Sample records for pixelgem tracking system

  1. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    NASA Astrophysics Data System (ADS)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  2. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...

  3. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...

  4. Portable Catapult Launcher For Small Aircraft

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor); Petter, George E. (Inventor); Gessler, Joseph A. (Inventor); Hughes, Michael G. (Inventor)

    2005-01-01

    An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the canier is connected to the winch system and to the other end of each of the one or more elongated elastic members.

  5. Portable catapult launcher for small aircraft

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor); Petter, George E. (Inventor); Gessler, Joseph A. (Inventor); Hughes, Michael G. (Inventor)

    2005-01-01

    An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the carrier is connected to the winch system and to the other end of each of the one or more elongated elastic members.

  6. Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system

    NASA Astrophysics Data System (ADS)

    Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.

    2007-11-01

    An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.

  7. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  8. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  9. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  10. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  11. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  12. Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition

    NASA Astrophysics Data System (ADS)

    Khayat, Omid; Afarideh, Hossein

    2013-04-01

    Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.

  13. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  14. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  15. 77 FR 33489 - Draft Offender Tracking System Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Tracking System Standard AGENCY: National Institute of Justice. ACTION: Notice of Draft Offender Tracking System Standard, Selection and Application Guide, and Certification Program Requirements. SUMMARY: In an...) A draft standard entitled, ``Offender Tracking System Standard'' (2) a draft companion document...

  16. 78 FR 12298 - Privacy Act of 1974; System of Records-School Participation Division Complaints Tracking System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Complaints Tracking System AGENCY: Federal Student Aid, Department of Education. ACTION: Notice of a new... Division Complaints Tracking System (SPD-CTS)'' (18-11- 19). DATES: Submit your comments on this proposed... all comments about the School Participation Division--Complaints Tracking System to: Performance...

  17. Target tracking system based on preliminary and precise two-stage compound cameras

    NASA Astrophysics Data System (ADS)

    Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie

    2018-02-01

    Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.

  18. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  19. Autonomous antenna tracking system for mobile symphonie ground stations

    NASA Technical Reports Server (NTRS)

    Ernsberger, K.; Lorch, G.; Waffenschmidt, E.

    1982-01-01

    The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.

  20. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  1. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...

  2. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...

  3. Experiences from the anatomy track in the ontology alignment evaluation initiative.

    PubMed

    Dragisic, Zlatan; Ivanova, Valentina; Li, Huanyu; Lambrix, Patrick

    2017-12-04

    One of the longest running tracks in the Ontology Alignment Evaluation Initiative is the Anatomy track which focuses on aligning two anatomy ontologies. The Anatomy track was started in 2005. In 2005 and 2006 the task in this track was to align the Foundational Model of Anatomy and the OpenGalen Anatomy Model. Since 2007 the ontologies used in the track are the Adult Mouse Anatomy and a part of the NCI Thesaurus. Since 2015 the data in the Anatomy track is also used in the Interactive track of the Ontology Alignment Evaluation Initiative. In this paper we focus on the Anatomy track in the years 2007-2016 and the Anatomy part of the Interactive track in 2015-2016. We describe the data set and the changes it went through during the years as well as the challenges it poses for ontology alignment systems. Further, we give an overview of all systems that participated in the track and the techniques they have used. We discuss the performance results of the systems and summarize the general trends. About 50 systems have participated in the Anatomy track. Many different techniques were used. The most popular matching techniques are string-based strategies and structure-based techniques. Many systems also use auxiliary information. The quality of the alignment has increased for the best performing systems since the beginning of the track and more and more systems check the coherence of the proposed alignment and implement a repair strategy. Further, interacting with an oracle is beneficial.

  4. Human-like object tracking and gaze estimation with PKD android

    PubMed Central

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.

    2018-01-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193

  5. Human-like object tracking and gaze estimation with PKD android

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  6. Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika

    2004-03-01

    The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.

  7. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...

  8. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...

  9. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...

  10. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...

  11. Chemical Tracking Systems: Not Your Usual Global Positioning System!

    ERIC Educational Resources Information Center

    Roy, Ken

    2007-01-01

    The haphazard storing and tracking of chemicals in the laboratory is a serious safety issue facing science teachers. To get control of your chemicals, try implementing a "chemical tracking system". A chemical tracking system (CTS) is a database of chemicals used in the laboratory. If implemented correctly, a CTS will reduce purchasing costs,…

  12. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement... Completing Carrier must undergo an audit of its § 64.1310(a)(1) tracking system by an independent third party...

  13. Multi-viewer tracking integral imaging system and its viewing zone analysis.

    PubMed

    Park, Gilbae; Jung, Jae-Hyun; Hong, Keehoon; Kim, Yunhee; Kim, Young-Hoon; Min, Sung-Wook; Lee, Byoungho

    2009-09-28

    We propose a multi-viewer tracking integral imaging system for viewing angle and viewing zone improvement. In the tracking integral imaging system, the pickup angles in each elemental lens in the lens array are decided by the positions of viewers, which means the elemental image can be made for each viewer to provide wider viewing angle and larger viewing zone. Our tracking integral imaging system is implemented with an infrared camera and infrared light emitting diodes which can track the viewers' exact positions robustly. For multiple viewers to watch integrated three-dimensional images in the tracking integral imaging system, it is needed to formulate the relationship between the multiple viewers' positions and the elemental images. We analyzed the relationship and the conditions for the multiple viewers, and verified them by the implementation of two-viewer tracking integral imaging system.

  14. Development of a liver respiratory motion simulator to investigate magnetic tracking for abdominal interventions

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Banovac, Filip; Levy, Elliot; Tanaka, Daigo

    2002-05-01

    We have designed and constructed a liver respiratory motion simulator as a first step in demonstrating the feasibility of using a new magnetic tracking system to follow the movement of internal organs. The simulator consists of a dummy torso, a synthetic liver, a linear motion platform, a graphical user interface for image overlay, and a magnetic tracking system along with magnetically tracked instruments. While optical tracking systems are commonly used in commercial image-guided surgery systems for the brain and spine, they are limited to procedures in which a line of sight can be maintained between the tracking system and the instruments which are being tracked. Magnetic tracking systems have been proposed for image-guided surgery applications, but most currently available magnetically tracked sensors are too small to be embedded in the body. The magnetic tracking system employed here, the AURORA from Northern Digital, can use sensors as small as 0.9 mm in diameter by 8 mm in length. This makes it possible to embed these sensors in catheters and thin needles. The catheters can then be wedged in a vein in an internal organ of interest so that tracking the position of the catheter gives a good estimate of the position of the internal organ. Alternatively, a needle with an embedded sensor could be placed near the area of interest.

  15. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    PubMed

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  16. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User’s Head Movement

    PubMed Central

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user’s head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  17. A distributed database view of network tracking systems

    NASA Astrophysics Data System (ADS)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  18. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  19. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  20. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  1. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  2. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  3. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data

    PubMed Central

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul

    2017-01-01

    Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522

  4. An automatic tracking system for phase-noise measurement.

    PubMed

    Yuen, Chung Ming; Tsang, Kim Fung

    2005-05-01

    A low cost, automatic tracking system for phase noise measurement has been implemented successfully. The tracking system is accomplished by applying a charge pump phase-locked loop as an external reference source to a digital spectrum analyzer. Measurement of a 2.5 GHz, free-running, voltage-controlled oscillator demonstrated the tracking accuracy, thus verifying the feasibility of the system.

  5. An optical tracking system for virtual reality

    NASA Astrophysics Data System (ADS)

    Hrimech, Hamid; Merienne, Frederic

    2009-03-01

    In this paper we present a low-cost 3D tracking system which we have developed and tested in order to move away from traditional 2D interaction techniques (keyboard and mouse) in an attempt to improve user's experience while using a CVE. Such a tracking system is used to implement 3D interaction techniques that augment user experience, promote user's sense of transportation in the virtual world as well as user's awareness of their partners. The tracking system is a passive optical tracking system using stereoscopy a technique allowing the reconstruction of three-dimensional information from a couple of images. We have currently deployed our 3D tracking system on a collaborative research platform for investigating 3D interaction techniques in CVEs.

  6. Permanent magnet synchronous motor servo system control based on μC/OS

    NASA Astrophysics Data System (ADS)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  7. System considerations for detection and tracking of small targets using passive sensors

    NASA Astrophysics Data System (ADS)

    DeBell, David A.

    1991-08-01

    Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.

  8. Satellite (IRLS) tracking of elk

    NASA Technical Reports Server (NTRS)

    Buechner, H. K.

    1972-01-01

    The practicability of tracking free roaming animals in natural environments by satellite systems is reported. Satellite systems combine continuous tracking with simultaneous monitoring of physiological and environmental parameters through a combination of radio tracking and biotelemetric ground systems that lead to a better understanding of animal behavior and migration patterns.

  9. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  10. Relay tracking control for second-order multi-agent systems with damaged agents.

    PubMed

    Dong, Lijing; Li, Jing; Liu, Qin

    2017-11-01

    This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Renewable Energy Tracking Systems

    EPA Pesticide Factsheets

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  12. Technical and Economic Feasibility Study of At-Grade Concrete Slab Track for Urban Rail Transit Systems

    DOT National Transportation Integrated Search

    1981-08-01

    The report presents work conducted to evaluate the technical and economic feasibility of using concrete slab track systems for at-grade transit track. The functions of a rail transit track system are to guide railway vehicles and provide a safe and a...

  13. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  14. Evaluation of the clinical efficacy of the PeTrack motion tracking system for respiratory gating in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert

    2017-03-01

    Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.

  15. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations.

    PubMed

    Jiang, Chaozhe; Xu, Yibo; Wen, Chao; Chen, Dilin

    2017-12-19

    Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.

  16. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations

    PubMed Central

    Jiang, Chaozhe; Xu, Yibo; Chen, Dilin

    2017-01-01

    Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication. PMID:29257108

  17. 77 FR 23765 - Privacy Act; Termination of Three Systems of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... terminating the following Systems of Records: MSPB/Internal 5, ``Workload and Assignment Tracking System... Tracking System.'' They are no longer in use. DATES: Effective April 6, 2012. FOR FURTHER INFORMATION... systems of records: MSPB/Internal 5, ``Workload and Assignment Tracking System;'' MSPB/Internal 7...

  18. Laboratory test results of the high speed optical tracking system for the Spaceborne Geodynamic Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; White, David L.

    1987-01-01

    The high speed, high resolution optical tracking system for the Spaceborne Geodynamic Ranging System employs a two-axis gimbaled pointing device that can operate from a Space Shuttle platform and can track multiple retroreflector ground targets with arcsec accuracy. Laboratory tests of the stepping characteristics of the pointing system for various step sizes and directions has shown arcsec repeatability with little wasted motion, overshoot, or ringing. The worst rms tracking jitter was 1 and 2 arcsec in the roll and pitch axes, respectively, at the maximum tracking rate of 2 deg/sec.

  19. Investigation of tracking systems properties in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Szymaniak, Magda; Mazikowski, Adam; Meironke, Michał

    2017-08-01

    In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The user feeling of "immersion" and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE. Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

  20. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  1. Development and evaluation of a prototype tracking system using the treatment couch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Stephanie, E-mail: stephanie.lang@usz.ch; Riesterer, Oliver; Klöck, Stephan

    2014-02-15

    Purpose: Tumor motion increases safety margins around the clinical target volume and leads to an increased dose to the surrounding healthy tissue. The authors have developed and evaluated a one-dimensional treatment couch tracking system to counter steer respiratory tumor motion. Three different motion detection sensors with different lag times were evaluated. Methods: The couch tracking system consists of a motion detection sensor, which can be the topometrical system Topos (Cyber Technologies, Germany), the respiratory gating system RPM (Varian Medical Systems) or a laser triangulation system (Micro Epsilon), and the Protura treatment couch (Civco Medical Systems). The control of the treatmentmore » couch was implemented in the block diagram environment Simulink (MathWorks). To achieve real time performance, the Simulink models were executed on a real time engine, provided by Real-Time Windows Target (MathWorks). A proportional-integral control system was implemented. The lag time of the couch tracking system using the three different motion detection sensors was measured. The geometrical accuracy of the system was evaluated by measuring the mean absolute deviation from the reference (static position) during motion tracking. This deviation was compared to the mean absolute deviation without tracking and a reduction factor was defined. A hexapod system was moving according to seven respiration patterns previously acquired with the RPM system as well as according to a sin{sup 6} function with two different frequencies (0.33 and 0.17 Hz) and the treatment table compensated the motion. Results: A prototype system for treatment couch tracking of respiratory motion was developed. The laser based tracking system with a small lag time of 57 ms reduced the residual motion by a factor of 11.9 ± 5.5 (mean value ± standard deviation). An increase in delay time from 57 to 130 ms (RPM based system) resulted in a reduction by a factor of 4.7 ± 2.6. The Topos based tracking system with the largest lag time of 300 ms achieved a mean reduction by a factor of 3.4 ± 2.3. The increase in the penumbra of a profile (1 × 1 cm{sup 2}) for a motion of 6 mm was 1.4 mm. With tracking applied there was no increase in the penumbra. Conclusions: Couch tracking with the Protura treatment couch is achievable. To reliably track all possible respiration patterns without prediction filters a short lag time below 100 ms is needed. More scientific work is necessary to extend our prototype to tracking of internal motion.« less

  2. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  3. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    PubMed

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. SU-E-J-118: Verification of Intrafractional Positional Accuracy Using Ultrasound Autoscan Tracking for Prostate Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Hristov, D; Phillips, T

    Purpose: Transperineal ultrasound imaging is attractive option for imageguided radiation therapy as there is no need to implant fiducials, no extra imaging dose, and real time continuous imaging is possible during treatment. The aim of this study is to verify the tracking accuracy of a commercial ultrasound system under treatment conditions with a male pelvic phantom. Methods: A CT and ultrasound scan were acquired for the male pelvic phantom. The phantom was then placed in a treatment mimicking position on a motion platform. The axial and lateral tracking accuracy of the ultrasound system were verified using an independent optical trackingmore » system. The tracking accuracy was evaluated by tracking the phantom position detected by the ultrasound system, and comparing it to the optical tracking system under the conditions of beam on (15 MV), beam off, poor image quality with an acoustic shadow introduced, and different phantom motion cycles (10 and 20 second periods). Additionally, the time lag between the ultrasound-detected and actual phantom motion was investigated. Results: Displacement amplitudes reported by the ultrasound system and optical system were within 0.5 mm of each other for both directions and all conditions. The ultrasound tracking performance in axial direction was better than in lateral direction. Radiation did not interfere with ultrasound tracking while image quality affected tracking accuracy. The tracking accuracy was better for periodic motion with 20 second period. The time delay between the ultrasound tracking system and the phantom motion was clinically acceptable. Conclusion: Intrafractional prostate motion is a potential source of treatment error especially in the context of emerging SBRT regimens. It is feasible to use transperineal ultrasound daily to monitor prostate motion during treatment. Our results verify the tracking accuracy of a commercial ultrasound system to be better than 1 mm under typical external beam treatment conditions.« less

  5. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  6. An automated method for the evaluation of the pointing accuracy of sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz

    2016-04-01

    The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.

  7. Optical tracking of nanoscale particles in microscale environments

    NASA Astrophysics Data System (ADS)

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  8. Geometric calibration of a coordinate measuring machine using a laser tracking system

    NASA Astrophysics Data System (ADS)

    Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo

    2005-12-01

    This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.

  9. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  10. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  11. Software for Tracking Costs of Mars Projects

    NASA Technical Reports Server (NTRS)

    Wong, Alvin; Warfield, Keith

    2003-01-01

    The Mars Cost Tracking Model is a computer program that administers a system set up for tracking the costs of future NASA projects that pertain to Mars. Previously, no such tracking system existed, and documentation was written in a variety of formats and scattered in various places. It was difficult to justify costs or even track the history of costs of a spacecraft mission to Mars. The present software enables users to maintain all cost-model definitions, documentation, and justifications of cost estimates in one computer system that is accessible via the Internet. The software provides sign-off safeguards to ensure the reliability of information entered into the system. This system may eventually be used to track the costs of projects other than only those that pertain to Mars.

  12. The High Altitude Balloon Experiment demonstration of acquisition, tracking, and pointing technologies (HABE-ATP)

    NASA Astrophysics Data System (ADS)

    Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.

    1995-01-01

    The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.

  13. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  14. Etracker: A Mobile Gaze-Tracking System with Near-Eye Display Based on a Combined Gaze-Tracking Algorithm.

    PubMed

    Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun

    2018-05-19

    Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.

  15. Automatic weld torch guidance control system

    NASA Technical Reports Server (NTRS)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  16. Sun Tracking Systems: A Review

    PubMed Central

    Lee, Chia-Yen; Chou, Po-Cheng; Chiang, Che-Ming; Lin, Chiu-Feng

    2009-01-01

    The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems. PMID:22412341

  17. RATT: RFID Assisted Tracking Tile. Preliminary results.

    PubMed

    Quinones, Dario R; Cuevas, Aaron; Cambra, Javier; Canals, Santiago; Moratal, David

    2017-07-01

    Behavior is one of the most important aspects of animal life. This behavior depends on the link between animals, their nervous systems and their environment. In order to study the behavior of laboratory animals several tools are needed, but a tracking tool is essential to perform a thorough behavioral study. Currently, several visual tracking tools are available. However, they have some drawbacks. For instance, when an animal is inside a cave, or is close to other animals, the tracking cameras cannot always detect the location or movement of this animal. This paper presents RFID Assisted Tracking Tile (RATT), a tracking system based on passive Radio Frequency Identification (RFID) technology in high frequency band according to ISO/IEC 15693. The RATT system is composed of electronic tiles that have nine active RFID antennas attached; in addition, it contains several overlapping passive coils to improve the magnetic field characteristics. Using several tiles, a large surface can be built on which the animals can move, allowing identification and tracking of their movements. This system, that could also be combined with a visual tracking system, paves the way for complete behavioral studies.

  18. UWB Tracking System Design for Lunar/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia

    2006-01-01

    This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.

  19. Optical tracking of nanoscale particles in microscale environments

    PubMed Central

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-01-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research. PMID:27213022

  20. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  1. Computer-aided target tracking in motion analysis studies

    NASA Astrophysics Data System (ADS)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  2. Simultaneous Tracking of Multiple Points Using a Wiimote

    NASA Astrophysics Data System (ADS)

    Skeffington, Alex; Scully, Kyle

    2012-11-01

    This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be tracked. Two quick experiments are presented using the motion tracking system to demonstrate the diversity of tasks this system can handle. The first experiment uses the Wiimote to record the harmonic motion of oscillating masses on a near-frictionless surface, while the second experiment uses the Wiimote as part of a feedback mechanism in a rotational system. The construction, capabilities, demonstrations, and suggested improvements of the system are reported here.

  3. Evaluation of environmental commitment tracking systems for use at CDOT.

    DOT National Transportation Integrated Search

    2011-10-01

    "The purpose of this study is to review existing Environmental Tracking Systems (ETSs) used by other, : select state Departments of Transportation (DOTs), as well as the existing Environmental Commitment : Tracking System (ECTS) currently in use by C...

  4. Implementation of a web-based medication tracking system in a large academic medical center.

    PubMed

    Calabrese, Sam V; Williams, Jonathan P

    2012-10-01

    Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.

  5. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  6. Analysis of hydraulic steering system of tracked all-terrain vehicles' articulated mechanism

    NASA Astrophysics Data System (ADS)

    Meng, Zhongliang; Zang, Hao

    2018-04-01

    As for the researches on the dynamic characteristics of tracked all-terrain vehicles' articulated mechanism, the hydraulic feature of their steering system needs researching more, apart from the study on mechanical models. According to the maximum pressure required by the steering system of tracked all-terrain vehicle and the principle of the steering system, this paper conducts an analysis of the hydraulic steering system of the articulated mechanism. Based on the structure principle of the steering gear, a simulation model of the tracked all-terrain vehicle turning left is built. When building the simulation model of the steering gear, it makes a simulation analysis, taking the tracked all-terrain vehicle turning left as an example.

  7. An auxiliary frequency tracking system for general purpose lock-in amplifiers

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Chen, Liuhao; Huang, Anfeng; Zhao, Kai; Zhang, Hanlu

    2018-04-01

    Lock-in amplifiers (LIAs) are designed to measure weak signals submerged by noise. This is achieved with a signal modulator to avoid low-frequency noise and a narrow-band filter to suppress out-of-band noise. In asynchronous measurement, even a slight frequency deviation between the modulator and the reference may lead to measurement error because the filter’s passband is not flat. Because many commercial LIAs are unable to track frequency deviations, in this paper we propose an auxiliary frequency tracking system. We analyze the measurement error caused by the frequency deviation and propose both a tracking method and an auto-tracking system. This approach requires only three basic parameters, which can be obtained from any general purpose LIA via its communications interface, to calculate the frequency deviation from the phase difference. The proposed auxiliary tracking system is designed as a peripheral connected to the LIA’s serial port, removing the need for an additional power supply. The test results verified the effectiveness of the proposed system; the modified commercial LIA (model SR-850) was able to track the frequency deviation and continuous drift. For step frequency deviations, a steady tracking error of less than 0.001% was achieved within three adjustments, and the worst tracking accuracy was still better than 0.1% for a continuous frequency drift. The tracking system can be used to expand the application scope of commercial LIAs, especially for remote measurements in which the modulation clock and the local reference are separated.

  8. An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.

    2017-03-01

    The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).

  9. A Biocompatible Near-Infrared 3D Tracking System*

    PubMed Central

    Decker, Ryan S.; Shademan, Azad; Opfermann, Justin D.; Leonard, Simon; Kim, Peter C. W.; Krieger, Axel

    2017-01-01

    A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling 3D tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, rapidly changing surgical environment. In this work, we present the tracking system and marker design and compare tracking accuracies to standard optical tracking methods using robotic experiments. At speeds of 1 mm/s, we observe tracking accuracies of 1.61 mm, degrading only to 1.71 mm when the markers are covered in blood and tissue. PMID:28129145

  10. Biocompatible Near-Infrared Three-Dimensional Tracking System.

    PubMed

    Decker, Ryan S; Shademan, Azad; Opfermann, Justin D; Leonard, Simon; Kim, Peter C W; Krieger, Axel

    2017-03-01

    A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling three-dimensional tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, rapidly changing surgical environment. In this work, we present the tracking system and marker design and compare tracking accuracies to standard optical tracking methods using robotic experiments. At speeds of 1 mm/s, we observe tracking accuracies of 1.61 mm, degrading only to 1.71 mm when the markers are covered in blood and tissue.

  11. Automatic detection, tracking and sensor integration

    NASA Astrophysics Data System (ADS)

    Trunk, G. V.

    1988-06-01

    This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.

