Sample records for pk parameter estimates

  1. Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine.

    PubMed

    Howard, Jeremy T; Ashwell, Melissa S; Baynes, Ronald E; Brooks, James D; Yeatts, James L; Maltecca, Christian

    2018-01-01

    In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs ( n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study.

  2. Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine

    PubMed Central

    Howard, Jeremy T.; Ashwell, Melissa S.; Baynes, Ronald E.; Brooks, James D.; Yeatts, James L.; Maltecca, Christian

    2018-01-01

    In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study. PMID:29487615

  3. Performance comparison of first-order conditional estimation with interaction and Bayesian estimation methods for estimating the population parameters and its distribution from data sets with a low number of subjects.

    PubMed

    Pradhan, Sudeep; Song, Byungjeong; Lee, Jaeyeon; Chae, Jung-Woo; Kim, Kyung Im; Back, Hyun-Moon; Han, Nayoung; Kwon, Kwang-Il; Yun, Hwi-Yeol

    2017-12-01

    Exploratory preclinical, as well as clinical trials, may involve a small number of patients, making it difficult to calculate and analyze the pharmacokinetic (PK) parameters, especially if the PK parameters show very high inter-individual variability (IIV). In this study, the performance of a classical first-order conditional estimation with interaction (FOCE-I) and expectation maximization (EM)-based Markov chain Monte Carlo Bayesian (BAYES) estimation methods were compared for estimating the population parameters and its distribution from data sets having a low number of subjects. In this study, 100 data sets were simulated with eight sampling points for each subject and with six different levels of IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK parameter distribution. A stochastic simulation and estimation (SSE) study was performed to simultaneously simulate data sets and estimate the parameters using four different methods: FOCE-I only, BAYES(C) (FOCE-I and BAYES composite method), BAYES(F) (BAYES with all true initial parameters and fixed ω 2 ), and BAYES only. Relative root mean squared error (rRMSE) and relative estimation error (REE) were used to analyze the differences between true and estimated values. A case study was performed with a clinical data of theophylline available in NONMEM distribution media. NONMEM software assisted by Pirana, PsN, and Xpose was used to estimate population PK parameters, and R program was used to analyze and plot the results. The rRMSE and REE values of all parameter (fixed effect and random effect) estimates showed that all four methods performed equally at the lower IIV levels, while the FOCE-I method performed better than other EM-based methods at higher IIV levels (greater than 30%). In general, estimates of random-effect parameters showed significant bias and imprecision, irrespective of the estimation method used and the level of IIV. Similar performance of the estimation methods was observed with theophylline dataset. The classical FOCE-I method appeared to estimate the PK parameters more reliably than the BAYES method when using a simple model and data containing only a few subjects. EM-based estimation methods can be considered for adapting to the specific needs of a modeling project at later steps of modeling.

  4. Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT

    NASA Astrophysics Data System (ADS)

    Grudzinski, Joseph J.; Floberg, John M.; Mudd, Sarah R.; Jeffery, Justin J.; Peterson, Eric T.; Nomura, Alice; Burnette, Ronald R.; Tomé, Wolfgang A.; Weichert, Jamey P.; Jeraj, Robert

    2012-03-01

    We have previously developed a model that provides relative dosimetry estimates for targeted radionuclide therapy (TRT) agents. The whole-body and tumor pharmacokinetic (PK) parameters of this model can be noninvasively measured with molecular imaging, providing a means of comparing potential TRT agents. Parameter sensitivities and noise will affect the accuracy and precision of the estimated PK values and hence dosimetry estimates. The aim of this work is to apply a PK model for TRT to two agents with different magnitudes of clearance rates, NM404 and FLT, explore parameter sensitivity with respect to time and investigate the effect of noise on parameter precision and accuracy. Twenty-three tumor bearing mice were injected with a ‘slow-clearing’ agent, 124I-NM404 (n = 10), or a ‘fast-clearing’ agent, 18F-FLT (3‧-deoxy-3‧-fluorothymidine) (n = 13) and imaged via micro-PET/CT pseudo-dynamically or dynamically, respectively. Regions of interest were drawn within the heart and tumor to create time-concentration curves for blood pool and tumor. PK analysis was performed to estimate the mean and standard error of the central compartment efflux-to-influx ratio (k12/k21), central elimination rate constant (kel), and tumor influx-to-efflux ratio (k34/k43), as well as the mean and standard deviation of the dosimetry estimates. NM404 and FLT parameter estimation results were used to analyze model accuracy and parameter sensitivity. The accuracy of the experimental sampling schedule was compared to that of an optimal sampling schedule found using Cramer-Rao lower bounds theory. Accuracy was assessed using correlation coefficient, bias and standard error of the estimate normalized to the mean (SEE/mean). The PK parameter estimation of NM404 yielded a central clearance, kel (0.009 ± 0.003 h-1), normal body retention, k12/k21 (0.69 ± 0.16), tumor retention, k34/k43 (1.44 ± 0.46) and predicted dosimetry, Dtumor (3.47 ± 1.24 Gy). The PK parameter estimation of FLT yielded a central elimination rate constant, kel (0.050 ± 0.025 min-1), normal body retention, k12/k21 (2.21 ± 0.62) and tumor retention, k34/k43 (0.65 ± 0.17), and predicted dosimetry, Dtumor (0.61 ± 0.20 Gy). Compared to experimental sampling, optimal sampling decreases the dosimetry bias and SEE/mean for NM404; however, it increases bias and decreases SEE/mean for FLT. For both NM404 and FLT, central compartment efflux rate constant, k12, and central compartment influx rate constant, k21, possess mirroring sensitivities at relatively early time points. The instantaneous concentration in the blood, C0, was most sensitive at early time points; central elimination, kel, and tumor efflux, k43, are most sensitive at later time points. A PK model for TRT was applied to both a slow-clearing, NM404, and a fast-clearing, FLT, agents in a xenograft murine model. NM404 possesses more favorable PK values according to the PK TRT model. The precise and accurate measurement of k12, k21, kel, k34 and k43 will translate into improved and precise dosimetry estimations. This work will guide the future use of this PK model for assessing the relative effectiveness of potential TRT agents.

  5. Prediction of flunixin tissue residue concentrations in livers from diseased cattle.

    PubMed

    Wu, H; Baynes, R E; Tell, L A; Riviere, J E

    2013-12-01

    Flunixin, a widely used non-steroidal anti-inflammatory drug, was a leading cause of violative residues in cattle. The objective of this analysis was to explore how the changes in pharmacokinetic (PK) parameters that may be associated with diseased animals affect the predicted liver residue of flunixin in cattle. Monte Carlo simulations for liver residues of flunixin were performed using the PK model structure and relevant PK parameter estimates from a previously published population PK model for flunixin in cattle. The magnitude of a change in the PK parameter value that resulted in a violative residue issue in more than one percent of a cattle population was compared. In this regard, elimination clearance and volume of distribution affected withdrawal times. Pathophysiological factors that can change these parameters may contribute to the occurrence of violative residues of flunixin.

  6. Designing a Pediatric Study for an Antimalarial Drug by Using Information from Adults

    PubMed Central

    Jullien, Vincent; Samson, Adeline; Guedj, Jérémie; Kiechel, Jean-René; Zohar, Sarah; Comets, Emmanuelle

    2015-01-01

    The objectives of this study were to design a pharmacokinetic (PK) study by using information about adults and evaluate the robustness of the recommended design through a case study of mefloquine. PK data about adults and children were available from two different randomized studies of the treatment of malaria with the same artesunate-mefloquine combination regimen. A recommended design for pediatric studies of mefloquine was optimized on the basis of an extrapolated model built from adult data through the following approach. (i) An adult PK model was built, and parameters were estimated by using the stochastic approximation expectation-maximization algorithm. (ii) Pediatric PK parameters were then obtained by adding allometry and maturation to the adult model. (iii) A D-optimal design for children was obtained with PFIM by assuming the extrapolated design. Finally, the robustness of the recommended design was evaluated in terms of the relative bias and relative standard errors (RSE) of the parameters in a simulation study with four different models and was compared to the empirical design used for the pediatric study. Combining PK modeling, extrapolation, and design optimization led to a design for children with five sampling times. PK parameters were well estimated by this design with few RSE. Although the extrapolated model did not predict the observed mefloquine concentrations in children very accurately, it allowed precise and unbiased estimates across various model assumptions, contrary to the empirical design. Using information from adult studies combined with allometry and maturation can help provide robust designs for pediatric studies. PMID:26711749

  7. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    PubMed

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  8. Assessment of hemoglobin responsiveness to epoetin alfa in patients on hemodialysis using a population pharmacokinetic pharmacodynamic model.

    PubMed

    Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer

    2015-10-01

    A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.

  9. Population pharmacokinetic-pharmacodynamic modelling of mycophenolic acid in paediatric renal transplant recipients in the early post-transplant period.

    PubMed

    Dong, Min; Fukuda, Tsuyoshi; Cox, Shareen; de Vries, Marij T; Hooper, David K; Goebel, Jens; Vinks, Alexander A

    2014-11-01

    The purpose of this study was to develop a population pharmacokinetic and pharmacodynamic (PK-PD) model for mycophenolic acid (MPA) in paediatric renal transplant recipients in the early post-transplant period. A total of 214 MPA plasma concentrations-time data points from 24 patients were available for PK model development. In 17 out of a total of 24 patients, inosine monophosphate dehydrogenase (IMPDH) enzyme activity measurements (n = 97) in peripheral blood mononuclear cells were available for PK-PD modelling. The PK-PD model was developed using non-linear mixed effects modelling sequentially by 1) developing a population PK model and 2) incorporating IMPDH activity into a PK-PD model using post hoc Bayesian PK parameter estimates. Covariate analysis included patient demographics, co-medication and clinical laboratory data. Non-parametric bootstrapping and prediction-corrected visual predictive checks were performed to evaluate the final models. A two compartment model with a transit compartment absorption best described MPA PK. A non-linear relationship between dose and MPA exposure was observed and was described by a power function in the model. The final population PK parameter estimates (and their 95% confidence intervals) were CL/F, 22 (14.8, 25.2) l h(-1) 70 kg(-1) ; Vc /F, 45.4 (29.6, 55.6) l; Vp /F, 411 (152.6, 1472.6)l; Q/F, 22.4 (16.0, 32.5) l h(-1) ; Ka , 2.5 (1.45, 4.93) h(-1) . Covariate analysis in the PK study identified body weight to be significantly correlated with CL/F. A simplified inhibitory Emax model adequately described the relationship between MPA concentration and IMPDH activity. The final population PK-PD parameter estimates (and their 95% confidence intervals) were: E0 , 3.45 (2.61, 4.56) nmol h(-1)  mg(-1) protein and EC50 , 1.73 (1.16, 3.01) mg l(-1) . Emax was fixed to 0. There were two African-American patients in our study cohorts and both had low IMPDH baseline activities (E0 ) compared with Caucasian patients (mean value 2.13 mg l(-1) vs. 3.86 mg l(-1) ). An integrated population PK-PD model of MPA has been developed in paediatric renal transplant recipients. The current model provides information that will facilitate future studies and may be implemented in a Bayesian algorithm to allow a PK-PD guided therapeutic drug monitoring strategy. © 2014 The British Pharmacological Society.

  10. A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers.

    PubMed

    Okour, Malek; Derimanov, Geo; Barnett, Rodger; Fernandez, Esther; Ferrer, Santiago; Gresham, Stephanie; Hossain, Mohammad; Gamo, Francisco-Javier; Koh, Gavin; Pereira, Adrian; Rolfe, Katie; Wong, Deborah; Young, Graeme; Rami, Harshad; Haselden, John

    2018-03-01

    GSK3191607, a novel inhibitor of the Plasmodium falciparum ATP4 (PfATP4) pathway, is being considered for development in humans. However, a key problem encountered during the preclinical evaluation of the compound was its inconsistent pharmacokinetic (PK) profile across preclinical species (mouse, rat and dog), which prevented reliable prediction of PK parameters in humans and precluded a well-founded assessment of the potential for clinical development of the compound. Therefore, an open-label microdose (100 μg, six subjects) first time in humans study was conducted to assess the human PK of GSK3191607 following intravenous administration of [14C]-GSK3191607. A human microdose study was conducted to investigate the clinical PK of GSK3191607 and enable a Go/No Go decision on further progression of the compound. The PK disposition parameters estimated from the microdose study, combined with preclinical in vitro and in vivo pharmacodynamic parameters, were all used to estimate the potential efficacy of various oral dosing regimens in humans. The PK profile, based on the microdose data, demonstrated a half-life (~17 h) similar to other antimalarial compounds currently in clinical development. However, combining the microdose data with the pharmacodynamic data provided results that do not support further clinical development of the compound for a single dose cure. The information generated by this study provides a basis for predicting the expected oral PK profiles of GSK3191607 in man and supports decisions on the future clinical development of the compound. © 2017 The British Pharmacological Society.

  11. Excel-Based Tool for Pharmacokinetically Guided Dose Adjustment of Paclitaxel.

    PubMed

    Kraff, Stefanie; Lindauer, Andreas; Joerger, Markus; Salamone, Salvatore J; Jaehde, Ulrich

    2015-12-01

    Neutropenia is a frequent and severe adverse event in patients receiving paclitaxel chemotherapy. The time above a paclitaxel threshold concentration of 0.05 μmol/L (Tc > 0.05 μmol/L) is a strong predictor for paclitaxel-associated neutropenia and has been proposed as a target pharmacokinetic (PK) parameter for paclitaxel therapeutic drug monitoring and dose adaptation. Up to now, individual Tc > 0.05 μmol/L values are estimated based on a published PK model of paclitaxel by using the software NONMEM. Because many clinicians are not familiar with the use of NONMEM, an Excel-based dosing tool was developed to allow calculation of paclitaxel Tc > 0.05 μmol/L and give clinicians an easy-to-use tool. Population PK parameters of paclitaxel were taken from a published PK model. An Alglib VBA code was implemented in Excel 2007 to compute differential equations for the paclitaxel PK model. Maximum a posteriori Bayesian estimates of the PK parameters were determined with the Excel Solver using individual drug concentrations. Concentrations from 250 patients were simulated receiving 1 cycle of paclitaxel chemotherapy. Predictions of paclitaxel Tc > 0.05 μmol/L as calculated by the Excel tool were compared with NONMEM, whereby maximum a posteriori Bayesian estimates were obtained using the POSTHOC function. There was a good concordance and comparable predictive performance between Excel and NONMEM regarding predicted paclitaxel plasma concentrations and Tc > 0.05 μmol/L values. Tc > 0.05 μmol/L had a maximum bias of 3% and an error on precision of <12%. The median relative deviation of the estimated Tc > 0.05 μmol/L values between both programs was 1%. The Excel-based tool can estimate the time above a paclitaxel threshold concentration of 0.05 μmol/L with acceptable accuracy and precision. The presented Excel tool allows reliable calculation of paclitaxel Tc > 0.05 μmol/L and thus allows target concentration intervention to improve the benefit-risk ratio of the drug. The easy use facilitates therapeutic drug monitoring in clinical routine.

  12. Allometric scaling for predicting human clearance of bisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collet, Séverine H., E-mail: s.collet@envt.fr; Picard-Hagen, Nicole, E-mail: n.hagen-picard@envt.fr; Lacroix, Marlène Z., E-mail: m.lacroix@envt.fr

    The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady statemore » volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min.« less

  13. Estimation of kinetic parameters from list-mode data using an indirect apporach

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph Christian

    This dissertation explores the possibility of using an imaging approach to model classical pharmacokinetic (PK) problems. The kinetic parameters which describe the uptake rates of a drug within a biological system, are parameters of interest. Knowledge of the drug uptake in a system is useful in expediting the drug development process, as well as providing a dosage regimen for patients. Traditionally, the uptake rate of a drug in a system is obtained via sampling the concentration of the drug in a central compartment, usually the blood, and fitting the data to a curve. In a system consisting of multiple compartments, the number of kinetic parameters is proportional to the number of compartments, and in classical PK experiments, the number of identifiable parameters is less than the total number of parameters. Using an imaging approach to model classical PK problems, the support region of each compartment within the system will be exactly known, and all the kinetic parameters are uniquely identifiable. To solve for the kinetic parameters, an indirect approach, which is a two part process, was used. First the compartmental activity was obtained from data, and next the kinetic parameters were estimated. The novel aspect of the research is using listmode data to obtain the activity curves from a system as opposed to a traditional binned approach. Using techniques from information theoretic learning, particularly kernel density estimation, a non-parametric probability density function for the voltage outputs on each photo-multiplier tube, for each event, was generated on the fly, which was used in a least squares optimization routine to estimate the compartmental activity. The estimability of the activity curves for varying noise levels as well as time sample densities were explored. Once an estimate for the activity was obtained, the kinetic parameters were obtained using multiple cost functions, and the compared to each other using the mean squared error as the figure of merit.

  14. Achieving a physiological cortisol profile with once-daily dual-release hydrocortisone: a pharmacokinetic study.

    PubMed

    Johannsson, Gudmundur; Lennernäs, Hans; Marelli, Claudio; Rockich, Kevin; Skrtic, Stanko

    2016-07-01

    Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure-time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5-20mg and assess intrasubject variability. Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20-55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography-tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration-time profiles. DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0-4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration-time curve (AUC)0-∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional - an important consideration when managing intercurrent illness in patients with adrenal insufficiency. © 2016 The authors.

  15. Semimechanistic Bone Marrow Exhaustion Pharmacokinetic/Pharmacodynamic Model for Chemotherapy-Induced Cumulative Neutropenia.

    PubMed

    Henrich, Andrea; Joerger, Markus; Kraff, Stefanie; Jaehde, Ulrich; Huisinga, Wilhelm; Kloft, Charlotte; Parra-Guillen, Zinnia Patricia

    2017-08-01

    Paclitaxel is a commonly used cytotoxic anticancer drug with potentially life-threatening toxicity at therapeutic doses and high interindividual pharmacokinetic variability. Thus, drug and effect monitoring is indicated to control dose-limiting neutropenia. Joerger et al. (2016) developed a dose individualization algorithm based on a pharmacokinetic (PK)/pharmacodynamic (PD) model describing paclitaxel and neutrophil concentrations. Furthermore, the algorithm was prospectively compared in a clinical trial against standard dosing (Central European Society for Anticancer Drug Research Study of Paclitaxel Therapeutic Drug Monitoring; 365 patients, 720 cycles) but did not substantially improve neutropenia. This might be caused by misspecifications in the PK/PD model underlying the algorithm, especially without consideration of the observed cumulative pattern of neutropenia or the platinum-based combination therapy, both impacting neutropenia. This work aimed to externally evaluate the original PK/PD model for potential misspecifications and to refine the PK/PD model while considering the cumulative neutropenia pattern and the combination therapy. An underprediction was observed for the PK (658 samples), the PK parameters, and these parameters were re-estimated using the original estimates as prior information. Neutrophil concentrations (3274 samples) were overpredicted by the PK/PD model, especially for later treatment cycles when the cumulative pattern aggravated neutropenia. Three different modeling approaches (two from the literature and one newly developed) were investigated. The newly developed model, which implemented the bone marrow hypothesis semiphysiologically, was superior. This model further included an additive effect for toxicity of carboplatin combination therapy. Overall, a physiologically plausible PK/PD model was developed that can be used for dose adaptation simulations and prospective studies to further improve paclitaxel/carboplatin combination therapy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Optimal designs for population pharmacokinetic studies of the partner drugs co-administered with artemisinin derivatives in patients with uncomplicated falciparum malaria.

    PubMed

    Jamsen, Kris M; Duffull, Stephen B; Tarning, Joel; Lindegardh, Niklas; White, Nicholas J; Simpson, Julie A

    2012-07-11

    Artemisinin-based combination therapy (ACT) is currently recommended as first-line treatment for uncomplicated malaria, but of concern, it has been observed that the effectiveness of the main artemisinin derivative, artesunate, has been diminished due to parasite resistance. This reduction in effect highlights the importance of the partner drugs in ACT and provides motivation to gain more knowledge of their pharmacokinetic (PK) properties via population PK studies. Optimal design methodology has been developed for population PK studies, which analytically determines a sampling schedule that is clinically feasible and yields precise estimation of model parameters. In this work, optimal design methodology was used to determine sampling designs for typical future population PK studies of the partner drugs (mefloquine, lumefantrine, piperaquine and amodiaquine) co-administered with artemisinin derivatives. The optimal designs were determined using freely available software and were based on structural PK models from the literature and the key specifications of 100 patients with five samples per patient, with one sample taken on the seventh day of treatment. The derived optimal designs were then evaluated via a simulation-estimation procedure. For all partner drugs, designs consisting of two sampling schedules (50 patients per schedule) with five samples per patient resulted in acceptable precision of the model parameter estimates. The sampling schedules proposed in this paper should be considered in future population pharmacokinetic studies where intensive sampling over many days or weeks of follow-up is not possible due to either ethical, logistic or economical reasons.

  17. General Pharmacokinetic Model for Topically Administered Ocular Drug Dosage Forms.

    PubMed

    Deng, Feng; Ranta, Veli-Pekka; Kidron, Heidi; Urtti, Arto

    2016-11-01

    In ocular drug development, an early estimate of drug behavior before any in vivo experiments is important. The pharmacokinetics (PK) and bioavailability depend not only on active compound and excipients but also on physicochemical properties of the ocular drug formulation. We propose to utilize PK modelling to predict how drug and formulational properties affect drug bioavailability and pharmacokinetics. A physiologically relevant PK model based on the rabbit eye was built to simulate the effect of formulation and physicochemical properties on PK of pilocarpine solutions and fluorometholone suspensions. The model consists of four compartments: solid and dissolved drug in tear fluid, drug in corneal epithelium and aqueous humor. Parameter values and in vivo PK data in rabbits were taken from published literature. The model predicted the pilocarpine and fluorometholone concentrations in the corneal epithelium and aqueous humor with a reasonable accuracy for many different formulations. The model includes a graphical user interface that enables the user to modify parameters easily and thus simulate various formulations. The model is suitable for the development of ophthalmic formulations and the planning of bioequivalence studies.

  18. Achieving a physiological cortisol profile with once-daily dual-release hydrocortisone: a pharmacokinetic study

    PubMed Central

    Lennernäs, Hans; Marelli, Claudio; Rockich, Kevin; Skrtic, Stanko

    2016-01-01

    Objective Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure−time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5–20mg and assess intrasubject variability. Methods Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20−55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography−tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration−time profiles. Results DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0−4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration−time curve (AUC)0−∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. Conclusions DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional – an important consideration when managing intercurrent illness in patients with adrenal insufficiency. PMID:27129362

  19. Pharmacokinetic/pharmacodynamic modeling of cardiac toxicity in human acute overdoses: utility and limitations.

    PubMed

    Mégarbane, Bruno; Aslani, Arsia Amir; Deye, Nicolas; Baud, Frédéric J

    2008-05-01

    Hypotension, cardiac failure, QT interval prolongation, dysrhythmias, and conduction disturbances are common complications of overdoses with cardiotoxicants. Pharmacokinetic/pharmacodynamic (PK/PD) relationships are useful to assess diagnosis, prognosis, and treatment efficacy in acute poisonings. To review the utility and limits of PK/PD studies of cardiac toxicity. Discussion of various models, mainly those obtained in digitalis, cyanide, venlafaxine and citalopram poisonings. A sigmoidal E(max) model appears adequate to represent the PK/PD relationships in cardiotoxic poisonings. PK/PD correlations investigate the discrepancies between the time course of the effect magnitude and its evolving concentrations. They may help in understanding the mechanisms of occurrence as well as disappearance of a cardiotoxic effect. When data are sparse, population-based PK/PD modeling using computer-intensive algorithms is helpful to estimate population mean values of PK parameters as well as their individual variability. Further PK/PD studies are needed in medical toxicology to allow understanding of the meaning of blood toxicant concentration in acute poisonings and thus improve management.

  20. Use of population pharmacokinetic modeling and Monte Carlo simulation to capture individual animal variability in the prediction of flunixin withdrawal times in cattle.

    PubMed

    Wu, H; Baynes, R E; Leavens, T; Tell, L A; Riviere, J E

    2013-06-01

    The objective of this study was to develop a population pharmacokinetic (PK) model and predict tissue residues and the withdrawal interval (WDI) of flunixin in cattle. Data were pooled from published PK studies in which flunixin was administered through various dosage regimens to diverse populations of cattle. A set of liver data used to establish the regulatory label withdrawal time (WDT) also were used in this study. Compartmental models with first-order absorption and elimination were fitted to plasma and liver concentrations by a population PK modeling approach. Monte Carlo simulations were performed with the population mean and variabilities of PK parameters to predict liver concentrations of flunixin. The PK of flunixin was described best by a 3-compartment model with an extra liver compartment. The WDI estimated in this study with liver data only was the same as the label WDT. However, a longer WDI was estimated when both plasma and liver data were included in the population PK model. This study questions the use of small groups of healthy animals to determine WDTs for drugs intended for administration to large diverse populations. This may warrant a reevaluation of the current procedure for establishing WDT to prevent violative residues of flunixin. © 2012 Blackwell Publishing Ltd.

  1. Evolution of a mini-scale biphasic dissolution model: Impact of model parameters on partitioning of dissolved API and modelling of in vivo-relevant kinetics.

    PubMed

    Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G

    2016-08-01

    Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Population pharmacokinetics of gabapentin in healthy Korean subjects with influence of genetic polymorphisms of ABCB1.

    PubMed

    Tran, Phuong; Yoo, Hee-Doo; Ngo, Lien; Cho, Hea-Young; Lee, Yong-Bok

    2017-12-01

    The objective of this study was to perform population pharmacokinetic (PK) analysis of gabapentin in healthy Korean subjects and to investigate the possible effect of genetic polymorphisms (1236C > T, 2677G > T/A, and 3435C > T) of ABCB1 gene on PK parameters of gabapentin. Data were collected from bioequivalence studies, in which 173 subjects orally received three different doses of gabapentin (300, 400, and 800 mg). Only data from reference formulation were used. Population pharmacokinetics (PKs) of gabapentin was estimated using a nonlinear mixed-effects model (NONMEM). Gabapentin showed considerable inter-individual variability (from 5.2- to 8.7-fold) in PK parameters. Serum concentration of gabapentin was well fitted by a one-compartment model with first-order absorption and lag time. An inhibitory Emax model was applied to describe the effect of dose on bioavailability. The oral clearance was estimated to be 11.1 L/h. The volume of distribution was characterized as 81.0 L. The absorption rate constant was estimated at 0.860 h -1 , and the lag time was predicted at 0.311 h. Oral bioavailability was estimated to be 68.8% at dose of 300 mg, 62.7% at dose of 400 mg, and 47.1% at dose of 800 mg. The creatinine clearance significantly influenced on the oral clearance (P < 0.005) and ABCB1 2677G > T/A genotypes significantly influenced on the absorption rate constant (P < 0.05) of gabapentin. However, ABCB1 1236C > T and 3435C > T genotypes showed no significant effect on gabapentin PK parameters. The results of the present study indicate that the oral bioavailability of gabapentin is decreased when its dosage is increased. In addition, ABCB1 2677G > T/A polymorphism can explain the substantial inter-individual variability in the absorption of gabapentin.

  3. Confirmation of model-based dose selection for a Japanese phase III study of rivaroxaban in non-valvular atrial fibrillation patients.

    PubMed

    Kaneko, Masato; Tanigawa, Takahiko; Hashizume, Kensei; Kajikawa, Mariko; Tajiri, Masahiro; Mueck, Wolfgang

    2013-01-01

    This study was designed to confirm the appropriateness of the dose setting for a Japanese phase III study of rivaroxaban in patients with non-valvular atrial fibrillation (NVAF), which had been based on model simulation employing phase II study data. The previously developed mixed-effects pharmacokinetic/pharmacodynamic (PK-PD) model, which consisted of an oral one-compartment model parameterized in terms of clearance, volume and a first-order absorption rate, was rebuilt and optimized using the data for 597 subjects from the Japanese phase III study, J-ROCKET AF. A mixed-effects modeling technique in NONMEM was used to quantify both unexplained inter-individual variability and inter-occasion variability, which are random effect parameters. The final PK and PK-PD models were evaluated to identify influential covariates. The empirical Bayes estimates of AUC and C(max) from the final PK model were consistent with the simulated results from the Japanese phase II study. There was no clear relationship between individual estimated exposures and safety-related events, and the estimated exposure levels were consistent with the global phase III data. Therefore, it was concluded that the dose selected for the phase III study with Japanese NVAF patients by means of model simulation employing phase II study data had been appropriate from the PK-PD perspective.

  4. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times.

  5. Population Pharmacokinetics of Metronidazole Evaluated Using Scavenged Samples from Preterm Infants

    PubMed Central

    Ouellet, Daniele; Smith, P. Brian; James, Laura P.; Ross, Ashley; Sullivan, Janice E.; Walsh, Michele C.; Zadell, Arlene; Newman, Nancy; White, Nicole R.; Kashuba, Angela D. M.; Benjamin, Daniel K.

    2012-01-01

    Pharmacokinetic (PK) studies in preterm infants are rarely conducted due to the research challenges posed by this population. To overcome these challenges, minimal-risk methods such as scavenged sampling can be used to evaluate the PK of commonly used drugs in this population. We evaluated the population PK of metronidazole using targeted sparse sampling and scavenged samples from infants that were ≤32 weeks of gestational age at birth and <120 postnatal days. A 5-center study was performed. A population PK model using nonlinear mixed-effect modeling (NONMEM) was developed. Covariate effects were evaluated based on estimated precision and clinical significance. Using the individual Bayesian PK estimates from the final population PK model and the dosing regimen used for each subject, the proportion of subjects achieving the therapeutic target of trough concentrations >8 mg/liter was calculated. Monte Carlo simulations were performed to evaluate the adequacy of different dosing recommendations per gestational age group. Thirty-two preterm infants were enrolled: the median (range) gestational age at birth was 27 (22 to 32) weeks, postnatal age was 41 (0 to 97) days, postmenstrual age (PMA) was 32 (24 to 43) weeks, and weight was 1,495 (678 to 3,850) g. The final PK data set contained 116 samples; 104/116 (90%) were scavenged from discarded clinical specimens. Metronidazole population PK was best described by a 1-compartment model. The population mean clearance (CL; liter/h) was determined as 0.0397 × (weight/1.5) × (PMA/32)2.49 using a volume of distribution (V) (liter) of 1.07 × (weight/1.5). The relative standard errors around parameter estimates ranged between 11% and 30%. On average, metronidazole concentrations in scavenged samples were 30% lower than those measured in scheduled blood draws. The majority of infants (>70%) met predefined pharmacodynamic efficacy targets. A new, simplified, postmenstrual-age-based dosing regimen is recommended for this population. Minimal-risk methods such as scavenged PK sampling provided meaningful information related to development of metronidazole PK models and dosing recommendations. PMID:22252819

  6. Application of an NLME-Stochastic Deconvolution Approach to Level A IVIVC Modeling.

    PubMed

    Kakhi, Maziar; Suarez-Sharp, Sandra; Shepard, Terry; Chittenden, Jason

    2017-07-01

    Stochastic deconvolution is a parameter estimation method that calculates drug absorption using a nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using clinical pharmacokinetic (PK) data generated for an in vitro-in vivo correlation (IVIVC) study of extended release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The preliminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction absorbed (F abs ) versus time profiles when supplied with exactly the same externally determined unit impulse response parameters. In a separate analysis, a full population-PK/stochastic deconvolution was applied to the clinical PK data. Scenarios were considered in which immediate release (IR) data were either retained or excluded to inform parameter estimation. The resulting F abs profiles were then used to model level A IVIVCs. All the considered stochastic deconvolution scenarios, and numerical deconvolution, yielded on average similar results with respect to the IVIVC validation. These results could be achieved with stochastic deconvolution without recourse to IR data. Unlike numerical deconvolution, this also implies that in crossover studies where certain individuals do not receive an IR treatment, their ER data alone can still be included as part of the IVIVC analysis. Published by Elsevier Inc.

  7. Pharmacokinetics and Target Attainment of Ceftobiprole in Asian and Non-Asian Subjects.

    PubMed

    Muller, A E; Punt, N; Engelhardt, M; Schmitt-Hoffmann, A H; Mouton, J W

    2018-05-16

    Ceftobiprole is a broad-spectrum cephalosporin. The objective of this study was to test the hypothesis that the pharmacokinetics (PK) and exposure of ceftobiprole in Asian subjects are similar to those in non-Asian subjects. Three approaches were followed. The first compared the individual PK estimates between the 2 subgroups derived from a population PK model previously built. Next, it was determined whether "Asian subject" was a significant covariate. Finally, a pharmacodynamic analysis was performed by comparing measures of exposure and target attainment. No significant differences were found between PK parameter estimates for Asian and non-Asian subjects, with median values (range) for clearance of 4.82 L/h (2.12-10.47) and 4.97 L/h (0.493-20.6), respectively (P = .736). "Asian subject" was not a significant covariate in the population PK model. There were no significant differences between the measures of exposure. The geometric mean ratio for the fAUC was 1.022 (90%CI, 0.91-1.15), indicating bioequivalence. Taking a target of 60% coverage of the dose interval, more than 90% of the population in both subgroups was adequately exposed. This analysis demonstrated that there are no PK or pharmacodynamic differences between Asian and non-Asian subjects for a ceftobiprole dose of 500 mg every 8 hours as a 2-hour infusion. © 2018, The American College of Clinical Pharmacology.

  8. [Application of Fourier amplitude sensitivity test in Chinese healthy volunteer population pharmacokinetic model of tacrolimus].

    PubMed

    Guan, Zheng; Zhang, Guan-min; Ma, Ping; Liu, Li-hong; Zhou, Tian-yan; Lu, Wei

    2010-07-01

    In this study, we evaluated the influence of different variance from each of the parameters on the output of tacrolimus population pharmacokinetic (PopPK) model in Chinese healthy volunteers, using Fourier amplitude sensitivity test (FAST). Besides, we estimated the index of sensitivity within whole course of blood sampling, designed different sampling times, and evaluated the quality of parameters' and the efficiency of prediction. It was observed that besides CL1/F, the index of sensitivity for all of the other four parameters (V1/F, V2/F, CL2/F and k(a)) in tacrolimus PopPK model showed relatively high level and changed fast with the time passing. With the increase of the variance of k(a), its indices of sensitivity increased obviously, associated with significant decrease in sensitivity index for the other parameters, and obvious change in peak time as well. According to the simulation of NONMEM and the comparison among different fitting results, we found that the sampling time points designed according to FAST surpassed the other time points. It suggests that FAST can access the sensitivities of model parameters effectively, and assist the design of clinical sampling times and the construction of PopPK model.

  9. Application of Hill's equation for estimating area under the concentration-time curve (AUC) and use of time to AUC 90% for expressing kinetics of drug disposition.

    PubMed

    Cheng, Hsien C

    2009-01-01

    Half life and its derived pharmacokinetic parameters are calculated on an assumption that the terminal phase of drug disposition follows a constant rate of disposition. In reality, this assumption may not necessarily be the case. A new method is needed for analyzing PK parameters if the disposition does not follow a first order PK kinetic. Cumulative area under the concentration-time curve (AUC) is plotted against time to yield a hyperbolic (or sigmoidal) AUC-time relationship curve which is then analyzed by Hill's equation to yield AUC(inf), time to achieving AUC50% (T(AUC50%)) or AUC90% (T(AUC90%)), and the Hill's slope. From these parameters, an AUC-time relationship curve can be reconstructed. Projected plasma concentration can be calculated for any time point. Time at which cumulative AUC reaches 90% (T(AUC90%)) can be used as an indicator for expressing how fast a drug is cleared. Clearance is calculated in a traditional manner (i.v. dose/AUC(inf)), and the volume of distribution is proposed to be calculated at T(AUC50%) (0.5 i.v. dose/plasma concentration at T(AUC50%)). This method of estimating AUC is applicable for both i.v. and oral data. It is concluded that the Hill's equation can be used as an alternative method for estimating AUC and analysis of PK parameters if the disposition does not follow a first order kinetic. T(AUC90%) is proposed to be used as an indicator for expressing how fast a drug is cleared from the system.

  10. An allometric pharmacokinetic/pharmacodynamics model for BI 893923, a novel IGF-1 receptor inhibitor.

    PubMed

    Titze, Melanie I; Schaaf, Otmar; Hofmann, Marco H; Sanderson, Michael P; Zahn, Stephan K; Quant, Jens; Lehr, Thorsten

    2017-03-01

    BI 893923 is a novel IGF1R/INSR inhibitor with promising anti-tumor efficacy. Dose-limiting hyperglycemia has been observed for other IGF1R/INSR inhibitors in clinical trials. To counterbalance anti-tumor efficacy with the risk of hyperglycemia and to determine the therapeutic window, we aimed to develop a translational pharmacokinetic/pharmacodynamics model for BI 893923. This aimed to translate pharmacokinetics and pharmacodynamics from animals to humans by an allometrically scaled semi-mechanistic model. Model development was based on a previously published PK/PD model for BI 893923 in mice (Titze et al., Cancer Chemother Pharmacol 77:1303-1314, 13). PK and blood glucose parameters were scaled by allometric principles using body weight as a scaling factor along with an estimation of the parameter exponents. Biomarker and tumor growth parameters were extrapolated from mouse to human using the body weight ratio as scaling factor. The allometric PK/PD model successfully described BI 893923 pharmacokinetics and blood glucose across mouse, rat, dog, minipig, and monkey. BI 893923 human exposure as well as blood glucose and tumor growth were predicted and compared for different dosing scenarios. A comprehensive risk-benefit analysis was conducted by determining the net clinical benefit for each schedule. An oral dose of 2750 mg BI 893923 divided in three evenly distributed doses was identified as the optimal human dosing regimen, predicting a tumor growth inhibition of 90.4% without associated hyperglycemia. Our model supported human therapeutic dose estimation by rationalizing the optimal efficacious dosing regimen with minimal undesired effects. This modeling approach may be useful for PK/PD scaling of other IGF1R/INSR inhibitors.

  11. Pragmatic pharmacology: population pharmacokinetic analysis of fentanyl using remnant samples from children after cardiac surgery

    PubMed Central

    Van Driest, Sara L.; Marshall, Matthew D.; Hachey, Brian; Beck, Cole; Crum, Kim; Owen, Jill; Smith, Andrew H.; Kannankeril, Prince J.; Woodworth, Alison; Caprioli, Richard M.

    2016-01-01

    Aims One barrier contributing to the lack of pharmacokinetic (PK) data in paediatric populations is the need for serial sampling. Analysis of clinically obtained specimens and data may overcome this barrier. To add evidence for the feasibility of this approach, we sought to determine PK parameters for fentanyl in children after cardiac surgery using specimens and data generated in the course of clinical care, without collecting additional blood samples. Methods We measured fentanyl concentrations in plasma from leftover clinically‐obtained specimens in 130 paediatric cardiac surgery patients and successfully generated a PK dataset using drug dosing data extracted from electronic medical records. Using a population PK approach, we estimated PK parameters for this population, assessed model goodness‐of‐fit and internal model validation, and performed subset data analyses. Through simulation studies, we compared predicted fentanyl concentrations using model‐driven weight‐adjusted per kg vs. fixed per kg fentanyl dosing. Results Fentanyl clearance for a 6.4 kg child, the median weight in our cohort, is 5.7 l h–1 (2.2–9.2 l h–1), similar to values found in prior formal PK studies. Model assessment and subset analyses indicated the model adequately fit the data. Of the covariates studied, only weight significantly impacted fentanyl kinetics, but substantial inter‐individual variability remained. In simulation studies, model‐driven weight‐adjusted per kg fentanyl dosing led to more consistent therapeutic fentanyl concentrations than fixed per kg dosing. Conclusions We show here that population PK modelling using sparse remnant samples and electronic medical records data provides a powerful tool for assessment of drug kinetics and generation of individualized dosing regimens. PMID:26861166

  12. Population pharmacokinetics and pharmacodynamics of rivaroxaban in patients with non-valvular atrial fibrillation: results from ROCKET AF.

    PubMed

    Girgis, I G; Patel, M R; Peters, G R; Moore, K T; Mahaffey, K W; Nessel, C C; Halperin, J L; Califf, R M; Fox, K A A; Becker, R C

    2014-08-01

    Two once-daily rivaroxaban dosing regimens were compared with warfarin for stroke prevention in patients with non-valvular atrial fibrillation in ROCKET AF: 20 mg for patients with normal/mildly impaired renal function and 15 mg for patients with moderate renal impairment. Rivaroxaban population pharmacokinetic (PK)/pharmacodynamic (PD) modeling data from ROCKET AF patients (n = 161) are reported and are used to confirm established rivaroxaban PK and PK/PD models and to re-estimate values of the models' parameters for the current AF population. An oral one-compartment model with first-order absorption adequately described rivaroxaban PK. Age, renal function, and lean body mass influenced the PK model. Prothrombin time and prothrombinase-induced clotting time exhibited a near-linear relationship with rivaroxaban plasma concentration; inhibitory effects were observed through to 24 hours post-dose. Rivaroxaban plasma concentration and factor Xa activity had an inhibitory maximum-effect (Emax ) relationship. Renal function (on prothrombin time; prothrombinase-induced clotting time) and age (on factor Xa activity) had moderate effects on PK/PD models. PK and PK/PD models were shown to be adequate for describing the current dataset. These findings confirm the modeling and empirical results that led to the selection of doses tested against warfarin in ROCKET AF. © 2014, The American College of Clinical Pharmacology.

  13. Cost-constrained optimal sampling for system identification in pharmacokinetics applications with population priors and nuisance parameters.

    PubMed

    Sorzano, Carlos Oscars S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar

    2015-06-01

    Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Application of PBPK modelling in drug discovery and development at Pfizer.

    PubMed

    Jones, Hannah M; Dickins, Maurice; Youdim, Kuresh; Gosset, James R; Attkins, Neil J; Hay, Tanya L; Gurrell, Ian K; Logan, Y Raj; Bungay, Peter J; Jones, Barry C; Gardner, Iain B

    2012-01-01

    Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.

  15. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis.

    PubMed

    Wambaugh, John F; Barton, Hugh A; Setzer, R Woodrow

    2008-12-01

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskell Laboratories, USEPA Administrative Record AR-226.1499 (2003)] that administered single oral or iv doses of PFOA to adult male and female rats. PFOA concentration was observed over time; in plasma for some animals and in fecal and urinary excretion for others. There were four rats per dose group, for a total of 36 males and 36 females. Assuming that the PK parameters for each individual within a gender were drawn from the same, biologically varying population, plasma and excretion data were jointly analyzed using a hierarchical framework to separate uncertainty due to measurement error from actual biological variability. Bayesian analysis using Markov Chain Monte Carlo (MCMC) provides tools to perform such an analysis as well as quantitative diagnostics to evaluate and discriminate between models. Starting from a one-compartment PK model with separate clearances to urine and feces, the model was incrementally expanded using Bayesian measures to assess if the expansion was supported by the data. PFOA excretion is sexually dimorphic in rats; male rats have bi-phasic elimination that is roughly 40 times slower than that of the females, which appear to have a single elimination phase. The male and female data were analyzed separately, keeping only the parameters describing the measurement process in common. For male rats, including excretion data initially decreased certainty in the one-compartment parameter estimates compared to an analysis using plasma data only. Allowing a third, unspecified clearance improved agreement and increased certainty when all the data was used, however a significant amount of eliminated PFOA was estimated to be missing from the excretion data. Adding an additional PK compartment reduced the unaccounted-for elimination to amounts comparable to the cage wash. For both sexes, an MCMC estimate of the appropriateness of a model for a given data type, the Deviance Information Criterion, indicated that this two-compartment model was better suited to describing PFOA PK. The median estimate was 142.1 +/- 37.6 ml/kg for the volume of the primary compartment and 1.24 +/- 1.1 ml/kg/h for the clearances of male rats and 166.4 +/- 46.8 ml/kg and 30.3 +/- 13.2 ml/kg/h, respectively for female rats. The estimates for the second compartment differed greatly with gender-volume 311.8 +/- 453.9 ml/kg with clearance 3.2 +/- 6.2 for males and 1400 +/- 2507.5 ml/kg and 4.3 +/- 2.2 ml/kg/h for females. The median estimated clearance was 12 +/- 6% to feces and 85 +/- 7% to urine for male rats and 8 +/- 6% and 77 +/- 9% for female rats. We conclude that the available data may support more models for PFOA PK beyond two-compartments and that the methods employed here will be generally useful for more complicated, including PBPK, models.

  16. Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.

    PubMed

    Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E

    2018-03-01

    Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Pharmacokinetics of Doxorubicin in Pregnant Women

    PubMed Central

    Ryu, Rachel J.; Eyal, Sara; Kaplan, Henry G.; Akbarzadeh, Arezoo; Hays, Karen; Puhl, Kristin; Easterling, Thomas R.; Berg, Stacey L.; Scorsone, Kathleen A.; Feldman, Eric M.; Umans, Jason G.; Miodovnik, Menachem; Hebert, Mary F.

    2014-01-01

    Purpose Our objective was to evaluate the pharmacokinetics (PK) of doxorubicin during pregnancy compared to previously published data from non-pregnant subjects. Methods During mid- to late-pregnancy, serial blood and urine samples were collected over 72 hours from 7 women treated with doxorubicin for malignancies. PK parameters were estimated using noncompartmental techniques. Pregnancy parameters were compared to those previously reported non-pregnant subjects. Results During pregnancy, mean (± SD) doxorubicin PK parameters utilizing 72 hour sampling were: clearance (CL), 412 ± 80 mL/min/m2; steady-state volume of distribution (Vss), 1132 ± 476 L/m2; and terminal half-life (T1/2), 40.3 ± 8.9 hr. The BSA-adjusted CL was significantly decreased (p < 0.01) and T1/2 was not different compared to non-pregnant women. Truncating our data to 48 hours, PK parameters were: CL, 499 ± 116 ml/min/m2; Vss, 843 ± 391 L/m2; and T1/2, 24.8 ± 5.9 hr. The BSA-adjusted CL in pregnancy compared to non-pregnant data was significantly decreased in 2 of 3 non-pregnant studies (p < 0.05, < 0.05, NS). Vss and T1/2 were not significantly different. Conclusions In pregnant subjects, we observed significantly lower doxorubicin CL in our 72 hour and most of our 48 hour sampling comparisons with previously reported non-pregnant subjects. However, the parameters were within the range previously reported in smaller studies. At this time, we cannot recommend alternate dosage strategies for pregnant women. Further research is needed to understand the mechanism of doxorubicin pharmacokinetic changes during pregnancy and optimize care for pregnant women. PMID:24531558

  18. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    PubMed

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  19. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.

    PubMed

    Zhang, Yong; Huo, Meirong; Zhou, Jianping; Xie, Shaofei

    2010-09-01

    This study presents PKSolver, a freely available menu-driven add-in program for Microsoft Excel written in Visual Basic for Applications (VBA), for solving basic problems in pharmacokinetic (PK) and pharmacodynamic (PD) data analysis. The program provides a range of modules for PK and PD analysis including noncompartmental analysis (NCA), compartmental analysis (CA), and pharmacodynamic modeling. Two special built-in modules, multiple absorption sites (MAS) and enterohepatic circulation (EHC), were developed for fitting the double-peak concentration-time profile based on the classical one-compartment model. In addition, twenty frequently used pharmacokinetic functions were encoded as a macro and can be directly accessed in an Excel spreadsheet. To evaluate the program, a detailed comparison of modeling PK data using PKSolver and professional PK/PD software package WinNonlin and Scientist was performed. The results showed that the parameters estimated with PKSolver were satisfactory. In conclusion, the PKSolver simplified the PK and PD data analysis process and its output could be generated in Microsoft Word in the form of an integrated report. The program provides pharmacokinetic researchers with a fast and easy-to-use tool for routine and basic PK and PD data analysis with a more user-friendly interface. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX.

    PubMed

    Bellnier, David A; Greco, William R; Loewen, Gregory M; Nava, Hector; Oseroff, Allan R; Dougherty, Thomas J

    2006-06-01

    Photodynamic therapy (PDT) uses a photosensitizer activated by light, in an oxygen-rich environment, to destroy malignant tumors. Clinical trials of PDT at Roswell Park Cancer Institute (RPCI) use the photosensitizers Photofrin, Photochlor, and 5-ALA-induced protoporphyrin IX (PpIX). In some studies the concentrations of photosensitizer in blood, and occasionally in tumor tissue, were obtained. Pharmacokinetic (PK) data from these individual studies were pooled and analyzed. This is the first published review to compare head-to-head the PK of Photofrin and Photochlor. Blood and tissue specimens were obtained from patients undergoing PDT at RPCI. Concentrations of Photofrin, Photochlor, and PpIX were measured using fluorescence analysis. A non-linear mixed effects modeling approach was used to analyze the PK data for Photochlor (up to 4 days post-infusion; two-compartment model) and a simpler multipatient-data-pooling approach was used to model PK data for both Photofrin and Photochlor (at least 150 days post-infusion; three-compartment models). Physiological parameters were standardized to correspond to a standard (70 kg; 1.818 m2 surface area) man to facilitate comparisons between Photofrin and Photochlor. Serum concentration-time profiles obtained for Photofrin and Photochlor showed long circulating half-lives, where both sensitizers could be found more than 3 months after intravenous infusion; however, estimated plasma clearances (standard man) were markedly smaller for Photofrin (25.8 ml/hour) than for Photochlor (84.2 ml/hour). Volumes of distribution of the central compartment (standard man) for both Photofrin and Photochlor were about the size (3.14 L, 4.29 L, respectively) of plasma volume, implying that both photosensitizers are almost 100% bound to serum components. Circulating levels of PpIX were generally quite low, falling below the level of instrument sensitivity within a few days after topical application of 5-ALA. We have modeled the PK of Photochlor and Photofrin. PK parameter estimates may, in part, explain the relatively long skin photosensitivity attributed to Photofrin but not Photochlor. Due to the potential impact and limited experimental PK data in the PDT field further clinical studies of photosensitizer kinetics in tumor and normal tissues are warranted. Copyright 2006 Wiley-Liss, Inc.

  1. Population pharmacokinetics of levofloxacin in Korean patients.

    PubMed

    Kiem, Sungmin; Ryu, Sung-Mun; Lee, Yun-Mi; Schentag, Jerome J; Kim, Yang-Wook; Kim, Hyeon-Kuk; Jang, Hang-Jae; Joo, Yong-Don; Jin, Kyubok; Shin, Jae-Gook; Ghim, Jong-Lyul

    2016-08-01

    Levofloxacin (LVFX) has different effects depending on the area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC) ratio. While AUC can be expressed as dose/clearance (CL), we measured serial concentrations of LVFX in Koreans and tried to set a Korean-specific equation, estimating the CL of the antibiotic. In total, 38 patients, aged 18-87 years, received once daily intravenous LVFX doses of 500 mg or 250 mg, depending on their renal function. Four plasma samples were obtained according to a D optimal sampling design. The population pharmacokinetic (PK) parameters of LVFX were estimated using non-linear mixed-effect modeling (NONMEM, ver. 7.2). The CL of LVFX was dependent on creatinine clearance (CLCR) as a covariate. The mean population PK parameters of LVFX in Koreans were as follows: CL (l/hour) = 6.19 ×  (CLCR/75)(1.32). The CL of LVFX in Koreans is expected to be lower than that in Western people.

  2. Pharmacokinetics of the injectable formulation of methadone hydrochloride administered orally in horses.

    PubMed

    Linardi, R L; Stokes, A M; Barker, S A; Short, C; Hosgood, G; Natalini, C C

    2009-10-01

    Methadone hydrochloride is a synthetic mu-opioid receptor agonist with potent analgesic properties. Oral methadone has been successfully used in human medicine and may overcome some limitations of other analgesics in equine species for producing analgesia with minimal adverse effects. However, there are no studies describing the pharmacokinetics (PK) of oral opioids in horses. The aim of this study was to describe the PK of orally administered methadone (0.1, 0.2 and 0.4 mg/kg) and physical effects in 12 healthy adult horses. Serum methadone concentrations were measured by gas chromatography/mass spectrometry at predetermined time points for 24 h, and PK parameters were estimated using a noncompartmental model. Physical effects were observed and recorded by experienced clinicians. No drug toxicity, behavioural or adverse effects were observed in the horses. The disposition of methadone followed first order elimination and a biphasic serum profile with rapid absorption and elimination phases. The PK profile of methadone was characterized by high clearance (Cl/F), small volume of distribution (V(d)/F) and short elimination half-life (t(1/2)). The mean of the estimated t(1/2) (SD) for each dose (0.1, 0.2 and 0.4 mg/kg) was 2.2 (35.6), 1.3 (46.1) and 1.5 (40.8), and the mean for the estimated C(max) (SD) was 33.9 (6.7), 127.9 (36.0) and 193.5 (65.8) respectively.

  3. Novel hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization estimation method for population pharmacokinetic data analysis.

    PubMed

    Ng, C M

    2013-10-01

    The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.

  4. A novel approach for estimating ingested dose associated with paracetamol overdose

    PubMed Central

    Zurlinden, Todd J.; Heard, Kennon

    2015-01-01

    Aim In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue‐specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow‐up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. Methods The core component of the computational framework was a physiologically‐based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter‐study variability, and facilitating the calculation of uncertainty in model outputs. Results Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Conclusions Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow‐up plan. PMID:26441245

  5. A novel approach for estimating ingested dose associated with paracetamol overdose.

    PubMed

    Zurlinden, Todd J; Heard, Kennon; Reisfeld, Brad

    2016-04-01

    In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue-specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow-up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. The core component of the computational framework was a physiologically-based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter-study variability, and facilitating the calculation of uncertainty in model outputs. Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow-up plan. © 2015 The British Pharmacological Society.

  6. ITC Recommendations for Transporter Kinetic Parameter Estimation and Translational Modeling of Transport-Mediated PK and DDIs in Humans

    PubMed Central

    Zamek-Gliszczynski, MJ; Lee, CA; Poirier, A; Bentz, J; Chu, X; Ellens, H; Ishikawa, T; Jamei, M; Kalvass, JC; Nagar, S; Pang, KS; Korzekwa, K; Swaan, PW; Taub, ME; Zhao, P; Galetin, A

    2013-01-01

    This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug–drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science. PMID:23588311

  7. Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 2: clinical trial results.

    PubMed

    Chenel, Marylore; Bouzom, François; Cazade, Fanny; Ogungbenro, Kayode; Aarons, Leon; Mentré, France

    2008-12-01

    To compare results of population PK analyses obtained with a full empirical design (FD) and an optimal sparse design (MD) in a Drug-Drug Interaction (DDI) study aiming to evaluate the potential CYP3A4 inhibitory effect of a drug in development, SX, on a reference substrate, midazolam (MDZ). Secondary aim was to evaluate the interaction of SX on MDZ in the in vivo study. Methods To compare designs, real data were analysed by population PK modelling technique using either FD or MD with NONMEM FOCEI for SX and with NONMEM FOCEI and MONOLIX SAEM for MDZ. When applicable a Wald test was performed to compare model parameter estimates, such as apparent clearance (CL/F), across designs. To conclude on the potential interaction of SX on MDZ PK, a Student paired test was applied to compare the individual PK parameters (i.e. log(AUC) and log(C(max))) obtained either by a non-compartmental approach (NCA) using FD or from empirical Bayes estimates (EBE) obtained after fitting the model separately on each treatment group using either FD or MD. For SX, whatever the design, CL/F was well estimated and no statistical differences were found between CL/F estimated values obtained with FD (CL/F = 8.2 l/h) and MD (CL/F = 8.2 l/h). For MDZ, only MONOLIX was able to estimate CL/F and to provide its standard error of estimation with MD. With MONOLIX, whatever the design and the administration setting, MDZ CL/F was well estimated and there were no statistical differences between CL/F estimated values obtained with FD (72 l/h and 40 l/h for MDZ alone and for MDZ with SX, respectively) and MD (77 l/h and 45 l/h for MDZ alone and for MDZ with SX, respectively). Whatever the approach, NCA or population PK modelling, and for the latter approach, whatever the design, MD or FD, comparison tests showed that there was a statistical difference (P < 0.0001) between individual MDZ log(AUC) obtained after MDZ administration alone and co-administered with SX. Regarding C(max), there was a statistical difference (P < 0.05) between individual MDZ log(C(max)) obtained under the 2 administration settings in all cases, except with the sparse design with MONOLIX. However, the effect on C(max) was small. Finally, SX was shown to be a moderate CYP3A4 inhibitor, which at therapeutic doses increased MDZ exposure by a factor of 2 in average and almost did not affect the C(max). The optimal sparse design enabled the estimation of CL/F of a CYP3A4 substrate and inhibitor when co-administered together and to show the interaction leading to the same conclusion as the full empirical design.

  8. Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 2: clinical trial results

    PubMed Central

    Chenel, Marylore; Bouzom, François; Cazade, Fanny; Ogungbenro, Kayode; Aarons, Leon; Mentré, France

    2008-01-01

    Purpose To compare results of population PK analyses obtained with a full empirical design (FD) and an optimal sparse design (MD) in a Drug-Drug Interaction (DDI) study aiming to evaluate the potential CYP3A4 inhibitory effect of a drug in development, SX, on a reference substrate, midazolam (MDZ). Secondary aim was to evaluate the interaction of SX on MDZ in the in vivo study. Methods To compare designs, real data were analysed by population PK modelling using either FD or MD with NONMEM FOCEI for SX and with NONMEM FOCEI and MONOLIX SAEM for MDZ. When applicable a Wald’s test was performed to compare model parameter estimates, such as apparent clearance (CL/F), across designs. To conclude on the potential interaction of SX on MDZ PK, a Student paired test was applied to compare the individual PK parameters (i.e. log(AUC) and log(Cmax)) obtained either by a non-compartmental approach (NCA) using FD or from empirical Bayes estimates (EBE) obtained after fitting the model separately on each treatment group using either FD or MD. Results For SX, whatever the design, CL/F was well estimated and no statistical differences were found between CL/F estimated values obtained with FD (CL/F = 8.2 L/h) and MD (CL/F = 8.2 L/h). For MDZ, only MONOLIX was able to estimate CL/F and to provide its standard error of estimation with MD. With MONOLIX, whatever the design and the administration setting, MDZ CL/F was well estimated and there were no statistical differences between CL/F estimated values obtained with FD (72 L/h and 40 L/h for MDZ alone and for MDZ with SX, respectively) and MD (77 L/h and 45 L/h for MDZ alone and for MDZ with SX, respectively). Whatever the approach, NCA or population PK modelling, and for the latter approach, whatever the design, MD or FD, comparison tests showed that there was a statistical difference (p<0.0001) between individual MDZ log(AUC) obtained after MDZ administration alone and co-administered with SX. Regarding Cmax, there was a statistical difference (p<0.05) between individual MDZ log(Cmax) obtained under the 2 administration settings in all cases, except with the sparse design with MONOLIX. However, the effect on Cmax was small. Finally, SX was shown to be a moderate CYP3A4 inhibitor, which at therapeutic doses increased MDZ exposure by a factor 2 in average and almost did not affect the Cmax. Conclusion The optimal sparse design enabled the estimation of CL/F of a CYP3A4 substrate and inhibitor when co-administered together and to show the interaction leading to the same conclusion than the full empirical design. PMID:19130187

  9. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model

    PubMed Central

    Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2016-01-01

    Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart rate has an important influence on the pharmacokinetics of propofol during pregnancy. Much lower propofol concentration in the fetus compared to maternal concentrations explain limited placental transfer in in-vivo paired model, and less direct fetal cardiac depression we observed earlier with propofol supplemented inhalational anesthesia compared to higher dose inhalational anesthesia in humans and sheep. PMID:26752560

  10. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  11. Prolonged monitoring of ethinyl estradiol and levonorgestrel levels confirms an altered pharmacokinetic profile in obese oral contraceptives users

    PubMed Central

    Edelman, Alison B; Cherala, Ganesh; Munar, Myrna Y.; DuBois, Barent; McInnis, Martha; Stanczyk, Frank Z.; Jensen, Jeffrey T

    2014-01-01

    Background Pharmacokinetic (PK) parameters based on short sampling times (48 h or less) may contain inaccuracies due to their dependency on extrapolated values. This study was designed to measure PK parameters with greater accuracy in obese users of a low-dose oral contraceptive (OC), and to correlate drug levels with assessments of end-organ activity. Study design Obese (BMI ≥30 kg/m2), ovulatory, otherwise healthy, women (n = 32) received an OC containing 20 mcg ethinyl estradiol (EE)/100 mcg levonorgestrel (LNG) for two cycles. EE and LNG PK parameters were characterized for 168 h at the end of Cycle 1. During Cycle 2, biweekly outpatient visits were performed to assess cervical mucus, monitor ovarian activity with transvaginal ultrasound, and obtain serum samples to measure EE, LNG, estradiol (E2), and progesterone (P) levels. PK parameters were calculated and correlated with end-organ activity and compared against control samples obtained from normal and obese women sampled up to 48 h in a previous study. Standard determination of PK accuracy was performed; defined by the dependency on extrapolated values (‘excess’ area under the curve of 25% or less). Results The mean BMI was 39.4 kg/m2 (SD 6.6) with a range of 30–64 kg/m2. Key LNG PK parameters were as follows: clearance 0.52 L/h (SD 0.24), half-life 65 h (SD 40), AUC 232 h*ng/mL (SD 102) and time to reach steady-state 13.6 days (SD 8.4). The majority of subjects had increased ovarian activity with diameter of follicles ≥8 mm (n = 25) but only seven women had follicles ≥10 mm plus cervical mucus scores ≥5. Evidence of poor end-organ suppression did not correlate with the severity of the alterations in PK. As compared to historical normal and obese controls (48 h PK sampling), clearance, half-life, area under the curve (AUC) and time to reach steady-state were found to be significantly different (p ≤ 0.05) in obese women undergoing a longer duration of PK sampling (168 h). Longer sampling also improved PK accuracy for obese women (excess AUC 20%) as compared to both normal and obese controls undergoing shorter sampling times (48 h) with excess AUCs of 25% and 50%, respectively. Conclusions Obesity results in significant alterations in OC steroid PK parameters but the severity of these alterations did not correlate with end-organ suppression. A longer PK sampling interval (168 h vs. 48 h) improved the accuracy of PK testing. PMID:23153898

  12. Prolonged monitoring of ethinyl estradiol and levonorgestrel levels confirms an altered pharmacokinetic profile in obese oral contraceptives users.

    PubMed

    Edelman, Alison B; Cherala, Ganesh; Munar, Myrna Y; Dubois, Barent; McInnis, Martha; Stanczyk, Frank Z; Jensen, Jeffrey T

    2013-02-01

    Pharmacokinetic (PK) parameters based on short sampling times (48 h or less) may contain inaccuracies due to their dependency on extrapolated values. This study was designed to measure PK parameters with greater accuracy in obese users of a low-dose oral contraceptive (OC) and to correlate drug levels with assessments of end-organ activity. Obese [body mass index (BMI) ≥30 kg/m2], ovulatory, otherwise healthy women (n=32) received an OC containing 20 mcg ethinyl estradiol (EE)/100 mcg levonorgestrel (LNG) for two cycles. EE and LNG PK parameters were characterized for 168 h at the end of Cycle 1. During cycle 2, biweekly outpatient visits were performed to assess cervical mucus, monitor ovarian activity with transvaginal ultrasound and obtain serum samples to measure EE, LNG, estradiol and progesterone levels. PK parameters were calculated and correlated with end-organ activity and compared against control samples obtained from normal and obese women sampled up to 48 h in a previous study. Standard determination of PK accuracy was performed, defined by the dependency on extrapolated values ('excess' area under the curve of 25% or less). The mean BMI was 39.4 kg/m2 (SD 6.6) with a range of 30-64 kg/m2. Key LNG PK parameters were as follows: clearance, 0.52 L/h (SD 0.24); half-life, 65 h (SD 40); area under the curve (AUC), 232 h*ng/mL (SD 102); and time to reach steady state, 13.6 days (SD 8.4). The majority of subjects had increased ovarian activity with diameter of follicles ≥8 mm (n=25), but only seven women had follicles ≥10 mm plus cervical mucus scores ≥5. Evidence of poor end-organ suppression did not correlate with the severity of the alterations in PK. As compared to historical normal and obese controls (48-h PK sampling), clearance, half-life, AUC and time to reach steady state were found to be significantly different (p≤.05) in obese women undergoing a longer duration of PK sampling (168 h). Longer sampling also improved PK accuracy for obese women (excess AUC 20%) as compared to both normal and obese controls undergoing shorter sampling times (48 h) with excess AUCs of 25% and 50%, respectively. Obesity results in significant alterations in OC steroid PK parameters, but the severity of these alterations did not correlate with end-organ suppression. A longer PK sampling interval (168 h vs. 48 h) improved the accuracy of PK testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A combined accelerator mass spectrometry-positron emission tomography human microdose study with 14C- and 11C-labelled verapamil

    PubMed Central

    Wagner, Claudia C; Simpson, Marie; Zeitlinger, Markus; Bauer, Martin; Karch, Rudolf; Abrahim, Aiman; Feurstein, Thomas; Schütz, Matthias; Kletter, Kurt; Müller, Markus; Lappin, Graham; Langer, Oliver

    2013-01-01

    Background and Objective In microdose studies, the pharmacokinetic (PK) profile of a drug in blood after administration of a dose up to 100 μg is measured with sensitive analytical techniques, such as accelerator mass spectrometry (AMS). As most drugs exert their effect in tissue rather than blood, methodology is needed for extending PK analysis to different tissue compartments. In the present study, we combined, for the first time, AMS analysis with positron emission tomography (PET) in order to determine the PK profile of the model drug verapamil in plasma and brain of humans. In order to assess PK dose-linearity of verapamil, data were acquired and compared after administration of an intravenous (iv) microdose and an iv microdose dosed concomitantly with an oral therapeutic dose. Methods Six healthy male volunteers received an iv microdose (0.05 mg) (period 1) and an iv microdose dosed concomitantly with an oral therapeutic dose (80 mg) of verapamil (period 2) in a randomized, cross-over, two-period study design. The iv dose was a mixture of (R/S)-[14C]verapamil and (R)-[11C]verapamil and the oral dose was unlabelled racemic verapamil. Brain distribution of radioactivity was measured with PET whereas plasma PK of (R)- and (S)-verapamil was determined with AMS. PET data were analyzed by kinetic modeling to estimate the rate constants for transfer of radioactivity across the blood-brain barrier. Results Most PK parameters of (R)- and (S)-verapamil as well as parameters describing exchange of radioactivity between plasma and brain (K1=0.030±0.003 and 0.031±0.005 mL·mL−1·min−1 and k2=0.099±0.006 and 0.095±0.008 min−1 for period 1 and 2, respectively) were not statistically different between the two periods although there was a trend for non-linear kinetics for the (R)-enantiomer. On the other hand, all PK parameters (except for t1/2) differed significantly between the (R)- and (S)-enantiomers for both periods. Cmax, AUC(0-24) and AUC(0-inf) were higher and CL, V and VSS were lower for the (R)- than for the (S)-enantiomer. Conclusion Combining AMS and PET microdosing allows long term PK data along with information on drug tissue distribution to be acquired in the same subjects thus making it a promising approach to maximize data output from a single clinical study. PMID:21142292

  14. Population pharmacokinetic characterization of BAY 81-8973, a full-length recombinant factor VIII: lessons learned - importance of including samples with factor VIII levels below the quantitation limit.

    PubMed

    Garmann, D; McLeay, S; Shah, A; Vis, P; Maas Enriquez, M; Ploeger, B A

    2017-07-01

    The pharmacokinetics (PK), safety and efficacy of BAY 81-8973, a full-length, unmodified, recombinant human factor VIII (FVIII), were evaluated in the LEOPOLD trials. The aim of this study was to develop a population PK model based on pooled data from the LEOPOLD trials and to investigate the importance of including samples with FVIII levels below the limit of quantitation (BLQ) to estimate half-life. The analysis included 1535 PK observations (measured by the chromogenic assay) from 183 male patients with haemophilia A aged 1-61 years from the 3 LEOPOLD trials. The limit of quantitation was 1.5 IU dL -1 for the majority of samples. Population PK models that included or excluded BLQ samples were used for FVIII half-life estimations, and simulations were performed using both estimates to explore the influence on the time below a determined FVIII threshold. In the data set used, approximately 16.5% of samples were BLQ, which is not uncommon for FVIII PK data sets. The structural model to describe the PK of BAY 81-8973 was a two-compartment model similar to that seen for other FVIII products. If BLQ samples were excluded from the model, FVIII half-life estimations were longer compared with a model that included BLQ samples. It is essential to assess the importance of BLQ samples when performing population PK estimates of half-life for any FVIII product. Exclusion of BLQ data from half-life estimations based on population PK models may result in an overestimation of half-life and underestimation of time under a predetermined FVIII threshold, resulting in potential underdosing of patients. © 2017 Bayer AG. Haemophilia Published by John Wiley & Sons Ltd.

  15. The pharmacokinetics of a B-domain truncated recombinant factor VIII, turoctocog alfa (NovoEight®), in patients with hemophilia A.

    PubMed

    Jiménez-Yuste, V; Lejniece, S; Klamroth, R; Suzuki, T; Santagostino, E; Karim, F A; Saugstrup, T; Møss, J

    2015-03-01

    Turoctocog alfa (NovoEight(®)) is a human recombinant coagulation factor VIII (rFVIII) for the treatment of patients with hemophilia A. To evaluate the pharmacokinetics of turoctocog alfa in all age groups across clinical trials. Data from previously treated patients with severe hemophilia A (FVIII activity level of ≤ 1%) with no history of FVIII inhibitors, in a non-bleeding state, were included. The pharmacokinetics were assessed following a wash-out period and a subsequent single intravenous 50 IU kg(-1) dose of turoctocog alfa. Blood was sampled during a 48-h period postdose. Standard pharmacokinetic (PK) parameters were estimated on the basis of plasma FVIII activity vs. time (PK profiles) with non-compartmental methods. Furthermore, a population PK analysis was conducted. Data from 76 patients (aged 1-60 years) enrolled globally across six clinical trials were included, totaling 105 turoctocog alfa PK profiles. Single-dose PK results 3-6 months after the first dose of turoctocog alfa were comparable with the results obtained after the first dose. Similar PK characteristics were shown for different lots and strengths of the drug product. Overall, area under the plasma concentration (activity) curve from administration to infinity (AUC) and t1(/2) tended to increase with increasing age, with lower AUC and shorter t(1/2) being seen in children than in adolescents and adults. The PK profiles of turoctocog alfa and other commercially available plasma-derived FVIII and rFVIII products were similar in all age groups. The PK characteristics of turoctocog alfa have been thoroughly studied, and shown to be consistent over time, reproducible between different lots and strengths of drug product, and similar to those observed for other FVIII products. © 2014 International Society on Thrombosis and Haemostasis.

  16. Determining population and developmental pharmacokinetics of metronidazole using plasma and dried blood spot samples from premature infants.

    PubMed

    Cohen-Wolkowiez, Michael; Sampson, Mario; Bloom, Barry T; Arrieta, Antonio; Wynn, James L; Martz, Karen; Harper, Barrie; Kearns, Gregory L; Capparelli, Edmund V; Siegel, David; Benjamin, Daniel K; Smith, P Brian

    2013-09-01

    Limited pharmacokinetic (PK) data of metronidazole in premature infants have led to various dosing recommendations. Surrogate efficacy targets for metronidazole are ill-defined and therefore aimed to exceed minimum inhibitory concentration of organisms responsible for intra-abdominal infections. We evaluated the PK of metronidazole using plasma and dried blood spot samples from infants ≤32 weeks gestational age in an open-label, PK, multicenter (N = 3) study using population PK modeling (NONMEM). Monte Carlo simulations (N = 1000 virtual subjects) were used to evaluate the surrogate efficacy target. Metabolic ratios of parent and metabolite were calculated. Twenty-four premature infants (111 plasma and 51 dried blood spot samples) were enrolled: median (range) gestational age at birth 25 (23-31) weeks, postnatal age 27 (1-82) days, postmenstrual age 31 (24-39) weeks and weight 740 (431-1466) g. Population clearance (L/h/kg) was 0.038 × (postmenstrual age/30) and volume of distribution (L/kg) of 0.93. PK parameter estimates and precision were similar between plasma and dried blood spot samples. Metabolic ratios correlated with clearance. Simulations suggested the majority of infants in the neonatal intensive care unit (>80%) would meet the surrogate efficacy target using postmenstrual age-based dosing.

  17. Determining Population and Developmental Pharmacokinetics of Metronidazole Using Plasma and Dried Blood Spot Samples from Premature Infants

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario; Bloom, Barry T.; Arrieta, Antonio; Wynn, James L.; Martz, Karen; Harper, Barrie; Kearns, Gregory L.; Capparelli, Edmund V.; Siegel, David; Benjamin, Daniel K.; Smith, P. Brian

    2013-01-01

    Background Limited pharmacokinetic (PK) data of metronidazole in premature infants has led to various dosing recommendations. Surrogate efficacy targets for metronidazole are ill-defined and therefore aimed to exceed minimum inhibitory concentration of organisms responsible for intra-abdominal infections. Methods We evaluated the PK of metronidazole using plasma and dried blood spot (DBS) samples from infants ≤32 weeks gestational age in an open-label, PK, multicenter (N=3) study using population PK modeling (NONMEM). Monte Carlo simulations (N=1000 virtual subjects) were used to evaluate the surrogate efficacy target. Metabolic ratios of parent and metabolite were calculated. Results Twenty-four premature infants (111 plasma and 51 DBS samples) were enrolled: median (range) gestational age at birth 25 (23–31) weeks, postnatal age 27 (1–82) days, postmenstrual age (PMA) 31 (24–39) weeks, and weight 740 (431–1466) g. Population clearance (CL, L/h/kg) was 0.038 × (PMA/30)2.45 and volume of distribution (L/kg) of 0.93. PK parameter estimates and precision were similar between plasma and DBS samples. Metabolic ratios correlated with CL. Conclusion Simulations suggested the majority of infants in the neonatal intensive care unit (>80%) would meet the surrogate efficacy target using PMA-based dosing. PMID:23587979

  18. Population plasma and urine pharmacokinetics of ivabradine and its active metabolite S18982 in healthy Korean volunteers.

    PubMed

    Choi, Hee Youn; Bae, Kyun-Seop; Cho, Sang-Heon; Ghim, Jong-Lyul; Choe, Sangmin; Jung, Jin Ah; Lim, Hyeong-Seok

    2016-04-01

    Ivabradine, a selective inhibitor of the pacemaker current (If ), is used for heart failure and coronary heart disease and is mainly metabolized to S18982. The purpose of this study was to explore the pharmacokinetics (PK) of ivabradine and S18982 in healthy Korean volunteers. Subjects in a phase I study were randomized to receive 2.5, 5, or 10 mg of ivabradine administered every 12 hours for 4.5 days, and serial plasma and urine concentrations of ivabradine and S18982 were measured. The plasma PK of ivabradine was best described by a 2-compartment model with mixed 0- and first-order absorption, linked to a 2-compartment model for S18982. The introduction of interoccasional variabilities and period as covariate into absorption-related parameters improved the model fit. Urine data have been applied to estimate renal and nonrenal clearance, enabling a more detailed description of the elimination process. We developed a population PK model describing the plasma and urine PK of ivabradine and S18982 in healthy Korean adult males. This model might be useful for predicting the plasma and urine PK of ivabradine, potentially helping to identify the optimal dosing regimens in various clinical situations. © 2015, The American College of Clinical Pharmacology.

  19. Anticoagulation therapy advisor: a decision-support system for heparin therapy during ECMO.

    PubMed Central

    Peverini, R. L.; Sale, M.; Rhine, W. D.; Fagan, L. M.; Lenert, L. A.

    1992-01-01

    We present a case study describing our development of a mathematical model to control a clinical parameter in a patient--in this case, the degree of anticoagulation during extracorporeal membrane oxygenation (ECMO) support. During ECMO therapy, an anticoagulant agent (heparin) is administered to prevent thrombosis. Under- or over-coagulation can have grave consequences. To improve control of anticoagulation, we developed a pharmacokinetic-pharmacodynamic (PK-PD) model that predicts activated clotting times (ACT) using the NONMEM program. We then integrated this model into a decision-support system, and validated it with an independent data set. The population model had a mean absolute error of prediction for ACT values of 33.5 seconds, with a mean bias in estimation of -14.3 seconds. Individualization of model-parameter estimates using nonlinear regression improved the absolute error prediction to 25.5 seconds, and lowered the mean bias to -3.1 seconds. The PK-PD model is coupled with software for heuristic interpretation of model results to provide a complete environment for the management of anticoagulation. PMID:1482937

  20. A system of equations to approximate the pharmacokinetic parameters of lacosamide at steady state from one plasma sample.

    PubMed

    Cawello, Willi; Schäfer, Carina

    2014-08-01

    Frequent plasma sampling to monitor pharmacokinetic (PK) profile of antiepileptic drugs (AEDs), is invasive, costly and time consuming. For drugs with a well-defined PK profile, such as AED lacosamide, equations can accurately approximate PK parameters from one steady-state plasma sample. Equations were derived to approximate steady-state peak and trough lacosamide plasma concentrations (Cpeak,ss and Ctrough,ss, respectively) and area under concentration-time curve during dosing interval (AUCτ,ss) from one plasma sample. Lacosamide (ka: ∼2 h(-1); ke: ∼0.05 h(-1), corresponding to half-life of 13 h) was calculated to reach Cpeak,ss after ∼1 h (tmax,ss). Equations were validated by comparing approximations to reference PK parameters obtained from single plasma samples drawn 3-12h following lacosamide administration, using data from double-blind, placebo-controlled, parallel-group PK study. Values of relative bias (accuracy) between -15% and +15%, and root mean square error (RMSE) values≤15% (precision) were considered acceptable for validation. Thirty-five healthy subjects (12 young males; 11 elderly males, 12 elderly females) received lacosamide 100mg/day for 4.5 days. Equation-derived PK values were compared to reference mean Cpeak,ss, Ctrough,ss and AUCτ,ss values. Equation-derived PK data had a precision of 6.2% and accuracy of -8.0%, 2.9%, and -0.11%, respectively. Equation-derived versus reference PK values for individual samples obtained 3-12h after lacosamide administration showed correlation (R2) range of 0.88-0.97 for AUCτ,ss. Correlation range for Cpeak,ss and Ctrough,ss was 0.65-0.87. Error analyses for individual sample comparisons were independent of time. Derived equations approximated lacosamide Cpeak,ss, Ctrough,ss and AUCτ,ss using one steady-state plasma sample within validation range. Approximated PK parameters were within accepted validation criteria when compared to reference PK values. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A general model-based design of experiments approach to achieve practical identifiability of pharmacokinetic and pharmacodynamic models.

    PubMed

    Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio

    2013-08-01

    The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.

  2. Estimation of Streamflow Characteristics for Charles M. Russell National Wildlife Refuge, Northeastern Montana

    USGS Publications Warehouse

    Sando, Steven K.; Morgan, Timothy J.; Dutton, DeAnn M.; McCarthy, Peter M.

    2009-01-01

    Charles M. Russell National Wildlife Refuge (CMR) encompasses about 1.1 million acres (including Fort Peck Reservoir on the Missouri River) in northeastern Montana. To ensure that sufficient streamflow remains in the tributary streams to maintain the riparian corridors, the U.S. Fish and Wildlife Service is negotiating water-rights issues with the Reserved Water Rights Compact Commission of Montana. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, conducted a study to gage, for a short period, selected streams that cross CMR, and analyze data to estimate long-term streamflow characteristics for CMR. The long-term streamflow characteristics of primary interest include the monthly and annual 90-, 80-, 50-, and 20-percent exceedance streamflows and mean streamflows (Q.90, Q.80, Q.50, Q.20, and QM, respectively), and the 1.5-, 2-, and 2.33- year peak flows (PK1.5, PK2, and PK2.33, respectively). The Regional Adjustment Relationship (RAR) was investigated for estimating the monthly and annual Q.90, Q.80, Q.50, Q.20, and QM, and the PK1.5, PK2, and PK2.33 for the short-term CMR gaging stations (hereinafter referred to as CMR stations). The RAR was determined to provide acceptable results for estimating the long-term Q.90, Q.80, Q.50, Q.20, and QM on a monthly basis for the months of March through June, and also on an annual basis. For the months of September through January, the RAR regression equations did not provide acceptable results for any long-term streamflow characteristic. For the month of February, the RAR regression equations provided acceptable results for the long-term Q.50 and QM, but poor results for the long-term Q.90, Q.80, and Q.20. For the months of July and August, the RAR provided acceptable results for the long-term Q.50, Q.20, and QM, but poor results for the long-term Q.90 and Q.80. Estimation coefficients were developed for estimating the long-term streamflow characteristics for which the RAR did not provide acceptable results. The RAR also was determined to provide acceptable results for estimating the PK1.5., PK2, and PK2.33 for the three CMR stations that lacked suitable peak-flow records. Methods for estimating streamflow characteristics at ungaged sites also were derived. Regression analyses that relate individual streamflow characteristics to various basin and climatic characteristics for gaging stations were performed to develop regression equations to estimate streamflow characteristics at ungaged sites. Final equations for the annual Q.50, Q.20, and QM are reported. Acceptable equations also were developed for estimating QM for the months of February, March, April, June, and July, and Q.50, Q.20, and QM on an annual basis. However, equations for QM for the months of February, March, April, June, and July were determined to be less consistent and reliable than the use of estimation coefficients applied to the regression equation results for the annual QM. Acceptable regression equations also were developed for the PK1.5, PK2, and PK2.33.

