental results show that the proposed method is effective in identifying the color filter array pattern. Compared with conventional methods, our method provides superior performance.
Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions
NASA Astrophysics Data System (ADS)
Pinto, M.; da Silva, R. M. Curado; Maia, J. M.; Simões, N.; Marques, J.; Pereira, L.; Trindade, A. M. F.; Caroli, E.; Auricchio, N.; Stephen, J. B.; Gonçalves, P.
2016-12-01
So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a 22Na (511 keV) radioactive source. The polarized beam cross section was 1 cm2, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level ( 40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Graph-based surface reconstruction from stereo pairs using image segmentation
NASA Astrophysics Data System (ADS)
Bleyer, Michael; Gelautz, Margrit
2005-01-01
This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
Change Detection of Remote Sensing Images by Dt-Cwt and Mrf
NASA Astrophysics Data System (ADS)
Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.
2017-05-01
Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.
Development of a 750x750 pixels CMOS imager sensor for tracking applications
NASA Astrophysics Data System (ADS)
Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali
2017-11-01
Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.
Unification of two fractal families
NASA Astrophysics Data System (ADS)
Liu, Ying
1995-06-01
Barnsley and Hurd classify the fractal images into two families: iterated function system fractals (IFS fractals) and fractal transform fractals, or local iterated function system fractals (LIFS fractals). We will call IFS fractals, class 2 fractals and LIFS fractals, class 3 fractals. In this paper, we will unify these two approaches plus another family of fractals, the class 5 fractals. The basic idea is given as follows: a dynamical system can be represented by a digraph, the nodes in a digraph can be divided into two parts: transient states and persistent states. For bilevel images, a persistent node is a black pixel. A transient node is a white pixel. For images with more than two gray levels, a stochastic digraph is used. A transient node is a pixel with the intensity of 0. The intensity of a persistent node is determined by a relative frequency. In this way, the two families of fractals can be generated in a similar way. In this paper, we will first present a classification of dynamical systems and introduce the transformation based on digraphs, then we will unify the two approaches for fractal binary images. We will compare the decoding algorithms of the two families. Finally, we will generalize the discussion to continuous-tone images.
Spatial clustering of pixels of a multispectral image
Conger, James Lynn
2014-08-19
A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.
Recognizable or Not: Towards Image Semantic Quality Assessment for Compression
NASA Astrophysics Data System (ADS)
Liu, Dong; Wang, Dandan; Li, Houqiang
2017-12-01
Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.
Using compressive measurement to obtain images at ultra low-light-level
NASA Astrophysics Data System (ADS)
Ke, Jun; Wei, Ping
2013-08-01
In this paper, a compressive imaging architecture is used for ultra low-light-level imaging. In such a system, features, instead of object pixels, are imaged onto a photocathode, and then magnified by an image intensifier. By doing so, system measurement SNR is increased significantly. Therefore, the new system can image objects at ultra low-ligh-level, while a conventional system has difficulty. PCA projection is used to collect feature measurements in this work. Linear Wiener operator and nonlinear method based on FoE model are used to reconstruct objects. Root mean square error (RMSE) is used to quantify system reconstruction quality.
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep
2017-04-01
Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.
The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.
Pooley, R A; McKinney, J M; Miller, D A
2001-01-01
A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.
A fast and automatic fusion algorithm for unregistered multi-exposure image sequence
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Feihong
2014-09-01
Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.
A Decision-Based Modified Total Variation Diffusion Method for Impulse Noise Removal
Zhu, Qingxin; Song, Xiuli; Tao, Jinsong
2017-01-01
Impulsive noise removal usually employs median filtering, switching median filtering, the total variation L1 method, and variants. These approaches however often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A new method to remove noise is proposed in this paper to overcome this limitation, which divides pixels into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the pixels are divided into corrupted and noise-free; if the image is corrupted by random valued impulses, the pixels are divided into corrupted, noise-free, and possibly corrupted. Pixels falling into different categories are processed differently. If a pixel is corrupted, modified total variation diffusion is applied; if the pixel is possibly corrupted, weighted total variation diffusion is applied; otherwise, the pixel is left unchanged. Experimental results show that the proposed method is robust to different noise strengths and suitable for different images, with strong noise removal capability as shown by PSNR/SSIM results as well as the visual quality of restored images. PMID:28536602
SAR Image Change Detection Based on Fuzzy Markov Random Field Model
NASA Astrophysics Data System (ADS)
Zhao, J.; Huang, G.; Zhao, Z.