  12. MULTIPLE PROJECTIONS SYSTEM (MPS): USER'S MANUAL VERSION 2.0

    EPA Science Inventory

    The document is a user's manual for Multiple Projections System (MPS) Version 2.0, based on the 3% reasonable further progress (RFP) tracking system that was developed in FY92/FY93. The 3% RFP tracking system is a Windows application, and enhancements to convert the 3% RFP track...

  13. THE TRACK SYSTEM IN WASHINGTON, D.C.

    ERIC Educational Resources Information Center

    BLACKE, EVIAS, JR.

    THE FOUR AREAS PRESENTED ARE GROUP AND INDIVIDUAL INTELLIGENCE TESTS, ACHIEVEMENT TESTS, EDUCATIONAL GROUPING PROCEDURES, AND FACTORS ASSOCIATED WITH LOW INCOME. A TRACK SYSTEM, OR ANY SYSTEM OF GROUPING, SHOULD PROMOTE RATHER THAN HINDER THE ACHIEVEMENT OF BOTH THE LOW-INCOME GROUPS AND THE HIGHER-INCOME GROUPS. THE PRESENT TRACK SYSTEM IN…

  14. Performance Evaluation of a UWB-RFID System for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Phan, Chan T.; Arndt, D.; Ngo, P.; Gross, J.; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation of a commercially available UWB-RFID system. There are many RFID systems available today, but many provide just basic identification for auditing and inventory tracking. For applications that require high precision real time tracking, UWB technology has been shown to be a viable solution. The use of extremely short bursts of RF pulses offers high immunity to interference from other RF systems, precise tracking due to sub-nanosecond time resolution, and robust performance in multipath environments. The UWB-RFID system Sapphire DART (Digital Active RFID & Tracking) will be introduced in this talk. Laboratory testing using Sapphire DART is performed to evaluate its capability such as coverage area, accuracy, ease of operation, and robustness. Performance evaluation of this system in an operational environment (a receiving warehouse) for inventory tracking is also conducted. Concepts of using the UWB-RFID technology to track astronauts and assets are being proposed for space exploration.

  15. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  16. OpenCV and TYZX : video surveillance for tracking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-08-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less

  17. TH-AB-202-11: Spatial and Rotational Quality Assurance of 6DOF Patient Tracking Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, AH; Liu, X; Grelewicz, Z

    2016-06-15

    Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations (6DOF). In this work, we develop a novel technique to evaluate the 6DOF performance of external motion tracking systems. We apply this methodology to an infrared (IR) marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to follow input trajectories with sub-millimeter and sub-degree accuracy. The 6DOF positions of the robotic system were then tracked and recordedmore » independently by three optical camera systems. A calibration methodology which associates the motion phantom and camera coordinate frames was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20×20×16 mm and 5×5×5 degree workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the IR marker tracking system to have maximal root mean square error (RMSE) values of 0.25 mm translationally and 0.09 degrees rotationally, in any one axis, comparing intended 6DOF positions to positions measured by the IR camera. The 6DOF RSME discrepancy for the first 3D optical surface tracking unit yielded maximal values of 0.60 mm and 0.11 degrees over the same 6DOF volume. An earlier generation 3D optical surface tracker was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.74 mm and 0.28 degrees within the same 6DOF evaluation space. Conclusion: The proposed technique was effective at evaluating the performance of 6DOF patient tracking systems. All systems examined exhibited tracking capabilities at the sub-millimeter and sub-degree level within a 6DOF workspace.« less

  18. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  19. Multi-object tracking of human spermatozoa

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen

    2008-03-01

    We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.

  20. Student Tracking.

    ERIC Educational Resources Information Center

    Donovan, Kevin

    1996-01-01

    This report explains how student tracking systems work and why they are important. It is designed for British funding bodies, further education (FE) colleges, college staff, and software developers to introduce and support systems of student tracking. Chapter 1 provides background information on tracking and the FE sector. Chapter 2 discusses the…

  1. Functional design specification for Stowage List And Hardware Tracking System (SLAHTS). [space shuttles

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.

  2. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    EPA Science Inventory

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  3. 14 CFR 1215.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM.... The Tracking and Data Relay Satellite System including Tracking and Data Relay Satellites (TDRS), the... user ground system/TDRSS interface. (c) Bit stream. The digital electronic signals acquired by TDRSS...

  4. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.

    PubMed

    Wojewoda, K K; Culmer, P R; Gallagher, J F; Jackson, A E; Levesley, M C

    2017-07-01

    This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy.

  5. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  6. A vision-based approach for tramway rail extraction

    NASA Astrophysics Data System (ADS)

    Zwemer, Matthijs H.; van de Wouw, Dennis W. J. M.; Jaspers, Egbert; Zinger, Sveta; de With, Peter H. N.

    2015-03-01

    The growing traffic density in cities fuels the desire for collision assessment systems on public transportation. For this application, video analysis is broadly accepted as a cornerstone. For trams, the localization of tramway tracks is an essential ingredient of such a system, in order to estimate a safety margin for crossing traffic participants. Tramway-track detection is a challenging task due to the urban environment with clutter, sharp curves and occlusions of the track. In this paper, we present a novel and generic system to detect the tramway track in advance of the tram position. The system incorporates an inverse perspective mapping and a-priori geometry knowledge of the rails to find possible track segments. The contribution of this paper involves the creation of a new track reconstruction algorithm which is based on graph theory. To this end, we define track segments as vertices in a graph, in which edges represent feasible connections. This graph is then converted to a max-cost arborescence graph, and the best path is selected according to its location and additional temporal information based on a maximum a-posteriori estimate. The proposed system clearly outperforms a railway-track detector. Furthermore, the system performance is validated on 3,600 manually annotated frames. The obtained results are promising, where straight tracks are found in more than 90% of the images and complete curves are still detected in 35% of the cases.

  7. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  8. Spatial and rotational quality assurance of 6DOF patient tracking systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary

    Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations. In this work, the authors develop a novel technique to evaluate the 6 degree of freedom 6(DOF) (translations and rotations) performance of external motion tracking systems. The authors apply this methodology to an infrared marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to perform motions with sub-millimeter and subdegree accuracy in a 6DOF workspace. An infraredmore » marker tracking system was first used to validate a calibration algorithm which associates the motion phantom coordinate frame to the camera frame. The 6DOF positions of the mobile robotic system in this space were then tracked and recorded independently by an optical surface tracking system after a cranial phantom was rigidly fixed to the moveable platform of the robotic stage. The calibration methodology was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20 × 20 × 16 mm and 5° × 5° × 5° workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the infrared (IR) marker tracking system to have maximal root-mean square error (RMSE) values of 0.18, 0.25, 0.07 mm, 0.05°, 0.05°, and 0.09° in left–right (LR), superior–inferior (SI), anterior–posterior (AP), pitch, roll, and yaw, respectively, comparing the intended 6DOF position and the measured position by the IR camera. Similarly, the 6DOF RSME discrepancy for the HD optical surface tracker yielded maximal values of 0.46, 0.60, 0.54 mm, 0.06°, 0.11°, and 0.08° in LR, SI, AP, pitch, roll, and yaw, respectively, over the same 6DOF evaluative workspace. An earlier generation 3D optical surface tracking unit was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.69, 0.74, 0.47 mm, 0.28°, 0.19°, and 0.18°, in LR, SI, AP, pitch, roll, and yaw, respectively, in the same 6DOF evaluation space. Conclusions: The proposed technique was found to be effective at evaluating the performance of 6DOF patient tracking systems. All observed optical tracking systems were found to exhibit tracking capabilities at the sub-millimeter and subdegree level within a 6DOF workspace.« less

  9. Influence of uneven rail irregularities on the dynamic response of the railway track using a three-dimensional model of the vehicle-track system

    NASA Astrophysics Data System (ADS)

    Naeimi, Meysam; Zakeri, Jabbar Ali; Esmaeili, Morteza; Shadfar, Morad

    2015-01-01

    A mathematical model of the vehicle-track interaction is developed to investigate the coupled behaviour of vehicle-track system, in the presence of uneven irregularities at left/right rails. The railway vehicle is simplified as a 3D multi-rigid-body model, and the track is treated as the two parallel beams on a layered discrete support system. Besides the car-body, the bogies and the wheel sets, the sleepers are assumed to have roll degree of freedom, in order to simulate the in-plane rotation of the components. The wheel-rail interface is treated using a nonlinear Hertzian contact model, coupling the mathematical equations of the vehicle-track systems. The dynamic interaction of the entire system is numerically studied in time domain, employing Newmark's integration method. The track irregularity spectra of both the left/right rails are taken into account, as the inputs of dynamic excitations. The dynamic responses of the track system induced by such irregularities are obtained, particularly in terms of the vertical (bounce) and roll displacements. The numerical model of the present research is validated using several benchmark models reported in the literature, for both the smooth and unsmooth track conditions. Four sample profiles of the measured rail irregularities are considered as the case studies of excitation sources, examining their influences on the dynamic behaviour of the coupled system. The results of numerical simulations demonstrate that the motion of track system is significantly influenced by the presence of uneven irregularities in left/right rails. Dynamic response of the sleepers in the roll direction becomes more sensitive to the rail irregularities, as the unevenness severity of the parallel profiles (quantitative difference between left and right rail spectra) is increased. The severe geometric deformation of the track in the bounce-pitch-roll directions is mainly related to such profile unevenness (cross-level) in left/right rails.

  10. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  11. The feasibility of paper-based Tracking Codes and electronic medical record systems to monitor tobacco-use assessment and intervention in an Individual Practice Association (IPA) Model health maintenance organization (HMO).

    PubMed

    Bentz, Charles J; Davis, Nancy; Bayley, Bruce

    2002-01-01

    Despite evidence of its effectiveness, tobacco cessation is not systematically addressed in routine healthcare settings. Its measurement is part of the problem. A pilot study was designed to develop and implement two different tobacco tracking systems in two independent primary care offices that participated in an IPA Model health maintenance organization in Portland, Oregon. The first clinic, which utilized a paper-based charting system, implemented CPT-like tracking codes to measure and report tobacco-cessation activities, which were eventually included in the managed-care organization's (MCO) claims database. The second clinic implemented an electronic tracking system based on its computerized electronic medical record (EMR) charting system. This paper describes the pilot study, including the processes involved in building provider acceptance for the new tracking systems in these two clinics, the barriers and successes encountered during implementation, and the resources expended by the clinics and by the MCO during the pilot. The findings from the 3-month implementation period were that documentation of tobacco-use status remained stable at 42-45% in the paper-based clinic and increased from 79% to 88% in the EMR clinic. This pilot study demonstrated that Tracking Codes are a feasible preventive-care tracking system in paper-based medical offices. However, high levels of effort and support are needed, and a critical mass of insurers and health plans would need to adopt Tracking Codes before widespread use could be expected. Results of the EMR-based tracking system are also reviewed and discussed.

  12. 3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2013-01-01

    We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411

  13. Model-based control strategies for systems with constraints of the program type

    NASA Astrophysics Data System (ADS)

    Jarzębowska, Elżbieta

    2006-08-01

    The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.

  14. Track-Before-Declare Methods in IR Image Sequences

    DTIC Science & Technology

    1992-09-01

    processing methods of this type, known as track- before-declare (TBD), and sometimes by the misleading term track - before - detect , have been employed in systems...Electronic Systems, Vol. AES-il, No. 6. November 1975. 8. A. Corbeil, J. DiDomizio, Track - Before - Detect Development and Demonstration Program, Phase

  15. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  16. Effect of cross-correlation on track-to-track fusion

    NASA Astrophysics Data System (ADS)

    Saha, Rajat K.

    1994-07-01

    Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.

  17. 78 FR 2695 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... data elements used in the Workplace Environment Tracking System (WETS), a new electronic national..., Workplace Harassment Fact Finding, Threat Assessment Case Tracking, and Workplace Environment Intervention... tracking system for these four processes will reasonably assure that workplace harassment policies and...

  18. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  19. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  20. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  1. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  2. Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Brock, John; Zawada, Dave

    2006-01-01

    "Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.

  3. Monocular Stereo Measurement Using High-Speed Catadioptric Tracking

    PubMed Central

    Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku

    2017-01-01

    This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483

  4. Tracking Behavioral Progress within a Children's Mental Health System: The Vermont Community Adjustment Tracking System.

    ERIC Educational Resources Information Center

    Bruns, Eric J.; Burchard, John D.; Froelich, Peter; Yoe, James T.; Tighe, Theodore

    1998-01-01

    Describes the Vermont Community Adjustment Tracking System (VT-CATS), which utilizes four behavioral instruments to allow intensive, ongoing, and interpretable behavioral assessment of a service system's most challenging children and adolescents. Also explains the adjustment indicator checklists and the ability of VT-CATS to address agencies'…

  5. 77 FR 66793 - Privacy Act of 1974, System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Tracking, system of records in its existing inventory. DATES: This proposed action will be effective on..., USAID is deleting the AID-29 Deployment Tracking system of records because it was never activated. Dated...-29 Deployment Tracking Reason: Based upon a review of AID-29, it has been determined that this system...

  6. 28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from 5...

  7. A secure mobile crowdsensing (MCS) location tracker for elderly in smart city

    NASA Astrophysics Data System (ADS)

    Shien, Lau Khai; Singh, Manmeet Mahinderjit

    2017-10-01

    According to the UN's (United Nations) projection, Malaysia will achieve ageing population status by 2030. The challenge of the growing ageing population is health and social care services. As the population lives longer, the costs of institutional care rises and elderly who not able live independently in their own homes without caregivers. Moreover, it restricted their activity area, safety and freedom in their daily life. Hence, a tracking system is worthy for their caregivers to track their real-time location with efficient. Currently tracking and monitoring systems are unable to satisfy the needs of the community. Hence, Indoor-Outdoor Elderly Secure and Tracking care system (IOET) proposed to track and monitor elderly. This Mobile Crowdsensing type of system is using indoor and outdoor positioning system to locate elder which utilizes the RFID, NFC, biometric system and GPS aim to secure the safety of elderly within indoors and outdoors environment. A mobile application and web-based application to be designed for this system. This system able to real-time tracking by combining GPS and NFC for outdoor coverage where ideally in smart city. In indoor coverage, the system utilizes active RFID tracking elderly movement. The system will prompt caregiver wherever elderly movement or request by using the notification service which provided the real-time notify. Caregiver also can review the place that visited by elderly and trace back elderly movement.

  8. UWB Tracking Algorithms: AOA and TDOA

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, D.; Ngo, P.; Gross, J.; Refford, Melinda

    2006-01-01

    Ultra-Wideband (UWB) tracking prototype systems are currently under development at NASA Johnson Space Center for various applications on space exploration. For long range applications, a two-cluster Angle of Arrival (AOA) tracking method is employed for implementation of the tracking system; for close-in applications, a Time Difference of Arrival (TDOA) positioning methodology is exploited. Both AOA and TDOA are chosen to utilize the achievable fine time resolution of UWB signals. This talk presents a brief introduction to AOA and TDOA methodologies. The theoretical analysis of these two algorithms reveal the affecting parameters impact on the tracking resolution. For the AOA algorithm, simulations show that a tracking resolution less than 0.5% of the range can be achieved with the current achievable time resolution of UWB signals. For the TDOA algorithm used in close-in applications, simulations show that the (sub-inch) high tracking resolution is achieved with a chosen tracking baseline configuration. The analytical and simulated results provide insightful guidance for the UWB tracking system design.

  9. Network Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less

  10. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  11. Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair

    PubMed Central

    ElSaharty, M. A.; zakzouk, Ezz Eldin

    2017-01-01

    Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973

  12. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiinoki, T; Shibuya, K; Sawada, A

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: Themore » colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the tracking accuracy using proposed dual energy subtraction images for clinical cases.« less

  13. Development of three-dimensional tracking system using astigmatic lens method for microscopes

    NASA Astrophysics Data System (ADS)

    Kibata, Hiroki; Ishii, Katsuhiro

    2017-07-01

    We have developed a three-dimensional tracking system for microscopes. Using the astigmatic lens method and a CMOS image sensor, we realize a rapid detection of a target position in a wide range. We demonstrate a target tracking using the developed system.

  14. Continuous fractional-order Zero Phase Error Tracking Control.

    PubMed

    Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan

    2018-04-01

    A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Multi-camera real-time three-dimensional tracking of multiple flying animals

    PubMed Central

    Straw, Andrew D.; Branson, Kristin; Neumann, Titus R.; Dickinson, Michael H.

    2011-01-01

    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in real time—with minimal latency—opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behaviour. Here, we describe a system capable of tracking the three-dimensional position and body orientation of animals such as flies and birds. The system operates with less than 40 ms latency and can track multiple animals simultaneously. To achieve these results, a multi-target tracking algorithm was developed based on the extended Kalman filter and the nearest neighbour standard filter data association algorithm. In one implementation, an 11-camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behaviour of freely flying animals. If combined with other techniques, such as ‘virtual reality’-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals. PMID:20630879

  16. Automatic electronic fish tracking system

    NASA Technical Reports Server (NTRS)

    Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.

    1976-01-01

    A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.

  17. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  18. Real-time acquisition and tracking system with multiple Kalman filters

    NASA Astrophysics Data System (ADS)

    Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.

    1994-07-01

    The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.

  19. The tip/tilt tracking sensor based on multi-anode photo-multiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-yu; Rao, Chang-hui; Tian, Yu; Wei, Kai

    2013-09-01

    Based on the demands of high sensitivity, precision and frame rate of tip/tilt tracking sensors in acquisition, tracking and pointing (ATP) systems for satellite-ground optical communications, this paper proposes to employ the multiple-anode photo-multiplier tubes (MAPMTs) in tip/tilt tracking sensors. Meanwhile, an array-type photon-counting system was designed to meet the requirements of the tip/tilt tracking sensors. The experiment results show that the tip/tilt tracking sensors based on MAPMTs can achieve photon sensitivity and high frame rate as well as low noise.

  20. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  1. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  2. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  3. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  4. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  5. The TREC Interactive Track: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Over, Paul

    2001-01-01

    Discussion of the study of interactive information retrieval (IR) at the Text Retrieval Conferences (TREC) focuses on summaries of the Interactive Track at each conference. Describes evolution of the track, which has changed from comparing human-machine systems with fully automatic systems to comparing interactive systems that focus on the search…

  6. 25 CFR 900.52 - What type of property is the property management system required to track?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...

  7. 25 CFR 900.52 - What type of property is the property management system required to track?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...

  8. 25 CFR 900.52 - What type of property is the property management system required to track?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...

  9. 25 CFR 900.52 - What type of property is the property management system required to track?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...

  10. 25 CFR 900.52 - What type of property is the property management system required to track?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...

  11. Reconstructing the flight kinematics of swarming and mating behavior in wild mosquitoes

    USDA-ARS?s Scientific Manuscript database

    We describe a tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, ...

  12. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  13. Research on SaaS and Web Service Based Order Tracking

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Sheng, Buyun; Gong, Lixiong; Yang, Mingzhong

    To solve the order tracking of across enterprises in Dynamic Virtual Enterprise (DVE), a SaaS and web service based order tracking solution was designed by analyzing the order management process in DVE. To achieve the system, the SaaS based architecture of data management on order tasks manufacturing states was constructed, and the encapsulation method of transforming application system into web service was researched. Then the process of order tracking in the system was given out. Finally, the feasibility of this study was verified by the development of a prototype system.

  14. H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.

    PubMed

    Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua

    2014-10-01

    This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.

  15. Real-time target tracking and locating system for UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Tang, Linbo; Fu, Huiquan; Li, Maowen

    2017-07-01

    In order to achieve real-time target tracking and locating for UAV, a reliable processing system is built on the embedded platform. Firstly, the video image is acquired in real time by the photovoltaic system on the UAV. When the target information is known, KCF tracking algorithm is adopted to track the target. Then, the servo is controlled to rotate with the target, when the target is in the center of the image, the laser ranging module is opened to obtain the distance between the UAV and the target. Finally, to combine with UAV flight parameters obtained by BeiDou navigation system, through the target location algorithm to calculate the geodetic coordinates of the target. The results show that the system is stable for real-time tracking of targets and positioning.

  16. Preview-Based Stable-Inversion for Output Tracking

    NASA Technical Reports Server (NTRS)

    Zou, Qing-Ze; Devasia, Santosh

    1999-01-01

    Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.

  17. Positron emission particle tracking and its application to granular media

    NASA Astrophysics Data System (ADS)

    Parker, D. J.

    2017-05-01

    Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

  18. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  19. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.

    PubMed

    Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi

    2018-01-01

    In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  1. Phase fluctuation spectra: New radio science information to become available in the DSN tracking system Mark III-77

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    An algorithm was developed for the continuous and automatic computation of Doppler noise concurrently at four sample rate intervals, evenly spanning three orders of magnitude. Average temporal Doppler phase fluctuation spectra will be routinely available in the DSN tracking system Mark III-77 and require little additional processing. The basic (noise) data will be extracted from the archival tracking data file (ATDF) of the tracking data management system.

  2. Object tracking with stereo vision

    NASA Technical Reports Server (NTRS)

    Huber, Eric

    1994-01-01

    A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.

  3. Office of Tracking and Data Acquisition. [deep space network and spacecraft tracking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Office of Tracking and Data Acquisition (OTDA) and its two worldwide tracking network facilities, the Spaceflight Tracking and Data Network and the Deep Space Network, are described. Other topics discussed include the NASA communications network, the tracking and data relay satellite system, other OTDA tracking activities, and OTDA milestones.

  4. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  5. Remote gaze tracking system for 3D environments.

    PubMed

    Congcong Liu; Herrup, Karl; Shi, Bertram E

    2017-07-01

    Eye tracking systems are typically divided into two categories: remote and mobile. Remote systems, where the eye tracker is located near the object being viewed by the subject, have the advantage of being less intrusive, but are typically used for tracking gaze points on fixed two dimensional (2D) computer screens. Mobile systems such as eye tracking glasses, where the eye tracker are attached to the subject, are more intrusive, but are better suited for cases where subjects are viewing objects in the three dimensional (3D) environment. In this paper, we describe how remote gaze tracking systems developed for 2D computer screens can be used to track gaze points in a 3D environment. The system is non-intrusive. It compensates for small head movements by the user, so that the head need not be stabilized by a chin rest or bite bar. The system maps the 3D gaze points of the user onto 2D images from a scene camera and is also located remotely from the subject. Measurement results from this system indicate that it is able to estimate gaze points in the scene camera to within one degree over a wide range of head positions.

  6. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research

    PubMed Central

    Niehorster, Diederick C.; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive’s position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive’s tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement. PMID:28567271

  7. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.

    PubMed

    Niehorster, Diederick C; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive's position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive's tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement.