  3. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia

    PubMed Central

    Liang, Zhenhu; Duan, Xuejing; Su, Cui; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2015-01-01

    Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM—with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C eff) based on the actual drug infusion regimen. The NMM model took C eff as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients’ condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80±0.13 (mean±standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77±0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity. PMID:26720495

  4. Models of Acoustic Deception and ASW Support in a Task Group Operating Area

    DTIC Science & Technology

    1974-12-01

    submarine case is: PK+FK + PK+E0 exp (- t(PK +SV - PK + E0 PK + Eo ep -T + h-p(1 -K) + h (Il-Eo) where K = I 6o = I - (1-6o)ao Ko = 1 -ao The equation...Table B-I (Concluded) Mode l Program Model Program Parameter Variable Parameter Variable ORI: Output: T TO T T0 p R1O A All 0 SO A AL 0 S K SKO 0 5DO K...O = (1.0--0 )’BB 01110 SK = RHO#(1.0-S),’BB 01120 EX = 1.0 - EXP(-T/TT: 01130 PS(I) = 1.0 - AH*EX 01140 PA(I) = AL.EX/PS(I) 01150 PKO(1) = . KO *EX/PS(I

  5. Modification of the Fc Region of a Human Anti-oncostatin M Monoclonal Antibody for Higher Affinity to FcRn Receptor and Extension of Half-life in Cynomolgus Monkeys.

    PubMed

    Nnane, Ivo P; Han, Chao; Jiao, Qun; Tam, Susan H; Davis, Hugh M; Xu, Zhenhua

    2017-07-01

    The purpose of this study was to evaluate the pharmacokinetics (PK) of anti-oncostatin M (OSM) IgG1 monoclonal antibodies, CNTO 1119 and its Fc variant (CNTO 8212), which incorporates the LS(Xtend) mutation to extend terminal half-life (T 1/2 ), after a single intravenous (IV) or subcutaneous (SC) administration in cynomolgus monkeys, and to predict human PK. In study 1, single doses of CNTO 1119 and CNTO 8212 were administered IV or SC at 3 mg/kg to cynomolgus monkeys (n = 3 per group). In study 2, single doses of CNTO 8212 were administered IV at 1, 5 or 20 mg/kg, or SC at 5 mg/kg to cynomolgus monkeys (n = 5 per group). Serial blood samples were collected for assessment of serum concentrations of CNTO 1119 and/or CNTO 8212. A two-compartment population PK model with first-order elimination was utilized to simultaneously describe the serum concentrations of CNTO 1119 and CNTO 8212 over time after IV and SC administration in cynomolgus monkeys. The typical population PK parameter estimates for CNTO 1119 in cynomolgus monkeys were clearance (CL) = 2.81 mL/day/kg, volume of distribution of central compartment (V 1 ) = 31.3 mL/kg, volume of distribution of peripheral compartment (V 2 ) = 23.3 mL/kg, absolute bioavailability (F) = 0.84 and T 1/2 = 13.4 days. In comparison, the typical population PK parameter estimates for CNTO 8212 in cynomolgus monkeys were CL = 1.41 mL/day/kg, V 1 = 39.8 mL/kg, V 2 = 32.6 mL/kg, F = 0.75 and T 1/2 = 35.7 days. The mean CL of CNTO 8212 was ~50% lower compared with that for CNTO 1119 in cynomolgus monkeys. The overall volume of distribution (V 1 +V 2 ) for CNTO 8212 was about 32% larger compared with that for CNTO 1119, but generally similar to the vascular volume in cynomolgus monkeys. The T 1/2 of CNTO 8212 was significantly (p < 0.05) longer by about 2.7-fold than that for CNTO 1119 in cynomolgus monkeys. Thus, the modification of the Fc portion of an anti-OSM IgG1 mAb for higher FcRn binding affinity resulted in lower systemic clearance and a longer terminal half-life in cynomolgus monkeys. CNTO 8212 demonstrated linear PK after a single IV dose (1-20 mg/kg) in cynomolgus monkeys. The predicted human PK parameters suggest that CNTO 8212 is likely to exhibit slow clearance and long terminal half-life in human beings and may likely allow less frequent dosing in the clinical setting. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  6. Antimicrobial breakpoint estimation accounting for variability in pharmacokinetics.

    PubMed

    Bi, Goue Denis Gohore; Li, Jun; Nekka, Fahima

    2009-06-26

    Pharmacokinetic and pharmacodynamic (PK/PD) indices are increasingly being used in the microbiological field to assess the efficacy of a dosing regimen. In contrast to methods using MIC, PK/PD-based methods reflect in vivo conditions and are more predictive of efficacy. Unfortunately, they entail the use of one PK-derived value such as AUC or Cmax and may thus lead to biased efficiency information when the variability is large. The aim of the present work was to evaluate the efficacy of a treatment by adjusting classical breakpoint estimation methods to the situation of variable PK profiles. We propose a logical generalisation of the usual AUC methods by introducing the concept of "efficiency" for a PK profile, which involves the efficacy function as a weight. We formulated these methods for both classes of concentration- and time-dependent antibiotics. Using drug models and in silico approaches, we provide a theoretical basis for characterizing the efficiency of a PK profile under in vivo conditions. We also used the particular case of variable drug intake to assess the effect of the variable PK profiles generated and to analyse the implications for breakpoint estimation. Compared to traditional methods, our weighted AUC approach gives a more powerful PK/PD link and reveals, through examples, interesting issues about the uniqueness of therapeutic outcome indices and antibiotic resistance problems.

  7. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch.

    PubMed

    Nozaki, Sachiko; Yamaguchi, Masayuki; Lefèvre, Gilbert

    2016-07-01

    Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Models describing metronidazole pharmacokinetics in relation to hemodynamics in turkeys.

    PubMed

    Grabowski, Tomasz; Pasławska, Urszula; Poźniak, Błażej; Świtała, Marcin

    2017-06-01

    Linking haemodynamic (HD) and pharmacokinetic (PK) parameters provides much insight into interrelations between circulatory system and drug disposition. This effect is particularly pronounced in rapidly growing animals. Heart rate (HR), cardiac output (CO) and stroke volume (SV) are tightly linked with the animal's age and correlate with the increasing body weight (BW). The aim of this study was to establish and validate the relations between BW, HD and chosen PK parameters of metronidazole (MTZ) and its metabolite - hydroxymetronidazole (MTZ-OH) in growing turkeys. The study was carried out on broiler turkeys (BUT-9, n=26). All individuals were subjected to single dose PK studies four times, that is when the mean BW in the group reached: 1.4 (group A); 2.7 (group B); 5.5 (group C); 10.7kg (group D). Some PK parameters normalized with regard to HR were found to take constant values in all the age groups under investigation. CO↔1/MRT, SV↔1/MRT and SV↔MRT model was validated with regard to both metabolite and drug PK. This study proposed a model for the analysis of the relations HD↔BW and HD↔PK. Models developed in this study provide empirical evidence that HD affect the PK of MTZ and MTZ-OH in a different fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gaussian process inference for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.

    PubMed

    Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M

    2012-01-01

    In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.

  10. Pharmacokinetic analysis of modified-release metoprolol formulations: An interspecies comparison.

    PubMed

    De Thaye, Elien; Vervaeck, Anouk; Marostica, Eleonora; Remon, Jean Paul; Van Bocxlaer, Jan; Vervaet, Chris; Vermeulen, An

    2017-01-15

    In the current study, we investigated the metoprolol absorption kinetics of an in-house produced oral sustained-release formulation, matrices manufactured via prilling, and two commercially available formulations, ZOK-ZID ® (reservoir) and Slow-Lopresor ® (matrix) in both New Zealand White rabbits and Beagle dogs, using a population pharmacokinetic analysis approach. The aim of this study was to compare the in vivo pharmacokinetic (PK) profiles of different formulations based on metoprolol, a selective adrenergic β 1 -receptor antagonist, in dogs and rabbits and to contrast the observed differences. To that end, metoprolol (50 to 200mg) was administered to 6 Beagle dogs and 6 New Zealand White rabbits as a single intravenous (IV) bolus injection and to 8 dogs and 6 rabbits as an oral modified release formulation. To derive pharmacokinetic parameters from the data, a non-linear mixed-effects model was developed using NONMEM ® where the contribution of observations below the limit of detection (BDL, below detection limit) to the parameter estimates was taken into account in the parameter estimation procedure. In both species and for the three modified release formulations, different absorption models were tested to describe the PK of metoprolol following oral dosing. In Beagle dogs, plasma concentration-time profiles were best described using a sequential zero- and first-order absorption model. In rabbits though, the absorption phase was best described using a first-order process only. In both species, the reservoir formulation ZOK-ZID ® was behaving quite similarly. In contrast, the absorption properties of both matrix formulations were rather different between species. This study indicates that the PK of the reservoir formulation is similar in both species, even after accounting for the almost completely missed absorption phase in rabbits. The insights gained further illustrate that rabbits are not very well suited to study the PK of the current matrix formulations in view of their less optimal prolonged release characteristics and the resulting fast decline in metoprolol plasma levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sequential Exposure of Bortezomib and Vorinostat is Synergistic in Multiple Myeloma Cells

    PubMed Central

    Nanavati, Charvi; Mager, Donald E.

    2018-01-01

    Purpose To examine the combination of bortezomib and vorinostat in multiple myeloma cells (U266) and xenografts, and to assess the nature of their potential interactions with semi-mechanistic pharmacodynamic models and biomarkers. Methods U266 proliferation was examined for a range of bortezomib and vorinostat exposure times and concentrations (alone and in combination). A non-competitive interaction model was used with interaction parameters that reflect the nature of drug interactions after simultaneous and sequential exposures. p21 and cleaved PARP were measured using immunoblotting to assess critical biomarker dynamics. For xenografts, data were extracted from literature and modeled with a PK/PD model with an interaction parameter. Results Estimated model parameters for simultaneous in vitro and xenograft treatments suggested additive drug effects. The sequence of bortezomib preincubation for 24 hours, followed by vorinostat for 24 hours, resulted in an estimated interaction term significantly less than 1, suggesting synergistic effects. p21 and cleaved PARP were also up-regulated the most in this sequence. Conclusions Semi-mechanistic pharmacodynamic modeling suggests synergistic pharmacodynamic interactions for the sequential administration of bortezomib followed by vorinostat. Increased p21 and cleaved PARP expression can potentially explain mechanisms of their enhanced effects, which require further PK/PD systems analysis to suggest an optimal dosing regimen. PMID:28101809

  12. Population pharmacokinetics of golimumab in patients with ankylosing spondylitis: impact of body weight and immunogenicity.

    PubMed

    Xu, Z H; Lee, H; Vu, T; Hu, C; Yan, H; Baker, D; Hsu, B; Pendley, C; Wagner, C; Davis, H M; Zhou, H

    2010-09-01

    To develop a population pharmacokinetic (PK) model of subcutaneously administered golimumab, a human anti-tumor necrosis factor monoclonal antibody, in patients with ankylosing spondylitis (AS), estimate typical fixed and random population PK parameters, and identify significant covariates on golimumab pharmacokinetics. Serum concentration data through Week 24 of a randomized, double-blind, placebo-controlled Phase III trial of golimumab (50 or 100 mg every 4 weeks) were analyzed using a nonlinear mixed-effects modeling approach. The effects of potential covariates on golimumab were evaluated. A one-compartment PK model with first-order absorption and elimination was chosen to describe the observed golimumab concentration-time data in patients with AS. Population estimates obtained from the final model for a typical 70-kg patient were: apparent systemic clearance (CL/F), 1.41 l/day (95% confidence interval (CI): 1.31 - 1.51) and apparent volume of distribution (V/F), 22.6 L (95% CI: 20.7 - 24.4). The first-order absorption rate constant (Ka) was estimated to be 1.01 day-1 (95% CI: 0.760 - 1.46). The between-subject variabilities for CL/F, V/F, and Ka were 35.2%, 38.6%, and 78.6%, respectively. Body weight was the most significant covariate, affecting both CL/F and V/F. Antibody-to-golimumab status, baseline C-reactive protein level, and sex were also identified as significant covariates on CL/F. A one-compartment model with first-order absorption and elimination adequately described the PK of golimumab following subcutaneous administrations in patients with AS. Body weight and anti-golimumab antibody status were found to significantly influence golimumab clearance. When a patient does not respond to the prescribed golimumab therapy, the possibility of the development of antibodies to golimumab has to be considered.

  13. Rapid Bioavailability and Disposition protocol: A novel higher throughput approach to assess pharmacokinetics and steady-state brain distribution with reduced animal usage.

    PubMed

    Fu, Tingting; Gao, Ruina; Scott-Stevens, Paul; Chen, Yan; Zhang, Chalmers; Wang, Jianfei; Summerfield, Scott; Liu, Houfu; Sahi, Jasminder

    2018-05-29

    Besides routine pharmacokinetic (PK) parameters, unbound brain-to-blood concentration ratio (K p,uu ) is an index particularly crucial in drug discovery for central nervous system (CNS) indications. Despite advantages of K p,uu from steady state after constant intravenous (i.v.) infusion compared with one- or multiple time points after transient dosing, it is seldom obtained for compound optimization in early phase of CNS drug discovery due to requirement of prerequisite PK data to inform the study design. Here, we designed a novel rat in vivo PK protocol, dubbed as Rapid Bioavailability and Disposition (RBD), which combined oral (p.o.) dosing and i.v. infusion to obtain steady-state brain penetration, along with blood clearance, oral exposure and oral bioavailability for each discovery compound, within a 24 hour in-life experiment and only a few (e.g., 3) animals. Protocol validity was verified through simulations with a range of PK parameters in compartmental models as well as data comparison for nine compounds with distinct PK profiles. PK parameters (K p,brain , CL b and oral AUC) measured from the RBD protocol for all compounds, were within two-fold and/or statistically similar to those derived from conventional i.v./p.o. crossover PK studies. Our data clearly indicates that the RBD protocol offers reliable and reproducible data over a wide range of PK properties, with reduced turnaround time and animal usage. Copyright © 2017. Published by Elsevier B.V.

  14. Antimicrobial breakpoint estimation accounting for variability in pharmacokinetics

    PubMed Central

    Bi, Goue Denis Gohore; Li, Jun; Nekka, Fahima

    2009-01-01

    Background Pharmacokinetic and pharmacodynamic (PK/PD) indices are increasingly being used in the microbiological field to assess the efficacy of a dosing regimen. In contrast to methods using MIC, PK/PD-based methods reflect in vivo conditions and are more predictive of efficacy. Unfortunately, they entail the use of one PK-derived value such as AUC or Cmax and may thus lead to biased efficiency information when the variability is large. The aim of the present work was to evaluate the efficacy of a treatment by adjusting classical breakpoint estimation methods to the situation of variable PK profiles. Methods and results We propose a logical generalisation of the usual AUC methods by introducing the concept of "efficiency" for a PK profile, which involves the efficacy function as a weight. We formulated these methods for both classes of concentration- and time-dependent antibiotics. Using drug models and in silico approaches, we provide a theoretical basis for characterizing the efficiency of a PK profile under in vivo conditions. We also used the particular case of variable drug intake to assess the effect of the variable PK profiles generated and to analyse the implications for breakpoint estimation. Conclusion Compared to traditional methods, our weighted AUC approach gives a more powerful PK/PD link and reveals, through examples, interesting issues about the uniqueness of therapeutic outcome indices and antibiotic resistance problems. PMID:19558679

  15. Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft.

    PubMed

    Hao, Fangran; Wang, Siyuan; Zhu, Xiao; Xue, Junsheng; Li, Jingyun; Wang, Lijie; Li, Jian; Lu, Wei; Zhou, Tianyan

    2017-02-01

    To investigate the anti-tumor effect of sunitinib in combination with dopamine in the treatment of nu/nu nude mice bearing non-small cell lung cancer (NSCLC) A549 cells and to develop the combination PK/PD model. Further, simulations were conducted to optimize the administration regimens. A PK/PD model was developed based on our preclinical experiment to explore the relationship between plasma concentration and drug effect quantitatively. Further, the model was evaluated and validated. By fixing the parameters obtained from the PK/PD model, simulations were built to predict the tumor suppression under various regimens. The synergistic effect was observed between sunitinib and dopamine in the study, which was confirmed by the effect constant (GAMA, estimated as 2.49). The enhanced potency of dopamine on sunitinib was exerted by on/off effect in the PK/PD model. The optimal dose regimen was selected as sunitinib (120 mg/kg, q3d) in combination with dopamine (2 mg/kg, q3d) based on the simulation study. The synergistic effect of sunitinib and dopamine was demonstrated by the preclinical experiment and confirmed by the developed PK/PD model. In addition, the regimens were optimized by means of modeling as well as simulation, which may be conducive to clinical study.

  16. Isavuconazole Population Pharmacokinetic Analysis Using Nonparametric Estimation in Patients with Invasive Fungal Disease (Results from the VITAL Study)

    PubMed Central

    Kovanda, Laura L.; Desai, Amit V.; Lu, Qiaoyang; Townsend, Robert W.; Akhtar, Shahzad; Bonate, Peter

    2016-01-01

    Isavuconazonium sulfate (Cresemba; Astellas Pharma Inc.), a water-soluble prodrug of the triazole antifungal agent isavuconazole, is available for the treatment of invasive aspergillosis (IA) and invasive mucormycosis. A population pharmacokinetic (PPK) model was constructed using nonparametric estimation to compare the pharmacokinetic (PK) behaviors of isavuconazole in patients treated in the phase 3 VITAL open-label clinical trial, which evaluated the efficacy and safety of the drug for treatment of renally impaired IA patients and patients with invasive fungal disease (IFD) caused by emerging molds, yeasts, and dimorphic fungi. Covariates examined were body mass index (BMI), weight, race, impact of estimated glomerular filtration rate (eGFR) on clearance (CL), and impact of weight on volume. PK parameters were compared based on IFD type and other patient characteristics. Simulations were performed to describe the MICs covered by the clinical dosing regimen. Concentrations (n = 458) from 136 patients were used to construct a 2-compartment model (first-order absorption compartment and central compartment). Weight-related covariates affected clearance, but eGFR did not. PK parameters and intersubject variability of CL were similar across different IFD groups and populations. Target attainment analyses demonstrated that the clinical dosing regimen would be sufficient for total drug area under the concentration-time curve (AUC)/MIC targets ranging from 50.5 for Aspergillus spp. (up to the CLSI MIC of 0.5 mg/liter) to 270 and 5,053 for Candida albicans (up to MICs of 0.125 and 0.004 mg/liter, respectively) and 312 for non-albicans Candida spp. (up to a MIC of 0.125 mg/liter). The estimations for Candida spp. were exploratory considering that no patients with Candida infections were included in the current analyses. (The VITAL trial is registered at ClinicalTrials.gov under number NCT00634049.) PMID:27185799

  17. Paracetamol pharmacokinetics and metabolism in young women.

    PubMed

    Allegaert, Karel; Peeters, Mariska Y; Beleyn, Bjorn; Smits, Anne; Kulo, Aida; van Calsteren, Kristel; Deprest, Jan; de Hoon, Jan; Knibbe, Catherijne A J

    2015-11-13

    There is relevant between individual variability in paracetamol clearance in young women. In this pooled study, we focused on the population pharmacokinetic profile of intravenous paracetamol metabolism and its covariates in young women. Population PK parameters using non-linear mixed effect modelling were estimated in a pooled dataset of plasma and urine PK studies in 69 young women [47 at delivery, 8/47 again 10-15 weeks after delivery (early postpartum), and 7/8 again 1 year after delivery (late postpartum), 22 healthy female volunteers with or without oral contraceptives]. Population PK parameters were estimated based on 815 plasma samples and 101 urine collections. Compared to healthy female volunteers (reference group) not on oral contraceptives, being at delivery was the most significant covariate for clearance to paracetamol glucuronide (Factor = 2.03), while women in early postpartum had decreased paracetamol glucuronidation clearance (Factor = 0.55). Women on contraceptives showed increased paracetamol glucuronidation clearance (Factor = 1.46). The oestradiol level did not further affect this model. Being at delivery did not prove significant for clearance to paracetamol sulphate, but was higher in pregnant women who delivered preterm (<37 weeks, Factor = 1.34) compared to term delivery and non-pregnant women. Finally, clearance of unchanged paracetamol was dependent on urine flow rate. Compared to healthy female volunteers not on oral contraceptives, urine paracetamol glucuronidation elimination in young women is affected by pregnancy (higher), early postpartum (lower) or exposure to oral contraceptives (higher), resulting in at least a two fold variability in paracetamol clearance in young women.

  18. Influence of erroneous patient records on population pharmacokinetic modeling and individual bayesian estimation.

    PubMed

    van der Meer, Aize Franciscus; Touw, Daniël J; Marcus, Marco A E; Neef, Cornelis; Proost, Johannes H

    2012-10-01

    Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maximum a posteriori Bayesian (MAPB) estimation. A total of 1123 patient records of neonates who were administered vancomycin were used for population PK modeling by iterative 2-stage Bayesian (ITSB) analysis. Cut-off values for weighted residuals were tested for exclusion of records from the analysis. A simulation study was performed to assess the influence of erroneous records on population modeling and individual MAPB estimation. Also the cut-off values for weighted residuals were tested in the simulation study. Errors in registration have limited the influence on outcomes of population PK modeling but can have detrimental effects on individual MAPB estimation. A population PK model created from a data set with many registration errors has little influence on subsequent MAPB estimates for precisely recorded data. A weighted residual value of 2 for concentration measurements has good discriminative power for identification of erroneous records. ITSB analysis and its individual estimates are hardly affected by most registration errors. Large registration errors can be detected by weighted residuals of concentration.

  19. Model based population PK-PD analysis of furosemide for BP lowering effect: A comparative study in primary and secondary hypertension.

    PubMed

    Shukla, Mahendra; Ibrahim, Moustafa M A; Jain, Moon; Jaiswal, Swati; Sharma, Abhisheak; Hanif, Kashif; Lal, Jawahar

    2017-11-15

    Though numerous reports have demonstrated multiple mechanisms by which furosemide can exert its anti-hypertensive response. However, lack of studies describing PK-PD relationship for furosemide featuring its anti-hypertensive property has limited its usage as a blood pressure (BP) lowering agent. Serum concentrations and mean arterial BP were monitored following 40 and 80mgkg -1 multiple oral dose of furosemide in spontaneously hypertensive rats (SHR) and DOCA-salt induced hypertensive (DOCA-salt) rats. A simultaneous population PK-PD relationship using E max model with effect compartment was developed to compare the anti-hypertensive efficacy of furosemide in these rat models. A two-compartment PK model with Weibull-type absorption and first-order elimination best described the serum concentration-time profile of furosemide. In the present study, post dose serum concentrations of furosemide were found to be lower than the EC 50 . The EC 50 predicted in DOCA-salt rats was found to be lower (4.5-fold), whereas the tolerance development was higher than that in SHR model. The PK-PD parameter estimates, particularly lower values of EC 50 , K e and Q in DOCA-salt rats as compared to SHR, pinpointed the higher BP lowering efficacy of furosemide in volume overload induced hypertensive conditions. Insignificantly altered serum creatinine and electrolyte levels indicated a favorable side effect profile of furosemide. In conclusion, the final PK-PD model described the data well and provides detailed insights into the use of furosemide as an anti-hypertensive agent. Copyright © 2017. Published by Elsevier B.V.

  20. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that allows non-invasive assessment of pharmacotherapeutics of scopolamine in space and other remote environments without requiring blood sampling.

  1. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  2. Estimating human-equivalent no observed adverse-effect levels for VOCs (volatile organic compounds) based on minimal knowledge of physiological parameters. Technical paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, J.H.; Jarabek, A.M.

    1989-01-01

    The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less

  3. Using polarizable POSSIM force field and fuzzy-border continuum solvent model to calculate pK(a) shifts of protein residues.

    PubMed

    Sharma, Ity; Kaminski, George A

    2017-01-15

    Our Fuzzy-Border (FB) continuum solvent model has been extended and modified to produce hydration parameters for small molecules using POlarizable Simulations Second-order Interaction Model (POSSIM) framework with an average error of 0.136 kcal/mol. It was then used to compute pK a shifts for carboxylic and basic residues of the turkey ovomucoid third domain (OMTKY3) protein. The average unsigned errors in the acid and base pK a values were 0.37 and 0.4 pH units, respectively, versus 0.58 and 0.7 pH units as calculated with a previous version of polarizable protein force field and Poisson Boltzmann continuum solvent. This POSSIM/FB result is produced with explicit refitting of the hydration parameters to the pK a values of the carboxylic and basic residues of the OMTKY3 protein; thus, the values of the acidity constants can be viewed as additional fitting target data. In addition to calculating pK a shifts for the OMTKY3 residues, we have studied aspartic acid residues of Rnase Sa. This was done without any further refitting of the parameters and agreement with the experimental pK a values is within an average unsigned error of 0.65 pH units. This result included the Asp79 residue that is buried and thus has a high experimental pK a value of 7.37 units. Thus, the presented model is capable or reproducing pK a results for residues in an environment that is significantly different from the solvated protein surface used in the fitting. Therefore, the POSSIM force field and the FB continuum solvent parameters have been demonstrated to be sufficiently robust and transferable. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. G6PD/PK ratio: a reliable parameter to identify glucose-6-phosphate dehydrogenase deficiency associated with microcytic anemia in heterozygous subjects.

    PubMed

    Tagarelli, Antonio; Piro, Anna; Tagarelli, Giuseppe; Bastone, Loredana; Paleari, Renata; Mosca, Andrea

    2004-10-01

    To determine if measuring the ratio of glucose-6-phosphate dehydrogenase (G6PD) to pyruvate kinase (PK) is more reliable than only measuring G6PD activity to identify heterozygous G6PD- individuals with associated microcytic anemia in the Calabrian population, which shows high frequencies of both the thalassaemia (thal) trait and G6PD deficiency. Measurement of G6PD and PK activities was carried out on 205 samples of whole blood from Calabrian subjects of both sexes (age range 10-50 years) using a double starter differential pH-metry technique. The G6PD/PK ratio is able to differentiate G6PD- heterozygous individuals from the normal population. G6PD/PK values also allowed us to easily identify the G6PD- heterozygous subjects with microcytic anaemia. Student's t test shows that G6PD/PK ratio is more reliable in both sample groups, relative to G6PD activity in normal subjects. G6PD/PK ratio is a reliable diagnostic parameter for mass screening for G6PD deficiency.

  5. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    PubMed Central

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  6. Nonlinear pharmacokinetics of visnagin in rats after intravenous bolus administration.

    PubMed

    Haug, Karin G; Weber, Benjamin; Hochhaus, Guenther; Butterweck, Veronika

    2012-01-23

    Ammi visnaga L. (syn. Khella, Apiaceae) preparations have traditionally been used in the Middle East for the treatment of kidney stone disease. Visnagin, a furanocoumarin derivative, is one of the main compounds of Ammi visnaga with potential effects on kidney stone prevention. To date, no information is available about the pharmacokinetic (PK) properties of visnagin. It was the aim of the study to characterize the PK properties of visnagin after intravenous (i.v.) bolus administration in rats and to develop an adequate model for the description of the observed data, including model parameter estimates. Therefore, three doses of visnagin (1.25, 2.5, and 5mg/kg) solubilized in 25% Captisol® were administered by i.v. bolus injection to male Sprague-Dawley rats. Plasma samples were extracted and subsequently analyzed using a validated LC-MS/MS method. Both non-compartmental and compartmental PK analyses were performed. A stepwise model building approach was applied including nonlinear mixed effect modeling for final model selection and to obtain final model estimates in NONMEM VI. The average areas under the curve (AUC(0-last)) after doses of 1.25, 2.5, and 5mg/kg were 1.03, 3.61, and 12.6 mg *h/l, respectively. The shape of the plasma concentration-time profiles and the observed disproportionate increase in AUC(0-last) with increasing dose suggested nonlinearity in the elimination of visnagin. A two-compartment Michaelis-Menten model provided the best fit with following typical values of the parameter estimates: 2.09 mg/(l*h) (V(max)), 0.08 mg/l (K(M)), 0.175 l (V(C)), 1.0 h⁻¹ (k₁₂), and 1.22 h⁻¹ (k₂₁). Associated inter-subject variability estimates (% CV) for V(max), K(M) and V(C) were 21.8, 70.9, and 9.2, respectively. Intra-subject variability (constant CV error model) was estimated to be 7.0%. The results suggest the involvement of a saturable process in the elimination of visnagin, possibly an enzyme or transporter system. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A Prospective Study of the Efficacy, Safety and Pharmacokinetics of Enteral Moxifloxacin in the Treatment of Hemodialysis Patients with Pneumonia.

    PubMed

    Tokimatsu, Issei; Shigemura, Katsumi; Kotaki, Tomohiro; Yoshikawa, Hiroki; Yamamichi, Fukashi; Tomo, Tadashi; Arakawa, Soichi; Fujisawa, Masato; Kadota, Jun-Ichi

    2017-01-01

    Objectives To investigate the efficacy of oral moxifloxacin (MFLX) as a treatment for pneumonia in hemodialysis (HD) patients and the pharmacokinetic (PK) profile of MFLX after oral administration. Methods Thirteen adult patients who required HD due to chronic renal failure were enrolled in the present study, which was performed to investigate the treatment of community-acquired pneumonia in HD patients. A standard dose of MFLX (400 mg, once daily) was administered. The therapy was continued, discontinued, or switched to another antibiotic depending on the response of the pneumonia to MFLX. A population PK model was developed using the post-hoc method. Results In total, 13 HD patients with pneumonia (male, n=7; female, n=6) were enrolled in the present study. The evaluation on the 3rd day showed that treatment was successful in 11 patients (84.6%) and that 10 patients were cured (76.9%). In the one case in which MFLX treatment failed, the patient was cured by switching to ceftriaxone (CTRX) (2 g, intravenously) plus levofloxacin (LVFX) (250 mg, orally). The causative bacterium in this male patient was P. aeruginosa. It did not display resistance to fluoroquinolones. One patient had liver dysfunction due to MFLX. The estimated PK parameters of MFLX were as follows: AUC 0→24 , 61.04±17.74 μg h/mL; C max , 5.25±1.12 μg/mL; and C trough , 1.15±0.45 μg/mL. The PK parameters of MFLX among the patients in whom adverse events occurred or in whom a cure was not achieved did not differ from those of the other patients to a statistically significant extent. Conclusion MFLX showed good efficacy and safety in HD patients with community-acquired pneumonia and the results of the PK analysis were favorable. Further prospective studies with larger numbers of patients will be needed to draw definitive conclusions.

  8. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  9. The effects of febuxostat on the pharmacokinetic parameters of rosiglitazone, a CYP2C8 substrate

    PubMed Central

    Naik, Himanshu; Wu, Jing-tao; Palmer, Robert; McLean, Lachy

    2012-01-01

    AIMS To determine the effect of febuxostat on cytochrome P450 2C8 (CYP2C8) activity using rosiglitazone as a CYP2C8 substrate. METHODS Healthy subjects received febuxostat 120 mg daily (regimen A) or matching placebo (regimen B) for 9 days along with a single oral dose of rosiglitazone 4 mg on day 5 in a double-blind, randomized, cross-over fashion (≥7 day washout between periods). Plasma samples for analysis of the impact of febuxostat on the pharmacokinetics (PK) of rosiglitazone and its metabolite, N-desmethylrosiglitazone, were collected for 120 h after co-administration. RESULTS Of the 39 subjects enrolled, 36 completed the study and were included in the PK analyses. Rosiglitazone PK parameters were comparable between regimens A and B. Median time to maximal plasma concentration, mean maximal plasma concentration (Cmax), area under the concentration-time curve (AUC) from time zero to the last quantifiable concentration (AUC0–tlqc), AUC from time zero to infinity (AUC0–∞), and terminal elimination half-life for regimen A were 0.50 h, 308.6 ng ml−1, 1594.9 ng h ml−1, 1616.0 ng h ml−1 and 4.1 h, respectively, and for regimen B they were 0.50 h, 327.6 ng ml−1, 1564.5 ng h ml−1, 1584.2 ng h ml−1 and 4.0 h, respectively. Point estimates for the ratio of regimen A to regimen B (90% confidence intervals) for rosiglitazone Cmax, AUC0–tlqc and AUC0–∞ central values were 0.94 (0.89–1.00), 1.02 (1.00–1.04) and 1.02 (1.00–1.04), respectively. CONCLUSIONS Co-administration of febuxostat had no effect on rosiglitazone or N-desmethylrosiglitazone PK parameters, suggesting that febuxostat can be given safely with drugs metabolized through CYP2C8. PMID:22242967

  10. Efficacy determinants of subcutaneous microdose glucagon during closed-loop control.

    PubMed

    Russell, Steven J; El-Khatib, Firas H; Nathan, David M; Damiano, Edward R

    2010-11-01

    During a previous clinical trial of a closed-loop blood glucose (BG) control system that administered insulin and microdose glucagon subcutaneously, glucagon was not uniformly effective in preventing hypoglycemia (BG<70 mg/dl). After a global adjustment of control algorithm parameters used to model insulin absorption and clearance to more closely match insulin pharmacokinetic (PK) parameters observed in the study cohort, administration of glucagon by the control system was more effective in preventing hypoglycemia. We evaluated the role of plasma insulin and plasma glucagon levels in determining whether glucagon was effective in preventing hypoglycemia. We identified and analyzed 36 episodes during which glucagon was given and categorized them as either successful or unsuccessful in preventing hypoglycemia. In 20 of the 36 episodes, glucagon administration prevented hypoglycemia. In the remaining 16, BG fell below 70 mg/dl (12 of the 16 occurred during experiments performed before PK parameters were adjusted). The (dimensionless) levels of plasma insulin (normalized relative to each subject's baseline insulin level) were significantly higher during episodes ending in hypoglycemia (5.2 versus 3.7 times the baseline insulin level, p=.01). The relative error in the control algorithm's online estimate of the instantaneous plasma insulin level was also higher during episodes ending in hypoglycemia (50 versus 30%, p=.003), as were the peak plasma glucagon levels (183 versus 116 pg/ml, p=.007, normal range 50-150 pg/ml) and mean plasma glucagon levels (142 versus 75 pg/ml, p=.02). Relative to mean plasma insulin levels, mean plasma glucagon levels tended to be 59% higher during episodes ending in hypoglycemia, although this result was not found to be statistically significant (p=.14). The rate of BG descent was also significantly greater during episodes ending in hypoglycemia (1.5 versus 1.0 mg/dl/min, p=.02). Microdose glucagon administration was relatively ineffective in preventing hypoglycemia when plasma insulin levels exceeded the controller's online estimate by >60%. After the algorithm PK parameters were globally adjusted, insulin dosing was more conservative and microdose glucagon administration was very effective in reducing hypoglycemia while maintaining normal plasma glucagon levels. Improvements in the accuracy of the controller's online estimate of plasma insulin levels could be achieved if ultrarapid-acting insulin formulations could be developed with faster absorption and less intra- and intersubject variability than the current insulin analogs available today. © 2010 Diabetes Technology Society.

  11. Clinical and Genetic Determinants of Warfarin Pharmacokinetics and Pharmacodynamics during Treatment Initiation

    PubMed Central

    Gong, Inna Y.; Schwarz, Ute I.; Crown, Natalie; Dresser, George K.; Lazo-Langner, Alejandro; Zou, GuangYong; Roden, Dan M.; Stein, C. Michael; Rodger, Marc; Wells, Philip S.; Kim, Richard B.; Tirona, Rommel G.

    2011-01-01

    Variable warfarin response during treatment initiation poses a significant challenge to providing optimal anticoagulation therapy. We investigated the determinants of initial warfarin response in a cohort of 167 patients. During the first nine days of treatment with pharmacogenetics-guided dosing, S-warfarin plasma levels and international normalized ratio were obtained to serve as inputs to a pharmacokinetic-pharmacodynamic (PK-PD) model. Individual PK (S-warfarin clearance) and PD (Imax) parameter values were estimated. Regression analysis demonstrated that CYP2C9 genotype, kidney function, and gender were independent determinants of S-warfarin clearance. The values for Imax were dependent on VKORC1 and CYP4F2 genotypes, vitamin K status (as measured by plasma concentrations of proteins induced by vitamin K absence, PIVKA-II) and weight. Importantly, indication for warfarin was a major independent determinant of Imax during initiation, where PD sensitivity was greater in atrial fibrillation than venous thromboembolism. To demonstrate the utility of the global PK-PD model, we compared the predicted initial anticoagulation responses with previously established warfarin dosing algorithms. These insights and modeling approaches have application to personalized warfarin therapy. PMID:22114699

  12. Population pharmacokinetic and pharmacodynamic analyses of safinamide in subjects with Parkinson's disease.

    PubMed

    Loprete, Luca; Leuratti, Chiara; Cattaneo, Carlo; Thapar, Mita M; Farrell, Colm; Sardina, Marco

    2016-10-01

    Safinamide is an orally administered α -aminoamide derivative with both dopaminergic and non-dopaminergic properties. Nonlinear mixed effects models for population pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PKPD) analyses were developed using records from, respectively, 623 and 668 patients belonging to two Phase 3, randomized, placebo-controlled, double-blind efficacy studies. The aim was to estimate safinamide population PK parameters in patients with Parkinson's disease (PD) on stable levodopa therapy, and to develop a model of safinamide effect on the PD phase of normal functioning (ON-time). The final models were internally evaluated using visual predictive checks (VPCs), prediction corrected-VPC, and nonparametric bootstrap analysis. Safinamide profiles were adequately described by a linear one-compartmental model with first-order absorption and elimination. CL/F, Vd/F, and KA (95% confidence interval [CI]) were 4.96 (4.73-5.21) L/h, 166 (158-174) L, and 0.582 (0.335-0.829) h -1 , respectively. CL/F and Vd/F increased with body weight, while age, gender, renal function, and exposure to levodopa did not influence safinamide PK. The observed ON-time values were adequately described by a linear model, with time in the study period as dependent variable, and rate of ON-time change and baseline plus offset effect as slope and intercept parameters. Safinamide treatment resulted in an increase in ON-time of 0.73 h (week 4), with further ON-time increase with the same slope as placebo. The increase was not influenced by age, levodopa, or safinamide exposure. The population models adequately describe the population PK of safinamide and safinamide effect on ON-time. No dose adjustments in elderly and mild to moderate renally impaired patients are requested.

  13. Thermodynamics of acid-base dissociation of several cathinones and 1-phenylethylamine, studied by an accurate capillary electrophoresis method free from the Joule heating impact.

    PubMed

    Nowak, Paweł Mateusz; Woźniakiewicz, Michał; Mitoraj, Mariusz; Sagan, Filip; Kościelniak, Paweł

    2018-03-02

    Capillary electrophoresis is often used to the determination of the acid-base dissociation/deprotonation constant (pK a ), and the more advanced thermodynamic quantities describing this process (ΔH°, -TΔS°). Remarkably, it is commonly overlooked that due to insufficient dissipation of Joule heating the accuracy of parameters determined using a standard approach may be questionable. In this work we show an effective method allowing to enhance reliability of these parameters, and to estimate the magnitude of errors. It relies on finding a relationship between electrophoretic mobility and actual temperature, and performing pK a determination with the corrected mobility values. It has been employed to accurately examine the thermodynamics of acid-base dissociation of several amine compounds - known for their strong dependency of pK a on temperature: six cathinones (2-methylmethcathinone, 3-methylmethcathinone, 4-methylmethcathinone, α-pyrrolidinovalerophenone, methylenedioxypyrovalerone, and ephedrone); and structurally similar 1-phenylethylamine. The average pK a error caused by Joule heating noted at 25 °C was relatively small - 0.04-0.05 pH unit, however, a more significant inaccuracy was observed in the enthalpic and, in particular, entropic terms. An alternative correction method has also been proposed, simpler and faster, but not such effective in correcting ΔH°/-TΔS° terms. The corrected thermodynamic data have been interpreted with the aid of theoretical calculations, on a ground of the enthalpy-entropy relationships and the most probable structural effects accounting for them. Finally, we have demonstrated that the thermal dependencies of electrophoretic mobility, modelled during the correction procedure, may be directly used to find optimal temperature providing a maximal separation efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Population pharmacokinetics of imipenem in critically ill patients with suspected ventilator-associated pneumonia and evaluation of dosage regimens

    PubMed Central

    Couffignal, Camille; Pajot, Olivier; Laouénan, Cédric; Burdet, Charles; Foucrier, Arnaud; Wolff, Michel; Armand-Lefevre, Laurence; Mentré, France; Massias, Laurent

    2014-01-01

    Aims Significant alterations in the pharmacokinetics (PK) of antimicrobials have been reported in critically ill patients. We describe PK parameters of imipenem in intensive care unit (ICU) patients with suspected ventilator-associated pneumonia and evaluate several dosage regimens. Methods This French multicentre, prospective, open-label study was conducted in ICU patients with a presumptive diagnosis of ventilator-associated pneumonia caused by Gram-negative bacilli, who empirically received imipenem intravenously every 8 h. Plasma imipenem concentrations were measured during the fourth imipenem infusion using six samples (trough, 0.5, 1, 2, 5 and 8 h). Data were analysed with a population approach using the stochastic approximation expectation maximization algorithm in Monolix 4.2. A Monte Carlo simulation was performed to evaluate the following six dosage regimens: 500, 750 or 1000 mg with administration every 6 or 8 h. The pharmacodynamic target was defined as the probability of achieving a fractional time above the minimal inhibitory concentration (MIC) of >40%. Results Fifty-one patients were included in the PK analysis. Imipenem concentration data were best described by a two-compartment model with three covariates (creatinine clearance, total bodyweight and serum albumin). Estimated clearance (between-subject variability) was 13.2 l h−1 (38%) and estimated central volume 20.4 l (31%). At an MIC of 4 μg ml−1, the probability of achieving 40% fractional time > MIC was 91.8% for 0.5 h infusions of 750 mg every 6 h, 86.0% for 1000 mg every 8 h and 96.9% for 1000 mg every 6 h. Conclusions This population PK model accurately estimated imipenem concentrations in ICU patients. The simulation showed that for these patients, the best dosage regimen of imipenem is 750 mg every 6 h and not 1000 mg every 8 h. PMID:24903189

  15. Population pharmacokinetics of imipenem in critically ill patients with suspected ventilator-associated pneumonia and evaluation of dosage regimens.

    PubMed

    Couffignal, Camille; Pajot, Olivier; Laouénan, Cédric; Burdet, Charles; Foucrier, Arnaud; Wolff, Michel; Armand-Lefevre, Laurence; Mentré, France; Massias, Laurent

    2014-11-01

    Significant alterations in the pharmacokinetics (PK) of antimicrobials have been reported in critically ill patients. We describe PK parameters of imipenem in intensive care unit (ICU) patients with suspected ventilator-associated pneumonia and evaluate several dosage regimens. This French multicentre, prospective, open-label study was conducted in ICU patients with a presumptive diagnosis of ventilator-associated pneumonia caused by Gram-negative bacilli, who empirically received imipenem intravenously every 8 h. Plasma imipenem concentrations were measured during the fourth imipenem infusion using six samples (trough, 0.5, 1, 2, 5 and 8 h). Data were analysed with a population approach using the stochastic approximation expectation maximization algorithm in Monolix 4.2. A Monte Carlo simulation was performed to evaluate the following six dosage regimens: 500, 750 or 1000 mg with administration every 6 or 8 h. The pharmacodynamic target was defined as the probability of achieving a fractional time above the minimal inhibitory concentration (MIC) of >40%. Fifty-one patients were included in the PK analysis. Imipenem concentration data were best described by a two-compartment model with three covariates (creatinine clearance, total bodyweight and serum albumin). Estimated clearance (between-subject variability) was 13.2 l h(-1) (38%) and estimated central volume 20.4 l (31%). At an MIC of 4 μg ml(-1) , the probability of achieving 40% fractional time > MIC was 91.8% for 0.5 h infusions of 750 mg every 6 h, 86.0% for 1000 mg every 8 h and 96.9% for 1000 mg every 6 h. This population PK model accurately estimated imipenem concentrations in ICU patients. The simulation showed that for these patients, the best dosage regimen of imipenem is 750 mg every 6 h and not 1000 mg every 8 h. © 2014 The British Pharmacological Society.

  16. Proton dissociation properties of arylphosphonates: Determination of accurate Hammett equation parameters.

    PubMed

    Dargó, Gergő; Bölcskei, Adrienn; Grün, Alajos; Béni, Szabolcs; Szántó, Zoltán; Lopata, Antal; Keglevich, György; Balogh, György T

    2017-09-05

    Determination of the proton dissociation constants of several arylphosphonic acid derivatives was carried out to investigate the accuracy of the Hammett equations available for this family of compounds. For the measurement of the pK a values modern, accurate methods, such as the differential potentiometric titration and NMR-pH titration were used. We found our results significantly different from the pK a values reported before (pK a1 : MAE = 0.16 pK a2 : MAE=0.59). Based on our recently measured pK a values, refined Hammett equations were determined that might be used for predicting highly accurate ionization constants of newly synthesized compounds (pK a1 =1.70-0.894σ, pK a2 =6.92-0.934σ). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pharmacokinetics of pediatric lopinavir/ritonavir tablets in children when administered twice daily according to FDA weight bands.

    PubMed

    Bastiaans, Diane E T; Forcat, Silvia; Lyall, Hermione; Cressey, Tim R; Hansudewechakul, Rawiwan; Kanjanavanit, Suparat; Noguera-Julian, Antoni; Königs, Christoph; Inshaw, Jamie R J; Chalermpantmetagul, Suwalai; Saïdi, Yacine; Compagnucci, Alexandra; Harper, Lynda M; Giaquinto, Carlo; Colbers, Angela P H; Burger, David M

    2014-03-01

    Lopinavir/ritonavir (LPV/r) pediatric tablets (100/25 mg) are approved by the United States Food and Drug Administration (FDA) and European Medicines Agency (EMA) as part of combination antiretroviral therapy. Dosing is based on body weight bands or body surface area under FDA approval and only body surface area by the EMA. This can lead to a different recommended dose. In addition, weight band-based dosing has not been formally studied in the target population. We evaluated the pharmacokinetics (PK) of LPV/r in children, administered twice daily according to the FDA weight bands, using pediatric tablets. Fifty-three HIV-infected children were included in the PK substudy of the Paediatric European Network for the Treatment of AIDS 18 trial (KONCERT). In this study, children were randomized to receive LPV/r twice or once daily, according to FDA weight bands. A PK assessment was performed in 17, 16 and 20 children in the 15-25 kg, ≥ 25-35 kg and >35 kg weight band, respectively, while children took the tablets twice daily. Rich sampling was performed, and PK parameters were calculated by noncompartmental analysis. Given the high percentage of Asian children, it was also tested whether there was a difference in PK parameters between Asian and non-Asian children. For the total group, LPV geometric mean AUC0-12, Cmax and C12 were 106.9 h × mg/L, 12.0 mg/L and 4.9 mg/L, respectively. There were no significant differences in LPV PK parameters between the weight bands. In addition, weight was not found to be associated with variability in Cmax, C12 or AUC0-12 for the LPV PK parameters. FDA weight band-based dosing recommendations provide adequate exposure to LPV when using LPV/r pediatric tablets.

  18. Pharmacokinetic comparative study of gastrodin after oral administration of Gastrodia elata Bl. extract and its compatibility with the different indigents of Ligusticum chuanxiong Hort. to rats.

    PubMed

    Hu, Peng-Yi; Yue, Peng-Fei; Zheng, Qin; Yang, Ming; Zhang, Guo-Song; Wu, Bin; Liu, Dan

    2016-09-15

    Da Chuan Xiong Decoction Compound preparation (DCXDCP) is a classic TCM formula of an aqueous extract made from Chuanxiong Rhizoma (Ligusticum chuanxiong Hort., umbelliferae) and Tianma Rhizoma (Gastrodia elata Bl., Orchidaceae). Gastrodin (GAS), a bioactive component of tianma, its pharmacokinetic (PK) behavior significantly changed after oral administration of DCXDCP compared with the extract of tianma. However, little is known about how the ingredients of chuanxiong influenced on the PK of GAS. To study the possible PK behavior differences of GAS after individually oral administration of tianma extract and tianma extract mixed with different active ingredients of chuanxiong to rats, as well as explore whether there were some herb-herb interactions. Different DCXDCP suspensions were prepared by mixing tianma extract with different active ingredients of chuanxiong. The rats were randomly assigned to six groups and were orally treated with different DCXDCP. At different predetermined time points after administration, the concentrations of GAS in the rat plasma were determined using HPLC, and the main PK parameters were investigated. The results showed that tetramethylpyrazine had no significant effects on the PK parameters of GAS (p>0.05), whereas ferulic acid (FA), total phenolic acids and total alkaloids significantly increased AUC0-∞ (p<0.05). In general the observed changes in the PK parameters of GAS in DCXDCP could be closely related to the total phenolic acids and total alkaloids. It could be shown that total phenolic acids and total alkaloids present in Ligusticum chuanxiong in addition to other components not tested yet play an important role in affecting the PK of gastrodin in DCXDCP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A

    PubMed Central

    Ostenfeld, Thor; Beaumont, Claire; Bullman, Jonathan; Beaumont, Maria; Jeffrey, Phillip

    2012-01-01

    AIM The primary objective was to evaluate the pharmacokinetics (PK) of the novel EP1 antagonist GSK269984A in human volunteers after a single oral and intravenous (i.v.) microdose (100 µg). METHOD GSK269984A was administered to two groups of healthy human volunteers as a single oral (n= 5) or i.v. (n= 5) microdose (100 µg). Blood samples were collected for up to 24 h and the parent drug concentrations were measured in separated plasma using a validated high pressure liquid chromatography-tandem mass spectrometry method following solid phase extraction. RESULTS Following the i.v. microdose, the geometric mean values for clearance (CL), steady-state volume of distribution (Vss) and terminal elimination half-life (t1/2) of GSK269984A were 9.8 l h−1, 62.8 l and 8.2 h. Cmax and AUC(0,∞) were 3.2 ng ml−1 and 10.2 ng ml−1 h, respectively; the corresponding oral parameters were 1.8 ng ml−1 and 9.8 ng ml−1 h, respectively. Absolute oral bioavailability was estimated to be 95%. These data were inconsistent with predictions of human PK based on allometric scaling of in vivo PK data from three pre-clinical species (rat, dog and monkey). CONCLUSION For drug development programmes characterized by inconsistencies between pre-clinical in vitro metabolic and in vivo PK data, and where uncertainty exists with respect to allometric predictions of the human PK profile, these data support the early application of a human microdose study to facilitate the selection of compounds for further clinical development. PMID:22497298

  20. Impact of Gender on Pharmocokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Lei, Wu.; S-L Chow, Diana

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS), which is commonly experienced by astronauts during space missions. The bioavailability and pharmacokinetics (PK) were evaluated under IND guidelines. Since information is lacking on the effect of gender on the PK of Scopolamine, we examined gender differences in PK parameters of INSCOP at three dose levels of 0.1, 0.2 and 0.4 mg. Methods: Plasma scopolamine concentrations as a function of time data were collected from twelve normal healthy human subjects (6 male/6 female) who participated in a fully randomized double blind crossover study. The PK parameters were derived using WinNonlin. Covariate analysis of PK profiles was performed using NONMEN and statistically compared using a likelihood ratio test on the difference of objective function value (OFV). Statistical significance for covariate analysis was set at P<0.05(?OFV=3.84). Results: No significant difference in PK parameters between male and female subjects was observed with 0.1 and 0.2 mg doses. However, CL and Vd were significantly different between male and female subjects at the 0.4 mg dose. Results from population covariate modeling analysis indicate that a onecompartment PK model with first-order elimination rate offers best fit for describing INSCOP concentration-time profiles. The inclusion of sex as a covariate enhanced the model fitting (?OFV=-4.1) owing to the genderdependent CL and Vd differences after the 0.4 mg dose. Conclusion: Statistical modeling of scopolamine concentration-time data suggests gender-dependent pharmacokinetics of scopolamine at the high dose level of 0.4 mg. Clearance of the parent compound was significantly faster and the volume of distribution was significantly higher in males than in females, As a result, including gender as a covariate to the pharmacokinetic model of scopolamine offers the best fit for PK modeling of the drug at dose of 0.4 mg or higher.

  1. Dose‐finding methods for Phase I clinical trials using pharmacokinetics in small populations

    PubMed Central

    Zohar, Sarah; Lentz, Frederike; Alberti, Corinne; Friede, Tim; Stallard, Nigel; Comets, Emmanuelle

    2017-01-01

    The aim of phase I clinical trials is to obtain reliable information on safety, tolerability, pharmacokinetics (PK), and mechanism of action of drugs with the objective of determining the maximum tolerated dose (MTD). In most phase I studies, dose‐finding and PK analysis are done separately and no attempt is made to combine them during dose allocation. In cases such as rare diseases, paediatrics, and studies in a biomarker‐defined subgroup of a defined population, the available population size will limit the number of possible clinical trials that can be conducted. Combining dose‐finding and PK analyses to allow better estimation of the dose‐toxicity curve should then be considered. In this work, we propose, study, and compare methods to incorporate PK measures in the dose allocation process during a phase I clinical trial. These methods do this in different ways, including using PK observations as a covariate, as the dependent variable or in a hierarchical model. We conducted a large simulation study that showed that adding PK measurements as a covariate only does not improve the efficiency of dose‐finding trials either in terms of the number of observed dose limiting toxicities or the probability of correct dose selection. However, incorporating PK measures does allow better estimation of the dose‐toxicity curve while maintaining the performance in terms of MTD selection compared to dose‐finding designs that do not incorporate PK information. In conclusion, using PK information in the dose allocation process enriches the knowledge of the dose‐toxicity relationship, facilitating better dose recommendation for subsequent trials. PMID:28321893

  2. Impact of spurious shear on cosmological parameter estimates from weak lensing observables

    DOE PAGES

    Petri, Andrea; May, Morgan; Haiman, Zoltán; ...

    2014-12-30

    We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ω m,w,σ 8) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitudemore » smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σ sys 2 ≈ 10 -7, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg 2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.« less

  3. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  4. Investigation of the Bioequivalence of Rosuvastatin 20 mg Tablets after a Single Oral Administration in Mediterranean Arabs Using a Validated LC-MS/MS Method

    PubMed Central

    Zaid, Abdel Naser; Al Ramahi, Rowa; Cortesi, Rita; Mousa, Ayman; Jaradat, Nidal; Ghazal, Nadia; Bustami, Rana

    2016-01-01

    There is a wide inter-individual response to statin therapy including rosuvastatin calcium (RC), and it has been hypothesized that genetic differences may contribute to these variations. In fact, several studies have shown that pharmacokinetic (PK) parameters for RC are affected by race. The aim of this study is to demonstrate the interchangeability between two generic RC 20 mg film-coated tablets under fasting conditions among Mediterranean Arabs and to compare the pharmacokinetic results with Asian and Caucasian subjects from other studies. A single oral RC 20 mg dose, randomized, open-label, two-way crossover design study was conducted in 30 healthy Mediterranean Arab volunteers. Blood samples were collected prior to dosing and over a 72-h period. Concentrations in plasma were quantified using a validated liquid chromatography tandem mass spectrometry method. Twenty-six volunteers completed the study. Statistical comparison of the main PK parameters showed no significant difference between the generic and branded products. The point estimates (ratios of geometric mean %) were 107.73 (96.57–120.17), 103.61 (94.03–114.16), and 104.23 (94.84–114.54) for peak plasma concentration (Cmax), Area Under the Curve (AUC)0→last, and AUC0→∞, respectively. The 90% confidence intervals were within the pre-defined limits of 80%–125% as specified by the Food and Drug Administration and European Medicines Agency for bioequivalence studies. Both formulations were well-tolerated and no serious adverse events were reported. The PK results (AUC0→last and Cmax) were close to those of the Caucasian subjects. This study showed that the test and reference products met the regulatory criteria for bioequivalence following a 20 mg oral dose of RC under fasting conditions. Both formulations also showed comparable safety results. The PK results of the test and reference in the study subjects fall within the acceptable interval of 80%–125% and they were very close to the results among Caucasians. These PK results may be useful in order to determine the suitable RC dose among Arab Mediterranean patients. PMID:28117319

  5. Assessing the relative potency of (S)- and (R)-warfarin with a new PK-PD model, in relation to VKORC1 genotypes.

    PubMed

    Ferrari, Myriam; Pengo, Vittorio; Barolo, Massimiliano; Bezzo, Fabrizio; Padrini, Roberto

    2017-06-01

    The purpose of this study is to develop a new pharmacokinetic-pharmacodynamic (PK-PD) model to characterise the contribution of (S)- and (R)-warfarin to the anticoagulant effect on patients in treatment with rac-warfarin. Fifty-seven patients starting warfarin (W) therapy were studied, from the first dose and during chronic treatment at INR stabilization. Plasma concentrations of (S)- and (R)-W and INRs were measured 12, 36 and 60 h after the first dose and at steady state 12-14 h after dosing. Patients were also genotyped for the G>A VKORC1 polymorphism. The PK-PD model assumed a linear relationship between W enantiomer concentration and INR and included a scaling factor k to account for a different potency of (R)-W. Two parallel compartment chains with different transit times (MTT 1 and MTT 2 ) were used to model the delay in the W effect. PD parameters were estimated with the maximum likelihood approach. The model satisfactorily described the mean time-course of INR, both after the initial dose and during long-term treatment. (R)-W contributed to the rac-W anticoagulant effect with a potency of about 27% that of (S)-W. This effect was independent of VKORC1 genotype. As expected, the slope of the PK/PD linear correlation increased stepwise from GG to GA and from GA to AA VKORC1 genotype (0.71, 0.90 and 1.49, respectively). Our PK-PD linear model can quantify the partial pharmacodynamic activity of (R)-W in patients contemporaneously exposed to therapeutic (S)-W plasma levels. This concept may be useful in improving the performance of future algorithms aiming at identifying the most appropriate W maintenance dose.

  6. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post‐partum

    PubMed Central

    Kulo, Aida; Peeters, Mariska Y.; Allegaert, Karel; Smits, Anne; de Hoon, Jan; Verbesselt, Rene; Lewi, Liesbeth; van de Velde, Marc; Knibbe, Catherijne A. J.

    2013-01-01

    Aim A recent report on intravenous (i.v.) paracetamol pharmacokinetics (PK) showed a higher total clearance in women at delivery compared with non‐pregnant women. To describe the paracetamol metabolic and elimination routes involved in this increase in clearance, we performed a population PK analysis in women at delivery and post‐partum in which the different pathways were considered. Methods Population PK parameters using non‐linear mixed effect modelling were estimated in a two‐period PK study in women to whom i.v. paracetamol (2 g loading dose followed by 1 g every 6 h up to 24 h) was administered immediately following Caesarean delivery and in a subgroup of the same women to whom single 2 g i.v.loading dose was administered 10–15 weeks post‐partum. Results Population PK analysis was performed based on 255 plasma and 71 urine samples collected in 39 women at delivery and in eight of these 39 women 12 weeks post‐partum. Total clearance was higher in women at delivery compared with 12th post‐partum week (21.1 vs. 11.7 l h−1) due to higher clearances to paracetamol glucuronide (11.6 vs. 4.76 l h−1), to oxidative metabolites (4.95 vs. 2.77 l h−1) and of unchanged paracetamol (1.15 vs. 0.75 l h−1). In contrast, there was no difference in clearance to paracetamol sulphate. Conclusion The increased total paracetamol clearance at delivery is caused by a disproportional increase in glucuronidation clearance and a proportional increase in clearance of unchanged paracetamol and in oxidation clearance, of which the latter may potentially limit further dose increase in this patient group. PMID:22845052

  7. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A.

    PubMed

    Ostenfeld, Thor; Beaumont, Claire; Bullman, Jonathan; Beaumont, Maria; Jeffrey, Phillip

    2012-12-01

    The primary objective was to evaluate the pharmacokinetics (PK) of the novel EP(1) antagonist GSK269984A in human volunteers after a single oral and intravenous (i.v.) microdose (100 µg). GSK269984A was administered to two groups of healthy human volunteers as a single oral (n= 5) or i.v. (n= 5) microdose (100 µg). Blood samples were collected for up to 24 h and the parent drug concentrations were measured in separated plasma using a validated high pressure liquid chromatography-tandem mass spectrometry method following solid phase extraction. Following the i.v. microdose, the geometric mean values for clearance (CL), steady-state volume of distribution (V(ss) ) and terminal elimination half-life (t(1/2) ) of GSK269984A were 9.8 l h(-1) , 62.8 l and 8.2 h. C(max) and AUC(0,∞) were 3.2 ng ml(-1) and 10.2 ng ml(-1)  h, respectively; the corresponding oral parameters were 1.8 ng ml(-1) and 9.8 ng ml(-1)  h, respectively. Absolute oral bioavailability was estimated to be 95%. These data were inconsistent with predictions of human PK based on allometric scaling of in vivo PK data from three pre-clinical species (rat, dog and monkey). For drug development programmes characterized by inconsistencies between pre-clinical in vitro metabolic and in vivo PK data, and where uncertainty exists with respect to allometric predictions of the human PK profile, these data support the early application of a human microdose study to facilitate the selection of compounds for further clinical development. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  8. Prediction of non-linear pharmacokinetics in humans of an antibody-drug conjugate (ADC) when evaluation of higher doses in animals is limited by tolerability: Case study with an anti-CD33 ADC.

    PubMed

    Figueroa, Isabel; Leipold, Doug; Leong, Steve; Zheng, Bing; Triguero-Carrasco, Montserrat; Fourie-O'Donohue, Aimee; Kozak, Katherine R; Xu, Keyang; Schutten, Melissa; Wang, Hong; Polson, Andrew G; Kamath, Amrita V

    2018-05-14

    For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.

  9. The pharmacokinetics of peginterferon lambda-1a following single dose administration to subjects with impaired renal function.

    PubMed

    Hruska, Matthew W; Adamczyk, Robert; Colston, Elizabeth; Hesney, Michael; Stonier, Michele; Myler, Heather; Bertz, Richard

    2015-09-01

    This open label study was conducted to assess the effect of renal impairment (RI) on the pharmacokinetics (PK) of peginterferon lambda-1a (Lambda). Subjects (age 18-75 years, BMI 18-35 kg m(-2) ) were enrolled into one of five renal function groups: normal (n = 12), mild RI (n = 8), moderate RI (n = 8), severe RI (n = 7), end-stage renal disease (ESRD, n = 8) based on estimated glomerular filtration rate (eGFR) calculated using the Modification of Diet in Renal Disease (MDRD) equation. Subjects received a single dose of Lambda (180 µg) subcutaneously on day 1 followed by PK serum sample collections through day 29. Safety, tolerability and immunogenicity data were collected through day 43. PK parameters were estimated and summarized by group. Geometric mean ratios (GMR) and 90% confidence intervals (CIs) were calculated between normal and RI groups. With decreasing eGFR, Lambda exposure (Cmax , AUC) increased while apparent clearance (CL/F) and apparent volume of distribution (V/F) decreased. Relative to subjects with normal renal function (geometric mean AUC = 99.5 ng ml(-1) h), Lambda exposure estimates (AUC) were slightly increased in the mild RI group (geometric mean [90% CI]: 1.20 [0.82, 1.77]) and greater in the moderate (1.95 [1.35, 2.83]), severe RI (1.95 [1.30, 2.93]) and ESRD (1.88 [1.30, 2.73]) groups. Lambda was generally well tolerated. The results demonstrated that RI reduces the clearance of Lambda and suggests that dose modifications may not be required in patients with mild RI but may be required in patients with moderate to severe RI or ESRD. © 2015 The British Pharmacological Society.

  10. Population pharmacokinetics of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in patients with type 2 diabetes.

    PubMed

    Riggs, Matthew M; Staab, Alexander; Seman, Leo; MacGregor, Thomas R; Bergsma, Timothy T; Gastonguay, Marc R; Macha, Sreeraj

    2013-10-01

    Data from five randomized, placebo-controlled, multiple oral dose studies of empagliflozin in patients with type 2 diabetes mellitus (T2DM; N = 974; 1-100 mg q.d.; ≤12 weeks) were used to develop a population pharmacokinetic (PK) model for empagliflozin. The model consisted of two-compartmental disposition, lagged first-order absorption and first-order elimination, and incorporated appropriate covariates. Population estimates (interindividual variance, CV%) of oral apparent clearance, central and peripheral volumes of distribution, and inter-compartmental clearance were 9.87 L/h (26.9%), 3.02 L, 60.4 L (30.8%), and 5.16 L/h, respectively. An imposed allometric weight effect was the most influential PK covariate effect, with a maximum effect on exposure of ±30%, using 2.5th and 97.5th percentiles of observed weights, relative to the median observed weight. Sex and race did not lend additional description to PK variability beyond allometric weight effects, other than ∼25% greater oral absorption rate constant for Asian patients. Age, total protein, and smoking/alcohol history did not affect PK parameters. Predictive check plots were consistent with observed data, implying an adequate description of empagliflozin PKs following multiple dosing in patients with T2DM. The lack of marked covariate effects, including weight, suggests that no exposure-based dose adjustments were required within the study population and dose range. © The Author(s) 2013 John Wiley & Sons, Ltd.

  11. Population pharmacokinetics and exposure-response of osimertinib in patients with non-small cell lung cancer.

    PubMed

    Brown, Kathryn; Comisar, Craig; Witjes, Han; Maringwa, John; de Greef, Rik; Vishwanathan, Karthick; Cantarini, Mireille; Cox, Eugène

    2017-06-01

    To develop a population (pop) pharmacokinetic (PK) model for osimertinib (AZD9291) and its metabolite (AZ5104) and investigate the exposure-response relationships for selected efficacy and safety parameters. PK, safety and efficacy data were collected from two non-small cell lung cancer (NSCLC) patient studies (n = 748) and one healthy volunteer study (n = 32), after single or multiple once-daily dosing of 20-240 mg osimertinib. Nonlinear mixed effects modelling was used to characterise the popPK. Individual exposure values were used to investigate the relationship with response evaluation criteria in solid tumours (RECIST 1.1) efficacy parameters and key safety parameters (rash, diarrhoea, QTcF). A popPK model that adequately described osimertinib and its metabolite AZ5104 in a joint manner was developed. Body weight, serum albumin and ethnicity were identified as significant covariates on PK in the analysis, but were not found to have a clinically relevant impact on osimertinib exposure. No relationship was identified between exposure and efficacy over the dose range studied. A linear relationship was observed between exposure and the occurrence of rash or diarrhoea, and between concentration and QTcF, with a predicted mean (upper 90% confidence interval) increase of 14.2 (15.8) ms at the maximum concentration for an 80 mg once-daily dose at steady state. PopPK and exposure-response models were developed for osimertinib and AZ5104. There was no relationship between exposure and efficacy but a linear relationship between exposure and safety endpoints (rash, diarrhoea and QTcF) was observed. © 2016 The British Pharmacological Society.

  12. A non-linear pharmacokinetic-pharmacodynamic relationship of metformin in healthy volunteers: An open-label, parallel group, randomized clinical study.

    PubMed

    Chung, Hyewon; Oh, Jaeseong; Yoon, Seo Hyun; Yu, Kyung-Sang; Cho, Joo-Youn; Chung, Jae-Yong

    2018-01-01

    The aim of this study was to explore the pharmacokinetic-pharmacodynamic (PK-PD) relationship of metformin on glucose levels after the administration of 250 mg and 1000 mg of metformin in healthy volunteers. A total of 20 healthy male volunteers were randomized to receive two doses of either a low dose (375 mg followed by 250 mg) or a high dose (1000 mg followed by 1000 mg) of metformin at 12-h intervals. The pharmacodynamics of metformin was assessed using oral glucose tolerance tests before and after metformin administration. The PK parameters after the second dose were evaluated through noncompartmental analyses. Four single nucleotide polymorphisms in MATE1, MATE2-K, and OCT2 were genotyped, and their effects on PK characteristics were additionally evaluated. The plasma exposure of metformin increased as the metformin dose increased. The mean values for the area under the concentration-time curve from dosing to 12 hours post-dose (AUC0-12h) were 3160.4 and 8808.2 h·μg/L for the low- and high-dose groups, respectively. Non-linear relationships were found between the glucose-lowering effect and PK parameters with a significant inverse trend at high metformin exposure. The PK parameters were comparable among subjects with the genetic polymorphisms. This study showed a non-linear PK-PD relationship on plasma glucose levels after the administration of metformin. The inverse relationship between systemic exposure and the glucose-lowering effect at a high exposure indicates a possible role for the intestines as an action site for metformin. ClinicalTrials.gov NCT02712619.

  13. Translating Pharmacokinetic and Pharmacodynamic Data into Practice.

    PubMed

    Visser, Marike

    2018-05-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) publications provide scientific evidence for incorporation in evidence-based veterinary medicine, aiding the clinician in selecting doses and dosing intervals. PK and PD studies have reported wide variations within exotic species, due to physiologic differences in absorption, distribution, metabolism, and excretion. PK studies offer species-specific data to help tailor doses and dosing routes to individual patients, minimize toxicity, and provide a cornerstone for PD studies to determine drug efficacy. This article reviews the application of PK parameters and the challenges in determining the PD activity of drugs, with a particular emphasis on exotic species. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics.

    PubMed

    Joyce, Alison P; Wang, Mengmeng; Lawrence-Henderson, Rosemary; Filliettaz, Cynthia; Leung, Sheldon S; Xu, Xin; O'Hara, Denise M

    2014-07-01

    The purpose of this study was to validate the approach of serial sampling from one mouse through ligand binding assay (LBA) quantification of dosed biotherapeutic in diluted whole blood to derive a pharmacokinetic (PK) profile. This investigation compared PK parameters obtained using serial and composite sampling methods following administration of human IgG monoclonal antibody. The serial sampling technique was established by collecting 10 μL of blood via tail vein at each time point following drug administration. Blood was immediately diluted into buffer followed by analyte quantitation using Gyrolab to derive plasma concentrations. Additional studies were conducted to understand matrix and sampling site effects on drug concentrations. The drug concentration profiles, irrespective of biological matrix, and PK parameters using both sampling methods were not significantly different. There were no sampling site effects on drug concentration measurements except that concentrations were slightly lower in sodium citrated plasma than other matrices. We recommend the application of mouse serial sampling, particularly with limiting drug supply or specialized animal models. Overall the efficiencies gained by serial sampling were 40-80% savings in study cost, animal usage, study length and drug conservation while inter-subject variability across PK parameters was less than 30%.

  15. Determination of quantitative retention-activity relationships between pharmacokinetic parameters and biological effectiveness fingerprints of Salvia miltiorrhiza constituents using biopartitioning and microemulsion high-performance liquid chromatography.

    PubMed

    Gao, Haoshi; Huang, Hongzhang; Zheng, Aini; Yu, Nuojun; Li, Ning

    2017-11-01

    In this study, we analyzed danshen (Salvia miltiorrhiza) constituents using biopartitioning and microemulsion high-performance liquid chromatography (MELC). The quantitative retention-activity relationships (QRARs) of the constituents were established to model their pharmacokinetic (PK) parameters and chromatographic retention data, and generate their biological effectiveness fingerprints. A high-performance liquid chromatography (HPLC) method was established to determine the abundance of the extracted danshen constituents, such as sodium danshensu, rosmarinic acid, salvianolic acid B, protocatechuic aldehyde, cryptotanshinone, and tanshinone IIA. And another HPLC protocol was established to determine the abundance of those constituents in rat plasma samples. An experimental model was built in Sprague Dawley (SD) rats, and calculated the corresponding PK parameterst with 3P97 software package. Thirty-five model drugs were selected to test the PK parameter prediction capacities of the various MELC systems and to optimize the chromatographic protocols. QRARs and generated PK fingerprints were established. The test included water/oil-soluble danshen constituents and the prediction capacity of the regression model was validated. The results showed that the model had good predictability. Copyright © 2017. Published by Elsevier B.V.

  16. Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    PubMed

    Germovsek, Eva; Barker, Charlotte I S; Sharland, Mike; Standing, Joseph F

    2018-04-19

    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies.

  17. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study.

    PubMed

    McCarthy, James S; Rückle, Thomas; Djeriou, Elhadj; Cantalloube, Cathy; Ter-Minassian, Daniel; Baker, Mark; O'Rourke, Peter; Griffin, Paul; Marquart, Louise; Hooft van Huijsduijnen, Rob; Möhrle, Jörg J

    2016-09-13

    Ferroquine (SSR97193) is a candidate anti-malarial currently undergoing clinical trials for malaria. To better understand its pharmacokinetic (PK) and pharmacodynamic (PD) parameters the compound was tested in the experimentally induced blood stage malaria infection model in volunteers. Male and non-pregnant female aged 18-50 years were screened for this phase II, controlled, single-centre clinical trial. Subjects were inoculated with ~1800 viable Plasmodium falciparum 3D7A-infected human erythrocytes, and treated with a single-dose of 800 mg ferroquine. Blood samples were taken at defined time-points to measure PK and PD parameters. The blood concentration of ferroquine and its active metabolite, SSR97213, were measured on dry blood spot samples by ultra-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Parasitaemia and emergence of gametocytes were monitored by quantitative PCR. Safety was determined by recording adverse events and monitoring clinical laboratory assessments during the course of the study. Eight subjects were enrolled into the study, inoculated with infected erythrocytes and treated with 800 mg ferroquine. Ferroquine was rapidly absorbed with maximal exposure after 4-8 and 4-12 h exposure for SSR97213. Non-compartmental PK analysis resulted in estimates for half-lives of 10.9 and 23.8 days for ferroquine and SSR97213, respectively. Parasite clearance as reported by parasite reduction ratio was 162.9 (95 % CI 141-188) corresponding to a parasite clearance half-life of 6.5 h (95 % CI: 6.4-6.7 h). PK/PD modelling resulted in a predicted minimal parasiticidal concentration of 20 ng/mL, and the single dosing tested in this study was predicted to maintain an exposure above this threshold for 454 h (37.8 days). Although ferroquine was overall well tolerated, transient elevated transaminase levels were observed in three subjects. Paracetamol was the only concomitant treatment among the two out of these three subjects that may have played a role in the elevated transaminases levels. No clinically significant ECG abnormalities were observed. The parameters and PK/PD model derived from this study pave the way to the further rational development of ferroquine as an anti-malarial partner drug. The safety of ferroquine has to be further explored in controlled human trials. Trial registration anzctr.org.au (registration number: ACTRN12613001040752), registered 18/09/2013.

  18. Pharmacokinetic and Pharmacodynamic Interaction of Boswellic Acids and Andrographolide with Glyburide in Diabetic Rats: Including Its PK/PD Modeling.

    PubMed

    Samala, Sujatha; Veeresham, Ciddi

    2016-03-01

    The effect of boswellic acids (BA) and andrographolide (AD) on the pharmacokinetics and pharmacodynamics of glyburide in normal as well as in streptozotocin-induced diabetic rats was studied. In normal and diabetic rats, the combination of glyburide with BA or AD increased significantly (p < 0.01) all the pharmacokinetic parameters, such as Cmax, AUC0-n, AUCtotal, t1/2, and mean residence time, and decreased the clearance, Vd, markedly as compared with the control group. In rat liver, microsomes BA and AD have shown CYP3A4 inhibitory activity significantly (p < 0.01), compared with the vehicle group. The increase in hypoglycemic action by concomitant administration of glyburide with BA or AD was more in diabetic rats than when the drugs were used singly and with the control group, which suggests the enhancement of glucose reduction capacity of glyburide in diabetic rats along with BA or AD. In PK/PD modeling of BA and AD with glyburide, the predicted PK and PD parameters are in line with the observed PK and PD parameters. The results revealed that BA and AD led to the PK/PD changes because of glyburide-increased bioavailability and because of the inhibition of CYP3A4 enzyme. In conclusion, add-on preparations containing BA or AD may increase the bioavailability of glyburide, and hence the dose should be monitored. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Quantitative Prediction of the Effect of CYP3A Inhibitors and Inducers on Venetoclax Pharmacokinetics Using a Physiologically Based Pharmacokinetic Model.

    PubMed

    Freise, Kevin J; Shebley, Mohamad; Salem, Ahmed Hamed

    2017-06-01

    The objectives of the analysis were to develop and verify a venetoclax physiologically based pharmacokinetic (PBPK) model to predict the effects of cytochrome P450 3A (CYP3A) inhibitors and inducers on the PK of venetoclax and inform dosing recommendations. A minimal PBPK model was developed based on prior in vitro and in vivo clinical data using a "middle-out" approach. The PBPK model was independently verified against clinical studies of the strong CYP3A inhibitor ketoconazole, the strong CYP3A inducer, multiple-dose rifampin, and the steady-state venetoclax PK in chronic lymphocytic leukemia (CLL) subjects by comparing predicted to observed ratios of the venetoclax maximum concentration (C max R) and area under the curve from time 0 to infinity (AUC ∞ R) from these studies. The verified PBPK model was then used to simulate the effects of different CYP3A inhibitors and inducers on the venetoclax PK. Comparison of the PBPK model predicted to the observed PK parameters indicated good agreement. Verification of the PBPK model demonstrated that the ratios of the predicted:observed C max R and AUC ∞ R of venetoclax were within 0.8- to 1.25-fold range for strong CYP3A inhibitors and inducers. Model simulations indicated no effect of weak CYP3A inhibitors or inducers on C max or AUC ∞ , while both moderate and strong CYP3A inducers were estimated to decrease venetoclax exposure. Moderate and strong CYP3A inhibitors were estimated to increase venetoclax AUC ∞ , by 100% to 390% and 480% to 680%, respectively. The recommended venetoclax dose reductions of at least 50% and 75% when coadministered with moderate and strong CYP3A inhibitors, respectively, maintain venetoclax exposures between therapeutic and maximally administered safe doses. © 2017, The American College of Clinical Pharmacology.

  20. Theory-based pharmacokinetics and pharmacodynamics of S- and R-warfarin and effects on international normalized ratio: influence of body size, composition and genotype in cardiac surgery patients.

    PubMed

    Xue, Ling; Holford, Nick; Ding, Xiao-Liang; Shen, Zhen-Ya; Huang, Chen-Rong; Zhang, Hua; Zhang, Jing-Jing; Guo, Zhe-Ning; Xie, Cheng; Zhou, Ling; Chen, Zhi-Yao; Liu, Lin-Sheng; Miao, Li-Yan

    2017-04-01

    The aims of this study are to apply a theory-based mechanistic model to describe the pharmacokinetics (PK) and pharmacodynamics (PD) of S- and R-warfarin. Clinical data were obtained from 264 patients. Total concentrations for S- and R-warfarin were measured by ultra-high performance liquid tandem mass spectrometry. Genotypes were measured using pyrosequencing. A sequential population PK parameter with data method was used to describe the international normalized ratio (INR) time course. Data were analyzed with NONMEM. Model evaluation was based on parameter plausibility and prediction-corrected visual predictive checks. Warfarin PK was described using a one-compartment model. CYP2C9 *1/*3 genotype had reduced clearance for S-warfarin, but increased clearance for R-warfarin. The in vitro parameters for the relationship between prothrombin complex activity (PCA) and INR were markedly different (A = 0.560, B = 0.386) from the theory-based values (A = 1, B = 0). There was a small difference between healthy subjects and patients. A sigmoid E max PD model inhibiting PCA synthesis as a function of S-warfarin concentration predicted INR. Small R-warfarin effects was described by competitive antagonism of S-warfarin inhibition. Patients with VKORC1 AA and CYP4F2 CC or CT genotypes had lower C50 for S-warfarin. A theory-based PKPD model describes warfarin concentrations and clinical response. Expected PK and PD genotype effects were confirmed. The role of predicted fat free mass with theory-based allometric scaling of PK parameters was identified. R-warfarin had a minor effect compared with S-warfarin on PCA synthesis. INR is predictable from 1/PCA in vivo. © 2016 The British Pharmacological Society.

  1. Theory‐based pharmacokinetics and pharmacodynamics of S‐ and R‐warfarin and effects on international normalized ratio: influence of body size, composition and genotype in cardiac surgery patients

    PubMed Central

    Xue, Ling; Holford, Nick; Ding, Xiao‐liang; Shen, Zhen‐ya; Huang, Chen‐rong; Zhang, Hua; Zhang, Jing‐jing; Guo, Zhe‐ning; Xie, Cheng; Zhou, Ling; Chen, Zhi‐yao; Liu, Lin‐sheng

    2016-01-01

    Aims The aims of this study are to apply a theory‐based mechanistic model to describe the pharmacokinetics (PK) and pharmacodynamics (PD) of S‐ and R‐warfarin. Methods Clinical data were obtained from 264 patients. Total concentrations for S‐ and R‐warfarin were measured by ultra‐high performance liquid tandem mass spectrometry. Genotypes were measured using pyrosequencing. A sequential population PK parameter with data method was used to describe the international normalized ratio (INR) time course. Data were analyzed with NONMEM. Model evaluation was based on parameter plausibility and prediction‐corrected visual predictive checks. Results Warfarin PK was described using a one‐compartment model. CYP2C9 *1/*3 genotype had reduced clearance for S‐warfarin, but increased clearance for R‐warfarin. The in vitro parameters for the relationship between prothrombin complex activity (PCA) and INR were markedly different (A = 0.560, B = 0.386) from the theory‐based values (A = 1, B = 0). There was a small difference between healthy subjects and patients. A sigmoid Emax PD model inhibiting PCA synthesis as a function of S‐warfarin concentration predicted INR. Small R‐warfarin effects was described by competitive antagonism of S‐warfarin inhibition. Patients with VKORC1 AA and CYP4F2 CC or CT genotypes had lower C50 for S‐warfarin. Conclusion A theory‐based PKPD model describes warfarin concentrations and clinical response. Expected PK and PD genotype effects were confirmed. The role of predicted fat free mass with theory‐based allometric scaling of PK parameters was identified. R‐warfarin had a minor effect compared with S‐warfarin on PCA synthesis. INR is predictable from 1/PCA in vivo. PMID:27763679

  2. Absence of ethnic differences in the pharmacokinetics of moxifloxacin, simvastatin, and meloxicam among three East Asian populations and Caucasians.