2018-04-01
Most existing SAR image change detection algorithms only consider single pixel information of different images, and not consider the spatial dependencies of image pixels. So the change detection results are susceptible to image noise, and the detection effect is not ideal. Markov Random Field (MRF) can make full use of the spatial dependence of image pixels and improve detection accuracy. When segmenting the difference image, different categories of regions have a high degree of similarity at the junction of them. It is difficult to clearly distinguish the labels of the pixels near the boundaries of the judgment area. In the traditional MRF method, each pixel is given a hard label during iteration. So MRF is a hard decision in the process, and it will cause loss of information. This paper applies the combination of fuzzy theory and MRF to the change detection of SAR images. The experimental results show that the proposed method has better detection effect than the traditional MRF method.
Image indexing using color correlograms
Huang, Jing; Kumar, Shanmugasundaram Ravi; Mitra, Mandar; Zhu, Wei-Jing
2001-01-01
A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.
Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M
2009-01-01
Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.
Design of a new type synchronous focusing mechanism
NASA Astrophysics Data System (ADS)
Zhang, Jintao; Tan, Ruijun; Chen, Zhou; Zhang, Yongqi; Fu, Panlong; Qu, Yachen
2018-05-01
Aiming at the dual channel telescopic imaging system composed of infrared imaging system, low-light-level imaging system and image fusion module, In the fusion of low-light-level images and infrared images, it is obvious that using clear source images is easier to obtain high definition fused images. When the target is imaged at 15m to infinity, focusing is needed to ensure the imaging quality of the dual channel imaging system; therefore, a new type of synchronous focusing mechanism is designed. The synchronous focusing mechanism realizes the focusing function through the synchronous translational imaging devices, mainly including the structure of the screw rod nut, the shaft hole coordination structure and the spring steel ball eliminating clearance structure, etc. Starting from the synchronous focusing function of two imaging devices, the structure characteristics of the synchronous focusing mechanism are introduced in detail, and the focusing range is analyzed. The experimental results show that the synchronous focusing mechanism has the advantages of ingenious design, high focusing accuracy and stable and reliable operation.
NASA Astrophysics Data System (ADS)
Heremans, Stien; Suykens, Johan A. K.; Van Orshoven, Jos
2016-02-01
To be physically interpretable, sub-pixel land cover fractions or abundances should fulfill two constraints, the Abundance Non-negativity Constraint (ANC) and the Abundance Sum-to-one Constraint (ASC). This paper focuses on the effect of imposing these constraints onto the MultiLayer Perceptron (MLP) for a multi-class sub-pixel land cover classification of a time series of low resolution MODIS-images covering the northern part of Belgium. Two constraining modes were compared, (i) an in-training approach that uses 'softmax' as the transfer function in the MLP's output layer and (ii) a post-training approach that linearly rescales the outputs of the unconstrained MLP. Our results demonstrate that the pixel-level prediction accuracy is markedly increased by the explicit enforcement, both in-training and post-training, of the ANC and the ASC. For aggregations of pixels (municipalities), the constrained perceptrons perform at least as well as their unconstrained counterparts. Although the difference in performance between the in-training and post-training approach is small, we recommend the former for integrating the fractional abundance constraints into MLPs meant for sub-pixel land cover estimation, regardless of the targeted level of spatial aggregation.
Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor
NASA Astrophysics Data System (ADS)
Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji
2006-02-01
We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.
Travel time tomography with local image regularization by sparsity constrained dictionary learning
NASA Astrophysics Data System (ADS)
Bianco, M.; Gerstoft, P.