  8. Rotational symmetric HMD with eye-tracking capability

    NASA Astrophysics Data System (ADS)

    Liu, Fangfang; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    As an important auxiliary function of head-mounted displays (HMDs), eye tracking has an important role in the field of intelligent human-machine interaction. In this paper, an eye-tracking HMD system (ET-HMD) is designed based on the rotational symmetric system. The tracking principle in this paper is based on pupil-corneal reflection. The ET-HMD system comprises three optical paths for virtual display, infrared illumination, and eye tracking. The display optics is shared by three optical paths and consists of four spherical lenses. For the eye-tracking path, an extra imaging lens is added to match the image sensor and achieve eye tracking. The display optics provides users a 40° diagonal FOV with a ״ 0.61 OLED, the 19 mm eye clearance, and 10 mm exit pupil diameter. The eye-tracking path can capture 15 mm × 15 mm of the users' eyes. The average MTF is above 0.1 at 26 lp/mm for the display path, and exceeds 0.2 at 46 lp/mm for the eye-tracking path. Eye illumination is simulated using LightTools with an eye model and an 850 nm near-infrared LED (NIR-LED). The results of the simulation show that the illumination of the NIR-LED can cover the area of the eye model with the display optics that is sufficient for eye tracking. The integrated optical system HMDs with eye-tracking feature can help improve the HMD experience of users.

  9. Tracking-integrated systems for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  10. Isolating the incentive salience of reward-associated stimuli: value, choice, and persistence

    PubMed Central

    Chow, Jonathan J.

    2015-01-01

    Sign- and goal-tracking are differentially associated with drug abuse-related behavior. Recently, it has been hypothesized that sign- and goal-tracking behavior are mediated by different neurobehavioral valuation systems, including differential incentive salience attribution. Herein, we used different conditioned stimuli to preferentially elicit different response types to study the different incentive valuation characteristics of stimuli associated with sign- and goal-tracking within individuals. The results demonstrate that all stimuli used were equally effective conditioned stimuli; however, only a lever stimulus associated with sign-tracking behavior served as a robust conditioned reinforcer and was preferred over a tone associated with goal-tracking. Moreover, the incentive value attributed to the lever stimulus was capable of promoting suboptimal choice, leading to a significant reduction in reinforcers (food) earned. Furthermore, sign-tracking to a lever was more persistent than goal-tracking to a tone under omission and extinction contingencies. Finally, a conditional discrimination procedure demonstrated that sign-tracking to a lever and goal-tracking to a tone were dependent on learned stimulus–reinforcer relations. Collectively, these results suggest that the different neurobehavioral valuation processes proposed to govern sign- and goal-tracking behavior are independent but parallel processes within individuals. Examining these systems within individuals will provide a better understanding of how one system comes to dominate stimulus–reward learning, thus leading to the differential role these systems play in abuse-related behavior. PMID:25593298

  11. Tape tracking and handling for magnetic tape recorders. [aboard spacecraft

    NASA Technical Reports Server (NTRS)

    Paroby, W.; Disilvestre, R.

    1975-01-01

    One of the critical performance and life limiting elements of a spacecraft tape recorder instrumentation system which has received little attention in technical literature is magnetic tape tracking and handling technology. This technology is required to understand how to gently transfer tape from one reel to another with proper alignment and a desirable uniform velocity at the read and write transducer heads. The increased demand for high data rate (i.e., multi-track spacecraft recording instrumentation systems), coupled with performance under extreme environmental conditions, requires a thorough knowledge of the various parameters which establish an optimum designed tape tracking and handling system. Stress analysis techniques are required to evaluate these parameters substantiated with test tape tracking data, to show the effect of each parameter on a tape recorder instrumentation tracking system. The technology is applicable to ground type tape recorders where the detrimental effects of edge guidance can be eliminated.

  12. Development of a multitarget tracking system for paramecia

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Sing; Huang, Ke-Nung; Jen, Sun-Lon; Li, Yan-Chay; Young, Ming-Shing

    2010-07-01

    This investigation develops a multitarget tracking system for the motile protozoa, paramecium. The system can recognize, track, and record the orbit of swimming paramecia within a 4 mm diameter of a circular experimental pool. The proposed system is implemented using an optical microscope, a charge-coupled device camera, and a software tool, Laboratory Virtual Instrumentation Engineering Workbench (LABVIEW). An algorithm for processing the images and analyzing the traces of the paramecia is developed in LABVIEW. It focuses on extracting meaningful data in an experiment and recording them to elucidate the behavior of paramecia. The algorithm can also continue to track paramecia even if they are transposed or collide with each other. The experiment demonstrates that this multitarget tracking design can really track more than five paramecia and simultaneously yield meaningful data from the moving paramecia at a maximum speed of 1.7 mm/s.

  13. Correlation and 3D-tracking of objects by pointing sensors

    DOEpatents

    Griesmeyer, J. Michael

    2017-04-04

    A method and system for tracking at least one object using a plurality of pointing sensors and a tracking system are disclosed herein. In a general embodiment, the tracking system is configured to receive a series of observation data relative to the at least one object over a time base for each of the plurality of pointing sensors. The observation data may include sensor position data, pointing vector data and observation error data. The tracking system may further determine a triangulation point using a magnitude of a shortest line connecting a line of sight value from each of the series of observation data from each of the plurality of sensors to the at least one object, and perform correlation processing on the observation data and triangulation point to determine if at least two of the plurality of sensors are tracking the same object. Observation data may also be branched, associated and pruned using new incoming observation data.

  14. Decoupled direct tracking control system based on use of a virtual track for multilayer disk with a separate guide layer

    NASA Astrophysics Data System (ADS)

    Tanaka, Yukinobu; Ogata, Takeshi; Imagawa, Seiji

    2015-09-01

    We developed a decoupled direct tracking control system for multilayer optical disk that uses a separate guide layer. Data marks are recorded on a recording layer immediately above the guide layer by using two spatially separated spots with different wavelengths. Accurate data mark recording requires that the relative positions of the corresponding spots on the recording layer and guide layer are maintained. However, a disk tilt can shift their relative positions and cause previously recorded data marks to be overwritten. Additionally, a two-input/two-output control system is susceptible to mutual interference phenomenon between the two outputs, which can destabilize tracking control. A tracking control system based on use of data marks previously recorded as a virtual track has been developed that prevents spot shifting and mutual interference even if the disk tilt reaches 0.7°, thereby preventing overwriting.

  15. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  16. System and method for determining stability of a neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  17. Handheld pose tracking using vision-inertial sensors with occlusion handling

    NASA Astrophysics Data System (ADS)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  18. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  19. Development of a railway wagon-track interaction model: Case studies on excited tracks

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Chen, Xianmai; Li, Xuwei; He, Xianglin

    2018-02-01

    In this paper, a theoretical framework for modeling the railway wagon-ballast track interactions is presented, in which the dynamic equations of motion of wagon-track systems are constructed by effectively coupling the linear and nonlinear dynamic characteristics of system components. For the linear components, the energy-variational principle is directly used to derive their dynamic matrices, while for the nonlinear components, the dynamic equilibrium method is implemented to deduce the load vectors, based on which a novel railway wagon-ballast track interaction model is developed, and being validated by comparing with the experimental data measured from a heavy haul railway and another advanced model. With this study, extensive contributions in figuring out the critical speed of instability, limits and localizations of track irregularities over derailment accidents are presented by effectively integrating the dynamic simulation model, the track irregularity probabilistic model and time-frequency analysis method. The proposed approaches can provide crucial information to guarantee the running safety and stability of the wagon-track system when considering track geometries and various running speeds.

  20. Intelligent surgical laser system configuration and software implementation

    NASA Astrophysics Data System (ADS)

    Hsueh, Chi-Fu T.; Bille, Josef F.

    1992-06-01

    An intelligent surgical laser system, which can help the ophthalmologist to achieve higher precision and control during their procedures, has been developed by ISL as model CLS 4001. In addition to the laser and laser delivery system, the system is also equipped with a vision system (IPU), robotics motion control (MCU), and a tracking closed loop system (ETS) that tracks the eye in three dimensions (X, Y and Z). The initial patient setup is computer controlled with guidance from the vision system. The tracking system is automatically engaged when the target is in position. A multi-level tracking system is developed by integrating our vision and tracking systems which have been able to maintain our laser beam precisely on target. The capabilities of the automatic eye setup and the tracking in three dimensions provides for improved accuracy and measurement repeatability. The system is operated through the Surgical Control Unit (SCU). The SCU communicates with the IPU and the MCU through both ethernet and RS232. Various scanning pattern (i.e., line, curve, circle, spiral, etc.) can be selected with given parameters. When a warning is activated, a voice message is played that will normally require a panel touch acknowledgement. The reliability of the system is ensured in three levels: (1) hardware, (2) software real time monitoring, and (3) user. The system is currently under clinical validation.

  1. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  2. Considerations for multiple hypothesis correlation on tactical platforms

    NASA Astrophysics Data System (ADS)

    Thomas, Alan M.; Turpen, James E.

    2013-05-01

    Tactical platforms benefit greatly from the fusion of tracks from multiple sources in terms of increased situation awareness. As a necessary precursor to this track fusion, track-to-track association, or correlation, must first be performed. The related measurement-to-track fusion problem has been well studied with multiple hypothesis tracking and multiple frame assignment methods showing the most success. The track-to-track problem differs from this one in that measurements themselves are not available but rather track state update reports from the measuring sensors. Multiple hypothesis, multiple frame correlation systems have previously been considered; however, their practical implementation under the constraints imposed by tactical platforms is daunting. The situation is further exacerbated by the inconvenient nature of reports from legacy sensor systems on bandwidth- limited communications networks. In this paper, consideration is given to the special difficulties encountered when attempting the correlation of tracks from legacy sensors on tactical aircraft. Those difficulties include the following: covariance information from reporting sensors is frequently absent or incomplete; system latencies can create temporal uncertainty in data; and computational processing is severely limited by hardware and architecture. Moreover, consideration is given to practical solutions for dealing with these problems in a multiple hypothesis correlator.

  3. Tenure Track Career System as a Strategic Instrument for Academic Leaders

    ERIC Educational Resources Information Center

    Pietilä, Maria

    2015-01-01

    This study examines the purposes for which leaders in universities use academic career systems. It focuses on the tenure track system which is new to Finland. Tenure track represents a newly established internal career path in a situation in which Finnish universities' organizational autonomy increased via new legislation from 2010. Drawing…

  4. Ultra-Wideband Time-Difference-of-Arrival Two-Point-Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2009-01-01

    A UWB TDOA Two-Point-Tracking System has been conceived and developed at JSC. This system can provide sub-inch tracking capability of two points on one target. This capability can be applied to guide a docking process in a 2D space. Lab tests demonstrate the feasibility of this technology.

  5. Assessing the Potential Use of Eye-Tracking Triangulation for Evaluating the Usability of an Online Diabetes Exercise System.

    PubMed

    Schaarup, Clara; Hartvigsen, Gunnar; Larsen, Lars Bo; Tan, Zheng-Hua; Årsand, Eirik; Hejlesen, Ole Kristian

    2015-01-01

    The Online Diabetes Exercise System was developed to motivate people with Type 2 diabetes to do a 25 minutes low-volume high-intensity interval training program. In a previous multi-method evaluation of the system, several usability issues were identified and corrected. Despite the thorough testing, it was unclear whether all usability problems had been identified using the multi-method evaluation. Our hypothesis was that adding the eye-tracking triangulation to the multi-method evaluation would increase the accuracy and completeness when testing the usability of the system. The study design was an Eye-tracking Triangulation; conventional eye-tracking with predefined tasks followed by The Post-Experience Eye-Tracked Protocol (PEEP). Six Areas of Interests were the basis for the PEEP-session. The eye-tracking triangulation gave objective and subjective results, which are believed to be highly relevant for designing, implementing, evaluating and optimizing systems in the field of health informatics. Future work should include testing the method on a larger and more representative group of users and apply the method on different system types.

  6. Real time eye tracking using Kalman extended spatio-temporal context learning

    NASA Astrophysics Data System (ADS)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  7. Multisensor data fusion for integrated maritime surveillance

    NASA Astrophysics Data System (ADS)

    Premji, A.; Ponsford, A. M.

    1995-01-01

    A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.

  8. Reducing Delay in Diagnosis: Multistage Recommendation Tracking.

    PubMed

    Wandtke, Ben; Gallagher, Sarah

    2017-11-01

    The purpose of this study was to determine whether a multistage tracking system could improve communication between health care providers, reducing the risk of delay in diagnosis related to inconsistent communication and tracking of radiology follow-up recommendations. Unconditional recommendations for imaging follow-up of all diagnostic imaging modalities excluding mammography (n = 589) were entered into a database and tracked through a multistage tracking system for 13 months. Tracking interventions were performed for patients for whom completion of recommended follow-up imaging could not be identified 1 month after the recommendation due date. Postintervention compliance with the follow-up recommendation required examination completion or clinical closure (i.e., biopsy, limited life expectancy or death, or subspecialist referral). Baseline radiology information system checks performed 1 month after the recommendation due date revealed timely completion of 43.1% of recommended imaging studies at our institution before intervention. Three separate tracking interventions were studied, showing effectiveness between 29.0% and 57.8%. The multistage tracking system increased the examination completion rate to 70.5% (a 52% increase) and reduced the rate of unknown follow-up compliance and the associated risk of delay in diagnosis to 13.9% (a 74% decrease). Examinations completed after tracking intervention generated revenue of 4.1 times greater than the labor cost. Performing sequential radiology recommendation tracking interventions can substantially reduce the rate of unknown follow-up compliance and add value to the health system. Unknown follow-up compliance is a risk factor for delay in diagnosis, a form of preventable medical error commonly identified in malpractice claims involving radiologists and office-based practitioners.

  9. WiFi RFID demonstration for resource tracking in a statewide disaster drill.

    PubMed

    Cole, Stacey L; Siddiqui, Javeed; Harry, David J; Sandrock, Christian E

    2011-01-01

    To investigate the capabilities of Radio Frequency Identification (RFID) tracking of patients and medical equipment during a simulated disaster response scenario. RFID infrastructure was deployed at two small rural hospitals, in one large academic medical center and in two vehicles. Several item types from the mutual aid equipment list were selected for tracking during the demonstration. A central database server was installed at the UC Davis Medical Center (UCDMC) that collected RFID information from all constituent sites. The system was tested during a statewide disaster drill. During the drill, volunteers at UCDMC were selected to locate assets using the traditional method of locating resources and then using the RFID system. This study demonstrated the effectiveness of RFID infrastructure in real-time resource identification and tracking. Volunteers at UCDMC were able to locate assets substantially faster using RFID, demonstrating that real-time geolocation can be substantially more efficient and accurate than traditional manual methods. A mobile, Global Positioning System (GPS)-enabled RFID system was installed in a pediatric ambulance and connected to the central RFID database via secure cellular communication. This system is unique in that it provides for seamless region-wide tracking that adaptively uses and seamlessly integrates both outdoor cellular-based mobile tracking and indoor WiFi-based tracking. RFID tracking can provide a real-time picture of the medical situation across medical facilities and other critical locations, leading to a more coordinated deployment of resources. The RFID system deployed during this study demonstrated the potential to improve the ability to locate and track victims, healthcare professionals, and medical equipment during a region-wide disaster.

  10. Research on regional intrusion prevention and control system based on target tracking

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin

    2017-08-01

    In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.

  11. Active Multimodal Sensor System for Target Recognition and Tracking

    PubMed Central

    Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-01-01

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609

  12. Error Tracking System

    EPA Pesticide Factsheets

    Error Tracking System is a database used to store & track error notifications sent by users of EPA's web site. ETS is managed by OIC/OEI. OECA's ECHO & OEI Envirofacts use it. Error notifications from EPA's home Page under Contact Us also uses it.

  13. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  14. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  15. Evolution of the SOFIA tracking control system

    NASA Astrophysics Data System (ADS)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  16. Along-track calibration of SWIR push-broom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2016-05-01

    Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.

  17. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  18. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking.

    PubMed

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.

  19. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking

    PubMed Central

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657

  20. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    PubMed

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  1. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    PubMed

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  3. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones.

    PubMed

    Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun

    2015-12-05

    Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy.

  4. Nextgen Navy eLearning Tracking

    DTIC Science & Technology

    2014-12-01

    ELEARNING TRACKING by William E. Miller December 2014 Thesis Advisor: Man-Tak Shing Co-Advisor: Arijit Das THIS PAGE INTENTIONALLY LEFT......Navy’s eLearning (NeL) computer-based learning system relies on a Learning Management System (LMS) for content delivery and tracking learning

  5. TMDL TRACKING SYSTEM

    EPA Science Inventory

    Resource Purpose:The TMDL Tracking System database contains information on the waters listed under section 303(d) of the Clean Water Act and to track those listed waters through TMDL development. The purpose of the database is to allow EPA, the States/Territories/Tribes, ...

  6. SRNL Tagging and Tracking Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    SRNL generates a next generation satellite base tracking system. The tagging and tracking system can work in remote wilderness areas, inside buildings, underground and other areas not well served by traditional GPS. It’s a perfect response to customer needs and market demand.

  7. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    NASA Astrophysics Data System (ADS)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  8. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1996-01-01

    In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  9. Tracking scanning laser ophthalmoscope (TSLO)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.

    2003-07-01

    The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

  10. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    NASA Astrophysics Data System (ADS)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  11. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR TRACKING SYSTEM (UA-D-28.0)

    EPA Science Inventory

    The Arizona Border Study used a system that tracks what occurs to a sample and provides the status of that sample at any given time. In essence, the tracking system provides an electronic chain of custody record for each sample as it moves through the project. This is achieved ...

  12. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR TRACKING SYSTEM (UA-D-28.0)

    EPA Science Inventory

    The NHEXAS Arizona project designed a system that tracks what occurs to a sample and provides the status of that sample at any given time. In essence, the tracking system provides an electronic chain of custody record for each sample as it moves through the project. This is ach...

  13. Solid waste information and tracking system server conversion project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  14. Can low-cost motion-tracking systems substitute a Polhemus system when researching social motor coordination in children?

    PubMed

    Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J

    2017-04-01

    Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.

  15. Submarine Combat Systems Engineering Project Capstone Project

    DTIC Science & Technology

    2011-06-06

    sonar , imaging, Electronic Surveillance (ES) and communications. These sensors passively detect contacts, which emit... passive sensors is included. A Search Detect Identify Track Decide Engage Assess 3 contact can be sensed by the system as either surface or... Detect Track Avoid Search Detect Identify Track Search Engage Assess Detect Track Avoid Search • SONAR •Imagery •TC • SONAR • SONAR •EW •Imagery •ESM

  16. Thermal management and mechanical structures for silicon detector systems

    NASA Astrophysics Data System (ADS)

    Viehhauser, G.

    2015-09-01

    Due to the size of current silicon tracking systems system aspects have become a major design driver. This article discusses requirements for the engineering of the mechanical structures and thermal management of such systems and reviews solutions developed to satisfy them. Modern materials and fabrication techniques have been instrumental in constructing these devices and will be discussed here. Finally, this paper will describe current and potential future developments in the engineering of silicon tracking systems which will shape the silicon tracking systems of the future.

  17. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    PubMed Central

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.

    2017-01-01

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860

  18. Tracking and Sense of Futility: The Impact of Between-School Tracking versus Within-School Tracking in Secondary Education in Flanders (Belgium)

    ERIC Educational Resources Information Center

    Van Houtte, Mieke; Stevens, Peter A. J.

    2015-01-01

    It has been established since the 1960s that tracking yields negative consequences for students in lower tracks. As this research has been carried out mainly in the USA and UK, the effects of tracking have been demonstrated in systems of within-school tracking mostly. However, in many European countries--such as Belgium (Flanders)--tracking is…

  19. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Technical Reports Server (NTRS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-01-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  20. Privacy Act System of Records: Confidential Business Information Tracking System, EPA-20

    EPA Pesticide Factsheets

    Learn about the Confidential Business Information Tracking System, including who is covered in the system, the purpose of data collection, routine uses for the system's records, and other security procedures.

  1. SRNL Tagging and Tracking Video

    ScienceCinema

    None

    2018-01-16

    SRNL generates a next generation satellite base tracking system. The tagging and tracking system can work in remote wilderness areas, inside buildings, underground and other areas not well served by traditional GPS. It’s a perfect response to customer needs and market demand.

  2. Implantable acoustic-beacon automatic fish-tracking system

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.; Ferguson, R. L.; Richards, C. E.

    1977-01-01

    A portable automatic fish tracking system was developed for monitoring the two dimensional movements of small fish within fixed areas of estuarine waters and lakes. By using the miniature pinger previously developed for this application, prototype tests of the system were conducted in the York River near the Virginia Institute of Marine Science with two underwater listening stations. Results from these tests showed that the tracking system could position the miniature pinger signals to within + or - 2.5 deg and + or - 135 m at ranges up to 2.5 km. The pingers were implanted in small fish and were successfully tracked at comparable ranges. No changes in either fish behavior or pinger performance were observed as a result of the implantation. Based on results from these prototype tests, it is concluded that the now commercially available system provides an effective approach to underwater tracking of small fish within a fixed area of interest.

  3. Implementation of a vector-based tracking loop receiver in a pseudolite navigation system.

    PubMed

    So, Hyoungmin; Lee, Taikjin; Jeon, Sanghoon; Kim, Chongwon; Kee, Changdon; Kim, Taehee; Lee, Sanguk

    2010-01-01

    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near-far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage.

  4. Method and system for detecting polygon boundaries of structures in images as particle tracks through fields of corners and pixel gradients

    DOEpatents

    Paglieroni, David W [Pleasanton, CA; Manay, Siddharth [Livermore, CA

    2011-12-20

    A stochastic method and system for detecting polygon structures in images, by detecting a set of best matching corners of predetermined acuteness .alpha. of a polygon model from a set of similarity scores based on GDM features of corners, and tracking polygon boundaries as particle tracks using a sequential Monte Carlo approach. The tracking involves initializing polygon boundary tracking by selecting pairs of corners from the set of best matching corners to define a first side of a corresponding polygon boundary; tracking all intermediate sides of the polygon boundaries using a particle filter, and terminating polygon boundary tracking by determining the last side of the tracked polygon boundaries to close the polygon boundaries. The particle tracks are then blended to determine polygon matches, which may be made available, such as to a user, for ranking and inspection.

  5. Soft-information flipping approach in multi-head multi-track BPMR systems

    NASA Astrophysics Data System (ADS)

    Warisarn, C.; Busyatras, W.; Myint, L. M. M.

    2018-05-01

    Inter-track interference is one of the most severe impairments in bit-patterned media recording system. This impairment can be effectively handled by a modulation code and a multi-head array jointly processing multiple tracks; however, such a modulation constraint has never been utilized to improve the soft-information. Therefore, this paper proposes the utilization of modulation codes with an encoded constraint defined by the criteria for soft-information flipping during a three-track data detection process. Moreover, we also investigate the optimal offset position of readheads to provide the most improvement in system performance. The simulation results indicate that the proposed systems with and without position jitter are significantly superior to uncoded systems.