    PubMed

    Hasunuma, Tomoko; Tohkin, Masahiro; Kaniwa, Nahoko; Jang, In-Jin; Yimin, Cui; Kaneko, Masaru; Saito, Yoshiro; Takeuchi, Masahiro; Watanabe, Hiroshi; Yamazoe, Yasushi; Uyama, Yoshiaki; Kawai, Shinichi

    2016-06-01

    To examine whether strict control of clinical trial conditions could reduce apparent differences of pharmacokinetic (PK) parameters among ethnic groups. Open-label, single dose PK studies of moxifloxacin, simvastatin and meloxicam were conducted in healthy male subjects from three East Asian populations (Japanese, Chinese and Koreans) and one Caucasian population as a control. These three drugs were selected because differences in PK parameters have been reported, even though the backgrounds of these East Asian populations are similar. Moxifloxacin (400 mg) was administered orally to 20 subjects, and plasma and urine levels of moxifloxacin and its metabolite (M2) were measured. Simvastatin (20 mg) was given to 40 subjects, and plasma levels of simvastatin and simvastatin acid were measured. Meloxicam (7.5 mg) was given to 30 subjects and its plasma concentration was determined. Intrinsic factors (polymorphism of UGT1A1 for moxifloxacin, SLCO1B1 for simvastatin, and CYP2C9 for meloxicam) were also examined. AUCinf values for moxifloxacin, simvastatin and meloxicam showed no significant differences among the East Asian groups. Cmax values of moxifloxacin and simvastatin, but not meloxicam, showed significant differences. There were no significant differences of data for M2 or simvastatin acid. Genetic analysis identified significant differences in the frequencies of relevant polymorphisms, but these differences did not affect the PK parameters observed. Although there were some differences in PK parameters among the three East Asian groups, the present study performed under strictly controlled conditions did not reproduce the major ethnic differences observed in previous studies. © 2016 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  3. Absence of ethnic differences in the pharmacokinetics of moxifloxacin, simvastatin, and meloxicam among three East Asian populations and Caucasians

    PubMed Central

    Hasunuma, Tomoko; Tohkin, Masahiro; Kaniwa, Nahoko; Jang, In‐Jin; Yimin, Cui; Kaneko, Masaru; Saito, Yoshiro; Takeuchi, Masahiro; Watanabe, Hiroshi; Yamazoe, Yasushi; Uyama, Yoshiaki

    2016-01-01

    Aim To examine whether strict control of clinical trial conditions could reduce apparent differences of pharmacokinetic (PK) parameters among ethnic groups. Methods Open‐label, single dose PK studies of moxifloxacin, simvastatin and meloxicam were conducted in healthy male subjects from three East Asian populations (Japanese, Chinese and Koreans) and one Caucasian population as a control. These three drugs were selected because differences in PK parameters have been reported, even though the backgrounds of these East Asian populations are similar. Moxifloxacin (400 mg) was administered orally to 20 subjects, and plasma and urine levels of moxifloxacin and its metabolite (M2) were measured. Simvastatin (20 mg) was given to 40 subjects, and plasma levels of simvastatin and simvastatin acid were measured. Meloxicam (7.5 mg) was given to 30 subjects and its plasma concentration was determined. Intrinsic factors (polymorphism of UGT1A1 for moxifloxacin, SLCO1B1 for simvastatin, and CYP2C9 for meloxicam) were also examined. Results AUCinf values for moxifloxacin, simvastatin and meloxicam showed no significant differences among the East Asian groups. Cmax values of moxifloxacin and simvastatin, but not meloxicam, showed significant differences. There were no significant differences of data for M2 or simvastatin acid. Genetic analysis identified significant differences in the frequencies of relevant polymorphisms, but these differences did not affect the PK parameters observed. Conclusions Although there were some differences in PK parameters among the three East Asian groups, the present study performed under strictly controlled conditions did not reproduce the major ethnic differences observed in previous studies. PMID:26774055

  4. Stochastic nonlinear mixed effects: a metformin case study.

    PubMed

    Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien

    2016-02-01

    In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.

  5. Single‐dose pharmacokinetics of co‐crystal of tramadol–celecoxib: Results of a four‐way randomized open‐label phase I clinical trial in healthy subjects

    PubMed Central

    Lahjou, Mounia; Vaqué, Anna; Sust, Mariano; Encabo, Mercedes; Soler, Lluis; Sans, Artur; Sicard, Eric; Gascón, Neus; Encina, Gregorio; Plata‐Salamán, Carlos

    2017-01-01

    Aims Co‐crystal of tramadol–celecoxib (CTC) is a novel co‐crystal molecule containing two active pharmaceutical ingredients under development by Esteve (E‐58425) and Mundipharma Research (MR308). This Phase I study compared single‐dose pharmacokinetics (PK) of CTC with those of the individual reference products [immediate‐release (IR) tramadol and celecoxib] alone and in open combination. Methods Healthy adults aged 18–55 years were orally administered four treatments under fasted conditions (separated by 7‐day wash‐out period): 200 mg IR CTC (equivalent to 88 mg tramadol and 112 mg celecoxib; Treatment 1); 100 mg IR tramadol (Treatment 2); 100 mg celecoxib (Treatment 3); and 100 mg IR tramadol and 100 mg celecoxib (Treatment 4). Treatment sequence was assigned using computer‐generated randomization. PK parameters were calculated using noncompartmental analysis with parameters for CTC adjusted according to reference product dose (100 mg). Results Thirty‐six subjects (28 male, mean age 36 years) participated. Tramadol PK parameters for Treatments‐1, –2 and –4, respectively, were 263, 346 and 349 ng ml–1 (mean maximum plasma concentration); 3039, 2979 and 3119 ng h ml–1 (mean cumulative area under the plasma concentration–time curve); and 2.7, 1.8 and 1.8 h (median time to maximum plasma concentration). For Treatments 1, 3 and 4, the respective celecoxib PK parameters were 313, 449 and 284 ng ml–1; 2183, 3093 and 2856 ng h ml–1; and 1.5, 2.3 and 3.0 h. No unexpected adverse events were reported. Conclusion PK parameters of each API in CTC were modified by co‐crystallization compared with marketed formulations of tramadol, celecoxib, and their open combination. PMID:28810061

  6. Single-dose pharmacokinetics of co-crystal of tramadol-celecoxib: Results of a four-way randomized open-label phase I clinical trial in healthy subjects.

    PubMed

    Videla, Sebastián; Lahjou, Mounia; Vaqué, Anna; Sust, Mariano; Encabo, Mercedes; Soler, Lluis; Sans, Artur; Sicard, Eric; Gascón, Neus; Encina, Gregorio; Plata-Salamán, Carlos

    2017-12-01

    Co-crystal of tramadol-celecoxib (CTC) is a novel co-crystal molecule containing two active pharmaceutical ingredients under development by Esteve (E-58425) and Mundipharma Research (MR308). This Phase I study compared single-dose pharmacokinetics (PK) of CTC with those of the individual reference products [immediate-release (IR) tramadol and celecoxib] alone and in open combination. Healthy adults aged 18-55 years were orally administered four treatments under fasted conditions (separated by 7-day wash-out period): 200 mg IR CTC (equivalent to 88 mg tramadol and 112 mg celecoxib; Treatment 1); 100 mg IR tramadol (Treatment 2); 100 mg celecoxib (Treatment 3); and 100 mg IR tramadol and 100 mg celecoxib (Treatment 4). Treatment sequence was assigned using computer-generated randomization. PK parameters were calculated using noncompartmental analysis with parameters for CTC adjusted according to reference product dose (100 mg). Thirty-six subjects (28 male, mean age 36 years) participated. Tramadol PK parameters for Treatments-1, -2 and -4, respectively, were 263, 346 and 349 ng ml -1 (mean maximum plasma concentration); 3039, 2979 and 3119 ng h ml -1 (mean cumulative area under the plasma concentration-time curve); and 2.7, 1.8 and 1.8 h (median time to maximum plasma concentration). For Treatments 1, 3 and 4, the respective celecoxib PK parameters were 313, 449 and 284 ng ml -1 ; 2183, 3093 and 2856 ng h ml -1 ; and 1.5, 2.3 and 3.0 h. No unexpected adverse events were reported. PK parameters of each API in CTC were modified by co-crystallization compared with marketed formulations of tramadol, celecoxib, and their open combination. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  7. General Analytical Procedure for Determination of Acidity Parameters of Weak Acids and Bases

    PubMed Central

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied. PMID:25692072

  8. General analytical procedure for determination of acidity parameters of weak acids and bases.

    PubMed

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied.

  9. Population pharmacokinetic/pharmacodynamic (PK/PD) modelling of the hypothalamic–pituitary–gonadal axis following treatment with GnRH analogues

    PubMed Central

    Tornøe, Christoffer W; Agersø, Henrik; Senderovitz, Thomas; Nielsen, Henrik A; Madsen, Henrik; Karlsson, Mats O; Jonsson, E Niclas

    2007-01-01

    Aims To develop a population pharmacokinetic/pharmacodynamic (PK/PD) model of the hypothalamic–pituitary–gonadal (HPG) axis describing the changes in luteinizing hormone (LH) and testosterone concentrations following treatment with the gonadotropin-releasing hormone (GnRH) agonist triptorelin and the GnRH receptor blocker degarelix. Methods Fifty-eight healthy subjects received single subcutaneous or intramuscular injections of 3.75 mg of triptorelin and 170 prostate cancer patients received multiple subcutaneous doses of degarelix of between 120 and 320 mg. All subjects were pooled for the population PK/PD data analysis. A systematic population PK/PD model-building framework using stochastic differential equations was applied to the data to identify nonlinear dynamic dependencies and to deconvolve the functional feedback interactions of the HPG axis. Results In our final PK/PD model of the HPG axis, the half-life of LH was estimated to be 1.3 h and that of testosterone 7.69 h, which corresponds well with literature values. The estimated potency of LH with respect to testosterone secretion was 5.18 IU l−1, with a maximal stimulation of 77.5 times basal testosterone production. The estimated maximal triptorelin stimulation of the basal LH pool release was 1330 times above basal concentrations, with a potency of 0.047 ng ml−1. The LH pool release was decreased by a maximum of 94.2% by degarelix with an estimated potency of 1.49 ng ml−1. Conclusions Our model of the HPG axis was able to account for the different dynamic responses observed after administration of both GnRH agonists and GnRH receptor blockers, suggesting that the model adequately characterizes the underlying physiology of the endocrine system. PMID:17096678

  10. Pharmacokinetics and pharmacodynamics of levofloxacin injection in healthy Chinese volunteers and dosing regimen optimization

    PubMed Central

    Cao, G; Zhang, J; Wu, X; Yu, J; Chen, Y; Ye, X; Zhu, D; Zhang, Y; Guo, B; Shi, Y

    2013-01-01

    What is known and objective The pharmacokinetics (PK) and pharmacodynamics (PD) of levofloxacin were investigated following administration of levofloxacin injection in healthy Chinese volunteers for optimizing dosing regimen. Methods The PK study included single-dose (750 mg/150 mL) and multiple-dose (750 mg/150 mL once daily for 7 days) phases. The concentration of levofloxacin in blood and urine was determined using HPLC method. Both non-compartmental and compartmental analyses were performed to estimate PK parameters. Taking fCmax/MIC ≥5 and fAUC24 h/MIC ≥30 as a target, the cumulative fraction of response (CFR) of levofloxacin 750 mg for treatment of community-acquired pneumonia (CAP) was calculated using Monte Carlo simulation. The probability of target attainment (PTA) of levofloxacin at various minimal inhibitory concentrations (MICs) was also evaluated. Results and discussion The results of PK study showed that the Cmax and AUC0–∞ of levofloxacin were 14·94 μg/mL and 80·14 μg h/mL following single-dose infusion of levofloxacin. The half-life and average cumulative urine excretion ratio within 72 h post-dosing were 7·75 h and 86·95%, respectively. The mean Css,max, Css,min and AUC0–τ of levofloxacin at steady state following multiple doses were 13·31 μg/mL, 0·031 μg/mL and 103·7 μg h/mL, respectively. The accumulation coefficient was 1·22. PK/PD analysis revealed that the CFR value of levofloxacin 750-mg regimen against Streptococcus pneumoniae was 96·2% and 95·4%, respectively, in terms of fCmax/MIC and fAUC/MIC targets. What is new and conclusion The regimen of 750-mg levofloxacin once daily provides a satisfactory PK/PD profile against the main pathogenic bacteria of CAP, which implies promising clinical and bacteriological efficacy for patients with CAP. A large-scale clinical study is warranted to confirm these results. PMID:23701411

  11. Pharmacokinetics and pharmacodynamics of levofloxacin injection in healthy Chinese volunteers and dosing regimen optimization.

    PubMed

    Cao, G; Zhang, J; Wu, X; Yu, J; Chen, Y; Ye, X; Zhu, D; Zhang, Y; Guo, B; Shi, Y

    2013-10-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of levofloxacin were investigated following administration of levofloxacin injection in healthy Chinese volunteers for optimizing dosing regimen. The PK study included single-dose (750 mg/150 mL) and multiple-dose (750 mg/150 mL once daily for 7 days) phases. The concentration of levofloxacin in blood and urine was determined using HPLC method. Both non-compartmental and compartmental analyses were performed to estimate PK parameters. Taking fC(max) /MIC ≥5 and fAUC(24 h) /MIC ≥30 as a target, the cumulative fraction of response (CFR) of levofloxacin 750 mg for treatment of community-acquired pneumonia (CAP) was calculated using Monte Carlo simulation. The probability of target attainment (PTA) of levofloxacin at various minimal inhibitory concentrations (MICs) was also evaluated. The results of PK study showed that the C(max) and AUC(0-∞) of levofloxacin were 14·94 μg/mL and 80·14 μg h/mL following single-dose infusion of levofloxacin. The half-life and average cumulative urine excretion ratio within 72 h post-dosing were 7·75 h and 86·95%, respectively. The mean C(ss,max), C(ss,min) and AUC(0-τ) of levofloxacin at steady state following multiple doses were 13·31 μg/mL, 0·031 μg/mL and 103·7 μg h/mL, respectively. The accumulation coefficient was 1·22. PK/PD analysis revealed that the CFR value of levofloxacin 750-mg regimen against Streptococcus pneumoniae was 96·2% and 95·4%, respectively, in terms of fC(max) /MIC and fAUC/MIC targets. The regimen of 750-mg levofloxacin once daily provides a satisfactory PK/PD profile against the main pathogenic bacteria of CAP, which implies promising clinical and bacteriological efficacy for patients with CAP. A large-scale clinical study is warranted to confirm these results. © 2013 John Wiley & Sons Ltd.

  12. Study of the acid-base properties of mineral soil horizons using pK spectroscopy

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.

    2007-11-01

    The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.

  13. MODELING THE NONLINEAR CLUSTERING IN MODIFIED GRAVITY MODELS. I. A FITTING FORMULA FOR THE MATTER POWER SPECTRUM OF f(R) GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gong-Bo, E-mail: gongbo@icosmology.info; Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX

    2014-04-01

    Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivitymore » study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.« less

  14. 78 FR 38308 - PK Ventures, Inc.; North Carolina; Notice Soliciting Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 4093-031] PK Ventures, Inc... at normal pool elevation of 315 feet mean sea level and a gross storage capacity of 100 acre-feet; and (5) appurtenant facilities. The project operates run-of-river and generates and estimated average...

  15. 3D gut-liver chip with a PK model for prediction of first-pass metabolism.

    PubMed

    Lee, Dong Wook; Ha, Sang Keun; Choi, Inwook; Sung, Jong Hwan

    2017-11-07

    Accurate prediction of first-pass metabolism is essential for improving the time and cost efficiency of drug development process. Here, we have developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. This chip consists of two separate layers for gut (Caco-2) and liver (HepG2) cell lines, where cells can be co-cultured in both 2D and 3D forms. Both cell lines were maintained well in the chip, verified by confocal microscopy and measurement of hepatic enzyme activity. We investigated the PK profile of paracetamol in the chip, and corresponding PK model was constructed, which was used to predict PK profiles for different chip design parameters. Simulation results implied that a larger absorption surface area and a higher metabolic capacity are required to reproduce the in vivo PK profile of paracetamol more accurately. Our study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.

  16. Similar pharmacokinetics and pharmacodynamics of rapid-acting insulin lispro products SAR342434 and US- and EU-approved Humalog in subjects with type 1 diabetes.

    PubMed

    Kapitza, Christoph; Nowotny, Irene; Lehmann, Anne; Bergmann, Karin; Rotthaeuser, Baerbel; Nosek, Leszek; Becker, Reinhard H A

    2017-05-01

    To compare the pharmacokinetics (PK) and pharmacodynamics (PD) of 3 rapid-acting insulin lispro products: SAR342434 solution, United States (US)-approved Humalog and European Union (EU)-approved Humalog. In a single-centre, randomized, double-blind, 3-treatment, 3-period, 6-sequence, crossover, euglycaemic clamp study (NCT02273258), adult male subjects with type 1 diabetes were randomized to receive 0.3 U/kg of SAR342434 solution, US-approved and EU-approved Humalog under fasted conditions. PK and PD (glucose infusion rate [GIR]) were assessed up to 12 hours. Of the 30 subjects randomized, 28 completed all 3 treatment periods. Mean concentration and GIR vs time profiles were similar for all 3 products. Exposure (INS-C max , INS-AUC last and INS-AUC) and activity (GIR max and GIR-AUC 0-12h ) of SAR342434, US-approved and EU-approved Humalog were similar in all comparisons (point estimates of treatment ratios, 0.95-1.03 for PK parameters and 1.00-1.07 for PD parameters), with 90% confidence intervals for the ratios of geometric least squares means within the pre-specified bioequivalence limit (0.80-1.25) and no significant differences in time-related parameters. Within-subject variability of exposure and activity was low across the 3 clamps, indicating high day-to-day reproducibility in clamp performance, irrespective of the individual product. Adverse events were similar for all 3 products. No safety concerns were noted in vital signs or in laboratory and electrocardiogram data. The results of this study demonstrate similarity in insulin lispro exposure profiles and PD activity of SAR342434 solution to both US- and EU-approved Humalog, and between both US- and EU-approved Humalog, supporting the use of SAR342434 solution for injection as a follow-on product. © 2016 John Wiley & Sons Ltd.

  17. Application of a Pharmacokinetic Model of Metformin Clearance in a Population with Acute Myeloid Leukemia.

    PubMed

    Ceacareanu, Alice C; Brown, Geoffrey W; Moussa, Hoda A; Wintrob, Zachary A P

    2018-01-01

    We aimed to estimate the metformin-associated lactic acidosis (MALA) risk by assessing retrospectively the renal clearance variability and applying a pharmacokinetic (PK) model of metformin clearance in a population diagnosed with acute myeloid leukemia (AML) and diabetes mellitus (DM). All adults with preexisting DM and newly diagnosed AML at Roswell Park Cancer Institute were reviewed (January 2003-December 2010, n = 78). Creatinine clearance (CrCl) and total body weight distributions were used in a two-compartment PK model adapted for multiple dosing and modified to account for actual intra- and inter-individual variability. Based on this renal function variability evidence, 1000 PK profiles were simulated for multiple metformin regimens with the resultant PK profiles being assessed for safe CrCl thresholds. Metformin 500 mg up to three times daily was safe for all simulated profiles with CrCl ≥25 mL/min. Furthermore, the estimated overall MALA risk was below 10%, remaining under 5% for 500 mg given once daily. CrCl ≥65.25 mL/min was safe for administration in any of the tested regimens (500 mg or 850 mg up to three times daily or 1000 mg up to twice daily). PK simulation-guided prescribing can maximize metformin's beneficial effects on cancer outcomes while minimizing MALA risk.

  18. The pharmacokinetics of propofol in ICU patients undergoing long-term sedation.

    PubMed

    Smuszkiewicz, Piotr; Wiczling, Paweł; Przybyłowski, Krzysztof; Borsuk, Agnieszka; Trojanowska, Iwona; Paterska, Marta; Matysiak, Jan; Kokot, Zenon; Grześkowiak, Edmund; Bienert, Agnieszka

    2016-11-01

    The aim of this study was to characterize the pharmacokinetics (PK) of propofol in ICU patients undergoing long-term sedation and to assess the influence of routinely collected covariates on the PK parameters. Propofol concentration-time profiles were collected from 29 patients. Non-linear mixed-effects modelling in NONMEM 7.2 was used to analyse the observed data. The propofol pharmacokinetics was best described with a three-compartment disposition model. Non-parametric bootstrap and a visual predictive check were used to evaluate the adequacy of the developed model to describe the observations. The typical value of the propofol clearance (1.46 l/min) approximated the hepatic blood flow. The volume of distribution at steady state was high and was equal to 955.1 l, which is consistent with other studies involving propofol in ICU patients. There was no statistically significant covariate relationship between PK parameters and opioid type, SOFA score on the day of admission, APACHE II, predicted death rate, reason for ICU admission (sepsis, trauma or surgery), gender, body weight, age, infusion duration and C-reactive protein concentration. The population PK model was developed successfully to describe the time-course of propofol concentration in ICU patients undergoing prolonged sedation. Despite a very heterogeneous group of patients, consistent PK profiles were observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Population pharmacokinetic study of isepamicin with intensive care unit patients.

    PubMed Central

    Tod, M; Padoin, C; Minozzi, C; Cougnard, J; Petitjean, O

    1996-01-01

    The pharmacokinetics (PK) of isepamicin, a new aminoglycoside, were studied in 85 intensive care unit (ICU) patients and were compared with those observed in 10 healthy volunteers. A parametric method based on a nonlinear mixed-effect model was used to assess population PK. Isepamicin was given intravenously over 0.5 h at dosages of 15 mg/kg once daily or 7.5 mg/kg twice daily. The data were fitted to a bicompartmental open model. Compared with healthy volunteers, the mean values of the PK parameters were profoundly modified in ICU patients: elimination clearance was reduced by 48%, the volume of distribution in the central compartment (Vc) was increased by 50%, the peripheral volume of distribution was 70% higher, the distribution clearance was 146% lower, and the elimination half-life was ca. 3.4 times higher. The interindividual variability in PK parameters was about 50% in ICU patients. Five covariates (body weight [BW], simplified acute physiology score [SAPS], temperature, serum creatinine level, and creatinine clearance [CLCR]) were tentatively correlated with PK parameters by multivariate linear regression analysis with stepwise addition and deletion. The variability of isepamicin clearance was explained by three covariates (BW, SAPS, and CLCR), that of Vc was explained by BW and SAPS, and that of the elimination half-life was explained by CLCR and SAPS. Simulation of the concentration-versus-time profile for 500 individuals showed that the mean peak (0.75 h) concentration was 18% lower in ICU patients than in healthy volunteers and that the range in ICU patients was very broad (28.4 to 95.4 mg/liter). Therefore, monitoring of the isepamicin concentration is in ICU patients is mandatory. PMID:8849264

  20. Introduction: the goals of antimicrobial therapy.

    PubMed

    Song, Jae-Hoon

    2003-03-01

    Antimicrobial agents are generally evaluated in preclinical studies assessing in vitro activity, animal models demonstrating in vivo bacteriologic efficacy, and clinical trials primarily investigating safety and clinical efficacy. However, large sample sizes are required to detect any differences in outcomes between antimicrobials in clinical trials, and, generally, studies are powered to show only clinical equivalence. In addition, diagnosis is often based on clinical symptoms, rather than microbiological evidence of bacterial infection, and the patients most likely to have resistant pathogens are often excluded. Clinical efficacy can be achieved in some bacterial infections in which antimicrobials are suboptimal or even not prescribed. However, bacterial eradication maximizes clinical efficacy and may also reduce the development and spread of resistant organisms. The goal of antimicrobial therapy is, therefore, to eradicate bacteria at the site of infection. Bacterial eradication is not usually assessed as a primary endpoint within the limits of currently recommended clinical trial design. However, pharmacokinetic (PK) (serum concentration profiles, penetration to site of infection) and pharmacodynamic (PD) (susceptibility, concentration- versus time-dependent killing, post-antimicrobial effects) criteria can be used to predict bacteriologic efficacy. PK/PD predictions should be confirmed during all phases of antimicrobial development and throughout clinical use in response to changing patterns of resistance. A clear rationale for dose recommendations can be determined preclinically based on PK/PD parameters, and correlated with efficacy, safety and resistance endpoints in clinical trials. The duration of treatment and dose should be the shortest that will reliably eradicate the pathogen(s), and that is safe and well tolerated. Currently available agents vary significantly in their ability to achieve PK/PD parameters necessary for bacteriologic eradication. Recommendations for appropriate antimicrobial therapy should be based on PK/PD parameters, with the aim of achieving the maximum potential for eradication of both existing and emerging resistant pathogens.

  1. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Taheri, Saeid; Shah, N Jon; Rosenberg, Gary A

    2016-09-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23-85years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PKs of Gd-DTPA from 58 subjects (28-80years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025mmol/kg) had a half-life of 37.3±6.6min, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1mmol/kg). The area under the curve (AUC) for 0.025mmol/kg was 3.37±0.46, which was a quarter of AUC of 0.1mmol/kg. In population analysis, a dose of 0.025mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025mmol/kg Gd-DTPA enabled us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Genetic Diversity, Natural Selection and Haplotype Grouping of Plasmodium knowlesi Gamma Protein Region II (PkγRII): Comparison with the Duffy Binding Protein (PkDBPαRII)

    PubMed Central

    Fong, Mun Yik; Rashdi, Sarah A. A.; Yusof, Ruhani; Lau, Yee Ling

    2016-01-01

    Background Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII. Methods Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright’s FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3). Results A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes, and high inter-population genetic differentiation (FST index). The main differences between PkγRII and PkDBPαRII include length polymorphism and no departure from neutrality (as measured by Tajima’s D statistics) in the PkγRII. Conclusion Despite the biological difference between PkγRII and PkDBPαRII, both generally have similar genetic diversity level, natural selection, geographical haplotype clustering and inter-population genetic differentiation index. PMID:27195821

  3. Systematic Evaluation of Wajima Superposition (Steady-State Concentration to Mean Residence Time) in the Estimation of Human Intravenous Pharmacokinetic Profile.

    PubMed

    Lombardo, Franco; Berellini, Giuliano; Labonte, Laura R; Liang, Guiqing; Kim, Sean

    2016-03-01

    We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction. Copyright © 2016. Published by Elsevier Inc.

  4. Oseltamivir Population Pharmacokinetics in the Ferret: Model Application for Pharmacokinetic/Pharmacodynamic Study Design

    PubMed Central

    Reddy, Micaela B.; Yang, Kuo-Hsiung; Rao, Gauri; Rayner, Craig R.; Nie, Jing; Pamulapati, Chandrasena; Marathe, Bindumadhav M.; Forrest, Alan; Govorkova, Elena A.

    2015-01-01

    The ferret is a suitable small animal model for preclinical evaluation of efficacy of antiviral drugs against various influenza strains, including highly pathogenic H5N1 viruses. Rigorous pharmacokinetics/pharmacodynamics (PK/PD) assessment of ferret data has not been conducted, perhaps due to insufficient information on oseltamivir PK. Here, based on PK data from several studies on both uninfected and influenza-infected groups (i.e., with influenza A viruses of H5N1 and H3N2 subtypes and an influenza B virus) and several types of anesthesia we developed a population PK model for the active compound oseltamivir carboxylate (OC) in the ferret. The ferret OC population PK model incorporated delayed first-order input, two-compartment distribution, and first-order elimination to successfully describe OC PK. Influenza infection did not affect model parameters, but anesthesia did. The conclusion that OC PK was not influenced by influenza infection must be viewed with caution because the influenza infections in the studies included here resulted in mild clinical symptoms in terms of temperature, body weight, and activity scores. Monte Carlo simulations were used to determine that administration of a 5.08 mg/kg dose of oseltamivir phosphate to ferret every 12 h for 5 days results in the same median OC area under the plasma concentration-time curve 0–12 h (i.e., 3220 mg h/mL) as that observed in humans during steady state at the approved dose of 75 mg twice daily for 5 days. Modeling indicated that PK variability for OC in the ferret model is high, and can be affected by anesthesia. Therefore, for proper interpretation of PK/PD data, sparse PK sampling to allow the OC PK determination in individual animals is important. Another consideration in appropriate design of PK/PD studies is achieving an influenza infection with pronounced clinical symptoms and efficient virus replication, which will allow adequate evaluation of drug effects. PMID:26460484

  5. Comparisons of the pharmacokinetics and tolerability of fixed-dose combinations of amlodipine besylate/losartan and amlodipine camsylate/losartan in healthy subjects: a randomized, open-label, single-dose, two-period, two-sequence crossover study.

    PubMed

    Choi, YoonJung; Lee, SeungHwan; Cho, Sang-Min; Kang, Won-Ho; Nam, Kyu-Yeol; Jang, In-Jin; Yu, Kyung-Sang

    2016-01-01

    A fixed-dose combination (FDC) of amlodipine and losartan has been used to reduce blood pressure in patients whose hypertension is not sufficiently controlled with either drug alone. The aim of this study was to evaluate the pharmacokinetic (PK) characteristics and tolerability of an FDC of 6.94 mg amlodipine besylate (5 mg as amlodipine)/50 mg losartan potassium compared to an FDC of 5 mg amlodipine camsylate/50 mg losartan potassium in healthy subjects. A randomized, open-label, single-dose, two-period, two-sequence crossover study was conducted on 46 healthy male subjects. Blood concentrations were measured by liquid chromatography-tandem mass spectrometry. Blood samples were collected up to 144 hours post dose for each period. PK parameters were calculated in each treatment group using a noncompartmental method. The 90% confidence intervals (CIs) of the geometric mean ratios of the two treatments for the maximum plasma concentration ( C max ) and the area under the concentration curve from time zero to the last quantifiable time point (AUC 0-t ) were estimated. Tolerability assessments were performed for all subjects who received the drug at least once. The PK profiles of the two treatments were similar. For amlodipine, the geometric mean ratios (90% CIs) of amlodipine besylate to amlodipine camsylate for the C max and AUC 0-t were 0.98 (0.94-1.01) and 0.97 (0.93-1.01), respectively. The corresponding values for losartan were 0.91 (0.81-1.02) and 1.05 (0.98-1.12), respectively. The incidence of adverse events was not significantly different between the two treatments, and both were well tolerated. An FDC of 6.94 mg amlodipine besylate (5 mg as amlodipine)/50 mg losartan potassium produced similar results to an FDC of 5 mg amlodipine camsylate/50 mg losartan potassium treatment with respect to the PK parameters of amlodipine and losartan based on C max and AUC 0-t values. The amlodipine besylate/losartan potassium combination was well tolerated by healthy male subjects.

  6. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB

    PubMed Central

    Vaddady, Pavan K; Lee, Richard E; Meibohm, Bernd

    2011-01-01

    For rapid anti-tuberculosis (TB) drug development in vitro pharmacokinetic/pharmacodynamic (PK/PD) models are useful in evaluating the direct interaction between the drug and the bacteria, thereby guiding the selection of candidate compounds and the optimization of their dosing regimens. Utilizing in vivo drug-clearance profiles from animal and/or human studies and simulating them in an in vitro PK/PD model allows the in-depth characterization of antibiotic activity of new and existing antibacterials by generating time–kill data. These data capture the dynamic interplay between mycobacterial growth and changing drug concentration as encountered during prolonged drug therapy. This review focuses on important PK/PD parameters relevant to anti-TB drug development, provides an overview of in vitro PK/PD models used to evaluate the efficacy of agents against mycobacteria and discusses the related mathematical modeling approaches of time–kill data. Overall, it provides an introduction to in vitro PK/PD models and their application as critical tools in evaluating anti-TB drugs. PMID:21359155

  7. The Tofts model in frequency domain: fast and robust determination of pharmacokinetic maps for dynamic contrast enhancement MRI

    NASA Astrophysics Data System (ADS)

    Vajuvalli, Nithin N.; Chikkemenahally, Dharmendra Kumar K.; Nayak, Krupa N.; Bhosale, Manoj G.; Geethanath, Sairam

    2016-12-01

    Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) is a well-established method for non-invasive detection and therapeutic monitoring of pathologies through administration of intravenous contrast agent. Quantification of pharmacokinetic (PK) maps can be achieved through application of compartmental models relevant to the pathophysiology of the tissue under interrogation. The determination of PK parameters involves fitting of time-concentration data to these models. In this work, the Tofts model in frequency domain (TM-FD) is applied to a weakly vascularized tissue such as the breast. It is derived as a convolution-free model from the conventional Tofts model in the time domain (TM-TD). This reduces the dimensionality of the curve-fitting problem from two to one. The approaches of TM-FD and TM-TD were applied to two kinds of in silico phantoms and six in vivo breast DCE data sets with and without the addition of noise. The results showed that computational time taken to estimate PK maps using TM-FD was 16-25% less than with TM-TD. Normalized root mean square error (NRMSE) calculation and Pearson correlation analyses were performed to validate robustness and accuracy of the TM-FD and TM-TD approaches. These compared with ground truth values in the case of phantom studies for four different temporal resolutions. Results showed that NRMSE values for TM-FD were significantly lower than those of TM-TD as validated by a paired t-test along with reduced computational time. This approach therefore enables online evaluation of PK maps by radiologists in a clinical setting, aiding in the evaluation of 3D and/or increased coverage of the tissue of interest.

  8. Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model†

    PubMed Central

    Wong, O. Andrea; Hansen, Ryan J.; Ni, Thomas W.; Heinecke, Christine L.; Compel, W. Scott; Gustafson, Daniel L.

    2013-01-01

    The absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) properties of inorganic nanoparticles with hydrodynamic diameters between 2 and 20 nm are presently unpredictable. It is unclear whether unpredictable in vivo properties and effects arise from a subset of molecules in a nanomaterials preparation, or if the ADME/PK properties are ensemble properties of an entire preparation. Here we characterize the ADME/PK properties of atomically precise preparations of ligand protected gold nanoclusters in a murine model system. We constructed atomistic models and tested in vivo properties for five well defined compounds, based on crystallographically resolved Au25(SR)18 and Au102(SR)44 nanoclusters with different (SR) ligand shells. To rationalize unexpected distribution and excretion properties observed for several clusters in this study and others, we defined a set of atomistic structure–activity relationships (SAR) for nanoparticles, which includes previously investigated parameters such as particle hydrodynamic diameter and net charge, and new parameters such as hydrophobic surface area and surface charge density. Overall we find that small changes in particle formulation can provoke dramatic yet potentially predictable changes in ADME/PK. PMID:24057086

  9. Pharmacokinetic properties of IB1001, an investigational recombinant factor IX, in patients with haemophilia B: repeat pharmacokinetic evaluation and sialylation analysis.

    PubMed

    Martinowitz, U; Shapiro, A; Quon, D V; Escobar, M; Kempton, C; Collins, P W; Chowdary, P; Makris, M; Mannucci, P M; Morfini, M; Valentino, L A; Gomperts, E; Lee, M

    2012-11-01

    IB1001 trenacog alfa is an investigational recombinant factor IX (FIX) for the treatment and prevention of bleeding in individuals with haemophilia B. To compare the pharmacokinetics (PK) of IB1001 with nonacog alfa in individuals with haemophilia B and to assess the relationship between sialylation and PK of IB1001 (NCT00768287). A randomized, double-blind, non-inferiority, cross-over study conducted in participants aged ≥ 12 years weighing ≥ 40 kg, with severe or moderately severe haemophilia B (FIX activity ≤ 2 IU dL (-1) ). PK parameters were derived using observed FIX concentration levels and actual PK sampling times, and repeated in a subset of participants who had received IB1001 prophylaxis for 4-18 months. A retrospective analysis was conducted in subgroups according to the sialylation levels of IB1001 (50.8, 57.8-59.0%, or 71.7%). In the 32 adolescent and adult males evaluated, there were no clinically meaningful differences in PK parameters between those receiving IB1001 75 IU kg(-1) or nonacog alfa. The lower limit of the one-sided 95% confidence interval for the ratio of AUC(0-t) and AUC(0-∞) (IB1001/nonacog alfa) was 0.90, establishing non-inferiority. Terminal phase half-lives were similar (29.7 ± 18.2 h for IB1001 and 33.4 ± 21.2 h for nonacog alfa). The PK results were stable for up to 18 months of IB1001 exposure; the impact of sialylation levels was not clinically meaningful. There were no clinically meaningful PK differences between IB1001 and nonacog alfa. IB1001 was well tolerated and without safety concerns. The non-inferiority of IB1001 to nonacog alfa supports IB1001 becoming a useful alternative recombinant agent for the management of haemophilia B. © 2012 Blackwell Publishing Ltd.

  10. Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis

    PubMed Central

    Pasipanodya, Jotam G.; Denti, Paolo; Sirgel, Frederick; Lesosky, Maia; Gumbo, Tawanda; Meintjes, Graeme; McIlleron, Helen; Wilkinson, Robert J.

    2017-01-01

    Abstract Background. There is scant evidence to support target drug exposures for optimal tuberculosis outcomes. We therefore assessed whether pharmacokinetic/pharmacodynamic (PK/PD) parameters could predict 2-month culture conversion. Methods. One hundred patients with pulmonary tuberculosis (65% human immunodeficiency virus coinfected) were intensively sampled to determine rifampicin, isoniazid, and pyrazinamide plasma concentrations after 7–8 weeks of therapy, and PK parameters determined using nonlinear mixed-effects models. Detailed clinical data and sputum for culture were collected at baseline, 2 months, and 5–6 months. Minimum inhibitory concentrations (MICs) were determined on baseline isolates. Multivariate logistic regression and the assumption-free multivariate adaptive regression splines (MARS) were used to identify clinical and PK/PD predictors of 2-month culture conversion. Potential PK/PD predictors included 0- to 24-hour area under the curve (AUC0-24), maximum concentration (Cmax), AUC0-24/MIC, Cmax/MIC, and percentage of time that concentrations persisted above the MIC (%TMIC). Results. Twenty-six percent of patients had Cmax of rifampicin <8 mg/L, pyrazinamide <35 mg/L, and isoniazid <3 mg/L. No relationship was found between PK exposures and 2-month culture conversion using multivariate logistic regression after adjusting for MIC. However, MARS identified negative interactions between isoniazid Cmax and rifampicin Cmax/MIC ratio on 2-month culture conversion. If isoniazid Cmax was <4.6 mg/L and rifampicin Cmax/MIC <28, the isoniazid concentration had an antagonistic effect on culture conversion. For patients with isoniazid Cmax >4.6 mg/L, higher isoniazid exposures were associated with improved rates of culture conversion. Conclusions. PK/PD analyses using MARS identified isoniazid Cmax and rifampicin Cmax/MIC thresholds below which there is concentration-dependent antagonism that reduces 2-month sputum culture conversion. PMID:28205671

  11. Application of a Pharmacokinetic Model of Metformin Clearance in a Population with Acute Myeloid Leukemia

    PubMed Central

    Ceacareanu, Alice C.; Brown, Geoffrey W.; Moussa, Hoda A.; Wintrob, Zachary A. P.

    2018-01-01

    Objective: We aimed to estimate the metformin-associated lactic acidosis (MALA) risk by assessing retrospectively the renal clearance variability and applying a pharmacokinetic (PK) model of metformin clearance in a population diagnosed with acute myeloid leukemia (AML) and diabetes mellitus (DM). Methods: All adults with preexisting DM and newly diagnosed AML at Roswell Park Cancer Institute were reviewed (January 2003–December 2010, n = 78). Creatinine clearance (CrCl) and total body weight distributions were used in a two-compartment PK model adapted for multiple dosing and modified to account for actual intra- and inter-individual variability. Based on this renal function variability evidence, 1000 PK profiles were simulated for multiple metformin regimens with the resultant PK profiles being assessed for safe CrCl thresholds. Findings: Metformin 500 mg up to three times daily was safe for all simulated profiles with CrCl ≥25 mL/min. Furthermore, the estimated overall MALA risk was below 10%, remaining under 5% for 500 mg given once daily. CrCl ≥65.25 mL/min was safe for administration in any of the tested regimens (500 mg or 850 mg up to three times daily or 1000 mg up to twice daily). Conclusion: PK simulation-guided prescribing can maximize metformin's beneficial effects on cancer outcomes while minimizing MALA risk. PMID:29755998

  12. A systematic review: Performance of RDTs for the detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale mono-infections in human blood.

    PubMed

    Yerlikaya, Seda; Campillo, Ana; Gonzalez, Iveth J

    2018-03-15

    Despite the increased use and worldwide distribution of malaria rapid diagnostic tests (RDTs) which distinguish between Plasmodium falciparum and non-falciparum species, little is known about their performance for detecting Plasmodium knowlesi (Pk), Plasmodium malariae (Pm), and Plasmodium ovale (Po). The objective of this review is to analyze results of published studies evaluating the diagnostic accuracy of malaria RDTs in detecting Pk, Pm and Po mono-infections.MEDLINE, EMBASE, Web of Science and CENTRAL databases were systematically searched to identify studies which reported on the performance of RDTs in detecting Pk, Pm,Po mono-infections.Among 40 studies included in the review, three reported on Pk, eight on Pm, five on Po, one on Pk and Pm, and 23 on Pm and Po infections. In the meta-analysis, estimates of sensitivities of RDTs in detecting Pk infections ranged from 2% to 48%. Test performances for Pm and Po infections were less accurate and highly heterogeneous, mainly due to the small number of samples tested.Limited data available suggest that malaria RDTs show suboptimal performance for detecting Pk, Pm,Po infections. New improved RDTs as well as appropriately designed, cross-sectional studies to demonstrate their usefulness in the detection of neglected Plasmodium species, are urgently needed.

  13. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.

    2014-06-01

    This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.

  14. Robust Flutter Margin Analysis that Incorporates Flight Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Martin J.

    1998-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  15. Pharmacokinetic-pharmacodynamic modeling of ipamorelin, a growth hormone releasing peptide, in human volunteers.

    PubMed

    Gobburu, J V; Agersø, H; Jusko, W J; Ynddal, L

    1999-09-01

    To examine the pharmacokinetics (PK) and pharmacodynamics (PD) of ipamorelin, a growth hormone (GH) releasing peptide, in healthy volunteers. A trial was conducted with a dose escalation design comprising 5 different infusion rates (4.21, 14.02, 42.13, 84.27 and 140.45 nmol/kg over 15 minutes) with eight healthy male subjects at each dose level. Concentrations of ipamorelin and growth hormone were measured. The PK parameters showed dose-proportionality, with a short terminal half-life of 2 hours, a clearance of 0.078 L/h/kg and a volume of distribution at steady-state of 0.22 L/kg. The time course of GH stimulation by ipamorelin showed a single episode of GH release with a peak at 0.67 hours and an exponential decline to negligible GH concentration at all doses. The ipamorelin-GH concentration relationship was characterized using an indirect response model and population fitting. The model employed a zero-order GH release rate over a finite duration of time to describe the episodic release of GH. Ipamorelin induces the release of GH at all dose levels with the concentration (SC50) required for half-maximal GH stimulation of 214 nmol/L and a maximal GH production rate of 694 mIU/L/h. The inter-individual variability of the PD parameters was larger than that of the PK parameters. The proposed PK/PD model provides a useful characterization of ipamorelin disposition and GH responses across a range of doses.

  16. Modeling and Simulation for Estimating the Influence of Renal Dysfunction on the Hypouricemic Effect of Febuxostat in Hyperuricemic Patients Due to Overproduction or Underexcretion of Uric Acid.

    PubMed

    Hirai, Toshinori; Kimura, Toshimi; Echizen, Hirotoshi

    2016-01-01

    Whether renal dysfunction influences the hypouricemic effect of febuxostat, a xanthine oxidase (XO) inhibitor, in patients with hyperuricemia due to overproduction or underexcretion of uric acid (UA) remains unclear. We aimed to address this question with a modeling and simulation approach. The pharmacokinetics (PK) of febuxostat were analyzed using data from the literature. A kinetic model of UA was retrieved from a previous human study. Renal UA clearance was estimated as a function of creatinine clearance (CLcr) but non-renal UA clearance was assumed constant. A reversible inhibition model for bovine XO was adopted. Integrating these kinetic formulas, we developed a PK-pharmacodynamic (PK-PD) model for estimating the time course of the hypouricemic effect of febuxostat as a function of baseline UA level, febuxostat dose, treatment duration, body weight, and CLcr. Using the Monte Carlo simulation method, we examined the performance of the model by comparing predicted UA levels with those reported in the literature. We also modified the models for application to hyperuricemia due to UA overproduction or underexcretion. Thirty-nine data sets comprising 735 volunteers or patients were retrieved from the literature. A good correlation was observed between the hypouricemic effects of febuxostat estimated by our PK-PD model and those reported in the articles (observed) (r=0.89, p<0.001). The hypouricemic effect was estimated to be augmented in patients with renal dysfunction irrespective of the etiology of hyperuricemia. While validation in clinical studies is needed, the modeling and simulation approach may be useful for individualizing febuxostat doses in patients with various clinical characteristics.

  17. Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Du, B.; Daniels, V.

    2010-01-01

    Space Motion Sickness (SMS) is experienced during early flight days of space missions and on reduced gravity simulation flights which require treatment with medications. Oral administration of scopolamine tablets is still a common practice to prevent SMS symptoms. Bioavailability of medications taken by mouth for SMS is often low and variable. Intranasal (IN) administration of medications has been reported to achieve higher and more reliable bioavailability than from an equivalent oral dose. In this FDA reviewed phase II clinical trial, we evaluated pharmacokinetics of an investigative new drug formulation, INSCOP during ambulatory (AMB) and antiorthostatic bedrest (HBR), a ground-based microgravity analog. Twelve subjects including 6 males and 6 females received 0.2 and 0.4 mg doses of INSCOP on separate days during AMB and ABR in a randomized, double blind cross over experimental design. Blood samples were collected at regular time intervals for 24 h post dose and analyzed for free scopolamine concentrations by an LC-MS-MS method. Pharmacokinetic parameters were calculated using concentration versus time data and compared between AMB and ABR conditions. Results indicated that maximum concentration and relative bioavailability increased marginally during ABR compared to AMB; differences in PK parameters between AMB and ABR were greater with 0.2 mg than with 0.4 mg dose. Gender specific differences in PK parameters was observed both during AMB and ABR with differences higher in females between the two conditions than in males. A significant observation is that while gender differences in PK appear to exist, the differences in primary PK parameters between AMB and ABR after IN administration, unlike oral administration, are minimal and may not be clinically significant for both genders.

  18. Use of partial AUC to demonstrate bioequivalence of Zolpidem Tartrate Extended Release formulations.

    PubMed

    Lionberger, Robert A; Raw, Andre S; Kim, Stephanie H; Zhang, Xinyuan; Yu, Lawrence X

    2012-04-01

    FDA's bioequivalence recommendation for Zolpidem Tartrate Extended Release Tablets is the first to use partial AUC (pAUC) metrics for determining bioequivalence of modified-release dosage forms. Modeling and simulation studies were performed to aid in understanding the need for pAUC measures and also the proper pAUC truncation times. Deconvolution techniques, In Vitro/In Vivo Correlations, and the CAT (Compartmental Absorption and Transit) model were used to predict the PK profiles for zolpidem. Models were validated using in-house data submitted to the FDA. Using dissolution profiles expressed by the Weibull model as input for the CAT model, dissolution spaces were derived for simulated test formulations. The AUC(0-1.5) parameter was indicative of IR characteristics of early exposure and effectively distinguished among formulations that produced different pharmacodynamic effects. The AUC(1.5-t) parameter ensured equivalence with respect to the sustained release phase of Ambien CR. The variability of AUC(0-1.5) is higher than other PK parameters, but is reasonable for use in an equivalence test. In addition to the traditional PK parameters of AUCinf and Cmax, AUC(0-1.5) and AUC(1.5-t) are recommended to provide bioequivalence measures with respect to label indications for Ambien CR: onset of sleep and sleep maintenance.

  19. Fractional compartmental models and multi-term Mittag-Leffler response functions.

    PubMed

    Verotta, Davide

    2010-04-01

    Systems of fractional differential equations (SFDE) have been increasingly used to represent physical and control system, and have been recently proposed for use in pharmacokinetics (PK) by (J Pharmacokinet Pharmacodyn 36:165-178, 2009) and (J Phamacokinet Pharmacodyn, 2010). We contribute to the development of a theory for the use of SFDE in PK by, first, further clarifying the nature of systems of FDE, and in particular point out the distinction and properties of commensurate versus non-commensurate ones. The second purpose is to show that for both types of systems, relatively simple response functions can be derived which satisfy the requirements to represent single-input/single-output PK experiments. The response functions are composed of sums of single- (for commensurate) or two-parameters (for non-commensurate) Mittag-Leffler functions, and establish a direct correspondence with the familiar sums of exponentials used in PK.

  20. Combating resistance: application of the emerging science of pharmacokinetics and pharmacodynamics.

    PubMed

    Jacobs, Michael R

    2007-12-01

    During the last 10-15 years understanding of relationships between pharmacokinetic (PK) and pharmacodynamic (PD) parameters and bacteriological and clinical outcomes has expanded allowing correlation between in vitro potency and in vivo efficacy. PK and PD principles can be applied to development of new antibacterials and formulation of existing agents to help address the increasing prevalence of antibacterial resistance. For beta-lactams, such as penicillins, the unbound serum concentration of the drug exceeding the minimum inhibitory concentration of the causative pathogen for 40-50% of the dosing interval is predictive of bacteriologic efficacy (bacterial eradication) and can be used to determine a PK/PD breakpoint for that specific dosing regimen. Amoxicillin/clavulanate was one of the earliest antibacterials to use the unique approach of PK/PD principles to develop new and enhanced formulations, allowing it to remain a significant antibacterial agent in the management of respiratory tract infections.

  1. Dose Schedule Optimization and the Pharmacokinetic Driver of Neutropenia

    PubMed Central

    Patel, Mayankbhai; Palani, Santhosh; Chakravarty, Arijit; Yang, Johnny; Shyu, Wen Chyi; Mettetal, Jerome T.

    2014-01-01

    Toxicity often limits the utility of oncology drugs, and optimization of dose schedule represents one option for mitigation of this toxicity. Here we explore the schedule-dependency of neutropenia, a common dose-limiting toxicity. To this end, we analyze previously published mathematical models of neutropenia to identify a pharmacokinetic (PK) predictor of the neutrophil nadir, and confirm this PK predictor in an in vivo experimental system. Specifically, we find total AUC and Cmax are poor predictors of the neutrophil nadir, while a PK measure based on the moving average of the drug concentration correlates highly with neutropenia. Further, we confirm this PK parameter for its ability to predict neutropenia in vivo following treatment with different doses and schedules. This work represents an attempt at mechanistically deriving a fundamental understanding of the underlying pharmacokinetic drivers of neutropenia, and provides insights that can be leveraged in a translational setting during schedule selection. PMID:25360756

  2. LC-MS/MS quantification of next-generation biotherapeutics: a case study for an IgE binding Nanobody in cynomolgus monkey plasma.

    PubMed

    Sandra, Koen; Mortier, Kjell; Jorge, Lucie; Perez, Luis C; Sandra, Pat; Priem, Sofie; Poelmans, Sofie; Bouche, Marie-Paule

    2014-05-01

    Nanobodies(®) are therapeutic proteins derived from the smallest functional fragments of heavy chain-only antibodies. The development and validation of an LC-MS/MS-based method for the quantification of an IgE binding Nanobody in cynomolgus monkey plasma is presented. Nanobody quantification was performed making use of a proteotypic tryptic peptide chromatographically enriched prior to LC-MS/MS analysis. The validated LLOQ at 36 ng/ml was measured with an intra- and inter-assay precision and accuracy <20%. The required sensitivity could be obtained based on the selectivity of 2D LC combined with MS/MS. No analyte specific tools for affinity purification were used. Plasma samples originating from a PK/PD study were analyzed and compared with the results obtained with a traditional ligand-binding assay. Excellent correlations between the two techniques were obtained, and similar PK parameters were estimated. A 2D LC-MS/MS method was successfully developed and validated for the quantification of a next generation biotherapeutic.

  3. Bohr effect of avian hemoglobins: Quantitative analyses based on the Wyman equation.

    PubMed

    Okonjo, Kehinde O

    2016-12-07

    The Bohr effect data for bar-headed goose, greylag goose and pheasant hemoglobins can be fitted with the Wyman equation for the Bohr effect, but under one proviso: that the pK a of His146β does not change following the T→R quaternary transition. This assumption is based on the x-ray structure of bar-headed goose hemoglobin, which shows that the salt-bridge formed between His146β and Asp94β in human deoxyhemoglobin is not formed in goose deoxyhemoglobin. When the Bohr data for chicken hemoglobin were fitted by making the same assumption, the pK a of the NH 3 + terminal group of Val1α decreased from 7.76 to 6.48 following the T→R transition. When the data were fitted without making any assumption, the pK a of the NH 3 + terminal group increased from 7.57 to 7.77 following the T→R transition. We demonstrate that avian hemoglobin Bohr data are readily fitted with the Wyman equation because avian hemoglobins lack His77β. From curve-fitting to Bohr data we estimate the pK a s of the NH 3 + terminal group of Val1α in the R and T states to be 6.33±0.1 and 7.22±0.1, respectively. We provide evidence indicating that these pK a s are more accurate than estimates from kinetic studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Improved pKa Prediction of Substituted Alcohols, Phenols, and Hydroperoxides in Aqueous Medium Using Density Functional Theory and a Cluster-Continuum Solvation Model.

    PubMed

    Thapa, Bishnu; Schlegel, H Bernhard

    2017-06-22

    Acid dissociation constants (pK a 's) are key physicochemical properties that are needed to understand the structure and reactivity of molecules in solution. Theoretical pK a 's have been calculated for a set of 72 organic compounds with -OH and -OOH groups (48 with known experimental pK a 's). This test set includes 17 aliphatic alcohols, 25 substituted phenols, and 30 hydroperoxides. Calculations in aqueous medium have been carried out with SMD implicit solvation and three hybrid DFT functionals (B3LYP, ωB97XD, and M06-2X) with two basis sets (6-31+G(d,p) and 6-311++G(d,p)). The effect of explicit water molecules on calculated pK a 's was assessed by including up to three water molecules. pK a 's calculated with only SMD implicit solvation are found to have average errors greater than 6 pK a units. Including one explicit water reduces the error by about 3 pK a units, but the error is still far from chemical accuracy. With B3LYP/6-311++G(d,p) and three explicit water molecules in SMD solvation, the mean signed error and standard deviation are only -0.02 ± 0.55; a linear fit with zero intercept has a slope of 1.005 and R 2 = 0.97. Thus, this level of theory can be used to calculate pK a 's directly without the need for linear correlations or thermodynamic cycles. Estimated pK a values are reported for 24 hydroperoxides that have not yet been determined experimentally.

  5. Pharmacokinetic Evaluation of Oral Levofloxacin in Human Immunodeficiency Virus-Infected Subjects Receiving Concomitant Antiretroviral Therapy

    PubMed Central

    Villani, P.; Viale, P.; Signorini, L.; Cadeo, B.; Marchetti, F.; Villani, A.; Fiocchi, C.; Regazzi, M. B.; Carosi, G.

    2001-01-01

    The purpose of this study was to evaluate the pharmacokinetics (PK) profile of oral levofloxacin in human immunodeficiency virus-positive patients in steady-state treatment with nelfinavir (NFV) or with efavirenz (EFV) and to determine the effects of levofloxacin on the PK parameters of these two antiretroviral agents. For levofloxacin, plasma samples were obtained at steady state during a 24-h dosing interval. Plasma NFV and EFV concentrations were evaluated before and after 4 days of levofloxacin treatment. Levofloxacin PK do not seem affected by NFV and EFV. There was no significant difference between NFV and EFV plasma levels obtained with and without levofloxacin. PMID:11408245

  6. Defense Resource Planning Under Uncertainty: An Application of Robust Decision Making to Munitions Mix Planning

    DTIC Science & Technology

    2016-02-01

    In addition , the parser updates some parameters based on uncertainties. For example, Analytica was very slow to update Pk values based on...moderate range. The additional security environments helped to fill gaps in lower severity. Weapons Effectiveness Pk values were modified to account for two...project is to help improve the value and character of defense resource planning in an era of growing uncertainty and complex strategic challenges

  7. Tailoring treatment of haemophilia B: accounting for the distribution and clearance of standard and extended half-life FIX concentrates.

    PubMed

    Iorio, Alfonso; Fischer, Kathelijn; Blanchette, Victor; Rangarajan, Savita; Young, Guy; Morfini, Massimo

    2017-06-02

    The prophylactic administration of factor IX (FIX) is considered the most effective treatment for haemophilia B. The inter-individual variability and complexity of the pharmacokinetics (PK) of FIX, and the rarity of the disease have hampered identification of an optimal treatment regimens. The recent introduction of extended half-life recombinant FIX molecules (EHL-rFIX), has prompted a thorough reassessment of the clinical efficacy, PK and pharmacodynamics of plasma-derived and recombinant FIX. First, using longer sampling times and multi-compartmental PK models has led to more precise (and favourable) PK for FIX than was appreciated in the past. Second, investigating the distribution of FIX in the body beyond the vascular space (which is implied by its complex kinetics) has opened a new research field on the role for extravascular FIX. Third, measuring plasma levels of EHL-rFIX has shown that different aPTT reagents have different accuracy in measuring different FIX molecules. How will this new knowledge reflect on clinical practice? Clinical decision making in haemophilia B requires some caution and expertise. First, comparisons between different FIX molecules must be assessed taking into consideration the comparability of the populations studied and the PK models used. Second, individual PK estimates must rely on multi-compartmental models, and would benefit from adopting a population PK approach. Optimal sampling times need to be adapted to the prolonged half-life of the new EHL FIX products. Finally, costs considerations may apply, which is beyond the scope of this manuscript but might be deeply connected with the PK considerations discussed in this communication.

  8. The impact of new partial AUC parameters for evaluating the bioequivalence of prolonged-release formulations.

    PubMed

    Boily, Michaël; Dussault, Catherine; Massicotte, Julie; Guibord, Pascal; Lefebvre, Marc

    2015-01-23

    To demonstrate bioequivalence (BE) between two prolonged-release (PR) drug formulations, single dose studies under fasting and fed state as well as at least one steady-state study are currently required by the European Medicines Agency (EMA). Recently, however, there have been debates regarding the relevance of steady-state studies. New requirements in single-dose investigations have also been suggested by the EMA to address the absence of a parameter that can adequately assess the equivalence of the shape of the curves. In the draft guideline issued in 2013, new partial area under the curve (pAUC) pharmacokinetic (PK) parameters were introduced to that effect. In light of these potential changes, there is a need of supportive clinical evidence to evaluate the impact of pAUCs on the evaluation of BE between PR formulations. In this retrospective analysis, it was investigated whether the newly defined parameters were associated with an increase in discriminatory ability or a change in variability compared to the conventional PK parameters. Among the single dose studies that met the requirements already in place, 20% were found unable to meet the EMA's new requirements in regards to the pAUC PK parameters. When pairing fasting and fed studies for a same formulation, the failure rate increased to 40%. In some cases, due to the high variability of these parameters, an increase of the sample size would be required to prove BE. In other cases however, the pAUC parameters demonstrated a robust ability to detect differences between the shapes of the curves of PR formulations. The present analysis should help to better understand the impact of the upcoming changes in European regulations on PR formulations and in the design of future BE studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Worst-Case Flutter Margins from F/A-18 Aircraft Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty

    1997-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, micron, computes a stability margin which directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The micron margins are robust margins which indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 SRA using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  10. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  11. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    PubMed Central

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect. PMID:17957247

  12. Comparisons of the pharmacokinetics and tolerability of fixed-dose combinations of amlodipine besylate/losartan and amlodipine camsylate/losartan in healthy subjects: a randomized, open-label, single-dose, two-period, two-sequence crossover study

    PubMed Central

    Choi, YoonJung; Lee, SeungHwan; Cho, Sang-Min; Kang, Won-Ho; Nam, Kyu-Yeol; Jang, In-Jin; Yu, Kyung-Sang

    2016-01-01

    Background A fixed-dose combination (FDC) of amlodipine and losartan has been used to reduce blood pressure in patients whose hypertension is not sufficiently controlled with either drug alone. The aim of this study was to evaluate the pharmacokinetic (PK) characteristics and tolerability of an FDC of 6.94 mg amlodipine besylate (5 mg as amlodipine)/50 mg losartan potassium compared to an FDC of 5 mg amlodipine camsylate/50 mg losartan potassium in healthy subjects. Subjects and methods A randomized, open-label, single-dose, two-period, two-sequence crossover study was conducted on 46 healthy male subjects. Blood concentrations were measured by liquid chromatography–tandem mass spectrometry. Blood samples were collected up to 144 hours post dose for each period. PK parameters were calculated in each treatment group using a noncompartmental method. The 90% confidence intervals (CIs) of the geometric mean ratios of the two treatments for the maximum plasma concentration (Cmax) and the area under the concentration curve from time zero to the last quantifiable time point (AUC0–t) were estimated. Tolerability assessments were performed for all subjects who received the drug at least once. Results The PK profiles of the two treatments were similar. For amlodipine, the geometric mean ratios (90% CIs) of amlodipine besylate to amlodipine camsylate for the Cmax and AUC0–t were 0.98 (0.94−1.01) and 0.97 (0.93−1.01), respectively. The corresponding values for losartan were 0.91 (0.81−1.02) and 1.05 (0.98−1.12), respectively. The incidence of adverse events was not significantly different between the two treatments, and both were well tolerated. Conclusion An FDC of 6.94 mg amlodipine besylate (5 mg as amlodipine)/50 mg losartan potassium produced similar results to an FDC of 5 mg amlodipine camsylate/50 mg losartan potassium treatment with respect to the PK parameters of amlodipine and losartan based on Cmax and AUC0–t values. The amlodipine besylate/losartan potassium combination was well tolerated by healthy male subjects. PMID:27703330

  13. Levofloxacin dosing regimen in severely morbidly obese patients (BMI ≥40 kg/m(2)) should be guided by creatinine clearance estimates based on ideal body weight and optimized by therapeutic drug monitoring.

    PubMed

    Pai, Manjunath P; Cojutti, Piergiorgio; Pea, Federico

    2014-08-01

    Levofloxacin is a commonly prescribed antimicrobial where recommendations exist to reduce doses for renal impairment but not to increase doses for augmented renal function. Morbidly obese patients are increasing in prevalence, and represent a population that can have augmented renal function requiring higher-than-standard doses. The current investigation was performed to characterize the pharmacokinetics (PK) and evaluate the influence of alternate body size descriptors and renal function as predictors of levofloxacin clearance (CL) and the area under the curve over 24 h (AUC24). A database of patients undergoing levofloxacin therapeutic drug monitoring (TDM) were queried to identify patients ≥18 years of age with a body mass index ≥40 kg/m(2). A maximum a posteriori probability Bayesian approach using a two-compartment linear PK model was used to estimate individual PK parameters and AUC24. A total of 394 concentration-time data points (peaks and trough) from 68 patients between 98 and 250 kg were evaluated. The median (5th, 95th percentile) daily dose and AUC24 was 1,000 (250, 1,500) mg and 90.7 (44.4, 228) mg·h/L, respectively. Levofloxacin CL was significantly (p < 0.05) related to height but not weight. As a result, levofloxacin CL was best related (R (2) = 0.57) to creatinine CL (CLcr) estimated by the Cockcroft-Gault (CG) equation and ideal body weight (IBW) because IBW is a height transformation. An empiric four-category daily-dose regimen (500, 750, 1,000, 1,250 mg) stratified by CLcr (CG-IBW) is expected to have >90 % probability of achieving an AUC24 of 50-150 mg·h/L in morbidly obese patients. Subsequent application of TDM and integration with pathogen-specific information could then be applied to tailor the levofloxacin regimen. The proposed approach serves as a relevant alternative to the current fixed-dosing paradigm of levofloxacin in the morbidly obese.

  14. Mechanism of action of substance P in guinea-pig ileum longitudinal smooth muscle: a re-evaluation.

    PubMed Central

    Hall, J M; Morton, I K

    1990-01-01

    1. A proposed mechanism of contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in membrane K+ permeability (PK) has been re-examined. 2. Potentiation of responses to substance P by the K+ channel blocker tetraethylammonium (TEA) was originally proposed as evidence for a mechanism of action of substance P involving a decrease in PK. Potentiation was confirmed; however this was found not to be specific to substance P since a similar potentiation of responses was seen with agonists not thought to act via a decrease in PK. 3. Antagonism of contractile responses to substance P by noradrenaline was similarly confirmed. However, this antagonism was found to represent a non-specific functional interaction through the inhibitory actions of beta-adrenoceptors rather than the proposed specific interaction with an increase in PK by noradrenaline which is normally alpha 1-adrenoceptor mediated. 4. Experiments were made measuring 86Rb efflux, in depolarized guinea-pig ileum longitudinal smooth muscle, to estimate PK. These studies confirmed a reported decrease in PK with TEA, but failed to detect the previously reported decrease with substance P. 5. These results, although not disproving a suggested mechanism of direct contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in PK, do throw doubt on either the evidence, or its interpretation, as proposed by the original authors in support of such a mechanism. PMID:1712846

  15. Imipenem in burn patients: pharmacokinetic profile and PK/PD target attainment.

    PubMed

    Gomez, David S; Sanches-Giraud, Cristina; Silva, Carlindo V; Oliveira, Amanda M Ribas Rosa; da Silva, Joao Manoel; Gemperli, Rolf; Santos, Silvia R C J

    2015-03-01

    Unpredictable pharmacokinetics (PK) in burn patients may result in plasma concentrations below concentrations that are effective against common pathogens. The present study evaluated the imipenem PK profile and pharmacokinetic/pharmacodynamics (PK/PD) correlation in burn patients. Fifty-one burn patients, 38.7 years of age (mean), 68.0 kg, 36.3% total burn surface area (TBSA), of whom 84% (43/51) exhibited thermal injury, 63% inhalation injury and 16% electrical injury (8/51), all of whom were receiving imipenem treatment were investigated. Drug plasma monitoring, PK study (120 sets of plasma levels) and PK/PD correlation were performed in a series of blood samples. Only 250 μl of plasma samples were required for drug plasma measurements using the ultra filtration technique for the purification of biological matrix and quantification using liquid chromatography. Probability of target attainment (PTA) was calculated using a PD target of 40% free drug concentrations above the minimum inhibitory concentration (40%fT>MIC). Significant differences in PK parameters (medians), such as biological half-life (2.2 vs 5.5 h), plasma clearance (16.2 vs 1.4 l h(-1)) and volume of distribution (0.86 vs 0.19 l kg(-1)), were registered in burn patients via comparisons of set periods with normal renal function against periods of renal failure. Correlations between creatinine clearance and total body plasma clearance were also obtained. In addition, the PK profile did not change according to TBSA during sets when renal function was preserved. PTA was >89% for MIC values up to 4 mg l(-1). In conclusion, imipenem efficacy for the control of hospital infection on the basis of PK/PD correlation was guaranteed for burn in patients at the recommended dose regimens for normal renal function (31.1±9.7 mg kg(-1) daily), but the daily dose must be reduced to 17.2±9.7 mg kg(-1) during renal failure to avoid neurotoxicity.

  16. Exposure-Response Analysis of Micafungin in Neonatal Candidiasis: Pooled Analysis of Two Clinical Trials.

    PubMed

    Kovanda, Laura L; Walsh, Thomas J; Benjamin, Daniel K; Arrieta, Antonio; Kaufman, David A; Smith, P Brian; Manzoni, Paolo; Desai, Amit V; Kaibara, Atsunori; Bonate, Peter L; Hope, William W

    2018-06-01

    Neonatal candidiasis causes significant morbidity and mortality in high risk infants. The micafungin dosage regimen of 10 mg/kg established for the treatment of neonatal candidiasis is based on a laboratory animal model of neonatal hematogenous Candida meningoencephalitis and pharmacokinetic (PK)-pharmacodynamic (PD) bridging studies. However, little is known about the how these PK-PD data translate clinically. Micafungin plasma concentrations from infants were used to construct a population PK model using Pmetrics software. Bayesian posterior estimates for infants with invasive candidiasis were used to evaluate the relationship between drug exposure and mycologic response using logistic regression. Sixty-four infants 3-119 days of age were included, of which 29 (45%) infants had invasive candidiasis. A 2-compartment PK model fits the data well. Allometric scaling was applied to clearance and volume normalized to the mean population weight (kg). The mean (standard deviation) estimates for clearance and volume in the central compartment were 0.07 (0.05) L/h/1.8 kg and 0.61 (0.53) L/1.8 kg, respectively. No relationship between average daily area under concentration-time curve or average daily area under concentration-time curve:minimum inhibitory concentration ratio and mycologic response was demonstrated (P > 0.05). Although not statistically significant, mycologic response was numerically higher when area under concentration-time curves were at or above the PD target. While a significant exposure-response relationship was not found, PK-PD experiments support higher exposures of micafungin in infants with invasive candidiasis. More patients would clarify this relationship; however, low incidence deters the feasibility of these studies.

  17. Pharmacokinetics of tilmicosin in healthy pigs and in pigs experimentally infected with Haemophilus parasuis

    PubMed Central

    Zhang, Ling; Zhao, Li; Liu, Yonghong; Liu, Junfeng

    2017-01-01

    A comparative in vivo pharmacokinetic (PK) study of tilmicosin (TIL) was conducted in 6 crossbred healthy pigs and 6 crossbred pigs infected with Haemophilus (H.) parasuis following oral administration of a single 40 mg/kg dose. The infected model was established by intranasal inoculation and confirmed by clinical signs, blood biochemistry, and microscopic examinations. Plasma TIL concentrations were determined by a validated high-performance liquid chromatography method with ultraviolet detection at 285 nm. PK parameters were calculated by using WinNonlin software. After TIL administration, the main PK parameters of TIL in healthy and H. parasuis-infected pigs were as follows: Area under the concentration-time curve, maximal drug concentration, half-life of the absorption phase, half-life of the distribution phase, and half-life of the elimination phase were 34.86 ± 9.69 vs. 28.73 ± 6.18 µg · h/mL, 1.77 ± 0.33 vs. 1.67 ± 0.28 µg/mL, 2.27 ± 0.45 vs. 2.24 ± 0.44 h, 5.35 ± 1.40 vs. 4.61 ± 0.35 h, and 43.53 ± 8.17 vs. 42.05 ± 9.36 h, respectively. These results of this exploratory study suggest that there were no significant differences between the PK profiles of TIL in the healthy and H. parasuis-infected pigs. PMID:28385011

  18. Pharmacokinetics of tilmicosin in healthy pigs and in pigs experimentally infected with Haemophilus parasuis.

    PubMed

    Zhang, Ling; Zhao, Li; Liu, Yonghong; Liu, Junfeng; Li, Xianqiang

    2017-12-31

    A comparative in vivo pharmacokinetic (PK) study of tilmicosin (TIL) was conducted in 6 crossbred healthy pigs and 6 crossbred pigs infected with Haemophilus ( H .) parasuis following oral administration of a single 40 mg/kg dose. The infected model was established by intranasal inoculation and confirmed by clinical signs, blood biochemistry, and microscopic examinations. Plasma TIL concentrations were determined by a validated high-performance liquid chromatography method with ultraviolet detection at 285 nm. PK parameters were calculated by using WinNonlin software. After TIL administration, the main PK parameters of TIL in healthy and H. parasuis -infected pigs were as follows: Area under the concentration-time curve, maximal drug concentration, half-life of the absorption phase, half-life of the distribution phase, and half-life of the elimination phase were 34.86 ± 9.69 vs. 28.73 ± 6.18 μgㆍh/mL, 1.77 ± 0.33 vs. 1.67 ± 0.28 μg/mL, 2.27 ± 0.45 vs. 2.24 ± 0.44 h, 5.35 ± 1.40 vs. 4.61 ± 0.35 h, and 43.53 ± 8.17 vs. 42.05 ± 9.36 h, respectively. These results of this exploratory study suggest that there were no significant differences between the PK profiles of TIL in the healthy and H. parasuis -infected pigs.

  19. [Pharmacokinetic/pharmacodynamic analysis of antibiotic therapy in dentistry and stomatology].

    PubMed

    Isla, Arantxazu; Canut, Andrés; Rodríguez-Gascón, Alicia; Labora, Alicia; Ardanza-Trevijano, Bruno; Solinís, María Angeles; Pedraz, José Luis

    2005-03-01

    This study evaluates the efficacy of various antimicrobial treatments for orofacial infections on the basis of pharmacokinetic/pharmacodynamic (PK/PD) criteria. A complete a literature search was undertaken to establish the MIC90 values of the five microorganisms most frequently isolated in odontogenic infections and the pharmacokinetic parameters of 13 antibiotics used in these infections. Pharmacokinetic simulations were then carried out with mean population parameters and efficacy indexes were calculated for the 47 treatment regimens analyzed. For drugs showing time-dependent antibacterial killing, the time above MIC (t > MIC) was calculated. For drugs with concentration-dependent bactericidal activity, the AUC/MIC was calculated. Amoxicillin-clavulanic (500 mg/8 h or 1000 mg/12 h) and clindamycin (300 mg/6 h) in the time-dependent killing group and moxifloxacin (400 mg/24 h) in the concentration-dependent group showed adequate efficacy indexes against the five pathogens considered to be the most commonly implicated in odontogenic infections. The spiramycin plus metronidazole combination, present in the commercial formulation Rhodogyl, did not reach satisfactory PK/PD indexes. PK/PD indexes, which are useful predictors of the potential efficacy of antibacterial therapy, were used with ontogenic infections in the present study. The PK/PD simulations showed that amoxicillin-clavulanic, clindamycin and moxifloxacin were the most suitable antibiotics for this kind of infection. Clinical trials are required to confirm that this methodology is useful in these pathologic processes.

  20. Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling.

    PubMed

    Burton, Katherine J; Li, Xiaohan; Li, Jia-Da; Hu, Wang-Ping; Zhou, Qun-Yong

    2015-04-01

    The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and electrical signaling among these oscillators is important for the normal expression of circadian rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms.

  1. Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling

    PubMed Central

    Burton, Katherine J.; Li, Xiaohan; Li, Jia-Da; Hu, Wang-Ping

    2015-01-01

    The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and electrical signaling among these oscillators is important for the normal expression of circadian rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms. PMID:27103928

  2. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  3. Pharmacokinetics of two 6-mercaptopurine liquid formulations in children with acute lymphoblastic leukemia.

    PubMed

    Tolbert, Jaszianne A; Bai, Shasha; Abdel-Rahman, Susan M; August, Keith J; Weir, Scott J; Kearns, Gregory L; Neville, Kathleen A

    2017-08-01

    A liquid formulation of 6-mercaptopurine (6-MP) was recently approved by the Food and Drug Administration (Purixan®) based on bioavailability (BA) data from healthy adults. We examined the pharmacokinetics (PK) and BA of 6-MP in children with acute lymphoblastic leukemia (ALL) comparing a marketed tablet, two extemporaneously prepared liquid formulations, and data from the approved liquid formulation. Twenty-two children (6-17 years) participated in a randomized two-way, crossover study of two cohorts. Group 1 (n = 11; five males) received a 5 mg/ml liquid formulation and the marketed 50 mg 6-MP tablet on separate occasions, and Group 2 (n = 11; five males) received a 50 mg/ml liquid formulation and the marketed tablet. The usual prescribed 6-MP dose (25-115 mg/m 2 ) was given after an 8-hr fast. Serial blood samples were collected over 8 hr postdose. Plasma 6-MP concentrations were determined using a good laboratory practice (GLP)-validated liquid chromatography-tandem mass spectrometry method. PK parameters were calculated using noncompartmental analysis and compared within and between cohorts, and thiopurine methyltransferase (TPMT) genotype was analyzed. No patient had a TPMT genotype reflective of a poor metabolizer phenotype. Comparison of PK parameters between 5 and 50 mg/ml treatments revealed significant differences (P <0.05) in AUC N (where AUC is area under the curve), C maxN , and T max . Comparisons within each group revealed significant differences in AUC 0-∞ and T max in the 5 mg/ml group. Pharmacokinetic profiles of 6-MP established in healthy adults with the approved liquid formulation may not reflect the PK profile in children with ALL. Formulation-specific differences in PK may significantly impact the dose-exposure profile in these children and must be considered. © 2017 Wiley Periodicals, Inc.

  4. Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.

    PubMed

    Mukker, Jatinder Kaur; Singh, Ravi Shankar Prasad; Muir, Alister D; Krol, Ed S; Alcorn, Jane

    2015-03-14

    Consumption of flaxseed lignans is associated with various health benefits; however, little is known about the bioavailability of purified lignans in flaxseed. Data on their bioavailability and hence pharmacokinetics (PK) are necessary to better understand their role in putative health benefits. In the present study, we conducted a comparative PK analysis of the principal lignan of flaxseed, secoisolariciresinol diglucoside (SDG), and its primary metabolites, secoisolariciresinol (SECO), enterodiol (ED) and enterolactone (EL) in rats. Purified lignans were intravenously or orally administered to each male Wistar rat. SDG and its primary metabolites SECO, ED and EL were administered orally at doses of 40, 40, 10 and 10 mg/kg, respectively, and intravenously at doses of 20, 20, 5 and 1 mg/kg, respectively. Blood samples were collected at 0 (pre-dose), 5, 10, 15, 20, 30 and 45 min, and at 1, 2, 4, 6, 8, 12 and 24 h post-dosing, and serum samples were analysed. PK parameters and oral bioavailability of purified lignans were determined by non-compartmental methods. In general, administration of the flaxseed lignans SDG, SECO and ED demonstrated a high systemic clearance, a large volume of distribution and short half-lives, whereas administration of EL at the doses of 1 mg/kg (intravenously) and 10 mg/kg (orally administered) killed the rats within a few hours of dosing, precluding a PK analysis of this lignan. PK parameters of flaxseed lignans exhibited the following order: systemic clearance, SDG < SECO < ED; volume of distribution, SDG < SECO < ED; half-life, SDG < ED < SECO. The percentage of oral bioavailability was 0, 25 and < 1 % for SDG, SECO and ED, respectively.

  5. Population Pharmacokinetic Modeling of Diltiazem in Chinese Renal Transplant Recipients.

    PubMed

    Guan, Xiao-Feng; Li, Dai-Yang; Yin, Wen-Jun; Ding, Jun-Jie; Zhou, Ling-Yun; Wang, Jiang-Lin; Ma, Rong-Rong; Zuo, Xiao-Cong

    2018-02-01

    Diltiazem is a benzothiazepine calcium blocker and widely used in renal transplant patients since it improves the level of tacrolimus or cyclosporine A concentration. Several population pharmacokinetic (PopPK) models had been established for cyclosporine A and tacrolimus but no specific PopPK model was established for diltiazem. The aim of the study is to develop a PopPK model for diltiazem in renal transplant recipients and provide relevant pharmacokinetic parameters of diltiazem for further pharmacokinetic interaction study. Patients received tacrolimus as primary immunosuppressant agent after renal transplant and started administration of diltiazem 90 mg twice daily on 5th day. The concentration of diltiazem at 0, 0.5, 1, 2, 8, and 12 h was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Genotyping for CYP3A4*1G, CYP3A5*3, and MDR1 3435 was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). 25 covariates were considered in the stepwise covariate model (SCM) building procedure. One-compartment structural pharmacokinetic model with first-order absorption and elimination was used to describe the pharmacokinetic characteristics of diltiazem. Total bilirubin (TBIL) influenced apparent volume of distribution (V/F) of diltiazem in the forward selection. The absorption rate constant (K a ), V/F, and apparent oral clearance (CL/F) of the final population pharmacokinetic (PopPK) model of diltiazem were 1.96/h, 3550 L, and 92.4 L/h, respectively. A PopPK model of diltiazem is established in Chinese renal transplant recipients and it will provide relevant pharmacokinetic parameters of diltiazem for further pharmacokinetic interaction study.

  6. Variable Linezolid Exposure in Intensive Care Unit Patients-Possible Role of Drug-Drug Interactions.

    PubMed

    Töpper, Christoph; Steinbach, Cathérine L; Dorn, Christoph; Kratzer, Alexander; Wicha, Sebastian G; Schleibinger, Michael; Liebchen, Uwe; Kees, Frieder; Salzberger, Bernd; Kees, Martin G

    2016-10-01

    Standard doses of linezolid may not be suitable for all patient groups. Intensive care unit (ICU) patients in particular may be at risk of inadequate concentrations. This study investigated variability of drug exposure and its potential sources in this population. Plasma concentrations of linezolid were determined by high-performance liquid chromatography in a convenience sample of 20 ICU patients treated with intravenous linezolid 600 mg twice daily. Ultrafiltration applying physiological conditions (pH 7.4/37°C) was used to determine the unbound fraction. Individual pharmacokinetic (PK) parameters were estimated by population PK modeling. As measures of exposure to linezolid, area under the concentration-time curve (AUC) and trough concentrations (Cmin) were calculated and compared with published therapeutic ranges (AUC 200-400 mg*h/L, Cmin 2-10 mg/L). Coadministered inhibitors or inducers of cytochrome P450 and/or P-glycoprotein were noted. Data from 18 patients were included into the PK evaluation. Drug exposure was highly variable (median, range: AUC 185, 48-618 mg*h/L, calculated Cmin 2.92, 0.0062-18.9 mg/L), and only a minority of patients had values within the target ranges (6 and 7, respectively). AUC and Cmin were linearly correlated (R = 0.98), and classification of patients (underexposed/within therapeutic range/overexposed) according to AUC or Cmin was concordant in 15 cases. Coadministration of inhibitors was associated with a trend to higher drug exposure, whereas 3 patients treated with levothyroxine showed exceedingly low drug exposure (AUC ∼60 mg*h/L, Cmin <0.4 mg/L). The median unbound fraction in all 20 patients was 90.9%. Drug exposure after standard doses of linezolid is highly variable and difficult to predict in ICU patients, and therapeutic drug monitoring seems advisable. PK drug-drug interactions might partly be responsible and should be further investigated; protein binding appears to be stable and irrelevant.

  7. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.

    PubMed

    Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O

    2017-02-01

    One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.