2017-12-01
We propose a regularization approach for 2D seismic travel time tomography which models small rectangular groups of slowness pixels, within an overall or `global' slowness image, as sparse linear combinations of atoms from a dictionary. The groups of slowness pixels are referred to as patches and a dictionary corresponds to a collection of functions or `atoms' describing the slowness in each patch. These functions could for example be wavelets.The patch regularization is incorporated into the global slowness image. The global image models the broad features, while the local patch images incorporate prior information from the dictionary. Further, high resolution slowness within patches is permitted if the travel times from the global estimates support it. The proposed approach is formulated as an algorithm, which is repeated until convergence is achieved: 1) From travel times, find the global slowness image with a minimum energy constraint on the pixel variance relative to a reference. 2) Find the patch level solutions to fit the global estimate as a sparse linear combination of dictionary atoms.3) Update the reference as the weighted average of the patch level solutions.This approach relies on the redundancy of the patches in the seismic image. Redundancy means that the patches are repetitions of a finite number of patterns, which are described by the dictionary atoms. Redundancy in the earth's structure was demonstrated in previous works in seismics where dictionaries of wavelet functions regularized inversion. We further exploit redundancy of the patches by using dictionary learning algorithms, a form of unsupervised machine learning, to estimate optimal dictionaries from the data in parallel with the inversion. We demonstrate our approach on densely, but irregularly sampled synthetic seismic images.
NASA Astrophysics Data System (ADS)
Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.
System for Continuous Delivery of MODIS Imagery to Internet Mapping Applications
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2008-01-01
This software represents a complete, unsupervised processing chain that generates a continuously updating global image of the Earth from the most recent available MODIS Level 1B scenes. The software constantly updates a global image of the Earth at 250 m per pixel.
Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-01-01
Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97. PMID:26393607
Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data.
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-09-18
Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.
Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data
NASA Technical Reports Server (NTRS)
Gamba, P.; Houshmand, B.
1998-01-01
In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.
NASA Astrophysics Data System (ADS)
Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.
2013-05-01
We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.
High speed imager test station
Yates, George J.; Albright, Kevin L.; Turko, Bojan T.
1995-01-01
A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.
High speed imager test station
Yates, G.J.; Albright, K.L.; Turko, B.T.
1995-11-14
A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.
Kawahito, Shoji; Seo, Min-Woong
2016-11-06
This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).
Kawahito, Shoji; Seo, Min-Woong
2016-01-01
This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972
Günzel, Karsten; Cash, Hannes; Buckendahl, John; Königbauer, Maximilian; Asbach, Patrick; Haas, Matthias; Neymeyer, Jörg; Hinz, Stefan; Miller, Kurt; Kempkensteffen, Carsten
2017-01-13
To explore the diagnostic benefit of an additional image fusion of the sagittal plane in addition to the standard axial image fusion, using a sensor-based MRI/US fusion platform. During July 2013 and September 2015, 251 patients with at least one suspicious lesion on mpMRI (rated by PI-RADS) were included into the analysis. All patients underwent MRI/US targeted biopsy (TB) in combination with a 10 core systematic prostate biopsy (SB). All biopsies were performed on a sensor-based fusion system. Group A included 162 men who received TB by an axial MRI/US image fusion. Group B comprised 89 men in whom the TB was performed with an additional sagittal image fusion. The median age in group A was 67 years (IQR 61-72) and in group B 68 years (IQR 60-71). The median PSA level in group A was 8.10 ng/ml (IQR 6.05-14) and in group B 8.59 ng/ml (IQR 5.65-12.32). In group A the proportion of patients with a suspicious digital rectal examination (DRE) (14 vs. 29%, p = 0.007) and the proportion of primary biopsies (33 vs 46%, p = 0.046) were significantly lower. The rate of PI-RADS 3 lesions were overrepresented in group A compared to group B (19 vs. 9%; p = 0.044). Classified according to PI-RADS 3, 4 and 5, the detection rates of TB were 42, 48, 75% in group A and 25, 74, 90% in group B. The rate of PCa with a Gleason score ≥7 missed by TB was 33% (18 cases) in group A and 9% (5 cases) in group B; p-value 0.072. An explorative multivariate binary logistic regression analysis revealed that PI-RADS, a suspicious DRE and performing an additional sagittal image fusion were significant predictors for PCa detection in TB. 9 PCa were only detected by TB with sagittal fusion (sTB) and sTB identified 10 additional clinically significant PCa (Gleason ≥7). Performing an additional sagittal image fusion besides the standard axial fusion appears to improve the accuracy of the sensor-based MRI/US fusion platform.