  6. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  7. Tracking Systems for Virtual Rehabilitation: Objective Performance vs. Subjective Experience. A Practical Scenario

    PubMed Central

    Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano

    2015-01-01

    Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. PMID:25808765

  8. Marker-less multi-frame motion tracking and compensation in PET-brain imaging

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.

    2015-03-01

    In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.

  9. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  10. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  11. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    PubMed

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Application of the SRI cloud-tracking technique to rapid-scan GOES observations

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Endlich, R. M.

    1980-01-01

    An automatic cloud tracking system was applied to multilayer clouds associated with severe storms. The method was tested using rapid scan observations of Hurricane Eloise obtained by the GOES satellite on 22 September 1975. Cloud tracking was performed using clustering based either on visible or infrared data. The clusters were tracked using two different techniques. The data of 4 km and 8 km resolution of the automatic system yielded comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System.

  13. Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.

    PubMed

    Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D

    2017-10-01

    This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.

  14. Design of efficient and simple interface testing equipment for opto-electric tracking system

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao

    2016-10-01

    Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.

  15. 49 CFR 232.303 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... repair vehicle is used to conduct the repairs. (2) Major repair means a repair that normally would... automated tracking system approved for use by FRA, shall contain the following information about the... may use an electronic or automated tracking system to track the required information and the...

  16. 49 CFR 232.303 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... repair vehicle is used to conduct the repairs. (2) Major repair means a repair that normally would... automated tracking system approved for use by FRA, shall contain the following information about the... may use an electronic or automated tracking system to track the required information and the...

  17. 49 CFR 232.303 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... repair vehicle is used to conduct the repairs. (2) Major repair means a repair that normally would... automated tracking system approved for use by FRA, shall contain the following information about the... may use an electronic or automated tracking system to track the required information and the...

  18. 49 CFR 232.303 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... repair vehicle is used to conduct the repairs. (2) Major repair means a repair that normally would... automated tracking system approved for use by FRA, shall contain the following information about the... may use an electronic or automated tracking system to track the required information and the...

  19. 49 CFR 232.303 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... repair vehicle is used to conduct the repairs. (2) Major repair means a repair that normally would... automated tracking system approved for use by FRA, shall contain the following information about the... may use an electronic or automated tracking system to track the required information and the...

  20. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Gardner, Chester S.

    1989-01-01

    Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.

  1. 77 FR 10430 - Revision to the South Coast Air Quality Management District Portion of the California State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... District's use of the negative NSR balances and other pre-1990 era offsets to fund the NSR tracking system... negative NSR balances and other pre-1990 era offsets. Proposed SCAMQD NSR Offset Tracking System, Oct. 14... District made in October 2005 to the existing NSR tracking system significantly decreased the balance of...

  2. Non-Static error tracking control for near space airship loading platform

    NASA Astrophysics Data System (ADS)

    Ni, Ming; Tao, Fei; Yang, Jiandong

    2018-01-01

    A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.

  3. Tracking Control and System Development for Laser-Driven Micro-Vehicles

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Hoshino, Kentaro; Hara, Shinji; Shiokata, Daisuke; Yabe, Takashi

    The purpose of this paper is to design a control system for an integrated laser propulsion/tracking system to achieve continuous motion and control of laser-driven micro-vehicles. Laser propulsion is significant in achieving miniature and light micro-vehicles. A laser-driven micro-airplane has been studied using a paper airplane and YAG laser, resulting in successful gliding of the airplane. High-performance laser tracking control is required to achieve continuous flight. This paper presents a control design strategy based on the generalized Kalman-Yakubovic-Popov lemma to achieve this requirement. Experiments have been carried out to evaluate the performance of the integrated laser propulsion/tracking system.

  4. A real-time sub-μrad laser beam tracking system

    NASA Astrophysics Data System (ADS)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  5. 40 CFR 73.33 - Authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.33 Authorized account representative. (a) Following the establishment of an Allowance Tracking System account, all matters pertaining...

  6. 40 CFR 73.33 - Authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.33 Authorized account representative. (a) Following the establishment of an Allowance Tracking System account, all matters pertaining...

  7. Reconstructing the flight kinematics of swarming and mating in wild mosquitoes

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2012-01-01

    We describe a novel tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, low frame-rate (25 frames per second) video streams from a stereo camera system. Because flying A. gambiae move at 1–4 m s−1, they appear as faded streaks in the images or sometimes do not appear at all. We provide an adaptive algorithm to search for missing streaks and a likelihood function that uses streak endpoints to extract velocity information. A modified multi-hypothesis tracker probabilistically addresses occlusions and a particle filter estimates the trajectories. The output of the tracking algorithm is a set of track segments with an average length of 0.6–1 s. The segments are verified and combined under human supervision to create individual tracks up to the duration of the video (90 s). We evaluate tracking performance using an established metric for multi-target tracking and validate the accuracy using independent stereo measurements of a single swarm. Three-dimensional reconstructions of A. gambiae swarming and mating events are presented. PMID:22628212

  8. Second sound tracking system

    NASA Astrophysics Data System (ADS)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  9. A systematic review of patient tracking systems for use in the pediatric emergency department.

    PubMed

    Dobson, Ian; Doan, Quynh; Hung, Geoffrey

    2013-01-01

    Patient safety is of great importance in the pediatric emergency department (PED). The combination of acutely and critically ill patients and high patient volumes creates a need for systems to support physicians in making accurate and timely diagnoses. Electronic patient tracking systems can potentially improve PED safety by reducing overcrowding and enhancing security. To enhance our understanding of current electronic tracking technologies, how they are implemented in a clinical setting, and resulting effect on patient care outcomes including patient safety. Nine databases were searched. Two independent reviewers identified articles that contained reference to patient tracking technologies in pediatrics or emergency medicine. Quantitative studies were assessed independently for methodological strength by two reviewers using an external assessment tool. Of 2292 initial articles, 22 were deemed relevant. Seventeen were qualitative, and the remaining five quantitative articles were assessed as being methodologically weak. Existing patient tracking systems in the ED included: infant monitoring/abduction prevention; barcode identification; radiofrequency identification (RFID)- or infrared (IR)-based patient tracking. Twenty articles supported the use of tracking technology to enhance patient safety or improve efficiency. One article failed to support the use of IR patient sensors due to study design flaws. Support exists for the use of barcode-, IR-, and RFID-based patient tracking systems to improve ED patient safety and efficiency. A lack of methodologically strong studies indicates a need for further evidence-based support for the implementation of patient tracking technology in a clinical or research setting. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Automated tracking for advanced satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  11. Orbit Determination of the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) Mission Using Differenced One-way Doppler (DOWD)Tracking Data from the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.; Maher, Michael; Blizzard, Michael; Showell, Avanaugh; Asher, Mark; Devereux, Will

    2004-01-01

    Over an approximately 48-hour period from September 26 to 28,2002, the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) mission was intensively supported by the Tracking and Data Relay Satellite System (TDRSS). The TIMED satellite is in a nearly circular low-Earth orbit with a semimajor axis of approximately 7000 km and an inclination of approximately 74 degrees. The objective was to provide TDRSS tracking support for orbit determination (OD) to generate a definitive ephemeris of 24-hour duration or more with a 3-sigma position error no greater than 100 meters, and this tracking campaign was successful. An ephemeris was generated by Goddard Space Flight Center (GSFC) personnel using the TDRSS tracking data and was compared with an ephemeris generated by the Johns Hopkins University's Applied Physics Lab (APL) using TIMED Global Positioning System (GPS) data. Prior to the tracking campaign OD error analysis was performed to justify scheduling the TDRSS support.

  12. Quality assurance for clinical implementation of an electromagnetic tracking system.

    PubMed

    Santanam, Lakshmi; Noel, Camille; Willoughby, Twyla R; Esthappan, Jacqueline; Mutic, Sasa; Klein, Eric E; Low, Daniel A; Parikh, Parag J

    2009-08-01

    The Calypso Medical 4D localization system utilizes alternating current electromagnetics for accurate, real-time tumor tracking. A quality assurance program to clinically implement this system is described here. Testing of the continuous electromagnetic tracking system (Calypso Medical Technologies, Seattle, WA) was performed using an in-house developed four-dimensional stage and a quality assurance fixture containing three radiofrequency transponders at independently measured locations. The following tests were performed to validate the Calypso system: (a) Localization and tracking accuracy, (b) system reproducibility, (c) measurement of the latency of the tracking system, and (d) measurement of transmission through the Calypso table overlay and the electromagnetic array. The translational and rotational localization accuracies were found to be within 0.01 cm and 1.0 degree, respectively. The reproducibility was within 0.1 cm. The average system latency was measured to be within 303 ms. The attenuation by the Calypso overlay was measured to be 1.0% for both 6 and 18 MV photons. The attenuations by the Calypso array were measured to be 2% and 1.5% for 6 and 18 MV photons, respectively. For oblique angles, the transmission was measured to be 3% for 6 MV, while it was 2% for 18 MV photons. A quality assurance process has been developed for the clinical implementation of an electromagnetic tracking system in radiation therapy.

  13. Technical experiences of implementing a wireless tracking and facial biometric verification system for a clinical environment

    NASA Astrophysics Data System (ADS)

    Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.

    2006-03-01

    By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).

  14. Design and implementation of a remote UAV-based mobile health monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix

    2017-04-01

    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  15. Designing a model of patient tracking system for natural disaster in Iran

    PubMed Central

    Tavakoli, Nahid; Yarmohammadian, Mohammad H.; Safdari, Reza; Keyvanara, Mahmoud

    2017-01-01

    CONTEXT: Disaster patient tracking consists of identifying and registering patients, recording data on their medical conditions, settings priorities for evacuation of scene, locating the patients from scene to health care centers and then till completion of treatment and discharge. AIM: The aim of this study was to design a model of patient tracking system for natural disaster in Iran. MATERIALS AND METHODS: This applied study was conducted in two steps in 2016. First, data on disaster patient tracking systems used in selected countries were collected from library-printed and electronic references and then compared. Next, a preliminary model of disaster patient tracking system was provided using these systems and validated by Delphi technique and focus group. The data of the first step were analyzed by content analysis and those of the second step by descriptive statistics. RESULTS: Analysis of the comments of key information persons in three Delphi rounds, consisting of national experts, yielded three themes, i.e., content, function, and technology, ten subthemes, and 127 components, with consensus rate of over 75%, to provide a disaster patient tracking system for Iran. CONCLUSION: In Iran, there is no comprehensive process to manage the data on disaster patients. Offering a patient tracking system can be considered a humanitarian and effective measure to promote the process of identifying, caring for, evacuating, and transferring patients as well as documenting and following up their medical and location conditions from scene till completion of the treatment. PMID:28852666

  16. Accuracy of the NDI Wave Speech Research System

    ERIC Educational Resources Information Center

    Berry, Jeffrey J.

    2011-01-01

    Purpose: This work provides a quantitative assessment of the positional tracking accuracy of the NDI Wave Speech Research System. Method: Three experiments were completed: (a) static rigid-body tracking across different locations in the electromagnetic field volume, (b) dynamic rigid-body tracking across different locations within the…

  17. 49 CFR 220.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equipment, or track motor car, singly or in combination with other equipment, on the track of a railroad... systems, electric traction systems, roadway facilities or roadway maintenance machinery on or near track... one or more locomotives coupled with or without cars, requiring an air brake test in accordance with...

  18. Moodog: Tracking Student Activity in Online Course Management Systems

    ERIC Educational Resources Information Center

    Zhang, Hangjin; Almeroth, Kevin

    2010-01-01

    Many universities are currently using Course Management Systems (CMSes) to conduct online learning, for example, by distributing course materials or submitting homework assignments. However, most CMSes do not include comprehensive activity tracking and analysis capabilities. This paper describes a method to track students' online learning…

  19. Optimal structural design of a 5-kW CPV tracking system by considering the ISO 4017/4762 standard through structure and flow simulations

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong

    2015-09-01

    Photovoltaic generation systems have disadvantage in that they are usually installed outdoors and are exposed to extreme environments such as wind, snow and rain loadings. The structure of a photovoltaic generation system should be designed to have sufficient stiffness and strength against such loads. Especially, electric power generation by a concentrator photovoltaic(CPV) system can produce enough power if a right angle is main fained between the solar and the CPV panel within 90° ± 1°. To make the CPV tracking system in this study, we designed the structure by calculating the variations in and the strees applied to the structure by the wind load when the CPV tracking was influenced by the wind load. In this study, a 5-kW CPV tracking structure was designed through a structural analysis and a finiteelement analysis for a wind speed of 65 m/s by using ANSYS. The simulation of the structural design showed that the, structure of the 5-kW CPV tracking system corresponded with the ISO4017/ISO4762 standard. Based on this research, we will produce a 5-kW CPV tracking system and proceed to field test.

  20. Evidence-based use of electronic clinical tracking systems in advanced practice registered nurse education: an integrative review.

    PubMed

    Branstetter, M Laurie; Smith, Lynette S; Brooks, Andrea F

    2014-07-01

    Over the past decade, the federal government has mandated healthcare providers to incorporate electronic health records into practice by 2015. This technological update in healthcare documentation has generated a need for advanced practice RN programs to incorporate information technology into education. The National Organization of Nurse Practitioner Faculties created core competencies to guide program standards for advanced practice RN education. One core competency is Technology and Information Literacy. Educational programs are moving toward the utilization of electronic clinical tracking systems to capture students' clinical encounter data. The purpose of this integrative review was to evaluate current research on advanced practice RN students' documentation of clinical encounters utilizing electronic clinical tracking systems to meet advanced practice RN curriculum outcome goals in information technology as defined by the National Organization of Nurse Practitioner Faculties. The state of the science depicts student' and faculty attitudes, preferences, opinions, and data collections of students' clinical encounters. Although electronic clinical tracking systems were utilized to track students' clinical encounters, these systems have not been evaluated for meeting information technology core competency standards. Educational programs are utilizing electronic clinical tracking systems with limited evidence-based literature evaluating the ability of these systems to meet the core competencies in advanced practice RN programs.

  1. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles

    PubMed Central

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-01-01

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional–integral–derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle. PMID:27110793

  2. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    PubMed

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  3. Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots

    PubMed Central

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-01-01

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171

  4. Real Time Target Tracking Using Dedicated Vision Hardware

    NASA Astrophysics Data System (ADS)

    Kambies, Keith; Walsh, Peter

    1988-03-01

    This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.

  5. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  6. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  7. ATLAS FTK a - very complex - custom super computer

    NASA Astrophysics Data System (ADS)

    Kimura, N.; ATLAS Collaboration

    2016-10-01

    In the LHC environment for high interaction pile-up, advanced techniques of analysing the data in real time are required in order to maximize the rate of physics processes of interest with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at the hardware level that is designed to deliver full-scan tracks with pT above 1 GeV to the ATLAS trigger system for events passing the Level-1 accept (at a maximum rate of 100 kHz). In order to achieve this performance, a highly parallel system was designed and currently it is being commissioned within in ATLAS. Starting in 2016 it will provide tracks for the trigger system in a region covering the central part of the ATLAS detector, and will be extended to the full detector coverage. The system relies on matching hits coming from the silicon tracking detectors against one billion patterns stored in custom ASIC chips (Associative memory chip - AM06). In a first stage, coarse resolution hits are matched against the patterns and the accepted hits undergo track fitting implemented in FPGAs. Tracks with pT > 1GeV are delivered to the High Level Trigger within about 100 ps. Resolution of the tracks coming from FTK is close to the offline tracking and it will allow for reliable detection of primary and secondary vertexes at trigger level and improved trigger performance for b-jets and tau leptons. This contribution will give an overview of the FTK system and present the status of commissioning of the system. Additionally, the expected FTK performance will be briefly described.

  8. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications.

    PubMed

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-05-17

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.

  9. Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications

    PubMed Central

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-01-01

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142

  10. Arduino based radioactive tracking system

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Rashid, Mohd Fazlie Bin Abdul; Rahman, Anwar Bin Abdul; Ramlan, Atikah

    2017-01-01

    There is a clear need to strengthen security measures to prevent any malevolent use or accidental misuse of radioactive sources. Some of these radioactive sources are regularly transported outside of office or laboratory premises for work and consultation purposes. This paper present the initial development of radioactive source tracking system, which combined Arduino microcontroller, Global Positioning System (GPS) and Global System for Mobile communication (GSM) technologies. The tracking system will help the owner to monitor the movement of the radioactive sources. Currently, the system is capable of tracking the movement of radioactive source through the GPS satellite signals. The GPS co-ordinate could either be transmitted to headquarters at fixed interval via Short Messaging Service (SMS) to enable real time monitoring, or stored in a memory card for offline monitoring and data logging.

  11. The Establishment of a Formal Midwest Renewable Energy Tracking System (M-RETS) Organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maria Redmond; Chela Bordas O'Connor

    2010-06-30

    The objectives identified in requesting and utilizing this funding has been met. The goal was to establish a formal, multi-jurisdictional organization to: (1) ensure the policy objectives of the participating jurisdictions are addressed through increased tradability of the Renewable Energy Credits (RECs) from M-RETS and to eliminate the possibility that a single jurisdiction will be the sole arbiter of the operation of the system; (2) facilitate the establishment of REC standards including the attributes related to, the creation, trading, and interaction with other trading and tracking systems; and (3) have a centralized and established organization that will be responsible formore » the contracting and governance responsibilities of a multi-jurisdictional tracking system. The M-RETS Inc. Board ensures that the system remains policy neutral; that the attributes of generation are tracked in a way that allows the system users to easily identify and trade relevant RECs; that the system can add jurisdictions as needed or desired; and that the tracking system operate in such a way to allow for the greatest access possible for those participating in other tracking or trading systems by allowing those systems to negotiate with a single M-RETS entity for the import and export of RECs. M-RETS as an organizational body participates and often leads the discussions related to the standardization of RECs and increasing the tradability of M-RETS RECs. M-RETS is a founding member of the Environmental Trading Network of North America (ETNNA) and continues to take a leadership role in the development of processes to facilitate trading among tracking systems and to standardize REC definitions. The Board of Directors of M-RETS, Inc., the non-profit corporation, continues to hold telephone/internet Board meetings. Legal counsel continues working with the board and APX management on a new agreement with APX. The board expects to have an agreement and corresponding fee structure in place by January 2011. The Board has recently approved exports to three other tracking systems and is in discussions about imports to the system. Below are the tasks outlined in the request and attached you will find the relevant documentation.« less

  12. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  13. Single-chip microcomputer for image processing in the photonic measuring system

    NASA Astrophysics Data System (ADS)

    Smoleva, Olga S.; Ljul, Natalia Y.

    2002-04-01

    The non-contact measuring system has been designed for rail- track parameters control on the Moscow Metro. It detects some significant parameters: rail-track width, rail-track height, gage, rail-slums, crosslevel, pickets, and car speed. The system consists of three subsystems: non-contact system of rail-track width, height, and gage inspection, non-contact system of rail-slums inspection and subsystem for crosslevel, speed, and pickets detection. Data from subsystems is transferred to pre-processing unit. In order to process data received from subsystems, the single-chip signal processor ADSP-2185 must be used due to providing required processing speed. After data will be processed, it is send to PC, which processes it and outputs it in the readable form.

  14. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  15. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    PubMed

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  16. Trajectory planning and optimal tracking for an industrial mobile robot

    NASA Astrophysics Data System (ADS)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  17. ACOSS Eleven (Active Control of Space Structures)

    DTIC Science & Technology

    1984-09-01

    spatial integration with thresh- old level and system track threshold level reduction factor. 2.2.3 Track Acquisition In the HRAP/LRTP simulation, input ...in both row and column, however, then the track direction is determined to be diagonal. Also, as with the first * tier, multiple hits are processed...for any system track before thresholding, clustering, and centroiding can produce the next frame to be input to the two tier algorithm. As Figure 2-10

  18. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  19. Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    PubMed Central

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally. PMID:22164012

  20. Research on the filtering algorithm in speed and position detection of maglev trains.

    PubMed

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train's structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  1. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  2. 49 CFR 213.347 - Automotive or railroad crossings at grade.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and.../barrier system to address the protection of highway traffic and high speed trains. Trains shall not...-approved warning/barrier system exists on that track segment; and (2) All elements of that warning/barrier...

  3. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... 49 Transportation 4 2011-10-01 2011-10-01 false Track-circuit control of signals. 236.201 Section...

  4. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... 49 Transportation 4 2010-10-01 2010-10-01 false Track-circuit control of signals. 236.201 Section...

  5. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  6. 40 CFR 73.38 - Closing of accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.38 Closing of accounts. (a) General... Tracking System, and by submitting in writing, with the signature of the authorized account representative...

  7. 40 CFR 73.38 - Closing of accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.38 Closing of accounts. (a) General... Tracking System, and by submitting in writing, with the signature of the authorized account representative...

  8. Development of a Novel System to Measure a Clearance of a Passenger Platform

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Oizumi, J.; Matsuoka, R.; Takeda, H.; Okukura, H.; Ooya, A.; Koike, A.

    2016-06-01

    Clearances of a passenger platform at a railway station should be appropriately maintained for safety of both trains and passengers. In most Japanese railways clearances between a platform and a train car is measured precisely once or twice a year. Because current measurement systems operate on a track, the closure of the track is unavoidable. Since the procedure of the closure of a track is time-consuming and bothersome, we decided to develop a new system to measure clearances without the closure of a track. A new system is required to work on a platform and the required measurement accuracy is less than several millimetres. We have adopted a 3D laser scanner and stop-and-go operation for a new system. The current systems on a track measure clearances continuously at walking speed, while our system on a platform measures clearances at approximately ten metres intervals. The scanner controlled by a PC acquires a set of point data at each measuring station. Edge points of the platform, top and side points of two rails are detected from the acquired point data. Finally clearances of the platform are calculated by using the detected feature points of the platform and the rails. The results of an experiment using a prototype of our system show that the measurement accuracy by our system would be satisfactory, but our system would take more time than the current systems. Since our system requires no closure of a track, we conclude that our system would be convenient and effective.

  9. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  10. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  11. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and transmitted from, the tracking vehicle. In the first proposed VGS system, the tracking vehicle would transmit a pulse of light. Upon reception of the pulse, circuitry on the tracked vehicle would activate the target lights. During the pulse, the target image acquired by the camera would be digitized. When the pulse was turned off, the target lights would be turned off and the background video image would be digitized. The second proposed system would function similarly to the first proposed system, except that the transmitted synchronizing signal would be a radio pulse instead of a light pulse. In this system, the signal receptor would be a rectifying antenna. If the signal contained sufficient power, the output of the rectifying antenna could be used to activate the target lights, making it unnecessary to include a battery or other power supply for the targets on the tracked vehicle.