  8. Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Singh, Sudhir Kumar; Gupta, Manika; Gupta, Dileep Kumar; Kumar, Pradeep

    2016-04-01

    Soil moisture is a key variable responsible for water and energy exchanges from land surface to the atmosphere (Srivastava et al., 2014). On the other hand, Soil Moisture Deficit (or SMD) can help regulating the proper use of water at specified time to avoid any agricultural losses (Srivastava et al., 2013b) and could help in preventing natural disasters, e.g. flood and drought (Srivastava et al., 2013a). In this study, evaluation of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellites are attempted for prediction of Soil Moisture Deficit (SMD). Sophisticated algorithm like Adaptive Neuro Fuzzy Inference System (ANFIS) is used for prediction of SMD using the MODIS and SMOS dataset. The benchmark SMD estimated from Probability Distributed Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the validation. The performances are assessed in terms of Nash Sutcliffe Efficiency, Root Mean Square Error and the percentage of bias between ANFIS simulated SMD and the benchmark. The performance statistics revealed a good agreement between benchmark and the ANFIS estimated SMD using the MODIS dataset. The assessment of the products with respect to this peculiar evidence is an important step for successful development of hydro-meteorological model and forecasting system. The analysis of the satellite products (viz. SMOS soil moisture and MODIS LST) towards SMD prediction is a crucial step for successful hydrological modelling, agriculture and water resource management, and can provide important assistance in policy and decision making. Keywords: Land Surface Temperature, MODIS, SMOS, Soil Moisture Deficit, Fuzzy Logic System References: Srivastava, P.K., Han, D., Ramirez, M.A., Islam, T., 2013a. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology 498, 292-304. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Al-Shrafany, D., Islam, T., 2013b. Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resources Management 27, 5069-5087. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., O'Neill, P., Islam, T., Gupta, M., 2014. Assessment of SMOS soil moisture retrieval parameters using tau-omega algorithms for soil moisture deficit estimation. Journal of Hydrology 519, 574-587.

  9. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    PubMed Central

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  10. Pharmacokinetics of levonorgestrel and ulipristal acetate emergency contraception in women with normal and obese body mass index.

    PubMed

    Praditpan, Piyapa; Hamouie, Angie; Basaraba, Cale N; Nandakumar, Renu; Cremers, Serge; Davis, Anne R; Westhoff, Carolyn L

    2017-05-01

    This study compares the pharmacokinetics (PK) of levonorgestrel (LNG) emergency contraceptive (EC) and ulipristal acetate (UPA)-EC between normal-body mass index (BMI) and obese-BMI women. This prospective, randomized crossover study evaluates the PK of women after single doses of LNG-EC (1.5mg) and UPA-EC (30mg). Study procedures took place during clinical research unit admissions, where participants received a standardized meal and each study drug, in random order, during two separate 24-h admissions. Study staff collected 14 blood specimens (0, 0.5, 1.0, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 24 and 48h). We evaluated serum concentrations of LNG and UPA using liquid chromatography-tandem mass spectroscopy and estimated the PK parameters of both drugs using noncompartmental analysis. The main outcome of this study was a comparison of between-group differences in AUC 0-24 . Thirty-two women completed the study (16 in each group). Among normal-BMI and obese-BMI participants, the mean BMIs were 22.0 (range 18.8-24.6) and 34.3 (range 30.6-39.9), respectively. After LNG-EC, mean AUC 0-24 and maximum concentration (C max ) were 50% lower among obese-BMI women than among normal-BMI women (AUC 0-24 100.8 vs. 208.5ng*h/mL, IQR obese-BMI 35.8, IQR normal-BMI 74.2, p≤.01; C max 10.8 vs. 18.2ng/mL, p=.01). After UPA-EC, AUC 0-24 and C max were similar between obese-BMI and normal-BMI women (AUC 0-24 362.5 vs. 293.5ng*h/mL, IQR obese-BMI 263.2, IQR normal-BMI 112.5, p=.15; C max 95.6 vs. 89.3ng/mL, p=.70). After a single dose of EC, obese-BMI women are exposed to lower concentrations of LNG and similar concentrations of UPA, when compared to normal-BMI women. Differences in LNG-EC PK by BMI group may underlie and account for the lower LNG-EC efficacy reported among obese-BMI women, but modest differences in UPA-EC PK by BMI group provide less support for variable efficacy. A pharmacodynamic study may be able to clarify whether these PK differences account for observed differences in LNG-EC and UPA-EC efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  12. Influence of plasma cholesterol and triglyceride concentrations and eritoran (E5564) micelle size on its plasma pharmacokinetics and ex vivo activity following single intravenous bolus dose into healthy female rabbits.

    PubMed

    Wasan, Kishor M; Risovic, Verica; Sivak, Olena; Lee, Stephen D; Mason, Douglas X; Chiklis, Gregory R; McShane, Jim; Lynn, Melvyn; Wong, Nancy; Rossignol, Daniel P

    2008-01-01

    Eritoran (E5564) is a glycophospholipid that acts as a toll-like receptor 4 (TLR4) antagonist that is being tested as a treatment for severe sepsis and septic shock. In the blood, eritoran binds to plasma lipoproteins altering its pharmacokinetic and pharmacodynamic (PD) effects in vivo. The purpose of this study was to determine the influence of changes in plasma cholesterol and triglyceride concentrations on the plasma pharmacokinetics and ex vivo activity of eritoran following single intravenous bolus dosing of eritoran to healthy female rabbits fed either a regular chow diet or a cholesterol-enriched diet. This was done with eritoran administered as stable micelle formulations of mean hydrodynamic diameters of 8 or 27 nm). Female New Zealand White rabbits were fed a standard diet for 7 days and then randomly assigned either a regular chow diet [regular-diet (n = 9)] or a cholesterol-enriched diet [cholesterol-diet (n = 12)] for an additional 7 days. Following feeding of these diets a single intravenous bolus dose of eritoran (0.5 mg/kg) formulated into either "small micelles" (8 nm in diameter) or "large micelles" (27 nm in diameter) was administered to regular-fed and cholesterol-fed rabbits. Serial blood samples were obtained prior to eritoran administration and at the following times post injection: 0.083 (5 min), 1, 2, 4, 8, 10, 24, 48 and 72 h. Plasma was analyzed for eritoran concentrations using LC/MS/MS. Total plasma cholesterol (TC) and triglyceride (TG) levels were quantified using enzymatic kits. Plasma eritoran pharmacokinetic (PK) parameters were estimated by non-compartmental analysis using the WinNonlin nonlinear estimation program. To analyze PD activity, whole blood obtained at 0.083 (5 min), 2, 24, 48 and 72 h following eritoran administration was assessed for ex vivo activity by measuring the ability of 1 and 10 ng/ml LPS to elicit TNF-alpha release. Total plasma cholesterol and triglyceride levels were significantly higher in cholesterol-fed rabbits compared to the rabbits fed a regular chow diet. Diet had no effect on the estimated plasma PK parameters. However, PD activity of both small and large micelle eritoran as measured by an ex vivo challenge dose of 1 ng/ml LPS was reduced in blood of cholesterol-fed rabbits compared to normal-fed rabbits. Comparison of PK parameters for small and large micelles indicated that small micelles had increased AUC(0-72 h), decreased plasma clearance and increased initial concentration (measured at 5 min post administration) compared to the large micelle formulation. Consistent with this observation, eritoran formulated into small micelles had significantly greater ex vivo activity than large micelles and was independent of TC and TG concentrations. These findings suggest that plasma pharmacokinetics and activity of eritoran maybe influenced by eritoran micelle size and plasma TC and TG concentrations.

  13. Impact of Mucositis on Absorption and Systemic Drug Exposure of Isavuconazole.

    PubMed

    Kovanda, Laura L; Marty, Francisco M; Maertens, Johan; Desai, Amit V; Lademacher, Christopher; Engelhardt, Marc; Lu, Qiaoyang; Hope, William W

    2017-06-01

    Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in diverse patient populations. We evaluated the impact of mucositis on the oral isavuconazole exposure using population PK modeling. This study included patients treated in two phase 3 trials of isavuconazole, SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and its impact on oral bioavailability was assessed. Use of the oral formulation was at the discretion of the investigator. Patients with plasma samples collected during the use of isavuconazonium sulfate were included in the construction of population PK model. Of 250 patients included, 56 patients had mucositis at therapy onset or as an adverse event during oral isavuconazole therapy. Levels of oral bioavailability were comparable, at 98.3% and 99.8%, respectively. The average drug exposures (average area under the curve [AUC ave ]) calculated from either the mean or median parameter estimates were not different between patients with and without mucositis. Mortality and overall clinical responses were similar between patients receiving oral therapy with and without mucositis. We found that isavuconazole exposures and clinical outcomes in this subset of patients with mucositis who were able to take oral isavuconazonium sulfate were comparable to those in patients without mucositis, despite the difference in oral bioavailability. Therefore, mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. Copyright © 2017 Kovanda et al.

  14. Impact of Mucositis on Absorption and Systemic Drug Exposure of Isavuconazole

    PubMed Central

    Marty, Francisco M.; Maertens, Johan; Desai, Amit V.; Lademacher, Christopher; Engelhardt, Marc; Lu, Qiaoyang

    2017-01-01

    ABSTRACT Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in diverse patient populations. We evaluated the impact of mucositis on the oral isavuconazole exposure using population PK modeling. This study included patients treated in two phase 3 trials of isavuconazole, SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and its impact on oral bioavailability was assessed. Use of the oral formulation was at the discretion of the investigator. Patients with plasma samples collected during the use of isavuconazonium sulfate were included in the construction of population PK model. Of 250 patients included, 56 patients had mucositis at therapy onset or as an adverse event during oral isavuconazole therapy. Levels of oral bioavailability were comparable, at 98.3% and 99.8%, respectively. The average drug exposures (average area under the curve [AUCave]) calculated from either the mean or median parameter estimates were not different between patients with and without mucositis. Mortality and overall clinical responses were similar between patients receiving oral therapy with and without mucositis. We found that isavuconazole exposures and clinical outcomes in this subset of patients with mucositis who were able to take oral isavuconazonium sulfate were comparable to those in patients without mucositis, despite the difference in oral bioavailability. Therefore, mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. PMID:28289034

  15. Exponential Decay Metrics of Topical Tetracaine Hydrochloride Administration Describe Corneal Anesthesia Properties Mechanistically.

    PubMed

    Ethington, Jason; Goldmeier, David; Gaynes, Bruce I

    2017-03-01

    To identify pharmacodynamic (PD) and pharmacokinetic (PK) metrics that aid in mechanistic understanding of dosage considerations for prolonged corneal anesthesia. A rabbit model using 0.5% tetracaine hydrochloride was used to induce corneal anesthesia in conjunction with Cochet-Bonnet anesthesiometry. Metrics were derived describing PD-PK parameters of the time-dependent domain of recovery in corneal sensitivity. Curve fitting used a 1-phase exponential dissociation paradigm assuming a 1-compartment PK model. Derivation of metrics including half-life and mean ligand residence time, tau (τ), was predicted by nonlinear regression. Bioavailability was determined by area under the curve of the dose-response relationship with varying drop volumes. Maximal corneal anesthesia maintained a plateau with a recovery inflection at the approximate time of predicted corneal drug half-life. PDs of recovery of corneal anesthesia were consistent with a first-order drug elimination rate. The mean ligand residence time (tau, τ) was 41.7 minutes, and half-life was 28.89 minutes. The mean estimated corneal elimination rate constant (ke) was 0.02402 minute. Duration of corneal anesthesia ranged from 55 to 58 minutes. There was no difference in time domain PD area under the curve between drop volumes. Use of a small drop volume of a topical anesthetic (as low as 11 μL) is bioequivalent to conventional drop size and seems to optimize dosing regiments with a little effect on ke. Prolongation of corneal anesthesia may therefore be best achieved with administration of small drop volumes at time intervals corresponding to the half-life of drug decay from the corneal compartment.

  16. Lopinavir/ritonavir combined with twice-daily 400 mg indinavir: pharmacokinetics and pharmacodynamics in blood, CSF and semen.

    PubMed

    Isaac, Adil; Taylor, Stephen; Cane, Patricia; Smit, Erasmus; Gibbons, Sarah E; White, David J; Drake, Susan M; Khoo, Saye; Back, David J

    2004-08-01

    To evaluate the steady-state blood plasma (BP), CSF and seminal plasma (SP) pharmacokinetics (PK) of twice-daily indinavir 400 mg and lopinavir/ritonavir. Ten HIV-1-positive men on lopinavir/ritonavir participated in a PK study. PK sampling was performed before and 2 weeks after adding indinavir to lopinavir/ritonavir-containing regimens. BP, CSF and SP RNA levels, CD4 counts and blood chemistry were checked at baseline and 2 weeks after indinavir. At baseline: lopinavir parameters (n=10) in BP were within expected levels. Median lopinavir trough concentrations (n=5) in CSF and SP were below the limit of detection (BLD) (i.e. <10 ng/mL) and 248 ng/mL (range 96-2777), respectively. After indinavir: lopinavir C(max), C(min) and AUC(0-12) increased by 9%, 46% and 20%, respectively (P<0.32, P<0.32 and P<0.20). In two of four men lopinavir concentrations in CSF were detectable at 27 and 29 ng/mL. Median SP lopinavir concentration was 655 ng/mL (20-2734). Median indinavir PK parameters were C(max) 3365 ng/mL (range 2130-5194), C(min) 293 ng/mL (14-766), T(max) 2.25 h (1-3), AUC(0-12) 22452 ng/mL.h (11243-33661), and t(1/2) 2.8 h (1.4-3.7). Median indinavir concentrations in CSF and SP were 39 ng/mL (21-86) and 592 ng/mL (96-983). Two of eight men who initially had detectable BP viral load (VL) became BLD (<50 copies/mL) after the addition of indinavir, and in 2/4 men with low-level viraemia in SP (BPVL BLD) their SPVL became BLD after addition of indinavir. Adding indinavir 400 mg twice daily to lopinavir/ritonavir-containing regimens did not significantly alter the median lopinavir PK parameters. However, wide interpatient variability in lopinavir concentrations was seen. In contrast plasma indinavir levels were >80 ng/mL in seven of eight plasma samples, and all CSF and semen samples collected.

  17. Evaluation of pharmacokinetic and pharmacodynamic parameters following single dose of sitagliptin in healthy Indian males.

    PubMed

    Sangle, Ganesh V; Patil, Mohan; Deshmukh, Nitin J; Shengule, Sushant A; Kamble, Shantibhushan; Vuppalavanchu, Kiran Kumar; Kale, Sushil; Baig, Mirza Layeeq Ahmed; Singh, Geetchandra; Shaikh, Javed; Tripathi, Jitendra; Aravindababu, P

    2018-05-01

    Sitagliptin, a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes, is reported to be more efficacious in Indian patients than non-Indian patient population. The objective of the study was to evaluate pharmacokinetic and pharmacodynamic (PK/PD) parameters of single-dose sitagliptin 100 mg (Januvia) in healthy Indian male participants. In a randomised, single-dose, open-label, three-treatment, three-period, three-sequence, crossover bioavailability study, 18 healthy male participants received single-dose of sitagliptin under fasted and fed conditions. PK parameters (C max , T max , AUC 0-∞ and t 1/2 ) were determined using Phoenix WinNonlin software. PD parameters [DPP-IV inhibition, active glucagon-like peptide-1 (GLP-1) and insulin] were determined using established methods. PK parameters expressed in mean (SD) were C max 491.7 (135.9) ng/mL; AUC 0-∞ 4256.1 (509.9) ng· hr/mL, T max 2.9 (1.0) hr and t 1/2 10.4 (3.0) hr. The weighted average (WA) plasma DPP-4 inhibition over 24 h was 89.6% and WA of plasma active GLP-1 over 2 h after standardised meal (geometric mean ratio) was 11.1 (9.9) pM/L which is two- to- four fold higher compared to that reported in other populations. The mean average (SD) AUC of plasma insulin over 2 h of standardised meal was 47.9 (24.9) μIU/mL. Although, there are differences in pharmacokinetic parameters, no clinically meaningful differences were observed with respect to DPP-IV inhibition between Indian and non-Indian population.

  18. Exposure Matching for Extrapolation of Efficacy in Pediatric Drug Development

    PubMed Central

    Mulugeta, Yeruk; Barrett, Jeffrey S.; Nelson, Robert; Eshete, Abel Tilahun; Mushtaq, Alvina; Yao, Lynne; Glasgow, Nicole; Mulberg, Andrew E.; Gonzalez, Daniel; Green, Dionna; Florian, Jeffry; Krudys, Kevin; Seo, Shirley; Kim, Insook; Chilukuri, Dakshina; Burckart, Gilbert J.

    2017-01-01

    During drug development, matching adult systemic exposures of drugs is a common approach for dose selection in pediatric patients when efficacy is partially or fully extrapolated. This is a systematic review of approaches used for matching adult systemic exposures as the basis for dose selection in pediatric trials submitted to the U.S. Food and Drug Administration (FDA) between 1998 and 2012. The trial design of pediatric pharmacokinetic (PK) studies and the pediatric and adult systemic exposure data were obtained from FDA publicly available databases containing reviews of pediatric trials. Exposure matching approaches that were used as the basis for pediatric dose selection were reviewed. The PK data from the adult and pediatric populations were used to quantify exposure agreement between the two patient populations. The main measures were the pediatric PK studies trial design elements and drug systemic exposures (adult and pediatric). There were 31 products (86 trials) with full or partial extrapolation of efficacy with an available PK assessment. Pediatric exposures had a range of mean Cmax and AUC ratios (pediatric/adult) of 0.63-4.19 and 0.36-3.60 respectively. Seven of the 86 trials (8.1%) had a pre-defined acceptance boundary used to match adult exposures. The key PK parameter was consistently predefined for antiviral and anti-infective products. Approaches to match exposure in children and adults varied across products. A consistent approach for systemic exposure matching and evaluating pediatric PK studies is needed to guide future pediatric trials. PMID:27040726

  19. A Multicenter, Randomized, Open-Label, Pharmacokinetics and Safety Study of Pantoprazole Tablets in Children and Adolescents Aged 6 Through 16 Years With GERD

    PubMed Central

    Ward, Robert M.; Kearns, Gregory L.; Tammara, Brinda; Bishop, Phyllis; O’Gorman, Molly A.; James, Laura P.; Katz, Mitchell H.; Maguire, Mary K.; Rath, Natalie; Meng, Xu; Comer, Gail M.

    2011-01-01

    SUMMARY Children with GERD may benefit from gastric acid suppression with proton pump inhibitors such as pantoprazole. Effective treatment with pantoprazole requires correct dosing and understanding of the drug’s kinetic profile in children. The aim of these studies was to characterize the pharmacokinetic (PK) profile of single and multiple doses of pantoprazole delayed-release tablets in pediatric patients with GERD aged ≥6 through 11 years (study 1) and 12 through 16 years (study 2). Patients were randomly assigned to receive pantoprazole 20 or 40 mg once daily. Plasma pantoprazole concentrations were obtained at intervals through 12 hours after the single dose, and at 2 and 4 hours after multiple doses for PK evaluation. PK parameters were derived by standard noncompartmental methods and examined as a function of both drug dose and patient age. Safety was also monitored. Pantoprazole PK was dose independent (when dose normalized) and similar toPK reported from adult studies. There was no evidence of accumulation with multiple dosing or reports of serious drug-associated adverse events. In children aged 6 to 16 years with GERD, currently available pantoprazole delayed-release tablets can be used to provide systemic exposure similar to that in adults. PMID:20852004

  20. Pharmacokinetics of sugammadex 16 mg/kg in healthy Chinese volunteers.

    PubMed

    de Kam, Pieter-Jan; Hou, Jie; Wang, Zaiqi; Lin, Wen Hong; van den Heuvel, Michiel

    2015-06-01

    Elimination of sugammadex occurs predominantly via the kidneys, with the majority of the drug excreted unchanged in the urine. To date, most studies with sugammadex have been performed in non-Asian populations. The objectives of this open-label study were to determine the pharmacokinetics (PK) and safety of single-dose sugammadex (16 mg/kg) in healthy Chinese adult volunteers. 12 Chinese subjects (6 male; 6 female) received intravenous sugammadex (16 mg/kg) as a 10-second bolus infusion. Blood samples were collected pre-sugammadex and at regular intervals up to 24 hours post-sugammadex for PK assessment. Safety was assessed via AEs, vital signs, electrocardiogram, and laboratory parameters. Following sugammadex 16 mg/kg infusion, peak sugammadex concentration was 197 μg/mL, clearance was 99.7 mL/min, and apparent volume of distribution at equilibrium was 10.5 L. Plasma sugammadex concentrations showed a polyexponential decline over time, with an overall geometric mean (CV%) terminal half-life of 145 minutes (17.9%) (139 minutes (17.7%) for males; 152 minutes (18.6%) for females). No influence of gender on the PK of sugammadex was observed. Three subjects experienced an adverse events (AE) (dysgeusia of mild intensity), which was considered possibly or probably related to sugammadex. There were no clinically significant changes in vital signs, electrocardiography or laboratory parameters. PK of sugammadex (16 mg/kg) was characterized in healthy Chinese subjects. Overall between-subject variability on clearance and apparent volume of distribution was ~ 10%. Sugammadex was generally well tolerated.

  1. Phase I dose-escalation and pharmacokinetic study (TED 11576) of cabazitaxel in Japanese patients with castration-resistant prostate cancer.

    PubMed

    Mukai, Hirofumi; Takahashi, Shunji; Nozawa, Masahiro; Onozawa, Yusuke; Miyazaki, Jun; Ohno, Keiji; Suzuki, Kazuhiro

    2014-04-01

    The purpose of the study is to analyze the pharmacokinetic (PK) profile of cabazitaxel and evaluate its safety and tolerability as a 1-h IV infusion every 3 weeks in Japanese patients with castration-resistant prostate cancer (CRPC). Seventeen patients were treated with cabazitaxel at doses of 20 and 25 mg/m(2) for PK analyses. Dose escalation was performed only in the absence of dose-limiting toxicity (DLT). The maximum tolerated dose (MTD) was the highest dose at which less than 33 % of the patients developed DLT. Cabazitaxel exhibited a triphasic elimination profile with a long terminal half-life of 116 ± 29.0 or 113 ± 28.0 h after IV infusion of 20 or 25 mg/m(2) cabazitaxel, respectively. The major differences in the PK parameters of cabazitaxel and docetaxel were cabazitaxel's fairly high clearance rate, representing approximately half the hepatic flow, and its large volume of distribution at steady-state conditions. No DLT was observed during Cycle 1. Mild-to-moderate hematological adverse events (AEs), including neutropenia, and other AEs typically associated with taxanes were observed; all AEs were manageable. Cabazitaxel at 25 mg/m(2) every 3 weeks was selected as the MTD in Japanese patients. The PK parameters of cabazitaxel in Japanese CRPC patients were comparable with those previously determined in Caucasian subjects. The safety and tolerability of cabazitaxel were also comparable in both ethnic populations.

  2. Model-based meta-analysis for comparing Vitamin D2 and D3 parent-metabolite pharmacokinetics.

    PubMed

    Ocampo-Pelland, Alanna S; Gastonguay, Marc R; Riggs, Matthew M

    2017-08-01

    Association of Vitamin D (D3 & D2) and its 25OHD metabolite (25OHD3 & 25OHD2) exposures with various diseases is an active research area. D3 and D2 dose-equivalency and each form's ability to raise 25OHD concentrations are not well-defined. The current work describes a population pharmacokinetic (PK) model for D2 and 25OHD2 and the use of a previously developed D3-25OHD3 PK model [1] for comparing D3 and D2-related exposures. Public-source D2 and 25OHD2 PK data in healthy or osteoporotic populations, including 17 studies representing 278 individuals (15 individual-level and 18 arm-level units), were selected using search criteria in PUBMED. Data included oral, single and multiple D2 doses (400-100,000 IU/d). Nonlinear mixed effects models were developed simultaneously for D2 and 25OHD2 PK (NONMEM v7.2) by considering 1- and 2-compartment models with linear or nonlinear clearance. Unit-level random effects and residual errors were weighted by arm sample size. Model simulations compared 25OHD exposures, following repeated D2 and D3 oral administration across typical dosing and baseline ranges. D2 parent and metabolite were each described by 2-compartment models with numerous parameter estimates shared with the D3-25OHD3 model [1]. Notably, parent D2 was eliminated (converted to 25OHD) through a first-order clearance whereas the previously published D3 model [1] included a saturable non-linear clearance. Similar to 25OHD3 PK model results [1], 25OHD2 was eliminated by a first-order clearance, which was almost twice as fast as the former. Simulations at lower baselines, following lower equivalent doses, indicated that D3 was more effective than D2 at raising 25OHD concentrations. Due to saturation of D3 clearance, however, at higher doses or baselines, the probability of D2 surpassing D3's ability to raise 25OHD concentrations increased substantially. Since 25OHD concentrations generally surpassed 75 nmol/L at these higher baselines by 3 months, there would be no expected clinical difference in the two forms.

  3. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  4. Relationship between the clinical efficacy and AUC/MIC of intravenous ciprofloxacin in Japanese patients with intraabdominal infections.

    PubMed

    Ohki, Emiko; Yamagishi, Yuka; Mikamo, Hiroshige

    2013-10-01

    The efficacy of fluoroquinolones (FQs) correlates with the pharmacokinetic/pharmacodynamic (PK-PD) parameter, AUC/MIC. To our knowledge, however, no prospective studies have reported the relationship between FQ efficacy and PK-PD parameters in intraabdominal infection; therefore, we prospectively investigated the relationship between the efficacy of intravenous ciprofloxacin (CPFX IV) and PK-PD parameters. The study included 16 patients diagnosed with peritonitis between 2006 and 2008: 14 patients infected with a single organism and 2 patients infected with more than one organism. Each patient was treated with CPFX IV (300 mg twice daily). The response rate was 56% (9 responders and 7 non-responders). Non-responders were infected with Escherichia coli, Pseudomonas aeruginosa, and Bacteroides fragilis (6 patients were infected with a single organism and 1 with more than one organism). Plasma drug concentrations were measured 1 h and 2 or 4 h after administration of CPFX IV. AUC for 24 h (AUC(0-24))/MIC values was calculated. The range of AUC(0-24)/MIC values in responders [95.3-3628.4 (geometric mean, 521.6)] was significantly different from that in non-responders [7.0-45.2 (geometric mean, 16.5)] (p = 0.001). The target AUC/MIC value of CPFX IV would be considered to be 45-95 in patients with peritonitis.

  5. The pharmacokinetics of letrozole: association with key body mass metrics.

    PubMed

    Jin, Seok-Joon; Jung, Jin Ah; Cho, Sang-Heon; Kim, Un-Jib; Choe, Sangmin; Ghim, Jong-Lyul; Noh, Yook-Hwan; Park, Hyun-Jung; Kim, Jung-Chul; Jung, Jin-A; Lim, Hyeong-Seok; Bae, Kyun-Seop

    2012-08-01

    To characterize the pharmacokinetics (PK) of letrozole by noncompartmental and mixed effect modeling analysis with the exploration of effect of body compositions on the PK. The PK data of 52 normal healthy male subjects with intensive PK sampling from two separate studies were included in this analysis. Subjects were given a single oral administration of 2.5 mg letrozole (Femara®), an antiestrogenic aromatase inhibitor used to treat breast cancer. Letrozole concentrations were measured using validated high-performance liquid chromatography with tandem mass spectrometry. PK analysis was performed using NONMEM® 7.2 with first-order conditional estimation with interaction method. The association of body composition (body mass index, soft lean mass, fat free mass, body fat mass), CYP2A6 genotype (*1/*1, *1/*4), and CYP3A5 genotype (*1/*1, *1/*3, *3/*3) with the PK of letrozole were tested. A two-compartment model with mixed first and zero order absorption and first order elimination best described the letrozole concentration-time profile. Body weight and body fat mass were significant covariates for central volume of distribution and peripheral volume of distribution (Vp), respectively. In another model built using more readily available body composition measures, body mass index was also a significant covariate of Vp. However, no significant association was shown between CYP2A6 and CYP3A5 genetic polymorphism and the PK of letrozole in this study. Our results indicate that body weight, body fat mass, body mass index are associated with the volume of distribution of letrozole. This study provides an initial step toward the development of individualized letrozole therapy based on body composition.

  6. Population Pharmacokinetics of Oral Baclofen in Pediatric Patients with Cerebral Palsy

    PubMed Central

    He, Yang; Brunstrom-Hernandez, Janice E.; Thio, Liu Lin; Lackey, Shellie; Gaebler-Spira, Deborah; Kuroda, Maxine M.; Stashinko, Elaine; Hoon, Alexander H.; Vargus-Adams, Jilda; Stevenson, Richard D.; Lowenhaupt, Stephanie; McLaughlin, John F.; Christensen, Ana; Dosa, Nienke P.; Butler, Maureen; Schwabe, Aloysia; Lopez, Christina; Roge, Desiree; Kennedy, Diane; Tilton, Ann; Krach, Linda E.; Lewandowski, Andrew; Dai, Hongying; Gaedigk, Andrea; Leeder, J. Steven; Jusko, William J.

    2014-01-01

    Objective To characterize the population pharmacokinetics (PK) of oral baclofen and assess impact of patient-specific covariates in children with cerebral palsy (CP) in order to support its clinical use. Subjects design Children (2-17 years of age) with CP received a dose of titrated oral baclofen from 2.5 mg 3 times a day to a maximum tolerated dose of up to 20 mg 4 times a day. PK sampling followed titration of 10-12 weeks. Serial R- and S-baclofen plasma concentrations were measured for up to 16 hours in 49 subjects. Population PK modeling was performed using NONMEM 7.1 (ICON PLC; Ellicott City, Maryland). Results R- and S-baclofen showed identical concentration-time profiles. Both baclofen enantiomers exhibited linear and dose/kg-proportional PK, and no sex differences were observed. Average baclofen terminal half-life was 4.5 hours. A 2-compartment PK model with linear elimination and transit absorption steps adequately described concentration-time profiles of both baclofen enantiomers. The mean population estimate of apparent clearance/F was 0.273 L/h/kg with 33.4% inter-individual variability (IIV), and the apparent volume of distribution (Vss/F) was 1.16 L/kg with 43.9% IIV. Delayed absorption was expressed by a mean transit time of 0.389 hours with 83.7% IIV. Body weight, a possible genetic factor, and age were determinants of apparent clearance in these children. Conclusion The PK of oral baclofen exhibited dose-proportionality and were adequately described by a 2-compartment model. Our population PK findings suggest that baclofen dosage can be based on body weight (2 mg/kg per day) and the current baclofen dose escalation strategy is appropriate in the treatment of children with CP older than 2 years of age. PMID:24607242

  7. Effects of CYP2D6 Status on Harmaline Metabolism, Pharmacokinetics and Pharmacodynamics, and a Pharmacogenetics-Based Pharmacokinetic Model

    PubMed Central

    Wu, Chao; Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2009-01-01

    Harmaline is a β-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (Vmax/Km) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CLint, μL/min/106 cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15 mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CLCYP2D6) and other mechanisms (CLother), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED50 and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations. PMID:19445902

  8. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid

    PubMed Central

    Rizk, Matthew L.; Lala, Mallika; Chavez‐Eng, Cynthia; Visser, Sandra A. G.; Kerbusch, Thomas; Danhof, Meindert; Rao, Gauri; van der Graaf, Piet H.

    2016-01-01

    Aims Several clinical trials have confirmed the therapeutic benefit of imipenem for treatment of lung infections. There is however no knowledge of the penetration of imipenem into the lung epithelial lining fluid (ELF), the site of action relevant for lung infections. Furthermore, although the plasma pharmacokinetics (PK) of imipenem has been widely studied, most studies have been based on selected patient groups. The aim of this analysis was to characterize imipenem plasma PK across populations and to quantify imipenem ELF penetration. Methods A population model for imipenem plasma PK was developed using data obtained from healthy volunteers, elderly subjects and subjects with renal impairment, in order to identify predictors for inter‐individual variability (IIV) of imipenem PK. Subsequently, a clinical study which measured plasma and ELF concentrations of imipenem was included in order to quantify lung penetration. Results A two compartmental model best described the plasma PK of imipenem. Creatinine clearance and body weight were included as subject characteristics predictive for IIV on clearance. Typical estimates for clearance, central and peripheral volume, and inter‐compartmental clearance were 11.5 l h–1, 9.37 l, 6.41 l, 13.7 l h–1, respectively (relative standard error (RSE) <8%). The distribution of imipenem into ELF was described using a time‐independent penetration coefficient of 0.44 (RSE 14%). Conclusion The identified lung penetration coefficient confirms the clinical relevance of imipenem for treatment of lung infections, while the population PK model provided insights into predictors of IIV for imipenem PK and may be of relevance to support dose optimization in various subject groups. PMID:26852277

  9. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid.

    PubMed

    van Hasselt, J G Coen; Rizk, Matthew L; Lala, Mallika; Chavez-Eng, Cynthia; Visser, Sandra A G; Kerbusch, Thomas; Danhof, Meindert; Rao, Gauri; van der Graaf, Piet H

    2016-06-01

    Several clinical trials have confirmed the therapeutic benefit of imipenem for treatment of lung infections. There is however no knowledge of the penetration of imipenem into the lung epithelial lining fluid (ELF), the site of action relevant for lung infections. Furthermore, although the plasma pharmacokinetics (PK) of imipenem has been widely studied, most studies have been based on selected patient groups. The aim of this analysis was to characterize imipenem plasma PK across populations and to quantify imipenem ELF penetration. A population model for imipenem plasma PK was developed using data obtained from healthy volunteers, elderly subjects and subjects with renal impairment, in order to identify predictors for inter-individual variability (IIV) of imipenem PK. Subsequently, a clinical study which measured plasma and ELF concentrations of imipenem was included in order to quantify lung penetration. A two compartmental model best described the plasma PK of imipenem. Creatinine clearance and body weight were included as subject characteristics predictive for IIV on clearance. Typical estimates for clearance, central and peripheral volume, and inter-compartmental clearance were 11.5 l h(-1) , 9.37 l, 6.41 l, 13.7 l h(-1) , respectively (relative standard error (RSE) <8%). The distribution of imipenem into ELF was described using a time-independent penetration coefficient of 0.44 (RSE 14%). The identified lung penetration coefficient confirms the clinical relevance of imipenem for treatment of lung infections, while the population PK model provided insights into predictors of IIV for imipenem PK and may be of relevance to support dose optimization in various subject groups. © 2016 The British Pharmacological Society.

  10. Target-mediated drug disposition and prolonged liver accumulation of a novel humanized anti-CD81 monoclonal antibody in cynomolgus monkeys

    PubMed Central

    Vexler, Vladimir; Yu, Li; Pamulapati, Chandrasena; Garrido, Rosario; Grimm, Hans Peter; Sriraman, Priya; Bohini, Sandhya; Schraeml, Michael; Singh, Usha; Brandt, Michael; Ries, Stefan; Ma, Han; Klumpp, Klaus; Ji, Changhua

    2013-01-01

    CD81 is an essential receptor for hepatitis C virus (HCV). K21 is a novel high affinity anti-CD81 antibody with potent broad spectrum anti-HCV activity in vitro. The pharmacokinetics (PK), pharmacodynamics and liver distribution of K21 were characterized in cynomolgus monkeys after intravenous (i.v.) administration of K21. Characteristic target-mediated drug disposition (TMDD) was shown based on the PK profile of K21 and a semi-mechanistic TMDD model was used to analyze the data. From the TMDD model, the estimated size of the total target pool at baseline (Vc • Rbase) is 16 nmol/kg and the estimated apparent Michaelis-Menten constant (KM) is 4.01 nM. A simulation using estimated TMDD parameters indicated that the number of free receptors remains below 1% for at least 3 h after an i.v. bolus of 7 mg/kg. Experimentally, the availability of free CD81 on peripheral lymphocytes was measured by immunostaining with anti-CD81 antibody JS81. After K21 administration, a dose- and time-dependent reduction in free CD81 on peripheral lymphocytes was observed. Fewer than 3% of B cells could bind JS81 3 h after a 7 mg/kg dose. High concentrations of K21 were found in liver homogenates, and the liver/serum ratio of K21 increased time-dependently and reached ~160 at 168 h post-administration. The presence of K21 bound to hepatocytes was confirmed by immunohistochemistry. The fast serum clearance of K21 and accumulation in the liver are consistent with TMDD. The TMDD-driven liver accumulation of the anti-CD81 antibody K21 supports the further investigation of K21 as a therapeutic inhibitor of HCV entry. PMID:23924796

  11. A program for computing the prediction probability and the related receiver operating characteristic graph.

    PubMed

    Jordan, Denis; Steiner, Marcel; Kochs, Eberhard F; Schneider, Gerhard

    2010-12-01

    Prediction probability (P(K)) and the area under the receiver operating characteristic curve (AUC) are statistical measures to assess the performance of anesthetic depth indicators, to more precisely quantify the correlation between observed anesthetic depth and corresponding values of a monitor or indicator. In contrast to many other statistical tests, they offer several advantages. First, P(K) and AUC are independent from scale units and assumptions on underlying distributions. Second, the calculation can be performed without any knowledge about particular indicator threshold values, which makes the test more independent from specific test data. Third, recent approaches using resampling methods allow a reliable comparison of P(K) or AUC of different indicators of anesthetic depth. Furthermore, both tests allow simple interpretation, whereby results between 0 and 1 are related to the probability, how good an indicator separates the observed levels of anesthesia. For these reasons, P(K) and AUC have become popular in medical decision making. P(K) is intended for polytomous patient states (i.e., >2 anesthetic levels) and can be considered as a generalization of the AUC, which was basically introduced to assess a predictor of dichotomous classes (e.g., consciousness and unconsciousness in anesthesia). Dichotomous paradigms provide equal values of P(K) and AUC test statistics. In the present investigation, we introduce a user-friendly computer program for computing P(K) and estimating reliable bootstrap confidence intervals. It is designed for multiple comparisons of the performance of depth of anesthesia indicators. Additionally, for dichotomous classes, the program plots the receiver operating characteristic graph completing information obtained from P(K) or AUC, respectively. In clinical investigations, both measures are applied for indicator assessment, where ambiguous usage and interpretation may be a consequence. Therefore, a summary of the concepts of P(K) and AUC including brief and easily understandable proof of their equality is presented in the text. The exposure introduces readers to the algorithms of the provided computer program and is intended to make standardized performance tests of depth of anesthesia indicators available to medical researchers.

  12. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion

    PubMed Central

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. PMID:27218674

  13. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.

    PubMed

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml.

  14. Nicotine and Cotinine Exposure from Electronic Cigarettes: A Population Approach

    PubMed Central

    de Mendizábal, Nieves Vélez; Jones, David R.; Jahn, Andy; Bies, Robert R.; Brown, Joshua W.

    2015-01-01

    Background and Objectives Electronic cigarettes (e-cigarettes) are a recent technology that has gained rapid acceptance. Still, little is known about them in terms of safety and effectiveness. A basic question is how effectively they deliver nicotine, however the literature is surprisingly unclear on this point. Here, a population pharmacokinetic (PK) model was developed for nicotine and its major metabolite cotinine with the aim to provide a reliable framework for the simulation of nicotine and cotinine concentrations over time, based solely on inhalation airflow recordings and individual covariates (i.e. weight and breath carbon monoxide CO levels). Methods This study included 10 adults self-identified as heavy smokers (at least one pack per day). Plasma nicotine and cotinine concentrations were measured at regular 10-minute intervals for 90 minutes while human subjects inhaled nicotine vapor from a modified e-cigarette. Airflow measurements were recorded every 200 milliseconds throughout the session. A population PK model for nicotine and cotinine was developed based on previously published PK parameters and the airflow recordings. All the analyses were performed with the nonlinear mixed-effect modelling software NONMEM 7.2. Results The results show that e-cigarettes deliver nicotine effectively, although the pharmacokinetic profiles are lower than those achieved with regular cigarettes. Our PK model effectively predicts plasma nicotine and cotinine concentrations from the inhalation volume, and initial breath CO. Conclusion E-cigarettes are effective at delivering nicotine. This new PK model of e-cigarette usage might be used for pharmacodynamic analysis where the PK profiles are not available. PMID:25503588

  15. Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 1: comparison of uniresponse and multiresponse designs using PopDes.

    PubMed

    Chenel, Marylore; Bouzom, François; Aarons, Leon; Ogungbenro, Kayode

    2008-12-01

    To determine the optimal sampling time design of a drug-drug interaction (DDI) study for the estimation of apparent clearances (CL/F) of two co-administered drugs (SX, a phase I compound, potentially a CYP3A4 inhibitor, and MDZ, a reference CYP3A4 substrate) without any in vivo data using physiologically based pharmacokinetic (PBPK) predictions, population PK modelling and multiresponse optimal design. PBPK models were developed with AcslXtreme using only in vitro data to simulate PK profiles of both drugs when they were co-administered. Then, using simulated data, population PK models were developed with NONMEM and optimal sampling times were determined by optimizing the determinant of the population Fisher information matrix with PopDes using either two uniresponse designs (UD) or a multiresponse design (MD) with joint sampling times for both drugs. Finally, the D-optimal sampling time designs were evaluated by simulation and re-estimation with NONMEM by computing the relative root mean squared error (RMSE) and empirical relative standard errors (RSE) of CL/F. There were four and five optimal sampling times (=nine different sampling times) in the UDs for SX and MDZ, respectively, whereas there were only five sampling times in the MD. Whatever design and compound, CL/F was well estimated (RSE < 20% for MDZ and <25% for SX) and expected RSEs from PopDes were in the same range as empirical RSEs. Moreover, there was no bias in CL/F estimation. Since MD required only five sampling times compared to the two UDs, D-optimal sampling times of the MD were included into a full empirical design for the proposed clinical trial. A joint paper compares the designs with real data. This global approach including PBPK simulations, population PK modelling and multiresponse optimal design allowed, without any in vivo data, the design of a clinical trial, using sparse sampling, capable of estimating CL/F of the CYP3A4 substrate and potential inhibitor when co-administered together.

  16. Population Pharmacokinetics of Vancomycin in Patients Undergoing Allogeneic Hematopoietic Stem-Cell Transplantation.

    PubMed

    Okada, Akira; Kariya, Misato; Irie, Kei; Okada, Yutaka; Hiramoto, Nobuhiro; Hashimoto, Hisako; Kajioka, Ryosuke; Maruyama, Chika; Kasai, Hidefumi; Hamori, Mami; Nishimura, Asako; Shibata, Nobuhito; Fukushima, Keizo; Sugioka, Nobuyuki

    2018-05-15

    Vancomycin is a commonly used antimicrobial agent for patients undergoing allogeneic hematopoietic stem-cell transplantation (allo-HSCT). Vancomycin has large inter- and intraindividual pharmacokinetic variability, which is mainly described by renal function; various studies have indicated that vancomycin pharmacokinetics are altered in special populations. However, little is known regarding vancomycin pharmacokinetics in patients undergoing allo-HSCT. Therefore, we aimed to develop a population pharmacokinetic (PopPK) model of vancomycin in patients undergoing allo-HSCT for effective and safe antimicrobial therapy and to develop a vancomycin dosing nomogram for a vancomycin optimal-dosing strategy. In total, 285 observations from 95 patients undergoing allo-HSCT were available. The final PopPK parameter estimates were central volume of distribution (V1, L), 39.2; clearance (L/h), 4.25; peripheral volume of distribution (V2, L), 56.1; and intercompartmental clearance (L/h), 1.95. The developed vancomycin model revealed an increase in V1 and V2 compared with those in the general population that consisted of patients with methicillin-resistant Staphylococcus aureus. Moreover, serum creatinine was reduced because of an increase in the plasma fraction because of destruction of hematopoietic stem cells accompanying allo-HSCT pretreatment, suggesting that the Cockcroft-Gault equation-based creatinine clearance value was overestimated. To our knowledge, this is the first PopPK study to develop a dosing nomogram for vancomycin in patients undergoing allo-HSCT and was proven to be useful in optimizing the dosage and dosing interval of vancomycin in these patients. This strategy will provide more useful information for vancomycin therapy with an evidence-based dose adjustment. © 2018, The American College of Clinical Pharmacology.

  17. Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2011-08-01

    In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.

  18. Population pharmacokinetics of micafungin in ICU patients with sepsis and mechanical ventilation.

    PubMed

    Jullien, Vincent; Azoulay, Elie; Schwebel, Carole; Le Saux, Thomas; Charles, Pierre Emmanuel; Cornet, Muriel; Souweine, Bertrand; Klouche, Kadda; Jaber, Samir; Trouillet, Jean-Louis; Bruneel, Fabrice; Cour, Martin; Cousson, Joel; Meziani, Ferhat; Gruson, Didier; Paris, Adeline; Darmon, Michael; Garrouste-Orgeas, Maité; Navellou, Jean-Christophe; Foucrier, Arnaud; Allaouchiche, Bernard; Das, Vincent; Gangneux, Jean-Pierre; Ruckly, Stéphane; Wolff, Michel; Timsit, Jean-François

    2017-01-01

    To identify the factors associated with the interindividual pharmacokinetic (PK) variability of micafungin and to evaluate the probability of reaching the previously determined PK/pharmacodynamic efficacy thresholds (AUC/MIC >5000 for non-parapsilosis Candida sp. and ≥285 for Candida parapsilosis) with the recommended 100 mg daily dose in ICU patients with sepsis and mechanical ventilation. One hundred patients were included and 436 concentrations were available for PK analysis performed with NONMEM software. PTA was determined by Monte Carlo simulations. Micafungin obeyed a two-compartment model with first-order elimination from the central compartment. Mean parameter estimates (percentage interindividual variability) were 1.34 L/h (34%) for clearance (CL), 11.80 L (38%) and 7.68 L (39%) for central (Vc) and peripheral (Vp) distribution volumes, respectively, and 4.67 L/h (37%) for distribution clearance. CL, Vc and Vp increased by 14% when the albumin level was ≤25 g/L and CL decreased by 25% when SOFA score was ≥10. Body weight was related to CL, Vc and Vp by allometric models. PTA was ≥90% in Candida albicans and Candida glabrata infections, except when the MIC was ≥0.015 mg/L, and ranged between 0% and 40% for C. parapsilosis infections with MIC ≥0.5 mg/L. A possible increase in the dose should be evaluated for infections due to C. parapsilosis and for infections due to C. albicans and C. glabrata with MICs ≥0.015 mg/L. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Pharmacokinetics of concentrated naloxone nasal spray for opioid overdose reversal: Phase I healthy volunteer study.

    PubMed

    McDonald, Rebecca; Lorch, Ulrike; Woodward, Jo; Bosse, Björn; Dooner, Helen; Mundin, Gill; Smith, Kevin; Strang, John

    2018-03-01

    Take-home naloxone can prevent death from heroin/opioid overdose, but pre-provision is difficult because naloxone is usually given by injection. Non-injectable alternatives, including naloxone nasal sprays, are currently being developed. To be effective, the intranasal (i.n.) spray dose must be adequate but not excessive, and early absorption must be comparable to intramuscular (i.m.) injection. We report on the pharmacokinetics (PK) of a specially produced concentrated novel nasal spray. The specific aims were to: (1) estimate PK profiles of i.n. naloxone, (2) compare early systemic exposure with i.n. versus i.m. naloxone and (3) estimate i.n. bioavailability. Open-label, randomized, five-way cross-over PK study. Clinical trials facility (Croydon, UK). Thirty-eight healthy volunteers (age 20-54 years; 11 female). Three doses of i.n. (1 mg/0.1 ml, 2 mg/0.1 ml, 4 mg/0.2 ml) versus 0.4 mg i.m. (reference) and 0.4 mg intravenous (i.v.) naloxone. Regular blood samples were taken, with high-frequency sampling during the first 15 minutes to capture early systemic exposure. PK parameters were determined from plasma naloxone concentrations. Exploratory analyses involved simulation of repeat administration. Mean peak concentration (C max ) values for 1 mg (1.51 ng/ml), 2 mg (2.87 ng/ml) and 4 mg (6.02 ng/ml) i.n. exceeded 0.4 mg i.m. (1.27 ng/ml) naloxone. All three i.n. doses rapidly achieved plasma levels > 50% of peak concentrations (T50%) by 10 minutes, peaking at 15-30 minutes (T max ). For comparison, the i.m. reference reached T max at 10 minutes. Mean bioavailability was 47-51% for i.n. relative to i.m. naloxone. Simulation of repeat dosing (2 × 2 mg i.n. versus 5 × 0.4 mg i.m. doses) at 3-minute intervals showed that comparable plasma naloxone concentrations would be anticipated. Concentrated 2 mg intranasal naloxone is well-absorbed and provides early exposure comparable to 0.4 mg intramuscular naloxone, following the 0.4 mg intramuscular curve closely in the first 10 minutes post-dosing and maintaining blood levels above twice the intramuscular reference for the next 2 hours. © 2017 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  20. Clinical Pharmacokinetics and Pharmacodynamics of Atezolizumab in Metastatic Urothelial Carcinoma.

    PubMed

    Stroh, M; Winter, H; Marchand, M; Claret, L; Eppler, S; Ruppel, J; Abidoye, O; Teng, S L; Lin, W T; Dayog, S; Bruno, R; Jin, J; Girish, S

    2017-08-01

    Atezolizumab, a humanized immunoglobulin G1 (IgG1) monoclonal antibody targeting human programmed death-ligand 1 (PD-L1), is US Food and Drug Administration (FDA) approved in metastatic urothelial carcinoma (MUC) and is being investigated in various malignancies. This analysis based upon 906 patients from two phase I and one phase II MUC studies, is the first report of the clinical pharmacokinetics (PK) and pharmacodynamics (PD) of atezolizumab. Atezolizumab exhibited linear PK over a dose range of 1-20 mg/kg, including the labeled 1,200 mg dose. The clearance, volume of distribution, and terminal half-life estimates from population pharmacokinetic (PopPK) analysis of 0.200 L/day, 6.91 L, and 27 days, respectively, were as expected for an IgG1. Exposure-response analyses did not identify statistically significant relationships with either objective response rate or adverse events of grades 3-5 or of special interest. None of the statistically significant covariates from PopPK (body weight, gender, antitherapeutic antibody, albumin, and tumor burden) would require dose adjustment. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  1. In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats.

    PubMed

    Vaghela, Madhuri; Sahu, Niteshkumar; Kharkar, Prashant; Pandita, Nancy

    2017-12-25

    Gymnema sylvestre (GS) is a medicinal herb used for diabetes mellitus (DM). Herbs are gaining popularity as medicines in DM for its safety purpose. The aim of the present study was to evaluate in vivo pharmacokinetic (PK) interaction between allopathic drugs tolbutamide (TOLBU), amlodipine (AMLO), and phenacetin (PHENA) at low (L) and high (H) doses with ethanolic extract (EL) from GS. EL was extracted and subjected to TLC, total triterpenoid content (19.76 ± 0.02 W/W) and sterol content (0.1837 ± 0.0046 W/W) estimation followed by identification of phytoconstituents using HRLC-MS and GC-MS. PK interaction study with CYP2C9, CYP3A4 and CYP1A2 enzymes were assessed using TOLBU, AMLO and PHENA respectively to index cytochrome (CYP) mediated interaction in rats after concomitant administration of EL extract (400 mg/kg) from GS for 7 days. The rats were divided into four groups for each PK study where, group I and II were positive control for low and high dose of test drugs (CYP substrates) while group II and IV were orally administered EL. The PK study result of PHENA indicated that area under the plasma concentration-time curve (AUC 0-24 ) was significantly (P < 0.0001) increased by 1.4 (L) and 1.3-fold (H), plasma concentration (C max ) was significantly (P < 0.001) increased by 1.6 (L) and 1.4-fold (H). Whereas for TOLBU; clearance rate (CL) was significantly (P < 0.0001) decreased by 2.4 (L) and 2.3-fold (H), C max, was significantly (P < 0.001) decreased by 26.5% (L) and 50.4% (H) and AUC 0-24 was significantly (P < 0.0001) decreased by 59.8% (L) and 57.5% (H). Thus, EL is seen to be interacting with CYP1A2 by inhibiting its metabolic activity. HRLC-MS and GC-MS helped identify the presence of gymnemic acid (GA), triterpenoids and steroids in EL which could be the reason for PK interaction of CYP1A2 and CYP2C9. Also, in silico structure based site of metabolism study showed Fe accessibility and intrinsic activity for GA-IV, GA-VI, GA-VII and GA-X with CYP2C9. PK parameters of AMLO were not significantly affected by pre-treatment of EL. Thereby our findings indicate that co-administration of GS with drugs that are metabolized by CYP2C9 and CYP1A2 could lead to potential HDI. Copyright © 2017. Published by Elsevier B.V.

  2. Pharmacokinetics, Microbial Response, and Pulmonary Outcomes of Multidose Intravenous Azithromycin in Preterm Infants at Risk for Ureaplasma Respiratory Colonization

    PubMed Central

    Merchan, L. Marcela; Hassan, Hazem E.; Terrin, Michael L.; Waites, Ken B.; Kaufman, David A.; Ambalavanan, Namasivayam; Donohue, Pamela; Dulkerian, Susan J.; Schelonka, Robert; Magder, Laurence S.; Shukla, Sagar; Eddington, Natalie D.

    2014-01-01

    The study objectives were to refine the population pharmacokinetics (PK) model, determine microbial clearance, and assess short-term pulmonary outcomes of multiple-dose azithromycin treatment in preterm infants at risk for Ureaplasma respiratory colonization. Fifteen subjects (7 of whom were Ureaplasma positive) received intravenous azithromycin at 20 mg/kg of body weight every 24 h for 3 doses. Azithromycin concentrations were determined in plasma samples obtained up to 168 h post-first dose by using a validated liquid chromatography-tandem mass spectrometry method. Respiratory samples were obtained predose and at three time points post-last dose for Ureaplasma culture, PCR, antibiotic susceptibility testing, and cytokine concentration determinations. Pharmacokinetic data from these 15 subjects as well as 25 additional subjects (who received either a single 10-mg/kg dose [n = 12] or a single 20-mg/kg dose [n = 13]) were analyzed by using a nonlinear mixed-effect population modeling (NONMEM) approach. Pulmonary outcomes were assessed at 36 weeks post-menstrual age and 6 months adjusted age. A 2-compartment model with all PK parameters allometrically scaled on body weight best described the azithromycin pharmacokinetics in preterm neonates. The population pharmacokinetics parameter estimates for clearance, central volume of distribution, intercompartmental clearance, and peripheral volume of distribution were 0.15 liters/h · kg0.75, 1.88 liters · kg, 1.79 liters/h · kg0.75, and 13 liters · kg, respectively. The estimated area under the concentration-time curve over 24 h (AUC24)/MIC90 value was ∼4 h. All posttreatment cultures were negative, and there were no drug-related adverse events. One Ureaplasma-positive infant died at 4 months of age, but no survivors were hospitalized for respiratory etiologies during the first 6 months (adjusted age). Thus, a 3-day course of 20 mg/kg/day intravenous azithromycin shows preliminary efficacy in eradicating Ureaplasma spp. from the preterm respiratory tract. PMID:25385115

  3. Screening of Catalyst and Important Variable for The Esterification of Acrylic Acid with 2 Ethylhexanol

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A. A.; Chin, S. Y.

    2017-06-01

    The global demand of 2-ethylhexyl acrylate (2EHA) market has witnessed a significant growth in the past few years and this growth is anticipated to increase in the coming years. 2EHA is one of the basic organic building blocks that mainly used in the production of coatings, adhesives, superabsorbents, thickeners and plastic additives. Homogenous acid-catalysed esterification of acrylic acid (AA) with 2-ethylhexanol (2EH) is commonly used for the production of 2EHA. The homogeneous catalysts such as sulfuric and para-toluene sulfonic acid have resulted the costly and complicated downstream process that generates acidic, corrosive and non-environmental friendly waste. Therefore, it is importance to develop a cheaper process that employing heterogeneous catalysts and alternative raw material from wastewater containing acrylic acid. In this research, the study for the esterification of AA with 2EH catalysed by ion-exchange resin was conducted. The best sulfonic acid functional cation-exchange resin among SK104, SK1B, PK208, PK216, PK228, RCP145, and RCP160 was screened. PK208 outperformed the other resins and it was used subsequently in the parametric studies. The effect of important parameters (initial concentration of acrylic acid (AA), temperature, molar ratio of reactant (AA and 2EH), catalyst loading, and polymerisation inhibitor loading) was studied using 2 factorial design to determine the significant parameters to the esterification. It was found that the initial concentration of AA and temperature were most significantly affecting the esterification of AA with 2EH.

  4. Transplacental Passage of Acetaminophen in Term Pregnancy.

    PubMed

    Nitsche, Joshua F; Patil, Avinash S; Langman, Loralie J; Penn, Hannah J; Derleth, Douglas; Watson, William J; Brost, Brian C

    2017-05-01

    Objective  The objective of this study was to determine the maternal and fetal pharmacokinetic (PK) profiles of acetaminophen after administration of a therapeutic oral dose. Study Design  After obtaining Institutional Review Board approval and their written informed consent, pregnant women were given a single oral dose (1,000 mg) of acetaminophen upon admission for scheduled cesarean delivery. Maternal venous blood and fetal cord blood were obtained at the time of delivery and acetaminophen levels were measured using gas chromatography-mass spectroscopy. PK parameters were calculated by noncompartmental analysis. Nonparametric correlation of maternal/fetal acetaminophen levels and PK curves were calculated. Results  In this study, 34 subjects were enrolled (median, 32 years; range, 25-39 years). The median maternal weight was 82 kg (range, 62-100 kg). All but two subjects were delivered beyond 39 weeks' gestation. The median newborn birth weight was 3,590 g (interquartile range, 3,403-3,848 g). Noncompartmental analysis described similar PK parameters in the maternal ( T 1/2 , 84 minutes; apparent clearance [Cl/F], 28.8 L/h; apparent volume of distribution [V d /F], 57.5 L) and fetal compartments ( T 1/2 , 82 minutes; Cl/F, 31.2 L/h; V d /F, 61.2 L). Paired maternal/fetal acetaminophen levels were highly correlated ( p  < 0.0001). Conclusion  Fetal acetaminophen PKs in the fetus parallels that in the mother suggesting that placental transfer is flow limited. Maternal acetaminophen levels can be used as a surrogate for fetal exposure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Effects of Obesity and Leptin Deficiency on Morphine Pharmacokinetics in a Mouse Model.

    PubMed

    Dalesio, Nicholas M; Hendrix, Craig W; McMichael, Douglas Hale; Thompson, Carol B; Lee, Carlton K K; Pho, Huy; Arias, Rafael S; Lynn, Rachael Rzasa; Galinkin, Jeffrey; Yaster, Myron; Brown, Robert H; Schwartz, Alan R

    2016-12-01

    Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18.3; 95% CI: 2.8-33.7). When leptin was replaced in ob/ob mice, PK parameters began to approach DIO and WT levels. LR compared with ob/ob mice had significant decreases in AUC150 (MD: -779.9; 95% CI: -1229.8 to -330), CMAX (MD: -6.1; 95% CI: -11.4 to -0.9), and T1/2 (MD: -19; 95% CI: -35.1 to -2.8). Metabolism increased with LR, with LR mice having a greater M3G-to-morphine ratio compared with DIO (MD: 5.3; 95% CI: 0.3-10.4). Systemic effects associated with obesity decrease morphine metabolism and excretion. A previous study from our laboratory demonstrated that obesity and leptin deficiency decrease the sensitivity of central respiratory control centers to carbon dioxide. Obesity and leptin deficiency substantially decreased morphine metabolism and clearance, and replacing leptin attenuated the PK changes associated with leptin deficiency, suggesting leptin has a direct role in morphine metabolism.

  6. Population Pharmacokinetics and Pharmacodynamics of Dexmedetomidine in Children Undergoing Ambulatory Surgery.

    PubMed

    Pérez-Guillé, María-Gabriela; Toledo-López, Alejandra; Rivera-Espinosa, Liliana; Alemon-Medina, Radames; Murata, Chiharu; Lares-Asseff, Ismael; Chávez-Pacheco, Juan Luis; Gómez-Garduño, Josefina; Zamora Gutiérrez, Ana-Lilia; Orozco-Galicia, Claudia; Ramírez-Morales, Karina; Lugo-Goytia, Gustavo

    2018-05-17

    Dexmedetomidine (DEX) is an α-2 adrenergic agonist with sedative and analgesic properties. Although not approved for pediatric use by the Food and Drug Administration, DEX is increasingly used in pediatric anesthesia and critical care. However, very limited information is available regarding the pharmacokinetics of DEX in children. The aim of this study was to investigate DEX pharmacokinetics and pharmacodynamics (PK-PD) in Mexican children 2-18 years of age who were undergoing outpatient surgical procedures. Thirty children 2-18 years of age with American Society of Anesthesiologists physical status score of I/II were enrolled in this study. DEX (0.7 µg/kg) was administered as a single-dose intravenous infusion. Venous blood samples were collected, and plasma DEX concentrations were analyzed with a combination of high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry. Population PK-PD models were constructed using the Monolix program. A 2-compartment model adequately described the concentration-time relationship. The parameters were standardized for a body weight of 70 kg by using an allometric model. Population parameters estimates were as follows: mean (between-subject variability): clearance (Cl) (L/h × 70 kg) = 20.8 (27%); central volume of distribution (V1) (L × 70 kg) = 21.9 (20%); peripheral volume of distribution (V2) (L × 70 kg) = 81.2 (21%); and intercompartmental clearance (Q) (L/h × 70 kg) = 75.8 (25%). The PK-PD model predicted a maximum mean arterial blood pressure reduction of 45% with an IC50 of 0.501 ng/ml, and a maximum heart rate reduction of 28.9% with an IC50 of 0.552 ng/ml. Our results suggest that in Mexican children 2-18 years of age with American Society of Anesthesiologists score of I/II, the DEX dose should be adjusted in accordance with lower DEX clearance.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  7. Altered disposition and effect of lerisetron in rats with elevated alpha 1-acid glycoprotein levels.

    PubMed

    Jauregizar, N; Calvo, R; Suarez, E; Quintana, A; Raczka, E; Lukas, J C

    2001-06-01

    To examine the effect of changes in plasma alpha1-acid glycoprotein (AAG) levels on the pharmacokinetics (PK) and pharmacodynamics (PD) of lerisetron, a novel serotonin 5-HT3 receptor antagonist, in the rat. After subcutaneous administration of turpentine oil, AAG was significantly elevated compared with controls. The PK of unchanged lerisetron (UL; high-performance liquid chromatography with radioactivity monitoring) and total lerisetron (TL; unchanged + changed, scintillation counting) was characterized post intravenous (i.v.) 14C lerisetron (50 microg/kg) in control and turpentine oil pretreated rats. The PK (0-180 min) was described by a two-compartmental model. Protein binding of lerisetron in vitro was measured using an ultrafiltration technique. The effect of lerisetron (5 microg/kg, i.v.) over 180 min was measured in anesthetized rats (control and pretreated) with the Bezold-Jarisch reflex (inhibition of bradycardia after 16 microg/kg serotonin i.v.) as the endpoint. PD parameters were estimated by sigmoid Emax models. The unbound fraction was significantly diminished in pretreated rats (mean +/- SEM) (6.60 +/- 1.23% vs. control 14.4 +/- 1.40%, P < 0.05). Volume of distribution (V) and clearance for UL and TL were significantly decreased when compared to the controls (P < 0.0001 for UL and P < 0.05 for TL). Plasma clearance based on unbound concentration for UL did not differ between groups but the unbound V and steady-state unbound V remained decreased (P < 0.05 and P < 0.0001). Pretreated rats showed a significantly diminished drug effect: the area under the E-t curve over 180 min was (mean +/- SEM) 5,189 +/- 657.7 in control animals vs. 3,486 +/- 464.4 in the pretreated group (P < 0.05). The EC50 (concentration at half maximum effect) for UL and TL were increased in pretreated rats and were not compensated when the unbound concentration was used. An increase in AAG causes alterations in the PK and PD of lerisetron, and because this is not compensated with the unbound concentration, we suggest that mechanisms not linked to protein binding may be involved.

  8. Consistent interannual changes in glacier mass balance and their relationship with climate variation on the periphery of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyu; Yi, Shuang; Sun, Wenke

    2018-07-01

    Different observations regarding glacier mass balance on the Tibetan Plateau remain at odds with one another. Combining satellite gravity data with laser altimetry, we estimated consistent interannual changes in glacier mass in the Nyenchen Tanglha (NT), Himalaya (HM) and Pamir-Karakoram (PK) ranges. Reconciled mass budgets and their one standard deviation errors are presented for each subregion. The total for NT, HM and PK is -23 ± 5 Gt yr-1 based on satellite gravity and -20 ± 6 Gt yr-1 based on laser altimetry over the period 2003-2008. Over a longer temporal span (2003-2015), the rates of glacier mass loss decreased towards the northwest, with values of -0.89 ± 0.15, -0.78 ± 0.11 and -0.11 ± 0.05 mwe yr-1 (metre water-equivalent change) for the NT, HM and PK, respectively. However, at shorter time intervals there have also been periods of accumulation. For example, the PK glaciers gained mass over 2003-2005 and 2009-2011, mainly owing to high precipitation. Glaciers in the HM and NT had more severe mass losses than those in the PK, especially in 2009 and 2012. Owing, perhaps, to their unique glacier accumulation regimes, only if low temperature and high precipitation occur in the same year do glaciers in the HM and NT gain mass or even stop losing mass. These interannual fluctuations and accelerating losses in the PK and HM glaciers suggest that mass changes are not well described by rate alone.

  9. Pharmacokinetics of (synthetic) cannabinoids in pigs and their relevance for clinical and forensic toxicology.

    PubMed

    Schaefer, Nadine; Wojtyniak, Jan-Georg; Kettner, Mattias; Schlote, Julia; Laschke, Matthias W; Ewald, Andreas H; Lehr, Thorsten; Menger, Michael D; Maurer, Hans H; Schmidt, Peter H

    2016-06-24

    Synthetic cannabinoids (SCs) are gaining increasing importance in clinical and forensic toxicology. They are consumed without any preclinical safety studies. Thus, controlled human pharmacokinetic (PK) studies are not allowed, although being relevant for interpretation of analytical results in cases of misuse or poisoning. As alternative, in a controlled animal experiment, six pigs per drug received a single intravenous dose of 200μg/kg BW each of Δ(9)-tetrahydrocannabinol (THC), 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210), or 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4). In addition, six pigs received a combination of the three drugs with the identical dose each. The drugs were determined in serum using LC-MS/MS. A population (pop) PK analysis revealed that a three-compartment model described best the PK data of all three cannabinoids. Central volumes of distribution were estimated at 0.29L/kg, 0.20L/kg, and 0.67L/kg for THC, JWH-210, and RCS-4, respectively. Clearances were 0.042L/min/kg, 0.048L/min/kg, and 0.093L/min/kg for THC, JWH-210, and RCS-4, respectively. The popPK THC pig model was upscaled to humans using allometric techniques. Comparison with published human data revealed that the concentration-time profiles could successfully be predicted. These findings indicate that pigs in conjunction with PK modeling technique may serve as a tool for prediction of human PK of SCs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. gPKPDSim: a SimBiology®-based GUI application for PKPD modeling in drug development.

    PubMed

    Hosseini, Iraj; Gajjala, Anita; Bumbaca Yadav, Daniela; Sukumaran, Siddharth; Ramanujan, Saroja; Paxson, Ricardo; Gadkar, Kapil

    2018-04-01

    Modeling and simulation (M&S) is increasingly used in drug development to characterize pharmacokinetic-pharmacodynamic (PKPD) relationships and support various efforts such as target feasibility assessment, molecule selection, human PK projection, and preclinical and clinical dose and schedule determination. While model development typically require mathematical modeling expertise, model exploration and simulations could in many cases be performed by scientists in various disciplines to support the design, analysis and interpretation of experimental studies. To this end, we have developed a versatile graphical user interface (GUI) application to enable easy use of any model constructed in SimBiology ® to execute various common PKPD analyses. The MATLAB ® -based GUI application, called gPKPDSim, has a single screen interface and provides functionalities including simulation, data fitting (parameter estimation), population simulation (exploring the impact of parameter variability on the outputs of interest), and non-compartmental PK analysis. Further, gPKPDSim is a user-friendly tool with capabilities including interactive visualization, exporting of results and generation of presentation-ready figures. gPKPDSim was designed primarily for use in preclinical and translational drug development, although broader applications exist. gPKPDSim is a MATLAB ® -based open-source application and is publicly available to download from MATLAB ® Central™. We illustrate the use and features of gPKPDSim using multiple PKPD models to demonstrate the wide applications of this tool in pharmaceutical sciences. Overall, gPKPDSim provides an integrated, multi-purpose user-friendly GUI application to enable efficient use of PKPD models by scientists from various disciplines, regardless of their modeling expertise.

  11. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach.

    PubMed

    Dennison, James E; Andersen, Melvin E; Yang, Raymond S H

    2003-09-01

    Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.

  12. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  13. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

    PubMed Central

    Leibson, Tom; Carls, Alexandra; Ito, Shinya; Koren, Gideon

    2016-01-01

    Background Women are commonly prescribed a variety of medications during pregnancy. As most organ systems are affected by the substantial anatomical and physiological changes that occur during pregnancy, it is expected that pharmacokinetics (PK) (absorption, distribution, metabolism, and excretion of drugs) would also be affected in ways that may necessitate changes in dosing schedules. The objective of this study was to systematically identify existing clinically relevant evidence on PK changes during pregnancy. Methods and Findings Systematic searches were conducted in MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Ovid), and Web of Science (Thomson Reuters), from database inception to August 31, 2015. An update of the search from September 1, 2015, to May 20, 2016, was performed, and relevant data were added to the present review. No language or date restrictions were applied. All publications of clinical PK studies involving a group of pregnant women with a comparison to nonpregnant participants or nonpregnant population data were eligible to be included in this review. A total of 198 studies involving 121 different medications fulfilled the inclusion criteria. In these studies, commonly investigated drug classes included antiretrovirals (54 studies), antiepileptic drugs (27 studies), antibiotics (23 studies), antimalarial drugs (22 studies), and cardiovascular drugs (17 studies). Overall, pregnancy-associated changes in PK parameters were often observed as consistent findings among many studies, particularly enhanced drug elimination and decreased exposure to total drugs (bound and unbound to plasma proteins) at a given dose. However, associated alterations in clinical responses and outcomes, or lack thereof, remain largely unknown. Conclusion This systematic review of pregnancy-associated PK changes identifies a significant gap between the accumulating knowledge of PK changes in pregnant women and our understanding of their clinical impact for both mother and fetus. It is essential for clinicians to be aware of these unique pregnancy-related changes in PK, and to critically examine their clinical implications. PMID:27802281

  14. A Phase 1, open-label, multicentre study to compare the capsule and tablet formulations of AZD5363 and explore the effect of food on the pharmacokinetic exposure, safety and tolerability of AZD5363 in patients with advanced solid malignancies: OAK.

    PubMed

    Dean, Emma; Banerji, Udai; Schellens, Jan H M; Krebs, Matthew G; Jimenez, Begona; van Brummelen, Emilie; Bailey, Chris; Casson, Ed; Cripps, Diana; Cullberg, Marie; Evans, Stephen; Foxley, Andrew; Lindemann, Justin; Rugman, Paul; Taylor, Nigel; Turner, Guy; Yates, James; Lawrence, Peter

    2018-05-01

    AZD5363 is a potent pan-AKT inhibitor originally formulated as a capsule; a tablet was developed for patient convenience and manufacturing ease. This study assessed the PK comparability of both formulations (Part A) and the effect of food (Part B) on the PK/safety of the tablet. Adults with advanced solid tumours received AZD5363 480 mg bid in a partially fasted state by tablet (Week 1) and capsule (Week 2) in a '4-days-on/3-days-off' schedule (Part A). PK parameters were evaluated using pre-defined 90% CIs for AUCτ and C max ratios of 0.75-1.33 to assess comparability. In Part B, AZD5363 tablet was given to a new cohort of patients under the same conditions as Part A, except on the morning of PK assessment days, when it was administered after an overnight fast (Week 1) and standard meal (Week 2). In evaluable patients (N = 11), the geometric least-squares mean ratios (tablet:capsule) for AUCτ and C max were 0.90 (0.77-1.06) and 1.02 (0.86-1.20), respectively, demonstrating comparable PK in the partially fasted state. Tablet and capsule safety data were also comparable. Tablet PK profiles indicated later t max and lower C max after food versus overnight fast. Fed and fasted AUCτ and C max ratios were 0.89 (0.76-1.05) and 0.67 (0.55-0.82), respectively (N = 9). The safety/tolerability profile of the tablet was comparable between fed and fasted states. PK and safety/tolerability of AZD5363 tablet and capsule were comparable. Food did not affect the bioavailability of AZD5363, but reduced the absorption rate without discernibly affecting safety/tolerability.

  15. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review.

    PubMed

    Pariente, Gali; Leibson, Tom; Carls, Alexandra; Adams-Webber, Thomasin; Ito, Shinya; Koren, Gideon

    2016-11-01

    Women are commonly prescribed a variety of medications during pregnancy. As most organ systems are affected by the substantial anatomical and physiological changes that occur during pregnancy, it is expected that pharmacokinetics (PK) (absorption, distribution, metabolism, and excretion of drugs) would also be affected in ways that may necessitate changes in dosing schedules. The objective of this study was to systematically identify existing clinically relevant evidence on PK changes during pregnancy. Systematic searches were conducted in MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Ovid), and Web of Science (Thomson Reuters), from database inception to August 31, 2015. An update of the search from September 1, 2015, to May 20, 2016, was performed, and relevant data were added to the present review. No language or date restrictions were applied. All publications of clinical PK studies involving a group of pregnant women with a comparison to nonpregnant participants or nonpregnant population data were eligible to be included in this review. A total of 198 studies involving 121 different medications fulfilled the inclusion criteria. In these studies, commonly investigated drug classes included antiretrovirals (54 studies), antiepileptic drugs (27 studies), antibiotics (23 studies), antimalarial drugs (22 studies), and cardiovascular drugs (17 studies). Overall, pregnancy-associated changes in PK parameters were often observed as consistent findings among many studies, particularly enhanced drug elimination and decreased exposure to total drugs (bound and unbound to plasma proteins) at a given dose. However, associated alterations in clinical responses and outcomes, or lack thereof, remain largely unknown. This systematic review of pregnancy-associated PK changes identifies a significant gap between the accumulating knowledge of PK changes in pregnant women and our understanding of their clinical impact for both mother and fetus. It is essential for clinicians to be aware of these unique pregnancy-related changes in PK, and to critically examine their clinical implications.

  16. Target-mediated drug disposition model and its approximations for antibody-drug conjugates.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2014-02-01

    Antibody-drug conjugate (ADC) is a complex structure composed of an antibody linked to several molecules of a biologically active cytotoxic drug. The number of ADC compounds in clinical development now exceeds 30, with two of them already on the market. However, there is no rigorous mechanistic model that describes pharmacokinetic (PK) properties of these compounds. PK modeling of ADCs is even more complicated than that of other biologics as the model should describe distribution, binding, and elimination of antibodies with different toxin load, and also the deconjugation process and PK of the released toxin. This work extends the target-mediated drug disposition (TMDD) model to describe ADCs, derives the rapid binding (quasi-equilibrium), quasi-steady-state, and Michaelis-Menten approximations of the TMDD model as applied to ADCs, derives the TMDD model and its approximations for ADCs with load-independent properties, and discusses further simplifications of the system under various assumptions. The developed models are shown to describe data simulated from the available clinical population PK models of trastuzumab emtansine (T-DM1), one of the two currently approved ADCs. Identifiability of model parameters is also discussed and illustrated on the simulated T-DM1 examples.

  17. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters.

    PubMed

    Smit, Cornelis; De Hoogd, Sjoerd; Brüggemann, Roger J M; Knibbe, Catherijne A J

    2018-03-01

    The rising prevalence of obesity confronts clinicians with dosing problems in the (extreme) overweight population. Obesity has a great impact on key organs that play a role in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, however the ultimate impact of these changes on how to adapt the dose may not always be known. Areas covered: In this review, physiological changes associated with obesity are discussed. An overview is provided on the alterations in absorption, distribution, drug metabolism and clearance in (morbid) obesity focusing on general principles that can be extracted from pharmacokinetic studies. Also, relevant pharmacodynamic considerations in obesity are discussed. Expert opinion: Over the last two decades, increased knowledge is generated on PK and PD in obesity. Future research should focus on filling in the knowledge gaps that remain, especially in connecting obesity-related physiological changes with changes in PK and/or PD and vice versa. Ultimately, this knowledge can be used to develop physiologically based PK and PD models on the basis of quantitative systems pharmacology principles. Moreover, efforts should focus on thorough prospective evaluation of developed model-based doses with subsequent implementation of these dosing recommendations in clinical practice.

  18. Pharmacokinetics of a granisetron transdermal system for the treatment of chemotherapy-induced nausea and vomiting.

    PubMed

    Howell, Julian; Smeets, Jean; Drenth, Henk-Jan; Gill, David

    2009-12-01

    To determine the pharmacokinetic (PK) profile of granisetron transdermal formulation and examine its possible relationship with age, gender, and renal function. This article describes a Phase I PK study and a post hoc pooled population PK analysis. The Phase I study was a randomized, cross-over study that assessed PK parameters of three granisetron patch sizes and oral granisetron. The pooled population PK analysis included data from three trials in healthy subjects (n = 48) and from Phase II and III studies in patients with cancer (n = 793). The population PK model was used to investigate granisetron exposure and its possible relationship with age, gender, and renal function. Following oral dosing, plasma granisetron concentration was quantifiable at 1 h, and maximal mean concentration (4.7 ng/mL) was reached 2 h after administration. With transdermal application, maximal concentration was reached 48 h post-application; t(1/2) was 36 h. With oral dosing, overall exposure after 5 days was 306 ng/mL.h, and C(avg) 2.6 ng/mL. This corresponded to an AUC(0-infinity) for the 52 cm(2) patch of 420 ng/mL.h and C(avg) 2.2 ng/mL over 6 days. Clearance was not affected by age, gender, weight, or renal function. The 52 cm( 2) granisetron patch achieves a similar exposure to that of a 2 mg oral dose and provides continuous delivery of granisetron over 6 days. The patch may have utility in treating chemotherapy-induced nausea and vomiting where prolonged drug delivery is advantageous. No dose adjustments would be needed based on age or renal function.

  19. Effect of Moringa oleifera Lam. leaf powder on the pharmacokinetics of nevirapine in HIV-infected adults: a one sequence cross-over study.

    PubMed

    Monera-Penduka, Tsitsi G; Maponga, Charles C; Wolfe, Alan R; Wiesner, Lubbe; Morse, Gene D; Nhachi, Charles F B

    2017-01-01

    Moringa oleifera Lam., an herb commonly consumed by HIV-infected people on antiretroviral therapy, inhibits cytochrome P450 3A4, 1A2 and 2D6 activity in vitro; and may alter the pharmacokinetics (PK) of antiretroviral drugs metabolized via the same pathways. However, in vitro drug interaction activity may not translate to a clinically significant effect. Therefore, the effect of moringa leaf powder on the PK of nevirapine in HIV-infected people was investigated. Adult patients at steady-state dosing with nevirapine were admitted for 12-h intensive PK sampling following a 21-day herbal medicine washout. Blood sampling was repeated after 14 days of nevirapine and moringa (1.85 g leaf powder/day) co-administration. Nevirapine plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. To assess the effect of moringa on nevirapine PK, the change in nevirapine area under the plasma concentration-time curve (AUC) was determined. The mean difference in pre- and post-moringa nevirapine, maximum concentration (C max ) and concentration at 12 h (C 12h ) were also calculated. The PK parameters were compared by assessing the post/pre geometric mean ratios (GMRs) and associated 90% confidence intervals (CIs). Pharmacokinetics analyses were performed on the results from 11 participants for whom complete data were obtained. The post/pre GMRs and associated 90% CIs for nevirapine were 1.07 (1.00-1.14) for the AUC; 1.06 (0.98-1.16) for C max and 1.03 (0.92-1.16) for C 12h . Co-administration of Moringa oleifera Lam. leaf powder at the traditional dose did not significantly alter the steady-state PK of nevirapine. Trial registration number NCT01410058 (ClinicalTrials.gov).