  12. Tracking by Identification Using Computer Vision and Radio

    PubMed Central

    Mandeljc, Rok; Kovačič, Stanislav; Kristan, Matej; Perš, Janez

    2013-01-01

    We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485

  13. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    PubMed Central

    Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier

    2017-01-01

    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178

  14. Tracking accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy.

    PubMed

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W

    2010-11-15

    In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Development of a vehicle-track model assembly and numerical method for simulation of wheel-rail dynamic interaction due to unsupported sleepers

    NASA Astrophysics Data System (ADS)

    Zhu, Jian Jun; Ahmed, A. K. W.; Rakheja, Subhash; Khajepour, Amir

    2010-12-01

    In practice, it is not very uncommon to find railway track systems with unsupported sleepers due to the uneven settlement of a ballasted track system. These unsupported sleepers are among the major vibration excitations for a train and track system when a train moves forwards on a track. The vibration induced by unsupported sleepers can cause a large dynamic contact force between wheels and rails. For heavily loaded high-speed trains, the deteriorated sleeper support may lead to accelerated degradation of the railway track and vehicle components, and may thus impose safety risk to the operation. This paper presents analyses of a coupled vehicle-track assembly consisting of a roll plane vehicle model, a continuous track system model and an adaptive wheel-rail contact model. In order to improve the simulation efficiency, a numerical approach based on the central finite difference method is proposed in this investigation. The developed model assembly and proposed simulation method are utilised to simulate the vehicle-track dynamic interaction in the presence of unsupported sleepers. The dynamic response in terms of the dynamic wheel-rail interaction force due to one or multiple unsupported sleepers is studied. Important factors influencing the dynamic wheel-rail interaction force in the presence of sleeper voids are also investigated. The results show that the vehicle speed, the gap size and the number of unsupported sleepers primarily dictate the magnitude of impact load which can be significant.

  16. Multivariable manual control with simultaneous visual and auditory presentation of information. [for improved compensatory tracking performance of human operator

    NASA Technical Reports Server (NTRS)

    Uhlemann, H.; Geiser, G.

    1975-01-01

    Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.

  17. 40 CFR 73.36 - Banking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.36 Banking. (a) Compliance accounts. Any allowance in a... to subpart D to another Allowance Tracking System account will remain in the general account. [58 FR...

  18. 40 CFR 73.36 - Banking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.36 Banking. (a) Compliance accounts. Any allowance in a... to subpart D to another Allowance Tracking System account will remain in the general account. [58 FR...

  19. Track Geometry Measurement System Software Manual

    DOT National Transportation Integrated Search

    1978-04-01

    The Track Geometry Measurement System (TGMS) was developed through the United States Department of Transportation's, Urban Mass Transportation Administration by the Transportation Systems Center in Cambridge, Massachusetts under its Test and Evaluati...

  20. Utility of optical facial feature and arm movement tracking systems to enable text communication in critically ill patients who cannot otherwise communicate.

    PubMed

    Muthuswamy, M B; Thomas, B N; Williams, D; Dingley, J

    2014-09-01

    Patients recovering from critical illness especially those with critical illness related neuropathy, myopathy, or burns to face, arms and hands are often unable to communicate by writing, speech (due to tracheostomy) or lip reading. This may frustrate both patient and staff. Two low cost movement tracking systems based around a laptop webcam and a laser/optical gaming system sensor were utilised as control inputs for on-screen text creation software and both were evaluated as communication tools in volunteers. Two methods were used to control an on-screen cursor to create short sentences via an on-screen keyboard: (i) webcam-based facial feature tracking, (ii) arm movement tracking by laser/camera gaming sensor and modified software. 16 volunteers with simulated tracheostomy and bandaged arms to simulate communication via gross movements of a burned limb, communicated 3 standard messages using each system (total 48 per system) in random sequence. Ten and 13 minor typographical errors occurred with each system respectively, however all messages were comprehensible. Speed of sentence formation ranged from 58 to 120s with the facial feature tracking system, and 60-160s with the arm movement tracking system. The average speed of sentence formation was 81s (range 58-120) and 104s (range 60-160) for facial feature and arm tracking systems respectively, (P<0.001, 2-tailed independent sample t-test). Both devices may be potentially useful communication aids in patients in general and burns critical care units who cannot communicate by conventional means, due to the nature of their injuries. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. Developing an electronic system to manage and track emergency medications.

    PubMed

    Hamm, Mark W; Calabrese, Samuel V; Knoer, Scott J; Duty, Ashley M

    2018-03-01

    The development of a Web-based program to track and manage emergency medications with radio frequency identification (RFID) is described. At the Cleveland Clinic, medication kit restocking records and dispense locations were historically documented using a paper record-keeping system. The Cleveland Clinic investigated options to replace the paper-based tracking logs with a Web-based program that could track the real-time location and inventory of emergency medication kits. Vendor collaboration with a board of pharmacy (BOP) compliance inspector and pharmacy personnel resulted in the creation of a dual barcoding system using medication and pocket labels. The Web-based program was integrated with a Cleveland Clinic-developed asset tracking system using active RFID tags to give the real-time location of the medication kit. The Web-based program and the asset tracking system allowed identification of kits nearing expiration or containing recalled medications. Conversion from a paper-based system to a Web-based program began in October 2013. After 119 days, data were evaluated to assess the success of the conversion. Pharmacists spent an average of 27 minutes per day approving medication kits during the postimplementation period versus 102 minutes daily using the paper-based system, representing a 74% decrease in pharmacist time spent on this task. Prospective reports are generated monthly to allow the manager to assess the expected workload and adjust staffing for the next month. Implementation of a BOP-approved Web-based system for managing and tracking emergency medications with RFID integration decreased pharmacist review time, minimized compliance risk, and increased access to real-time data. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype

    NASA Astrophysics Data System (ADS)

    Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille

    2012-06-01

    The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.

  3. Space-based IR tracking bias removal using background star observations

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2009-05-01

    This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.

  4. A Railway Track Geometry Measuring Trolley System Based on Aided INS

    PubMed Central

    Chen, Qijin; Niu, Xiaoji; Zuo, Lili; Zhang, Tisheng; Xiao, Fuqin; Liu, Yi; Liu, Jingnan

    2018-01-01

    Accurate measurement of the railway track geometry is a task of fundamental importance to ensure the track quality in both the construction phase and the regular maintenance stage. Conventional track geometry measuring trolleys (TGMTs) in combination with classical geodetic surveying apparatus such as total stations alone cannot meet the requirements of measurement accuracy and surveying efficiency at the same time. Accurate and fast track geometry surveying applications call for an innovative surveying method that can measure all or most of the track geometric parameters in short time without interrupting the railway traffic. We provide a novel solution to this problem by integrating an inertial navigation system (INS) with a geodetic surveying apparatus, and design a modular TGMT system based on aided INS, which can be configured according to different surveying tasks including precise adjustment of slab track, providing tamping measurements, measuring track deformation and irregularities, and determination of the track axis. TGMT based on aided INS can operate in mobile surveying mode to significantly improve the surveying efficiency. Key points in the design of the TGMT’s architecture and the data processing concept and workflow are introduced in details, which should benefit subsequent research and provide a reference for the implementation of this kind of TGMT. The surveying performance of proposed TGMT with different configurations is assessed in the track geometry surveying experiments and actual projects. PMID:29439423

  5. An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking.

    PubMed

    Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G

    2013-03-07

    The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel.

  6. Inductrack III configuration--a maglev system for high loads

    DOEpatents

    Post, Richard F

    2015-03-24

    Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.

  7. Inductrack III configuration--a maglev system for high loads

    DOEpatents

    Post, Richard F

    2013-11-12

    Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.

  8. Observer-based state tracking control of uncertain stochastic systems via repetitive controller

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Susana Ramya, L.; Selvaraj, P.

    2017-08-01

    This paper develops the repetitive control scheme for state tracking control of uncertain stochastic time-varying delay systems via equivalent-input-disturbance approach. The main purpose of this work is to design a repetitive controller to guarantee the tracking performance under the effects of unknown disturbances with bounded frequency and parameter variations. Specifically, a new set of linear matrix inequality (LMI)-based conditions is derived based on the suitable Lyapunov-Krasovskii functional theory for designing a repetitive controller which guarantees stability and desired tracking performance. More precisely, an equivalent-input-disturbance estimator is incorporated into the control design to reduce the effect of the external disturbances. Simulation results are provided to demonstrate the desired control system stability and their tracking performance. A practical stream water quality preserving system is also provided to show the effectiveness and advantage of the proposed approach.

  9. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1997-01-01

    We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  10. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Real-time depth camera tracking with geometrically stable weight algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming

    2017-03-01

    We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.

  12. Webcam mouse using face and eye tracking in various illumination environments.

    PubMed

    Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng

    2005-01-01

    Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.

  13. Towards Kilo-Hertz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras.

    PubMed

    Bapat, Akash; Dunn, Enrique; Frahm, Jan-Michael

    2016-11-01

    To maintain a reliable registration of the virtual world with the real world, augmented reality (AR) applications require highly accurate, low-latency tracking of the device. In this paper, we propose a novel method for performing this fast 6-DOF head pose tracking using a cluster of rolling shutter cameras. The key idea is that a rolling shutter camera works by capturing the rows of an image in rapid succession, essentially acting as a high-frequency 1D image sensor. By integrating multiple rolling shutter cameras on the AR device, our tracker is able to perform 6-DOF markerless tracking in a static indoor environment with minimal latency. Compared to state-of-the-art tracking systems, this tracking approach performs at significantly higher frequency, and it works in generalized environments. To demonstrate the feasibility of our system, we present thorough evaluations on synthetically generated data with tracking frequencies reaching 56.7 kHz. We further validate the method's accuracy on real-world images collected from a prototype of our tracking system against ground truth data using standard commodity GoPro cameras capturing at 120 Hz frame rate.

  14. Integrated system for point cloud reconstruction and simulated brain shift validation using tracked surgical microscope

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2017-03-01

    Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.

  15. Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses

    PubMed Central

    Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.

    2014-01-01

    The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267

  16. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  17. Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; von Jako, Ron

    2008-03-01

    Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.

  18. Extended applications of track irregularity probabilistic model and vehicle-slab track coupled model on dynamics of railway systems

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhai, Wanming; Gao, Jianmin

    2017-11-01

    Track irregularities are inevitably in a process of stochastic evolution due to the uncertainty and continuity of wheel-rail interactions. For depicting the dynamic behaviours of vehicle-track coupling system caused by track random irregularities thoroughly, it is a necessity to develop a track irregularity probabilistic model to simulate rail surface irregularities with ergodic properties on amplitudes, wavelengths and probabilities, and to build a three-dimensional vehicle-track coupled model by properly considering the wheel-rail nonlinear contact mechanisms. In the present study, the vehicle-track coupled model is programmed by combining finite element method with wheel-rail coupling model firstly. Then, in light of the capability of power spectral density (PSD) in characterising amplitudes and wavelengths of stationary random signals, a track irregularity probabilistic model is presented to reveal and simulate the whole characteristics of track irregularity PSD. Finally, extended applications from three aspects, that is, extreme analysis, reliability analysis and response relationships between dynamic indices, are conducted to the evaluation and application of the proposed models.

  19. GPS-based tracking system for TOPEX orbit determination

    NASA Technical Reports Server (NTRS)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  20. Toward experimental validation of a model for human sensorimotor learning and control in teleoperation

    NASA Astrophysics Data System (ADS)

    Roth, Eatai; Howell, Darrin; Beckwith, Cydney; Burden, Samuel A.

    2017-05-01

    Humans, interacting with cyber-physical systems (CPS), formulate beliefs about the system's dynamics. It is natural to expect that human operators, tasked with teleoperation, use these beliefs to control the remote robot. For tracking tasks in the resulting human-cyber-physical system (HCPS), theory suggests that human operators can achieve exponential tracking (in stable systems) without state estimation provided they possess an accurate model of the system's dynamics. This internalized inverse model, however, renders a portion of the system state unobservable to the human operator—the zero dynamics. Prior work shows humans can track through observable linear dynamics, thus we focus on nonlinear dynamics rendered unobservable through tracking control. We propose experiments to assess the human operator's ability to learn and invert such models, and distinguish this behavior from that achieved by pure feedback control.

  1. Distributed cooperative regulation for multiagent systems and its applications to power systems: a survey.

    PubMed

    Hu, Jianqiang; Li, Yaping; Yong, Taiyou; Cao, Jinde; Yu, Jie; Mao, Wenbo

    2014-01-01

    Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper.

  2. Distributed Cooperative Regulation for Multiagent Systems and Its Applications to Power Systems: A Survey

    PubMed Central

    Li, Yaping; Yong, Taiyou; Yu, Jie; Mao, Wenbo

    2014-01-01

    Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper. PMID:25243199

  3. Electromagnetic tracking in the clinical environment

    PubMed Central

    Yaniv, Ziv; Wilson, Emmanuel; Lindisch, David; Cleary, Kevin

    2009-01-01

    When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system’s refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments. PMID:19378748

  4. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI

    PubMed Central

    Stawicki, Piotr; Gembler, Felix; Rezeika, Aya; Volosyak, Ivan

    2017-01-01

    Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques. PMID:28379187

  5. Using technology to improve and support communication and workflow processes.

    PubMed

    Bahlman, Deborah Tuke; Johnson, Fay C

    2005-07-01

    In conjunction with a large expansion project, a team of perioperative staff members reviewed their workflow processes and designed their ideal patient tracking and communication system. Technologies selected and deployed included a passive infrared tracking system, an enhanced nurse call system, wireless telephones, and a web-based electronic grease board. The new system provides staff members with an easy way to obtain critical pieces of patient information, as well as track the progress of patients and locate equipment.

  6. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  7. 40 CFR 74.50 - Deducting opt-in source allowances from ATS accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer and End of Year... any Allowance Tracking System accounts in which they are held, the allowances in an amount specified... any Allowance Tracking System Account other than the account of the source that includes opt-in source...

  8. 75 FR 21250 - Privacy Act of 1974; Systems of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... information of the current tenants of NSA/CSS facilities; to create and track the status of visit requests and... facility; to track inside the NSA/CSS facility authorized NSA/CSS employee and visitor badges as they are used to pass through automated turnstile system, access office suites and other work areas; to track...

  9. Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.

    2016-01-01

    Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800

  10. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  11. Analysis system of submicron particle tracks in the fine-grained nuclear emulsion by a combination of hard x-ray and optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp; Institute for Advanced Research, Nagoya University, Aichi 464-8602; Asada, T.

    Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution.more » Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically.« less

  12. RESTORATION OF ATMOSPHERICALLY DEGRADED IMAGES. VOLUME 3.

    DTIC Science & Technology

    AERIAL CAMERAS, LASERS, ILLUMINATION, TRACKING CAMERAS, DIFFRACTION, PHOTOGRAPHIC GRAIN, DENSITY, DENSITOMETERS, MATHEMATICAL ANALYSIS, OPTICAL SCANNING, SYSTEMS ENGINEERING, TURBULENCE, OPTICAL PROPERTIES, SATELLITE TRACKING SYSTEMS.

  13. Physician tracking in sub-Saharan Africa: current initiatives and opportunities

    PubMed Central

    2014-01-01

    Background Physician tracking systems are critical for health workforce planning as well as for activities to ensure quality health care - such as physician regulation, education, and emergency response. However, information on current systems for physician tracking in sub-Saharan Africa is limited. The objective of this study is to provide information on the current state of physician tracking systems in the region, highlighting emerging themes and innovative practices. Methods This study included a review of the literature, an online search for physician licensing systems, and a document review of publicly available physician registration forms for sub-Saharan African countries. Primary data on physician tracking activities was collected as part of the Medical Education Partnership Initiative (MEPI) - through two rounds over two years of annual surveys to 13 medical schools in 12 sub-Saharan countries. Two innovations were identified during two MEPI school site visits in Uganda and Ghana. Results Out of twelve countries, nine had existing frameworks for physician tracking through licensing requirements. Most countries collected basic demographic information: name, address, date of birth, nationality/citizenship, and training institution. Practice information was less frequently collected. The most frequently collected practice fields were specialty/degree and current title/position. Location of employment and name and sector of current employer were less frequently collected. Many medical schools are taking steps to implement graduate tracking systems. We also highlight two innovative practices: mobile technology access to physician registries in Uganda and MDNet, a public-private partnership providing free mobile-to-mobile voice and text messages to all doctors registered with the Ghana Medical Association. Conclusion While physician tracking systems vary widely between countries and a number of challenges remain, there appears to be increasing interest in developing these systems and many innovative developments in the area. Opportunities exist to expand these systems in a more coordinated manner that will ultimately lead to better workforce planning, implementation of the workforce, and better health. PMID:24754965

  14. A low-cost tracked C-arm (TC-arm) upgrade system for versatile quantitative intraoperative imaging.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Anglin, Carolyn

    2014-07-01

    C-arm fluoroscopy is frequently used in clinical applications as a low-cost and mobile real-time qualitative assessment tool. C-arms, however, are not widely accepted for applications involving quantitative assessments, mainly due to the lack of reliable and low-cost position tracking methods, as well as adequate calibration and registration techniques. The solution suggested in this work is a tracked C-arm (TC-arm) which employs a low-cost sensor tracking module that can be retrofitted to any conventional C-arm for tracking the individual joints of the device. Registration and offline calibration methods were developed that allow accurate tracking of the gantry and determination of the exact intrinsic and extrinsic parameters of the imaging system for any acquired fluoroscopic image. The performance of the system was evaluated in comparison to an Optotrak[Formula: see text] motion tracking system and by a series of experiments on accurately built ball-bearing phantoms. Accuracies of the system were determined for 2D-3D registration, three-dimensional landmark localization, and for generating panoramic stitched views in simulated intraoperative applications. The system was able to track the center point of the gantry with an accuracy of [Formula: see text] mm or better. Accuracies of 2D-3D registrations were [Formula: see text] mm and [Formula: see text]. Three-dimensional landmark localization had an accuracy of [Formula: see text] of the length (or [Formula: see text] mm) on average, depending on whether the landmarks were located along, above, or across the table. The overall accuracies of the two-dimensional measurements conducted on stitched panoramic images of the femur and lumbar spine were 2.5 [Formula: see text] 2.0 % [Formula: see text] and [Formula: see text], respectively. The TC-arm system has the potential to achieve sophisticated quantitative fluoroscopy assessment capabilities using an existing C-arm imaging system. This technology may be useful to improve the quality of orthopedic surgery and interventional radiology.

  15. Physician tracking in sub-Saharan Africa: current initiatives and opportunities.

    PubMed

    Chen, Candice; Baird, Sarah; Ssentongo, Katumba; Mehtsun, Sinit; Olapade-Olaopa, Emiola Oluwabunmi; Scott, Jim; Sewankambo, Nelson; Talib, Zohray; Ward-Peterson, Melissa; Mariam, Damen Haile; Rugarabamu, Paschalis

    2014-04-23

    Physician tracking systems are critical for health workforce planning as well as for activities to ensure quality health care - such as physician regulation, education, and emergency response. However, information on current systems for physician tracking in sub-Saharan Africa is limited. The objective of this study is to provide information on the current state of physician tracking systems in the region, highlighting emerging themes and innovative practices. This study included a review of the literature, an online search for physician licensing systems, and a document review of publicly available physician registration forms for sub-Saharan African countries. Primary data on physician tracking activities was collected as part of the Medical Education Partnership Initiative (MEPI) - through two rounds over two years of annual surveys to 13 medical schools in 12 sub-Saharan countries. Two innovations were identified during two MEPI school site visits in Uganda and Ghana. Out of twelve countries, nine had existing frameworks for physician tracking through licensing requirements. Most countries collected basic demographic information: name, address, date of birth, nationality/citizenship, and training institution. Practice information was less frequently collected. The most frequently collected practice fields were specialty/degree and current title/position. Location of employment and name and sector of current employer were less frequently collected. Many medical schools are taking steps to implement graduate tracking systems. We also highlight two innovative practices: mobile technology access to physician registries in Uganda and MDNet, a public-private partnership providing free mobile-to-mobile voice and text messages to all doctors registered with the Ghana Medical Association. While physician tracking systems vary widely between countries and a number of challenges remain, there appears to be increasing interest in developing these systems and many innovative developments in the area. Opportunities exist to expand these systems in a more coordinated manner that will ultimately lead to better workforce planning, implementation of the workforce, and better health.

  16. High resolution imaging of a subsonic projectile using automated mirrors with large aperture

    NASA Astrophysics Data System (ADS)

    Tateno, Y.; Ishii, M.; Oku, H.

    2017-02-01

    Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.

  17. A feasibility study of stationary and dual-axis tracking grid-connected photovoltaic systems in the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Warren, Ryan Duwain

    Three primary objectives were defined for this work. The first objective was to determine, assess, and compare the performance, heat transfer characteristics, economics, and feasibility of real-world stationary and dual-axis tracking grid-connected photovoltaic (PV) systems in the Upper Midwest. This objective was achieved by installing two grid-connected PV systems with different mounting schemes in central Iowa, implementing extensive data acquisition systems, monitoring operation of the PV systems for one full year, and performing detailed experimental performance and economic studies. The two PV systems that were installed, monitored, and analyzed included a 4.59 kWp roof-mounted stationary system oriented for maximum annual energy production, and a 1.02 kWp pole-mounted actively controlled dual-axis tracking system. The second objective was to demonstrate the actual use and performance of real-world stationary and dual-axis tracking grid-connected PV systems used for building energy generation applications. This objective was achieved by offering the installed PV systems to the public for demonstration purposes and through the development of three computer-based tools: a software interface that has the ability to display real-time and historical performance and meteorological data of both systems side-by-side, a software interface that shows real-time and historical video and photographs of each system, and a calculator that can predict performance and economics of stationary and dual-axis tracking grid-connected PV systems at various locations in the United States. The final objective was to disseminate this work to social, professional, scientific, and academic communities in a way that is applicable, objective, accurate, accessible, and comprehensible. This final objective will be addressed by publishing the results of this work and making the computer-based tools available on a public website (www.energy.iastate.edu/Renewable/solar). Detailed experimental performance analyses were performed for both systems; results were quantified and compared between systems, focusing on measures of solar resource, energy generation, power production, and efficiency. This work also presents heat transfer characteristics of both arrays and quantifies the affects of operating temperature on PV system performance in terms of overall heat transfer coefficients and temperature coefficients for power. To assess potential performance of PV in the Upper Midwest, models were built to predict performance of the PV systems operating at lower temperatures. Economic analyses were performed for both systems focusing on measures of life-cycle cost, payback period, internal rate of return, and average incremental cost of solar energy. The potential economic feasibility of grid-connected stationary PV systems used for building energy generation in the Upper Midwest was assessed under assumptions of higher utility energy costs, lower initial installed costs, and different metering agreements. The annual average daily solar insolation seen by the stationary and dual-axis tracking systems was found to be 4.37 and 5.95 kWh/m2, respectively. In terms of energy generation, the tracking system outperformed the stationary system on annual, monthly, and often daily bases; normalized annual energy generation for the tracking and stationary systems were found to be 1,779 and 1,264 kWh/kWp, respectively. The annual average conversion efficiencies of the tracking and stationary systems were found to be approximately 11 and 10.7 percent, respectively. Annual performance ratio values of the tracking and stationary system were found to be 0.819 and 0.792, respectively. The net present values of both systems under all assumed discount rates were determined to be negative. Further, neither system was found to have a payback period less than the assumed system life of 25 years. The rate-of-return of the stationary and tracking systems were found to be -3.3 and -4.9 percent, respectively. Furthermore, the average incremental cost of energy provided by the stationary and dual-axis tracking systems over their assumed useful life is projected to be 0.31 and 0.37 dollars per kWh, respectively. Results of this study suggest that grid-connected PV systems used for building energy generation in the Upper Midwest are not yet economically feasible when compared to a range of alternative investments; however, PV systems could show feasibility under more favorable economic scenarios. Throughout the year of monitoring, array operating temperatures ranged from -24.7°C (-12.4°F) to 61.7°C (143.1°F) for the stationary system and -23.9 °C (-11°F) to 52.7°C (126.9°F) for the dual-axis tracking system during periods of system operation. The hourly average overall heat transfer coefficients for solar irradiance levels greater than 200 W/m 2 for the stationary and dual-axis tracking systems were found to be 20.8 and 29.4 W/m2°C, respectively. The experimental temperature coefficients for power for the stationary and dual-axis tracking systems at a solar irradiance level of 1,000 W/m2 were -0.30 and -0.38 %/°C, respectively. Simulations of the stationary and dual-axis tracking systems operating at lower temperatures suggest that annual conversion efficiencies could potentially be increased by to up 4.3 and 4.6 percent, respectively.

  18. Assessing the performance of a motion tracking system based on optical joint transform correlation

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.

    2015-08-01

    We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.

  19. 14 CFR 437.37 - Tracking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Tracking. 437.37 Section 437.37 Aeronautics... Documentation § 437.37 Tracking. An applicant must identify and describe each method or system used to meet the tracking requirements of § 437.67. ...

  20. 14 CFR 437.37 - Tracking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking. 437.37 Section 437.37 Aeronautics... Documentation § 437.37 Tracking. An applicant must identify and describe each method or system used to meet the tracking requirements of § 437.67. ...

  1. Partial camera automation in an unmanned air vehicle.

    PubMed

    Korteling, J E; van der Borg, W

    1997-03-01

    The present study focused on an intelligent, semiautonomous, interface for a camera operator of a simulated unmanned air vehicle (UAV). This interface used system "knowledge" concerning UAV motion in order to assist a camera operator in tracking an object moving through the landscape below. The semiautomated system compensated for the translations of the UAV relative to the earth. This compensation was accompanied by the appropriate joystick movements ensuring tactile (haptic) feedback of these system interventions. The operator had to superimpose self-initiated joystick manipulations over these system-initiated joystick motions in order to track the motion of a target (a driving truck) relative to the terrain. Tracking data showed that subjects performed substantially better with the active system. Apparently, the subjects had no difficulty in maintaining control, i.e., "following" the active stick while superimposing self-initiated control movements over the system-interventions. Furthermore, tracking performance with an active interface was clearly superior relative to the passive system. The magnitude of this effect was equal to the effect of update-frequency (2-5 Hz) of the monitor image. The benefits of update frequency enhancement and semiautomated tracking were the greatest under difficult steering conditions. Mental workload scores indicated that, for the difficult tracking-dynamics condition, both semiautomation and update frequency increase resulted in less experienced mental effort. For the easier dynamics this effect was only seen for update frequency.

  2. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    PubMed

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  3. Human supervision and microprocessor control of an optical tracking system

    NASA Technical Reports Server (NTRS)

    Bigley, W. J.; Vandenberg, J. D.

    1981-01-01

    Gunners using small calibre anti-aircraft systems have not been able to track high-speed air targets effectively. Substantial improvement in the accuracy of surface fire against attacking aircraft has been realized through the design of a director-type weapon control system. This system concept frees the gunner to exercise a supervisory/monitoring role while the computer takes over continuous target tracking. This change capitalizes on a key consideration of human factors engineering while increasing system accuracy. The advanced system design, which uses distributed microprocessor control, is discussed at the block diagram level and is contrasted with the previous implementation.

  4. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 2: Design and development

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.

    1984-01-01

    Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.

  5. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  6. Vibration and noise characteristics of an elevated box girder paved with different track structures

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhen; Liang, Lin; Wang, Dangxiong

    2018-07-01

    The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.

  7. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    PubMed

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  8. Research on simulation technology of full-path infrared tail flame tracking of photoelectric theodolite in complicated environment

    NASA Astrophysics Data System (ADS)

    Wu, Hai-ying; Zhang, San-xi; Liu, Biao; Yue, Peng; Weng, Ying-hui

    2018-02-01

    The photoelectric theodolite is an important scheme to realize the tracking, detection, quantitative measurement and performance evaluation of weapon systems in ordnance test range. With the improvement of stability requirements for target tracking in complex environment, infrared scene simulation with high sense of reality and complex interference has become an indispensable technical way to evaluate the track performance of photoelectric theodolite. And the tail flame is the most important infrared radiation source of the weapon system. The dynamic tail flame with high reality is a key element for the photoelectric theodolite infrared scene simulation and imaging tracking test. In this paper, an infrared simulation method for the full-path tracking of tail flame by photoelectric theodolite is proposed aiming at the faint boundary, irregular, multi-regulated points. In this work, real tail images are employed. Simultaneously, infrared texture conversion technology is used to generate DDS texture for a particle system map. Thus, dynamic real-time tail flame simulation results with high fidelity from the theodolite perspective can be gained in the tracking process.

  9. Color image processing and object tracking workstation

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  10. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    PubMed Central

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  11. Poster - 51: A tumor motion-compensating system with tracking and prediction – a proof-of-concept study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Kaiming; Teo, Peng; Kawalec, Philip

    2016-08-15

    Purpose: This work reports on the development of a mechanical slider system for the counter-steering of tumor motion in adaptive Radiation Therapy (RT). The tumor motion was tracked using a weighted optical flow algorithm and its position is being predicted with a neural network (NN). Methods: The components of the proposed mechanical counter-steering system includes: (1) an actuator which provides the tumor motion, (2) the motion detection using an optical flow algorithm, (3) motion prediction using a neural network, (4) a control module and (5) a mechanical slider to counter-steer the anticipated motion of the tumor phantom. An asymmetrical cosinemore » function and five patient traces (P1–P5) were used to evaluate the tracking of a 3D printed lung tumor. In the proposed mechanical counter-steering system, both actuator (Zaber NA14D60) and slider (Zaber A-BLQ0070-E01) were programed to move independently with LabVIEW and their positions were recorded by 2 potentiometers (ETI LCP12S-25). The accuracy of this counter-steering system is given by the difference between the two potentiometers. Results: The inherent accuracy of the system, measured using the cosine function, is −0.15 ± 0.06 mm. While the errors when tracking and prediction were included, is (0.04 ± 0.71) mm. Conclusion: A prototype tumor motion counter-steering system with tracking and prediction was implemented. The inherent errors are small in comparison to the tracking and prediction errors, which in turn are small in comparison to the magnitude of tumor motion. The results show that this system is suited for evaluating RT tracking and prediction.« less

  12. Emergency Department Allies: a Web-based multihospital pediatric asthma tracking system.

    PubMed

    Kelly, Kevin J; Walsh-Kelly, Christine M; Christenson, Peter; Rogalinski, Steven; Gorelick, Marc H; Barthell, Edward N; Grabowski, Laura

    2006-04-01

    To describe the development of a Web-based multihospital pediatric asthma tracking system and present results from the initial 18-month implementation of patient tracking experience. The Emergency Department (ED) Allies tracking system is a secure, password-protected data repository. Use-case methodology served as the foundation for technical development, testing, and implementation. Seventy-seven data elements addressing sociodemographics, wheezing history, quality of life, triggers, and ED managment were included for each subject visit. The ED Allies partners comprised 1 academic pediatric ED and 5 community EDs. Subjects with a physician diagnosis of asthma who presented to the ED for acute respiratory complaints composed the asthma group; subjects lacking a physician diagnosis of asthma but presenting with wheezing composed the wheezing group. The tracking-system development and implementation process included identification of data elements, system database and use case development, and delineation of screen features, system users, reporting functions, and help screens. For the asthma group, 2005 subjects with physician-diagnosed asthma were enrolled between July 15, 2002 and January 14, 2004. These subjects accounted for 2978 visits; 10.4% had > or = 3 visits. Persistent asthma was noted in 68% of the subjects. During the same time period, 1297 wheezing subjects with a total of 1628 ED visits (wheezing group) were entered into the tracking system. After enrollment, 57% of the subjects with > or = 1 subsequent ED visits received a physician diagnosis of asthma. Our sophisticated tracking system facilitated data collection and identified key intervention opportunities for a diverse ED wheezing population. A significant asthma burden was identified with significant rates of hospitalization, acute care visits and persistent asthma in 68% of subjects. The surveillance component provided important insights into health care issues of both asthmatic subjects and wheezing subjects, many of whom subsequently were diagnosed with asthma.

  13. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas

    2016-06-15

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were enteredmore » into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.« less

  14. Method of wavefront tilt correction for optical heterodyne detection systems under strong turbulence

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Tian, Xin; Pan, Le-chun

    2014-07-01

    Atmospheric turbulence decreases the heterodyne mixing efficiency of the optical heterodyne detection systems. Wavefront tilt correction is often used to improve the optical heterodyne mixing efficiency. But the performance of traditional centroid tracking tilt correction is poor under strong turbulence conditions. In this paper, a tilt correction method which tracking the peak value of laser spot on focal plane is proposed. Simulation results show that, under strong turbulence conditions, the performance of peak value tracking tilt correction is distinctly better than that of traditional centroid tracking tilt correction method, and the phenomenon of large antenna's performance inferior to small antenna's performance which may be occurred in centroid tracking tilt correction method can also be avoid in peak value tracking tilt correction method.

  15. 40 CFR 73.37 - Account error.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.37 Account error. The Administrator may, at his or her sole discretion and on his or her own motion, correct any error in any Allowance Tracking System account. Within...

  16. 40 CFR 73.37 - Account error.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.37 Account error. The Administrator may, at his or her sole discretion and on his or her own motion, correct any error in any Allowance Tracking System account. Within...

  17. Comparison of three optical tracking systems in a complex navigation scenario.

    PubMed

    Rudolph, Tobias; Ebert, Lars; Kowal, Jens

    2010-01-01

    Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed – as expected – higher maximal errors; however, depending on the application constraints, this might be negligible.

  18. Visual object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)

    2010-01-01

    This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.

  19. Fission track length distributions in multi-system thermochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Gleadow, A. J.; Seiler, C.

    2013-12-01

    Fission track length distributions contain a unique record of past temperature variations and therefore play a key role in low-temperature thermochronology, for which there is no exact equivalent in any other method. Confined track lengths closely approximate the true etchable ranges of latent fission tracks [1] and are therefore favoured for fission track studies, but they still have a number of practical limitations. These include small numbers of suitable tracks, especially when only horizontal confined tracks are measured. Using only track-in-track events for measurement further limits the sample size. These restrictions become acute for low track-density samples, where length measurements may be impossible. Irradiating the surface with 252Cf tracks [2] can substantially increase the number of confined tracks, but many researchers do not have access to a Cf source. An even more significant issue has emerged from inter-laboratory comparison experiments that demonstrate a disturbingly poor reproducibility of length measurements between observers [3], a problem compounded by a lack of standardisation in measurement techniques. As a result, individual observers may measure different positions for the end of a track, contributing significantly to variability, and consequently blurring the thermal histories obtained. New digital microscopes open up important opportunities for improved track length measurements by reducing restrictions on sample size, and eliminating some sources of inter-observer bias. We have developed a track length measurement system that enables precise determination of vertical as well as horizontal track dimensions, allowing 3D lengths to be obtained. Lengths are measured on captured image stacks that can be analysed easily and may also be shared, for greater standardisation between laboratories. Length measurements are highly reproducible between different observers using this system, suggesting that at least one source of variability can be eliminated. The selection of lengths for imaging, however, still remains a source of potential bias between observers. The new measurement system also enables measurement of 3D lengths of surface-intersecting ';semi-tracks', the distributions of which have been well understood theoretically [1,4], but have not been used in practice because of difficulties of measuring vertical dimensions on older microscopes. Semi-track lengths are, of course, a degraded measure compared to confined tracks because they are randomly truncated. However, this is more than compensated by their very much greater abundance, by a factor of >60, compared to confined tracks. They are also more amenable to semi- or fully-automated measurement techniques than confined tracks. Moreover the distribution characteristics of semi-track lengths relative to confined track lengths are well understood so that in principle the two types could be used together in modelling thermal histories. The implementation of these new approaches for track length measurement should significantly improve the precision and standardisation of track length measurements at every stage of their utilisation, from annealing studies to thermal history modelling of unknowns. [1] Galbraith (2003) Statistics for FT Analysis, Chapman & Hall [2] Donelick et al. (2005) Rev Min Geochem 58, 49-94 [3] Ketcham et al. (2009) Ear Planet Sci Lett 284, 504-515 [4] Jonckheere & Van den haute (1999) Rad Meas 30, 155-179

  20. An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun

    2018-02-01

    A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.

  1. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  2. Scalable patients tracking framework for mass casualty incidents.

    PubMed

    Yu, Xunyi; Ganz, Aura

    2011-01-01

    We introduce a system that tracks patients in a Mass Casualty Incident (MCI) using active RFID triage tags and mobile anchor points (DM-tracks) carried by the paramedics. The system does not involve any fixed deployment of the localization devices while maintaining a low cost triage tag. The localization accuracy is comparable to GPS systems without incurring the cost of providing a GPS based device to every patient in the disaster scene.

  3. Vehicle Tracking System using Nanotechnology Satellites and Tags

    NASA Technical Reports Server (NTRS)

    Lorenzini, Dino A.; Tubis, Chris

    1995-01-01

    This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.

  4. Tracking and Data System Support for the Mariner Venus/Mercury 1973 Project

    NASA Technical Reports Server (NTRS)

    Davis, E. K.; Traxler, M. R.

    1977-01-01

    The Tracking and Data System, which provided outstanding support to the Mariner Venus/Mercury 1973 project during the period from January 1970 through March 1975 are chronologically described. In the Tracking and Data System organizations, plans, processes, and technical configurations, which were developed and employed to facilitate achievement of mission objectives, are described. In the Deep Space Network position of the tracking and data system, a number of special actions were taken to greatly increase the scientific data return and to assist the project in coping with in-flight problems. The benefits of such actions were high; however, there was also a significant increase in risk as a function of the experimental equipment and procedures required.

  5. Tonopah Test Range - Index

    Science.gov Websites

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Us Range Videos/Photos Range Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Optical Systems Cinetheodolites Telescopes R&D Telescopes

  6. ACT-Vision: active collaborative tracking for multiple PTZ cameras

    NASA Astrophysics Data System (ADS)

    Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet

    2009-04-01

    We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.

  7. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.

    PubMed

    Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming

    2017-05-09

    This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  8. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    NASA Astrophysics Data System (ADS)

    Jie, Cao; Zhi-Hai, Wu; Li, Peng

    2016-05-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).

  9. A computer system to analyze showers in nuclear emulsions: Center Director's discretionary fund report

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Fountain, W. F.; Berry, F. A., Jr.

    1987-01-01

    A system to rapidly digitize data from showers in nuclear emulsions is described. A TV camera views the emulsions though a microscope. The TV output is superimposed on the monitor of a minicomputer. The operator uses the computer's graphics capability to mark the positions of particle tracks. The coordinates of each track are stored on a disk. The computer then predicts the coordinates of each track through successive layers of emulsion. The operator, guided by the predictions, thus tracks and stores the development of the shower. The system provides a significant improvement over purely manual methods of recording shower development in nuclear emulsion stacks.

  10. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  11. Maintenance Decision Support System, Phase III

    DOT National Transportation Integrated Search

    2017-09-01

    The main goal of the project was to address barriers that limit NDOTs ability to implement MDSS and MMS systems. The four project tasks included: Task 1: Develop system for tracking sand and/or deicing material usage: A system that tracks where and w...

  12. COMPLIANCE AND ENFORCEMENT REGIONAL TRACKING SYSTEM (CERTS)

    EPA Science Inventory

    The Compliance and Enforcement Regional Tracking System (CERTS) is a system that allows Region 10 employees integrated access to information in EPA national media data bases through the LAN system. CERTS will allow you to identify regulated facilities in a given location such as...

  13. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.

    PubMed

    Arnon, S; Rotman, S; Kopeika, N S

    1997-08-20

    The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.

  14. System and method for tracking a signal source. [employing feedback control

    NASA Technical Reports Server (NTRS)

    Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)

    1978-01-01

    A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.

  15. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    PubMed

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  16. Reduced complexity of multi-track joint 2-D Viterbi detectors for bit-patterned media recording channel

    NASA Astrophysics Data System (ADS)

    Myint, L. M. M.; Warisarn, C.

    2017-05-01

    Two-dimensional (2-D) interference is one of the prominent challenges in ultra-high density recording system such as bit patterned media recording (BPMR). The multi-track joint 2-D detection technique with the help of the array-head reading can tackle this problem effectively by jointly processing the multiple readback signals from the adjacent tracks. Moreover, it can robustly alleviate the impairments due to track mis-registration (TMR) and media noise. However, the computational complexity of such detectors is normally too high and hard to implement in a reality, even for a few multiple tracks. Therefore, in this paper, we mainly focus on reducing the complexity of multi-track joint 2-D Viterbi detector without paying a large penalty in terms of the performance. We propose a simplified multi-track joint 2-D Viterbi detector with a manageable complexity level for the BPMR's multi-track multi-head (MTMH) system. In the proposed method, the complexity of detector's trellis is reduced with the help of the joint-track equalization method which employs 1-D equalizers and 2-D generalized partial response (GPR) target. Moreover, we also examine the performance of a full-fledged multi-track joint 2-D detector and the conventional 2-D detection. The results show that the simplified detector can perform close to the full-fledge detector, especially when the system faces high media noise, with the significant low complexity.

  17. Airborne tracking sunphotometer

    NASA Technical Reports Server (NTRS)

    Matsumoto, Tak; Russell, Philip; Mina, Cesar; Van Ark, William; Banta, Victor

    1987-01-01

    An airborne tracking sunphotometer, mounted on the outside top surface of an aircaft has been developed to provide unresricted viewing of the sun. This instrument will substantially increase the data that scientists can gather for atmospheric studies. The instrument has six wavelength channels and an automatic data gathering system. The instrument's optical features, tracking capability, mechanical features, and data gathering system are described.

  18. Simultaneous Tracking of Multiple Points Using a Wiimote

    ERIC Educational Resources Information Center

    Skeffington, Alex; Scully, Kyle

    2012-01-01

    This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be…

  19. Using Wage Record Data To Track the Post-College Employment and Earnings of Community College Students.

    ERIC Educational Resources Information Center

    Friedlander, Jack

    The Post-Education Employment Tracking System (PEETS), operated by the Chancellor's Office of the California Community Colleges (CCC) in cooperation with the State of California's Employment Development Department (EDD), is an automated system for tracking the post-college employment rates and earnings of community college program completers and…

  20. Factors Affecting the Transition of Fifth Graders to the Academic Track in the Czech Republic

    ERIC Educational Resources Information Center

    Straková, Jana; Greger, David; Soukup, Petr

    2016-01-01

    The Czech education system is characterised by early tracking and high educational inequalities. The most controversial element of the system is the academic track, which is attended by students after the completion of primary school. The paper focuses on fifth graders' application process and their success in entrance examinations. The process is…

  1. 49 CFR 214.525 - Towing with on-track roadway maintenance machines or hi-rail vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... other coupling device that provides a safe and secure attachment. (b) An on-track roadway maintenance... towing would cause the machine or hi-rail vehicle to exceed the capabilities of its braking system. In determining the limit of the braking system, the employer must consider the track grade (slope), as well as...

  2. 49 CFR 214.525 - Towing with on-track roadway maintenance machines or hi-rail vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... other coupling device that provides a safe and secure attachment. (b) An on-track roadway maintenance... towing would cause the machine or hi-rail vehicle to exceed the capabilities of its braking system. In determining the limit of the braking system, the employer must consider the track grade (slope), as well as...

  3. A Model for Nationwide Patient Tracking

    DTIC Science & Technology

    2009-09-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing...Interoperability between Modules and Other Systems ....................................77 Figure 18. Ideal System for EMS... Other agencies do not employ patient tracking at all. Overall, patient tracking needs to be redefined, so that agencies do not see it as a

  4. Study of a Tracking and Data Acquisition System (TDAS) in the 1990's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in concept definition studies, operational assessments, and technology demonstrations for the Tracking and Data Acquisition System (TDAS) is reported. The proposed TDAS will be the follow-on to the Tracking and Data Relay Satellite System and will function as a key element of the NASA End-to-End Data System, providing the tracking and data acquisition interface between user accessible data ports on Earth and the user's spaceborne equipment. Technical activities of the "spacecraft data system architecture' task and the "communication mission model' task are emphasized. The objective of the first task is to provide technology forecasts for sensor data handling, navigation and communication systems, and estimate corresponding costs. The second task is concerned with developing a parametric description of the required communication channels. Other tasks with significant activity include the "frequency plan and radio interference model' and the "Viterbi decoder/simulator study'.

  5. Analysis of a spatial tracking subsystem for optical communications

    NASA Technical Reports Server (NTRS)

    Win, Moe Z.; Chen, CHIEN-C.

    1992-01-01

    Spatial tracking plays a very critical role in designing optical communication systems because of the small angular beamwidth associated with the optical signal. One possible solution for spatial tracking is to use a nutating mirror which dithers the incoming beam at a rate much higher than the mechanical disturbances. A power detector then senses the change in detected power as the signal is reflected off the nutating mirror. This signal is then correlated with the nutator driver signals to obtain estimates of the azimuth and elevation tracking signals to control the fast scanning mirrors. A theoretical analysis is performed for a spatial tracking system using a nutator disturbed by shot noise and mechanical vibrations. Contributions of shot noise and mechanical vibrations to the total tracking error variance are derived. Given the vibration spectrum and the expected signal power, there exists an optimal amplitude for the nutation which optimizes the receiver performance. The expected performance of a nutator based system is estimated based on the choice of nutation amplitude.

  6. Advantages and challenges in automated apatite fission track counting

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Ehlers, T. A.