  20. Pharmacokinetic-Pharmacodynamic Modeling of Unboosted Atazanavir in a Cohort of Stable HIV-Infected Patients

    PubMed Central

    Baudry, Thomas; Gagnieu, Marie-Claude; Boibieux, André; Livrozet, Jean-Michel; Peyramond, Dominique; Tod, Michel; Ferry, Tristan

    2013-01-01

    Limited data on the pharmacokinetics and pharmacodynamics (PK/PD) of unboosted atazanavir (uATV) in treatment-experienced patients are available. The aim of this work was to study the PK/PD of unboosted atazanavir in a cohort of HIV-infected patients. Data were available for 58 HIV-infected patients (69 uATV-based regimens). Atazanavir concentrations were analyzed by using a population approach, and the relationship between atazanavir PK and clinical outcome was examined using logistic regression. The final PK model was a linear one-compartment model with a mixture absorption model to account for two subgroups of absorbers. The mean (interindividual variability) of population PK parameters were as follows: clearance, 13.4 liters/h (40.7%), volume of distribution, 71.1 liters (29.7%), and fraction of regular absorbers, 0.49. Seven subjects experienced virological failure after switch to uATV. All of them were identified as low absorbers in the PK modeling. The absorption rate constant (0.38 ± 0.20 versus 0.75 ± 0.28 h−1; P = 0.002) and ATV exposure (area under the concentration-time curve from 0 to 24 h [AUC0–24], 10.3 ± 2.1 versus 22.4 ± 11.2 mg · h · liter−1; P = 0.001) were significantly lower in patients with virological failure than in patients without failure. In the logistic regression analysis, both the absorption rate constant and ATV trough concentration significantly influenced the probability of virological failure. A significant relationship between ATV pharmacokinetics and virological response was observed in a cohort of HIV patients who were administered unboosted atazanavir. This study also suggests that twice-daily administration of uATV may optimize drug therapy. PMID:23147727

  1. Absolute Bioavailability and Pharmacokinetics of Linezolid in Hospitalized Patients Given Enteral Feedings

    PubMed Central

    Beringer, Paul; Nguyen, Megan; Hoem, Nils; Louie, Stan; Gill, Mark; Gurevitch, Michael; Wong-Beringer, Annie

    2005-01-01

    Linezolid is a new antimicrobial agent effective against drug-resistant gram-positive pathogens which are common causes of infections in hospitalized patients. Many such patients rely on the intravenous or enteral route for nutrition and drug administration. Therefore, the bioavailability of linezolid administered enterally in the presence of enteral feedings in hospitalized patients was examined. Eighteen subjects were assessed in a randomized single-dose crossover study; 12 received continuous enteral feedings, while 6 did not (controls). Both groups received linezolid 600 mg intravenously and orally (control) or enterally, with the alternate route of administration separated by a 24-h washout period. Pharmacokinetic parameters derived from noncompartmental and compartmental analysis incorporating linear and nonlinear elimination pathways were compared between groups: F, Ka, Vs, K23, K32, Vmax, Km, and K20 (bioavailability, absorption rate constant, volume of central compartment normalized to body weight, intercompartmental rate constants, maximum velocity, Michaelis-Menten constant, and elimination rate constant, respectively). Pharmacokinetic (PK) data were available from 17 patients. The linezolid oral suspension was rapidly and completely absorbed by either the oral or enteral route of administration. Bioavailability was unaltered in the presence of enteral feedings. PK estimates remain similar regardless of the model applied. At the therapeutic dose used, only slight nonlinearity in elimination was observed. A linezolid oral suspension may be administered via the enteral route to hospitalized patients without compromise in its excellent bioavailability and rapid rate of absorption. Compartmental pharmacokinetic analysis offers a more flexible study application, since bioavailability (F) can be estimated directly with intermixed intravenous/oral doses without a need for a washout period. PMID:16127039

  2. A MODEL TO EVALUATE PAST EXPOSURE TO 2,3,7,8 ...

    EPA Pesticide Factsheets

    Data from several studies suggest that concentrations of dioxins rose in the environment from the 1930s to about the 1960s/70s and have been declining over the last decade or two. The most direct evidence of this trend comes from lake core sediments, which can be used to estimate past atmospheric depositions of dioxins. The primary source of human exposure to dioxins is through the food supply. The pathway relating atmospheric depositions to concentrations in food is quite complex, and accordingly, it is not known to what extent the trend in human exposure mirrors the trend in atmospheric depositions. This paper describes an attempt to statistically reconstruct the pattern of past human exposure to the most toxic dioxin congener, 2,3,7,8-TCDD (abbreviated TCDD), through use of a simple pharmacokinetic (PK) model which included a time-varying TCDD exposure dose. This PK model was fit to TCDD body burden data (i.e., TCDD concentrations in lipid) from five U.S. studies dating from 1972 to 1987 and covering a wide age range. A Bayesian statistical approach was used to fit TCDD exposure; model parameters other than exposure were all previously known or estimated from other data sources. The primary results of the analysis are as follows: 1.) use of a time-varying exposure dose provided a far better fit to the TCDD body burden data than did using a dose that was constant over time; this is strong evidence that exposure to TCDD has, in fact, varied during the

  3. Coadministration of pioglitazone or glyburide and alogliptin: pharmacokinetic drug interaction assessment in healthy participants.

    PubMed

    Karim, Aziz; Laurent, Aziz; Munsaka, Melvin; Wann, Elisabeth; Fleck, Penny; Mekki, Qais

    2009-10-01

    Alogliptin is a dipeptidyl peptidase-4 inhibitor under investigation for treatment of patients with type 2 diabetes mellitus. Potential pharmacokinetic (PK) drug-drug interactions of alogliptin with pioglitazone or glyburide were evaluated in healthy adults. In a randomized, 6-sequence, 3-period crossover study (study I), participants (n = 30 enrolled; n = 27 completed) received monotherapy with pioglitazone 45 mg once daily (qd), alogliptin 25 mg qd, or coadministration of the 2 agents. The 12-day treatment periods were separated by a > or =10-day washout interval. In a nonrandomized, single-sequence study (study II), participants (n = 24 completed) received a single 5-mg dose of the sulfonylurea glyburide, alone and after 8 days of dosing with alogliptin 25 mg qd. Sequential samples of blood (both studies) and urine (first study) were obtained for determination of PK parameters for alogliptin, pioglitazone, their metabolites, and glyburide. Minor changes in PK parameters between combination therapy and monotherapy were obtained but not judged to be clinically relevant. The combination treatments were well tolerated, although glyburide frequently caused hypoglycemia. Most adverse events were of mild intensity and occurred with a frequency similar to that with monotherapy. It is concluded that pioglitazone or glyburide can be administered with alogliptin without dose adjustment to any component of the combination therapy.

  4. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia

    PubMed Central

    Despotovic, Jenny M.; Mortier, Nicole A.; Flanagan, Jonathan M.; He, Jin; Smeltzer, Matthew P.; Kimble, Amy C.; Aygun, Banu; Wu, Song; Howard, Thad; Sparreboom, Alex

    2011-01-01

    Hydroxyurea therapy has proven laboratory and clinical efficacies for children with sickle cell anemia (SCA). When administered at maximum tolerated dose (MTD), hydroxyurea increases fetal hemoglobin (HbF) to levels ranging from 10% to 40%. However, interpatient variability of percentage of HbF (%HbF) response is high, MTD itself is variable, and accurate predictors of hydroxyurea responses do not currently exist. HUSTLE (NCT00305175) was designed to provide first-dose pharmacokinetics (PK) data for children with SCA initiating hydroxyurea therapy, to investigate pharmacodynamics (PD) parameters, including HbF response and MTD after standardized dose escalation, and to evaluate pharmacogenetics influences on PK and PD parameters. For 87 children with first-dose PK studies, substantial interpatient variability was observed, plus a novel oral absorption phenotype (rapid or slow) that influenced serum hydroxyurea levels and total hydroxyurea exposure. PD responses in 174 subjects were robust and similar to previous cohorts; %HbF at MTD was best predicted by 5 variables, including baseline %HbF, whereas MTD was best predicted by 5 variables, including serum creatinine. Pharmacogenetics analysis showed single nucleotide polymorphisms influencing baseline %HbF, including 5 within BCL11A, but none influencing MTD %HbF or dose. Accurate prediction of hydroxyurea treatment responses for SCA remains a worthy but elusive goal. PMID:21876119

  5. Genetic variation in aryl N-acetyltransferase results in significant differences in the pharmacokinetic and safety profiles of amifampridine (3,4-diaminopyridine) phosphate.

    PubMed

    Haroldsen, Peter E; Garovoy, Marvin R; Musson, Donald G; Zhou, Huiyu; Tsuruda, Laurie; Hanson, Boyd; O'Neill, Charles A

    2015-02-01

    The clinical use of amifampridine phosphate for neuromuscular junction disorders is increasing. The metabolism of amifampridine occurs via polymorphic aryl N-acetyltransferase (NAT), yet its pharmacokinetic (PK) and safety profiles, as influenced by this enzyme system, have not been investigated. The objective of this study was to assess the effect of NAT phenotype and genotype on the PK and safety profiles of amifampridine in healthy volunteers (N = 26). A caffeine challenge test and NAT2 genotyping were used to delineate subjects into slow and fast acetylators for PK and tolerability assessment of single, escalating doses of amifampridine (up to 30 mg) and in multiple daily doses (20 mg QID) of amifampridine. The results showed that fast acetylator phenotypes displayed significantly lower C max, AUC, and shorter t 1/2 for amifampridine than slow acetylators. Plasma concentrations of the N-acetyl metabolite were approximately twofold higher in fast acetylators. Gender differences were not observed. Single doses of amifampridine demonstrated dose linear PKs. Amifampridine achieved steady state plasma levels within 1 day of dosing four times daily. No accumulation or time-dependent changes in amifampridine PK parameters occurred. Overall, slow acetylators reported 73 drug-related treatment-emergent adverse events versus 6 in fast acetylators. Variations in polymorphic NAT corresponding with fast and slow acetylator phenotypes significantly affects the PK and safety profiles of amifampridine.

  6. Pharmacokinetic-pharmacodynamic modeling of the antihypertensive interaction between azilsartan medoxomil and chlorthalidone in spontaneously hypertensive rats.

    PubMed

    Kumar Puttrevu, Santosh; Ramakrishna, Rachumallu; Bhateria, Manisha; Jain, Moon; Hanif, Kashif; Bhatta, Rabi Sankar

    2017-05-01

    A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of blood pressure following oral administration of azilsartan medoxomil (AZM) and/or chlorthalidone (CLT) in spontaneously hypertensive (SH) rats. The drug concentration and pharmacological effects, including systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tail-cuff manometry, respectively. Sequential PK-PD analysis was performed, wherein the plasma concentration-time data was modeled by one compartmental analysis. Subsequently PD parameters were calculated to describe the time-concentration-response relationship using indirect response (IDR) PK-PD model. The combination of AZ and CLT had greater BP lowering effect compared to AZ or CLT alone, despite of no pharmacokinetic interaction between two drugs. These findings suggest synergistic antihypertensive pharmacodynamic interaction between AZ and CLT noncompetitively, which was simulated by inhibitory function of AZ and stimulatory function of CLT after concomitant administration of the two drugs. The present model was able to capture the turnover of blood pressure adequately at different time points at two different dose levels. The current PK-PD model was successfully utilized in the simulation of PD effect at a dose combination of 0.5 and 2.5 mg/kg for AZ and CLT, respectively. The developed preclinical PK-PD model may provide guidance in the optimization of dose ratio of individual drugs in the combined pharmacotherapy of AZ and CLT at clinical situations.

  7. In Vitro-In Vivo Predictive Dissolution-Permeation-Absorption Dynamics of Highly Permeable Drug Extended-Release Tablets via Drug Dissolution/Absorption Simulating System and pH Alteration.

    PubMed

    Li, Zi-Qiang; Tian, Shuang; Gu, Hui; Wu, Zeng-Guang; Nyagblordzro, Makafui; Feng, Guo; He, Xin

    2018-05-01

    Each of dissolution and permeation may be a rate-limiting factor in the absorption of oral drug delivery. But the current dissolution test rarely took into consideration of the permeation property. Drug dissolution/absorption simulating system (DDASS) valuably gave an insight into the combination of drug dissolution and permeation processes happening in human gastrointestinal tract. The simulated gastric/intestinal fluid of DDASS was improved in this study to realize the influence of dynamic pH change on the complete oral dosage form. To assess the effectiveness of DDASS, six high-permeability drugs were chosen as model drugs, including theophylline (pK a1  = 3.50, pK a2  = 8.60), diclofenac (pK a  = 4.15), isosorbide 5-mononitrate (pK a  = 7.00), sinomenine (pK a  = 7.98), alfuzosin (pK a  = 8.13), and metoprolol (pK a  = 9.70). A general elution and permeation relationship of their commercially available extended-release tablets was assessed as well as the relationship between the cumulative permeation and the apparent permeability. The correlations between DDASS elution and USP apparatus 2 (USP2) dissolution and also between DDASS permeation and beagle dog absorption were developed to estimate the predictability of DDASS. As a result, the common elution-dissolution relationship was established regardless of some variance in the characteristic behavior between DDASS and USP2 for drugs dependent on the pH for dissolution. Level A in vitro-in vivo correlation between DDASS permeation and dog absorption was developed for drugs with different pKa. The improved DDASS will be a promising tool to provide a screening method on the predictive dissolution-permeation-absorption dynamics of solid drug dosage forms in the early-phase formulation development.

  8. Combining 'Bottom-Up' and 'Top-Down' Methods to Assess Ethnic Difference in Clearance: Bitopertin as an Example.

    PubMed

    Feng, Sheng; Shi, Jun; Parrott, Neil; Hu, Pei; Weber, Cornelia; Martin-Facklam, Meret; Saito, Tomohisa; Peck, Richard

    2016-07-01

    We propose a strategy for studying ethnopharmacology by conducting sequential physiologically based pharmacokinetic (PBPK) prediction (a 'bottom-up' approach) and population pharmacokinetic (popPK) confirmation (a 'top-down' approach), or in reverse order, depending on whether the purpose is ethnic effect assessment for a new molecular entity under development or a tool for ethnic sensitivity prediction for a given pathway. The strategy is exemplified with bitopertin. A PBPK model was built using Simcyp(®) to simulate the pharmacokinetics of bitopertin and to predict the ethnic sensitivity in clearance, given pharmacokinetic data in just one ethnicity. Subsequently, a popPK model was built using NONMEM(®) to assess the effect of ethnicity on clearance, using human data from multiple ethnic groups. A comparison was made to confirm the PBPK-based ethnic sensitivity prediction, using the results of the popPK analysis. PBPK modelling predicted that the bitopertin geometric mean clearance values after 20 mg oral administration in Caucasians would be 1.32-fold and 1.27-fold higher than the values in Chinese and Japanese, respectively. The ratios of typical clearance in Caucasians to the values in Chinese and Japanese estimated by popPK analysis were 1.20 and 1.17, respectively. The popPK analysis results were similar to the PBPK modelling results. As a general framework, we propose that PBPK modelling should be considered to predict ethnic sensitivity of pharmacokinetics prior to any human data and/or with data in only one ethnicity. In some cases, this will be sufficient to guide initial dose selection in different ethnicities. After clinical trials in different ethnicities, popPK analysis can be used to confirm ethnic differences and to support dose justification and labelling. PBPK modelling prediction and popPK analysis confirmation can complement each other to assess ethnic differences in pharmacokinetics at different drug development stages.

  9. First-in-human study with new recombinant agalsidase beta (ISU303) in healthy subjects.

    PubMed

    Kim, Choon O K; Oh, Eun Sil; Park, Min Soo

    2014-06-01

    ISU303 is a new recombinant agalsidase beta (Agal) enzyme replacement therapy under investigation for Fabry disease, caused by a deficiency in α-galactosidase A activity that leads to fatty deposits in tissues. We evaluated the pharmacokinetic (PK) parameters, safety and tolerability of ISU303 in healthy adult volunteers. The study was a dose block-randomized, double-blinded, placebo-controlled, single-dosing, and dose escalation phase 1 clinical trial. A total of 18 healthy subjects were enrolled (0.3 mg/kg, n = 6; 1.0 mg/kg, n = 6; placebo, n = 6). Blood samples for PK analysis were collected according to planned time. The PK parameters in each 0.3 and 1.0 mg/kg Agal group were as follows: Cmax (mU/mL) 43.19 ± 5.9 and 195.86 ± 32.3; AUClast (h·mU/mL) 207.91 ± 25.1 and 939.96 ± 158.3; t1/2 (hours) 1.13 ± 0.3 and 1.46 ± 0.2; Cl (mL/min/kg) 1.79 ± 0.2 and 1.34 ± 0.2, respectively. There were seven adverse events (AE) overall. All AEs were resolved without any complications. None were related to the study drug. There were no immunogenicity or any significant infusion-related reactions. The new Agal product exhibited a dose-dependent PK and was well tolerated with no significant AEs in healthy adult volunteers. © 2014, The American College of Clinical Pharmacology.

  10. Bioequivalence and food effect assessment for vildagliptin/metformin fixed-dose combination tablets relative to free combination of vildagliptin and metformin in Japanese healthy subjects.

    PubMed

    Mita, Sachiko; Chitnis, Shripad D; Kulmatycki, Kenneth; Salunke, Atish; He, Yan-Ling; Zhou, Wei; Suzuki, Hikoe

    2016-04-01

    To assess the bioequivalence of vildagliptin/metformin fixeddose combination (FDC) tablets (50/250 mg and 50/500 mg) to free combinations of vildagliptin and metformin and the effect of food on the pharmacokinetics (PK) of vildagliptin and metformin following administration of 50/500 mg FDC tablets. Two openlabel, randomized, single-center, singledose, 2-period crossover studies were conducted in Japanese healthy male volunteers. Participants were administered vildagliptin/ metformin FDC tablets (study I: 50/250 mg, study II: 50/500 mg) or their free combinations under fasted condition. Food effect (standard Japanese breakfast: fat, 20 - 30% with ~ 600 kcal in total) was assessed during an additional period in study II (50/500 mg). PK parameters (AUC, C(max), t(max), t(1/2)) were calculated for vildagliptin and metformin. In both studies, vildagliptin/metformin FDC tablets were bioequivalent to their respective free combinations. Administration of FDC tablets after meals had no effect on vildagliptin PK parameters. The rate of absorption of metformin decreased when administered under fed condition, as reflected by a prolonged t(max) (3 hours in fasted state vs. 4 hours in fed state) and decrease in C(max) by 26%, however, the extent of absorption (AUC(last)) was similar to that in the fasted state. Vildagliptin/metformin FDC tablets were bioequivalent to their free combinations. Food decreased the C(max) of metformin by 26%, while AUC(last) was unchanged, consistent with previous reports. No food effect was observed on the C(max) or AUC(last) of vildagliptin. Thus, food had no clinically relevant effects on the PK of metformin or vildagliptin.

  11. Application of the Stable Isotope Label Approach in Clinical Development-Supporting Dissolution Specifications for a Commercial Tablet Product with Tafenoquine, a Long Half-life Compound.

    PubMed

    Goyal, Navin; Mohamed, Khadeeja; Rolfe, Katie; Sahota, Satty; Ernest, Terry; Duparc, Stephan; Taylor, Maxine; Casillas, Linda; Koh, Gavin C K W

    2018-06-04

    Bioavailability/bioequivalence studies supporting clinical drug development or commercial supply of drug formulations are often time, cost, and resource intensive. The drug's pharmacokinetic (PK) variability, systemic half-life, and safety issues may pose additional challenges. The stable isotope label (SIL) approach provides a useful tool to significantly reduce the study size in clinical PK studies. Tafenoquine (TQ) is an 8-aminoquinoline under development for preventing Plasmodium vivax malaria relapse. This SIL study assessed the impact of differences in the in vitro dissolution profiles on in vivo exposure of TQ tablets. Fourteen healthy volunteers received a single dose of 300 mg TQ Intermediate Aged or 300 mg TQ Control formulations in this single-center, two-arm, randomized, open-label, parallel-group study. Endpoints included the geometric means ratio of the area under the concentration-time curve (AUC (0-t) and AUC (0-∞) ; primary endpoint) and maximum plasma concentration (C max ) for Intermediate Aged versus Control TQ; correlation of PK parameters for venous versus peripheral (via microsample) blood samples; and safety and tolerability endpoints. Geometric mean ratios for PK parameters (AUC and C max ) and their 90% confidence intervals fell well within standard bioequivalence limits (0.80-1.25). Only one mild adverse event (skin abrasion) was reported. In summary, this SIL methodology-based study demonstrates that the observed differences in the in vitro dissolution profiles between the Control and Intermediate Aged TQ tablets have no clinically relevant effect on systemic TQ exposure. The SIL approach was successfully implemented to enable the setting of a clinically relevant dissolution specification. This study (GSK study number 201780) is registered at clinicaltrials.gov with identifier NCT02751294.

  12. Association Between Tacrolimus Pharmacokinetics and Cytochrome P450 3A5 and Multidrug Resistance Protein 1 Exon 21 Polymorphisms.

    PubMed

    Soda, M; Fujitani, M; Michiuchi, R; Shibayama, A; Kanamori, K; Yoshikuni, S; Ohno, Y; Tsuchiya, T; Suzuki, A; Horie, K; Deguchi, T; Itoh, Y; Kitaichi, K

    Individual differences in the pharmacokinetics (PK) of tacrolimus (TAC), an immunosuppressive drug, are reportedly associated with single-nucleotide polymorphisms (SNPs) of cytochrome P450 (CYP) 3A5 and multidrug resistance protein 1 (MDR1). We determined the effect of SNPs in CYP3A5 and MDR1 exons 21 and 26 on TAC PK parameters. Thirty-eight Japanese patients who underwent renal transplantation were genotyped for CYP3A5 and exons 21 and 26 of MDR1 with the use of polymerase chain reaction-restriction fragment length polymorphism analysis. TAC concentrations were determined 3 weeks after renal transplantation and PK parameters calculated. The area under the blood concentration-time curve (AUC) in CYP3A5 expressers was significantly higher than that in CYP3A5 nonexpressers (CYP3A5*3/*3). Patients with the MDR1 exon 21 A allele (G2677A) showed higher dose-adjusted AUC (AUC/D) and lower doses of TAC than those who did not possess that allele. Furthermore, patients with both CYP3A5*3/*3 and MDR1 G2677A showed significantly lower TAC doses and higher dose-adjusted trough levels (C/D) and AUC/D than those without those genotypes. There was no significant association between MDR1 exon 26 polymorphism and the PK of TAC. Patients with both CYP3A5*3/*3 and MDR1 G2677A had higher blood TAC concentrations than those without those genotypes. Japanese patients should be carefully monitored for consideration of lower TAC doses, because 24% of Japanese patients have double mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pediatric tuberculous meningitis: Model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children.

    PubMed

    Savic, R M; Ruslami, R; Hibma, J E; Hesseling, A; Ramachandran, G; Ganiem, A R; Swaminathan, S; McIlleron, H; Gupta, A; Thakur, K; van Crevel, R; Aarnoutse, R; Dooley, K E

    2015-12-01

    Pediatric tuberculous meningitis (TBM) is a highly morbid, often fatal disease. Standard treatment includes isoniazid, rifampin, pyrazinamide, and ethambutol. Current rifampin dosing achieves low cerebrospinal fluid (CSF) concentrations, and CSF penetration of ethambutol is poor. In adult trials, higher-dose rifampin and/or a fluoroquinolone reduced mortality and disability. To estimate optimal dosing of rifampin and levofloxacin for children, we compiled plasma and CSF pharmacokinetic (PK) and outcomes data from adult TBM trials plus plasma PK data from children. A population PK/pharmacodynamic (PD) model using adult data defined rifampin target exposures (plasma area under the curve (AUC)0-24 = 92 mg*h/L). Levofloxacin targets and rifampin pediatric drug disposition information were literature-derived. To attain target rifampin exposures, children require daily doses of at least 30 mg/kg orally or 15 mg/kg intravenously (i.v.). From our pediatric population PK model, oral levofloxacin doses needed to attain exposure targets were 19-33 mg/kg. Our results provide data-driven guidance to maximize pediatric TBM treatment while we await definitive trial results. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  14. Population Pharmacokinetics of Cladribine in Patients with Multiple Sclerosis.

    PubMed

    Savic, Radojka M; Novakovic, Ana M; Ekblom, Marianne; Munafo, Alain; Karlsson, Mats O

    2017-10-01

    The aims of this study were to characterize the concentration-time course of cladribine (CdA) and its main metabolite 2-chloroadenine (CAde), estimate interindividual variability in pharmacokinetics (PK), and identify covariates explaining variability in the PK of CdA. This population PK analysis was based on the combined dataset from four clinical studies in patients with multiple sclerosis (MS): three phase I studies, including one food and one drug-drug interaction study, and one phase III clinical study. Plasma and urine concentration data of CdA and CAde were modeled simultaneously. The analysis comprised a total of 2619 CdA and CAde plasma and urine concentration observations from 173 patients with MS who received an intravenous infusion or oral tablet doses of CdA as a single agent or in combination with interferon (IFN) β-1a. CdA PK data were best described by a three-compartment model, while a one-compartment model best described the PK of CAde. CdA renal clearance (CL R ) was correlated with creatinine clearance (CL CR ), predicting a decrease in the total clearance of 19%, 30% and 40% for patients with mild (CL CR  = 65 ml/min), moderate (CL CR  = 40 ml/min) and severe (CL CR  = 20 ml/min) renal impairment, respectively. Food decreased the extent of CdA absorption by 11.2% and caused an absorption delay. Coadministration with IFNβ-1a was found to increase non-CL R (CL NR ) by 21%, resulting in an increase of 11% in total clearance. Both CdA and CAde displayed linear PK after intravenous and oral administration of CdA, with CdA renal function depending on CL CR . Trial registration number for study 25643: NCT00213135.

  15. Population pharmacokinetic-pharmacodynamic modeling and model-based prediction of docetaxel-induced neutropenia in Japanese patients with non-small cell lung cancer.

    PubMed

    Fukae, Masato; Shiraishi, Yoshimasa; Hirota, Takeshi; Sasaki, Yuka; Yamahashi, Mika; Takayama, Koichi; Nakanishi, Yoichi; Ieiri, Ichiro

    2016-11-01

    Docetaxel is used to treat many cancers, and neutropenia is the dose-limiting factor for its clinical use. A population pharmacokinetic-pharmacodynamic (PK-PD) model was introduced to predict the development of docetaxel-induced neutropenia in Japanese patients with non-small cell lung cancer (NSCLC). Forty-seven advanced or recurrent Japanese patients with NSCLC were enrolled. Patients received 50 or 60 mg/m 2 docetaxel as monotherapy, and blood samples for a PK analysis were collected up to 24 h after its infusion. Laboratory tests including absolute neutrophil count data and demographic information were used in population PK-PD modeling. The model was built by NONMEM 7.2 with a first-order conditional estimation using an interaction method. Based on the final model, a Monte Carlo simulation was performed to assess the impact of covariates on and the predictability of neutropenia. A three-compartment model was employed to describe PK data, and the PK model adequately described the docetaxel concentrations observed. Serum albumin (ALB) was detected as a covariate of clearance (CL): CL (L/h) = 32.5 × (ALB/3.6) 0.965  × (WGHT/70) 3/4 . In population PK-PD modeling, a modified semi-mechanistic myelosuppression model was applied, and characterization of the time course of neutrophil counts was adequate. The covariate selection indicated that α1-acid glycoprotein (AAG) was a predictor of neutropenia. The model-based simulation also showed that ALB and AAG negatively correlated with the development of neutropenia and that the time course of neutrophil counts was predictable. The developed model may facilitate the prediction and care of docetaxel-induced neutropenia.

  16. Algorithm for Correcting the Keratometric Error in the Estimation of the Corneal Power in Keratoconus Eyes after Accelerated Corneal Collagen Crosslinking

    PubMed Central

    Caravaca-Arens, Esteban; de Fez, Dolores; Blanes-Mompó, Francisco J.

    2017-01-01

    Purpose To analyze the errors associated to corneal power calculation using the keratometric approach in keratoconus eyes after accelerated corneal collagen crosslinking (CXL) surgery and to obtain a model for the estimation of an adjusted corneal refractive index (nkadj) minimizing such errors. Methods Potential differences (ΔPc) among keratometric (Pk) and Gaussian corneal power (PcGauss) were simulated. Three algorithms based on the use of nkadj for the estimation of an adjusted keratometric corneal power (Pkadj) were developed. The agreement between Pk(1.3375) (keratometric power using the keratometric index of 1.3375), PcGauss, and Pkadj was evaluated. The validity of the algorithm developed was investigated in 21 keratoconus eyes undergoing accelerated CXL. Results P k(1.3375) overestimated corneal power between 0.3 and 3.2 D in theoretical simulations and between 0.8 and 2.9 D in the clinical study (ΔPc). Three linear equations were defined for nkadj to be used for different ranges of r1c. In the clinical study, differences between Pkadj and PcGauss did not exceed ±0.8 D nk = 1.3375. No statistically significant differences were found between Pkadj and PcGauss (p > 0.05) and Pk(1.3375) and Pkadj (p < 0.001). Conclusions The use of the keratometric approach in keratoconus eyes after accelerated CXL can lead to significant clinical errors. These errors can be minimized with an adjusted keratometric approach. PMID:29201459

  17. Model‐Informed Development and Registration of a Once‐Daily Regimen of Extended‐Release Tofacitinib

    PubMed Central

    Lamba, M; Hutmacher, MM; Furst, DE; Dikranian, A; Dowty, ME; Conrado, D; Stock, T; Nduaka, C; Cook, J

    2017-01-01

    Extended‐release (XR) formulations enable less frequent dosing vs. conventional (e.g., immediate release (IR)) formulations. Regulatory registration of such formulations typically requires pharmacokinetic (PK) and clinical efficacy data. Here we illustrate a model‐informed, exposure–response (E‐R) approach to translate controlled trial data from one formulation to another without a phase III trial, using a tofacitinib case study. Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). E‐R analyses were conducted using validated clinical endpoints from phase II dose–response and nonclinical dose fractionation studies of the IR formulation. Consistent with the delay in clinical response dynamics relative to PK, average concentration was established as the relevant PK parameter for tofacitinib efficacy and supported pharmacodynamic similarity. These evaluations, alongside demonstrated equivalence in total systemic exposure between IR and XR formulations, provided the basis for the regulatory approval of tofacitinib XR once daily by the US Food and Drug Administration. PMID:27859030

  18. Model-based decision making in early clinical development: minimizing the impact of a blood pressure adverse event.

    PubMed

    Stroh, Mark; Addy, Carol; Wu, Yunhui; Stoch, S Aubrey; Pourkavoos, Nazaneen; Groff, Michelle; Xu, Yang; Wagner, John; Gottesdiener, Keith; Shadle, Craig; Wang, Hong; Manser, Kimberly; Winchell, Gregory A; Stone, Julie A

    2009-03-01

    We describe how modeling and simulation guided program decisions following a randomized placebo-controlled single-rising oral dose first-in-man trial of compound A where an undesired transient blood pressure (BP) elevation occurred in fasted healthy young adult males. We proposed a lumped-parameter pharmacokinetic-pharmacodynamic (PK/PD) model that captured important aspects of the BP homeostasis mechanism. Four conceptual units characterized the feedback PD model: a sinusoidal BP set point, an effect compartment, a linear effect model, and a system response. To explore approaches for minimizing the BP increase, we coupled the PD model to a modified PK model to guide oral controlled-release (CR) development. The proposed PK/PD model captured the central tendency of the observed data. The simulated BP response obtained with theoretical release rate profiles suggested some amelioration of the peak BP response with CR. This triggered subsequent CR formulation development; we used actual dissolution data from these candidate CR formulations in the PK/PD model to confirm a potential benefit in the peak BP response. Though this paradigm has yet to be tested in the clinic, our model-based approach provided a common rational framework to more fully utilize the limited available information for advancing the program.

  19. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    PubMed

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (p<0.05). These findings indicate that estimated bone strength at the mid-tibia and mean pkZ GRFs are lower in runners with a history of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  20. Pharmacokinetics and Pharmacodynamics of Fluconazole for Cryptococcal Meningoencephalitis: Implications for Antifungal Therapy and In Vitro Susceptibility Breakpoints

    PubMed Central

    Sudan, Ajay; Livermore, Joanne; Howard, Susan J.; Al-Nakeeb, Zaid; Sharp, Andrew; Goodwin, Joanne; Gregson, Lea; Warn, Peter A.; Felton, Tim W.; Perfect, John R.; Harrison, Thomas S.

    2013-01-01

    Fluconazole is frequently the only antifungal agent that is available for induction therapy for cryptococcal meningitis. There is relatively little understanding of the pharmacokinetics and pharmacodynamics (PK-PD) of fluconazole in this setting. PK-PD relationships were estimated with 4 clinical isolates of Cryptococcus neoformans. MICs were determined using Clinical and Laboratory Standards Institute (CLSI) methodology. A nonimmunosuppressed murine model of cryptococcal meningitis was used. Mice received two different doses of fluconazole (125 mg/kg of body weight/day and 250 mg/kg of body weight/day) orally for 9 days; a control group of mice was not given fluconazole. Fluconazole concentrations in plasma and in the cerebrum were determined using high-performance liquid chromatography (HPLC). The cryptococcal density in the brain was estimated using quantitative cultures. A mathematical model was fitted to the PK-PD data. The experimental results were extrapolated to humans (bridging study). The PK were linear. A dose-dependent decline in fungal burden was observed, with near-maximal activity evident with dosages of 250 mg/kg/day. The MIC was important for understanding the exposure-response relationships. The mean AUC/MIC ratio associated with stasis was 389. The results of the bridging study suggested that only 66.7% of patients receiving 1,200 mg/kg would achieve or exceed an AUC/MIC ratio of 389. The potential breakpoints for fluconazole against Cryptococcus neoformans follow: susceptible, ≤2 mg/liter; resistant, >2 mg/liter. Fluconazole may be an inferior agent for induction therapy because many patients cannot achieve the pharmacodynamic target. Clinical breakpoints are likely to be significantly lower than epidemiological cutoff values. The MIC may guide the appropriate use of fluconazole. If fluconazole is the only option for induction therapy, then the highest possible dose should be used. PMID:23571544

  1. Pharmacokinetics and pharmacogenetics of the MEK1/2 inhibitor, selumetinib, in Asian and Western healthy subjects: a pooled analysis.

    PubMed

    Dymond, Angela W; Elks, Cathy; Martin, Paul; Carlile, David J; Mariani, Gabriella; Lovick, Susan; Huang, Yifan; Lorch, Ulrike; Brown, Helen; So, Karen

    2017-06-01

    Emerging data on selumetinib, a MEK1/2 inhibitor in clinical development, suggest a possible difference in pharmacokinetics (PK) between Japanese and Western patients. This pooled analysis sought to assess the effect of ethnicity on selumetinib exposure in healthy Western and Asian subjects, and to identify any association between genetic variants in the UGT1A1, CYP2C19 and ABCG2 genes and observed differences in selumetinib PK. A pooled analysis of data from ten Phase I studies, one in Asian subjects (encompassing Japanese, non-Japanese Asian and Indian Asian subjects) and nine in Western subjects, was conducted. Key findings were derived from the collective exposure data across doses of 25, 35, 50 and 75 mg selumetinib; primary variables were dose-normalized AUC and C max . PK data from 308 subjects (10 studies) were available for the pooled analysis; genetic data from 87 subjects (3 studies) were available for the pharmacogenetic analysis. Dose-normalized AUC and C max were 35% (95% CI: 25-47%) and 39% (95% CI: 24-56%) higher in the pooled Asian group, respectively, compared with Western subjects. PK exposure parameters were similar between the Japanese, non-Japanese Asian and Indian groups. There was no evidence that the polymorphisms assessed in the genes UGT1A1, CYP2C19 and ABCG2 account for observed PK differences. Selumetinib exposure was higher in healthy Asian subjects compared with Western subjects, and these data provide valuable insight for clinicians to consider when treating patients of Asian ethnicity with selumetinib.

  2. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  3. Comparison of predictability for human pharmacokinetics parameters among monkeys, rats, and chimeric mice with humanised liver.

    PubMed

    Miyamoto, Maki; Iwasaki, Shinji; Chisaki, Ikumi; Nakagawa, Sayaka; Amano, Nobuyuki; Hirabayashi, Hideki

    2017-12-01

    1. The aim of the present study was to evaluate the usefulness of chimeric mice with humanised liver (PXB mice) for the prediction of clearance (CL t ) and volume of distribution at steady state (Vd ss ), in comparison with monkeys, which have been reported as a reliable model for human pharmacokinetics (PK) prediction, and with rats, as a conventional PK model. 2. CL t and Vd ss values in PXB mice, monkeys and rats were determined following intravenous administration of 30 compounds known to be mainly eliminated in humans via the hepatic metabolism by various drug-metabolising enzymes. Using single-species allometric scaling, human CL t and Vd ss values were predicted from the three animal models. 3. Predicted CL t values from PXB mice exhibited the highest predictability: 25 for PXB mice, 21 for monkeys and 14 for rats were predicted within a three-fold range of actual values among 30 compounds. For predicted human Vd ss values, the number of compounds falling within a three-fold range was 23 for PXB mice, 24 for monkeys, and 16 for rats among 29 compounds. PXB mice indicated a higher predictability for CL t and Vd ss values than the other animal models. 4. These results demonstrate the utility of PXB mice in predicting human PK parameters.

  4. The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: Up-regulation of EG-VEGF/prokineticin 1 with malignancy.

    PubMed

    Pasquali, Daniela; Rossi, Valentina; Staibano, Stefania; De Rosa, Gaetano; Chieffi, Paolo; Prezioso, Domenico; Mirone, Vincenzo; Mascolo, Massimo; Tramontano, Donatella; Bellastella, Antonio; Sinisi, Antonio Agostino

    2006-09-01

    A new family of angiogenic factors named endocrine-gland-derived vascular endothelial growth factors (EG-VEGF)/prokineticins (PK) have been recently described as predominantly expressed in steroidogenic tissues. Whether the normal and malignant epithelial prostate cells and tissues express EG-VEGF/PK1 and PK2 and their receptors is still unknown. We studied the expression of EG-VEGF/PK1 and PK2 and their receptors (PK-R1 and PK-R2) in human prostate and their involvement in cancer. Using immunohistochemistry, Western blot, and RT-PCR, we determined the expression of EG-VEGF/PK1 in normal prostate (NP) and malignant prostate tissues (PCa), in epithelial cell primary cultures from normal prostate (NPEC) and malignant prostate (CPEC) and in a panel of prostate cell lines. In NPEC, CPEC, and in EPN, a nontransformed human prostate epithelial cell line, EG-VEGF/PK1, PK2, PK-R1, and PK-R2 mRNA levels were evaluated by quantitative RT-PCR. EG-VEGF/PK1 transcript was found in PCa, in CPEC, in EPN, and in LNCaP, whereas it was detected at low level in NP and in NPEC. EG-VEGF/PK1 was absent in androgen-independent PC3 and DU-145 cell lines. Immunochemistry confirmed that EG-VEGF/PK1 protein expression was restricted to hyperplastic and malignant prostate tissues, localized in the glandular epithelial cells, and progressively increased with the prostate cancer Gleason score advancement. EG-VEGF/PK1 and PK2 were weakly expressed in NPEC and EPN. On the other hand, their transcripts were highly detected in CPEC. PK-R1 and PK-R2 were found in NPEC, EPN, and CPEC. Interestingly, CPEC showed a significantly (P < 0.05) higher expression of EG-VEGF/PK1, PK2, PK-R1, and PK-R2 compared with NPEC and EPN. We demonstrated that PKs and their receptors are expressed in human prostate and that their levels increased with prostate malignancy. It may imply that EG-VEGF/PK1 could be involved in prostate carcinogenesis, probably regulating angiogenesis. Thus, the level of EG-VEGF/PK1 could be useful for prostate cancer outcome evaluation and as a target for prostate cancer treatment in the future.

  5. Decline in Aerobic Fitness After Long-Term Stays on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lynn, Peggy A.; Minard, Charles; Moore, Alan; Babiak-Vazquez, Adriana

    2010-01-01

    U.S. and non-Russian International Partner astronauts who participate in long-term International Space Station (ISS) expeditions perform submaximal cycle exercise tests before, during, and after space flight. The heart rate (HR) and oxygen uptake (VO2) responses to exercise are used to estimate peak VO2 (EVO2pk). Purpose: To determine if the following factors are associated with the preflight-to-post flight change in EVO2pk: gender, age, body weight (BW), number of aerobic exercise sessions/wk- during flight, length of flight, EVO2pk measured before and late during the flight, ISS Expedition number and time between landing and the first post flight test. Methods: Records of 37 ISS astronauts (30 male, BW=81.6 plus or minus 8.6 kg; 7 female BW=66.1 plus or minus 4.9 kg [mean plus or minus SD]), age 46 plus or minus 4 years, were retrospectively examined. Peak HR and VO2 were measured approximately 9 months before flight to establish the test protocol. The submaximal cycle test consisted of three 5-minute stages designed to elicit 25, 50, and 75% of VO2pk. EVO2pk was calculated using linear least-squares extrapolation of average HR and VO2 during the last minute of each stage to predict VO2 at maximal HR. VO2 was not measured during flight and was assumed to not be different from preflight. Testing was performed 45 days before launch, late during flight, and during the week after landing. A random-intercept multivariate model was used to determine which characteristics significantly contributed to post flight EVO2pk. Results: In-flight aerobic exercise averaged 5.4 plus or minus 1.2 sessions/wk. ISS flight duration averaged 163 plus or minus 39 d. Mean EVO2pk values were 3.41 plus or minus 0.64 L (raised dot) per minute before flight, 3.09 plus or minus 0.57 L (raised dot) per minute late in flight, and 3.02 plus or minus 0.65 L (raised dot) per minute after flight. Late- and after-flight values were lower (p less than 0.05) than preflight values and did not differ from each other. Time between landing and post flight testing was 4.5 plus or minus 1.6 days. The only factor significantly associated with the post flight EVO2pk value was the late-flight EVO2pk score. Conclusion: Testing performed late during a mission provides a prediction of EVO2pk after landing. This approach may be implemented during longer missions.

  6. Effect of mavoglurant (AFQ056), a selective mGluR5 antagonist, on the pharmacokinetics of a combined oral contraceptive containing ethinyl estradiol and levonorgestrel in healthy women.

    PubMed

    Sivasubramanian, Rama; Chakraborty, Abhijit; Rouzade-Dominguez, Marie-Laure; Neelakantham, Srikanth; Jakab, Annamaria; Mensinga, Tjeert; Legangneux, Eric; Woessner, Ralph; Ufer, Mike

    2015-07-01

    To compare the pharmacokinetics (PKs) of a combination oral contraceptive (OC) when given alone or concomitantly with the selective metabotropic glutamate receptor 5 antagonist mavoglurant (AFQ056). This open-label, fixed-sequence, two-period study included 30 healthy female subjects aged 18-40 years. In period 1, a single oral dose of an OC containing 30 μg ethinyl estradiol (EE)/150 μg levonorgestrel (LNG) was administered alone. In period 2, the OC was administered with a clinically relevant multiple dose of mavoglurant 100 mg b.i.d. under steady-state conditions. Plasma concentrations of EE and LNG were measured up to 72 hours post administration, and the PK parameters Cmax and AUClast were estimated using noncompartmental methods. The geometric mean ratios of EE Cmax and AUClast obtained with and without mavoglurant were 0.97 (90% confidence interval (CI): 0.90-1.06) and 0.94 (90% CI: 0.86-1.03), respectively. The corresponding Cmax and AUClast for LNG were 0.81 (90% CI: 0.75-0.87) and 0.68 (90% CI: 0.63-0.73), respectively. In conclusion, EE PK was unchanged, whereas Cmax and AUClast of LNG were 19% and 32% lower, respectively, when given with mavoglurant Further investigation regarding the impact on contraceptive efficacy is warranted.

  7. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Changyong, E-mail: cyliang@yzu.edu.cn; Li, Min; Dai, Xuejuan

    2013-09-01

    PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential inmore » regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly. - Highlights: • A pk-1 knockout AcMNPV failed to produce infectious progeny. • The pk-1 deletion did not affect viral DNA replication. • The catalytic domain of protein kinases (PKc) of PK-1 was essential to viral infectivity. • The kinase activity of PK-1 is essential in regulating viral propagation. • PK-1 appears to phosphorylate some viral proteins that are essential for DNA packaging to regulate nucleocapsid assembly.« less

  8. Population pharmacokinetics and pharmacodynamics of bivalirudin in young healthy Chinese volunteers.

    PubMed

    Zhang, Dong-mei; Wang, Kun; Zhao, Xia; Li, Yun-fei; Zheng, Qing-shan; Wang, Zi-ning; Cui, Yi-min

    2012-11-01

    To investigate the population pharmacokinetics (PK) and pharmacodynamics (PD) of bivalirudin, a synthetic bivalent direct thrombin inhibitor, in young healthy Chinese subjects. Thirty-six young healthy volunteers were randomly assigned into 4 groups received bivalirudin 0.5 mg/kg, 0.75 mg/kg, and 1.05 mg/kg intravenous bolus, 0.75 mg/kg intravenous bolus followed by 1.75 mg/kg intravenous infusion per hour for 4 h. Blood samples were collected to measure bivalirudin plasma concentration and activated clotting time (ACT). Population PK-PD analysis was performed using the nonlinear mixed-effects model software NONMEM. The final models were validated with bootstrap and prediction-corrected visual predictive check (pcVPC) approaches. The final PK model was a two-compartment model without covariates. The typical PK population values of clearance (CL), apparent distribution volume of the central-compartment (V(1)), inter-compartmental clearance (Q) and apparent distribution volume of the peripheral compartment (V(2)) were 0.323 L·h(-1)·kg(-1), 0.086 L/kg, 0.0957 L·h(-1)·kg(-1), and 0.0554 L/kg, respectively. The inter-individual variabilities of these parameters were 14.8%, 24.2%, fixed to 0% and 15.6%, respectively. The final PK-PD model was a sigmoid E(max) model without the Hill coefficient. In this model, a covariate, red blood cell count (RBC(*)), had a significant effect on the EC(50) value. The typical PD population values of maximum effect (E(max)), EC(50), baseline ACT value (E(0)) and the coefficient of RBC(*) on EC(50) were 318 s, 2.44 mg/L, 134 s and 1.70, respectively. The inter-individual variabilities of E(max), EC(50), and E(0) were 6.80%, 46.4%, and 4.10%, respectively. Population PK-PD models of bivalirudin in healthy young Chinese subjects have been developed, which may provide a reference for future use of bivalirudin in China.

  9. Coverage Adjusted Entropy Estimation

    DTIC Science & Technology

    2007-06-05

    S )+ OP (log n/ √ n), regardless of the underlying distribution. Our theorem below together with McAllester and Schapire’s implies a rate of...Corollary 1. Suppose that ∑ k pk| log pk|q <∞. Then as n→∞, 1− C = P(Xn+1 /∈ S| S ) = OP (1/(log n)q). (27) Proof. This follows from the above theorem and...Theorem 3 of [12] which implies |Ĉ − P(Xn+1 ∈ S| S )| ≤ oP (1/(log n)q) because 0 ≤ P(Xn+1 /∈ S|S) ≤ |1− Ĉ|+ |Ĉ − P(Xn+1 ∈ S|S)| (28) and OP (1/(log

  10. Hollow Fiber Methodology for Pharmacokinetic/Pharmacodynamic Studies of Antimalarial Compounds

    PubMed Central

    Caton, Emily; Nenortas, Elizabeth; Bakshi, Rahul P.; Shapiro, Theresa A.

    2016-01-01

    Knowledge of pharmacokinetic/pharmacodynamic (PK/PD) relationships can enhance the speed and economy of drug development by enabling informed and rational decisions at every step, from lead selection to clinical dosing. For anti-infective agents in particular, dynamic in vitro hollow fiber cartridge experiments permit exquisite control of kinetic parameters and the study of their consequent impact on pharmacodynamic efficacy. Such information is of great interest for the cost-restricted but much-needed development of new antimalarial drugs, especially since major human pathogen Plasmodium falciparum can be cultivated in vitro but is not readily available in animal models. This protocol describes the materials and procedures for determining the PK/PD relationships of antimalarial compounds. PMID:26995353

  11. Bioequivalence of diclofenac sodium 2% and 1.5% topical solutions relative to oral diclofenac sodium in healthy volunteers.

    PubMed

    Holt, Robert J; Taiwo, Tolu; Kent, Jeffrey D

    2015-08-01

    Topical formulations of nonsteroidal anti-inflammatory drugs (NSAIDs) are generally considered to be safer alternatives to oral NSAIDs due to lower systemic absorption. We conducted randomized, crossover studies that compared the pharmacokinetics (PK), bioequivalence and safety of topical diclofenac sodium 2% twice daily (BID), diclofenac sodium 1.5% four times daily (QID) and oral diclofenac sodium in healthy subjects. The results of three bioequivalence studies are reviewed. Healthy adult subjects (n = 76) applied topical diclofenac sodium 2% solution (40.4 mg/2 mL) BID; or 1.5% solution (19.3 mg/40 drops) QID to each knee for 7.5 consecutive days separated by a washout period. Subjects (n = 22) in one study also received oral diclofenac sodium 75 mg BID for 7.5 days. Plasma diclofenac concentrations were determined from serial blood samples collected on Days 1 and 8 (steady state), and diclofenac PK parameters were estimated by noncompartmental methods. The studies demonstrated comparable bioequivalence between the 2% and 1.5% topical solutions as well as lower systemic exposure compared to oral dosing (approximately 93% less). Daily systemic exposure was comparable between the two formulations with only a 12% difference in the AUCss(0-24) (p = 0.140). Furthermore, both topical solutions demonstrated delayed elimination with a t(1/2) of 4- to 6-fold longer, as compared to oral diclofenac. The 2% solution provided more consistent dosing relative to the 1.5% solution when comparing AUCss(0-24) and Cmaxss across studies. Mild application site reactions were the most common treatment-emergent adverse event reported with topical diclofenac. The steady-state PK profile of topical diclofenac 2% solution administered BID is similar to that of the 1.5% solution administered QID. Systemic exposure to diclofenac is substantially lower after topical application as compared to oral administration. (Study 2 was registered with ClinicalTrials.gov; NCT01202799; https://clinicaltrials.gov/ct2/results?term=01202799&Search=Search).

  12. Pharmacokinetic-Pharmacodynamic Modeling of the In Vitro Activities of Oxazolidinone Antimicrobial Agents against Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    Schmidt, Stephan; Sabarinath, Sreedharan Nair; Barbour, April; Abbanat, Darren; Manitpisitkul, Prasarn; Sha, Sue; Derendorf, Hartmut

    2009-01-01

    Linezolid is the first FDA-approved oxazolidinone with activity against clinically important gram-positive pathogens, including methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). RWJ-416457 is a new oxazolidinone with an antimicrobial spectrum similar to that of linezolid. The goal of the present study was to develop a general pharmacokinetic (PK)-pharmacodynamic (PD) model that allows the characterization and comparison of the in vitro activities of oxazolidinones, determined in time-kill curve experiments, against MRSA. The in vitro activities of RWJ-416457 and the first-in-class representative, linezolid, against MRSA OC2878 were determined in static and dynamic time-kill curve experiments over a wide range of concentrations: 0.125 to 8 μg/ml (MIC, 0.5 μg/ml) and 0.25 to 16 μg/ml (MIC, 1 μg/ml), respectively. After correction for drug degradation during the time-kill curve experiments, a two-subpopulation model was simultaneously fitted to all data in the NONMEM VI program. The robustness of the model and the precision of the parameter estimates were evaluated by internal model validation by nonparametric bootstrap analysis. A two-subpopulation model, consisting of a self-replicating, oxazolidinone-susceptible and a persistent, oxazolidinone-insusceptible pool of bacteria was appropriate for the characterization of the time-kill curve data. The PK-PD model identified was capable of accounting for saturation in growth, delays in the onsets of growth and drug-induced killing, as well as naturally occurring bacterial death. The simultaneous fit of the proposed indirect-response, maximum-effect model to the data resulted in concentrations that produced a half-maximum killing effect that were significantly (P < 0.05) lower for RWJ-416457 (0.41 μg/ml) than for linezolid (1.39 μg/ml). In combination with the appropriate PK data, the susceptibility-based two-subpopulation model identified may provide valuable guidance for the selection of oxazolidinone doses or dose regimens for use in clinical studies. PMID:19786607

  13. Evaluation of a Pharmacokinetic-Pharmacodynamic Model for Hypouricemic Effects of Febuxostat Using Datasets Obtained from Real-world Patients.

    PubMed

    Hirai, Toshinori; Itoh, Toshimasa; Kimura, Toshimi; Echizen, Hirotoshi

    2018-06-06

    Febuxostat is an active xanthine oxidase (XO) inhibitor that is widely used in the hyperuricemia treatment. We aimed to evaluate the predictive performance of a pharmacokinetic-pharmacodynamic (PK-PD) model for hypouricemic effects of febuxostat. Previously, we have formulated a PK--PD model for predicting hypouricemic effects of febuxostat as a function of baseline serum urate levels, body weight, renal function, and drug dose using datasets reported in preapproval studies (Hirai T et al., Biol Pharm Bull 2016; 39: 1013-21). Using an updated model with sensitivity analysis, we examined the predictive performance of the PK-PD model using datasets obtained from the medical records of patients who received febuxostat from March 2011 to December 2015 at Tokyo Women's Medical University Hospital. Multivariate regression analysis was performed to explore clinical variables to improve the predictive performance of the model. A total of 1,199 serum urate data were retrieved from 168 patients (age: 60.5 ±17.7 years, 71.4% males) who received febuxostat as hyperuricemia treatment. There was a significant correlation (r=0.68, p<0.01) between serum urate levels observed and those predicted by the modified PK-PD model. A multivariate regression analysis revealed that the predictive performance of the model may be improved further by considering comorbidities, such as diabetes mellitus, estimated glomerular filtration rate (eGFR), and co-administration of loop diuretics (r = 0.77, p<0.01). The PK-PD model may be useful for predicting individualized maintenance doses of febuxostat in real-world patients. This article is protected by copyright. All rights reserved.

  14. Absolute Bioavailability of Osimertinib in Healthy Adults.

    PubMed

    Vishwanathan, Karthick; So, Karen; Thomas, Karen; Bramley, Alex; English, Stephen; Collier, Jo

    2018-04-23

    Osimertinib is a third-generation, central nervous system-active, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) selective for EGFR-TKI sensitizing and T790M resistance mutations. This phase 1, open-label study (NCT02491944) investigated absolute bioavailability and pharmacokinetics (PK) of oral and intravenous (IV) osimertinib. Ten healthy subjects (21-61 years) received a single oral 80-mg dose concomitantly with a 100 μg (containing 1 μCi) IV microtracer dose of [ 14 C]osimertinib. Oral and IV PK were determined simultaneously for osimertinib and its active metabolites, AZ5104 and AZ7550. High-performance liquid chromatography and accelerator mass spectrometry were used to characterize IV dose PK. Geometric mean absolute oral bioavailability of osimertinib was 69.8% (90% confidence interval, 66.7, 72.9). Oral osimertinib was slowly absorbed (median time to maximum plasma concentration [t max ] 7.0 hours). Following t max , plasma concentrations fell in an apparent monophasic manner. IV clearance and volume of distribution were 16.8 L/h and 1285 L, respectively. Arithmetic mean elimination half-life estimates were 59.7, 52.6, and 72.6 hours for osimertinib, AZ5104, and AZ7550, respectively (oral dosing), and 54.9, 68.4, and 99.7 hours for [ 14 C]osimertinib, [ 14 C]AZ5104, and [ 14 C]AZ7550, respectively (IV dosing). Oral osimertinib was well absorbed. Simultaneous IV and oral PK analysis proved useful for complete understanding of osimertinib PK and showed that the first-pass effect was minimal for osimertinib. © 2018, The American College of Clinical Pharmacology.

  15. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization.

    PubMed

    Merchan, L Marcela; Hassan, Hazem E; Terrin, Michael L; Waites, Ken B; Kaufman, David A; Ambalavanan, Namasivayam; Donohue, Pamela; Dulkerian, Susan J; Schelonka, Robert; Magder, Laurence S; Shukla, Sagar; Eddington, Natalie D; Viscardi, Rose M

    2015-01-01

    The study objectives were to refine the population pharmacokinetics (PK) model, determine microbial clearance, and assess short-term pulmonary outcomes of multiple-dose azithromycin treatment in preterm infants at risk for Ureaplasma respiratory colonization. Fifteen subjects (7 of whom were Ureaplasma positive) received intravenous azithromycin at 20 mg/kg of body weight every 24 h for 3 doses. Azithromycin concentrations were determined in plasma samples obtained up to 168 h post-first dose by using a validated liquid chromatography-tandem mass spectrometry method. Respiratory samples were obtained predose and at three time points post-last dose for Ureaplasma culture, PCR, antibiotic susceptibility testing, and cytokine concentration determinations. Pharmacokinetic data from these 15 subjects as well as 25 additional subjects (who received either a single 10-mg/kg dose [n = 12] or a single 20-mg/kg dose [n = 13]) were analyzed by using a nonlinear mixed-effect population modeling (NONMEM) approach. Pulmonary outcomes were assessed at 36 weeks post-menstrual age and 6 months adjusted age. A 2-compartment model with all PK parameters allometrically scaled on body weight best described the azithromycin pharmacokinetics in preterm neonates. The population pharmacokinetics parameter estimates for clearance, central volume of distribution, intercompartmental clearance, and peripheral volume of distribution were 0.15 liters/h · kg(0.75), 1.88 liters · kg, 1.79 liters/h · kg(0.75), and 13 liters · kg, respectively. The estimated area under the concentration-time curve over 24 h (AUC24)/MIC90 value was ∼ 4 h. All posttreatment cultures were negative, and there were no drug-related adverse events. One Ureaplasma-positive infant died at 4 months of age, but no survivors were hospitalized for respiratory etiologies during the first 6 months (adjusted age). Thus, a 3-day course of 20 mg/kg/day intravenous azithromycin shows preliminary efficacy in eradicating Ureaplasma spp. from the preterm respiratory tract. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. External Evaluation of Two Fluconazole Infant Population Pharmacokinetic Models

    PubMed Central

    Hwang, Michael F.; Beechinor, Ryan J.; Wade, Kelly C.; Benjamin, Daniel K.; Smith, P. Brian; Hornik, Christoph P.; Capparelli, Edmund V.; Duara, Shahnaz; Kennedy, Kathleen A.; Cohen-Wolkowiez, Michael

    2017-01-01

    ABSTRACT Fluconazole is an antifungal agent used for the treatment of invasive candidiasis, a leading cause of morbidity and mortality in premature infants. Population pharmacokinetic (PK) models of fluconazole in infants have been previously published by Wade et al. (Antimicrob Agents Chemother 52:4043–4049, 2008, https://doi.org/10.1128/AAC.00569-08) and Momper et al. (Antimicrob Agents Chemother 60:5539–5545, 2016, https://doi.org/10.1128/AAC.00963-16). Here we report the results of the first external evaluation of the predictive performance of both models. We used patient-level data from both studies to externally evaluate both PK models. The predictive performance of each model was evaluated using the model prediction error (PE), mean prediction error (MPE), mean absolute prediction error (MAPE), prediction-corrected visual predictive check (pcVPC), and normalized prediction distribution errors (NPDE). The values of the parameters of each model were reestimated using both the external and merged data sets. When evaluated with the external data set, the model proposed by Wade et al. showed lower median PE, MPE, and MAPE (0.429 μg/ml, 41.9%, and 57.6%, respectively) than the model proposed by Momper et al. (2.45 μg/ml, 188%, and 195%, respectively). The values of the majority of reestimated parameters were within 20% of their respective original parameter values for all model evaluations. Our analysis determined that though both models are robust, the model proposed by Wade et al. had greater accuracy and precision than the model proposed by Momper et al., likely because it was derived from a patient population with a wider age range. This study highlights the importance of the external evaluation of infant population PK models. PMID:28893774

  17. Pharmacokinetic modeling of penciclovir and BRL42359 in the plasma and tears of healthy cats to optimize dosage recommendations for oral administration of famciclovir.

    PubMed

    Sebbag, Lionel; Thomasy, Sara M; Woodward, Andrew P; Knych, Heather K; Maggs, David J

    2016-08-01

    OBJECTIVES To determine, following oral administration of famciclovir, pharmacokinetic (PK) parameters for 2 of its metabolites (penciclovir and BRL42359) in plasma and tears of healthy cats so that famciclovir dosage recommendations for the treatment of herpetic disease can be optimized. ANIMALS 7 male domestic shorthair cats. PROCEDURES In a crossover study, each of 3 doses of famciclovir (30, 40, or 90 mg/kg) was administered every 8 or 12 hours for 3 days. Six cats were randomly assigned to each dosage regimen. Plasma and tear samples were obtained at predetermined times after famciclovir administration. Pharmacokinetic parameters were determined for BRL42359 and penciclovir by compartmental and noncompartmental methods. Pharmacokinetic-pharmacodynamic (PK-PD) indices were determined for penciclovir and compared among all dosage regimens. RESULTS Compared with penciclovir concentrations, BRL42359 concentrations were 5- to 11-fold greater in plasma and 4- to 7-fold greater in tears. Pharmacokinetic parameters and PK-PD indices for the 90 mg/kg regimens were superior to those for the 30 and 40 mg/kg regimens, regardless of dosing frequency. Penciclovir concentrations in tears ranged from 18% to 25% of those in plasma. Administration of 30 or 40 mg/kg every 8 hours achieved penciclovir concentrations likely to be therapeutic in plasma but not in tears. Penciclovir concentrations likely to be therapeutic in tears were achieved only with the two 90 mg/kg regimens. CONCLUSIONS AND CLINICAL RELEVANCE In cats, famciclovir absorption is variable and its metabolism saturable. Conversion of BRL42359 to penciclovir is rate limiting. The recommended dosage of famciclovir is 90 mg/kg every 12 hours for cats infected with feline herpesvirus.

  18. Pharmacokinetics, phenotype and product choice in haemophilia B: how to strike a balance?

    PubMed

    Berntorp, E; Dolan, G; Hermans, C; Laffan, M; Santagostino, E; Tiede, A

    2014-11-01

    At the 7th Annual Congress of the European Association for Haemophilia and Allied Disorders (EAHAD) held in Brussels, Belgium, in February 2014, Pfizer sponsored a satellite symposium entitled: "Pharmacokinetics, phenotype and product choice in haemophilia B: How to strike a balance?" Co-chaired by Cedric Hermans (Cliniques Universitaires Saint Luc, Brussels, Belgium) and Mike Laffan (Imperial College, London, UK), the symposium provided an opportunity to debate whether pharmacokinetic (PK) parameters are good surrogates for clinical efficacy for haemophilia B in clinical practice, consider the perceptions and evidence of disease severity, and examine how these considerations can inform approaches to balancing the potential risks and benefits of the currently available treatment options for haemophilia B. PK parameters are routinely measured in clinical practice and are a requirement of regulatory bodies to demonstrate the clinical efficacy of products; however, the relationship between measured PK parameters and clinical efficacy is yet to be determined, an issue that was debated by Gerry Dolan (University Hospital, Queen's Medical Centre, Nottingham, UK) and Erik Berntorp (Lund University, Malmö Centre for Thrombosis and Haemostasis, Malmö, Sweden). Elena Santagostino (Universita degli Studi di Milano, Milano, Italy) reviewed how differing perceptions on the severity of haemophilia B compared with haemophilia A may have an impact on clinical decision-making. Finally, Andreas Tiede (Hannover Medical School, Hannover, Germany), examined the considerations for balancing the potential risks and benefits of the currently available treatment options for haemophilia B. Although the pathophysiology of haemophilia B has been widely studied and is largely understood, continued investigation and discussion around the optimal management course and appropriate therapeutic choice is warranted. © 2014 John Wiley & Sons Ltd.

  19. Bioequivalence of budesonide plus formoterol (BF) Spiromax® and BF Turbohaler® (with and without charcoal block) in healthy volunteers.

    PubMed

    Weisfeld, Lori; Shu, Youyi; Shah, Tushar P

    2015-07-01

    Budesonide formoterol (BF) Spiromax® is a breath-actuated dry-powder inhaler designed to deliver similar combinations of budesonide and formoterol as Symbicort® Turbohaler®. We performed two studies to demonstrate pharmacokinetic (PK) equivalence of BF Spiromax with BF Turbohaler. Two single-center, open-label, randomized, 5-period crossover studies were performed. The first study compared BF Spiromax 160/4.5 μg with BF Turbohaler 200/6 μg, while the second study compared BF Spiromax 320/9 μg with BF Turbohaler 400/12 μg. All treatments were administered with and without charcoal. PK parameters were calculated by measuring plasma drug concentrations from blood samples taken pre-dose and up to 24 hours post-dose. In each study, 90 healthy volunteers were randomized. Bioequivalence of BF Spiromax with BF Turbohaler was demonstrated for budesonide and formoterol (AUC0-t and Cmax (90% confidence intervals of the geometric mean between-device ratios for both parameters were within the predefined range of 0.80-1.25 in both studies)). Equivalence was observed without use of charcoal (overall absorption post-inhalation) and with charcoal (pulmonary absorption). There were no major differences between treatments in tmax for either budesonide or formoterol. All study treatments were well tolerated (one treatment-emergent adverse event (TEAE) in the medium-dose study and four TEAEs in the high-dose study). These studies indicate that BF Spiromax (±charcoal block) is bioequivalent to BF Turbohaler with respect to the PK parameters assessed. Single doses of BF Spiromax were well tolerated; the overall safety profile of BF Spiromax and BF Turbohaler was similar.

  20. Safety and pharmacokinetic profile of rufinamide in pediatric patients aged less than 4 years with Lennox-Gastaut syndrome: An interim analysis from a multicenter, randomized, active-controlled, open-label study.

    PubMed

    Arzimanoglou, Alexis; Ferreira, Jose A; Satlin, Andrew; Mendes, Shannon; Williams, Betsy; Critchley, David; Schuck, Edgar; Hussein, Ziad; Kumar, Dinesh; Dhadda, Shobha; Bibbiani, Francesco

    2016-05-01

    A good knowledge of safety and age group-specific pharmacokinetics (PK) of antiepileptic drugs (AEDs) in young pediatric patients is of great importance in clinical practice. This paper presents 6-month interim safety and PK from an ongoing 2-year open-label study (Study 303) of adjunctive rufinamide treatment in pediatric subjects ≥ 1 to < 4 years with inadequately controlled epilepsies of the Lennox-Gastaut syndrome (LGS) spectrum. Subjects (N = 37) were randomized to either rufinamide or any other approved AED chosen by the investigator as adjunctive therapy to the subject's existing regimen of 1-3 AEDs. Interim safety results showed that treatment-emergent adverse events (TEAEs) were similar between the rufinamide (22 [88.0%]) and any-other-AED group (9 [81.8%]), with most events considered mild or moderate. A population PK analysis was conducted including plasma rufinamide concentrations from Study 303 and two other study populations of LGS subjects ≥ 4 years. The rufinamide PK profile was dose independent. The apparent clearance (CL/F) estimated from the PK model was 2.19 L/h; it was found to increase significantly as a function of body weight. Coadministration of valproic acid significantly decreased rufinamide CL/F. CL/F was not significantly affected by other concomitant AEDs, age, gender, race, hepatic function, or renal function. No adjustments to body weight-based rufinamide dosing in subjects ≥ 1 to < 4 years are necessary. Rufinamide was safe and well tolerated in these pediatric subjects. Results from the interim analysis demonstrate that rufinamide's safety and PK profile is comparable in subjects ≥ 1 to < 4 and ≥ 4 years with LGS. Study 303 (clinicaltrials.gov: NCT01405053). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Assessment of micafungin regimens by pharmacokinetic-pharmacodynamic analysis: a dosing strategy for Aspergillus infections.

    PubMed

    Ikawa, Kazuro; Nomura, Kenichi; Morikawa, Norifumi; Ikeda, Kayo; Taniwaki, Masafumi

    2009-10-01

    A pharmacokinetic (PK)-pharmacodynamic (PD) analysis was conducted to assess various micafungin regimens for Candida and Aspergillus infections, as appropriate regimens have not been established, especially for Aspergillus infections. Plasma drug concentrations (48 samples from 10 adult patients with haematological malignancies) were determined chromatographically, and used for population PK modelling and Monte Carlo simulation to evaluate the ability of regimens (1 h infusions) to attain genus-dependent PK-PD targets, namely fungistatic and fungicidal targets against Candida spp. [area under the plasma unbound (1%) drug concentration-time curve over 24 h/MIC (fAUC/MIC) = 10 and 20] and an effective concentration target against Aspergillus spp. (plasma unbound drug concentration = 0.05 mg/L). Mean (variance) values for two-compartment PK model parameters were: clearance, 0.762 L/h (15.4%); volume of central compartment, 9.25 L (24.6%); intercompartmental clearance, 7.02 L/h (fixed); and volume of peripheral compartment, 8.86 L (71.8%). The Monte Carlo simulation demonstrated that 50 mg once daily and 100 mg once daily for the fungistatic and fungicidal targets achieved a >95% probability of target attainment against Candida spp. To achieve such probability against Aspergillus spp., 250 mg once daily or 100 mg twice daily was required. These results rationalize the approved micafungin dosages for Candida infections (50 mg once daily for prophylaxis and 100-150 mg once daily for treatment), and on the basis of these results we propose a PK-PD-based dosing strategy for Aspergillus infections. A regimen of 200-250 mg/day should be initiated to ensure the likelihood of a favourable outcome. The regimen can be optimized by decreasing the dosing interval.

  2. Study on the PK profiles of magnoflorine and its potential interaction in Cortex phellodendri decoction by LC-MS/MS.

    PubMed

    Tian, Xiaoting; Li, Zhixiong; Lin, Yunfei; Chen, Mingcang; Pan, Guoyu; Huang, Chenggang

    2014-01-01

    Magnoflorine, an aporphine alkaloid in Cortex phellodendri, is increasingly attracting research attention because of its antidiabetic effects. However, at present, little information on its pharmacokinetics (PK) in vivo is available. In this study, a sensitive, rapid, and selective method was developed to determine the magnoflorine content in rat plasma using liquid chromatography-tandem mass spectrometry. Following liquid-liquid extraction, the calibration curve showed good linearity within the concentration range of 2.93 to 1,500 ng ml(-1). The intra- and inter-day precisions were all below 7.8 %, and the accuracy ranged from 94.9 to 103.4 %. The method was successfully applied in investigating the PK of magnoflorine in rats. The compound had low bioavailability, a high absorption rate, and a high elimination rate. However, area under the curve, T 1/2, and MRT increased approximately twofold when the same dosage of the compound was administered in a C. phellodendri decoction (20.8 g kg(-1)). Moreover, T max was prolonged from 0.3 to 3.33 h. Furthermore, a comparison of coadministration of the mixture group, magnoflorine (40 mg kg(-1)) and berberine (696.4 mg kg(-1)), with the C. phellodendri decoction group, revealed that no statistical difference (P > 0.05) was found in the parameter AUC, and certain similar changes in the PK trend to the herbal medicine group were also observed. These results suggested that oral administration of the herbal medicine decreased the absorption and elimination rates of magnoflorine and increased its bioavailability. Berberine played a significant role in interacting with magnoflorine and in affecting the PK profiles of magnoflorine in the C. phellodendri decoction group.

  3. Integration of preclinical and clinical knowledge to predict intravenous PK in human: bilastine case study.

    PubMed

    Vozmediano, Valvanera; Ortega, Ignacio; Lukas, John C; Gonzalo, Ana; Rodriguez, Monica; Lucero, Maria Luisa

    2014-03-01

    Modern pharmacometrics can integrate and leverage all prior proprietary and public knowledge. Such methods can be used to scale across species or comparators, perform clinical trial simulation across alternative designs, confirm hypothesis and potentially reduce development burden, time and costs. Crucial yet typically lacking in integration is the pre-clinical stage. Prediction of PK in man, using in vitro and in vivo studies in different animal species, is increasingly well theorized but could still find wider application in drug development. The aim of the present work was to explore methods for bridging pharmacokinetic knowledge from animal species (i.v. and p.o.) and man (p.o.) into i.v. in man using the antihistamine drug bilastine as example. A model, predictive of i.v. PK in man, was developed on data from two pre-clinical species (rat and dog) and p.o. in man bilastine trials performed earlier. In the knowledge application stage, two different approaches were used to predict human plasma concentration after i.v. of bilastine: allometry (several scaling methods) and a semi-physiological method. Both approaches led to successful predictions of key i.v. PK parameters of bilastine in man. The predictive i.v. PK model was validated using later data from a clinical study of i.v. bilastine. Introduction of such knowledge in development permits proper leveraging of all emergent knowledge as well as quantification-based exploration of PK scenario, e.g. in special populations (pediatrics, renal insufficiency, comedication). In addition, the methods permit reduction or elimination and certainly optimization of learning trials, particularly those concerning alternative off-label administration routes.

  4. The bias of the log power spectrum for discrete surveys

    NASA Astrophysics Data System (ADS)

    Repp, Andrew; Szapudi, István

    2018-03-01

    A primary goal of galaxy surveys is to tighten constraints on cosmological parameters, and the power spectrum P(k) is the standard means of doing so. However, at translinear scales P(k) is blind to much of these surveys' information - information which the log density power spectrum recovers. For discrete fields (such as the galaxy density), A* denotes the statistic analogous to the log density: A* is a `sufficient statistic' in that its power spectrum (and mean) capture virtually all of a discrete survey's information. However, the power spectrum of A* is biased with respect to the corresponding log spectrum for continuous fields, and to use P_{A^*}(k) to constrain the values of cosmological parameters, we require some means of predicting this bias. Here, we present a prescription for doing so; for Euclid-like surveys (with cubical cells 16h-1 Mpc across) our bias prescription's error is less than 3 per cent. This prediction will facilitate optimal utilization of the information in future galaxy surveys.

  5. Herb-drug interaction of Nisha Amalaki and Curcuminoids with metformin in normal and diabetic condition: A disease system approach.

    PubMed

    Shengule, Sushant; Kumbhare, Kalyani; Patil, Dada; Mishra, Sanjay; Apte, Kishori; Patwardhan, Bhushan

    2018-05-01

    Nisha Amalaki (NA), formulation with Curcuma longa Linn (Turmeric, Haridra, Nisha in Sanskrit; Family: Zingiberaceae) and Phyllanthus emblica Linn (Indian gooseberry, Amlaki in Sanskrit; Family: Phyllanthaceae) which is described for various diseases including diabetes in ayurvedic texts and Nighantus. The aim of the present study was to assess the pharmacokinetic (PK) and pharmacodynamic (PD) interactions of chemically standardized NA and Curcuminoids (CE) with metformin (MET) in normal and diabetic animals. Oral administration of NA (200 mg/kg) and CE (30 mg/kg) was carried out for seven days followed by co-administration of MET till fifteen days. MET plasma PK parameters including C max , AUC 0-∞ , t 1/2 , CL and V d were measured on the eighth day. PD parameters including plasma glucose AUC followed by oral glucose tolerance test, high-density lipoproteins (HDL), total cholesterol (TC) and triglycerides (TG) were measured on the fifteenth day. In normal animals, co-administration of NA + MET and CE + MET resulted in significant increase (p < 0.05) in C max , AUC 0-∞ , t 1/2, and reduction of CL and V d . We report that co-administration of NA + MET and CE + MET significantly (p < 0.01, p < 0.001) reduced plasma glucose level, HDL level while a notable reduction in TG and TC level was observed. Interestingly, in diabetic condition, co-administration of NA + MET and CE + MET indicated a significant decrease (p < 0.05) in C max , AUC 0-∞ , t 1/2 and enhanced CL and V d. Hence, to conclude, co-administration of NA + MET and CE + MET resulted in beneficial PK and PD interactions leading to antihyperglycemic and antihyperlipidemic effects in both conditions. However, PK interaction was drastically different in diabetic and normal conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Pharmacokinetics, bioavailability and dose assessment of Cefquinome against Escherichia coli in black swans (Cygnus atratus).

    PubMed

    Zhao, Dong-Hao; Wang, Xu-Feng; Wang, Qiang; Li, Liu-Dong

    2017-07-28

    The objective of this study is to investigate pharmacokinetics and dose regimens of cefquinome in black swans following intravenous (IV) and intramuscular (IM) administration at a single dose of 2 mg/kg. The MICs of cefquinome against 49 Escherichia coli isolates from black swans were determined. Monte Carlo simulation was applied to conduct the dose regimen assessment and optimization of cefquinome against E. coli in black swans, and a pharmacokinetic/pharmacodynamic (PK/PD) cutoff was established for E. coli isolates obtained in this study. The PK parameters of T 1/2α (0.31 h), T 1/2β (1.69 h) and Cl B (0.13 L/kg·h) indicated a rapid distribution and elimination of cefquinome in black swans after IV administration. After IM injection, the corresponding PK parameters of T 1/2Ka , T 1/2Ke , T max , C max , and F were 0.12 h, 1.62 h, 0.39 h, 5.71 μg/mL and 74.2%, respectively. The MICs of cefquinome against black swans E. coli ranged from 0.03 to 8 μg/mL, with MIC 50 and MIC 90 of 0.06 and 0.5 μg/mL, respectively. The PK/PD cutoff of cefquinome against E. coli was determined to be 0.2 μg/mL. Monte Carlo simulation showed that the nominal dose regimen (2 mg/kg/24 h) could not achieve a satisfactory probability of target attainment (PTA) for %T MIC  ≥ 50%, indicating a risk of treatment failure and the development of potential drug resistance. The current daily dosage of cefquinome when divided into 12-h interval (1 mg/kg/12 h) may be effective for the treatment of E. coli infections with an MIC ≤0.5 μg/mL.

  7. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  8. Pharmacokinetics and pharmacodynamics of glycyrrhetinic acid with Paeoniflorin after transdermal administration in dysmenorrhea model mice.

    PubMed

    Ding, Xue; Sun, Yuming; Wang, Qing; Pu, Tingting; Li, Xiaohui; Pan, Yaqing; Yang, Yang

    2016-07-15

    Glycyrrhetinic acid (GA) and paeoniflorin (PF) are the main active ingredients in Chinese peony- Liquorice Decoction, a widely used Traditional Chinese Medicine. The aim of this work was to investigate the combinatory analgesic effect of GA and PF after percutaneous administration and to define their pharmacokinetic/pharmacodynamic (PK/PD) characteristics. GA and PF were produced to transdermal patches based on previous research, and the permeation parameters of GA and PF in the patches were investigated with in vitro experiments. Dysmenorrhea model mice were then produced to compare the analgesic effects of the patches with different proportions of GA-PF. In the in vivo assessment, the number of writhes exhibited by the dysmenorrhea mice was recorded at designated time points, and skin, muscle under skin and plasma samples were collected, for assessments of drug distribution, pharmacokinetics parameters and PK/PD characteristics. In dysmenorrhea mice, GA-PF and meloxicam (the positive control drug) could relieve pain to equal degrees. Specifically, a single dose of the optimized patches (10%GA-10%PF, wt) exerted a steady analgesic effect for 48h in dysmenorrhea mice, but this effect lagged behind the changes in the plasma concentration. Evaluation with the Bliss Independence criterion revealed that the two ingredients displayed a synergistic effect. Then the PK/PD relationship of GA in this compound preparation was defined with this synergistic effect. The preparation might be suitable for topical spasmolysis and anti-inflammatory therapy. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Designing a space-based galaxy redshift survey to probe dark energy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Percival, Will; Cimatti, Andrea; Mukherjee, Pia; Guzzo, Luigi; Baugh, Carlton M.; Carbone, Carmelita; Franzetti, Paolo; Garilli, Bianca; Geach, James E.; Lacey, Cedric G.; Majerotto, Elisabetta; Orsi, Alvaro; Rosati, Piero; Samushia, Lado; Zamorani, Giovanni

    2010-12-01

    A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ~3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ~20000deg2 over with σz/(1 + z) <= 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.

  10. Plasma Radiation Sources. Quasi-Adiabatic Theory and Numerical Modeling in the Electro-Diffusive Approximation.

    DTIC Science & Technology

    1984-07-16

    can use the model ing - in gpk - B[in(T/T pk)]2 [III.29] (with fit parameter B) to do the resulting integral. Car- rying out this procedure, we have e...A0- B0 2g(’) i -B02 m do- d - t- - F-, gpk e pkf CIII.303 f 0 g B f+b-aT,(e0-1) with = Zn(T/T,), A = C-’ + 2B0p, £ = gCrO, and pk# el + be - aT,(e - 1...4’ ..4’ --%" . .𔃾 - % ."-: --- 7 ’.-., - -’j. "-"-.’." ’... - 0 Modeling g by gpk exp(-Bx2 ) as before and neglecting b com- pared with aT one

  11. An Evidence-Based Approach to Estimating the National and State Costs of PreK-3rd. FCD Policy Brief Advancing PK-3rd. No.10

    ERIC Educational Resources Information Center

    Picus, Lawrence O.; Odden, Allan; Goetz, Michael

    2009-01-01

    This study estimates the costs of providing a high-quality PreK-3rd education approach in all 50 states plus the District of Columbia. Relying on an Evidence-Based approach to school finance adequacy, it identifies the staffing resources needed to offer high-quality integrated PreK-3rd programs and then estimates the costs of those resources. By…

  12. The effect of malnutrition on the pharmacokinetics and virologic outcomes of lopinavir, efavirenz and nevirapine in food insecure HIV-infected children in Tororo, Uganda.

    PubMed

    Bartelink, Imke H; Savic, Rada M; Dorsey, Grant; Ruel, Theodore; Gingrich, David; Scherpbier, Henriette J; Capparelli, Edmund; Jullien, Vincent; Young, Sera L; Achan, Jane; Plenty, Albert; Charlebois, Edwin; Kamya, Moses; Havlir, Diane; Aweeka, Francesca

    2015-03-01

    Malnutrition may impact the pharmacokinetics (PKs) of antiretroviral medications and virologic responses in HIV-infected children. The authors therefore evaluated the PK of nevirapine (NVP), efavirenz (EFV) and lopinavir (LPV) in associations with nutritional status in a cohort of HIV-infected Ugandan children. Sparse dried blood spot samples from Ugandan children were used to estimate plasma concentrations. Historical PK data from children from 3 resource-rich countries (RRC) were utilized to develop the PK models. Concentrations in 330 dried blood spot from 163 Ugandan children aged 0.7-7 years were analyzed in reference to plasma PK data (1189 samples) from 204 children from RRC aged 0.5-12 years. Among Ugandan children, 48% was malnourished (underweight, thin or stunted). Compared to RRC, Ugandan children exhibited reduced bioavailability of EFV and LPV; 11% (P=0.045) and 18% (P=0.008), respectively. In contrast, NVP bioavailability was 46% higher in Ugandan children (P<0.001) with a trend toward greater bioavailability when malnourished. Children receiving LPV, EFV or NVP had comparable risk of virologic failure. Among children on NVP, low height and weight for age Z scores were associated with reduced risk of virologic failure (P=0.034, P=0.068, respectively). Ugandan children demonstrated lower EFV and LPV and higher NVP exposure compared to children in RRC, perhaps reflecting the consequence of malnutrition on bioavailability. In children receiving NVP, the relation between exposure, malnutrition and outcome turned out to be marginally significant. Further investigations are warranted using more intensive PK measurements and adequate adherence assessments, to further assess causes of virologic failure in Ugandan children.

  13. Validation and Application of a Dried Blood Spot Ceftriaxone Assay

    PubMed Central

    Page-Sharp, Madhu; Nunn, Troy; Salman, Sam; Moore, Brioni R.; Batty, Kevin T.; Davis, Timothy M. E.