    2012-04-01

    Fission track thermochronometer data are often a core element of modern tectonic and denudation studies. Soon after the development of the fission track methods interest emerged for the developed an automated counting procedure to replace the time consuming labor of counting fission tracks under the microscope. Automated track counting became feasible in recent years with increasing improvements in computer software and hardware. One such example used in this study is the commercial automated fission track counting procedure from Autoscan Systems Pty that has been highlighted through several venues. We conducted experiments that are designed to reliably and consistently test the ability of this fully automated counting system to recognize fission tracks in apatite and a muscovite external detector. Fission tracks were analyzed in samples with a step-wise increase in sample complexity. The first set of experiments used a large (mm-size) slice of Durango apatite cut parallel to the prism plane. Second, samples with 80-200 μm large apatite grains of Fish Canyon Tuff were analyzed. This second sample set is characterized by complexities often found in apatites in different rock types. In addition to the automated counting procedure, the same samples were also analyzed using conventional counting procedures. We found for all samples that the fully automated fission track counting procedure using the Autoscan System yields a larger scatter in the fission track densities measured compared to conventional (manual) track counting. This scatter typically resulted from the false identification of tracks due surface and mineralogical defects, regardless of the image filtering procedure used. Large differences between track densities analyzed with the automated counting persisted between different grains analyzed in one sample as well as between different samples. As a result of these differences a manual correction of the fully automated fission track counts is necessary for each individual surface area and grain counted. This manual correction procedure significantly increases (up to four times) the time required to analyze a sample with the automated counting procedure compared to the conventional approach.

  7. Going wild: what a global small-animal tracking system could do for experimental biologists.

    PubMed

    Wikelski, Martin; Kays, Roland W; Kasdin, N Jeremy; Thorup, Kasper; Smith, James A; Swenson, George W

    2007-01-01

    Tracking animals over large temporal and spatial scales has revealed invaluable and spectacular biological information, particularly when the paths and fates of individuals can be monitored on a global scale. However, only large animals (greater than approximately 300 g) currently can be followed globally because of power and size constraints on the tracking devices. And yet the vast majority of animals is small. Tracking small animals is important because they are often part of evolutionary and ecological experiments, they provide important ecosystem services and they are of conservation concern or pose harm to human health. Here, we propose a small-animal satellite tracking system that would enable the global monitoring of animals down to the size of the smallest birds, mammals (bats), marine life and eventually large insects. To create the scientific framework necessary for such a global project, we formed the ICARUS initiative (www.IcarusInitiative.org), the International Cooperation for Animal Research Using Space. ICARUS also highlights how small-animal tracking could address some of the ;Grand Challenges in Environmental Sciences' identified by the US National Academy of Sciences, such as the spread of infectious diseases or the relationship between biological diversity and ecosystem functioning. Small-animal tracking would allow the quantitative assessment of dispersal and migration in natural populations and thus help solve enigmas regarding population dynamics, extinctions and invasions. Experimental biologists may find a global small-animal tracking system helpful in testing, validating and expanding laboratory-derived discoveries in wild, natural populations. We suggest that the relatively modest investment into a global small-animal tracking system will pay off by providing unprecedented insights into both basic and applied nature. Tracking small animals over large spatial and temporal scales could prove to be one of the most powerful techniques of the early 21st century, offering potential solutions to a wide range of biological and societal questions that date back two millennia to the Greek philosopher Aristotle's enigma about songbird migration. Several of the more recent Grand Challenges in Environmental Sciences, such as the regulation and functional consequences of biological diversity or the surveillance of the population ecology of zoonotic hosts, pathogens or vectors, could also be addressed by a global small-animal tracking system. Our discussion is intended to contribute to an emerging groundswell of scientific support to make such a new technological system happen.

  8. 76 FR 34890 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...-0007, Notice No. 3] RIN 2130-AC01 Track Safety Standards; Concrete Crossties AGENCY: Federal Railroad... effective concrete crossties, for rail fastening systems connected to concrete crossties, and for automated inspections of track constructed with concrete crossties. The Track Safety Standards were amended via final...

  9. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  10. Nanometer-scale anatomy of entire Stardust tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  11. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  12. Incomplete equalization: The effect of tracking in secondary education on educational inequality.

    PubMed

    Holm, Anders; Jæger, Mads Meier; Karlson, Kristian Bernt; Reimer, David

    2013-11-01

    This paper tests whether the existence of vocationally oriented tracks within a traditionally academically oriented upper education system reduces socioeconomic inequalities in educational attainment. Based on a statistical model of educational transitions and data on two entire cohorts of Danish youth, we find that (1) the vocationally oriented tracks are less socially selective than the traditional academic track; (2) attending the vocationally oriented tracks has a negative effect on the likelihood of enrolling in higher education; and (3) in the aggregate the vocationally oriented tracks improve access to lower-tier higher education for low-SES students. These findings point to an interesting paradox in that tracking has adverse effects at the micro-level but equalizes educational opportunities at the macro-level. We also discuss whether similar mechanisms might exist in other educational systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Penalty dynamic programming algorithm for dim targets detection in sensor systems.

    PubMed

    Huang, Dayu; Xue, Anke; Guo, Yunfei

    2012-01-01

    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations.

  14. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  15. A Real-Time Localization System for an Endoscopic Capsule Using Magnetic Sensors †

    PubMed Central

    Pham, Duc Minh; Aziz, Syed Mahfuzul

    2014-01-01

    Magnetic sensing technology offers an attractive alternative for in vivo tracking with much better performance than RF and ultrasound technologies. In this paper, an efficient in vivo magnetic tracking system is presented. The proposed system is intended to localize an endoscopic capsule which delivers biomarkers around specific locations of the gastrointestinal (GI) tract. For efficiently localizing a magnetic marker inside the capsule, a mathematical model has been developed for the magnetic field around a cylindrical magnet and used with a localization algorithm that provides minimum error and fast computation. The proposed tracking system has much reduced complexity compared to the ones reported in the literature to date. Laboratory tests and in vivo animal trials have demonstrated the suitability of the proposed system for tracking a magnetic marker with expected accuracy. PMID:25379813

  16. History of Voluntary Markets

    EPA Pesticide Factsheets

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  17. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  18. Role of quality of service metrics in visual target acquisition and tracking in resource constrained environments

    NASA Astrophysics Data System (ADS)

    Anderson, Monica; David, Phillip

    2007-04-01

    Implementation of an intelligent, automated target acquisition and tracking systems alleviates the need for operators to monitor video continuously. This system could identify situations that fatigued operators could easily miss. If an automated acquisition and tracking system plans motions to maximize a coverage metric, how does the performance of that system change when the user intervenes and manually moves the camera? How can the operator give input to the system about what is important and understand how that relates to the overall task balance between surveillance and coverage? In this paper, we address these issues by introducing a new formulation of the average linear uncovered length (ALUL) metric, specially designed for use in surveilling urban environments. This metric coordinates the often competing goals of acquiring new targets and tracking existing targets. In addition, it provides current system performance feedback to system users in terms of the system's theoretical maximum and minimum performance. We show the successful integration of the algorithm via simulation.

  19. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  20. Electromagnetic tracking for abdominal interventions in computer aided surgery

    PubMed Central

    Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin

    2014-01-01

    Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506

  1. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less

  2. Development of the Inventory Management and Tracking System (IMATS) to Track the Availability of Public Health Department Medical Countermeasures During Public Health Emergencies

    PubMed Central

    Sahar, Liora; Faler, Guy; Hristov, Emil; Hughes, Susan; Lee, Leslie; Westnedge, Caroline; Erickson, Benjamin; Nichols, Barbara

    2015-01-01

    Objective To bridge gaps identified during the 2009 H1N1 influenza pandemic by developing a system that provides public health departments improved capability to manage and track medical countermeasures at the state and local levels and to report their inventory levels to the Centers for Disease Control and Prevention (CDC). Materials and Methods The CDC Countermeasure Tracking Systems (CTS) program designed and implemented the Inventory Management and Tracking System (IMATS) to manage, track, and report medical countermeasure inventories at the state and local levels. IMATS was designed by CDC in collaboration with state and local public health departments to ensure a “user-centered design approach.” A survey was completed to assess functionality and user satisfaction. Results IMATS was deployed in September 2011 and is provided at no cost to public health departments. Many state and local public health departments nationwide have adopted IMATS and use it to track countermeasure inventories during public health emergencies and daily operations. Discussion A successful response to public health emergencies requires efficient, accurate reporting of countermeasure inventory levels. IMATS is designed to support both emergency operations and everyday activities. Future improvements to the system include integrating barcoding technology and streamlining user access. To maintain system readiness, we continue to collect user feedback, improve technology, and enhance its functionality. Conclusion IMATS satisfies the need for a system for monitoring and reporting health departments’ countermeasure quantities so that decision makers are better informed. The “user-centered design approach” was successful, as evident by the many public health departments that adopted IMATS. PMID:26392843

  3. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  4. Tracking Vaccination Teams During Polio Campaigns in Northern Nigeria by Use of Geographic Information System Technology: 2013-2015.

    PubMed

    Touray, Kebba; Mkanda, Pascal; Tegegn, Sisay G; Nsubuga, Peter; Erbeto, Tesfaye B; Banda, Richard; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G

    2016-05-01

    Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance. In each local government area where tracking was conducted, global positioning system-enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria. © 2016 World Health Organization; licensee Oxford Journals.

  5. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  6. Role of TDRSS in tracking and data acquisition

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1980-01-01

    The integration and operation of the Tracking Data Relay Satellite System (TDRSS) into the NASA Communications Network (NASCOM) equipment and services is described. The system concept employs spacecraft in geosynchronous orbit, operating as communications front-ends, and a single ground terminal, which provides primary tracking and data acquisition services for earth-orbiting user satellites and for the Space Shuttle. The TDRSS system is further characterized by real-time throughput of user data and a high degree of automation.

  7. An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D

    An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment alsomore » provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.« less

  8. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  9. A Robust Head Tracking System Based on Monocular Vision and Planar Templates

    PubMed Central

    Caballero, Fernando; Maza, Iván; Molina, Roberto; Esteban, David; Ollero, Aníbal

    2009-01-01

    This paper details the implementation of a head tracking system suitable for its use in teleoperation stations or control centers, taking into account the limitations and constraints usually associated to those environments. The paper discusses and justifies the selection of the different methods and sensors to build the head tracking system, detailing also the processing steps of the system in operation. A prototype to validate the proposed approach is also presented along with several tests in a real environment with promising results. PMID:22291546

  10. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M

    2015-11-01

    This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.

  11. Developing a reliable method for signal wire attachment : [research results].

    DOT National Transportation Integrated Search

    2013-03-01

    Railroad signaling systems detect trains on the track, identify track fractures, prevent derailments, and alert signal crossing stations when trains approach. These systems are vital to safe train operation; therefore, each component of this system h...

  12. Transit track worker safety protection demonstration project.

    DOT National Transportation Integrated Search

    2013-04-01

    This report describes the demonstration of an innovative system to reduce the hazards of working in the track environment. It describes : the deployment of the system, provides a summary of developments to further enhance the system for transit agenc...

  13. Viewfinder/tracking system for Skylab

    NASA Technical Reports Server (NTRS)

    Casey, W. L.

    1975-01-01

    Basic component of system is infrared spectrometer designed for manual target acquisition, pointing and tracking, and data-take initiation. System incorporates three main subsystems which include: (1) viewfinder telescope, (2) control panel and electronics assembly, and (3) IR-spectrometer case assembly.

  14. Bus incident reporting, tracking and analysis system

    DOT National Transportation Integrated Search

    2006-08-01

    Many Florida transit systems do little formal analysis of all accidents on an aggregate basis. In many transit system accidents and incidents are not being tracked or analyzed to identify common trends from types of incidents, location, driver, bus r...

  15. Analyses of track shift under high-speed vehicle-track interaction : safety of high speed ground transportation systems

    DOT National Transportation Integrated Search

    1997-06-01

    This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...

  16. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  17. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    NASA Astrophysics Data System (ADS)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  18. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-01-01

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817

  19. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  20. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  1. Precise Head Tracking in Hearing Applications

    NASA Astrophysics Data System (ADS)

    Helle, A. M.; Pilinski, J.; Luhmann, T.

    2015-05-01

    The paper gives an overview about two research projects, both dealing with optical head tracking in hearing applications. As part of the project "Development of a real-time low-cost tracking system for medical and audiological problems (ELCoT)" a cost-effective single camera 3D tracking system has been developed which enables the detection of arm and head movements of human patients. Amongst others, the measuring system is designed for a new hearing test (based on the "Mainzer Kindertisch"), which analyzes the directional hearing capabilities of children in cooperation with the research project ERKI (Evaluation of acoustic sound source localization for children). As part of the research project framework "Hearing in everyday life (HALLO)" a stereo tracking system is being used for analyzing the head movement of human patients during complex acoustic events. Together with the consideration of biosignals like skin conductance the speech comprehension and listening effort of persons with reduced hearing ability, especially in situations with background noise, is evaluated. For both projects the system design, accuracy aspects and results of practical tests are discussed.

  2. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  3. LANDSAT-4 MSS Geometric Correction: Methods and Results

    NASA Technical Reports Server (NTRS)

    Brooks, J.; Kimmer, E.; Su, J.

    1984-01-01

    An automated image registration system such as that developed for LANDSAT-4 can produce all of the information needed to verify and calibrate the software and to evaluate system performance. The on-line MSS archive generation process which upgrades systematic correction data to geodetic correction data is described as well as the control point library build subsystem which generates control point chips and support data for on-line upgrade of correction data. The system performance was evaluated for both temporal and geodetic registration. For temporal registration, 90% errors were computed to be .36 IFOV (instantaneous field of view) = 82.7 meters) cross track, and .29 IFOV along track. Also, for actual production runs monitored, the 90% errors were .29 IFOV cross track and .25 IFOV along track. The system specification is .3 IFOV, 90% of the time, both cross and along track. For geodetic registration performance, the model bias was measured by designating control points in the geodetically corrected imagery.

  4. Tracking and data relay satellite system configuration and tradeoff study. Volume 1: TDRS system summary, part 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A Tracking and Data Relay Satellite System (TDRSS) concept for service of low and medium data rate user spacecraft has been defined. The TDRS system uses two geosynchronous dual spin satellites compatible with Delta 2914 to provide command, tracking, and telemetry service between multiple low earth orbiting users and a centrally located ground station. The low data rate user service capability via each TDRS is as follows: (1) forward link at UHF: voice to one user, commands to 20 users (sequential), range and range rate service, and (2) return link at VHF: voice from one user, data from 20 users (simultaneous), range and range rate return signals. The medium data rate user service via each TDRS is as follows: (1) forward link at S band: voice or command and tracking signals to one user, and (2) return link at S band: voice, data and tracking signals from one user "order wire" for high priority service requests (implemented with an earth coverage antenna).

  5. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  6. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    PubMed Central

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-01-01

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331

  7. Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system

    NASA Astrophysics Data System (ADS)

    Guigou-Carter, C.; Villot, M.; Guillerme, B.; Petit, C.

    2006-06-01

    In this paper, a simple prediction tool based on a two-dimensional model is developed for a slab track system composed of two rails with rail pads, sleepers with sleeper pads, and a concrete base slab. The track and the slab are considered as infinite beams with bending stiffness, loss factor and mass per unit length. The track system is represented by its impedance per unit length of track and the ground by its line input impedance calculated using a two-dimensional elastic half-space ground model based on the wave approach. Damping of each track component is modelled as hysteretic damping and is taken into account by using a complex stiffness. The unsprung mass of the vehicle is considered as a concentrated mass at the excitation point on the rail head. The effect of the dynamic stiffness of the sleeper pads on the vibration isolation is studied in detail, the vibration isolation provided by the track system being quantified by an insertion gain in dB per one-third octave band. The second part of this paper presents an experimental test rig used to measure the dynamic stiffness of the sleeper pads on a full width section of the track (two rails). The experimental set-up is submitted to vertical as well as horizontal static loads (via hydraulic jacks) and an electrodynamic shaker is used for dynamic excitation of the system. The determination of the dynamic stiffness of the sleeper pads is based on the approach called the "direct method". The limitations of the experimental set-up are discussed. The measurement results for one type of sleeper pad are presented.

  8. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    PubMed

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  9. Supercavitating Projectile Tracking System and Method

    DTIC Science & Technology

    2009-12-30

    Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable

  10. Minitrack tracking function description, volume 2

    NASA Technical Reports Server (NTRS)

    Englar, T. S.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.

    1973-01-01

    The minitrack tracking function is described and specific operations are identified. The subjects discussed are: (1) preprocessor listing, (2) minitrack hardware, (3) system calibration, (4) quadratic listing, and (5) quadratic flow diagram. Detailed information is provided on the construction of the tracking system and its operation. The calibration procedures are supported by mathematical models to show the application of the computer programs.

  11. Influence of long-wavelength track irregularities on the motion of a high-speed train

    NASA Astrophysics Data System (ADS)

    Hung, C. F.; Hsu, W. L.

    2018-01-01

    Vertical track irregularities over viaducts in high-speed rail systems could be possibly caused by concrete creep if pre-stressed concrete bridges are used. For bridge spans that are almost uniformly distributed, track irregularity exhibits a near-regular wave profile that excites car bodies as a high-speed train moves over the bridge system. A long-wavelength irregularity induces low-frequency excitation that may be close to the natural frequencies of the train suspension system, thereby causing significant vibration of the car body. This paper investigates the relationship between the levels of car vibration, bridge vibration, track irregularity, and the train speed. First, this study investigates the vibration levels of a high-speed train and bridge system using 3D finite-element (FE) transient dynamic analysis, before and after adjustment of vertical track irregularities by means of installing shimming plates under rail pads. The analysis models are validated by in situ measurements and on-board measurement. Parametric studies of car body vibration and bridge vibration under three different levels of track irregularity at five train speeds and over two bridge span lengths are conducted using the FE model. Finally, a discontinuous shimming pattern is proposed to avoid vehicle suspension resonance.

  12. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  13. Feature Extraction for Track Section Status Classification Based on UGW Signals

    PubMed Central

    Yang, Yuan; Shi, Lin

    2018-01-01

    Track status classification is essential for the stability and safety of railway operations nowadays, when railway networks are becoming more and more complex and broad. In this situation, monitoring systems are already a key element in applications dedicated to evaluating the status of a certain track section, often determining whether it is free or occupied by a train. Different technologies have already been involved in the design of monitoring systems, including ultrasonic guided waves (UGW). This work proposes the use of the UGW signals captured by a track monitoring system to extract the features that are relevant for determining the corresponding track section status. For that purpose, three features of UGW signals have been considered: the root mean square value, the energy, and the main frequency components. Experimental results successfully validated how these features can be used to classify the track section status into free, occupied and broken. Furthermore, spatial and temporal dependencies among these features were analysed in order to show how they can improve the final classification performance. Finally, a preliminary high-level classification system based on deep learning networks has been envisaged for future works. PMID:29673156

  14. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  15. Synchronization using pulsed edge tracking in optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Gagliardi, R.

    1972-01-01

    A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.

  16. An Analysis of Serial Number Tracking Automatic Identification Technology as Used in Naval Aviation Programs

    NASA Astrophysics Data System (ADS)

    Csorba, Robert

    2002-09-01

    The Government Accounting Office found that the Navy, between 1996 and 1998, lost 3 billion in materiel in-transit. This thesis explores the benefits and cost of automatic identification and serial number tracking technologies under consideration by the Naval Supply Systems Command and the Naval Air Systems Command. Detailed cost-savings estimates are made for each aircraft type in the Navy inventory. Project and item managers of repairable components using Serial Number Tracking were surveyed as to the value of this system. It concludes that two thirds of the in-transit losses can be avoided with implementation of effective information technology-based logistics and maintenance tracking systems. Recommendations are made for specific steps and components of such an implementation. Suggestions are made for further research.

  17. Robot trajectory tracking with self-tuning predicted control

    NASA Technical Reports Server (NTRS)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  18. Application of new radio tracking data types to critical spacecraft navigation problems

    NASA Technical Reports Server (NTRS)

    Ondrasik, V. J.; Rourke, K. H.

    1972-01-01

    Earth-based radio tracking data types are considered, which involve simultaneous or nearly simultaneous spacecraft tracking from widely separated tracking stations. These data types are conventional tracking instrumentation analogs of the very long baseline interferometry (VLBI) of radio astronomy-hence the name quasi-VLBI. A preliminary analysis of quasi-VLBI is presented using simplified tracking data models. The results of accuracy analyses are presented for a representative mission, Viking 1975. The results indicate that, contingent on projected tracking system accuracy, quasi-VLBI can be expected to significantly improve navigation performance over that expected from conventional tracking data types.

  19. 75 FR 82053 - Notification of a New Privacy Act System of Records, Effort to Outcomes-Case Management System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... to facilitate on-going tracking and management of these services, leading to greater self-sufficiency... Congress. Comments Due Date: January 28, 2011. ADDRESSES: Interested persons are invited to submit comments... SYSTEM NAME: Efforts to Outcome Case Management Tracking System for DHAP-Ike. SYSTEM LOCATION: Baltimore...

  20. Track and mode controller (TMC): a software executive for a high-altitude pointing and tracking experiment

    NASA Astrophysics Data System (ADS)

    Michnovicz, Michael R.

    1997-06-01

    A real-time executive has been implemented to control a high altitude pointing and tracking experiment. The track and mode controller (TMC) implements a table driven design, in which the track mode logic for a tracking mission is defined within a state transition diagram (STD). THe STD is implemented as a state transition table in the TMC software. Status Events trigger the state transitions in the STD. Each state, as it is entered, causes a number of processes to be activated within the system. As these processes propagate through the system, the status of key processes are monitored by the TMC, allowing further transitions within the STD. This architecture is implemented in real-time, using the vxWorks operating system. VxWorks message queues allow communication of status events from the Event Monitor task to the STD task. Process commands are propagated to the rest of the system processors by means of the SCRAMNet shared memory network. The system mode logic contained in the STD will autonomously sequence in acquisition, tracking and pointing system through an entire engagement sequence, starting with target detection and ending with aimpoint maintenance. Simulation results and lab test results will be presented to verify the mode controller. In addition to implementing the system mode logic with the STD, the TMC can process prerecorded time sequences of commands required during startup operations. It can also process single commands from the system operator. In this paper, the author presents (1) an overview, in which he describes the TMC architecture, the relationship of an end-to-end simulation to the flight software and the laboratory testing environment, (2) implementation details, including information on the vxWorks message queues and the SCRAMNet shared memory network, (3) simulation results and lab test results which verify the mode controller, and (4) plans for the future, specifically as to how this executive will expedite transition to a fully functional system.

  1. Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    NASA Astrophysics Data System (ADS)

    de Renstrom, Pawel Brückman; Haywood, Stephen

    2006-04-01

    A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.