    2015-01-01

    Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic/pharmacodynamic (PK/PD) studies in situations where venous blood sampling is logistically and/or ethically problematic. In this study, we aimed to develop, validate, and apply a DBS ceftriaxone assay. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) DBS ceftriaxone assay was assessed for matrix effects, process efficiency, recovery, variability, and limits of quantification (LOQ) and detection (LOD). The effects of hematocrit, protein binding, red cell partitioning, and chad positioning were evaluated, and thermal stability was assessed. Plasma, DBS, and cell pellet ceftriaxone concentrations in 10 healthy adults were compared, and plasma concentration-time profiles of DBS and plasma ceftriaxone were incorporated into population PK models. The LOQ and LOD for ceftriaxone in DBS were 0.14 mg/liter and 0.05 mg/liter, respectively. Adjusting for hematocrit, red cell partitioning, and relative recovery, DBS-predicted plasma concentrations were comparable to measured plasma concentrations (r > 0.95, P < 0.0001), and Bland-Altman plots showed no significant bias. The final population PK estimates of clearance, volume of distribution, and time above threshold MICs for measured and DBS-predicted plasma concentrations were similar. At 35°C, 21°C, 4°C, −20°C, and −80°C, ceftriaxone retained >95% initial concentrations in DBS for 14 h, 35 h, 30 days, 21 weeks, and >11 months, respectively. The present DBS ceftriaxone assay is robust and can be used as a surrogate for plasma concentrations to provide valid PK and PK/PD data in a variety of clinical situations, including in studies of young children and of those in remote or resource-poor settings. PMID:26438505

  14. Validation and Application of a Dried Blood Spot Assay for Biofilm-Active Antibiotics Commonly Used for Treatment of Prosthetic Implant Infections

    PubMed Central

    Knippenberg, Ben; Page-Sharp, Madhu; Clark, Ben; Dyer, John; Batty, Kevin T.; Davis, Timothy M. E.

    2016-01-01

    Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic (PK)/pharmacodynamic (PD) studies in situations where venous blood sampling is logistically difficult. We sought to develop, validate, and apply a DBS assay for rifampin (RIF), fusidic acid (FUS), and ciprofloxacin (CIP). These antibiotics are considered active against organisms in biofilms and are therefore commonly used for the treatment of infections associated with prosthetic implants. A liquid chromatography-mass spectroscopy DBS assay was developed and validated, including red cell partitioning and thermal stability for each drug and the rifampin metabolite desacetyl rifampin (Des-RIF). Plasma and DBS concentrations in 10 healthy adults were compared, and the concentration-time profiles were incorporated into population PK models. The limits of quantification for RIF, Des-RIF, CIP, and FUS in DBS were 15 μg/liter, 14 μg/liter, 25 μg/liter, and 153 μg/liter, respectively. Adjusting for hematocrit, red cell partitioning, and relative recovery, DBS-predicted plasma concentrations were comparable to measured plasma concentrations for each antibiotic (r > 0.95; P < 0.0001), and Bland-Altman plots showed no significant bias. The final population PK estimates of clearance, volume of distribution, and time above threshold MICs for measured and DBS-predicted plasma concentrations were comparable. These drugs were stable in DBSs for at least 10 days at room temperature and 1 month at 4°C. The present DBS antibiotic assays are robust and can be used as surrogates for plasma concentrations to provide valid PK and PK/PD data in a variety of clinical situations, including therapeutic drug monitoring or studies of implant infections. PMID:27270283

  15. Pharmacodynamics of Voriconazole in Children: Further Steps along the Path to True Individualized Therapy

    PubMed Central

    Huurneman, Luc J.; Neely, Michael; Veringa, Anette; Docobo Pérez, Fernando; Ramos-Martin, Virginia; Tissing, Wim J.; Alffenaar, Jan-Willem C.

    2016-01-01

    Voriconazole is the agent of choice for the treatment of invasive aspergillosis in children at least 2 years of age. The galactomannan index is a routinely used diagnostic marker for invasive aspergillosis and can be useful for following the clinical response to antifungal treatment. The aim of this study was to develop a pharmacokinetic-pharmacodynamic (PK-PD) mathematical model that links the pharmacokinetics of voriconazole with the galactomannan readout in children. Twelve children receiving voriconazole for treatment of proven, probable, and possible invasive fungal infections were studied. A previously published population PK model was used as the Bayesian prior. The PK-PD model was used to estimate the average area under the concentration-time curve (AUC) in each patient and the resultant galactomannan-time profile. The relationship between the ratio of the AUC to the concentration of voriconazole that induced half maximal killing (AUC/EC50) and the terminal galactomannan level was determined. The voriconazole concentration-time and galactomannan-time profiles were both highly variable. Despite this variability, the fit of the PK-PD model was good, enabling both the pharmacokinetics and pharmacodynamics to be described in individual children. (AUC/EC50)/15.4 predicted terminal galactomannan (P = 0.003), and a ratio of >6 suggested a lower terminal galactomannan level (P = 0.07). The construction of linked PK-PD models is the first step in developing control software that enables not only individualized voriconazole dosages but also individualized concentration targets to achieve suppression of galactomannan levels in a timely and optimally precise manner. Controlling galactomannan levels is a first critical step to maximizing clinical response and survival. PMID:26833158

  16. Simultaneous population pharmacokinetic modelling of plasma and intracellular PBMC miltefosine concentrations in New World cutaneous leishmaniasis and exploration of exposure-response relationships.

    PubMed

    Kip, Anke E; Castro, María Del Mar; Gomez, Maria Adelaida; Cossio, Alexandra; Schellens, Jan H M; Beijnen, Jos H; Saravia, Nancy Gore; Dorlo, Thomas P C

    2018-05-10

    Leishmania parasites reside within macrophages and the direct target of antileishmanial drugs is therefore intracellular. We aimed to characterize the intracellular PBMC miltefosine kinetics by developing a population pharmacokinetic (PK) model simultaneously describing plasma and intracellular PBMC pharmacokinetics. Furthermore, we explored exposure-response relationships and simulated alternative dosing regimens. A population PK model was developed with NONMEM, based on 339 plasma and 194 PBMC miltefosine concentrations from Colombian cutaneous leishmaniasis patients [29 children (2-12 years old) and 22 adults] receiving 1.8-2.5 mg/kg/day miltefosine for 28 days. A three-compartment model with miltefosine distribution into an intracellular PBMC effect compartment best fitted the data. Intracellular PBMC distribution was described with an intracellular-to-plasma concentration ratio of 2.17 [relative standard error (RSE) 4.9%] and intracellular distribution rate constant of 1.23 day-1 (RSE 14%). In exploring exposure-response relationships, both plasma and intracellular model-based exposure estimates significantly influenced probability of cure. A proposed PK target for the area under the plasma concentration-time curve (day 0-28) of >535 mg·day/L corresponded to >95% probability of cure. In linear dosing simulations, 18.3% of children compared with 2.8% of adults failed to reach 535 mg·day/L. In children, this decreased to 1.8% after allometric dosing simulation. The developed population PK model described the rate and extent of miltefosine distribution from plasma into PBMCs. Miltefosine exposure was significantly related to probability of cure in this cutaneous leishmaniasis patient population. We propose an exploratory PK target, which should be validated in a larger cohort study.

  17. Development of a pharmacokinetic-guided dose individualization strategy for hydroxyurea treatment in children with sickle cell anaemia.

    PubMed

    Dong, Min; McGann, Patrick T; Mizuno, Tomoyuki; Ware, Russell E; Vinks, Alexander A

    2016-04-01

    Hydroxyurea has emerged as the primary disease-modifying therapy for patients with sickle cell anaemia (SCA). The laboratory and clinical benefits of hydroxyurea are optimal at maximum tolerated dose (MTD), but the current empirical dose escalation process often takes up to 12 months. The purpose of this study was to develop a pharmacokinetic-guided dosing strategy to reduce the time required to reach hydroxyurea MTD in children with SCA. Pharmacokinetic (PK) data from the HUSTLE trial (NCT00305175) were used to develop a population PK model using non-linear mixed effects modelling (nonmem 7.2). A D-optimal sampling strategy was developed to estimate individual PK and hydroxyurea exposure (area under the concentration-time curve (AUC)). The initial AUC target was derived from HUSTLE clinical data and defined as the mean AUC at MTD. PK profiles were best described by a one compartment with Michaelis-Menten elimination and a transit absorption model. Body weight and cystatin C were identified as significant predictors of hydroxyurea clearance. The following clinically feasible sampling times are included in a new prospective protocol: pre-dose (baseline), 15-20 min, 50-60 min and 3 h after an initial 20 mg kg(-1) oral dose. The mean target AUC(0,∞) for initial dose titration was 115 mg l(-1)  h. We developed a PK model-based individualized dosing strategy for the prospective Therapeutic Response Evaluation and Adherence Trial (TREAT, ClinicalTrials.gov NCT02286154). This approach has the potential to optimize the dose titration of hydroxyurea therapy for children with SCA, such that the clinical benefits at MTD are achieved more quickly. © 2015 The British Pharmacological Society.

  18. Development of a pharmacokinetic‐guided dose individualization strategy for hydroxyurea treatment in children with sickle cell anaemia

    PubMed Central

    Dong, Min; McGann, Patrick T.; Mizuno, Tomoyuki; Ware, Russell E.

    2016-01-01

    AIMS Hydroxyurea has emerged as the primary disease‐modifying therapy for patients with sickle cell anaemia (SCA). The laboratory and clinical benefits of hydroxyurea are optimal at maximum tolerated dose (MTD), but the current empirical dose escalation process often takes up to 12 months. The purpose of this study was to develop a pharmacokinetic‐guided dosing strategy to reduce the time required to reach hydroxyurea MTD in children with SCA. Methods Pharmacokinetic (PK) data from the HUSTLE trial (NCT00305175) were used to develop a population PK model using non‐linear mixed effects modelling (nonmem 7.2). A D‐optimal sampling strategy was developed to estimate individual PK and hydroxyurea exposure (area under the concentration–time curve (AUC)). The initial AUC target was derived from HUSTLE clinical data and defined as the mean AUC at MTD. Results PK profiles were best described by a one compartment with Michaelis–Menten elimination and a transit absorption model. Body weight and cystatin C were identified as significant predictors of hydroxyurea clearance. The following clinically feasible sampling times are included in a new prospective protocol: pre‐dose (baseline), 15–20 min, 50–60 min and 3 h after an initial 20 mg kg–1 oral dose. The mean target AUC(0,∞) for initial dose titration was 115 mg l–1 h. Conclusion We developed a PK model‐based individualized dosing strategy for the prospective Therapeutic Response Evaluation and Adherence Trial (TREAT, ClinicalTrials.gov NCT02286154). This approach has the potential to optimize the dose titration of hydroxyurea therapy for children with SCA, such that the clinical benefits at MTD are achieved more quickly. PMID:26615061

  19. Population pharmacokinetic-pharmacodynamic target attainment analysis of imipenem plasma and urine data in neonates and children.

    PubMed

    Yoshizawa, Kenichi; Ikawa, Kazuro; Ikeda, Kayo; Ohge, Hiroki; Morikawa, Norifumi

    2013-11-01

    Population pharmacokinetic (PK)-pharmacodynamic target attainment analysis of imipenem was performed to elucidate the PK properties in neonates and children and to rationalize and optimize dosing regimens. Population PK models were separately developed in neonates and children by simultaneously fitting plasma and urine data from 60 neonates and 39 children. The newly developed models were then used to estimate the probability of attaining the pharmacodynamic target (40% of the time above the minimum inhibitory concentration) against clinical isolates of common bacteria in pediatric patients. The data were best described by a 1-compartment model in neonates and a 2-compartment model in children, respectively. Renal clearance in children (0.187 L/h/kg) was double that of neonates (0.0783 L/h/kg), whereas the volume of distribution at steady-state was approximately 1.8-fold larger in neonates (0.466 L/kg) than in children (0.260 L/kg). Age was not a statistically significant covariate in the PK of both groups. Infusions (0.5 h) of 15 mg/kg every 8 h (45 mg/kg/day) and 25 mg/kg every 12 h (50 mg/kg/day) were shown to be sufficient against common bacterial isolates in both patient populations. However, 1.5-h infusions of 25 mg/kg every 8 h (75 mg/kg/day) in neonates and 25 mg/kg every 6 h (100 mg/kg/day) in children were required to be effective against Pseudomonas aeruginosa (minimum inhibitory concentration for 90% of the isolates=16 μg/mL). These results explain the changes in imipenem PK properties during the human growth process and provide guidance for tailoring dosing regimens in each pediatric age group.

  20. Population pharmacokinetics of recombinant coagulation factor VIII-SingleChain in patients with severe hemophilia A.

    PubMed

    Zhang, Y; Roberts, J; Tortorici, M; Veldman, A; St Ledger, K; Feussner, A; Sidhu, J

    2017-06-01

    Essentials rVIII-SingleChain is a unique recombinant factor VIII (FVIII) molecule. A population pharmacokinetic model was based on FVIII activity of severe hemophilia A patients. The model was used to simulate factor VIII activity-time profiles for various dosing scenarios. The model supports prolonged dosing of rVIII-SingleChain with intervals of up to twice per week. Background Single-chain recombinant coagulation factor VIII (rVIII-SingleChain) is a unique recombinant coagulation factor VIII molecule. Objectives To: (i) characterize the population pharmacokinetics (PK) of rVIII-SingleChain in patients with severe hemophilia A; (ii) identify correlates of variability in rVIII-SingleChain PK; and (iii) simulate various dosing scenarios of rVIII-SingleChain. Patients/Methods A population PK model was developed, based on FVIII activity levels of 130 patients with severe hemophilia A (n = 91 for ≥ 12-65 years; n = 39 for < 12 years) who had participated in a single-dose PK investigation with rVIII-SingleChain 50 IU kg -1 . PK sampling was performed for up to 96 h. Results A two-compartment population PK model with first-order elimination adequately described FVIII activity. Body weight and predose level of von Willebrand factor were significant covariates on clearance, and body weight was a significant covariate on the central distribution volume. Simulations using the model with various dosing scenarios estimated that > 85% and > 93% of patients were predicted to maintain FVIII activity level above 1 IU dL -1 , at all times with three-times-weekly dosing (given on days 0, 2, and 4.5) at the lowest (20 IU kg -1 ) and highest (50 IU kg -1 ) doses, respectively. For twice weekly dosing (days 0 and 3.5) of 50 IU kg -1 rVIII-SingleChain, 62-80% of patients across all ages were predicted to maintain a FVIII activity level above 1 IU dL -1 at day 7. Conclusions The population PK model adequately characterized rVIII-SingleChain PK, and the model can be utilized to simulate FVIII activity-time profiles for various dosing scenarios. © 2017 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  1. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review.

    PubMed

    Mamy, Laure; Patureau, Dominique; Barriuso, Enrique; Bedos, Carole; Bessac, Fabienne; Louchart, Xavier; Martin-Laurent, Fabrice; Miege, Cecile; Benoit, Pierre

    2015-06-18

    A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pK a ), water dissolution or hydrophobic behavior (especially through the K OW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (E HOMO ) and the energy of the lowest unoccupied molecular orbital (E LUMO ), polarizability (α) and dipole moment (μ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment.

  2. Pharmacodynamics of a New Streptogramin, XRP 2868, in Murine Thigh and Lung Infection Models

    PubMed Central

    Andes, D.; Craig, W. A.

    2006-01-01

    XRP 2868 is a new streptogramin antibiotic with broad-spectrum activity against gram-positive cocci. We used the neutropenic murine thigh and lung infection models to characterize the time course of antimicrobial activity of XRP 2868 and determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy. Serum levels following four two- to fourfold-escalating single-dose levels of XRP 2868 were measured by liquid chromatography mass spectrometry assay. In vivo postantibiotic effects (PAEs) were determined after doses of 2.5, 10, and 40 mg/kg. Mice had 106.8 to 108.4 CFU/thigh of strains of Streptococcus pneumoniae ATCC 10813 or Staphylococcus aureus ATCC 29213 at the start of therapy when treated for 24 h with 2.5 to 640 mg/kg/day of XRP 2868 fractionated for 3-, 6-, 12-, and 24-h dosing regimens. Nonlinear regression analysis was used to determine which PK/PD parameter best correlated with CFU/thigh at 24 h. Pharmacokinetic studies exhibited peak dose values of 0.03 to 0.07, area under the concentration-time curve (AUC) dose values of 0.02 to 0.07, and half-lives of 0.35 to 1.27 h. XRP 2868 produced in vivo PAEs of 0.5 to 3.4 h with S. pneumoniae strain ATCC 10813 and −1.5 to 10.7 h with S. aureus strain ATCC 29213. The 24-h AUC/MIC was the PK/PD parameter that best correlated with efficacy. In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of XRP 2868 varied among pathogens (including resistant strains). Mice had 106.1 to 107.8 CFU/thigh of four isolates of S. aureus (three methicillin-susceptible and one methicillin-resistant strain) and nine isolates of S. pneumoniae (one penicillin-susceptible, four penicillin-intermediate, and four penicillin-resistant strains) when treated for 24 h with 0.16 to 640 mg/kg of XRP 2868 every 6 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a net bacteriostatic affect over 24 h. MICs ranged from 0.06 to 0.25 μg/ml. The 24-h AUC/MICs for each static dose (20.7 to 252 mg/kg/day) varied from 3 to 70. Mean 24-h AUC/MICs ± standard deviations (SDs) for S. pneumoniae and S. aureus isolates were 14 ± 10 and 31 ± 16, respectively. Beta-lactam and macrolide resistance did not alter the magnitude of AUC/MIC required for efficacy. PMID:16377693

  3. Pharmacodynamics of a new streptogramin, XRP 2868, in murine thigh and lung infection models.

    PubMed

    Andes, D; Craig, W A

    2006-01-01

    XRP 2868 is a new streptogramin antibiotic with broad-spectrum activity against gram-positive cocci. We used the neutropenic murine thigh and lung infection models to characterize the time course of antimicrobial activity of XRP 2868 and determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy. Serum levels following four two- to fourfold-escalating single-dose levels of XRP 2868 were measured by liquid chromatography mass spectrometry assay. In vivo postantibiotic effects (PAEs) were determined after doses of 2.5, 10, and 40 mg/kg. Mice had 10(6.8) to 10(8.4) CFU/thigh of strains of Streptococcus pneumoniae ATCC 10813 or Staphylococcus aureus ATCC 29213 at the start of therapy when treated for 24 h with 2.5 to 640 mg/kg/day of XRP 2868 fractionated for 3-, 6-, 12-, and 24-h dosing regimens. Nonlinear regression analysis was used to determine which PK/PD parameter best correlated with CFU/thigh at 24 h. Pharmacokinetic studies exhibited peak dose values of 0.03 to 0.07, area under the concentration-time curve (AUC) dose values of 0.02 to 0.07, and half-lives of 0.35 to 1.27 h. XRP 2868 produced in vivo PAEs of 0.5 to 3.4 h with S. pneumoniae strain ATCC 10813 and -1.5 to 10.7 h with S. aureus strain ATCC 29213. The 24-h AUC/MIC was the PK/PD parameter that best correlated with efficacy. In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of XRP 2868 varied among pathogens (including resistant strains). Mice had 10(6.1) to 10(7.8) CFU/thigh of four isolates of S. aureus (three methicillin-susceptible and one methicillin-resistant strain) and nine isolates of S. pneumoniae (one penicillin-susceptible, four penicillin-intermediate, and four penicillin-resistant strains) when treated for 24 h with 0.16 to 640 mg/kg of XRP 2868 every 6 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a net bacteriostatic affect over 24 h. MICs ranged from 0.06 to 0.25 microg/ml. The 24-h AUC/MICs for each static dose (20.7 to 252 mg/kg/day) varied from 3 to 70. Mean 24-h AUC/MICs +/- standard deviations (SDs) for S. pneumoniae and S. aureus isolates were 14 +/- 10 and 31 +/- 16, respectively. Beta-lactam and macrolide resistance did not alter the magnitude of AUC/MIC required for efficacy.

  4. Characterization of CoPK02, a Ca2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea.

    PubMed

    Yamashita, Masashi; Sueyoshi, Noriyuki; Yamada, Hiroki; Katayama, Syouichi; Senga, Yukako; Takenaka, Yasuhiro; Ishida, Atsuhiko; Kameshita, Isamu; Shigeri, Yasushi

    2018-04-20

    We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca 2+ /CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca 2+ /CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca 2+ -signaling in C. cinerea.

  5. Correcting oral contraceptive pharmacokinetic alterations due to obesity. A randomized controlled trial

    PubMed Central

    Edelman, Alison B; Cherala, Ganesh; Munar, Myrna Y.; McInnis, Martha; Stanczyk, Frank Z.; Jensen, Jeffrey T

    2014-01-01

    Objective To determine if increasing the hormone dose or eliminating the hormone-free interval improves key pharmacokinetic (PK) alterations caused by obesity during oral contraceptive (OC) use. Study design Obese (BMI ≥ 30 kg/m2), ovulatory, otherwise healthy, women received an OC containing 20 mcg ethinyl estradiol (EE)/100 mcg levonorgestrel (LNG) dosed cyclically (21 days active pills with 7-day placebo week) for two cycles and then were randomized for two additional cycles to: Continuous Cycling [CC, a dose neutral arm using the same OC with no hormone-free interval] or Increased Dose [ID, a dose escalation arm using an OC containing 30 mcg EE/150 mcg LNG cyclically]. During Cycle 2, 3, and 4, outpatient visits were performed to assess maximum serum concentration (Cmax), area under the curve (AUC0-∞), and time to steady state as well as pharmacodynamics. These key PK parameters were calculated and compared within groups between baseline and treatment cycles. Results A total of 31 women enrolled and completed the study (CC group n = 16; ID group n = 15). Demographics were similar between groups [mean BMI: CC 38kg/m2 (SD 5.1), ID 41kg/m2 (SD 7.6)]. At baseline, the key LNG PK parameters were no different between groups; average time to reach steady-state was 12 days in both groups; Cmax were CC: 3.82 ± 1.28 ng/mL and ID: 3.13 ± 0.87 ng/mL; and AUC0-∞ were CC: 267 ± 115 hr*ng/mL and ID: 199±75 hr*ng/mL. Following randomization, the CC group maintained steady-state serum levels whereas the ID group had a significantly higher Cmax (p< 0.001) but again required 12 days to achieve steady-state. However, AUC was not significantly different between CC (412 ± 255 hr*ng/mL) and ID (283 ± 130 hr*ng/mL). Forty-five percent (14/31) of the study population had evidence of an active follicle-like structure prior to randomization and afterwards this decreased to 9% (3/31). Conclusion Both increasing the OC dose and continuous dosing appear to counteract the impact of obesity on key OC PK parameters. PMID:25070547

  6. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro-in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation.

    PubMed

    Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo

    2017-01-03

    Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.

  7. Bioavailabilty of beta-amino acid and C-terminally derived PK/PBAN analogs

    USDA-ARS?s Scientific Manuscript database

    The ability of linear beta amino-acid-substituted peptides (PK-betaA-1: Ac-YFT[beta3-P]RLa; PK-betaA-2: Ac-Y[beta2-homoF]TPRLa; PK-betaA-3: Ac-Y[beta3-F]TPRLa and PK-betaA-4: Ac-[beta3-F]FT[beta3-P]RLa) and unsubstituted analogs (Ac-YFTPRLa and YFTPRLa) of the pyrokinin(PK)/pheromone biosynthesis-ac...

  8. Protein Binding of Lopinavir and Ritonavir During Four Phases of Pregnancy: Implications for Treatment Guidelines

    PubMed Central

    Patterson, Kristine B.; Dumond, Julie B.; Prince, Heather A.; Jenkins, Amanda J.; Scarsi, Kimberly K.; Wang, Ruili; Malone, Stephanie; Hudgens, Michael G.; Kashuba, Angela DM.

    2013-01-01

    Objective To investigate the intraindividual pharmacokinetics of total (protein bound + unbound) and unbound lopinavir/ritonavir (LPV/RTV) and to assess whether the pediatric formulation (100mg/25mg) can overcome any pregnancy-associated changes. Design Prospective longitudinal pharmacokinetic (PK) study Methods HIV-infected pregnant antiretroviral therapy-naïve and experienced women receiving LPV/RTV 400mg/100mg tablets twice daily. Intensive PK evaluations were performed at 20–24 weeks (PK1), 30 weeks (PK2) followed by empiric dose increase using the pediatric formulation (100mg/25mg twice daily), 32 weeks (PK3), and 8 weeks postpartum (PK4). Results Twelve women completed pre-specified PK evaluations. Median (range) age was 28 (1–35) years and baseline BMI was 32 (19–41) kg/m2. During pregnancy, total area under the time concentration (AUC0–12hr) for LPV was significantly lower than postpartum [PK1, PK2 or PK3 vs. PK4, p= 0.005]. Protein unbound LPV AUC0–12hr remained unchanged during pregnancy [PK1: 1.6 (1.3–1.9) vs. PK2: 1.6 (1.3–1.9) µg*hr/mL, p=0.4] despite a 25% dose increase [PK2 vs. PK3: 1.8 (1.3–2.1) µg*hr/mL, p=0.5]. Protein unbound LPV predose concentrations (C12h) did not significantly change despite dose increase [PK2: 0.10 (0.08–0.15) vs. PK3: 0.12 (0.10–0.15) µg/mL, p=0.09]. Albumin and LPV AUC0–12h fraction unbound were correlated (rs=0.3, p=0.03). Conclusions Total LPV exposure was significantly decreased throughout pregnancy despite the increased dose. However, the exposure of unbound LPV did not change significantly regardless of trimester or dose. Predose concentrations of unbound LPV were not affected by the additional dose and were 70-fold greater than the minimum efficacy concentration. These findings suggest dose adjustments may not be necessary in all HIV-infected pregnant women. PMID:23221983

  9. Hypoxia/oxidative stress alters the pharmacokinetics of CPU86017-RS through mitochondrial dysfunction and NADPH oxidase activation.

    PubMed

    Gao, Jie; Ding, Xuan-sheng; Zhang, Yu-mao; Dai, De-zai; Liu, Mei; Zhang, Can; Dai, Yin

    2013-12-01

    Hypoxia/oxidative stress can alter the pharmacokinetics (PK) of CPU86017-RS, a novel antiarrhythmic agent. The aim of this study was to investigate the mechanisms underlying the alteration of PK of CPU86017-RS by hypoxia/oxidative stress. Male SD rats exposed to normal or intermittent hypoxia (10% O2) were administered CPU86017-RS (20, 40 or 80 mg/kg, ig) for 8 consecutive days. The PK parameters of CPU86017-RS were examined on d 8. In a separate set of experiments, female SD rats were injected with isoproterenol (ISO) for 5 consecutive days to induce a stress-related status, then CPU86017-RS (80 mg/kg, ig) was administered, and the tissue distributions were examined. The levels of Mn-SOD (manganese containing superoxide dismutase), endoplasmic reticulum (ER) stress sensor proteins (ATF-6, activating transcription factor 6 and PERK, PRK-like ER kinase) and activation of NADPH oxidase (NOX) were detected with Western blotting. Rat liver microsomes were incubated under N2 for in vitro study. The Cmax, t1/2, MRT (mean residence time) and AUC (area under the curve) of CPU86017-RS were significantly increased in the hypoxic rats receiving the 3 different doses of CPU86017-RS. The hypoxia-induced alteration of PK was associated with significantly reduced Mn-SOD level, and increased ATF-6, PERK and NOX levels. In ISO-treated rats, the distributions of CPU86017-RS in plasma, heart, kidney, and liver were markedly increased, and NOX levels in heart, kidney, and liver were significantly upregulated. Co-administration of the NOX blocker apocynin eliminated the abnormalities in the PK and tissue distributions of CPU86017-RS induced by hypoxia/oxidative stress. The metabolism of CPU86017-RS in the N2-treated liver microsomes was significantly reduced, addition of N-acetylcysteine (NAC), but not vitamin C, effectively reversed this change. The altered PK and metabolism of CPU86017-RS induced by hypoxia/oxidative stress are produced by mitochondrial abnormalities, NOX activation and ER stress; these abnormalities are significantly alleviated by apocynin or NAC.

  10. Influence of food on the pharmacokinetic profile of fesoterodine.

    PubMed

    Malhotra, B; Sachse, R; Wood, N

    2009-06-01

    Fesoterodine is a new, once-daily, oral, antimuscarinic agent indicated for the treatment of overactive bladder. It undergoes rapid and extensive metabolism by plasma esterases to form its principal active moiety, 5-hydroxymethyl tolterodine (5-HMT). The sustained-release formulation of fesoterodine delivers 5-HMT with linear, dose-proportional pharmacokinetics (PK) suitable for once-daily dosing. This study was designed for the definitive assessment of the effect of food on 5-HMT PK using the commercial formulation of fesoterodine. In this randomized, open-label, single-dose, 2-way, crossover study, fesoterodine 8 mg was administered orally to healthy subjects in either a fed (after a high-fat, high-calorie breakfast) or fasted state. Blood samples for PK were drawn up to 36 hours after dosing. Primary endpoints for food effect assessment were area under the concentration-versus-time curve up to the last sample (AUC(0-tz)), and maximum plasma concentration (C(max)) for 5-HMT. Adverse events, vital signs, hematology, clinical chemistry, and electrocardiograms were monitored for safety assessment. A total of 16 healthy male subjects enrolled and completed the study. Mean values of both primary PK parameters of 5-HMT (AUC(0-tz) and C(max)) were approximately 19% higher after fesoterodine administration in the fed versus the fasted state. The upper limits of the corresponding 90% confidence intervals for the "fed/fasted" ratios of AUC(0-tz) (104%, 137%) and C(max) (94%, 149%) were not included in the prespecified acceptance range (80%, 125%) for concluding "no food effect." Secondary PK variables, (i.e. time to maximum plasma concentration terminal elimination half-life and mean residence time), did not differ markedly between the fed and fasted states. Fesoterodine was well tolerated, and adverse events were mild, with no apparent difference in frequency between fed and fasted states. The hypothesis of "no food effect" could not be statistically confirmed; however, only modest increases of approximately 19% were observed for C(max) and AUC(0-tz) of 5-HMT. This magnitude of PK effects is unlikely to be of clinical relevance based on Phase 2 and 3 clinical experience with fesoterodine, supporting its administration without regard to meals.

  11. Building and evaluation of a structured representation of pharmacokinetics information presented in SPCs: from existing conceptual views of pharmacokinetics associated with natural language processing to object-oriented design.

    PubMed

    Duclos-Cartolano, Catherine; Venot, Alain

    2003-01-01

    Develop a detailed representation of pharmacokinetics (PK), derived from the information in Summaries of Product Characteristics (SPCs), for use in computerized systems to help practitioners in pharmaco-therapeutic reasoning. Available knowledge about PK was studied to identify main PK concepts and organize them in a preliminary generic model. The information from 1950 PK SPC-texts in the French language was studied using a morpho-syntactic analyzer. It produced a list of candidate terms (CTs) from which those describing main PK concepts were selected. The contexts in which they occurred were explored to discover co-occurring CTs. The regrouping according to CT semantic types led to a detailed object-oriented model of PK. The model was evaluated. A random sample of 100 PK texts structured according to the model was judged for completeness and semantic accuracy by 8 experts who were blinded to other experts' responses. The PK text file contained about 300000 words, and the morpho-syntactic analysis extracted 17520 different CTs. The context of 592 CTs was studied and used to deduce the PK model. It consists of four entities: the information about the real PK process, the experimental protocol, the mathematical modeling, and the influence of factors causing variation. Experts judged that the PK model represented the information in 100 sample PK texts completely in 89% of cases and nearly completely in the other 11%. There was no distortion of meaning in 98% of cases and little distortion in the remainder. The PK model seems to be applicable to all SPCs and can be used to retranscribe legal information from PK sections of SPCs into structured databases.

  12. Building and Evaluation of a Structured Representation of Pharmacokinetics Information Presented in SPCs: From Existing Conceptual Views of Pharmacokinetics Associated with Natural Language Processing to Object-oriented Design

    PubMed Central

    Duclos-Cartolano, Catherine; Venot, Alain

    2003-01-01

    Objective: Develop a detailed representation of pharmacokinetics (PK), derived from the information in Summaries of Product Characteristics (SPCs), for use in computerized systems to help practitioners in pharmaco-therapeutic reasoning. Methods: Available knowledge about PK was studied to identify main PK concepts and organize them in a preliminary generic model. The information from 1,950 PK SPC-texts in the French language was studied using a morpho-syntactic analyzer. It produced a list of candidate terms (CTs) from which those describing main PK concepts were selected. The contexts in which they occurred were explored to discover co-occurring CTs. The regrouping according to CT semantic types led to a detailed object-oriented model of PK. The model was evaluated. A random sample of 100 PK texts structured according to the model was judged for completeness and semantic accuracy by 8 experts who were blinded to other experts’ responses. Results: The PK text file contained about 300,000 words, and the morpho-syntactic analysis extracted 17,520 different CTs. The context of 592 CTs was studied and used to deduce the PK model. It consists of four entities: the information about the real PK process, the experimental protocol, the mathematical modeling, and the influence of factors causing variation. Experts judged that the PK model represented the information in 100 sample PK texts completely in 89% of cases and nearly completely in the other 11%. There was no distortion of meaning in 98% of cases and little distortion in the remainder. Conclusion: The PK model seems to be applicable to all SPCs and can be used to retranscribe legal information from PK sections of SPCs into structured databases. PMID:12626375

  13. Mechanism of Polykaryocytosis Associated with Noncytopathic Infection by Measles Virus

    PubMed Central

    Atherton, John G.; Chaparas, Sotiros D.; Cremer, Martha; Gordon, Irving

    1965-01-01

    Atherton, John G. (University of Southern California, Los Angeles), Sotiros G. Chaparas, Martha Cremer, and Irving Gordon. Mechanism of polykaryocytosis associated with noncytopathic infection by measles virus. J. Bacteriol. 90:213–219. 1965.—Infection with a measles virus variant resulted not only in formation of polykaryocytes (PK) but also in formation of multicellular immunofluorescent foci (IFF) in which no cytopathic effect could be detected. The ratio of IFF to PK changed from 27 to 4 during the first passage and remained 4 after a second passage. PK were plaques. Plaque assay was linear in the presence of IFF. To investigate the mechanism of PK formation, radioautography was done on cells pulse-labeled with tritiated thymidine before virus multiplication began. The results showed that PK were formed by fusion; there were no PK whose nuclei contained no label, and the proportion of labeled nuclei (32%) and distribution of grain counts was the same in PK as in uninvolved cells, ruling out nuclear replication without concomitant cytoplasmic membrane formation as the mechanism of formation of these PK. Early in PK development, neutral red uptake was markedly increased (“red” plaques). As PK matured, hyperchromicity disappeared (“white” plaques). This sequence provided an index of rate of evolution of PK. Rate of PK maturation was more rapid at 37 than at 32 C. Images PMID:16562019

  14. Pharmacokinetics of Chinese medicines: strategies and perspectives.

    PubMed

    Yan, Ru; Yang, Ying; Chen, Yijia

    2018-01-01

    The modernization and internationalization of Chinese medicines (CMs) are hampered by increasing concerns on the safety and the efficacy. Pharmacokinetic (PK) study is indispensable to establish concentration-activity/toxicity relationship and facilitate target identification and new drug discovery from CMs. To cope with tremendous challenges rooted from chemical complexity of CMs, the classic PK strategies have evolved rapidly from PK study focusing on marker/main drug components to PK-PD correlation study adopting metabolomics approaches to characterize associations between disposition of global drug-related components and host metabolic network shifts. However, the majority of PK studies of CMs have adopted the approaches tailored for western medicines and focused on the systemic exposures of drug-related components, most of which were found to be too low to account for the holistic benefits of CMs. With an area under concentration-time curve- or activity-weighted approach, integral PK attempts to understand the PK-PD relevance with the integrated PK profile of multiple co-existing structural analogs (prototyes/metabolites). Cellular PK-PD complements traditional PK-PD when drug targets localize inside the cells, instead of at the surface of cell membrane or extracellular space. Considering the validated clinical benefits of CMs, reverse pharmacology-based reverse PK strategy was proposed to facilitate target identification and new drug discovery. Recently, gut microbiota have demonstrated multifaceted roles in drug efficacy/toxicity. In traditional oral intake, the presystemic interactions of CMs with gut microbiota seem inevitable, which can contribute to the holistic benefits of CMs through biotransforming CMs components, acting as the peripheral target, and regulating host drug disposition. Hence, we propose a global PK-PD approach which includes the presystemic interaction of CMs with gut microbiota and combines omics with physiologically based pharmacokinetic modeling to offer a comprehensive understanding of the PK-PD relationship of CMs. Moreover, validated clinical benefits of CMs and poor translational potential of animal PK data urge more research efforts in human PK study.

  15. Sensitive polarographic electrochemical determination of clarithromycin in blood serum

    PubMed Central

    Jain, Ashish; Jain, Ankit; Jain, Anki

    2013-01-01

    Clarithromycin is an antibacterial widely used for the treatment of a myriad of infections. Various methods including HPLC have been reported for its drug plasma concentration but they are more complex. In this study, we developed an electrochemical method for estimation of clarithromycin in blood using differential pulse polarography (DPP) after oral administration of pure clarithromycin suspension. The differential pulse polarography of clarithromycin showed peak with peak potential Ep is −1460 mV SCE at pH 6.5 ± 0.1. The developed electrochemical method was standardized and validated for the determination of clarithromycin in blood serum of albino rats. PK analysis included Cmax, Tmax, AUC0-24, elimination rate constant (Kel) and t1/2. Cmax were found to be 1.34 ± 0.16 mg/ml and 1.99 ± 0.22 mg/ml for plain clarithromycin and suspension formulation, respectively. Effects of ammonium tartarate concentration and pH were also studied as specificity parameters. Developed electrochemical method was found to be simple, accurate method for to estimate blood-clarithromycin profile and can also be used similarly for various dosage forms. PMID:24023459

  16. Population Pharmacokinetic and Pharmacodynamic Modeling of Lusutrombopag, a Newly Developed Oral Thrombopoietin Receptor Agonist, in Healthy Subjects.

    PubMed

    Katsube, Takayuki; Ishibashi, Toru; Kano, Takeshi; Wajima, Toshihiro

    2016-11-01

    The aim of this study was to develop a population pharmacokinetic (PK)/pharmacodynamic (PD) model for describing plasma lusutrombopag concentrations and platelet response following oral lusutrombopag dosing and for evaluating covariates in the PK/PD profiles. A population PK/PD model was developed using a total of 2539 plasma lusutrombopag concentration data and 1408 platelet count data from 78 healthy adult subjects following oral single and multiple (14-day once-daily) dosing. Covariates in PK and PK/PD models were explored for subject age, body weight, sex, and ethnicity. A three-compartment model with first-order rate and lag time for absorption was selected as a PK model. A three-transit and one-platelet compartment model with a sigmoid E max model for drug effect and feedback of platelet production was selected as the PD model. The PK and PK/PD models well described the plasma lusutrombopag concentrations and the platelet response, respectively. Body weight was a significant covariate in PK. The bioavailability of non-Japanese subjects (White and Black/African American subjects) was 13 % lower than that of Japanese subjects, while the simulated platelet response profiles using the PK/PD model were similar between Japanese and non-Japanese subjects. There were no significant covariates of the tested background data including age, sex, and ethnicity (Japanese or non-Japanese) for the PD sensitivity. A population PK/PD model was developed for lusutrombopag and shown to provide good prediction for the PK/PD profiles. The model could be used as a basic PK/PD model in the drug development of lusutrombopag.

  17. Clinical pharmacokinetics: perceptions of hospital pharmacists in Qatar about how it was taught and how it is applied.

    PubMed

    Kheir, Nadir; Awaisu, Ahmed; Gad, Hoda; Elazzazy, Shereen; Jibril, Farah; Gajam, Mawadda

    2015-12-01

    The application of clinical pharmacokinetics (PK) is essential when providing pharmaceutical care. Appropriate application of PK monitoring results in improved patient outcomes including decreased mortality, length of treatment, length of hospital stay, and adverse effects of drug therapy. Despite the well-documented evidence of benefits of clinical PK services, many pharmacists find it challenging to apply PK in clinical practice. To evaluate pharmacists' training backgrounds, attitude, practices, and perceived barriers pertaining to the application of PK in clinical practice in Qatar. All hospitals under Hamad Medical Corporation, the main healthcare provider in Qatar. This was a cross-sectional, descriptive study that was conducted between October 2012 and January 2013, using a self-administered web-based survey. Pharmacists were eligible to participate if they: (1) were working as full-time hospital pharmacists and; (2) have been in practice for at least 1 year. PK contents learned in undergraduate curriculum; perception towards the PK contents and instructions received in the undergraduate curriculum and; application of PK in current clinical practice. A total of 112 pharmacists responded to the questionnaire. The majority of the respondents (n = 91; 81.3 %) reported that they had received PK course(s) in their undergraduate curriculum. Similarly, the majority (70-80 %) of them agreed that the undergraduate PK courses or contents they received were important and relevant to their current practice. The pharmacists identified spending more time on dispensing and inventory issues rather than clinical practice, scarce resources, and manual rather than computerized PK calculations as some of the barriers they encountered in learning about PK and its application. The characteristics of the surveyed pharmacists such as gender, age, highest academic degree, and country of graduation did not influence the pharmacists' perception and attitudes towards PK teaching and application (p > 0.05). PK course contents were perceived to lack depth and relevance to practice, and pharmacist had no experiential training that included aspects of PK. These, and other issues, result in poor application of PK in practice.

  18. DkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression

    PubMed Central

    Guan, Changfei; Du, Xiaoyun; Zhang, Qinglin; Ma, Fengwang; Luo, Zhengrong; Yang, Yong

    2017-01-01

    The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length coding sequences (CDS) for pyruvate kinase genes (DkPK1-6) were isolated, and DkPK1 is thought to be involved in the natural deastringency of C-PCNA persimmon fruit. Here, we characterize the eight other DkPK genes (DkPK7-14) from C-PCNA persimmon fruit based on transcriptome data. The transcript changes in DkPK7-14 genes and correlations with the proanthocyanidin (PA) content were investigated during different fruit development stages in C-PCNA, J-PCNA, and non-PCNA persimmon; DkPK7 and DkPK8 exhibited up-regulation patterns during the last developmental stage in C-PCNA persimmon that was negatively correlated with the decrease in soluble PAs. Phylogenetic analysis and subcellular localization analysis revealed that DkPK7 and DkPK8 are cytosolic proteins. Notably, DkPK7 and DkPK8 were ubiquitously expressed in various persimmon organs and abundantly up-regulated in seeds. Furthermore, transient over-expression of DkPK7 and DkPK8 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the pyruvate decarboxylase (DkPDC) and alcohol dehydrogenase genes (DkADH), which are closely related to acetaldehyde metabolism. The accumulated acetaldehyde that results from the up-regulation of the DkPDC and DkADH genes can combine with soluble PAs to form insoluble PAs, resulting in the removal of astringency from persimmon fruit. Thus, we suggest that both DkPK7 and DkPK8 are likely to be involved in natural deastringency via the up-regulation of DkPDC and DkADH expression during the last developmental stage in C-PCNA persimmon. PMID:28243247

  19. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  20. The use of error-category mapping in pharmacokinetic model analysis of dynamic contrast-enhanced MRI data.

    PubMed

    Gill, Andrew B; Anandappa, Gayathri; Patterson, Andrew J; Priest, Andrew N; Graves, Martin J; Janowitz, Tobias; Jodrell, Duncan I; Eisen, Tim; Lomas, David J

    2015-02-01

    This study introduces the use of 'error-category mapping' in the interpretation of pharmacokinetic (PK) model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data. Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM), using in turn a model arterial input function (AIF), an individually-measured AIF and a sample-average AIF. PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd]) conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-voxel basis, thereby forming a colour-coded 'error-category map' for each imaged slice. These maps were found to be repeatable between patient visits and showed that the eTM converged adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-physical condition ve ≥ 1 was the most frequently indicated error category and appeared sensitive to the form of AIF used. This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control technique and also has the potential to reveal otherwise hidden patterns of failure in PK model applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Indirect-response modeling of desmopressin at different levels of hydration.

    PubMed

    Callréus, T; Odeberg, J; Lundin, S; Höglund, P

    1999-10-01

    The objective of the present study was to investigate the pharmacokinetics (PK) and pharmacodynamics (PD) of desmopressin in healthy male subjects at different levels of overhydration. Also, we examined if an indirect-response model could be related to renal physiology and the pharmacological action of desmopressin. Eight healthy male subjects participated in this open, randomized crossover study with three periods. Each subject was orally water loaded (0 to 20 ml.kg-1 body weight) on 3 study days in order to achieve three different levels of hydration. After the initial water load, urine was voided every 15 min and the volumes were measured. To ensure continuous overhydration the subjects replaced their fluid loss with drinking-water. When a steady-state diuresis was achieved after approximately 2 hr, 0.396 microgram of desmopressin was administered intravenously as a bolus injection. Blood was sampled and urine was collected at intervals throughout the study day (10 hr). An indirect-response model, where desmopressin was assumed to inhibit the elimination of response, was fit to the urine osmolarity data. There were no statistically significant effects of different levels of hydration, as expressed by urine flow rate at baseline, on the estimates of the PK and PD model parameters. The calculated terminal half-lives of elimination (t1/2 beta) ranged between 2.76 and 8.37 hr with an overall mean of 4.36 hr. The overall means of plasma clearance and the volumes of distribution of the central compartment (Vc) and at steady state (Vss) were estimated to be 1.34 (SD 0.35) ml.min-1.kg-1, 151 (SD28) ml.kg-1, and 386 (SD 63) ml.kg-1, respectively. High urine flow rate, indicating overhydration, produced a diluted urine and thus a low osmolarity at baseline (R0). The effect of the urine flow rate on the urine osmolarity at baseline was highly significant (p < 0.0001). The mean values for IC50 and the sigmodicity factor (gamma) were 3.7 (SD 1.2) pg ml-1 and 13.0 (SD 3.5), respectively. In most cases when there was a high urine flow rate at baseline, the model and the estimated PD parameters could be related to the pharmacological action of desmopressin and renal physiology. Thus, the indirect-response model used in this study offers a mechanistic approach of modeling the effect of desmopressin in overhydrated subjects.

  2. Pharmacokinetic Interactions between the Hormonal Emergency Contraception, Levonorgestrel (Plan B), and Efavirenz

    PubMed Central

    Carten, Monica L.; Kiser, Jennifer J.; Kwara, Awewura; Mawhinney, Samantha; Cu-Uvin, Susan

    2012-01-01

    Objectives. Compare the Plan B levonorgestrel (LNG) area under the concentration- time curve (AUC12) prior to and with efavirenz (EFV). Design. Prospective, open-label, single-arm, equivalence study. Methods. Healthy HIV-negative subjects underwent 12 hr intensive pharmacokinetic (PK) sampling following single dose LNG alone and after 14 days of EFV. Geometric means, Geometric Mean Ratios, and 90% confidence intervals (CI) are reported for PK Parameters. T-tests were utilized. Clinical parameters and liver function tests (LFTs) were assessed. Results. 24 women enrolled and 21 completed the study. With EFV, LNG AUC12 was reduced 56% (95% CI: 49%, 62%) from 42.9 to 17.8 ng∗hr/mL, and maximum concentration (Cmax⁡) was reduced 41% (95% CI: 33%, 50%) from 8.4 to 4.6 ng/mL. LNG was well tolerated with no grade 3 or 4 treatment-related toxicities. Conclusions. EFV significantly reduced LNG exposures. Higher LNG doses may be required with EFV. These results reinforce the importance of effective contraception in women taking EFV. PMID:22536010

  3. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future.

    PubMed

    Pasipanodya, Jotam; Gumbo, Tawanda

    2011-01-01

    Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration.

  4. Nuclear Time Delay Effects on K-Vacancy Production in Deep-Inelastic U+U Collisions

    NASA Astrophysics Data System (ADS)

    Molitoris, John David

    1987-09-01

    Atomic K-vacancy production in 7.5-MeV/u U+U collisons has been studied for small-impact-parameter (b) elastic scattering and for deep-inelastic nuclear reactions, by measuring coincidences between U x-rays and scattered U particles. The K-vacancy production probability (P(,K)(b)) in elastic U+U collisions was measured as a function of b and it is shown that P(,K) follows a scaling law from b = 10 to 85 fm. Below 10 fm, P(,K)(b) increases sharply from 0.91 (+OR-) 0.08 at 11.6 fm to a maximum of 1.8 (+OR -) 0.18 vacancies per collison at 7 fm. This behavior at small b could be due to rotational coupling of the 2p(,3/2)(pi), 2p(,3/2)(sigma) (--->) 2p(,1/2)(sigma) molecular orbitals, but present theoretical calculations do not reflect this. Since internal conversion is a major background in these measurements, it was necessary to observe how the internal conversion changes in elastic collisions as b (--->) 0, so that the internal conversion for atomic collisons accompanied by nuclear reactions could be understood. Nuclear-reaction effects of P(,K)(b (DBLTURN) 0) were studied as a function of the total kinetic energy loss (TKEL) of the nuclear interaction for 2-body break -up (U + U (--->) U' + U'') and 3-body break-up (U + U ( --->) U' + 2ff). In 4-body break-up (U + U (--->) 2ff' + 2ff''), P(,K) was measured over all TKEL. In 2-body break-up a 78% reduction of P(,K) is observed between TKEL = 0 and 275 MeV. This trend matches a theoretical decrease in P(,K)(T(,D)), where T(,D) in the nuclear interaction time or delay time. A parametric relation between TKEL and T(,D) can be formed between the theoretical calculation and the experimental result. A delay time of (0.52 (+OR -) 0.17) x 10('-21) sec at TKEL = 100 MeV is deter- mined. There is overall agreement between this atomic physics result and nuclear diffusion model calculations. The measured P(,K)(TKEL) for 3-body break-up is nearly identical to that of 2-body break-up. This indicates that there is a large compo- nent of fissioning nuclei ((TURN)50%) whose fission time (T(,f)) can not be much smaller than the U K-vacancy decay time (T(,K)(U) (DBLTURN) 10('-18) sec). The overall P(,K)('3-body) results and a study of distinct spatial orientations of the fission fragments in relation to the surviving U-like partner show a reduction in P(,K)('3-body) for TKEL >(, )175 MeV. This could imply that T(,f) (LESSTHEQ) 10('-18) sec for TKEL >(, )175 MeV. Measurement of the net U K x-ray yield over all TKEL in 4-body break-up reveals that P(,K)('4-body) = 0.36 (+OR-) 0.08. When compared to similar net probabilities for 2- and 3-body break-up, this indicates that about 50% of the U-like reaction partners which ultimately fission live at least 10('-18) sec. This result is in overall agreement with the 3-body results, but exceeds usual nuclear physics estimates of T(,f) (TURN) 10('-20) sec. However, crystal blocking techniques have observed long lived fission components (T(,f) (GREATERTHEQ) 10('-18) sec) in some nuclear reactions.

  5. Sequence analysis and characterization of pyruvate kinase from Clonorchis sinensis, a 53.1-kDa homopentamer, implicated immune protective efficacy against clonorchiasis.

    PubMed

    Chen, Tingjin; Jiang, Hongye; Sun, Hengchang; Xie, Zhizhi; Ren, Pengli; Zhao, Lu; Dong, Huimin; Shi, Mengchen; Lv, Zhiyue; Wu, Zhongdao; Li, Xuerong; Yu, Xinbing; Huang, Yan; Xu, Jin

    2017-11-09

    Clonorchis sinensis, the causative agent of clonorchiasis, is classified as one of the most neglected tropical diseases and affects more than 15 million people globally. This hepatobiliary disease is highly associated with cholangiocarcinoma. As key molecules in the infectivity and subsistence of trematodes, glycolytic enzymes have been targets for drug and vaccine development. Clonorchis sinensis pyruvate kinase (CsPK), a crucial glycolytic enzyme, was characterized in this research. Differences were observed in the sequences and spatial structures of CsPK and PKs from humans, rats, mice and rabbits. CsPK possessed a characteristic active site signature (IKLIAKIENHEGV) and some unique sites but lacked the N-terminal domain. The predicted subunit molecular mass (Mr) of CsPK was 53.1 kDa. Recombinant CsPK (rCsPK) was a homopentamer with a Mr. of approximately 290 kDa by both native PAGE and gel filtration chromatography. Significant differences in the protein and mRNA levels of CsPK were observed among four life stages of C. sinensis (egg, adult worm, excysted metacercaria and metacercaria), suggesting that these developmental stages may be associated with diverse energy demands. CsPK was widely distributed in adult worms. Moreover, an intense Th1-biased immune response was persistently elicited in rats immunized with rCsPK. Also, rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. The sequences and spatial structures, molecular mass, and expression profile of CsPK have been characterized. rCsPK was indicated to be a homopentamer. Rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. CsPK is worthy of further study as a promising target for drug and vaccine development.

  6. Population pharmacokinetics of epsilon-aminocaproic acid in infants undergoing craniofacial reconstruction surgery

    PubMed Central

    Stricker, P. A.; Zuppa, A. F.; Fiadjoe, J. E.; Maxwell, L. G.; Sussman, E. M.; Pruitt, E. Y.; Goebel, T. K.; Gastonguay, M. R.; Taylor, J. A.; Bartlett, S. P.; Schreiner, M. S.

    2013-01-01

    Background Understanding the clinical pharmacology of the antifibrinolytic epsilon-aminocaproic acid (EACA) is necessary for rational drug administration in children. The aim of this study is to determine the pharmacokinetics (PKs) of EACA in infants aged 6–24 months undergoing craniofacial reconstruction surgery. Methods Cohorts of six infants were enrolled sequentially to one of the three escalating loading dose–continuous i.v. infusion (CIVI) regimens: 25 mg kg−1, 10 mg kg−1 h−1; 50 mg kg−1, 20 mg kg−1 h−1; 100 mg kg−1, 40 mg kg−1 h−1. Plasma EACA concentrations were determined using a validated high-performance liquid chromatography-tandem mass spectrometry assay. A population non-linear mixed effects modelling approach was used to characterize EACA PKs. Results Population PK parameters of EACA were estimated using a two-compartment disposition model with weight expressed as an allometric covariate and an age effect. The typical patient in this study had an age of 38.71 weeks and a weight of 8.82 kg. PK parameters for this typical patient were: pre-/postoperative plasma drug clearance of 32 ml min−1 (3.6 ml kg−1 min−1), inter-compartmental clearance of 42.4 ml min−1 (4.8 ml min−1 kg−1), central volume of distribution of 1.27 litre (0.14 litre kg−1), and peripheral volume of distribution of 2.53 litre (0.29 litre kg−1). Intra-operative clearance and central volume of distribution were 89% and 80% of the pre-/postoperative value, respectively. Conclusions EACA clearance increased with weight and age. The dependence of clearance on body weight supports weight-based dosing. Based on this study, a loading dose of 100 mg kg−1 followed by a CIVI of 40 mg kg−1 h−1 is appropriate to maintain target plasma EACA concentrations in children aged 6–24 months undergoing these procedures. PMID:23353035

  7. Population pharmacokinetics of epsilon-aminocaproic acid in infants undergoing craniofacial reconstruction surgery.

    PubMed

    Stricker, P A; Zuppa, A F; Fiadjoe, J E; Maxwell, L G; Sussman, E M; Pruitt, E Y; Goebel, T K; Gastonguay, M R; Taylor, J A; Bartlett, S P; Schreiner, M S

    2013-05-01

    Understanding the clinical pharmacology of the antifibrinolytic epsilon-aminocaproic acid (EACA) is necessary for rational drug administration in children. The aim of this study is to determine the pharmacokinetics (PKs) of EACA in infants aged 6-24 months undergoing craniofacial reconstruction surgery. Cohorts of six infants were enrolled sequentially to one of the three escalating loading dose-continuous i.v. infusion (CIVI) regimens: 25 mg kg(-1), 10 mg kg(-1) h(-1); 50 mg kg(-1), 20 mg kg(-1) h(-1); 100 mg kg(-1), 40 mg kg(-1) h(-1). Plasma EACA concentrations were determined using a validated high-performance liquid chromatography-tandem mass spectrometry assay. A population non-linear mixed effects modelling approach was used to characterize EACA PKs. Population PK parameters of EACA were estimated using a two-compartment disposition model with weight expressed as an allometric covariate and an age effect. The typical patient in this study had an age of 38.71 weeks and a weight of 8.82 kg. PK parameters for this typical patient were: pre-/postoperative plasma drug clearance of 32 ml min(-1) (3.6 ml kg(-1) min(-1)), inter-compartmental clearance of 42.4 ml min(-1) (4.8 ml min(-1) kg(-1)), central volume of distribution of 1.27 litre (0.14 litre kg(-1)), and peripheral volume of distribution of 2.53 litre (0.29 litre kg(-1)). Intra-operative clearance and central volume of distribution were 89% and 80% of the pre-/postoperative value, respectively. EACA clearance increased with weight and age. The dependence of clearance on body weight supports weight-based dosing. Based on this study, a loading dose of 100 mg kg(-1) followed by a CIVI of 40 mg kg(-1) h(-1) is appropriate to maintain target plasma EACA concentrations in children aged 6-24 months undergoing these procedures.

  8. Interim methods for development of inhalation reference concentrations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, K.; Dourson, M.; Erdreich, L.

    1990-08-01

    An inhalation reference concentration (RfC) is an estimate of continuous inhalation exposure over a human lifetime that is unlikely to pose significant risk of adverse noncancer health effects and serves as a benchmark value for assisting in risk management decisions. Derivation of an RfC involves dose-response assessment of animal data to determine the exposure levels at which no significant increase in the frequency or severity of adverse effects between the exposed population and its appropriate control exists. The assessment requires an interspecies dose extrapolation from a no-observed-adverse-effect level (NOAEL) exposure concentration of an animal to a human equivalent NOAEL (NOAEL(HBC)).more » The RfC is derived from the NOAEL(HBC) by the application of generally order-of-magnitude uncertainty factors. Intermittent exposure scenarios in animals are extrapolated to chronic continuous human exposures. Relationships between external exposures and internal doses depend upon complex simultaneous and consecutive processes of absorption, distribution, metabolism, storage, detoxification, and elimination. To estimate NOAEL(HBC)s when chemical-specific physiologically-based pharmacokinetic models are not available, a dosimetric extrapolation procedure based on anatomical and physiological parameters of the exposed human and animal and the physical parameters of the toxic chemical has been developed which gives equivalent or more conservative exposure concentrations values than those that would be obtained with a PB-PK model.« less

  9. The Protolysis of Singlet Excited B-Naphtol.

    ERIC Educational Resources Information Center

    van Stam, Jan; Lofroth, Jan-Erik

    1986-01-01

    Presents a two-day experiment to estimate the pK for the protolysis of beta-naphtol in its ground state and the first singlet excited state. Results are compared to results obtained from the integrated rate equations in which values of the rate constants were taken from a time-resolved study. (JN)

  10. Single-dose pharmacokinetic study comparing the pharmacokinetics of recombinant human chorionic gonadotropin in healthy Japanese and Caucasian women and recombinant human chorionic gonadotropin and urinary human chorionic gonadotropin in healthy Japanese women.

    PubMed

    Bagchus, Wilhelmina; Wolna, Peter; Uhl, Wolfgang

    2018-01-01

    Recombinant hCG (r-hCG) was approved in Japan in 2016. As a prerequisite for a Phase III study in Japan related to this approval, the pharmacokinetic (PK) profile of r-hCG was investigated. An open-label, partly randomized, single-center, single-dose, group-comparison, Phase I PK-bridging study was done that compared a single 250 μg dose of r-hCG with a single 5000 IU dose of urinary hCG (u-hCG) in healthy Japanese women, as well as comparing a single 250 μg dose of r-hCG in Japanese and Caucasian women. The Japanese participants were randomized 1:1 to receive either r-hCG or u-hCG, while the Caucasian participants were weight-matched to the Japanese participants who were receiving r-hCG in a 1:1 fashion. The primary PK parameters were the area under the serum concentration-time curve from time 0 extrapolated to infinity (AUC 0-∞ ) and the maximum serum concentration (C max ). The mean serum hCG concentration-time profiles of r-hCG in the Japanese and Caucasian participants were a similar shape, but the level of overall exposure was ~20% lower in the Japanese participants. For the Japanese participants, r-hCG resulted in an 11% lower C max but a 19% higher AUC 0-∞ compared with u-hCG. No new safety signal was identified. This study cannot exclude a potential difference in the PK profile of r-hCG between Japanese and Caucasian participants. However, this study does not indicate that there are clinically relevant differences in the serum PK of r-hCG and u-hCG in the Japanese participants.

  11. Pharmacokinetics of the novel oral prostacyclin receptor agonist selexipag in subjects with hepatic or renal impairment

    PubMed Central

    Cruz, Hans G.; Krause, Andreas; Ulč, Ivan; Halabi, Atef; Dingemanse, Jasper

    2016-01-01

    Aim The aim of the present study was to explore the effect of hepatic or renal dysfunction on the pharmacokinetics (PK), tolerability and safety of selexipag, an orally active prostacyclin receptor agonist. Methods Two prospective, open‐label studies evaluated the PK of selexipag and its active metabolite ACT‐333679 in healthy subjects and in subjects with mild, moderate and severe hepatic impairment or severe renal function impairment (SRFI). A single dose of 200 μg or 400 μg was administered. The PK parameters were derived from plasma concentration–time profiles. Results Exposure increased with the severity of hepatic impairment. Geometric mean ratios and 90% confidence intervals of the area under the concentration–time curve from time zero to infinity (AUC0–∞) for selexipag and ACT‐333679 increased 2.1‐fold (1.7–2.6) and 1.2‐fold (0.9–1.6) in subjects with mild hepatic impairment, and 4.5‐fold (3.4–5.8) and 2.2‐fold (1.7–2.8) in subjects with moderate hepatic impairment when compared with healthy subjects. The two subjects with severe hepatic impairment showed similar dose‐normalized exposure to that of subjects with moderate hepatic impairment. A 1.7‐fold increase in the AUC0–∞ of selexipag and ACT‐333679 was observed with SRFI compared with healthy subjects. Although exposure to selexipag and/or ACT‐333679 was higher in subjects with mild or moderate hepatic impairment or SRFI vs. healthy subjects, no safety concerns were raised in these groups. Conclusions Based on these observations, the PK data suggest that the clinically used starting dose needs no adjustments in patients with mild or moderate hepatic impairment or SRFI. However, doses should be up‐titrated with caution in these patients. The small number of subjects limits the interpretation of selexipag PK in subjects with severe hepatic impairment. PMID:27062188

  12. Building in efficacy: developing solutions to combat drug-resistant S. pneumoniae.

    PubMed

    Jacobs, M R

    2004-04-01

    The development of our understanding of the pharmacokinetic (PK) and pharmacodynamic (PD) principles that determine antimicrobial efficacy has advanced substantially over the last 10 years. We are now in a position to use PK/PD principles to set targets for antimicrobial design and optimisation so that we can predict eradication of specific pathogens or resistant variants when agents are used clinically. Optimisation of PK/PD parameters to enable the treatment of resistant pathogens with oral agents may not be possible with many current agents, such as some cephalosporins, macrolides and fluoroquinolones. Aminopenicillins, however, such as amoxicillin, have linear PK and have a good safety profile even at high doses. The new pharmacokinetically enhanced oral formulation of amoxicillin/clavulanate, 2000/125 mg twice daily, was designed using PK/PD principles to be able to eradicate Streptococcus pneumoniae with amoxicillin MICs of up to and including 4 mg/L, which includes most penicillin-resistant isolates. For amoxicillin and amoxicillin/clavulanate, a time above MIC (T > MIC) of 35-40% of the dosing interval (based on blood levels) is predictive of high bacteriological efficacy. This target was met by the design of a unique bilayer tablet incorporating 437.5 mg of sustained-release sodium amoxicillin in one layer plus 562.5 mg of immediate-release amoxicillin trihydrate and 62.5 mg of clavulanate potassium in the second layer, with two tablets administered for each dose. This unique design extends the bacterial killing time by increasing the T > MIC to 49% of the dosing interval against pathogens with MICs of 4 mg/L, and 60% of the dosing interval against pathogens with MICs of 2 mg/L. Based on these results, this new amoxicillin/clavulanate formulation should be highly effective in treating respiratory tract infections due to drug-resistant S. pneumoniae as well as beta-lactamase-producing pathogens, such as Haemophilus influenzae and Moraxella catarrhalis.

  13. Role of neurotensin and opioid receptors in the cardiorespiratory effects of [Ile⁹]PK20, a novel antinociceptive chimeric peptide.

    PubMed

    Kaczyńska, Katarzyna; Szereda-Przestaszewska, Małgorzata; Kleczkowska, Patrycja; Lipkowski, Andrzej W

    2014-10-15

    Ile(9)PK20 is a novel hybrid of opioid-neurotensin peptides synthesized from the C-terminal hexapeptide of neurotensin and endomorphin-2 pharmacophore. This chimeric compound shows potent central and peripheral antinociceptive activity in experimental animals, however nothing is known about its influence on the respiratory and cardiovascular parameters. The present study was designed to determine the cardiorespiratory effects exerted by an intravenous injection (i.v.) of [Ile(9)]PK20. Share of the vagal afferentation and the contribution of NTS1 neurotensin and opioid receptors were tested. Intravenous injection of the hybrid at a dose of 100 μg/kg in the intact, anaesthetized rats provoked an increase in tidal volume preceded by a prompt short-lived decrease. Immediately after the end of injection brief acceleration of the respiratory rhythm appeared, and was ensued by the slowing down of breathing. Changes in respiration were concomitant with a bi-phasic response of the blood pressure: an immediate increase was followed by a sustained hypotension. Midcervical vagotomy eliminated the increase in tidal volume and respiratory rate responses. Antagonist of opioid receptors - naloxone hydrochloride eliminated only [Ile(9)]PK20-evoked decline in tidal volume response. Blockade of NTS1 receptors with an intravenous dose of SR 142,948, lessened the remaining cardiorespiratory effects. This study depicts that [Ile(9)]PK20 acting through neurotensin NTS1 receptors augments the tidal component of the breathing pattern and activates respiratory timing response through the vagal pathway. Blood pressure effects occur outside vagal afferentation and might result from activation of the central and peripheral vascular NTS1 receptors. In summary the respiratory effects of the hybrid appeared not to be profound, but they were accompanied with unfavourable prolonged hypotension. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A new fully human recombinant FSH (follitropin epsilon): two phase I randomized placebo and comparator-controlled pharmacokinetic and pharmacodynamic trials.

    PubMed

    Abd-Elaziz, Khalid; Duijkers, Ingrid; Stöckl, Lars; Dietrich, Bruno; Klipping, Christine; Eckert, Kelvin; Goletz, Steffen

    2017-08-01

    What are the differences and similarities of pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of the novel recombinant human FSH follitropin epsilon expressed in the human cell line GlycoExpress compared with a Chinese hamster ovary (CHO) derived compound and a urinary derived product? Overall follitropin epsilon, with a fully human glycosylation, shows a comparable PK profile at single-dose as well as multiple-dose administration compared to recombinant CHO-derived FSH as well as urinary derived FSH, whereas the PD properties differ from product to product with follitropin epsilon being most active in PD parameters. Recombinant FSH produced in CHO and FSH obtained from the urine of postmenopausal women show comparable PK and PD properties. However, more recently a comparative study of a recombinant FSH produced in the human cell line PerC6 and a CHO-derived FSH preparation revealed differences in PK and PD properties of the molecule. Both studies were randomized, placebo- and comparator-controlled, single-blind phase I studies in healthy pituitary-suppressed female volunteers aged 18 and 40 years. The single-dose, dose escalation study included 19 women (April 2011 to September 2011) with three ascending dose levels per subject or placebo/comparators with a 14-day washout phase between dosings. The multiple-dose study included 57 women (October 2011 to April 2012) in five cohorts with three dose levels versus placebo and two comparators. Randomization to the respective treatment was performed after successful downregulation of the pituitary gland prior to Investigational Medicinal Product dosing. In the single-dose study, 12 subjects received follitropin epsilon (25, 75, 150 and 300 IU) in three of four possible ascending doses and seven subjects received one dose of two comparators (150 IU Bravelle and 150 IU Gonal-f) and placebo in random order in each treatment period. In the multiple-dose study, 30 subjects received follitropin epsilon (75 IU or 150 IU once daily [QD], or 150 IU every other day [QAD], 10 subjects each) and 27 subjects received 150 IU Gonal-f, 150 IU Bravelle, or placebo for 7 days (11/10/6 subjects). Blood samples for measuring PK as well as PD parameters were collected systematically before, during and after dosing. Adverse events (AEs) and other relevant safety parameters were recorded. Data were summarized using descriptive statistics. The single- and multiple-dose PK parameters maximum concentration (Cmax) and area under the concentration-time curve (AUC0-last) increased in a linear fashion with increasing dose levels of follitropin epsilon. Follitropin epsilon showed PK characteristics comparable to the comparators indicating that well established treatment schemes could be applied. There was a dose-response effect of single and multiple doses of follitropin epsilon on follicular growth, which was shown for the biomarker inhibin B as well as for the mean number and size of follicles. Multiple doses of 75 IU follitropin epsilon given daily, as well as 150 IU follitropin epsilon every second day, showed a follicle growth comparable with 150 IU Gonal-f given daily, while in case of daily administration of 150 IU Bravelle only weak follicle stimulation was observed. Multiple doses of 150 IU follitropin epsilon induced a much higher follicle growth compared to the same dose of Gonal-f. All single and multiple follitropin epsilon doses tested were safe and well tolerated, and overall there were no relevant differences between follitropin epsilon and the comparators in terms of safety. The average number of AEs increased with increasing dose levels. No clinically relevant abnormalities were reported for any of the other safety parameters assessed. No follitropin epsilon anti-drug antibodies were observed. The studies were conducted as a single-blind design. Hormone levels or other parameters assessed in serum are generally not considered as being subject to bias. Other assessments directly performed by the investigators, such as transvaginal ultrasound assessments, may have been subject to personal bias. No prospective calculations of statistical power had been made, as is common practice for first in human and early phase I studies in healthy volunteers. These early development studies showed that follitropin epsilon exhibits comparable PK characteristics, as well as inducing stronger PD effects in terms of follicle growth and serum inhibin B, than the comparators. Follitropin epsilon induced a dose-dependent increase in follicular growth. The results warrant further studies with this new fully human recombinant FSH. The studies were sponsored by GLYCOTOPE GmbH, Berlin, Germany. K.A-E. is an employee of QPS-Netherlands, B.V., which received funding for the studies from Glycotope GmbH; I.D. and C.K. are employees of Dinox B.V., which received funding for the studies from Glycotope GmbH; L.S. and S.G. are employees and shareholders of Glycotope GmbH; B.D. and K.E. are employees of Glycotope GmbH. www.clinicaltrials.gov: NCT01354886 (single-dose); NCT01477073 (multiple-dose). The single-dose trial was registered on 11 May 2011 while the multiple-dose trial was registered on 09 November 2011. First subject was enroled in the single-dose trial in 27 April 2011 and in the multiple-dose trial in 02 October 2011. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. Comparable long-term efficacy, as assessed by patient-reported outcomes, safety and pharmacokinetics, of CT-P13 and reference infliximab in patients with ankylosing spondylitis: 54-week results from the randomized, parallel-group PLANETAS study.

    PubMed

    Park, Won; Yoo, Dae Hyun; Jaworski, Janusz; Brzezicki, Jan; Gnylorybov, Andriy; Kadinov, Vladimir; Sariego, Irmgadt Goecke; Abud-Mendoza, Carlos; Escalante, William Jose Otero; Kang, Seong Wook; Andersone, Daina; Blanco, Francisco; Hong, Seung Suh; Lee, Sun Hee; Braun, Jürgen

    2016-01-20

    CT-P13 (Remsima®, Inflectra®) is a biosimilar of the infliximab reference product (RP; Remicade®) and is approved in Europe and elsewhere, mostly for the same indications as RP. The aim of this study was to compare the 54-week efficacy, immunogenicity, pharmacokinetics (PK) and safety of CT-P13 with RP in patients with ankylosing spondylitis (AS), with a focus on patient-reported outcomes (PROs). This was a multinational, double-blind, parallel-group study in patients with active AS. Participants were randomized (1:1) to receive CT-P13 (5 mg/kg) or RP (5 mg/kg) at weeks 0, 2, 6 and then every 8 weeks up to week 54. To assess responses, standardized assessment tools were used with an intention-to-treat analysis of observed data. Anti-drug antibodies (ADAs), PK parameters, and safety outcomes were also assessed. Of 250 randomized patients (n = 125 per group), 210 (84.0 %) completed 54 weeks of treatment, with similar completion rates between groups. At week 54, Assessment of Spondylo Arthritis international Society (ASAS)20 response, ASAS40 response and ASAS partial remission were comparable between treatment groups. Changes from baseline in PROs such as mean Bath Ankylosing Spondylitis Disease Activity Index (BASDAI; CT-P13 -3.1 versus RP -2.8), Bath Ankylosing Spondylitis Functional Index (BASFI; -2.9 versus -2.7), and Short Form Health Survey (SF-36) scores (9.26 versus 10.13 for physical component summary; 7.30 versus 6.54 for mental component summary) were similar between treatment groups. At 54 weeks, 19.5 % and 23.0 % of patients receiving CT-P13 and RP, respectively, had ADAs. All observed PK parameters of CT-P13 and RP, including maximum and minimum serum concentrations, were similar through 54 weeks. The influence of ADAs on PK was similar in the two treatment groups. Most adverse events were mild or moderate in severity. There was no notable difference between treatment groups in the incidence of adverse events, serious adverse events, infections and infusion-related reactions. CT-P13 and RP have highly comparable efficacy (including PROs) and PK up to week 54. Over a 1-year period, CT-P13 was well tolerated and displayed a safety profile comparable to RP; no differences in immunogenicity were observed. ClinicalTrials.gov identifier: NCT01220518 . Registered 4 October 2010.

  16. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling

    PubMed Central

    Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B.

    2016-01-01

    Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10%) and had good imprecision (<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and ultimately patients. PMID:26967893

  17. Pharmacist-managed dose adjustment feedback using therapeutic drug monitoring of vancomycin was useful for patients with methicillin-resistant Staphylococcus aureus infections: a single institution experience

    PubMed Central

    Hirano, Ryuichi; Sakamoto, Yuichi; Kitazawa, Junichi; Yamamoto, Shoji; Tachibana, Naoki

    2016-01-01

    Background Vancomycin (VCM) requires dose adjustment based on therapeutic drug monitoring. At Aomori Prefectural Central Hospital, physicians carried out VCM therapeutic drug monitoring based on their experience, because pharmacists did not participate in the dose adjustment. We evaluated the impact of an Antimicrobial Stewardship Program (ASP) on attaining target VCM trough concentrations and pharmacokinetics (PK)/pharmacodynamics (PD) parameters in patients with methicillin-resistant Staphylococcus aureus (MRSA) infections. Materials and methods The ASP was introduced in April 2012. We implemented a prospective audit of prescribed VCM dosages and provided feedback based on measured VCM trough concentrations. In a retrospective pre- and postcomparison study from April 2007 to December 2011 (preimplementation) and from April 2012 to December 2014 (postimplementation), 79 patients were treated for MRSA infection with VCM, and trough concentrations were monitored (pre, n=28; post, n=51). In 65 patients (pre, n=15; post, n=50), 24-hour area under the concentration–time curve (AUC 0–24 h)/minimum inhibitory concentration (MIC) ratios were calculated. Results Pharmacist feedback, which included recommendations for changing dose or using alternative anti-MRSA antibiotics, was highly accepted during postimplementation (88%, 29/33). The number of patients with serum VCM concentrations within the therapeutic range (10–20 μg/mL) was significantly higher during postimplementation (84%, 43/51) than during preimplementation (39%, 11/28) (P<0.01). The percentage of patients who attained target PK/PD parameters (AUC 0–24 h/MIC >400) was significantly higher during postimplementation (84%, 42/50) than during preimplementation (53%, 8/15; P=0.013). There were no significant differences in nephrotoxicity or mortality rate. Conclusion Our ASP increased the percentage of patients that attained optimal VCM trough concentrations and PK/PD parameters, which contributed to the appropriate use of VCM in patients with MRSA infections. PMID:27789965

  18. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute)more » transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.« less

  19. The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis.

    PubMed

    Zhang, Peng; Hao, Haihong; Li, Jun; Ahmad, Ijaz; Cheng, Guyue; Chen, Dongmei; Tao, Yanfei; Huang, Lingli; Wang, Yulian; Dai, Menghong; Liu, Zhenli; Yuan, Zonghui

    2016-01-01

    The aim of this study was to establish antimicrobial susceptibility breakpoints for tilmicosin against Haemophilus parasuis, which is an important pathogen of respiratory tract infections. The minimum inhibitory concentrations (MICs) of 103 H. parasuis isolates were determined by the agar dilution method. The wild type (WT) distribution and epidemiologic cutoff value (ECV) were evaluated by statistical analysis. The new bronchoaveolar lavage was used to establish intrapulmonary pharmacokinetic (PK) model in swine. The pharmacokinetic (PK) parameters of tilmicosin, both in pulmonary epithelial lining fluid (PELF) and in plasma, were determined using high performance liquid chromatography method and WinNonlin software. The pharmacodynamic cutoff (COPD) was calculated using Monte Carlo simulation. Our results showed that 100% of WT isolates were covered when the ECV was set at 16 μg/mL. The tilmicosin had concentration-dependent activity against H. parasuis. The PK data indicated that tilmicosin concentrations in PELF was rapidly increased to high levels at 4 h and kept stable until 48 h after drug administration, while the tilmicosin concentration in plasma reached maximum levels at 4 h and continued to decrease during 4-72 h. Using Monte Carlo simulation, COPD was defined as 1 μg/mL. Conclusively, the ECV and COPD of tilmicosin against H. parasuis were established for the first time based on the MIC distribution and PK-PD analysis in the target tissue, respectively. These values are of great importance for detection of tilmicosin-resistant H. parasuis and for effective treatment of clinical intrapulmonary infection caused by H. parasuis.

  20. The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis

    PubMed Central

    Zhang, Peng; Hao, Haihong; Li, Jun; Ahmad, Ijaz; Cheng, Guyue; Chen, Dongmei; Tao, Yanfei; Huang, Lingli; Wang, Yulian; Dai, Menghong; Liu, Zhenli; Yuan, Zonghui

    2016-01-01

    The aim of this study was to establish antimicrobial susceptibility breakpoints for tilmicosin against Haemophilus parasuis, which is an important pathogen of respiratory tract infections. The minimum inhibitory concentrations (MICs) of 103 H. parasuis isolates were determined by the agar dilution method. The wild type (WT) distribution and epidemiologic cutoff value (ECV) were evaluated by statistical analysis. The new bronchoaveolar lavage was used to establish intrapulmonary pharmacokinetic (PK) model in swine. The pharmacokinetic (PK) parameters of tilmicosin, both in pulmonary epithelial lining fluid (PELF) and in plasma, were determined using high performance liquid chromatography method and WinNonlin software. The pharmacodynamic cutoff (COPD) was calculated using Monte Carlo simulation. Our results showed that 100% of WT isolates were covered when the ECV was set at 16 μg/mL. The tilmicosin had concentration-dependent activity against H. parasuis. The PK data indicated that tilmicosin concentrations in PELF was rapidly increased to high levels at 4 h and kept stable until 48 h after drug administration, while the tilmicosin concentration in plasma reached maximum levels at 4 h and continued to decrease during 4–72 h. Using Monte Carlo simulation, COPD was defined as 1 μg/mL. Conclusively, the ECV and COPD of tilmicosin against H. parasuis were established for the first time based on the MIC distribution and PK-PD analysis in the target tissue, respectively. These values are of great importance for detection of tilmicosin-resistant H. parasuis and for effective treatment of clinical intrapulmonary infection caused by H. parasuis. PMID:27047487

  1. Block-Dependent Sedation during Epidural Anaesthesia is Associated with Delayed Brainstem Conduction

    PubMed Central

    Wadhwa, Anupama; Shah, Yunus M.; Lin, Chum-Ming; Haugh, Gilbert S.; Sessler, Daniel I.

    2005-01-01

    Neuraxial anaesthesia produces a sedative and anesthetic-sparing effect. Recent evidence suggests that spinal cord anaesthesia modifies reticulo-thalamo-cortical arousal by decreasing afferent sensory transmission. We hypothesized that epidural anaesthesia produces sensory deafferentation-dependent sedation that is associated with impairment of brainstem transmission. We used brainstem auditory evoked potentials (BAEP) to evaluate reticular function in 11 volunteers. Epidural anaesthesia was induced with 2% 2-chloroprocaine. Hemodynamic and respiratory responses, sensory block level, sedation depth and BAEP were assessed throughout induction and resolution of epidural anaesthesia. Sedation was evaluated using verbal rating score (VRS), observer's assessment alertness/sedation (OAA/S) score, and bispectral index (BIS). Prediction probability (PK) was used to associate sensory block with sedation, as well as BIS with other sedation measures. Spearman rank order correlation was used to associate block level and sedation with the absolute and interpeak BAEP latencies. Sensory block level significantly predicted VRS (PK = 0.747), OAA/S score (PK = 0.748) and BIS. Bispectral index predicted VRS and OAA/S score (PK = 0.728). The latency of wave III of BAEP significantly correlated with sedation level (rho = 0.335, P < 0.01) and sensory block (rho = 0.394, P < 0.01). The other BAEP parameters did not change during epidural anaesthesia. Hemodynamic and respiratory responses remained stable throughout the study. Sedation during epidural anaesthesia depends on sensory block level and is associated with detectable block-dependent alterations in the brainstem auditory evoked responses. Sensory deafferentation may reduce CNS alertness through mechanisms related to brainstem neural activity. PMID:15220178

  2. HTLV-1 Tax Oncoprotein Subverts the Cellular DNA Damage Response via Binding to DNA-dependent Protein Kinase*S⃞

    PubMed Central

    Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John

    2008-01-01

    Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425

  3. The association of DNA-dependent protein kinase activity of peripheral blood lymphocytes with prognosis of cancer

    PubMed Central

    Someya, M; Sakata, K-i; Matsumoto, Y; Kamdar, R P; Kai, M; Toyota, M; Hareyama, M

    2011-01-01

    Background: Repair of various types of DNA damages is critical for genomic stability. DNA-dependent protein kinase (DNA-PK) has an important role in DNA double-strand break repair. We examined whether there may be a correlation between DNA-PK activity in peripheral blood lymphocytes (PBLs) and survival percentages in various cancer patients. We also investigated the changes of DNA-PK activity in PBLs after radiotherapy. Methods: A total of 167 of untreated cancer patients participated in this study. Peripheral blood was collected, separated, and centrifuged. DNA-PK activity was measured by DNA-pull-down assay. Chromosomal aberrations were examined by cytogenetic methods. Results: DNA-PK activity of PBLs in advanced cancer patients was significantly lower than that in early stage. The patients with lower DNA-PK activity in PBLs tended to have the lower disease-specific survivals and distant metastasis-free survivals than those with higher DNA-PK activity in advanced stages. There was also a tendency of inverse correlation between DNA-PK activity and excess fragments. The DNA-PK activity of PBLs in most patients decreased in response to radiation as the equivalent whole-body dose increased. Conclusion: Cancer patients in advanced stage, with lower DNA-PK activity of PBLs might have higher distant metastasis and exhibit poorer prognosis. Therefore, DNA-PK activity in PBLs could be used as a marker to predict the chromosomal instability and poorer prognosis. PMID:21559021

  4. Preclinical pharmacokinetic/pharmacodynamic modeling and simulation in the pharmaceutical industry: an IQ consortium survey examining the current landscape.

    PubMed

    Schuck, Edgar; Bohnert, Tonika; Chakravarty, Arijit; Damian-Iordache, Valeriu; Gibson, Christopher; Hsu, Cheng-Pang; Heimbach, Tycho; Krishnatry, Anu Shilpa; Liederer, Bianca M; Lin, Jing; Maurer, Tristan; Mettetal, Jerome T; Mudra, Daniel R; Nijsen, Marjoleen Jma; Raybon, Joseph; Schroeder, Patricia; Schuck, Virna; Suryawanshi, Satyendra; Su, Yaming; Trapa, Patrick; Tsai, Alice; Vakilynejad, Majid; Wang, Shining; Wong, Harvey

    2015-03-01

    The application of modeling and simulation techniques is increasingly common in preclinical stages of the drug discovery and development process. A survey focusing on preclinical pharmacokinetic/pharmacodynamics (PK/PD) analysis was conducted across pharmaceutical companies that are members of the International Consortium for Quality and Innovation in Pharmaceutical Development. Based on survey responses, ~68% of companies use preclinical PK/PD analysis in all therapeutic areas indicating its broad application. An important goal of preclinical PK/PD analysis in all pharmaceutical companies is for the selection/optimization of doses and/or dose regimens, including prediction of human efficacious doses. Oncology was the therapeutic area with the most PK/PD analysis support and where it showed the most impact. Consistent use of more complex systems pharmacology models and hybrid physiologically based pharmacokinetic models with PK/PD components was less common compared to traditional PK/PD models. Preclinical PK/PD analysis is increasingly being included in regulatory submissions with ~73% of companies including these data to some degree. Most companies (~86%) have seen impact of preclinical PK/PD analyses in drug development. Finally, ~59% of pharmaceutical companies have plans to expand their PK/PD modeling groups over the next 2 years indicating continued growth. The growth of preclinical PK/PD modeling groups in pharmaceutical industry is necessary to establish required resources and skills to further expand use of preclinical PK/PD modeling in a meaningful and impactful manner.

  5. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    PubMed

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  6. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd. Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K.; Sharma, Yagya D.

    2015-01-01

    Background The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Methods Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Results Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Conclusions Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host. PMID:26393350

  7. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance.

    PubMed

    Xu, Lijuan; Wang, Hao; Yang, Xianle; Lu, Liqun

    2013-06-25

    Antibiotic resistance has become a serious global problem and is steadily increasing worldwide in almost every bacterial species treated with antibiotics. In aquaculture, the therapeutic options for the treatment of A. hydrophila infection were only limited to several antibiotics, which contributed for the fast-speed emergence of drug tolerance. Accordingly, the aim of this study was to establish a medication regimen to prevent drug resistant bacteria. To determine a rational therapeutic guideline, integrated pharmacodynamics and pharmacokinetics parameters were based to predict dose and dosage interval of enrofloxacin in grass carp Ctenopharyngodon idella infected by a field-isolated A. hydrophila strain. The pathogenic A. hydrophila strain (AH10) in grass carp was identified and found to be sensitive to enrofloxacin. The mutant selection window (MSW) of enrofloxacin on isolate AH10 was determined to be 0.5-3 μg/mL based on the mutant prevention concentration (MPC) and minimum inhibitory concentration (MIC) value. By using high-performance liquid chromatography (HPLC) system, the Pharmacokinetic (PK) parameters of enrofloxacin and its metabolite ciprofloxacin in grass carp were monitored after a single oral gavage of 10, 20, 30 μg enrofloxacin per g body weight. Dosing of 30 μg/g resulted in serum maximum concentration (Cmax) of 7.151 μg/mL, and concentration in serum was above MPC till 24 h post the single dose. Once-daily dosing of 30 μg/g was determined to be the rational choice for controlling AH10 infection and preventing mutant selection in grass carp. Data of mean residue time (MRT) and body clearance (CLz) indicated that both enrofloxacin and its metabolite ciprofloxacin present similar eliminating rate and pattern in serum, muscle and liver. A withdraw time of more than 32 d was suggested based on the drug eliminating rate and pharmacokinetic model described by a polyexponential equation. Based on integrated PK/PD parameters (AUC/MIC, Cmax/MIC, and T>MPC), the results of this study established a principle, for the first time, on drawing accurate dosing guideline for pharmacotherapy against A. hydrophila strain (AH10) for prevention of drug-resistant mutants. Our approach in combining PK data with PD parameters (including MPC and MSW) was the new effort in aquaculture to face the challenge of drug resistance by drawing a specific dosage guideline of antibiotics.

  8. Involvement of steroids in anti-inflammatory effects of PK11195 in a murine model of pleurisy.

    PubMed Central

    da Silva, Marcelo Barreto Spillere; Farges, Roseli Coimbra; Fröde, Tânia Silvia

    2004-01-01

    BACKGROUND: Studies on peripheral benzodiazepine receptor function have yielded a diverse list of activities of which the anti-inflammatory effects need to be further examined. AIMS: To evaluate the role of steroids, nitric oxide and adenosine-deaminase in the anti-inflammatory effect of PK11195. METHODS: Pleurisy was induced by intrapleural injection of carrageenan in mice pre-treated or not with PK11195. Leukocytes, exudation, adenosine-deaminase (ADA) activity and nitric oxide (NO) level were measured. Steroid involvement was evaluated by pre-treatment with D,L-aminogluthetimide before PK11195. RESULTS: Leukocytes, exudation and NO levels were reduced by PK11195 in the early (4 h) phase. In the late (48 h) phase, PK11195 decreased leukocytes and ADA activity. D,L-aminogluthetimide reversed the effect of PK11195 on exudate (4 h), as well as total and differential leukocytes and NO levels (48 h). CONCLUSIONS: Steroids, NO and ADA are implicated in the anti-inflammatory action of PK11195. PMID:15203550

  9. A new sensor for thermometric titrations.

    PubMed

    Najib, Fadhil M; Zewar, Sardir; Abdulla, Ahmad M

    2007-01-15

    A new thermometric sensor, which is a transistor (OC71), has been introduced to follow thermometric titrations successfully to clear end points. The sensor was suitable in both normal and differential modes of titration. It is possible to titrate down to 1.32micromol of HCl and 26.4micromol of H(3)BO(3)in a final 20ml solution with accuracy and precision of 1%, 2.2% and 1.4%, 2.2%, respectively. The sensor, in association with a pH glass electrode, was used for the determination of pK values of some well established weak acids such as, acetic acid (4.77), phosphoric acid (pK(1)=2.18, pK(2)=7.20 and pK(3)=12.32) as well as for a very weak acid of uncertain pK values H(3)BO(3) (pK(1)=9.20, pK(2)=12.7 and pK(3)=13.80). The sensor was also examined for kinetic catalytic determination of iron(III) in water, milk and pharmaceuticals.

  10. Toxicokinetic and Dosimetry Modeling Tools for Exposure ...

    EPA Pesticide Factsheets

    New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide mechanistic insights on chemical action. However, extrapolating from in vitro chemical concentrations to target tissue or blood concentrations in vivo is fraught with uncertainties, and modeling is dependent upon pharmacokinetic variables not measured in in vitro assays. To address this need, new tools have been created for characterizing, simulating, and evaluating chemical toxicokinetics. Physiologically-based pharmacokinetic (PBPK) models provide estimates of chemical exposures that produce potentially hazardous tissue concentrations, while tissue microdosimetry PK models relate whole-body chemical exposures to cell-scale concentrations. These tools rely on high-throughput in vitro measurements, and successful methods exist for pharmaceutical compounds that determine PK from limited in vitro measurements and chemical structure-derived property predictions. These high throughput (HT) methods provide a more rapid and less resource–intensive alternative to traditional PK model development. We have augmented these in vitro data with chemical structure-based descriptors and mechanistic tissue partitioning models to construct HTPBPK models for over three hundred environmental and pharmace

  11. Semiparametric mixed-effects analysis of PK/PD models using differential equations.

    PubMed

    Wang, Yi; Eskridge, Kent M; Zhang, Shunpu

    2008-08-01

    Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.

  12. Acid-base titrations for polyacids: Significance of the pK sub a and parameters in the Kern equation

    NASA Technical Reports Server (NTRS)

    Meites, L.

    1978-01-01

    A new method is suggested for calculating the dissociation constants of polyvalent acids, especially polymeric acids. In qualitative form the most significant characteristics of the titration curves are demonstrated and identified which are obtained when titrating the solutions of such acids with a standard base potentiometrically.

  13. Further Evaluation of Covariate Analysis using Empirical Bayes Estimates in Population Pharmacokinetics: the Perception of Shrinkage and Likelihood Ratio Test.

    PubMed

    Xu, Xu Steven; Yuan, Min; Yang, Haitao; Feng, Yan; Xu, Jinfeng; Pinheiro, Jose

    2017-01-01

    Covariate analysis based on population pharmacokinetics (PPK) is used to identify clinically relevant factors. The likelihood ratio test (LRT) based on nonlinear mixed effect model fits is currently recommended for covariate identification, whereas individual empirical Bayesian estimates (EBEs) are considered unreliable due to the presence of shrinkage. The objectives of this research were to investigate the type I error for LRT and EBE approaches, to confirm the similarity of power between the LRT and EBE approaches from a previous report and to explore the influence of shrinkage on LRT and EBE inferences. Using an oral one-compartment PK model with a single covariate impacting on clearance, we conducted a wide range of simulations according to a two-way factorial design. The results revealed that the EBE-based regression not only provided almost identical power for detecting a covariate effect, but also controlled the false positive rate better than the LRT approach. Shrinkage of EBEs is likely not the root cause for decrease in power or inflated false positive rate although the size of the covariate effect tends to be underestimated at high shrinkage. In summary, contrary to the current recommendations, EBEs may be a better choice for statistical tests in PPK covariate analysis compared to LRT. We proposed a three-step covariate modeling approach for population PK analysis to utilize the advantages of EBEs while overcoming their shortcomings, which allows not only markedly reducing the run time for population PK analysis, but also providing more accurate covariate tests.

  14. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  15. A Biomathematical Model of the Restoring Effects of Caffeine on Cognitive Performance During Sleep Deprivation

    DTIC Science & Technology

    2013-01-01

    following inhibitory Emax model to formulate the PD effect: gPD tð Þ ¼ 1 gPK ðtÞ gPK50 þgPK ðtÞ , ð3Þ where gPK (t) denotes the concentration of caffeine...the maximal effect is observed when gPK is infinitely large, i.e., when gPD approaches zero. Also, the baseline effect, i.e., the effect in the absence... gPK (t) at discrete- time index t, with t¼1, 2, y, for an orally administered caffeine dose given at time index t0 can be expressed by the following

  16. A PK-PD model of ketamine-induced high-frequency oscillations

    NASA Astrophysics Data System (ADS)

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2015-10-01

    Objective. Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a high-frequency oscillation (HFO) which power is modulated nonlinearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PDs) of ketamine and the observed HFO power. Approach. In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by an HFO observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent range of effects that ketamine has.

  17. Population PK Modeling and Target Attainment Simulations to Support Dosing of Ceftaroline Fosamil in Pediatric Patients With Acute Bacterial Skin and Skin Structure Infections and Community-Acquired Bacterial Pneumonia.

    PubMed

    Riccobene, Todd A; Khariton, Tatiana; Knebel, William; Das, Shampa; Li, James; Jandourek, Alena; Carrothers, Timothy J; Bradley, John S

    2017-03-01

    Ceftaroline, the active form of the prodrug ceftaroline fosamil, is approved for use in adults with community-acquired bacterial pneumonia (CABP) or acute bacterial skin and skin structure infections (ABSSSI) in the United States and for similar indications in Europe. Pharmacokinetic (PK) data from 5 pediatric (birth to <18 years) studies of ceftaroline fosamil were combined with PK data from adults to update a population PK model for ceftaroline and ceftaroline fosamil. This model, based on a data set including 305 children, was used to conduct simulations to estimate ceftaroline exposures and percentage of time that free drug concentrations were above the minimum inhibitory concentration (%fT>MIC) for pediatric dose regimens. With dose regimens of 8 mg/kg every 8 hours (q8h) in children aged 2 months to <2 years and 12 mg/kg (up to a maximum of 400 mg) q8h in children aged 2 years to <18 years or 600 mg q12h in children aged 12 to <18 years, >90% of children were predicted to achieve a target of 36% fT>MIC at an MIC of 2 mg/L, and >97% were predicted to achieve 44% fT>MIC at an MIC of 1 mg/L. Thus, high PK/pharmacodynamic target attainment would be maintained in children for targets associated with 1-log kill of Staphylococcus aureus and Streptococcus pneumoniae. The predicted ceftaroline exposures for these dose regimens were similar to those in adults given 600 mg q12h ceftaroline fosamil. This work contributed to the approval of dose regimens for children aged 2 months to <18 years by the FDA and EMA, which are presented. © 2016, The American College of Clinical Pharmacology.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ andmore » aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation in RIC1 cells. It is known that 53BP1 is involved in both DNA-PK dependent and independent NHEJ. Therefore we suggest that DNA-PK independent NHEJ repair DSBs under the condition of decreased DNA-PK activity, which causes reduction of HR efficiency.« less

  19. Cellular localization of CoPK12, a Ca(2+)/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea, is regulated by N-myristoylation.

    PubMed

    Kaneko, Keisuke; Tabuchi, Mitsuaki; Sueyoshi, Noriyuki; Ishida, Atsuhiko; Utsumi, Toshihiko; Kameshita, Isamu

    2014-07-01

    Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Altered plasma pharmacokinetics of ceftiofur hydrochloride in cows affected with severe clinical mastitis.

    PubMed

    Gorden, P J; Kleinhenz, M D; Wulf, L W; KuKanich, B; Lee, C J; Wang, C; Coetzee, J F

    2016-01-01

    Mastitis is a frequent problem among dairy cows, reducing milk yield and increasing cull rates. Systemic therapy with the cephalosporin antimicrobial ceftiofur hydrochloride (CEF) may improve therapeutic outcomes, but the incidence of CEF violative residues has increased annually since 2011. One potential explanation is that disease status may alter the pharmacokinetics (PK) of CEF. To test this hypothesis, we compared the plasma PK of CEF in healthy cows with those with severe endotoxic mastitis. Eight cows with naturally occurring mastitis and 8 clinically healthy cows were treated with 2.2 mg of CEF per kilogram of body weight once daily for 5d via the intramuscular route. Blood was collected at 0, 0.33, 0.67, 1, 1.5, 2, 3, 4, 8, 16, and 24h after the first CEF administration and every 8h thereafter until 120 h after the final dose. Plasma samples were analyzed for CEF concentrations using liquid chromatography coupled with mass spectrometry. With the exception of time 0, CEF was detected at all time points. The disease group had a significantly higher plasma CEF concentration at t=3h after the first injection and a significantly lower plasma concentration from 40 to 152 h following the first injection, with the exception of the t=64 h time point. Data following the first injection (time 0-24 h) were fit to a single-dose, noncompartmental PK model. This model indicated that the disease group had a shorter plasma half-life. A multidose, noncompartmental model was used to determine steady-state PK. Compared with control cows, the disease group had an initially higher peak concentration and a higher volume of distribution and drug clearance rates. The disease group also had a lower area under the curve per dosing interval, steady-state concentration maximum, and dose-adjusted peak steady-state concentration. All other PK parameters were not different between the 2 groups. Altered PK, as suggested by this trial, may contribute to an increased risk for the development of a violative residue in meat. Further research is needed to more completely characterize drug distribution in diseased cattle and to study the effect of coadministration of other drugs on drug distribution. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Population pharmacokinetics of teicoplanin in children.

    PubMed

    Ramos-Martín, V; Paulus, S; Siner, S; Scott, E; Padmore, K; Newland, P; Drew, R J; Felton, T W; Docobo-Pérez, F; Pizer, B; Pea, F; Peak, M; Turner, M A; Beresford, M W; Hope, W W

    2014-11-01

    Teicoplanin is frequently administered to treat Gram-positive infections in pediatric patients. However, not enough is known about the pharmacokinetics (PK) of teicoplanin in children to justify the optimal dosing regimen. The aim of this study was to determine the population PK of teicoplanin in children and evaluate the current dosage regimens. A PK hospital-based study was conducted. Current dosage recommendations were used for children up to 16 years of age. Thirty-nine children were recruited. Serum samples were collected at the first dose interval (1, 3, 6, and 24 h) and at steady state. A standard 2-compartment PK model was developed, followed by structural models that incorporated weight. Weight was allowed to affect clearance (CL) using linear and allometric scaling terms. The linear model best accounted for the observed data and was subsequently chosen for Monte Carlo simulations. The PK parameter medians/means (standard deviation [SD]) were as follows: CL, [0.019/0.023 (0.01)] × weight liters/h/kg of body weight; volume, 2.282/4.138 liters (4.14 liters); first-order rate constant from the central to peripheral compartment (Kcp), 0.474/3.876 h(-1) (8.16 h(-1)); and first-order rate constant from peripheral to central compartment (Kpc), 0.292/3.994 h(-1) (8.93 h(-1)). The percentage of patients with a minimum concentration of drug in serum (Cmin) of <10 mg/liter was 53.85%. The median/mean (SD) total population area under the concentration-time curve (AUC) was 619/527.05 mg · h/liter (166.03 mg · h/liter). Based on Monte Carlo simulations, only 30.04% (median AUC, 507.04 mg · h/liter), 44.88% (494.1 mg · h/liter), and 60.54% (452.03 mg · h/liter) of patients weighing 50, 25, and 10 kg, respectively, attained trough concentrations of >10 mg/liter by day 4 of treatment. The teicoplanin population PK is highly variable in children, with a wider AUC distribution spread than for adults. Therapeutic drug monitoring should be a routine requirement to minimize suboptimal concentrations. (This trial has been registered in the European Clinical Trials Database Registry [EudraCT] under registration number 2012-005738-12.). Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Proximity and Policy: Negotiating Safe Spaces between Immigration Policy and School Practice

    ERIC Educational Resources Information Center

    Crawford, Emily R.; Fishman-Weaver, Kathryn

    2016-01-01

    Policy around the legal status and social rights of the nation's estimated 11 million undocumented immigrants is unresolved, making it imperative that PK-12 schools and educators prepare for challenges to undocumented students' educational access. In 2008, Immigration and Customs Enforcement (ICE) appeared near an elementary school, which required…

  3. An Assessment of the Exposure of Americans to Perflourooctane Sulfonate: A Comparison of Estimated Intake with Values Inferred from NHANES Data

    EPA Science Inventory

    To better understand human exposure to perfluorinated compounds (PFCs), a model that assesses exposure to perfluorooctane sulfonate (PFOS) and its precursors from both an intake and a body burden perspective and combines the two with a simple pharmacokinetic (PK) model is demonst...

  4. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  5. Bioequivalence between two serum-free recombinant factor VIII preparations (N8 and ADVATE®)--an open-label, sequential dosing pharmacokinetic study in patients with severe haemophilia A.

    PubMed

    Martinowitz, U; Bjerre, J; Brand, B; Klamroth, R; Misgav, M; Morfini, M; Santagostino, E; Tiede, A; Viuff, D

    2011-11-01

    Recombinant coagulation factor VIII (rFVIII) concentrates provide a safe and efficacious replacement therapy for treatment and prevention of bleeding in patients with severe haemophilia A. The aim of this study was to compare the pharmacokinetic (PK) and safety profiles of two serum-free rFVIII products: N8, a new rFVIII manufactured by Novo Nordisk and Advate(®), a marketed product. Patients with severe haemophilia A with >150 exposure days to FVIII, without current or past inhibitors, were enrolled in an open-label, first human dose (FHD), multicentre trial. Twenty-three patients first received a single dose of 50 IU kg(-1) body weight Advate(®) followed by 50 IU kg(-1) body weight N8 at the next visit. A 4-day washout period was required prior to each dosing. Blood samples for PK and safety analyses were drawn prior to dosing and at intervals up until 48 h postdosing. The PK parameters were based on FVIII clotting activity (FVIII:C) measurements. Occurrence of adverse events was closely monitored. The mean profiles of FVIII:C and all primary and secondary parameters for Advate(®) and N8 were comparable. The 90% CI for the treatment ratio (Advate(®)/N8) for all primary endpoints (incremental recovery, t(1/2), AUC and Cl), and the secondary endpoints (AUC(last) and C(max)) were within the bioequivalence interval of 0.8-1.25. There were no safety concerns in the study and no reports of inhibitor formation in the 72-h period following exposure to a single N8 dose. In conclusion, N8 is bioequivalent to Advate(®). Furthermore, N8 is well tolerated in the FHD trial. © 2011 Blackwell Publishing Ltd.

  6. Pharmacokinetic Profile, Safety, and Tolerability of Crisaborole Topical Ointment, 2% in Adolescents with Atopic Dermatitis: An Open-Label Phase 2a Study.

    PubMed

    Tom, Wynnis L; Van Syoc, Merrie; Chanda, Sanjay; Zane, Lee T

    2016-01-01

    Phosphodiesterase-4 (PDE4) is an emerging target in treating inflammatory skin diseases. Crisaborole topical ointment, 2% is a novel, boron-based, topical PDE4 inhibitor under investigation for treatment of mild to moderate atopic dermatitis (AD). Adolescent patients aged 12 to 17 years with treatable AD lesions involving ≥ 10% to ≤ 35% body surface area (BSA) were enrolled into a phase 2a, open-label study comprising pharmacokinetic (PK), safety, tolerability, and efficacy assessments. Crisaborole topical ointment, 2% was applied twice daily to affected areas for 28 days, with dosage based on baseline treatable BSA. PK blood samples were collected on days 1, 2, 4, 6, 8, and 9. Safety assessments included adverse events (AEs), laboratory parameters, and vital signs. Efficacy assessments included the Investigator's Static Global Assessment (ISGA) score and severity of AD signs and symptoms. Twenty-three patients were enrolled; 22 completed the study (1 patient discontinued due to an AE [application site dermatitis]). PK analysis demonstrated limited exposure to crisaborole topical ointment, 2% after 8 days of dosing. Ten patients reported a total of 19 AEs, most commonly application site pain and nasopharyngitis (3 patients each). There were no clinically meaningful changes in laboratory or vital sign parameters. Efficacy was demonstrated by reductions in mean ISGA and AD sign and symptom severity scores. At day 29, eight patients (35%) had achieved an ISGA score ≤ 1 with ≥ 2-grade improvement. Mean treatable BSA declined from 17.6% to 8.2%. These results provide preliminary evidence for the limited systemic exposure, safety, and effectiveness of crisaborole topical ointment, 2% in adolescents with mild to moderate AD. © 2016 Wiley Periodicals, Inc.

  7. The enantioselective population pharmacokinetics of intravenous ketorolac in children using a stereoselective assay suitable for microanalysis.

    PubMed

    Mohammed, Baba S; Engelhardt, Thomas; Hawwa, Ahmed F; Cameron, Garry A; McLay, James S

    2015-09-01

    To describe the effect of age and body size on enantiomer selective pharmacokinetic (PK) of intravenous ketorolac in children using a microanalytical assay. Blood samples were obtained at 0, 15 and 30 min and at 1, 2, 4, 6, 8 and 12 h after a weight-dependent dose of ketorolac. Enantiomer concentration was measured using a liquid chromatography tandem mass spectrometry method. Non-linear mixed-effect modelling was used to assess PK parameters. Data from 11 children (1.7-15.6 years, weight 10.7-67.4 kg) were best described by a two-compartment model for R(+), S(-) and racemic ketorolac. Only weight (WT) significantly improved the goodness of fit. The final population models were CL = 1.5 × (WT/46)(0.75) , V1  = 8.2 × (WT/46), Q = 3.4 × (WT/46)(0.75) , V2  = 7.9 × (WT/46), CL = 2.98 × (WT/46), V1  = 13.2 × (WT/46), Q = 2.8 × (WT/46)(0.75) , V2  = 51.5 × (WT/46), and CL = 1.1 × (WT/46)(0.75) , V1  = 4.9 × (WT/46), Q = 1.7 × (WT/46)(0.75) and V2  = 6.3 × (WT/46)for R(+), S(-) and racemic ketorolac. Only body weight influenced the PK parameters for R(+) and S(-) ketorolac. Using allometric size scaling significantly affected the clearances (CL, Q) and volumes of distribution (V1 , V2 ). © 2015 Royal Pharmaceutical Society.

  8. In Vivo Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem in Pseudomonas aeruginosa Biofilm Infection

    PubMed Central

    Wu, Hong; Ciofu, Oana; Song, Zhijun; Høiby, Niels

    2012-01-01

    Many Pseudomonas aeruginosa isolates from the airways of patients with cystic fibrosis (CF) are sensitive to antibiotics in susceptibility testing, but eradication of the infection is difficult. The main reason is the biofilm formation in the airways of patients with CF. The pharmacokinetics (PKs) and pharmacodynamics (PDs) of antimicrobials can reliably be used to predict whether antimicrobial regimens will achieve the maximum bactericidal effect against infections. Unfortunately, however, most PK/PD studies of antimicrobials have been done on planktonic cells and very few PK/PD studies have been done on biofilms, partly due to the lack of suitable models in vivo. In the present study, a biofilm lung infection model was developed to provide an objective and quantitative evaluation of the PK/PD profile of antimicrobials. Killing curves were set up to detect the antimicrobial kinetics on planktonic and biofilm P. aeruginosa cells in vivo. Colistin showed concentration-dependent killing, while imipenem showed time-dependent killing on both planktonic and biofilm P. aeruginosa cells in vivo. The parameter best correlated to the elimination of bacteria in lung by colistin was the area under the curve (AUC) versus MIC (AUC/MIC) for planktonic cells or the AUC versus minimal biofilm inhibitory concentration (MBIC; AUC/MBIC) for biofilm cells. The best-correlated parameter for imipenem was the time that the drug concentration was above the MIC for planktonic cells (TMIC) or time that the drug concentration was above the MBIC (TMBIC) for biofilm cells. However, the AUC/MIC of imipenem showed a better correlation with the efficacy of imipenem for biofilm infections (R2 = 0.89) than planktonic cell infections (R2 = 0.38). The postantibiotic effect (PAE) of colistin and imipenem was shorter in biofilm infections than planktonic cell infections in this model. PMID:22354300

  9. Effect of moderate liver impairment on the pharmacokinetics of opicapone.

    PubMed

    Rocha, José Francisco; Santos, Ana; Falcão, Amílcar; Lopes, Nelson; Nunes, Teresa; Pinto, Roberto; Soares-da-Silva, Patrício

    2014-03-01

    Opicapone (OPC) is a novel catechol-O-methyltransferase (COMT) inhibitor to be used as adjunctive therapy in levodopa-treated patients with Parkinson's disease. The purpose of this study was to evaluate the effect of moderate liver impairment on the pharmacokinetics (PK) and pharmacodynamics (PD; effect on COMT activity) of OPC. An open-label, parallel-group study in patients (n = 8) with moderate liver impairment (Child-Pugh category B, score of 7 to 9) and matched healthy subjects (n = 8, control) with normal liver function. All subjects received a single 50-mg oral dose of OPC, with plasma and urine concentrations of opicapone and its metabolites measured up to 72 h post-dose, including soluble COMT (S-COMT) activity. A one-way analysis of variance (ANOVA) was used to compare the main PK and PD parameters between groups. Point estimates (PE) of geometric mean ratios (GMR) and corresponding 90 % confidence intervals (90%CI) for the ratio hepatic/control subjects of each parameter were calculated and compared with the reference interval (80-125 %). Exposure to opicapone (AUC and Cmax) increased significantly in patients with moderate hepatic impairment (PE [90%CI]: AUC0-∞, 184 % [135-250 %]; Cmax, 189 % [144-249 %]). Although apparent total clearance (CL/F) of opicapone was decreased by ∼35 %, similar elimination half-life and unbound/bound fractions of opicapone were observed between the two groups. Both rate and extent of exposure to BIA 9-1103 were higher in the hepatically impaired group, but not statistically significant compared with the control group. Similar to the parent (opicapone), the observed increase in exposure to BIA 9-1106 was statistically significant in the hepatically impaired group over the control group. BIA 9-1106 was the only metabolite detected in urine and its urine PK parameters were in accordance with plasma data. Maximum S-COMT inhibition (Emax) occurred earlier for the hepatically impaired group with values of 100 % and 91.2 % for the hepatically impaired and control groups respectively. Both Emax and AUEC for the hepatically impaired group reached statistical significance over the control group. OPC was well tolerated in both hepatically impaired and control groups. The bioavailability of an orally administered single dose of 50 mg OPC was significantly higher in patients with moderate chronic hepatic impairment, perhaps by a reduced first-pass effect. As the tolerability profile of OPC was favourable under the conditions of this study and its exposure is completely purged from systemic circulation before the subsequent dose administration, no OPC dose adjustment is needed in patients with mild to moderate chronic hepatic impairment. However, as OPC is under clinical development for use as adjunctive therapy in levodopa-treated patients with Parkinson's disease, an adjustment of levodopa and/or OPC regimens in patients should be carefully considered based on a potentially enhanced levodopa dopaminergic response and the associated tolerability.

  10. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency

    PubMed Central

    Hixon, Jeff; Kosinski, Penelope A.; Cianchetta, Giovanni; Histen, Gavin; Chen, Yue; Hill, Collin; Gross, Stefan; Si, Yaguang; Johnson, Kendall; DeLaBarre, Byron; Luo, Zhiyong; Gu, Zhiwei; Yao, Gui; Tang, Huachun; Fang, Cheng; Xu, Yingxia; Lv, Xiaobing; Biller, Scott; Su, Shin-San Michael; Yang, Hua; Popovici-Muller, Janeta; Salituro, Francesco; Silverman, Lee; Dang, Lenny

    2017-01-01

    Pyruvate kinase (PK) deficiency is a rare genetic disease that causes chronic hemolytic anemia. There are currently no targeted therapies for PK deficiency. Here, we describe the identification and characterization of AG-348, an allosteric activator of PK that is currently in clinical trials for the treatment of PK deficiency. We demonstrate that AG-348 can increase the activity of wild-type and mutant PK enzymes in biochemical assays and in patient red blood cells treated ex vivo. These data illustrate the potential for AG-348 to restore the glycolytic pathway activity in patients with PK deficiency and ultimately lead to clinical benefit. PMID:28760888

  11. One hundred cases of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems.

    PubMed

    Erian, John; El-Toukhy, Tarek; Chandakas, Stefanos; Theodoridis, Theo; Hill, Nicholas

    2005-01-01

    To evaluate the safety and short-term outcomes of laparoscopic subtotal hysterectomy using the PK and Lap Loop systems. Prospective observational study (Canadian Task Force classification II-2). Princess Royal University and Chelsfield Park Hospitals, Kent, UK. One hundred women who underwent laparoscopic subtotal hysterectomy for menorrhagia from February 2003 through July 2004. The procedure was performed using the Plasma Kinetic (PK) system to seal the vascular pedicles and the Lap Loop system to separate the uterus at the level of the internal os. The uterus was removed from the abdominal cavity mainly by morcellation or posterior colpotomy. Of 100 patients, 59 were operated on as outpatients. Mean patient age was 44.6 years, median parity was 2, mean body mass index was 26.8, and mean duration of symptoms was 4 years. Clinically, the uterus was enlarged in 70 patients, and preoperative ultrasound scanning suggested the presence of uterine myomas in 42 patients. In addition to hysterectomy, 47 patients had concomitant pelvic surgery. The mean total operating time was 45.5 minutes, and mean estimated blood loss was 114 mL. The overall major complication rate was 2%; two patients required blood transfusion after surgery. There were no bowel or urinary tract injuries, unintended laparotomy, return to operating room, or anesthetic complications. At follow-up, all patients were satisfied with surgery. Laparoscopic subtotal hysterectomy using the PK and Lap Loop systems for treatment of therapy-resistant menorrhagia is safe, can be performed as an outpatient procedure, and is associated with reduced operating time and high patient satisfaction.

  12. Model-Based Dose Selection for Intravaginal Ring Formulations Releasing Anastrozole and Levonorgestrel Intended for the Treatment of Endometriosis Symptoms.

    PubMed

    Reinecke, Isabel; Schultze-Mosgau, Marcus-Hillert; Nave, Rüdiger; Schmitz, Heinz; Ploeger, Bart A

    2017-05-01

    Pharmacokinetics (PK) of anastrozole (ATZ) and levonorgestrel (LNG) released from an intravaginal ring (IVR) intended to treat endometriosis symptoms were characterized, and the exposure-response relationship focusing on the development of large ovarian follicle-like structures was investigated by modeling and simulation to support dose selection for further studies. A population PK analysis and simulations were performed for ATZ and LNG based on clinical phase 1 study data from 66 healthy women. A PK/PD model was developed to predict the probability of a maximum follicle size ≥30 mm and the potential contribution of ATZ beside the known LNG effects. Population PK models for ATZ and LNG were established where the interaction of LNG with sex hormone-binding globulin (SHBG) as well as a stimulating effect of estradiol on SHBG were considered. Furthermore, simulations showed that doses of 40 μg/d LNG combined with 300, 600, or 1050 μg/d ATZ reached anticipated exposure levels for both drugs, facilitating selection of ATZ and LNG doses in the phase 2 dose-finding study. The main driver for the effect on maximum follicle size appears to be unbound LNG exposure. A 50% probability of maximum follicle size ≥30 mm was estimated for 40 μg/d LNG based on the exposure-response analysis. ATZ in the dose range investigated does not increase the risk for ovarian cysts as occurs with LNG at a dose that does not inhibit ovulation. © 2016, The American College of Clinical Pharmacology.

  13. Quantitative Assessment of Food Effect on the Pharmacokinetics of Nano-Crystallized Megestrol Acetate.

    PubMed

    Guk, Jinju; Son, Hankil; Chae, Dong Woo; Park, Kyungsoo

    2017-03-01

    Megestrol acetate, an appetite stimulant with low bioavailability, shows increased bioavailability when taken together with food. However, the pharmacokinetic characteristics of megestrol acetate and its relation with food are not well understood. This study aimed to investigate the food effect on the pharmacokinetics (PK) of the recently developed nano-crystallized megestrol acetate (NCMA), using a model-based approach. Data were obtained from an NCMA PK study consisting of a single dose in fasting (39 individuals) and fed conditions (40 individuals). Plasma concentrations were measured up to 120 hr after dosing. With the incorporation of body-weight via allometry, NONMEM 7.3 was used to develop a PK model, which was then used to simulate an optimal fasting dose yielding an area under concentration (AUC) and maximum concentration (C max ) of NCMA close to those obtained with the fed dose. NCMA concentrations were best characterized by a two-compartment model with first-order absorption linked to a recycling compartment to account for the multiple concentration peaks observed. Food increased bioavailability 2.2 times and decreased the absorption rate constant 0.58 times. Recycling event times were estimated to be 3.56, 7.99 and 24.0 hr. The optimal fast dose was 2.0 times higher than the fed dose, and the resulting difference in drug exposure between the fasting and fed dose was 7.5%. This work suggests that the PK model developed can be applied to an optimal dosage regimen design for NCMA treatment. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Effects of Water Stress on the Endophytic Fungal Communities of Pinus koraiensis Needles Infected by Cenangium ferruginosum

    PubMed Central

    Lee, Sun Keun; Lee, Seung Kyu; Bae, Hanhong; Seo, Sang-Tae

    2014-01-01

    To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings. PMID:25606004

  15. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  16. Population pharmacokinetics of temsirolimus and sirolimus in children with recurrent solid tumours: a report from the Children's Oncology Group.

    PubMed

    Mizuno, Tomoyuki; Fukuda, Tsuyoshi; Christians, Uwe; Perentesis, John P; Fouladi, Maryam; Vinks, Alexander A

    2017-05-01

    Temsirolimus is an inhibitor of the mammalian target of rapamycin (mTOR). Pharmacokinetic (PK) characterization of temsirolimus in children is limited and there is no paediatric temsirolimus population PK model available. The objective of this study was to simultaneously characterize the PK of temsirolimus and its metabolite sirolimus in paediatric patients with recurrent solid or central nervous system tumours and to develop a population PK model. The PK data for temsirolimus and sirolimus were collected as a part of a Children's Oncology Group phase I clinical trial in paediatric patients with recurrent solid tumours. Serial blood concentrations obtained from 19 patients participating in the PK portion of the study were used for the analysis. Population PK analysis was performed by nonlinear mixed effect modelling using NONMEM. A three-compartment model with zero-order infusion was found to best describe temsirolimus PK. Allometrically scaled body weight was included in the model to account for body size differences. Temsirolimus dose was identified as a significant covariate on clearance. A sirolimus metabolite formation model was developed and integrated with the temsirolimus model. A two-compartment structure model adequately described the sirolimus data. This study is the first to describe a population PK model of temsirolimus combined with sirolimus formation and disposition in paediatric patients. The developed model will facilitate PK model-based dose individualization of temsirolimus and the design of future clinical studies in children. © 2016 The British Pharmacological Society.

  17. Population pharmacokinetics of temsirolimus and sirolimus in children with recurrent solid tumours: a report from the Children's Oncology Group

    PubMed Central

    Mizuno, Tomoyuki; Fukuda, Tsuyoshi; Christians, Uwe; Perentesis, John P.; Fouladi, Maryam

    2016-01-01

    Aims Temsirolimus is an inhibitor of the mammalian target of rapamycin (mTOR). Pharmacokinetic (PK) characterization of temsirolimus in children is limited and there is no paediatric temsirolimus population PK model available. The objective of this study was to simultaneously characterize the PK of temsirolimus and its metabolite sirolimus in paediatric patients with recurrent solid or central nervous system tumours and to develop a population PK model. Methods The PK data for temsirolimus and sirolimus were collected as a part of a Children's Oncology Group phase I clinical trial in paediatric patients with recurrent solid tumours. Serial blood concentrations obtained from 19 patients participating in the PK portion of the study were used for the analysis. Population PK analysis was performed by nonlinear mixed effect modelling using NONMEM. Results A three‐compartment model with zero‐order infusion was found to best describe temsirolimus PK. Allometrically scaled body weight was included in the model to account for body size differences. Temsirolimus dose was identified as a significant covariate on clearance. A sirolimus metabolite formation model was developed and integrated with the temsirolimus model. A two‐compartment structure model adequately described the sirolimus data. Conclusion This study is the first to describe a population PK model of temsirolimus combined with sirolimus formation and disposition in paediatric patients. The developed model will facilitate PK model‐based dose individualization of temsirolimus and the design of future clinical studies in children. PMID:28000286

  18. Study of Pharmacodynamic and Pharmacokinetic Interaction of Bojungikki-Tang with Aspirin in Healthy Subjects and Ischemic Stroke Patients

    PubMed Central

    Yoo, Jung-Hwa; Yim, Sung-Vin

    2018-01-01

    Background Bojungikki-tang (BJIKT) is a widely used traditional herbal formula in China, Japan, and Korea. There have been reports that several herbs among BJIKT have interactions with antiplatelet drugs, such as aspirin. This study aimed to assess whether BJIKT interacts with aspirin in terms of pharmacokinetics (PK) and pharmacodynamics (PD) in healthy subjects and ischemic stroke patients. Methods The phase I interaction trial was a randomized, open-label, crossover study of 10 healthy male subjects, and the phase III interaction trial was a randomized, placebo-controlled, parallel study of 43 ischemic stroke patients. Each participant randomly received aspirin + BJIKT or aspirin + placebo. For PK analysis, plasma acetyl salicylic acid (ASA) and salicylic acid (SA) were evaluated, and, for PD analysis, platelet aggregation and plasma thromboxane B2 (TxB2) were measured. Results In the PK parameters, mean area under curve, maximum concertation, and peak concentration time of ASA and SA were not different between two groups in healthy subjects and ischemic stroke patients. In the PD profiles, TxB2 concentrations and platelet aggregation were not affected by coadministration of BJIKT in healthy subjects and ischemic stroke patients. Conclusions These results suggest that coadministration of BJIKT with aspirin may not result in herb-drug interaction. PMID:29599812

  19. Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator-activated Receptor-α Agonist*S

    PubMed Central

    Xu, Jinghua; Christian, Barbara; Jump, Donald B.

    2009-01-01

    Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X(MLX), and hepatic nuclear factor-4α (HNF-4α)are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor α (PPARα) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNAL-PK but did not suppress hepatic ChREBP or HNF-4α nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNALPK and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4α. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4α-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4α-LPK promoter interaction. Although overexpressed ChREBP or HNF-4α did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNAL-PK abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA and WY14643/PPARα target different transcription factors to control L-PK gene transcription. MLX, the heterodimer partner for ChREBP, has emerged as a novel target for n-3 PUFA regulation. PMID:16644726

  20. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test.

    PubMed

    Møller, Jonas B; Overgaard, Rune V; Madsen, Henrik; Hansen, Torben; Pedersen, Oluf; Ingwersen, Steen H

    2010-02-01

    Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of the OGTT is a difficult problem in need of further investigation. The present work aimed at investigating the power of SDEs to predict the first phase insulin secretion (AIR (0-8)) in the IVGTT based on parameters obtained from the minimal model of the OGTT, published by Breda et al. (Diabetes 50(1):150-158, 2001). In total 174 subjects underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of parameters in the oral minimal model (OMM) was performed using the FOCE-method in NONMEM VI on insulin and C-peptide measurements. The suggested SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlenbeck process, and the extended Kalman filter was implemented in order to estimate the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process caused improved description of the variation in the data as measured by the autocorrelation function (ACF) of one-step prediction errors. A main result was that application of SDE models improved the correlation between the individual first phase indexes obtained from OGTT and AIR (0-8) (r = 0.36 to r = 0.49 and r = 0.32 to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to the increased correlation also the properties of the indexes obtained using the SDE models more correctly assessed the properties of the first phase indexes obtained from the IVGTT. In general it is concluded that the presented SDE approach not only caused autocorrelation of errors to decrease but also improved estimation of clinical measures obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method is concluded to have high relevance not only in theory but also in practice.

  1. In silico optimization of pharmacokinetic properties and receptor binding affinity simultaneously: a 'parallel progression approach to drug design' applied to β-blockers.

    PubMed

    Advani, Poonam; Joseph, Blessy; Ambre, Premlata; Pissurlenkar, Raghuvir; Khedkar, Vijay; Iyer, Krishna; Gabhe, Satish; Iyer, Radhakrishnan P; Coutinho, Evans

    2016-01-01

    The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein 'parallel' information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. β-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the 'parallel progression approach'. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of β-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered β-blockers with improved half-lives and pKi values comparable with marketed β-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the 'parallel progression approach' helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.

  2. A randomized crossover study to assess the pharmacokinetics of a novel amphetamine extended-release orally disintegrating tablet in healthy adults.

    PubMed

    Stark, Jeffrey G; Engelking, Dorothy; McMahen, Russ; Sikes, Carolyn

    2016-09-01

    In this pharmacokinetic (PK) study in healthy adults, we sought to: (1) compare the PK properties of a novel amphetamine extended-release orally disintegrating tablet formulation (Adzenys XR-ODT™ [AMP XR-ODT]) to a reference extended-release mixed amphetamine salts (MAS ER) formulation and (2) assess the effect of food on AMP XR-ODT. Forty-two adults were enrolled in a single-dose, open-label, 3-period, 3-treatment, randomized crossover study and received an 18.8-mg dose of AMP XR-ODT (fasted or fed) or equivalent dose (30 mg) of MAS ER (fasted). Plasma samples were analyzed for d-and l-amphetamine. Maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax), elimination half-life (T1/2), area under the concentration-time curve from time zero to last quantifiable concentration (AUClast), from time zero to infinity (AUCinf), relevant partial AUCs, and weight-normalized clearance (CL/F/kg) were assessed. The PK parameters were compared across treatments using an ANOVA. Safety was also assessed. A total of 39 adults completed this study. The geometric mean ratios (90% confidence interval [CI]) for AMP XR-ODT/MAS ER Cmax, AUC5-last, AUClast, and AUCinf were within 80%-125% for both d-and l-amphetamine. The 90% CIs for AUC0-5 were slightly below the 80%-125% range. When AMP XR-ODT was administered with food, there was a slight decrease in the d-and l-amphetamine Cmax and approximately a 2-hour delay in Tmax. The most common adverse events reported (>5% of participants) were dry mouth, palpitations, nausea, dizziness, headache, anxiety, and nasal congestion. AMP XR-ODT displayed a PK profile similar to MAS ER, and no clinically relevant food effect was observed.

  3. Effects of food on the pharmacokinetics of gemigliptin/metformin sustained-release 50/1,000 mg (25/500 mg x 2 tablets) fixeddose combination tablet in healthy male volunteers.

    PubMed

    Choi, Hee Youn; Noh, Yook-Hwan; Kim, Yo Han; Kim, Mi Jo; Lee, Shi Hyang; Kim, Jeong-Ae; Kim, Bogyeong; Lim, Hyeong-Seok; Bae, Kyun-Seop

    2014-05-01

    For patient convenience, a gemigliptin/metformin sustainedrelease fixed-dose combination (FDC) tablet was developed. This study was conducted to investigate the effects of food on the pharmacokinetic (PK) profile of the FDC tablets. This was an open-label, randomized, single dose, 2-period, 2-sequence crossover study in 24 healthy male volunteers. The FDC tablets (25/500 mg × 2 tablets) were administered in high-fat fed and fasted states on separate occasions, and each subject was randomly allocated to each sequence with a 7-day washout period. PK blood samplings were conducted from predose to 48 hours after dosing. Tolerability assessments were performed throughout the study. Nine adverse events (AEs) of mild intensity were reported from 8 subjects after study drug administration, and the AE frequency was similar between treatments. No serious AEs were reported. The PK parameters of gemigliptin and metformin were compared between fasting and fed states. For gemigliptin, the geometric mean ratios (GMRs) (fed : fasted state) of the Cmax and AUClast were 0.886 (90% confidence interval (CI) 0.781 - 1.006) and 1.021 (90% CI 0.949 - 1.099), respectively. For metformin, the GMRs of the Cmax and AUClast were 0.811 (90% CI 0.712 - 0.923) and 1.144 (90% CI 1.013 - 1.291), respectively. A prolonged tmax for metformin was observed. These results are similar to the effects of food on each component. The FDC tablet may have a similar PK profile as that of individual drugs and is generally tolerable when administered with food. These results indicate that the FDC tablet can be administered in the same dosing regimen as each component, especially that of metformin sustained-release.

  4. The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to 267 K

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Stathys; Loucaides, Socratis; Rérolle, Victoire M. C.; Kennedy, Paul; Achterberg, Eric P.; Dickson, Andrew G.; Mowlem, Matthew; Kennedy, Hilary

    2018-01-01

    The stoichiometric dissociation constants of carbonic acid (K1C∗ and K2C∗) were determined by measurement of all four measurable parameters of the carbonate system (total alkalinity, total dissolved inorganic carbon, pH on the total proton scale, and CO2 fugacity) in natural seawater and seawater-derived brines, with a major ion composition equivalent to that of Reference Seawater, to practical salinity (SP) 100 and from 25 °C to the freezing point of these solutions and -6 °C temperature minimum. These values, reported in the total proton scale, provide the first such determinations at below-zero temperatures and for SP > 50. The temperature (T, in Kelvin) and SP dependence of the current pK1C∗ and pK2C∗ (as negative common logarithms) within the salinity and temperature ranges of this study (33 ≤ SP ≤ 100, -6 °C ≤ t ≤ 25 °C) is described by the following best-fit equations: pK1C∗ = -176.48 + 6.14528 SP0.5 - 0.127714 SP + 7.396 × 10-5SP2 + (9914.37 - 622.886 SP0.5 + 29.714 SP) T-1 + (26.05129 - 0.666812 SP0.5) lnT (σ = 0.011, n = 62), and pK2C∗ = -323.52692 + 27.557655 SP0.5 + 0.154922 SP - 2.48396 × 10-4 SP2 + (14763.287 - 1014.819 SP0.5 - 14.35223 SP) T-1 + (50.385807 - 4.4630415 SP0.5) lnT (σ = 0.020, n = 62). These functions are suitable for application to investigations of the carbonate system of internal sea ice brines with a conservative major ion composition relative to that of Reference Seawater and within the temperature and salinity ranges of this study.

  5. Altered pharmacokinetics and pharmacodynamics of repaglinide by ritonavir in rats with healthy, diabetic and impaired hepatic function.

    PubMed

    Goud, Thirumaleswara; Maddi, Srinivas; Nayakanti, Devanna; Thatipamula, Rajendra Prasad

    2016-06-01

    Ritonavir is an antiretroviral drug to treat HIV AIDS and inhibits cytochrome P450 3A4. To treat diabetes mellitus in HIV, repaglinide is coadministered with ritonavir in the clinic. Multiple cytochrome P450 (CYP) isoforms are involved in the metabolism of repaglinide like CYP2C8 and CYP 3A4. In order to predict and understand drug-drug interactions of these two drugs, the pharmacokinetics and pharmacodynamics (PK/PD) of repaglinide and ritonavir were studied in normal, diabetic and hepatic impaired rats. The purpose of the study was to assess the influence of ritonavir on the PK/PD of repaglinide in rats with normal, diabetic and impaired hepatic function. Human oral therapeutic doses of ritonavir and repaglinide were extrapolated to rats based on the body surface area. Ritonavir (20 mg/kg, p.o.), alone and along with repaglinide (0.5 mg/kg, p.o.), was given to normal, diabetic and hepatic impaired rats, and the PK/PD were studied. The pharmacokinetic parameters like peak plasma concentration (Cmax), area under the plasma concentration time profile (AUC) and elimination half life of repaglinide were significantly (p<0.0001) increased when compared to repaglinide control rats. The repaglinide clearance (CL) was significantly (p<0.0001) decreased in the presence of ritonavir treatment. In the presence of ritonavir, repaglinide hypoglycemic activity was increased significantly (p<0.0005) when compared with repaglinide control group. The significant difference in the PK/PD changes have been due to the increased plasma exposure and decreased total body clearance of repaglinide, which may be due to the inhibition of the CYP P450 metabolic system and organic anion-transporting polypeptide transporter by ritonavir.

  6. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy

    PubMed Central

    Liu, Xiaoxi; Rhein, Lawrence M.; Darnall, Robert A.; Corwin, Michael J.; McEntire, Betty L.; Ward, Robert M.; James, Laura P.; Sherwin, Catherine M. T.; Heeren, Timothy C.; Hunt, Carl E.

    2016-01-01

    Aims Caffeine concentrations in preterm infants are usually measured in the blood. However, salivary assays may provide a valid and practical alternative. The present study explored the validity and clinical utility of salivary caffeine concentrations as an alternative to blood concentrations and developed a novel plasma/salivary caffeine distribution model. Methods Paired salivary and plasma samples were obtained in 29 infants. Salivary samples were obtained using a commercially available salivary collection system. Caffeine concentrations in the saliva and plasma were determined using high‐performance liquid chromatography. A population pharmacokinetic (PK) model was developed using NONMEM 7.3. Results The mean (± standard deviation) gestational age (GA) at birth and birth weight were 27.9 ± 2.1 weeks and 1171.6 ± 384.9 g, respectively. Paired samples were obtained at a mean postmenstrual age (PMA) of 35.5 ± 1.1 weeks. The range of plasma caffeine concentrations was 9.5–54.1 μg ml−1, with a mean difference (95% confidence interval) between plasma and salivary concentrations of −0.18 μg ml−1 (−1.90, 1.54). Salivary and plasma caffeine concentrations were strongly correlated (Pearson's correlation coefficient = 0.87, P < 0.001). Caffeine PK in plasma and saliva was simultaneously described by a three‐compartment recirculation model. Current body weight, birth weight, GA, PMA and postnatal age were not significantly correlated with any PK parameter. Conclusions Salivary sampling provides an easy, non‐invasive method for measuring caffeine concentrations. Salivary concentrations correlate highly with plasma concentrations. Caffeine PK in saliva and plasma are well described by a three‐compartment recirculation model. PMID:27145974

  7. Differences in pharmacokinetics and pharmacodynamics of colistimethate sodium (CMS) and colistin between three different CMS dosage regimens in a critically ill patient infected by a multidrug-resistant Acinetobacter baumannii.

    PubMed

    Luque, Sònia; Grau, Santiago; Valle, Marta; Sorlí, Luisa; Horcajada, Juan Pablo; Segura, Concha; Alvarez-Lerma, Francisco

    2013-08-01

    Use of colistin has re-emerged for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria, but information on its pharmacokinetics and pharmacodynamics is limited, especially in critically ill patients. Recent data from pharmacokinetic/pharmacodynamic (PK/PD) population studies have suggested that this population could benefit from administration of higher than standard doses of colistimethate sodium (CMS), but the relationship between administration of incremental doses of CMS and corresponding PK/PD parameters as well as its efficacy and toxicity have not yet been investigated in a clinical setting. The objective was to study the PK/PD differences of CMS and colistin between three different CMS dosage regimens in the same critically ill patient. A critically ill patient with nosocomial pneumonia caused by a MDR Acinetobacter baumannii received incremental doses of CMS. During administration of the different CMS dosage regimens, CMS and colistin plasma concentrations were determined and PK/PD indexes were calculated. With administration of the highest CMS dose once daily (720 mg every 24h), the peak plasma concentration of CMS and colistin increased to 40.51 mg/L and 1.81 mg/L, respectively, and the AUC0-24/MIC of colistin was 184.41. This dosage regimen was efficacious, and no nephrotoxicity or neurotoxicity was observed. In conclusion, a higher and extended-interval CMS dosage made it possible to increase the exposure of CMS and colistin in a critically ill patient infected by a MDR A. baumannii and allowed a clinical and microbiological optimal response to be achieved without evidence of toxicity. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy.

    PubMed

    Xia, Binfeng; Heimbach, Tycho; Gollen, Rakesh; Nanavati, Charvi; He, Handan

    2013-10-01

    During pregnancy, a drug's pharmacokinetics may be altered and hence anticipation of potential systemic exposure changes is highly desirable. Physiologically based pharmacokinetics (PBPK) models have recently been used to influence clinical trial design or to facilitate regulatory interactions. Ideally, whole-body PBPK models can be used to predict a drug's systemic exposure in pregnant women based on major physiological changes which can impact drug clearance (i.e., in the kidney and liver) and distribution (i.e., adipose and fetoplacental unit). We described a simple and readily implementable multitissue/organ whole-body PBPK model with key pregnancy-related physiological parameters to characterize the PK of reference drugs (metformin, digoxin, midazolam, and emtricitabine) in pregnant women compared with the PK in nonpregnant or postpartum (PP) women. Physiological data related to changes in maternal body weight, tissue volume, cardiac output, renal function, blood flows, and cytochrome P450 activity were collected from the literature and incorporated into the structural PBPK model that describes HV or PP women PK data. Subsequently, the changes in exposure (area under the curve (AUC) and maximum concentration (C max)) in pregnant women were simulated. Model-simulated PK profiles were overall in agreement with observed data. The prediction fold error for C max and AUC ratio (pregnant vs. nonpregnant) was less than 1.3-fold, indicating that the pregnant PBPK model is useful. The utilization of this simplified model in drug development may aid in designing clinical studies to identify potential exposure changes in pregnant women a priori for compounds which are mainly eliminated renally or metabolized by CYP3A4.

  9. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  10. Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays

    USDA-ARS?s Scientific Manuscript database

    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in a variety of insects. An active core analog containing an (E)-alkene, transPro isosteric component was evaluated in four disparate PK/PBAN b...

  11. Tissue-specific proportions of phylloquinone to menaquinone-4 concentrations differ in response to dietary phylloquinone manipulation in lean male Zucker rats

    USDA-ARS?s Scientific Manuscript database

    Phylloquinone (PK) and menaquinone (MK) are naturally-occurring forms of vitamin K (VK). There is selective tissue distribution and conversion of dietary PK to MK4, providing indirect evidence of unique MK4 functions beyond those established for PK. We determined the effect of dietary PK manipulatio...

  12. Serine/Threonine kinase dependent transcription from the polyhedrin promoter of SpltNPV-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Gourav; Gautam, Hemant K.; Das, Rakha H.

    2007-07-06

    Polyhedrin (polh) and p10 are the two hyper-expressed very late genes of nucleopolyhedroviruses. Alpha amanitin resistant transcription from Spodoptera litura nucleopolyhedrovirus (SpltNPV-I) polyhedrin promoter was observed with virus infected nuclear extract of NIV-HA-197 cells but not with that from uninfected nuclear extract. Anti-protein kinase-1 (pk1) antibody inhibited the transcription and the inhibition reversed on addition of pk1, however, pk1 mutant protein, K50M having no phosphorylation activity did not overcome the transcription inhibition. Chromatin immuno-precipitation assays with viral anti-pk1 antibody showed the interaction of pk1 with the polh while electrophoretic mobility shift assays indicated the strong binding affinity (K {sub d}more » {approx} 5.5 x 10{sup -11}) of purified pk1 with the polh promoter. These results suggested that the viral coded pk1 acts as a transcription factor in transcribing baculovirus very late genes.« less

  13. Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling

    PubMed Central

    Jenny, Andreas; Darken, Rachel S.; Wilson, Paul A.; Mlodzik, Marek

    2003-01-01

    Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling. PMID:12941693

  14. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed Central

    Selwood, T; Sinnott, M L

    1990-01-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2114090

  15. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed

    Selwood, T; Sinnott, M L

    1990-06-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Pharmacokinetics and analgesic effectiveness of intravenous parecoxib for tonsillectomy ± adenoidectomy.

    PubMed

    Tan, Lena; Taylor, Elsa; Hannam, Jacqueline A; Salkeld, Lesley; Salman, Sam; Anderson, Brian J

    2016-12-01

    Few pharmacokinetic (PK) and pharmacodynamic (PD) data exist for COX-2 selective inhibitors in children. We wished to characterize the PKPD of parecoxib and its active metabolite, valdecoxib, in this population. Children (n = 59) were randomized to parecoxib 0.25 mg·kg -1 , 1 mg·kg -1 , and 2 mg·kg -1 during tonsillectomy ± adenoidectomy. Samples (4-6 per child) were obtained from indwelling cannula over 6 h. A second group of inpatient children (n = 15) given 1 mg·kg -1 contributed PK data from 6 to 24 h. Pain scores and rescue medication for the first group were recorded postoperatively for up to 24 h. PK data were pooled with those (10 samples/24 h) from a published study of children (n = 38) who underwent surgery. A three-compartment parent and one-compartment metabolite model with first-order elimination was used to describe data using nonlinear mixed effects models. An E MAX model described the relationship between dose and rescue morphine equivalents during recovery. Parecoxib PK parameter estimates were CL PARECOXIB 19.1 L·h -1 ·70 kg -1 , V1 PARECOXIB 4.2 L·70 kg -1 , Q2 PARECOXIB 6.29 L·h -1 ·70 kg -1 , V2 PARECOXIB 130 L·70 kg -1 , Q3 PARECOXIB 6.02 L·h -1 ·70 kg -1 , and V3 PARECOXIB 2.03 L·70 kg -1 . We assumed all parecoxib was metabolized to valdecoxib with CL VALDECOXIB 9.53 L·h -1 ·70 kg -1 and V VALDECOXIB 51 L·70 kg -1 . There was no maturation of clearance over the age span studied. There were no differences in pain scores between groups on waking, discharge, 12 h, or 24 h. There were no differences in analgesia consumption over 24 h between groups for tramadol, fentanyl, and morphine rescue use. Fentanyl and morphine consumption, expressed as morphine equivalents (0.13 mg·kg -1 ) in the 0.25 mg·kg -1 group, was greater than that observed in the 1 or 2 mg·kg -1 groups (0.095 mg·kg -1 ) in PACU. Parecoxib 0.9 mg·kg -1 in a 2-year-old, 0.75 mg·kg -1 in a 7-year-old, and 0.65 mg·kg -1 in a 12-year-old child achieves dose equivalence of 40 mg in a standard 70 kg person. Clearance maturation may occur in infants younger than the current cohort. Parecoxib doses above 1 mg·kg -1 add no additional analgesia. © 2016 John Wiley & Sons Ltd.

  17. Prediction of Losartan-Active Carboxylic Acid Metabolite Exposure Following Losartan Administration Using Static and Physiologically Based Pharmacokinetic Models.

    PubMed

    Nguyen, Hoa Q; Lin, Jian; Kimoto, Emi; Callegari, Ernesto; Tse, Susanna; Obach, R Scott

    2017-09-01

    The aim of this study was to evaluate a strategy based on static and dynamic physiologically based pharmacokinetic (PBPK) modeling for the prediction of metabolite and parent drug area under the time-concentration curve ratio (AUC m /AUC p ) and their PK profiles in humans using in vitro data when active transport processes are involved in disposition. The strategy was applied to losartan and its pharmacologically active metabolite carboxylosartan as test compounds. Hepatobiliary transport including transport-mediated uptake, canilicular and basolateral efflux, and metabolic clearance estimates were obtained from in vitro studies using human liver microsomes and sandwich-cultured hepatocytes. Human renal clearance of carboxylosartan was estimated from dog renal clearance using allometric scaling approach. All clearance mechanisms were mechanistically incorporated in a static model to predict the relative exposure of carboxylosartan versus losartan (AUC m /AUC p ). The predicted AUC m /AUC p were consistent with the observed data following intravenous and oral administration of losartan. Moreover, the in vitro parameters were used as initial parameters in PBPK permeability-limited disposition models to predict the concentration-time profiles for both parent and its active metabolite after oral administration of losartan. The PBPK model was able to recover the plasma profiles of both losartan and carboxylosartan, further substantiating the validity of this approach. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of polyethylene glycol 400 and its applications.

    PubMed

    Vijaya Bhaskar, V; Middha, Anil; Tiwari, Sudhir; Shivakumar, Savithiri

    2013-05-01

    A rapid sensitive and selective MRM based method for the determination of polyethylene glycol 400 (PEG 400) in rat plasma was developed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). PEG 400 and telmisartan (Internal standard) were extracted from rat plasma with acetonitrile and analysed on C18 column (Waters Xbridge, 50×4.6 mm, 3.5 μm) with the mobile phase (A - 0.1% formic acid in water; B - methanol). A generic gradient method with a short run time of 3.5 min was developed for the analysis of PEG 400. A total of nine oligomers were identified for PEG 400. The most abundant ions corresponding to PEG 400 oligomers at m/z 327, 371, 432, 476, 520, 564, 608, 652 and 696 with daughter ion at m/z 89 were selected for multiple reaction monitoring (MRM) in electrospray mode of ionisation. Analyte peak area of the oligomers was summed up to calculate the plasma concentrations of total PEG 400. The standard curve was linear (0.9954) over the concentration range of 1.01-1013.40 μg/mL. The lower limit of quantitation for PEG 400 was 1.01 μg/mL using 50 μL plasma. The coefficient of variation and relative error for inter and intraassay at three QC levels were 2.31-13.34 and -7.99 to 0.37, respectively. The method was validated for various parameters such as extraction recovery, matrix effect, autosampler stability, benchtop stability, freeze thaw stability, long term stability and was proved to be consistent across three QC levels with overall %CV less than 15. The developed method was successfully applied to the absolute bioavailability study of PEG 400 in male Sprague Dawley rats. Plasma concentrations of PEG 400 was measured after administration through oral and intravenous routes in male Sprague Dawley rats at a dose of 3.38 g/kg. Pharmacokinetic (PK) parameters were characterised by performing the analysis using Phoenix Winnonlin software (v 6.3). PEG 400 has good oral bioavailability with mean absolute bioavailability of 47.23%. Plasma concentration profile/PK parameters of PEG 400 was established in both intravenous and oral routes, which helps to qualify the analytical batch of NCEs having spiky plasma concentration profiles/erratic results. Purity of the PEG 400 oligomers was estimated using ELSD detection. Differences in pharmacokinetics of oligomers was studied. It was found that with increase in molecular weight of the oligomer, a decrease in absolute bioavailability was observed. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    PubMed

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The old and the new in prekallikrein deficiency: historical context and a family from Argentina with PK deficiency due to a new mutation (Arg541Gln) in exon 14 associated with a common polymorphysm (Asn124Ser) in exon 5.

    PubMed

    Girolami, Antonio; Vidal, Josè; Sabagh, Marcela; Salagh, Marcela; Gervan, Nora; Parody, Maria; Peroni, Edoardo; Sambado, Luisa; Guglielmone, Hugo

    2014-07-01

    Prekallikrein (PK) is one of the clotting factors involved in the contact phase of blood. PK has an important historical role as its deficiency state represents the second instance of a clotting defect without bleeding manifestations, the first one being factor XII deficiency. PK deficiency is a rare clotting disorder. Moreover, only 11 patients have been investigated so far by molecular biology techniques. In this article, we briefly review some of the history around PK and also present some recent data on a newly identified family from Argentina suffering from PK deficiency. Two patients are homozygous whereas other family members are heterozygous. PK activity and antigen are 1% of normal in the homozygotes and around 60 to 70% of normal in the heterozygotes. As expected, all patients are asymptomatic of bleeding or thrombosis presentations. However, the two homozygotes showed essential hypertension. The PK deficiency in this family is due to a new mutation (Arg541Gln) in exon 14. The defect segregates together with a known polymorphism, Asn124Ser, in exon 5. The significance of the presence of hypertension in the two homozygotes is discussed in view of the extra coagulation effects of PK on vasodilation, vessel permeability, and the control of blood pressure. Structure function analysis indicates that the substitution of Arg with Gln probably impedes the transmembrane diffusion of the molecule, which therefore cannot be secreted in the homozygotes. The presence of hypertension in patients with PK deficiency has been previously reported in some but not all patients. Future research activities will probably concentrate on the effect of PK and other contact phase factors on the vascular system. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Carprofen pharmacokinetics in plasma and in control and inflamed canine tissue fluid using in vivo ultrafiltration.

    PubMed

    Messenger, K M; Wofford, J A; Papich, M G

    2016-02-01

    Measurement of unbound drug concentrations at their sites of action is necessary for accurate PK/PD modeling. The objective of this study was to determine the unbound concentration of carprofen in canine interstitial fluid (ISF) using in vivo ultrafiltration and to compare pharmacokinetic parameters of free carprofen concentrations between inflamed and control tissue sites. We hypothesized that active concentrations of carprofen would exhibit different dispositions in ISF between inflamed vs. normal tissues. Bilateral ultrafiltration probes were placed subcutaneously in six healthy Beagle dogs 12 h prior to induction of inflammation. Two milliliters of either 2% carrageenan or saline control was injected subcutaneously at each probe site, 12 h prior to intravenous carprofen (4 mg/kg) administration. Plasma and ISF samples were collected at regular intervals for 72 h, and carprofen concentrations were determined using HPLC. Prostaglandin E2 (PGE2 ) concentrations were quantified in ISF using ELISA. Unbound carprofen concentrations were higher in ISF compared with predicted unbound plasma drug concentrations. Concentrations were not significantly higher in inflamed ISF compared with control ISF. Compartmental modeling was used to generate pharmacokinetic parameter estimates, which were not significantly different between sites. Terminal half-life (T½) was longer in the ISF compared with plasma. PGE2 in ISF decreased following administration of carprofen. In vivo ultrafiltration is a reliable method to determine unbound carprofen in ISF, and that disposition of unbound drug into tissue is much higher than predicted from unbound drug concentration in plasma. However, concentrations and pharmacokinetic parameter estimates are not significantly different in inflamed vs. un-inflamed tissues. © 2015 John Wiley & Sons Ltd.

  2. Basic PK/PD principles of drug effects in circular/proliferative systems for disease modelling.

    PubMed

    Jacqmin, Philippe; McFadyen, Lynn; Wade, Janet R

    2010-04-01

    Disease progression modelling can provide information about the time course and outcome of pharmacological intervention on the disease. The basic PK/PD principles of proliferative and circular systems within the context of modelling disease progression and the effect of treatment thereupon are illustrated with the goal to better understand/predict eventual clinical outcome. Circular/proliferative systems can be very complex. To facilitate the understanding of how a dosing regimen can be defined in such systems we have shown the derivation of a system parameter named the Reproduction Minimum Inhibitory Concentration (RMIC) which represents the critical concentration at which the system switches from growth to extinction. The RMIC depends on two parameters (RMIC = (R(0) - 1) x IC(50)): the basic reproductive ratio (R(0)) a fundamental parameter of the circular/proliferative system that represents the number of offspring produced by one replicating species during its lifespan, and the IC(50), the potency of the drug to inhibit the proliferation of the system. The RMIC is constant for a given system and a given drug and represents the lowest concentration that needs to be achieved for eradication of the system. When exposure is higher than the RMIC, success can be expected in the long term. Time varying inhibition of replicating species proliferation is a natural consequence of the time varying inhibitor drug concentrations and when combined with the dynamics of the circular/proliferative system makes it difficult to predict the eventual outcome. Time varying inhibition of proliferative/circular systems can be handled by calculating the equivalent effective constant concentration (ECC), the constant plasma concentration that would give rise to the average inhibition at steady state. When ECC is higher than the RMIC, eradication of the system can be expected. In addition, it is shown that scenarios that have the same steady state ECC whatever the dose, dosage schedule or PK parameters have also the same average R (0) in the presence of the inhibitor (i.e. R (0-INH)) and therefore lead to the same outcome. This allows predicting equivalent active doses and dosing schedules in circular and proliferative systems when the IC(50) and pharmacokinetic characteristics of the drugs are known. The results from the simulations performed demonstrate that, for a given system (defined by its RMIC), treatment success depends mainly on the pharmacokinetic characteristics of the drug and the dosing schedule.

  3. Changes in the responsiveness of hypothalamic PK2 and PKR1 gene expression to fasting in developing male rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2014-11-01

    Prokineticin (PK2) and its receptors (PKRs) are expressed in several regions of the central nervous system, including the hypothalamus. It has been reported that PK2 inhibits food intake via PKR1 and that the hypothalamic PK2 mRNA levels of adult rodents were reduced by food deprivation. However, some hypothalamic factors do not exhibit sensitivity to undernutrition in the early neonatal period, but subsequently become sensitive to it during the neonatal to pre-pubertal period. In this study, we investigated the changes in the sensitivity of hypothalamic PK2 and PKR1 mRNA expression to fasting during the developmental period in male rats. Under the fed conditions, the rats' hypothalamic PK2 and/or PKR1 mRNA levels were higher on postnatal day (PND) 10 than on PND20 or PND30. In addition, the hypothalamic PK2 and/or PKR1 mRNA levels of the male rats were higher than those of the females at all examined ages (PND10, 20, and 30). Hypothalamic PK2 mRNA expression was decreased by 24h fasting at PND10 and 30, but not at PND20. In addition, hypothalamic PKR1 mRNA expression was decreased by 24h fasting at PND10, but not at PND20 or 30. These results indicate that both PK2 and PKR1 are sensitive to nutritional status in male rats and that this sensitivity has already been established by the early neonatal period. It can be speculated that the PK2 system might compensate for the immaturity of other appetite regulatory factors in the early neonatal period. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. In Vitro Coinfection and Replication of Classical Swine Fever Virus and Porcine Circovirus Type 2 in PK15 Cells

    PubMed Central

    Zhou, Niu; Xing, Gang; Zhou, Jianwei; Jin, Yulan; Liang, Cuiqin; Gu, Jinyan; Hu, Boli; Liao, Min; Wang, Qin; Zhou, Jiyong

    2015-01-01

    Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection. PMID:26431319

  5. Model Informed Pediatric Development Applied to Bilastine: Ontogenic PK Model Development, Dose Selection for First Time in Children and PK Study Design.

    PubMed

    Vozmediano, Valvanera; Sologuren, Ander; Lukas, John C; Leal, Nerea; Rodriguez, Mónica

    2017-12-01

    Bilastine is an H 1 antagonist whose pharmacokinetics (PK) and pharmacodynamics (PD) have been resolved in adults with a therapeutic oral dose of 20 mg/day. Bilastine has favorable characteristics for use in pediatrics but the PK/PD and the optimal dose in children had yet to be clinically explored. The purpose is to: (1) Develop an ontogenic predictive model of bilastine PK linked to the PD in adults by integrating current knowledge; (2) Use the model to design a PK study in children; (3) Confirm the selected dose and the study design through the evaluation of model predictability in the first recruited children; (4) Consider for inclusion the group of younger children (< 6 years). A semi-mechanistic approach was applied to predict bilastine PK in children assuming the same PD as described in adults. The model was used to simulate the time evolution of plasma levels and wheal and flare effects after several doses and design an adaptive PK trial in children that was then confirmed using data from the first recruits by comparing observations with model predictions. PK/PD simulations supported the selection of 10 mg/day in 2 to <12 year olds. Results from the first interim analysis confirmed the model predictions and design hence trial continuation. The model successfully predicted bilastine PK in pediatrics and optimally assisted the selection of the dose and sampling scheme for the trial in children. The selected dose was considered suitable for younger children and the forthcoming safety study in children aged 2 to <12 years.

  6. Multiscale systems pharmacological analysis of everolimus action in hepatocellular carcinoma.

    PubMed

    Ande, Anusha; Chaar, Maher; Ait-Oudhia, Sihem

    2018-05-03

    Dysregulation of mTOR pathway is common in hepatocellular carcinoma (HCC). A translational quantitative systems pharmacology (QSP), pharmacokinetic (PK), and pharmacodynamic (PD) model dissecting the circuitry of this pathway was developed to predict HCC patients' response to everolimus, an mTOR inhibitor. The time course of key signaling proteins in the mTOR pathway, HCC cells viability, tumor volume (TV) and everolimus plasma and tumor concentrations in xenograft mice, clinical PK of everolimus and progression free survival (PFS) in placebo and everolimus-treated patients were extracted from literature. A comprehensive and multiscale QSP/PK/PD model was developed, qualified, and translated to clinical settings. Model fittings and simulations were performed using Monolix software. The S6-kinase protein was identified as critical in the mTOR signaling pathway for describing everolimus lack of efficacy in HCC patients. The net growth rate constant (kg) of HCC cells was estimated at 0.02 h -1 (2.88%RSE). The partition coefficient of everolimus into the tumor (kp) was determined at 0.06 (12.98%RSE). The kg in patients was calculated from the doubling time of TV in naturally progressing HCC patients, and was determined at 0.004 day -1 . Model-predicted and observed PFS were in good agreement for placebo and everolimus-treated patients. In conclusion, a multiscale QSP/PK/PD model elucidating everolimus lack of efficacy in HCC patients was successfully developed and predicted PFS reasonably well compared to observed clinical findings. This model may provide insights into clinical response to everolimus-based therapy and serve as a valuable tool for the clinical translation of efficacy for novel mTOR inhibitors.

  7. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against ebola virus and marburg virus: results of two single-ascending-dose studies.

    PubMed

    Heald, Alison E; Iversen, Patrick L; Saoud, Jay B; Sazani, Peter; Charleston, Jay S; Axtelle, Tim; Wong, Michael; Smith, William B; Vutikullird, Apinya; Kaye, Edward

    2014-11-01

    Two identical single-ascending-dose studies evaluated the safety and pharmacokinetics (PK) of AVI-6002 and AVI-6003, two experimental combinations of phosphorodiamidate morpholino oligomers with positive charges (PMOplus) that target viral mRNA encoding Ebola virus and Marburg virus proteins, respectively. Both AVI-6002 and AVI-6003 were found to suppress disease in virus-infected nonhuman primates in previous studies. AVI-6002 (a combination of AVI-7537 and AVI-7539) or AVI-6003 (a combination of AVI-7287 and AVI-7288) were administered as sequential intravenous (i.v.) infusions of a 1:1 fixed dose ratio of the two subcomponents. In each study, 30 healthy male and female subjects between 18 and 50 years of age were enrolled in six-dose escalation cohorts of five subjects each and received a single i.v. infusion of active study drug (0.005, 0.05, 0.5, 1.5, 3, and 4.5 mg/kg per component) or placebo in a 4:1 ratio. Both AVI-6002 and AVI-6003 were safe and well tolerated at the doses studied. A maximum tolerated dose was not observed in either study. The four chemically similar PMOplus components exhibited generally similar PK profiles. The mean peak plasma concentration and area under the concentration-time curve values of the four components exhibited dose-proportional PK. The estimated plasma half-life of all four components was 2 to 5 h. The safety of the two combinations and the PK of the four components were similar, regardless of the target RNA sequence. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Noninvasive PK11195-PET Image Analysis Techniques Can Detect Abnormal Cerebral Microglial Activation in Parkinson's Disease.

    PubMed

    Kang, Yeona; Mozley, P David; Verma, Ajay; Schlyer, David; Henchcliffe, Claire; Gauthier, Susan A; Chiao, Ping C; He, Bin; Nikolopoulou, Anastasia; Logan, Jean; Sullivan, Jenna M; Pryor, Kane O; Hesterman, Jacob; Kothari, Paresh J; Vallabhajosula, Shankar

    2018-05-04

    Neuroinflammation has been implicated in the pathophysiology of Parkinson's disease (PD), which might be influenced by successful neuroprotective drugs. The uptake of [ 11 C](R)-PK11195 (PK) is often considered to be a proxy for neuroinflammation, and can be quantified using the Logan graphical method with an image-derived blood input function, or the Logan reference tissue model using automated reference region extraction. The purposes of this study were (1) to assess whether these noninvasive image analysis methods can discriminate between patients with PD and healthy volunteers (HVs), and (2) to establish the effect size that would be required to distinguish true drug-induced changes from system variance in longitudinal trials. The sample consisted of 20 participants with PD and 19 HVs. Two independent teams analyzed the data to compare the volume of distribution calculated using image-derived input functions (IDIFs), and binding potentials calculated using the Logan reference region model. With all methods, the higher signal-to-background in patients resulted in lower variability and better repeatability than in controls. We were able to use noninvasive techniques showing significantly increased uptake of PK in multiple brain regions of participants with PD compared to HVs. Although not necessarily reflecting absolute values, these noninvasive image analysis methods can discriminate between PD patients and HVs. We see a difference of 24% in the substantia nigra between PD and HV with a repeatability coefficient of 13%, showing that it will be possible to estimate responses in longitudinal, within subject trials of novel neuroprotective drugs. © 2018 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  9. Evaluation of the pharmacokinetic and pharmacodynamic drug interactions between cilnidipine and valsartan, in healthy volunteers

    PubMed Central

    Lee, Jieon; Lee, Howard; Jang, Kyungho; Lim, Kyoung Soo; Shin, Dongseong; Yu, Kyung-Sang

    2014-01-01

    Purpose Although cilnidipine and valsartan are widely coadministered to patients with hypertension, their drug–drug interaction potential has not been investigated. This study compared the pharmacokinetic (PK), pharmacodynamic (PD), and tolerability profiles of cilnidipine and valsartan, both alone and in combination, in healthy male subjects. Patients and methods Fifty-four subjects, enrolled into an open-label, single-dose, three-treatment, three-period crossover study, randomly received cilnidipine (10 mg), valsartan (160 mg), or both according to one of six sequences. Blood samples were collected at baseline and up to 24 hours after drug administration in each period. Plasma concentrations of cilnidipine and valsartan were determined by liquid chromatography with tandem mass spectrometry. Maximum plasma concentration (Cmax) and area under the concentration-time curve from 0 to the last measurable time (AUClast) were estimated using a noncompartmental method. Tolerability was evaluated by assessing adverse events (AEs), vital signs, electrocardiograms, and clinical laboratory tests. Blood pressure was also measured for PD assessment. Results A total of 51 subjects completed the study. The PK profile of cilnidipine was not significantly affected by coadministered valsartan; the geometric mean ratio and 90% confidence interval (90% CI) of AUClast for cilnidipine with and without valsartan was 1.04 (0.98–1.10). Likewise, cilnidipine did not affect the PK of valsartan; the geometric mean ratio (90% CI) of AUClast for valsartan with and without cilnidipine was 0.94 (0.83–1.07). Coadministration of cilnidipine and valsartan reduced blood pressure in an additive way. No serious AEs were reported, and both cilnidipine and valsartan were well tolerated. Conclusion Coadministered cilnidipine and valsartan do not cause a significant PK or PD interaction, and they are well tolerated. PMID:25336921

  10. Pharmacokinetics of colistin methanesulfonate (CMS) in healthy Chinese subjects after single and multiple intravenous doses.