  2. Dual S and Ku-band tracking feed for a TDRS reflector antenna

    NASA Technical Reports Server (NTRS)

    Pullara, J. C.; Bales, C. W.; Kefalas, G. P.; Uyehara, M.

    1974-01-01

    The results are presented of a trade study designed to identify a synchronous satellite antenna system suitable for receiving and transmitting data from lower orbiting satellites at both S- and K sub u-bands simultaneously as part of the Tracking and Data Relay Satellite System. All related problems associated with maintaining a data link between two satellites with a K sub u-band half-power beamwidth of 0.4 db are considered including data link maintenance techniques, beam pointing accuracies, gimbal and servo errors, solar heating, angle tracking schemes, acquisition problems and aids, tracking accuracies versus SNR, antenna feed designs, equipment designs, weight and power budgets, and detailed candidate antenna system designs.

  3. Noncoherent Doppler tracking: first flight results

    NASA Astrophysics Data System (ADS)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  4. 75 FR 34754 - Privacy Act; Notification of a New Privacy Act System of Records, Title Eight Automated Paperless...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... automated case management system, to process complaints, compliance reviews, and to track the activities... comment on the new system of records. The new system report was submitted to the Office of Management and... a New Privacy Act System of Records, Title Eight Automated Paperless Office Tracking System (TEAPOTS...

  5. START: a system for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like queries.

    PubMed

    Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y

    2017-09-22

    A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.

  6. Intelligent system of coordination and control for manufacturing

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2016-08-01

    This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.

  7. Research on application of several tracking detectors in APT system

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, i.e., the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discusses the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.

  8. Super-resolution imaging applied to moving object tracking

    NASA Astrophysics Data System (ADS)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  9. 76 FR 29765 - Determination of System Attributes for the Tracking and Tracing of Prescription Drugs; Reopening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... a track-and-trace system and for obtaining input from supply chain partners on potential attributes...-trace system and (2) input from supply chain partners on potential attributes and standards for the...

  10. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  11. Real-time object detection, tracking and occlusion reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  12. Multiple Drosophila Tracking System with Heading Direction

    PubMed Central

    Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi

    2017-01-01

    Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800

  13. Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk

    1992-01-01

    The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.

  14. Tracking Three-Dimensional Fish Behavior with a New Marine Acoustic Telemetry System

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian G.; McGarry, Louise P.; Greene, Charles H.; Steig, Tracey W.; Johnston, Samuel V.; Ehrenberg, John E.

    2015-01-01

    The persistent monitoring capability provided by acoustic telemetry systems allows us to study behavior, movement, and resource selection of mobile marine animals. Current marine acoustic telemetry systems are challenged by localization errors and limits in the number of animals that can be tracked simultaneously. We designed a new system to provide detection ranges of up to 1 km, to reduce localization errors to less than 1 m, and to increase to 500 the number of unique tags simultaneously tracked. The design builds on HTIs experience of more than a decade developing acoustic telemetry systems for freshwater environments. A field trial of the prototype system was conducted at the University of Washingtons Friday Harbor Marine Laboratory (Friday Harbor, WA). Copper rockfish (Sebastes caurinus) were selected for field trials of this new system because their high site-fidelity and small home ranges provide ample opportunity to track individual fish behavior while testing our ability to characterize the movements of a species of interest to management authorities.

  15. Comparison of Three Wind Measuring Systems for Flight Test

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Harvey, Philip O.

    2000-01-01

    A preliminary field test of the accuracy of wind velocity measurements obtained using global positioning system-tracked rawinsonde balloons has been performed. Wind comparisons have been conducted using global positioning system (GPS) and radio automatic theodolite sounder (RATS) rawinsondes and a high-precision range instrumentation radar-tracked reflector. Wind velocity differences between the GPS rawinsondes and the radar were significantly less than between the RATS rawinsondes and the radar. These limited test results indicate a root-mean-square wind velocity difference from 4.98 kn (2.56 m/sec) for the radar and RATS to 1.09 kn (0.56 m/sec) for the radar and GPS. Differences are influenced by user reporting requirements, data processing techniques, and the inherent tracking accuracies of the system. This brief field test indicates that the GPS sounding system tracking data are more precise than the RATS system. When high-resolution wind data are needed, use of GPS rawinsonde systems can reduce the burden on range radar operations.

  16. Decoupled tracking and thermal monitoring of non-stationary targets.

    PubMed

    Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng

    2009-10-01

    Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.

  17. A Proposed Defect Tracking Model for Classifying the Inserted Defect Reports to Enhance Software Quality Control

    PubMed Central

    Khedr, Ayman E.; Sayed, Mostafa

    2013-01-01

    CONFLICT OF INTEREST: NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality. PMID:24039334

  18. Accuracy and precision of four value-added blood glucose meters: the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro.

    PubMed

    Sheffield, Catherine A; Kane, Michael P; Bakst, Gary; Busch, Robert S; Abelseth, Jill M; Hamilton, Robert A

    2009-09-01

    This study compared the accuracy and precision of four value-added glucose meters. Finger stick glucose measurements in diabetes patients were performed using the Abbott Diabetes Care (Alameda, CA) Optium, Diagnostic Devices, Inc. (Miami, FL) DDI Prodigy, Home Diagnostics, Inc. (Fort Lauderdale, FL) HDI True Track Smart System, and Arkray, USA (Minneapolis, MN) HypoGuard Assure Pro. Finger glucose measurements were compared with laboratory reference results. Accuracy was assessed by a Clarke error grid analysis (EGA), a Parkes EGA, and within 5%, 10%, 15%, and 20% of the laboratory value criteria (chi2 analysis). Meter precision was determined by calculating absolute mean differences in glucose values between duplicate samples (Kruskal-Wallis test). Finger sticks were obtained from 125 diabetes patients, of which 90.4% were Caucasian, 51.2% were female, 83.2% had type 2 diabetes, and average age of 59 years (SD 14 years). Mean venipuncture blood glucose was 151 mg/dL (SD +/-65 mg/dL; range, 58-474 mg/dL). Clinical accuracy by Clarke EGA was demonstrated in 94% of Optium, 82% of Prodigy, 61% of True Track, and 77% of the Assure Pro samples (P < 0.05 for Optium and True Track compared to all others). By Parkes EGA, the True Track was significantly less accurate than the other meters. Within 5% accuracy was achieved in 34%, 24%, 29%, and 13%, respectively (P < 0.05 for Optium, Prodigy, and Assure Pro compared to True Track). Within 10% accuracy was significantly greater for the Optium, Prodigy, and Assure Pro compared to True Track. Significantly more Optium results demonstrated within 15% and 20% accuracy compared to the other meter systems. The HDI True Track was significantly less precise than the other meter systems. The Abbott Optium was significantly more accurate than the other meter systems, whereas the HDI True Track was significantly less accurate and less precise compared to the other meter systems.

  19. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  20. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.

    PubMed

    Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo

    2018-03-01

    Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  1. Towards Better Student Tracking Systems.

    ERIC Educational Resources Information Center

    Further Education Development Agency, London (England).

    The Further Education (FE) sector in the United Kingdom has devoted time, energy, and resources in recent years to the development and improvement of information systems known as management-information systems. This report presents the findings of a research project on the use of management-information systems in student tracking. The project was…

  2. 49 CFR 213.333 - Automated vehicle inspection systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Automated vehicle inspection systems. 213.333... Higher § 213.333 Automated vehicle inspection systems. (a) For track Class 7, a qualifying Track Geometry Measurement System (TGMS) vehicle shall be operated at least twice within 120 calendar days with not less than...

  3. Tracking and disturbance rejection of MIMO nonlinear systems with PI controller

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Lin, C. A.

    1985-01-01

    The tracking and disturbance rejection of a class of MIMO nonlinear systems with a linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.

  4. Tracking and disturbance rejection of MIMO nonlinear systems with PI controller

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Lin, C.-A.

    1985-01-01

    The tracking and disturbance rejection of a class of MIMO nonlinear systems with linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.

  5. Generic Surface-to-Air Missile Model.

    DTIC Science & Technology

    1979-10-01

    describes the Generic Surface-to-Air Missile Model (GENSAM) which evaluates the outcome of an engagement between a surface-to-air missile system and an...DETAILS OF THE GENERIC SAM MODEL 3-1 3.1 Coordinate Transformations 3-1 3.1.1 Coordinate Systems 3-1 3.1.2 Coordinate Transformations 3-4 3.1.3 Functions...Tracking Radars 3-54 3.3.11 Deception Jamming and Tracking Radars 3-55 3.3.12 Jaming and Track Radar Downlinks 3-56 3.3.13 Infrared Surveillance Systems 3

  6. Investigating the Feasibility of Conducting Human Tracking and Following in an Indoor Environment Using a Microsoft Kinect and the Robot Operating System

    DTIC Science & Technology

    2017-06-01

    implement human following on a mobile robot in an indoor environment . B. FUTURE WORK Future work that could be conducted in the realm of this thesis...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM by...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM 5. FUNDING NUMBERS

  7. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  8. A virtual reality system for arm and hand rehabilitation

    NASA Astrophysics Data System (ADS)

    Luo, Zhiqiang; Lim, Chee Kian; Chen, I.-Ming; Yeo, Song Huat

    2011-03-01

    This paper presents a virtual reality (VR) system for upper limb rehabilitation. The system incorporates two motion track components, the Arm Suit and the Smart Glove which are composed of a range of the optical linear encoders (OLE) and the inertial measurement units (IMU), and two interactive practice applications designed for driving users to perform the required functional and non-functional motor recovery tasks. We describe the technique details about the two motion track components and the rational to design two practice applications. The experiment results show that, compared with the marker-based tracking system, the Arm Suit can accurately track the elbow and wrist positions. The repeatability of the Smart Glove on measuring the five fingers' movement can be satisfied. Given the low cost, high accuracy and easy installation, the system thus promises to be a valuable complement to conventional therapeutic programs offered in rehabilitation clinics and at home.

  9. Multidimensional evaluation of a radio frequency identification wi-fi location tracking system in an acute-care hospital setting

    PubMed Central

    Okoniewska, Barbara; Graham, Alecia; Gavrilova, Marina; Wah, Dannel; Gilgen, Jonathan; Coke, Jason; Burden, Jack; Nayyar, Shikha; Kaunda, Joseph; Yergens, Dean; Baylis, Barry

    2012-01-01

    Real-time locating systems (RTLS) have the potential to enhance healthcare systems through the live tracking of assets, patients and staff. This study evaluated a commercially available RTLS system deployed in a clinical setting, with three objectives: (1) assessment of the location accuracy of the technology in a clinical setting; (2) assessment of the value of asset tracking to staff; and (3) assessment of threshold monitoring applications developed for patient tracking and inventory control. Simulated daily activities were monitored by RTLS and compared with direct research team observations. Staff surveys and interviews concerning the system's effectiveness and accuracy were also conducted and analyzed. The study showed only modest location accuracy, and mixed reactions in staff interviews. These findings reveal that the technology needs to be refined further for better specific location accuracy before full-scale implementation can be recommended. PMID:22298566

  10. Multiscale spectral nanoscopy

    DOEpatents

    Yang, Haw; Welsher, Kevin

    2016-11-15

    A system and method for non-invasively tracking a particle in a sample is disclosed. The system includes a 2-photon or confocal laser scanning microscope (LSM) and a particle-holding device coupled to a stage with X-Y and Z position control. The system also includes a tracking module having a tracking excitation laser, X-Y and Z radiation-gathering components configured to detect deviations of the particle in an X-Y and Z directions. The system also includes a processor coupled to the X-Y and Z radiation gathering components, generate control signals configured to drive the stage X-Y and Z position controls to track the movement of the particle. The system may also include a synchronization module configured to generate LSM pixels stamped with stage position and a processing module configured to generate a 3D image showing the 3D trajectory of a particle using the LSM pixels stamped with stage position.

  11. Multidimensional evaluation of a radio frequency identification wi-fi location tracking system in an acute-care hospital setting.

    PubMed

    Okoniewska, Barbara; Graham, Alecia; Gavrilova, Marina; Wah, Dannel; Gilgen, Jonathan; Coke, Jason; Burden, Jack; Nayyar, Shikha; Kaunda, Joseph; Yergens, Dean; Baylis, Barry; Ghali, William A

    2012-01-01

    Real-time locating systems (RTLS) have the potential to enhance healthcare systems through the live tracking of assets, patients and staff. This study evaluated a commercially available RTLS system deployed in a clinical setting, with three objectives: (1) assessment of the location accuracy of the technology in a clinical setting; (2) assessment of the value of asset tracking to staff; and (3) assessment of threshold monitoring applications developed for patient tracking and inventory control. Simulated daily activities were monitored by RTLS and compared with direct research team observations. Staff surveys and interviews concerning the system's effectiveness and accuracy were also conducted and analyzed. The study showed only modest location accuracy, and mixed reactions in staff interviews. These findings reveal that the technology needs to be refined further for better specific location accuracy before full-scale implementation can be recommended.

  12. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  13. STABILITY OF THE NEUTRON DOSE DETERMINATION ALGORITHM FOR PERSONAL NEUTRON DOSEMETERS AT DIFFERENT RADON GAS EXPOSURES.

    PubMed

    Mayer, Sabine; Boschung, Markus; Butterweck, Gernot; Assenmacher, Frank; Hohmann, Eike

    2016-09-01

    Since 2008 the Paul Scherrer Institute (PSI) has been using a microscope-based automatic scanning system for assessing personal neutron doses with a dosemeter based on PADC. This scanning system, known as TASLImage, includes a comprehensive characterisation of tracks. The distributions of several specific track characteristics such as size, shape and optical density are compared with a reference set to discriminate tracks of alpha particles and non-track background. Due to the dosemeter design at PSI, it is anticipated that radon should not significantly contribute to the creation of additional tracks in the PADC detector. The present study tests the stability of the neutron dose determination algorithm of the personal neutron dosemeter system in operation at PSI at different radon gas exposures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Technical aspects of real time positron emission tracking for gated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, Marc; Xu, Tong, E-mail: txu@physics.carleton.ca; McEwen, Malcolm R.

    2016-02-15

    Purpose: Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. Methods: The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation–maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers amore » short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior–superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a {sup 22}Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. Results: The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. Conclusions: PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.« less

  15. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    PubMed Central

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software∕hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%–3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation of clinical resources because the most critical failure modes receive the most attention. It is expected that the set of guidelines proposed here will serve as a living document that is updated with the accumulation of progressively more intrainstitutional and interinstitutional experience with DMLC tracking. PMID:21302802

  16. 78 FR 74162 - Draft Criminal Justice Offender Tracking System Standard and Companion Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... to the following Web site: https://www.justnet.org/standards/Offender_Tracking_Standards.html . DATES....org/standards/Offender_Tracking_Standards.html . Gregory K. Ridgeway, Acting Director, National...

  17. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  18. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  19. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body velocity tracking case, gamma = 107:2043 for the exible body altitude tracking case, and gamma = 97:7403 for the rigid body altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. The results of this analysis show that there is a larger difference in the response of the Hinfinity LPV controller and the Hinfinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the Hinfinity LPV controller was applied to the exible nonlinear plant model. The rigid body controllers were applied to the exible plant model to see if the exible nature of the vehicle could be treated as a perturbation to the system. Additionally, there were simulations run both with and without sensor noise and parametric uncertainty. The results of simulation show that the rigid body controller is able to successfully apply to the exible body model for the velocity tracking case, but is unable to stabilize the altitude tracking case. It was also seen that the system is able to track the command signal while minimizing the variations seen in the altitude for the velocity tracking case and in the velocity during the altitude tracking case. Additionally, there was no obvious effect of perturbations in the system on the tracking state or secondary regulation state. There were high frequency responses associated with the other perturbed states.

  20. Multi-Sensor Information Integration and Automatic Understanding

    DTIC Science & Technology

    2008-11-01

    also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real- world data – either using real-time...surveillance and airborne IED detection . 15. SUBJECT TERMS Multi-hypothesis tracking , particle filters, anomalous behavior detection , Bayesian...analyst to support decision making with large data sets. A key feature of the real-time tracking and behavior detection system developed is that the

  1. Long-range eye tracking: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, S.K.; Lu, Shin-yee

    1994-08-24

    The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.

  2. MR-Compatible Integrated Eye Tracking System

    DTIC Science & Technology

    2016-03-10

    SECURITY CLASSIFICATION OF: This instrumentation grant was used to purchase state-of-the-art, high-resolution video eye tracker that can be used to...P.O. Box 12211 Research Triangle Park, NC 27709-2211 video eye tracking, eye movments, visual search; camouflage-breaking REPORT DOCUMENTATION PAGE...Report: MR-Compatible Integrated Eye Tracking System Report Title This instrumentation grant was used to purchase state-of-the-art, high-resolution video

  3. Technical Note: Validation and implementation of a wireless transponder tracking system for gated stereotactic ablative radiotherapy of the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Joshua, E-mail: joshua.james@louisville.edu; Dunlap, Neal E.; Nguyen, Vi Nhan

    Purpose: Tracking soft-tissue targets has recently been cleared as a new application of Calypso, an electromagnetic wireless transponder tracking system, allowing for gated treatment of the liver based on the motion of the target volume itself. The purpose of this study is to describe the details of validating the Calypso system for wireless transponder tracking of the liver and to present the clinical workflow for using it to deliver gated stereotactic ablative radiotherapy (SABR). Methods: A commercial 3D diode array motion system was used to evaluate the dynamic tracking accuracy of Calypso when tracking continuous large amplitude motion. It wasmore » then used to perform end-to-end tests to evaluate the dosimetric accuracy of gated beam delivery for liver SABR. In addition, gating limits were investigated to determine how large the gating window can be while still maintaining dosimetric accuracy. The gating latency of the Calypso system was also measured using a customized motion phantom. Results: The average absolute difference between the measured and expected positional offset was 0.3 mm. The 2%/2 mm gamma pass rates for the gated treatment delivery were greater than 97%. When increasing the gating limits beyond the known extent of planned motion, the gamma pass rates decreased as expected. The 2%/2 mm gamma pass rate for a 1, 2, and 3 mm increase in gating limits was measured to be 97.8%, 82.9%, and 61.4%, respectively. The average gating latency was measured to be 63.8 ms for beam-hold and 195.8 ms for beam-on. Four liver patients with 17 total fractions have been successfully treated at our institution. Conclusions: Wireless transponder tracking was validated as a dosimetrically accurate way to provide gated SABR of the liver. The dynamic tracking accuracy of the Calypso system met manufacturer’s specification, even for continuous large amplitude motion that can be encountered when tracking liver tumors close to the diaphragm. The measured beam-hold gating latency was appropriate for targets that will traverse the gating limit each respiratory cycle causing the beam to be interrupted constantly throughout treatment delivery.« less

  4. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter.

    PubMed

    Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L

    2013-08-01

    To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  5. People: Creativity and Quality with Technology. Proceedings of the CAUSE National Conference (St. Louis, Missouri, December 1-4, 1981).

    ERIC Educational Resources Information Center

    Walsh, R. Brian, Ed.; Thomas, Charles R., Ed.

    Proceedings of the 1981 CAUSE conference include both professional and vendor presentations. Track 1, on decision support systems, examines such areas as system design, the EDUCOM Financial Planning Model System (EFPM), the evolution of support systems, and a Mississippi approach. Track 2, "Managing the Information Systems Resource,"…

  6. A hemispherical imaging and tracking (HIT) system

    NASA Astrophysics Data System (ADS)

    Gilbert, John A.; Fair, Sara B.; Caldwell, Scott E.; Gronner, Sally J.

    1992-05-01

    A hemispherical imaging and tracking (HIT) system is described which is used for an interceptor designed to acquire, select, home, and hit-to-kill reentry vehicle targets from intercontinental ballistic missiles. The system provides a sizable field of view, over which a target may be tracked and yields a unique and distinctive optical signal when the system is 'on target'. The system has an infinite depth of focus and no moving parts are required for imaging within a hemisphere. Critical alignment of the HIT system is based on the comparison of signals captured through different points on an annular window. Assuming that the perturbations are radially symmetric, errors may be eliminated during the subtraction.

  7. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  8. Reasonable Accommodation Information Tracking System

    EPA Pesticide Factsheets

    The Reasonable Accommodation Information Tracking System (RAITS) is a case management system that allows the National Reasonable Accommodation Coordinator (NRAC) and the Local Reasonable Accommodation Coordinators (LORAC) to manage information related to Reasonable Accommodation (RA) requests. It provides a data base system in compliance with Executive Order 13164 and required by the Equal Employment Opportunity Commission (EEOC) Regulations and American Federation of Government Employees (AFGE) Bargaining Unit as described in the AFGE National Reasonable Accommodation Procedures. It is a tool that was internally developed in Lotus Notes to track requests for reasonable accommodation and was custom-configured to meet EPA's specific needs and infrastructure.

  9. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets

    PubMed Central

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I.; Letts, Robyn F. R.; Pantanowitz, Adam; Rubin, David M.; Thomsen, Jesper S.; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron. PMID:26170896

  10. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  11. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  12. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets.

    PubMed

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I; Letts, Robyn F R; Pantanowitz, Adam; Rubin, David M; Thomsen, Jesper S; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron.

  13. 49 CFR 238.19 - Reporting and tracking of repairs to defective passenger equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Reporting and tracking of repairs to defective... STANDARDS General § 238.19 Reporting and tracking of repairs to defective passenger equipment. (a) General. Beginning on January 1, 2002, each railroad shall have in place a reporting and tracking system for...

  14. 49 CFR 238.19 - Reporting and tracking of repairs to defective passenger equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reporting and tracking of repairs to defective... STANDARDS General § 238.19 Reporting and tracking of repairs to defective passenger equipment. (a) General. Beginning on January 1, 2002, each railroad shall have in place a reporting and tracking system for...

  15. 48 CFR 252.246-7005 - Notice of Warranty Tracking of Serialized Items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Tracking of Serialized Items. 252.246-7005 Section 252.246-7005 Federal Acquisition Regulations System... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.246-7005 Notice of Warranty Tracking of Serialized Items. As prescribed in 246.710(5)(i)(A), use the following provision: Notice of Warranty Tracking...

  16. Tracking: Conflicts and Resolutions. Controversial Issues in Education.

    ERIC Educational Resources Information Center

    Lockwood, Anne Turnbaugh

    The educational tracking system raises highly controversial issues. This book offers both the viewpoints of researchers who have grappled with the issue of tracking and the personal experiences of school staff who have wrestled with the issue of whether or not to track instruction. It presents summaries of interviews that were conducted with three…

  17. High-performance object tracking and fixation with an online neural estimator.

    PubMed

    Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian

    2007-02-01

    Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.

  18. Q-adjusting technique applied to vertical deflections estimation in a single-axis rotation INS/GPS integrated system

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-10-01

    Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.

  19. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system

    PubMed Central

    2010-01-01

    Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897

  20. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.

    PubMed

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.

Top