    PubMed

    Zhao, Miao; Wu, Xiao-Jie; Fan, Ya-Xin; Zhang, Ying-Yuan; Guo, Bei-Ning; Yu, Ji-Cheng; Cao, Guo-Ying; Chen, Yuan-Cheng; Wu, Ju-Fang; Shi, Yao-Guo; Li, Jian; Zhang, Jing

    2018-05-01

    The high prevalence of extensively drug-resistant Gram-negative pathogens has forced clinicians to use colistin as a last-line therapy. Knowledge on the pharmacokinetics of colistin methanesulfonate (CMS), an inactive prodrug, and colistin has increased substantially; however, the pharmacokinetics in the Chinese population is still unknown due to lack of a CMS product in China. This study aimed to evaluate the pharmacokinetics of a new CMS product developed in China in order to optimise dosing regimens. A total of 24 healthy subjects (12 female, 12 male) were enrolled in single- and multiple-dose pharmacokinetic (PK) studies. Concentrations of CMS and formed colistin in plasma and urine were measured, and PK analysis was conducted using a non-compartmental approach. Following a single CMS dose [2.36 mg colistin base activity (CBA) per kg, 1 h infusion], peak concentrations (C max ) of CMS and formed colistin were 18.0 mg/L and 0.661 mg/L, respectively. The estimated half-life (t 1/2 ) of CMS and colistin were 1.38 h and 4.49 h, respectively. Approximately 62.5% of the CMS dose was excreted via urine within 24 h after dosing, whilst only 1.28% was present in the form of colistin. Following multiple CMS doses, colistin reached steady-state within 24 h; there was no accumulation of CMS, but colistin accumulated slightly (R AUC  = 1.33). This study provides the first PK data in the Chinese population and is essential for designing CMS dosing regimens for use in Chinese hospitals. The urinary PK data strongly support the use of intravenous CMS for serious urinary tract infections. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  11. Species-specific photosynthetic responses of four coniferous seedlings to open-field experimental warming

    NASA Astrophysics Data System (ADS)

    Han, S.; Yoon, S. J.; Yoon, T. K.; Han, S. H.; Lee, J.; Lee, D.; Kim, S.; Hwang, J.; Cho, M.; Son, Y.

    2014-12-01

    Temperature increase under climate change is expected to affect photosynthesis of tree species. Biochemical models generally suggest that the elevated temperature increases the photosynthetic carbon fixation, however, many opposing results were reported as well. We aimed to examine the photosynthetic responses of four coniferous seedlings to projected future temperature increase, by conducting an open-field warming experiment. Experimental warming set-up using infra-red heater was built in 2011 and the temperature in warming plots has been regulated to be consistently 3oC higher than that of control plots. The seeds of Abies holophylla (AH), A. koreana (AK), Pinus densiflora (PD), and P. koraiensis (PK) were planted in each 1 m × 1 m plot (n=3) in April, 2012. Monthly net photosynthetic rates (Pn; μmol CO2 m-2 s-1) of 1-year-old seedlings (n=9) from June to November, 2013 were measured using CIRAS-2 (PP-Systems, UK) and photosynthetic parameters (the apparent quantum yield; ф; µmol CO2 mol-1, the dark respiration rate; Rd; µmol CO2 mol-1, and the light compensation point; LCP; µmol mol-1 s-1) were also calculated from the light-response curve of photosynthesis in August, 2013. Chlorophyll contents were measured using DMSO extraction method. Monthly Pn was generally higher for PD and decreased for AK in warmed plots than in control plots (Fig. 1). Pn of AK and PK did not show any significant difference, however, Pn of PK in October and November increased by experimental warming. Pn of PD also showed the highest increase in November and this distinct increase of Pn in autumn might be caused by delayed cessation of photosynthesis by temperature elevation. ф and Rd in warmed plots were higher for PD and lower for AK, while LCP did not significantly differ by treatments for all species. Because ф is considered to be related to the efficiency of harvesting and using light, the change in ф might have caused the response of Pn to warming in this study. Decreases in chlorophyll contents resulted from heat stress were observed for PD and PK. We found the species-specific responses of Pn related to the change in photosynthetic parameters following experimental warming of four 1-year-old coniferous seedlings.

  12. Pharmacokinetic comparison of a fixed-dose combination versus concomitant administration of fimasartan, amlodipine, and rosuvastatin using partial replicated design in healthy adult subjects.

    PubMed

    Oh, Minkyung; Ghim, Jong-Lyul; Park, Sung-Eun; Kim, Eun-Young; Shin, Jae-Gook

    2018-01-01

    The aim of this study was to compare the pharmacokinetics (PK) and safety profiles of a fixed-dose combination (FDC) formulation of fimasartan, amlodipine, and rosuvastatin with the co-administration of the two products by using a replicated crossover study design in healthy male subjects. This was an open-label, randomized, three-sequence, three-period replicated crossover study in healthy male subjects. The replicated crossover design was done because of high coefficient of variation of PK parameter for fimasartan, that is, >30%. With a 14 days washout period, an FDC tablet containing 60 mg fimasartan, 10 mg amlodipine, and 20 mg rosuvastatin was administered only once, and separate formulations of fimasartan/amlodipine 60 mg/10 mg FDC tablet and 20 mg rosuvastatin tablet administered twice. Blood samples were collected up to 72 hours following drug administration. The plasma concentrations of fimasartan, amlodipine, and rosuvastatin were measured by liquid chromatography tandem mass spectrometry. Safety was assessed by evaluating vital signs, clinical laboratory parameters, physical examinations, and medical interviews. The geometric mean ratios and 90% confidence intervals (CIs) for the maximum plasma concentration (C max ) and area under the curve from time zero to the last measurable sampling time (AUC t ) were 1.0776 (0.9201-1.2622) and 0.9978 (0.9538-1.0439) for fimasartan, 1.0038 (0.9782-1.0301) and 1.0055 (0.9828-1.0288) for amlodipine, and 1.0006 (0.9290-1.0776) and 0.9986 (0.9532-1.0461) for rosuvastatin, respectively. A total of 22 adverse events (AEs) were reported by 60 subjects; there were no significant differences in the incidence of AEs between the two groups. The 90% CI of the C max of fimasartan was within the widened acceptance limit, ln(0.6984)-ln(1.4319). The 90% CIs of the other PK parameters for drugs were between ln(0.8) and ln(1.25). These results suggest that the FDC formulation is pharmacokinetically bioequivalent and has a similar safety profile, to the co-administration of its three constituent drugs.

  13. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance

    PubMed Central

    2013-01-01

    Background Antibiotic resistance has become a serious global problem and is steadily increasing worldwide in almost every bacterial species treated with antibiotics. In aquaculture, the therapeutic options for the treatment of A. hydrophila infection were only limited to several antibiotics, which contributed for the fast-speed emergence of drug tolerance. Accordingly, the aim of this study was to establish a medication regimen to prevent drug resistant bacteria. To determine a rational therapeutic guideline, integrated pharmacodynamics and pharmacokinetics parameters were based to predict dose and dosage interval of enrofloxacin in grass carp Ctenopharyngodon idella infected by a field-isolated A. hydrophila strain. Results The pathogenic A. hydrophila strain (AH10) in grass carp was identified and found to be sensitive to enrofloxacin. The mutant selection window (MSW) of enrofloxacin on isolate AH10 was determined to be 0.5 - 3 μg/mL based on the mutant prevention concentration (MPC) and minimum inhibitory concentration (MIC) value. By using high-performance liquid chromatography (HPLC) system, the Pharmacokinetic (PK) parameters of enrofloxacin and its metabolite ciprofloxacin in grass carp were monitored after a single oral gavage of 10, 20, 30 μg enrofloxacin per g body weight. Dosing of 30 μg/g resulted in serum maximum concentration (Cmax) of 7.151 μg/mL, and concentration in serum was above MPC till 24 h post the single dose. Once-daily dosing of 30 μg/g was determined to be the rational choice for controlling AH10 infection and preventing mutant selection in grass carp. Data of mean residue time (MRT) and body clearance (CLz) indicated that both enrofloxacin and its metabolite ciprofloxacin present similar eliminating rate and pattern in serum, muscle and liver. A withdraw time of more than 32 d was suggested based on the drug eliminating rate and pharmacokinetic model described by a polyexponential equation. Conclusions Based on integrated PK/PD parameters (AUC/MIC, Cmax/MIC, and T>MPC), the results of this study established a principle, for the first time, on drawing accurate dosing guideline for pharmacotherapy against A. hydrophila strain (AH10) for prevention of drug-resistant mutants. Our approach in combining PK data with PD parameters (including MPC and MSW) was the new effort in aquaculture to face the challenge of drug resistance by drawing a specific dosage guideline of antibiotics. PMID:23800340

  14. Toxic anterior segment syndrome following penetrating keratoplasty.

    PubMed

    Maier, Philip; Birnbaum, Florian; Böhringer, Daniel; Reinhard, Thomas

    2008-12-01

    To describe an outbreak of toxic anterior segment syndrome (TASS) following penetrating keratoplasty (PK) and to examine its possible causes. Owing to a series of TASS following PK between June 6, 2007, and October 2, 2007, we reviewed the records of all patients who had undergone PK during that time. In addition to routine microbial tests on organ culture media, we looked for specific pathogens and endotoxins in all of the materials used for organ culture or PK. Furthermore, we analyzed all of the perioperative products and instrument processing. Of the 94 patients who underwent PK, we observed 24 cases of postoperative sterile keratitis. Causal research revealed that the accumulation of cleaning substances or heat-stable endotoxins on the surface of the routinely used guided trephine system was most likely responsible for the TASS. To our knowledge, this is the first report on TASS following PK. Suboptimal reprocessing of surgical instruments may be an important cause of TASS as in this series the TASS-like symptoms resolved after modified instrument-cleaning procedures. The standardization of protocols for processing reusable trephine systems might prevent outbreaks of TASS following PK.

  15. Moclobemide monotherapy vs. combined therapy with valproic acid or carbamazepine in depressive patients: a pharmacokinetic interaction study.

    PubMed

    Rakic Ignjatovic, Anita; Miljkovic, Branislava; Todorovic, Dejan; Timotijevic, Ivana; Pokrajac, Milena

    2009-02-01

    Moclobemide (MCB) undergoes extensive both presystemic and systemic metabolism that can be affected by concomitant drugs. Valproic acid (VPA) and carbamazepine (CBZ) have been found to interact with psychotropic medications of all classes and many other drugs; VPA acts as a broad-spectrum inhibitor, and CBZ as a potent inducer of a variety of drug-metabolizing enzymes. There have been no previous studies designed to investigate a potential pharmacokinetic (PK) interaction between MCB and VPA or CBZ; however, these agents are likely to be used concomitantly for the treatment of depressive disorders. VPA does not significantly affect PK or metabolism of MCB at steady state. CBZ significantly decreases MCB exposure. This effect is time-dependent, being more pronounced after 3-5 weeks of co-administration. To assess the impact of valproic acid (VPA) and carbamazepine (CBZ) on moclobemide (MCB) pharmacokinetics (PK) and metabolism at steady state in depressive patients. Twenty-one inpatients with recurrent endogenous depression received MCB (150 mg t.i.d.), either as monotherapy or in combination with VPA (500 mg b.i.d.) or CBZ (200 mg b.i.d.) in a nonrandomized manner. Steady-state plasma PK parameters of MCB and its two metabolites, Ro 12-8095 and Ro 12-5637, were derived. Clinical assessments of treatment efficacy were performed weekly using standard depression rating scales. CBZ, but not VPA, was associated with decreases in the MCB AUC by 35% [from 7.794 to 5.038 mg h l(-1); 95% confidence interval (CI) -4.84863, -0.66194; P = 0.01] and C(max) by 28% (from 1.911 to 1.383 mg l(-1); 95% CI -0.98197, -0.07518; P < 0.05), and an increase in its oral clearance by 41% (from 0.323 to 0.454 l h(-1) kg(-1); 95% CI 0.00086, 0.26171; P < 0.05) after 4 weeks of co-administration. MCB through concentrations were also decreased, on average by 41% (from 0.950 to 0.559 mg l(-1); 95% CI -0.77479, -0.03301; P < 0.05). However, the efficacy in this group of patients was not inferior to the controls, for several possible reasons. Overall tolerability of all study medications was good. VPA does not significantly affect PK or metabolism of MCB, whereas CBZ time-dependently decreases MCB exposure, probably by inducing metabolism of MCB and its major plasma metabolite. The actual clinical relevance of the observed MCB-CBZ PK interaction needs to be further evaluated in a more comprehensive study.

  16. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations.

    PubMed

    Kay, Katherine; Shah, Dhaval K; Rohan, Lisa; Bies, Robert

    2018-05-01

    A physiologically-based pharmacokinetic (PBPK) model of the vaginal space was developed with the aim of predicting concentrations in the vaginal and cervical space. These predictions can be used to optimize the probability of success of vaginally administered dapivirine (DPV) for HIV prevention. We focus on vaginal delivery using either a ring or film. A PBPK model describing the physiological structure of the vaginal tissue and fluid was defined mathematically and implemented in MATLAB. Literature reviews provided estimates for relevant physiological and physiochemical parameters. Drug concentration-time profiles were simulated in luminal fluids, vaginal tissue and plasma after administration of ring or film. Patient data were extracted from published clinical trials and used to test model predictions. The DPV ring simulations tested the two dosing regimens and predicted PK profiles and area under the curve of luminal fluids (29 079 and 33 067 mg h l -1 in groups A and B, respectively) and plasma (0.177 and 0.211 mg h l -1 ) closely matched those reported (within one standard deviation). While the DPV film study reported drug concentration at only one time point per patient, our simulated profiles pass through reported concentration range. HIV is a major public health issue and vaginal microbicides have the potential to provide a crucial, female-controlled option for protection. The PBPK model successfully simulated realistic representations of drug PK. It provides a reliable, inexpensive and accessible platform where potential effectiveness of new compounds and the robustness of treatment modalities for pre-exposure prophylaxis can be evaluated. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  17. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa.

    PubMed

    Shaw, K L; Grimsley, G R; Yakovlev, G I; Makarov, A A; Pace, C N

    2001-06-01

    The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.

  18. Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.

    PubMed

    Irving, M; Maylie, J; Sizto, N L; Chandler, W K

    1990-04-01

    Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.

  19. A PK-PD Model of Ketamine-Induced High-Frequency Oscillations

    PubMed Central

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2017-01-01

    Objective Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a High-Frequency Oscillation (HFO) which power is modulated non-linearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PD) of ketamine and the observed HFO power. Approach In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by a high-frequency oscillation (HFO) observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent range of effects that ketamine has. PMID:26268223

  20. Role of plasma kallikrein in diabetes and metabolism.

    PubMed

    Feener, E P; Zhou, Q; Fickweiler, W

    2013-09-01

    Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism.

  1. Use of Fentanyl in Adolescents with Clinically Severe Obesity Undergoing Bariatric Surgery - a Pilot Study

    PubMed Central

    Vaughns, Janelle D.; Ziesenitz, Victoria C.; Williams, Elaine F.; Mushtaq, Alvina; Bachmann, Ricarda; Skopp, Gisela; Weiss, Johanna; Mikus, Gerd; van den Anker, Johannes N.

    2018-01-01

    Background The number of obese pediatric patients requiring anesthesia is rapidly increasing. Although fentanyl is a commonly used narcotic during surgery, there is no pharmacokinetic (PK) data available for optimal dosing of fentanyl in adolescents with clinically severe obesity. Materials and Methods An IRB-approved exploratory pilot study was conducted in 6 adolescents aged 14 to 19 years undergoing bariatric surgery. Mean total body weight (TBW) and mean BMI were 137.4 ± 14.3 kg, and 49.6 ± 6.4 kg/m2 (99.5th BMI percentile), respectively. Fentanyl was dosed intravenously for intraoperative analgesia based on ideal body weight per standard of care. PK blood samples were drawn over a 24 hour post-dose period. Fentanyl PK parameters were calculated by non-compartmental analysis. Results Mean fentanyl AUC0–∞ was 1.5 ± 0.5 h*ng/mL. Systemic clearance of fentanyl was 1522 ± 310 mL/min and 11.2 ± 2.6 mL/min*kg TBW. Volume of distribution was 635 ± 282 L and 4.7 ± 2.1 L/kg TBW. While absolute clearance was increased, absolute volume of distribution was comparable to previously established adult values. Conclusions These results suggest that fentanyl clearance is enhanced in adolescents with clinically severe obesity while volume of distribution is comparable to previously published studies. PMID:28238111

  2. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part II: extension to describe performance of solid dosage forms.

    PubMed

    Thelen, Kirstin; Coboeken, Katrin; Willmann, Stefan; Dressman, Jennifer B; Lippert, Jörg

    2012-03-01

    The physiological absorption model presented in part I of this work is now extended to account for dosage-form-dependent gastrointestinal (GI) transit as well as disintegration and dissolution processes of various immediate-release and modified-release dosage forms. Empirical functions of the Weibull type were fitted to experimental in vitro dissolution profiles of solid dosage forms for eight test compounds (aciclovir, caffeine, cimetidine, diclofenac, furosemide, paracetamol, phenobarbital, and theophylline). The Weibull functions were then implemented into the model to predict mean plasma concentration-time profiles of the various dosage forms. On the basis of these dissolution functions, pharmacokinetics (PK) of six model drugs was predicted well. In the case of diclofenac, deviations between predicted and observed plasma concentrations were attributable to the large variability in gastric emptying time of the enteric-coated tablets. Likewise, oral PK of furosemide was found to be predominantly governed by the gastric emptying patterns. It is concluded that the revised model for GI transit and absorption was successfully integrated with dissolution functions of the Weibull type, enabling prediction of in vivo PK profiles from in vitro dissolution data. It facilitates a comparative analysis of the parameters contributing to oral drug absorption and is thus a powerful tool for formulation design. Copyright © 2011 Wiley Periodicals, Inc.

  3. Population pharmacokinetic (PK) analysis of laromustine, an emerging alkylating agent, in cancer patients.

    PubMed

    Nassar, Ala F; Wisnewski, Adam V; King, Ivan

    2017-05-01

    1. Alkylating agents are capable of introducing an alkyl group into nucleophilic sites on DNA or RNA through covalent bond. Laromustine is an active member of a relatively new class of sulfonylhydrazine prodrugs under development as antineoplastic alkylating agents, and displays significant single-agent activity. 2. This is the first report of the population pharmacokinetic analysis of laromustine, 106 patients, 66 with hematologic malignancies and 40 with solid tumors, participated in five clinical trials worldwide. Of these, 104 patients were included in the final NONMEM analysis. 3. The population estimates for total clearance (CL) and volume of distribution of the central compartment (V 1 ) were 96.3 L/h and 45.9 L, associated with high inter-patient variability of 52.9% and 79.8% and inter-occasion variability of 26.7% and 49.3%, respectively. The population estimates for Q and V 2 were 73.2 L/h and 29.9 L, and inter-patient variability in V 2 was 63.1%, respectively. 4. The estimate of V ss (75.8 L) exceeds total body water, indicating that laromustine is distributed to tissues. The half-life is short, less than 1 h, reflecting rapid clearance. Population PK analysis showed laromustine pharmacokinetics to be independent of dose and organ function with no effect on subsequent dosing cycles.

  4. Multiscale rescaled range analysis of EEG recordings in sevoflurane anesthesia.

    PubMed

    Liang, Zhenhu; Li, Duan; Ouyang, Gaoxiang; Wang, Yinghua; Voss, Logan J; Sleigh, Jamie W; Li, Xiaoli

    2012-04-01

    The Hurst exponent (HE) is a nonlinear method measuring the smoothness of a fractal time series. In this study we applied the HE index, extracted from electroencephalographic (EEG) recordings, as a measure of anesthetic drug effects on brain activity. In 19 adult patients undergoing sevoflurane general anesthesia, we calculated the HE of the raw EEG; comparing the maximal overlap discrete wavelet transform (MODWT) with the traditional rescaled range (R/S) analysis techniques, and with a commercial index of depth of anesthesia - the response entropy (RE). We analyzed each wavelet-decomposed sub-band as well as the combined low frequency bands (HEOLFBs). The methods were compared in regard to pharmacokinetic/pharmacodynamic (PK/PD) modeling, and prediction probability. All the low frequency band HE indices decreased when anesthesia deepened. However the HEOLFB was the best index because: it was less sensitive to artifacts, most closely tracked the exact point of loss of consciousness, showed a better prediction probability in separating the awake and unconscious states, and tracked sevoflurane concentration better - as estimated by the PK/PD models. The HE is a useful measure for estimating the depth of anesthesia. It was noted that HEOLFB showed the best performance for tracking drug effect. The HEOLFB could be used as an index for accurately estimating the effect of anesthesia on brain activity. Copyright © 2011 International Federation of Clinical Neurophysiology. All rights reserved.

  5. Relationship between Pyruvate Kinase Activity and Cariogenic Biofilm Formation in Streptococcus mutans Biotypes in Caries Patients

    PubMed Central

    Krzyściak, Wirginia; Papież, Monika; Jurczak, Anna; Kościelniak, Dorota; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Skalniak, Anna

    2017-01-01

    Streptococcus mutans (MS) and its biotype I are the strains most frequently found in dental plaque of young children. Our results indicate that in children pyruvate kinase (PK) activity increases significantly in dental plaque, and this corresponds with caries progression. The MS strains isolated in this study or their main glycolytic metabolism connected with PK enzymes might be useful risk factors for studying the pathogenesis and target points of novel therapies for dental caries. The relationship between PK activity, cariogenic biofilm formation and selected biotypes occurrence was studied. S. mutans dental plaque samples were collected from supragingival plaque of individual deciduous molars in 143 subjects. PK activity was measured at different time points during biofilm formation. Patients were divided into two groups: initial stage decay, and extensive decay. Non-parametric analysis of variance and analysis of covariance were used to determine the connections between S. mutans levels, PK activity and dental caries biotypes. A total of 143 strains were derived from subjects with caries. Biotyping data showed that 62, 23, 50, and 8 strains were classified as biotypes I, II, III, IV, respectively. PK activity in biotypes I, II, and IV was significantly higher in comparison to that in biotype III. The correlation between the level of S. mutans in dental plaque and PK activity was both statistically significant (p < 0.05) and positive. The greater the level of S. mutans in the biofilm (colony count and total biomass), the higher the PK activity; similarly, a low bacterial count correlated with low PK activity. PMID:28559883

  6. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    DOE PAGES

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; ...

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pK a values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pK a values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, wemore » used spectroscopic titrations to measure the pK a values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pK a values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pK a units and 0.35 pK a units, respectively, and a root mean square deviation of 0.46 pK a units and 0.45 pK a units, respectively. Finally, we employ our two best methods to predict the pK a values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.« less

  7. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography◊

    PubMed Central

    Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro

    2014-01-01

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184

  8. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia.

    PubMed

    Fong, Mun-Yik; Rashdi, Sarah A A; Yusof, Ruhani; Lau, Yee-Ling

    2015-02-21

    Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates. Blood samples from 28 knowlesi malaria patients were used. These samples were collected between 2011 and 2013 from hospitals in North Borneo. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and phylogenetics of PkDBPαII haplotypes were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. Forty-nine PkDBPαII sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence revealed 58 synonymous and 102 non-synonymous mutations. Analysis on these mutations showed that PkDBPαII was under purifying (negative) selection. At the amino acid level, 38 different PkDBPαII haplotypes were identified. Twelve of the 28 blood samples had mixed haplotype infections. Phylogenetic analysis revealed that all the haplotypes were in allele group I, but they formed a sub-group that was distinct from those of Peninsular Malaysia. Wright's FST fixation index indicated high genetic differentiation between the North Borneo and Peninsular Malaysia haplotypes. This study is the first to report the genetic diversity and natural selection of PkDBPαII of P. knowlesi from Borneo Island. The PkDBPαII haplotypes found in this study were distinct from those from Peninsular Malaysia. This difference may not be attributed to geographical separation because other genetic markers studied thus far such as the P. knowlesi circumsporozoite protein gene and small subunit ribosomal RNA do not display such differentiation. Immune evasion may possibly be the reason for the differentiation.

  9. In vitro evaluation of the anti-leishmanial activity and toxicity of PK11195

    PubMed Central

    Guedes, Carlos Eduardo Sampaio; Dias, Beatriz Rocha Simões; Petersen, Antonio Luis de Oliveira Almeida; Cruz, Kercia Pinheiro; Almeida, Niara de Jesus; Andrade, Daniela Rodrigues; de Menezes, Juliana Perrone Bezerra; Borges, Valéria de Matos; Veras, Patricia Sampaio Tavares

    2018-01-01

    BACKGROUND Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent. PMID:29412342

  10. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization.

    PubMed

    Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De; Qin, Cheng-Feng

    2013-06-01

    cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5' cyclization sequence (5'CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.

  11. Novel cis-Acting Element within the Capsid-Coding Region Enhances Flavivirus Viral-RNA Replication by Regulating Genome Cyclization

    PubMed Central

    Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De

    2013-01-01

    cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5′ cyclization sequence (5′CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5′CS, and the presence of DCS-PK facilitates the formation of 5′-3′ RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution. PMID:23576500

  12. Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.

    PubMed

    Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan

    2017-12-01

    The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloso, Alicia Bueno; García-Bellido, Juan; Sapone, Domenico, E-mail: alicia.bueno@uam.es, E-mail: juan.garciabellido@uam.es, E-mail: domenico.sapone@uam.es

    2011-10-01

    We provide exact solutions to the cosmological matter perturbation equation in a homogeneous FLRW universe with a vacuum energy that can be parametrized by a constant equation of state parameter w and a very accurate approximation for the Ansatz w(a) = w{sub 0}+w{sub a}(1−a). We compute the growth index γ = log f(a)/log Ω{sub m}(a), and its redshift dependence, using the exact and approximate solutions in terms of Legendre polynomials and show that it can be parametrized as γ(a) = γ{sub 0}+γ{sub a}(1−a) in most cases. We then compare four different types of dark energy (DE) models: wΛCDM, DGP, f(R)more » and a LTB-large-void model, which have very different behaviors at z∼>1. This allows us to study the possibility to differentiate between different DE alternatives using wide and deep surveys like Euclid, which will measure both photometric and spectroscopic redshifts for several hundreds of millions of galaxies up to redshift z ≅ 2. We do a Fisher matrix analysis for the prospects of differentiating among the different DE models in terms of the growth index, taken as a given function of redshift or with a principal component analysis, with a value for each redshift bin for a Euclid-like survey. We use as observables the complete and marginalized power spectrum of galaxies P(k) and the Weak Lensing (WL) power spectrum. We find that, using P(k), one can reach (2%, 5%) errors in (w{sub 0},w{sub a}), and (4%, 12%) errors in (γ{sub 0},γ{sub a}), while using WL we get errors at least twice as large. These estimates allow us to differentiate easily between DGP, f(R) models and ΛCDM, while it would be more difficult to distinguish the latter from a variable equation of state parameter or LTB models using only the growth index.« less

  14. Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose.

    PubMed

    Viscardi, Rose M; Othman, Ahmed A; Hassan, Hazem E; Eddington, Natalie D; Abebe, Elias; Terrin, Michael L; Kaufman, David A; Waites, Ken B

    2013-05-01

    Ureaplasma respiratory tract colonization is associated with bronchopulmonary dysplasia (BPD) in preterm infants. Previously, we demonstrated that a single intravenous (i.v.) dose of azithromycin (10 mg/kg of body weight) is safe but inadequate to eradicate Ureaplasma spp. in preterm infants. We performed a nonrandomized, single-arm open-label study of the pharmacokinetics (PK) and safety of intravenous 20-mg/kg single-dose azithromycin in 13 mechanically ventilated neonates with a gestational age between 24 weeks 0 days and 28 weeks 6 days. Pharmacokinetic data from 25 neonates (12 dosed with 10 mg/kg i.v. and 13 dosed with 20 mg/kg i.v.) were analyzed using a population modeling approach. Using a two-compartment model with allometric scaling of parameters on body weight (WT), the population PK parameter estimates were as follows: clearance, 0.21 liter/h × WT(kg)(0.75) [WT(kg)(0.75) indicates that clearance was allometrically scaled on body weight (in kilograms) with a fixed exponent of 0.75]; intercompartmental clearance, 2.1 liters/h × WT(kg)(0.75); central volume of distribution (V), 1.97 liters × WT (kg); and peripheral V, 17.9 liters × WT (kg). There was no evidence of departure from dose proportionality in azithromycin exposure over the tested dose range. The calculated area under the concentration-time curve over 24 h in the steady state divided by the MIC90 (AUC24/MIC90) for the single dose of azithromycin (20 mg/kg) was 7.5 h. Simulations suggest that 20 mg/kg for 3 days will maintain azithromycin concentrations of >MIC50 of 1 μg/ml for this group of Ureaplasma isolates for ≥ 96 h after the first dose. Azithromycin was well tolerated with no drug-related adverse events. One of seven (14%) Ureaplasma-positive subjects and three of six (50%) Ureaplasma-negative subjects developed physiologic BPD. Ureaplasma was eradicated in all treated Ureaplasma-positive subjects. Simulations suggest that a multiple-dose regimen may be efficacious for microbial clearance, but the effect on BPD remains to be determined.

  15. Azithromycin To Prevent Bronchopulmonary Dysplasia in Ureaplasma-Infected Preterm Infants: Pharmacokinetics, Safety, Microbial Response, and Clinical Outcomes with a 20-Milligram-per-Kilogram Single Intravenous Dose

    PubMed Central

    Othman, Ahmed A.; Hassan, Hazem E.; Eddington, Natalie D.; Abebe, Elias; Terrin, Michael L.; Kaufman, David A.; Waites, Ken B.

    2013-01-01

    Ureaplasma respiratory tract colonization is associated with bronchopulmonary dysplasia (BPD) in preterm infants. Previously, we demonstrated that a single intravenous (i.v.) dose of azithromycin (10 mg/kg of body weight) is safe but inadequate to eradicate Ureaplasma spp. in preterm infants. We performed a nonrandomized, single-arm open-label study of the pharmacokinetics (PK) and safety of intravenous 20-mg/kg single-dose azithromycin in 13 mechanically ventilated neonates with a gestational age between 24 weeks 0 days and 28 weeks 6 days. Pharmacokinetic data from 25 neonates (12 dosed with 10 mg/kg i.v. and 13 dosed with 20 mg/kg i.v.) were analyzed using a population modeling approach. Using a two-compartment model with allometric scaling of parameters on body weight (WT), the population PK parameter estimates were as follows: clearance, 0.21 liter/h × WT(kg)0.75 [WT(kg)0.75 indicates that clearance was allometrically scaled on body weight (in kilograms) with a fixed exponent of 0.75]; intercompartmental clearance, 2.1 liters/h × WT(kg)0.75; central volume of distribution (V), 1.97 liters × WT (kg); and peripheral V, 17.9 liters × WT (kg). There was no evidence of departure from dose proportionality in azithromycin exposure over the tested dose range. The calculated area under the concentration-time curve over 24 h in the steady state divided by the MIC90 (AUC24/MIC90) for the single dose of azithromycin (20 mg/kg) was 7.5 h. Simulations suggest that 20 mg/kg for 3 days will maintain azithromycin concentrations of >MIC50 of 1 μg/ml for this group of Ureaplasma isolates for ≥96 h after the first dose. Azithromycin was well tolerated with no drug-related adverse events. One of seven (14%) Ureaplasma-positive subjects and three of six (50%) Ureaplasma-negative subjects developed physiologic BPD. Ureaplasma was eradicated in all treated Ureaplasma-positive subjects. Simulations suggest that a multiple-dose regimen may be efficacious for microbial clearance, but the effect on BPD remains to be determined. PMID:23439637

  16. Gender differences in pharmacokinetics and pharmacodynamics of methadone substitution therapy.

    PubMed

    Graziani, Manuela; Nisticò, Robert

    2015-01-01

    Gender-related differences in the pharmacological effects of drug are an emerging topic. This review examines gender differences in both pharmacokinetic and pharmacodynamic aspects of methadone, a long-acting opioid agonist that is prescribed as a treatment for opioid dependence and the management of chronic pain. We performed a search in the Medline database from 1990 to 2014 in order to find published literature related to gender differences in pharmacokinetics (PK) and pharmacodynamics (PD) of methadone. None of the studies were carried out with the primary or secondary aim to identify any gender differences in the pharmacokinetic profile of methadone. Importantly; high inter-subjects variability in PK parameters was found also intra female population. The reported differences in volume of distribution could be ascribed to the physiological differences between men and women in body weight and composition, taking into account that the dose of methadone was established irrespective of body weight of patients (Peles and Adelson, 2006). On the other hand, the few studies present in literature found no gender difference in some direct pharmacodynamic parameters. Some reports have suggested that female gender is associated with an increased risk for long-QT-related cardiac arrhythmias in methadone maintenance subjects. Even though it may be too simplistic to expect variability only in one parameter to explain inter-individual variation in methadone response, we believe that a better knowledge of gender-related differences might have significant implications for better outcomes in opioid dependence substitution therapy in women.

  17. Changing Practice Patterns and Long-term Outcomes of Endothelial Versus Penetrating Keratoplasty: A Prospective Dutch Registry Study.

    PubMed

    Dickman, Mor M; Peeters, Jean Marie P W U; van den Biggelaar, Frank J H M; Ambergen, Ton A W; van Dongen, Martin C J M; Kruit, Pieter Jan; Nuijts, Rudy M M A

    2016-10-01

    To compare graft survival, best-corrected visual acuity (BCVA), endothelial cell density (ECD), and refraction following penetrating keratoplasty (PK) vs endothelial keratoplasty (EK) for Fuchs endothelial dystrophy (FED) and pseudophakic bullous keratopathy (PBK). Nonrandomized treatment comparison with national registry data. All consecutive patients undergoing first keratoplasty for FED and PBK between 1998 and 2014 were analyzed, with a maximum follow-up of 5 years (mean ± SD follow-up 39 ± 20 months, range 0-60 months). Graft survival was analyzed using Kaplan-Meier survival curves and Cox regression analysis. BCVA, ECD, and refractive error were compared using linear mixed models. Main outcome measures were graft survival, BCVA, refraction, and ECD. A total of 5115 keratoplasties (PK = 2390; EK = 2725) were identified. Two-year graft survival following EK was lower compared with PK (94.5% vs 96.3%, HR = 1.56, P = .001). Five-year survival was comparable for EK and PK (93.4% vs 89.7%, HR = 0.89, P = .261). EK graft survival improved significantly over time while remaining stable for PK. One-year BCVA was better following EK vs PK (0.34 vs 0.47 logMAR, P < .001). Astigmatism was lower 1 year after EK vs PK (-1.69 vs -3.52 D, P < .001). One-year ECD was lower after EK vs PK (1472 vs 1859 cells/mm 2 , P < .001). At 3 years, ECD did not differ between EK and PK. Long-term graft survival after EK and PK is high and comparable despite lower short-term survival for EK. EK graft survival improved over time, suggesting a learning curve. EK results in better BCVA, lower astigmatism, and similar long-term ECD compared with PK for FED and PBK. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Glioblastoma cells deficient in DNA-dependent protein kinase are resistant to cell death.

    PubMed

    Chen, George G; Sin, Fanny L F; Leung, Billy C S; Ng, Ho K; Poon, Wai S

    2005-04-01

    DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli. 2004 Wiley-Liss, Inc.

  19. Population pharmacokinetic/pharmacodynamic model of clozapine for characterizing the relationship between accumulated exposure and PANSS scores in patients with schizophrenia.

    PubMed

    Shang, De-Wei; Li, Li-Jun; Wang, Xi-Pei; Wen, Yu-Guan; Ren, Yu-Peng; Guo, Wei; Li, Wen-Biao; Li, Liang; Zhou, Tian-Yan; Lu, Wei; Wang, Chuan-Yue

    2014-06-01

    The aim of this study was to characterize the relationship between accumulated exposure of clozapine and changes in Positive and Negative Syndrome Scale (PANSS) score in Chinese patients with schizophrenia by pharmacokinetic/pharmacodynamic (PK/PD) modeling. Sparse clozapine PK data and PANSS scores were collected from 2 clinical studies of Chinese inpatients with schizophrenia. Two other rich PK data sets were included for more accurate assessment of clozapine PK characteristics. The relationship between clozapine-accumulated exposure and PANSS score was investigated using linear, log-linear, E(max), and sigmoid models, and each model was evaluated using visual predictive condition and normalized prediction distribution error methods. Simulations based on the final PK/PD model were preformed to investigate the effect of clozapine on PANSS scores under different dose regimens. A total of 1391 blood clozapine concentrations from 198 subjects (180 patients and 18 healthy volunteers) and 576 PANSS scores from 137 patients were included for PK and PK/PD analysis. A first-order 2-compartment PK model with covariates gender and smoking status influencing systemic clearance adequately described the PK profile of clozapine. The decrease in total PANSS score during treatment was best characterized using cumulated clozapine area under the curve (AUC) data in the E(max) model. The maximum decrease in PANSS during clozapine treatment (Emax) was 55.4%, and the cumulated AUC(50) (cAUC(50)) required to attain half of E(max) was 296 mg·L(-1)·h(-1)·d(-1). The simulations demonstrated that the accelerated dose titration and constant dose regimens achieved a similar maximum drug response but with a slower relief of symptoms in dose titration regimen. The PK/PD model can describe the clinical response as measured by decreasing PANSS score during treatment and may be useful for optimizing the dose regimen for individual patients.

  20. Isolation and Characterization of DkPK Genes Associated with Natural Deastringency in C-PCNA Persimmon

    PubMed Central

    Chen, Wenxing; Mo, Rongli; Du, Xiaoyun; Zhang, Qinglin; Luo, Zhengrong

    2016-01-01

    Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) is considered to be an important germplasm resource for the breeding of PCNA cultivars, though its molecular mechanisms of astringency removal remain to be elucidated. Previously, we showed that the abundance of pyruvate kinase gene transcripts increased rapidly during astringency removal in C-PCNA persimmon fruit. Here, we report the full-length coding sequences of six novel DkPK genes from C-PCNA persimmon fruit isolated based on a complementary DNA (cDNA) library and transcriptome data. The expression patterns of these six DkPK genes and correlations with the soluble proanthocyanidin (PA) content were analyzed during various fruit development stages in different types of persimmon, with DkPK1 showing an expression pattern during the last stage in C-PCNA persimmon that was positively correlated with a decrease in soluble PAs. Phylogenetic analysis revealed that DkPK1 belongs to cytosolic-1 subgroup, and subcellular localization analysis confirmed that DkPK1 is located in the cytosol. Notably, tissue expression profiling revealed ubiquitous DkPK1 expression in different persimmon organs, with the highest expression in seeds. Furthermore, transient over-expression of DkPK1 in persimmon leaves resulted in a significant decrease in the content of soluble PAs but a significant increase in the transcript levels of pyruvate decarboxylase genes (DkPDC1, -3, -4, -5), which catalyze the conversion of pyruvate to acetaldehyde. Thus, we propose that an acetaldehyde-based coagulation effect reduces the content of soluble PAs. Taken together, our results suggest that DkPK1 might be involved in the natural removal of astringency at the last developmental stage in C-PCNA persimmon. This is the first report to identify several novel full-length DkPK genes as well as their potential roles in the natural loss of astringency in C-PCNA persimmon. PMID:26925075

  1. Pitted keratolysis, erythromycin, and hyperhidrosis.

    PubMed

    Pranteda, Guglielmo; Carlesimo, Marta; Pranteda, Giulia; Abruzzese, Claudia; Grimaldi, Miriam; De Micco, Sabrina; Muscianese, Marta; Bottoni, Ugo

    2014-01-01

    Pitted keratolysis (PK) is a plantar skin disorder mainly caused by coryneform bacteria. A common treatment consists of the topical use of erythromycin. Hyperhidrosis is considered a predisposing factor for bacterial proliferation and, consequently, for the onset of PK. The aim of this study was to evaluate the relationship between PK erythromycin and hyperhidrosis. All patients with PK seen in Sant'Andrea Hospital, between January 2009 and December 2011, were collected. PK was clinically and microscopically diagnosed. All patients underwent only topical treatment with erythromycin 3% gel twice daily. At the beginning of the study and after 5 and 10 days of treatment, a clinical evaluation and a gravimetric measurement of plantar sweating were assessed. A total of 97 patients were diagnosed as PK and were included in the study. Gravimetric measurements showed that in 94 of 97 examined patients (96.90%) at the time of the diagnosis, there was a bilateral excessive sweating occurring specifically in the areas affected by PK. After 10 days of antibiotic therapy, hyperhidrosis regressed together with the clinical manifestations. According to these data, we hypothesize that hyperhidrosis is due to an eccrine sweat gland hyperfunction, probably secondary to bacterial infection. © 2013 Wiley Periodicals, Inc.

  2. Isoenzymes of protein kinase C in rat mammary tissue: changes in properties and relative amounts during pregnancy and lactation.

    PubMed

    Connor, K; Clegg, R A

    1993-05-01

    Protein kinase isoenzymes belonging to the protein kinase C (PK-C) family present in rat mammary tissue have been resolved from one another by chromatography on hydroxyapatite, and characterized. PK-C alpha is the predominant isoenzyme and is present at a constant level of activity throughout mammary-gland development and differentiation. In contrast, marked changes in the relative abundance of other mammary PK-C isoenzymes accompany the transition from pregnancy to lactation. The sensitivity of mammary PK-C alpha to Ca2+ is greater in tissue from pregnant than from lactating rats. This isoenzyme has other atypical properties consistent with its being more highly phosphorylated than PK-C alpha in rat brain and spleen. One of the protein kinase isoenzymes resolved from mammary tissue recognizes the peptide substrate used to assay AMP-activated kinase and may thus interfere in the determination of this activity. Another is fully active in the absence of Ca2+ and is more than 80% active in the absence of added lipid effectors. A 'housekeeping' role is proposed for PK-C alpha in mammary tissue, whereas the less abundant PK-C isoenzymes may be involved in mammary cell proliferation and differentiation.

  3. The pharmacokinetics of dexmedetomidine during long-term infusion in critically ill pediatric patients. A Bayesian approach with informative priors.

    PubMed

    Wiczling, Paweł; Bartkowska-Śniatkowska, Alicja; Szerkus, Oliwia; Siluk, Danuta; Rosada-Kurasińska, Jowita; Warzybok, Justyna; Borsuk, Agnieszka; Kaliszan, Roman; Grześkowiak, Edmund; Bienert, Agnieszka

    2016-06-01

    The purpose of this study was to assess the pharmacokinetics of dexmedetomidine in the ICU settings during the prolonged infusion and to compare it with the existing literature data using the Bayesian population modeling with literature-based informative priors. Thirty-eight patients were included in the analysis with concentration measurements obtained at two occasions: first from 0 to 24 h after infusion initiation and second from 0 to 8 h after infusion end. Data analysis was conducted using WinBUGS software. The prior information on dexmedetomidine pharmacokinetics was elicited from the literature study pooling results from a relatively large group of 95 children. A two compartment PK model, with allometrically scaled parameters, maturation of clearance and t-student residual distribution on a log-scale was used to describe the data. The incorporation of time-dependent (different between two occasions) PK parameters improved the model. It was observed that volume of distribution is 1.5-fold higher during the second occasion. There was also an evidence of increased (1.3-fold) clearance for the second occasion with posterior probability equal to 62 %. This work demonstrated the usefulness of Bayesian modeling with informative priors in analyzing pharmacokinetic data and comparing it with existing literature knowledge.

  4. Pharmacokinetic Evaluation of Two Nicotine Patches in Smokers.

    PubMed

    Rasmussen, Scott; Horkan, Kathleen Halabuk; Kotler, Mitchell

    2018-02-02

    Smoking continues to be a major preventable cause of early mortality worldwide, and nicotine replacement therapy has been demonstrated to increase rates of abstinence among smokers attempting to quit. Nicotine transdermal systems (also known as nicotine patches) attach to the skin via an adhesive layer composed of a mixture of different-molecular-weight polyisobutylenes (PIBs) in a specific ratio. This randomized, single-dose, 2-treatment, crossover pharmacokinetic (PK) trial assessed the bioequivalence of nicotine patches including a replacement PIB adhesive (test) compared with the PIB adhesive historically used on marketed patches (reference). The test and reference patches were bioequivalent, as determined by the PK parameters of C max and AUC 0-t . In addition, the parameters T max and t 1/2 did not significantly differ between the 2 patches, supporting the bioequivalence finding from the primary analysis. The tolerability profiles of the patches containing the replacement and previously used PIB adhesives were similar; application-site adverse events did not significantly differ between test and reference patches. Overall, these data establish the bioequivalence of the nicotine patch with the replacement PIB adhesive formulation and the previously utilized PIB adhesive formulation. © 2018 The Authors. Clinical Pharmacology in Drug Development published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  5. ­Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression

    PubMed Central

    2018-01-01

    Background Pyruvate kinase (PK) is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM) and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. Methods To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles (Trachemys scripta elegans). Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Results Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver) and lysine methylation (by 43% in muscle and 70% in liver) during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Discussion Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia. PMID:29900073

  6. -Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression.

    PubMed

    Mattice, Amanda M S; MacLean, Isabelle A; Childers, Christine L; Storey, Kenneth B

    2018-01-01

    Pyruvate kinase (PK) is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM) and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles ( Trachemys scripta elegans ). Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I 50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I 50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver) and lysine methylation (by 43% in muscle and 70% in liver) during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia.

  7. Molecular and pharmacological characterization of the Chelicerata pyrokinin receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus.

    PubMed

    Yang, Yunlong; Nachman, Ronald J; Pietrantonio, Patricia V

    2015-05-01

    We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we cloned from larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae), is the ortholog of the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN)/diapause hormone (DH) neuropeptide family receptor. Rhimi-PKR functional analyses using calcium bioluminescence were performed with a developed stable recombinant CHO-K1 cell line. Rhimi-PKR was activated by four endogenous PKs from the Lyme disease vector, the tick Ixodes scapularis (EC50s range: 85.4 nM-546 nM), and weakly by another tick PRX-amide peptide, periviscerokinin (PVK) (EC50 = 24.5 μM). PK analogs with substitutions of leucine, isoleucine or valine at the C-terminus for three tick PK peptides, Ixosc-PK1, Ixosc-PK2, and Ixosc-PK3, retained their potency on Rhimi-PKR. Therefore, Rhimi-PKR is less selective and substantially more tolerant than insect PK receptors of C-terminal substitutions of leucine to isoleucine or valine, a key structural feature that serves to distinguish insect PK from PVK/CAP2b receptors. In females, ovary and synganglion had the highest Rhimi-PKR relative transcript abundance followed by the rectal sac, salivary glands, Malpighian tubules, and midgut. This is the first pharmacological analysis of a PK/PBAN/DH-like receptor from the Chelicerata, which will now permit the discovery of the endocrinological roles of this neuropeptide family in vectors of vertebrate pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Glial dysfunction in parkin null mice: effects of aging.

    PubMed

    Solano, Rosa M; Casarejos, Maria J; Menéndez-Cuervo, Jamie; Rodriguez-Navarro, Jose A; García de Yébenes, Justo; Mena, Maria A

    2008-01-16

    Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals, and abnormal neurotransmitter release. The role of glia in parkin deficiency is little known. We cultured midbrain glia from wild-type (WT) and parkin knock-out (PK-KO) mice. After 18-20 d in vitro, PK-KO glial cultures had less astrocytes, more microglia, reduced proliferation, and increased proapoptotic protein expression. PK-KO glia had greater levels of intracellular glutathione (GSH), increased mRNA expression of the GSH-synthesizing enzyme gamma-glutamylcysteine synthetase, and greater glutathione S-transferase and lower glutathione peroxidase activities than WT. The reverse happened in glia cultured in serum-free defined medium (EF12) or in old cultures. PK-KO glia was more susceptible than WT to transference to EF12 or neurotoxins (1-methyl-4-phenylpyridinium, blockers of GSH synthesis or catalase, inhibitors of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3 kinases), aging of the culture, or combination of these insults. PK-KO glia was less susceptible than WT to Fe2+ plus H2O2 and less responsive to protection by deferoxamine. Old WT glia increased the expression of heat shock protein 70, but PK-KO did not. Glia conditioned medium (GCM) from PK-KO was less neuroprotective and had lower levels of GSH than WT. GCM from WT increased the levels of dopamine markers in midbrain neuronal cultures transferred to EF12 more efficiently than GCM from PK-KO, and the difference was corrected by supplementation with GSH. PK-KO-GCM was a less powerful suppressor of apoptosis and microglia in neuronal cultures. Our data prove that abnormal glial function is critical in parkin mutations, and its role increases with aging.

  9. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J., E-mail: n.j.curtin@ncl.ac.u

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kineticsmore » assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.« less

  10. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function

    PubMed Central

    Curthoys, Norman P.

    2014-01-01

    Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase+ cells, was isolated. LLC-PK1-FBPase+ cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase+ cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3−, pH 6.9), the LLC-PK1-FBPase+ cells exhibit a gradual increase in NH4+ ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase+ cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase+ cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase+ cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells. PMID:24808535

  11. Pyruvate Kinase Deficiency in Sub-Saharan Africa: Identification of a Highly Frequent Missense Mutation (G829A;Glu277Lys) and Association with Malaria

    PubMed Central

    Machado, Patrícia; Manco, Licínio; Gomes, Cláudia; Mendes, Cristina; Fernandes, Natércia; Salomé, Graça; Sitoe, Luis; Chibute, Sérgio; Langa, José; Ribeiro, Letícia; Miranda, Juliana; Cano, Jorge; Pinto, João; Amorim, António; do Rosário, Virgílio E.; Arez, Ana Paula

    2012-01-01

    Background Pyruvate kinase (PK) deficiency, causing hemolytic anemia, has been associated to malaria protection and its prevalence in sub-Saharan Africa is not known so far. This work shows the results of a study undertaken to determine PK deficiency occurrence in some sub-Saharan African countries, as well as finding a prevalent PK variant underlying this deficiency. Materials and Methods Blood samples of individuals from four malaria endemic countries (Mozambique, Angola, Equatorial Guinea and Sao Tome and Principe) were analyzed in order to determine PK deficiency occurrence and detect any possible high frequent PK variant mutation. The association between this mutation and malaria was ascertained through association studies involving sample groups from individuals showing different malaria infection and outcome status. Results The percentage of individuals showing a reduced PK activity in Maputo was 4.1% and the missense mutation G829A (Glu277Lys) in the PKLR gene (only identified in three individuals worldwide to date) was identified in a high frequency. Heterozygous carrier frequency was between 6.7% and 2.6%. A significant association was not detected between either PK reduced activity or allele 829A frequency and malaria infection and outcome, although the variant was more frequent among individuals with uncomplicated malaria. Conclusions This was the first study on the occurrence of PK deficiency in several areas of Africa. A common PKLR mutation G829A (Glu277Lys) was identified. A global geographical co-distribution between malaria and high frequency of PK deficiency seems to occur suggesting that malaria may be a selective force raising the frequency of this 277Lys variant. PMID:23082140

  12. Evaluation of Altered Drug Pharmacokinetics in Critically Ill Adults Receiving Extracorporeal Membrane Oxygenation.

    PubMed

    Ha, Michael A; Sieg, Adam C

    2017-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life-support modality used in patients with refractory cardiac and/or respiratory failure. A significant resurgence in the use ECMO has been seen in recent years as a result of substantial improvements in technology and survival benefit. With expanding ECMO use, a better understanding of how ECMO affects drug pharmacokinetics (PK) is necessary. The vast majority of PK studies in patients receiving ECMO have been conducted within neonatal or pediatric populations or within a controlled environment (e.g., in vitro or ex vivo). Because of significant differences in absorption, distribution, metabolism, and excretion, it may be inappropriate to extrapolate these PK data to adults. Thus, the aims of this review are to evaluate the changes in drug PK during ECMO and to summarize the available PK data for common drugs used in the adult critically ill patients during ECMO support. A search of the PubMed (1965-July 2016), EMBASE (1965-July 2016), and Cochrane Controlled Trial Register databases was performed. All relevant studies describing PK alterations during ECMO in ex vivo experiments and in adults were included. Evaluation of the data indicated that drug PK in adults receiving ECMO support may be significantly altered. Factors influencing these alterations are numerous and have intricate relationships with each other but can generally be classified as ECMO circuit factors, drug factors, and patient factors. Commonly used drugs in these patients include antimicrobials, sedatives, and analgesics. PK data for most of these drugs are generally lacking; however, recent research efforts in this patient population have provided some limited guidance in drug dosing. With an improved understanding of altered drug PK secondary to ECMO therapy, optimization of pharmacotherapy within this critically ill population continues to move forward. © 2016 Pharmacotherapy Publications, Inc.

  13. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach.

    PubMed

    Lin, Zhoumeng; Cuneo, Matthew; Rowe, Joan D; Li, Mengjie; Tell, Lisa A; Allison, Shayna; Carlson, Jan; Riviere, Jim E; Gehring, Ronette

    2016-11-18

    Extra-label use of tulathromycin in lactating goats is common and may cause violative residues in milk. The objective of this study was to develop a nonlinear mixed-effects pharmacokinetic (NLME-PK) model to estimate tulathromycin depletion in plasma and milk of lactating goats. Eight lactating goats received two subcutaneous injections of 2.5 mg/kg tulathromycin 7 days apart; blood and milk samples were analyzed for concentrations of tulathromycin and the common fragment of tulathromycin (i.e., the marker residue CP-60,300), respectively, using liquid chromatography mass spectrometry. Based on these new data and related literature data, a NLME-PK compartmental model with first-order absorption and elimination was used to model plasma concentrations and cumulative excreted amount in milk. Monte Carlo simulations with 100 replicates were performed to predict the time when the upper limit of the 95% confidence interval of milk concentrations was below the tolerance. All animals were healthy throughout the study with normal appetite and milk production levels, and with mild-moderate injection-site reactions that diminished by the end of the study. The measured data showed that milk concentrations of the marker residue of tulathromycin were below the limit of detection (LOD = 1.8 ng/ml) 39 days after the second injection. A 2-compartment model with milk as an excretory compartment best described tulathromycin plasma and CP-60,300 milk pharmacokinetic data. The model-predicted data correlated with the measured data very well. The NLME-PK model estimated that tulathromycin plasma concentrations were below LOD (1.2 ng/ml) 43 days after a single injection, and 62 days after the second injection with a 95% confidence. These estimated times are much longer than the current meat withdrawal time recommendation of 18 days for tulathromycin in non-lactating cattle. The results suggest that twice subcutaneous injections of 2.5 mg/kg tulathromycin are a clinically safe extra-label alternative approach for treating pulmonary infections in lactating goats, but a prolonged withdrawal time of at least 39 days after the second injection should be considered to prevent violative residues in milk and any dairy goat being used for meat should have an extended meat withdrawal time.

  14. Biostable beta-amino acid PK/PBAN analogs: Agonist and antagonist properties

    USDA-ARS?s Scientific Manuscript database

    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in a multifunctional array of important physiological processes in insects. PK/PBAN analogs incorporating beta-amino acids were synthesized and evaluated in a pheromonotropic assay in Heliothis pe...

  15. Altering ethanol pharmacokinetics to treat alcohol use disorder: can you teach an old dog new tricks?

    PubMed Central

    Haass-Koffler, Carolina L.; Akhlaghi, Fatemeh; Swift, Robert M.; Leggio, Lorenzo

    2018-01-01

    Disulfiram was the first pharmacotherapy approved to treat alcohol use disorder (AUD) in the 1950s. Disulfiram alters ethanol pharmacokinetics (PK) and causes uncomfortable reactions (e.g.: headache, tachycardia, nausea, flushing and hypotension) when alcohol is consumed. Subsequently, a better understanding of the neurobiological pathways involved in AUD led to the development of other medications (e.g.: naltrexone and acamprosate) to treat AUD. These neurobiological-based medications act on AUD-related phenotypes including craving, stress, and/or withdrawal. The original approach to treat AUD, by altering ethanol PK has been much less investigated. Recent research on ethanol PK has shed light on the mechanisms of action underlying AUD and how some medications that alter ethanol PK may be helpful in treating AUD. This review summarizes and discusses the complex PK of ethanol, and proposes that altering ethanol PK via novel pharmacological approaches may be a viable approach to treat AUD. PMID:28093021

  16. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

    PubMed

    Park, Sung-Jun; Gavrilova, Oksana; Brown, Alexandra L; Soto, Jamie E; Bremner, Shannon; Kim, Jeonghan; Xu, Xihui; Yang, Shutong; Um, Jee-Hyun; Koch, Lauren G; Britton, Steven L; Lieber, Richard L; Philp, Andrew; Baar, Keith; Kohama, Steven G; Abel, E Dale; Kim, Myung K; Chung, Jay H

    2017-05-02

    Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity. Published by Elsevier Inc.

  17. Pharmacometrics in pregnancy: An unmet need.

    PubMed

    Ke, Alice Ban; Rostami-Hodjegan, Amin; Zhao, Ping; Unadkat, Jashvant D

    2014-01-01

    Pregnant women and their fetuses are orphan populations with respect to the safety and efficacy of drugs. Physiological and absorption, distribution, metabolism, and excretion (ADME) changes during pregnancy can significantly affect drug pharmacokinetics (PK) and may necessitate dose adjustment. Here, the specific aspects related to the design, execution, and analysis of clinical studies in pregnant women are discussed, underlining the unmet need for top-down pharmacometrics analyses and bottom-up modeling approaches. The modeling tools that support data analysis for the pregnancy population are reviewed, with a focus on physiologically based pharmacokinetics (PBPK) and population pharmacokinetics (POP-PK). By integrating physiological data, preclinical data, and clinical data (e.g., via POP-PK) to quantify anticipated changes in the PK of drugs during pregnancy, the PBPK approach allows extrapolation beyond the previously studied model drugs to other drugs with well-characterized ADME characteristics. Such a systems pharmacology approach can identify drugs whose PK may be altered during pregnancy, guide rational PK study design, and support dose adjustment for pregnant women.

  18. Ethnic sensitivity assessment of the antibody-drug conjugate trastuzumab emtansine (T-DM1) in patients with HER2-positive locally advanced or metastatic breast cancer.

    PubMed

    Li, Chunze; Wang, Bei; Lu, Dan; Jin, Jin Y; Gao, Yuying; Matsunaga, Kiyoshi; Igawa, Yuriko; Nijem, Ihsan; Lu, Michael; Strasak, Alexander; Chernyukhin, Nataliya; Girish, Sandhya

    2016-09-01

    Trastuzumab emtansine (T-DM1) is indicated for previously treated HER2-positive metastatic breast cancer. Ethnic sensitivity assessment of T-DM1 was conducted using data from eight clinical studies to ensure that the clinically recommended dose is appropriate across ethnicities. Four approaches were used: (1) non-compartmental analysis (NCA) comparing pharmacokinetic parameters of T-DM1 and relevant analytes across ethnic groups, (2) population pharmacokinetic (popPK) analysis assessing the impact of ethnicity on pharmacokinetics, (3) comparison of T-DM1 pharmacokinetics in Japanese patients versus the global population, and (4) exposure-response analyses assessing the impact of ethnicity on safety and efficacy. NCA pharmacokinetic parameters (T-DM1, total trastuzumab, DM1) were comparable across ethnic groups; mean cycle 1 T-DM1 AUCinf was 475, 442, and 518 day µg/mL for white (n = 461), Asian (n = 68), and others (n = 57), respectively. PopPK analysis showed that ethnicity (white, Asian, and others) was not a significant covariate for T-DM1 pharmacokinetics (n = 671). Additionally, visual predictive check plots indicated that observed pharmacokinetic profiles in Japanese patients (n = 42) were within the prediction interval generated from the final PopPK model. Exposure-response analyses showed that ethnicity was not a significant covariate impacting efficacy or hepatotoxicity risk, but there was a trend of greater thrombocytopenia risk among Asians versus non-Asians, which could not be explained by similar exposure between the ethnic groups. Most Asians with thrombocytopenia were able to continue T-DM1 using dose-adjustment rules recommended for the global population. These results suggest that T-DM1 pharmacokinetics are comparable across ethnic groups and that use of the current dosing regimen is appropriate across ethnicities.

  19. Retrospective Evaluation of Milrinone Pharmacokinetics in Children With Kidney Injury.

    PubMed

    Gist, Katja M; Mizuno, Tomoyuki; Goldstein, Stuart L; Vinks, Alexander

    2015-12-01

    Milrinone is an inotropic agent with vasodilating properties used in the treatment of ventricular dysfunction. Milrinone is predominantly eliminated by the kidneys and accumulates in the setting of acute kidney injury (AKI). The purpose of this study was to evaluate milrinone pharmacokinetics in children with AKI with or without continuous renal replacement therapy (CRRT). Retrospective collection of milrinone therapeutic drug monitoring data in patients with AKI, including those requiring CRRT, through chart review from January 2008 to March 2014. Pharmacokinetic (PK) data were analyzed by Bayesian estimation using a pediatric population PK model (MW/Pharm). Clearance estimates were allometrically scaled to body weight. Data on 11 patients were available for analysis. Three patients required CRRT. Milrinone concentrations during continuous infusion varied 30-fold and ranged from 44 to 1343 ng/mL. Of the 33 samples obtained in 11 patients, 24 were outside the target range (72.7%), with 16 (48.5%) above and 8 (24.2%) below. Patients with AKI had significantly lower milrinone clearance (4.72 ± 2.26 L/h per 70 kg) compared with published data in patients without AKI. There was large between-patient variability in milrinone clearance (range: 2.91-13.6 L/h per 70 kg). Clearance in patients on CRRT ranged from 2.8 to 7.19 L/h per 70 kg. A significant correlation between milrinone clearance and estimated creatinine clearance was observed (r = 0.70, P = 0.0097). Allometrically scaled milrinone clearance was lower in the youngest patients (younger than 2 years), suggestive of ongoing renal maturation and existing AKI. Pediatric patients with AKI have significantly lower milrinone clearance compared with published data in patients without AKI. Large variability was noted in milrinone concentrations, and they were frequently outside the target range. The large between-patient variability in milrinone concentrations suggests that dosing regimens should be individualized in this population of critically ill patients. Evaluation of PK model-based milrinone dose optimization and the use of biomarkers as predictors of changes in clearance warrant further study.

  20. Programming of a flexible computer simulation to visualize pharmacokinetic-pharmacodynamic models.

    PubMed

    Lötsch, J; Kobal, G; Geisslinger, G

    2004-01-01

    Teaching pharmacokinetic-pharmacodynamic (PK/PD) models can be made more effective using computer simulations. We propose the programming of educational PK or PK/PD computer simulations as an alternative to the use of pre-built simulation software. This approach has the advantage of adaptability to non-standard or complicated PK or PK/PD models. Simplicity of the programming procedure was achieved by selecting the LabVIEW programming environment. An intuitive user interface to visualize the time courses of drug concentrations or effects can be obtained with pre-built elements. The environment uses a wiring analogy that resembles electrical circuit diagrams rather than abstract programming code. The goal of high interactivity of the simulation was attained by allowing the program to run in continuously repeating loops. This makes the program behave flexibly to the user input. The programming is described with the aid of a 2-compartment PK simulation. Examples of more sophisticated simulation programs are also given where the PK/PD simulation shows drug input, concentrations in plasma, and at effect site and the effects themselves as a function of time. A multi-compartmental model of morphine, including metabolite kinetics and effects is also included. The programs are available for download from the World Wide Web at http:// www. klinik.uni-frankfurt.de/zpharm/klin/ PKPDsimulation/content.html. For pharmacokineticists who only program occasionally, there is the possibility of building the computer simulation, together with the flexible interactive simulation algorithm for clinical pharmacological teaching in the field of PK/PD models.

  1. The effects of a high-fat meal on single-dose vemurafenib pharmacokinetics.

    PubMed

    Ribas, Antoni; Zhang, Weijiang; Chang, Ilsung; Shirai, Keisuke; Ernstoff, Marc S; Daud, Adil; Cowey, C Lance; Daniels, Gregory; Seja, Elizabeth; O'Laco, Elizabeth; Glaspy, John A; Chmielowski, Bartosz; Hill, Todd; Joe, Andrew K; Grippo, Joseph F

    2014-04-01

    Vemurafenib is an orally bioavailable BRAF inhibitor approved for the treatment of BRAF(V600) -mutant metastatic melanoma. It is important to understand the effects of a high-fat meal on the pharmacokinetics (PK) of vemurafenib in humans because it is a Biopharmaceutics Classification System Class IV drug and its PK can be altered by food. An open-label, multicenter, randomized, 2-period crossover study was performed to evaluate the effect of food (high-fat meal) on the PK of a single oral dose of vemurafenib. Secondary objectives were safety and tolerability, efficacy with best overall response rate, and overall survival during the treatment period. The concomitant intake of food (high-fat meal) increased mean Cmax 3.5 to 7.5 µg/mL and mean AUC0-∞ 119 to 360 µg·h/mL after a single 960 mg dose of vemurafenib (N = 13-15 patients). An effect of food on single-dose exposure is suggested by point estimates and 90% CI of geometric mean ratios for vemurafenib plasma AUC0-∞ (4.7) and Cmax (2.5). Toxicity and response rate of vemurafenib in this study were consistent with prior experience in patients with BRAF(V600) -mutant metastatic melanoma. A high-fat meal increased the exposure to vemurafenib without altering the mean terminal half-life. © 2014, The American College of Clinical Pharmacology.

  2. Individual Variability in Aerobic Fitness Adaptations to 70-d of Bed Rest and Exercise Training

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Buxton, Roxanne; Goetchius, Elizabeth; DeWitt, John; Ploutz-Snyder, Lori

    2016-01-01

    Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low responders). Change in VO2pk was not related to exercise intensity. CONCLUSION. Change in VO2pk in response to disuse and exercise was highly variable among individuals, even in this tightly controlled study. Loss in lean mass accounts for a significant degree of variability in the CON; however, training induced gains in VO2pk appear unrelated to lean mass or exercise intensity.

  3. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug.

    PubMed

    Pathak, Shriram M; Ruff, Aaron; Kostewicz, Edmund S; Patel, Nikunjkumar; Turner, David B; Jamei, Masoud

    2017-12-04

    Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pK a ; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC 0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.

  4. Pharmacokinetic-pharmacodynamic analysis of mnesic effects of lorazepam in healthy volunteers.

    PubMed

    Blin, O; Jacquet, A; Callamand, S; Jouve, E; Habib, M; Gayraud, D; Durand, A; Bruguerolle, B; Pisano, P

    1999-10-01

    To describe the pharmacokinetic-pharmacodynamic modelling of the psychomotor and mnesic effects of a single 2 mg oral dose of lorazepam in healthy volunteers. This was a randomized double-blind, placebo-controlled two-way cross-over study. The effect of lorazepam was examined with the following tasks: choice reaction time, immediate and delayed cued recall of paired words and immediate and delayed free recall and recognition of pictures. The mean calculated EC50 values derived from the PK/PD modelling of the different tests ranged from 12.2 to 15.3 ng ml-1. On the basis of the statistical comparison of the EC50 values, the delayed recall trials seemed to be more impaired than the immediate recall trials; similar observations were made concerning the recognition vs recall tasks. The parameter values derived from PK/PD modelling, and especially the EC50 values, may provide sensitive indices that can be used, rather than the raw data derived from pharmacodynamic measurements, to compare CNS effects of benzodiazepines.

  5. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis

    PubMed Central

    Nelson, Kathryn M.; Viswanathan, Kishore; Dawadi, Surendra; Duckworth, Benjamin P.; Boshoff, Helena I.; Barry, Clifton E.; Aldrich, Courtney C.

    2015-01-01

    MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5′-O-[N-(salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from sub-optimal drug disposition properties resulting in a short half-life (t1/2), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pKa of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t1/2 and AUC. Increasing the pKa of the acyl-sulfonyl linker yielded incremental enhancements while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters. PMID:26110337

  6. Testing Nine Archaeological Sites in the Downstream Corridor, Saylorville Lake, Iowa. 1982.

    DTIC Science & Technology

    1983-04-01

    cultivated field (fallow since 1981), covering an area of approximately 2 acres . The site is bordered on the west by the river bank and on the north by...sites in the project area. What Middle Archaic period sites in alluvial contexts are likely to yield is an unanswered question at this time, but it is ...13PK410 and 13PK413 be preserved in place, except for minor construction on 13PK413. Site 13PK407, an Oneota occupation, is recommended either for

  7. Identification of Pyruvate Kinase as an Antigen Associated with Tourette Syndrome

    PubMed Central

    Kansy, Janice W.; Katsovich, Liliya; McIver, Kevin S.; Pick, Jennifer; Zabriskie, John B.; Lombroso, Paul J.; Leckman, James F.; Bibb, James A.

    2007-01-01

    Immune responses to β-hemolytic streptococcal infections are hypothesized to trigger tic disorders and early-onset obsessive-compulsive disorder (OCD) in some pediatric populations. Here we identify the M1 isoform of the glycolytic enzyme, pyruvate kinase (PK) as an autoimmune target in Tourette syndrome and associated disorders. Antibodies to PK reacted strongly with surface antigens of infectious strains of streptococcus, and antibodies to streptococcal M proteins reacted with PK. Moreover, immunoreactivity to PK in patients with exacerbated symptoms who had recently acquired a streptococcal infection was 7-fold higher compared to patients with exacerbated symptoms and no evidence of a streptococcal infection. These data suggest that PK can function as an autoimmune target and that this immunoreactivity may be associated with Tourette syndrome, OCD, and associated disorders. PMID:17011640

  8. Bioequivalence of a new cyclosporine a formulation to Neoral.

    PubMed

    David-Neto, Elias; Kakehashi, Erica; Alves, Cristiane Feres; Pereira, Lilian M; de Castro, Maria Cristina R; de Mattos, Renata Maciel; Sumita, Nairo Massakazu; Romano, Paschoalina; Mendes, Maria Elizabete; Nahas, William Carlos; Ianhez, Luiz Estevam

    2004-02-01

    New cyclosporine A (CsA) formulations must prove their bioequivalence to Neoral, the reference CsA formulation, to allow free prescription for the patients. The aim of this study was to compare the pharmacokinetics (PK) of a new CsA formulation (Zinograf-ME), produced by Strides-Arcolab, to Neoral and to demonstrate their interchangeability in stable renal transplant recipients. Twelve-hour PK studies were obtained from 18 (13 M/5 F) adult patients (mean age 44.7 +/- 12 years). They received their renal allografts from 13 cadaver and 5 living donors. Before enrollment, all patients were receiving a third generic CsA for a mean of 48 months. Nine patients were also under azathioprine and 9 under mycophenolate mofetil; 17 received prednisone. A single oral dose of either Zinograf or Neoral was administered. The first PK study was performed with one formulation, and 1 week later, a second PK was done with the other formulation. During the washout period, patients continued taking the third CsA formulation. The drug substitution was done milligram-for-milligram. The CsA whole-blood level was measured by TDx immunoassay. Mean +/- SD of area under the curve (AUC), maximum concentration (C(max)), and concentration at the second hour (C2) of Zinograf were not statistically different from those with Neoral (4019 +/- 1466 vs 3971 +/- 1325 ng x h/mL, 998 +/- 376 vs 1021 +/- 356 ng/mL, and 707 +/- 254 vs 734 +/- 229 ng/mL, respectively). In the same way, the Zinograf 90% confidence interval for either C(max) (-123, +77 ng/mL) or AUC (-214, +311 ng.mL/h) were within the Neoral bioequivalence interval for the same parameters (+/-204 ng/mL and +/-794 ng x mL/h, respectively). These data demonstrate that the ZinografME CsA formulation is bioequivalent to Neoral.

  9. Single ascending oral dose pharmacokinetics and pharmacodynamics study of EV-077: the specific inhibitor of prostanoid- and isoprostane-induced cellular activation.

    PubMed

    Richardson, A; Sakariassen, K S; Meyer, J-P; Alberts, P; Sorensen, A S

    2013-03-01

    This study was performed to determine the oral pharmacokinetics (PK) of EV-077 and its effects on pharmacodynamic (PD) markers. EV-077 blocks prostanoid-induced and isoprostane-induced cellular activation, and is in development for the treatment of vascular inflammation and associated complications of type-2 diabetes.. This single-ascending-dose mono-centre study was randomised, placebo-controlled, and double-blinded within each dose group. Seven EV-077 doses were administered sequentially as an oral solution: 0.0125, 0.125, 0.375, 0.75, 1.25, 1.875 and 2.5 mg/kg body weight. PK, platelet aggregation, bleeding time and safety parameters were measured. Seven to eight healthy male subjects were dosed per group: five to six subjects received EV-077 and two subjects received placebo. Tmax was reached rapidly between 0.5 h and 1.0 h. Both Cmax and AUC increased linearly with the dose. The apparent terminal half-life (t½z) increased with the dose, most likely reflecting the increasing last quantifiable concentration with increasing dose; at 2.5 mg/kg, it was 2.7-6.9 h. Measurement of platelet aggregation showed no effect at 0.0125 mg/kg, and a full and reversible inhibition at doses of 0.125-2.5 mg/kg. The average bleeding time was dose-dependently prolonged, but was always below 9 min. The PK/PD profile showed that at plasma concentrations above 20 ng/ml, EV-077 platelet aggregation was completely inhibited (>90 %). All tested doses were well tolerated. Orally administered EV-077 was well tolerated, readily absorbed, reached Cmax within 1 h, with a linear PK based on Cmax and AUC. The inhibition of platelet aggregation was complete and reversible at doses of 0.125 mg/kg and higher, and average bleeding time was below 9 min.

  10. Moclobemide monotherapy vs. combined therapy with valproic acid or carbamazepine in depressive patients: a pharmacokinetic interaction study

    PubMed Central

    Ignjatovic, Anita Rakic; Miljkovic, Branislava; Todorovic, Dejan; Timotijevic, Ivana; Pokrajac, Milena

    2009-01-01

    AIM To assess the impact of valproic acid (VPA) and carbamazepine (CBZ) on moclobemide (MCB) pharmacokinetics (PK) and metabolism at steady state in depressive patients. METHODS Twenty-one inpatients with recurrent endogenous depression received MCB (150 mg t.i.d.), either as monotherapy or in combination with VPA (500 mg b.i.d.) or CBZ (200 mg b.i.d.) in a nonrandomized manner. Steady-state plasma PK parameters of MCB and its two metabolites, Ro 12-8095 and Ro 12-5637, were derived. Clinical assessments of treatment efficacy were performed weekly using standard depression rating scales. RESULTS CBZ, but not VPA, was associated with decreases in the MCB AUC by 35% [from 7.794 to 5.038 mg h l−1; 95% confidence interval (CI) −4.84863, −0.66194; P = 0.01] and Cmax by 28% (from 1.911 to 1.383 mg l−1; 95% CI −0.98197, −0.07518; P < 0.05), and an increase in its oral clearance by 41% (from 0.323 to 0.454 l h−1 kg−1; 95% CI 0.00086, 0.26171; P < 0.05) after 4 weeks of co-administration. MCB through concentrations were also decreased, on average by 41% (from 0.950 to 0.559 mg l−1; 95% CI −0.77479, −0.03301; P < 0.05). However, the efficacy in this group of patients was not inferior to the controls, for several possible reasons. Overall tolerability of all study medications was good. CONCLUSIONS VPA does not significantly affect PK or metabolism of MCB, whereas CBZ time-dependently decreases MCB exposure, probably by inducing metabolism of MCB and its major plasma metabolite. The actual clinical relevance of the observed MCB–CBZ PK interaction needs to be further evaluated in a more comprehensive study. PMID:19076986

  11. Lack of effect of oral cabotegravir on the pharmacokinetics of a levonorgestrel/ethinyl oestradiol‐containing oral contraceptive in healthy adult women

    PubMed Central

    Trezza, Christine; Ford, Susan L.; Gould, Elizabeth; Lou, Yu; Huang, Chuyun; Ritter, James M.; Buchanan, Ann M.; Spreen, William

    2017-01-01

    Aims This study aimed to investigate whether cabotegravir (CAB), an integrase inhibitor in development for treatment and prevention of human immunodeficiency virus‐1, influences the pharmacokinetics (PK) of a levonorgestrel (LNG) and ethinyl oestradiol (EO)–containing oral contraceptive (OC) in healthy women. Methods In this open‐label, fixed‐sequence crossover study, healthy female subjects received LNG 0.15 mg/EO 0.03 mg tablet once daily Days 1–10 alone and with oral CAB 30 mg once daily Days 11–21. At the end of each treatment period, subjects underwent predose sampling for concentrations of follicle‐stimulating hormone, luteinizing hormone, and progesterone and serial PK sampling for plasma LNG, EO, and CAB concentrations. Results Twenty women were enrolled, and 19 completed the study. One subject was withdrawn due to an adverse event unrelated to study medications. Geometric least squares mean ratios (90% confidence interval) of LNG + CAB vs. LNG alone for LNG area under the plasma concentration–time curve over the dosing interval of duration τ and maximum observed plasma concentration were 1.12 (1.07–1.18) and 1.05 (0.96–1.15), respectively. Geometric least squares mean ratio (90% confidence interval) of EO + CAB vs. EO alone for EO area under the plasma concentration–time curve over the dosing interval of duration τ and maximum observed plasma concentration were 1.02 (0.97–1.08) and 0.92 (0.83–1.03), respectively. Steady‐state CAB PK parameters were comparable to historical values. There was no apparent difference in mean luteinizing hormone, follicle‐stimulating hormone, and progesterone concentrations between periods. No clinically significant trends in laboratory values, vital signs, or electrocardiography values were observed. Conclusions Repeat doses of oral CAB had no significant effect on LNG/EO PK or pharmacodynamics, which supports CAB coadministration with LNG/EO OCs in clinical practice. PMID:28087972

  12. Plasma pharmacokinetics of once-daily abacavir- and lamivudine-containing regimens and week 96 efficacy in HIV-infected Thai children.

    PubMed

    Bunupuradah, Torsak; Punyahotra, Passorn; Cressey, Tim R; Srimuan, Amornrat; Thammajaruk, Narukjaporn; Sophonphan, Jiratchaya; Sriheara, Chulalak; Burger, David M; Puthanakit, Thanyawee; Ananworanich, Jintanat

    2015-07-01

    Abacavir and lamivudine are approved for once-daily use in HIV-infected adults. Limited pharmacokinetic (PK) data for abacavir and lamivudine in children are available. A crossover study to compare PK of once- versus twice-daily abacavir and lamivudine was conducted in virologically suppressed HIV-infected Thai children aged <18years, with bodyweight of at least 14 kg, HIV RNA <50 copies/mL and HLA-B*5701 negative. Abacavir and lamivudine daily doses by bodyweight were 300 and 150 mg for 14-<20 kg, 450 and 300 mg for 20-<25 kg, and 600 and 300 mg for ≥25 kg, respectively. Originator abacavir and lamivudine scored tablets were administered. Intensive PK sampling was performed after 14 days of each dose. PK parameters were determined using non-compartmental analysis. Thirty children (57% male) were enrolled, 10 per weight band. Median (IQR) age was 8.8 (6.6-11.3) years and bodyweight was 21.9 (19.2-30.6) kg. The geometric means (GM) AUC0-24 of once- and twice-daily abacavir were 14.43 and 10.65 mg.h/L, respectively. The geometric mean ratio (GMR) of AUC0-24 for once- versus twice-daily abacavir dosing was 1.36 [90% confidence interval (CI) 1.11-1.66]. The GM AUC0-24 of once- and twice-daily lamivudine were 17.70 and 18.11 mg.h/L, respectively. The GMR of AUC0-24 for once- versus twice-daily lamivudine dosing was 0.98 (90% CI 0.84-1.14). At 96 weeks, 90% had HIV RNA <50 copies/mL and there were no serious adverse events. Abacavir exposure was greater with once-daily dosing, while lamivudine once- and twice-daily exposures were bioequivalent. Once-daily abacavir and lamivudine using weight-band dosing is a treatment option for children.

  13. Antibacterial effect evaluation of moxalactam against extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation

    PubMed Central

    Yu, Wei; Niu, Tianshui; Xiao, Tingting; Zhang, Jing; Xiao, Yonghong

    2018-01-01

    Objectives The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX), cefotaxime (CTX), and cefoperazone/sulbactam (CFZ/SBT) against extended-spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK)/pharmacodynamics model. Methods Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689) and E. coli American Type Culture Collection (ATCC)25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT) and the area between the control growth curve and bactericidal curves (IE) were employed to assess the antibacterial efficacies of all the agents. Results The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1) with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of MOX were much higher than those of CTX and CFZ/SBT (the bacterial RTs with the 3 agents were >24, <4, and <13 h, and the IEs were >110, <10, and <60 log10 CFU/mL·h−1, respectively). Conclusion MOX demonstrated excellent bactericidal effect, which is worthy of further exploration to serve as an alternative therapeutic agent against ESBL-producing Enterobacteriaceae. PMID:29391816

  14. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous pK a, and cyclohexane-water log D.

    PubMed

    Tielker, Nicolas; Tomazic, Daniel; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K Friedemann; Kast, Stefan M

    2016-11-01

    We predict cyclohexane-water distribution coefficients (log D 7.4 ) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pK a ) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the "Minnesota Solvation Database" (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol -1 for water and 0.8-0.9 kcal mol -1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pK a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2-3 for each solvent and two for the pK a ) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0-2.1 for the RMSE with the first and 2.2-2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.

  15. Effects of dosage, comorbidities, and food on isoniazid pharmacokinetics in Peruvian tuberculosis patients.

    PubMed

    Requena-Méndez, Ana; Davies, Geraint; Waterhouse, David; Ardrey, Alison; Jave, Oswaldo; López-Romero, Sonia Llanet; Ward, Stephen A; Moore, David A J

    2014-12-01

    Poor response to tuberculosis (TB) therapy might be attributable to subtherapeutic levels in drug-compliant patients. Pharmacokinetic (PK) parameters can be affected by several factors, such as comorbidities or the interaction of TB drugs with food. This study aimed to determine the PK of isoniazid (INH) in a Peruvian TB population under observed daily and twice-weekly (i.e., biweekly) therapy. Isoniazid levels were analyzed at 2 and 6 h after drug intake using liquid chromatography mass spectrometric methods. A total of 107 recruited patients had available PK data; of these 107 patients, 42.1% received biweekly isoniazid. The mean biweekly dose (12.8 mg/kg of body weight/day) was significantly lower than the nominal dose of 15 mg/kg/day (P < 0.001), and this effect was particularly marked in patients with concurrent diabetes and in males. The median maximum plasma concentration (Cmax) and area under the concentration-time curve from 0 to 6 h (AUC0-6) were 2.77 mg/liter and 9.71 mg · h/liter, respectively, for daily administration and 8.74 mg/liter and 37.8 mg · h/liter, respectively, for biweekly administration. There were no differences in the Cmax with respect to gender, diabetes mellitus (DM) status, or HIV status. Food was weakly associated with lower levels of isoniazid during the continuation phase. Overall, 34% of patients during the intensive phase and 33.3% during the continuation phase did not reach the Cmax reference value. However, low levels of INH were not associated with poorer clinical outcomes. In our population, INH exposure was affected by weight-adjusted dose and by food, but comorbidities did not indicate any effect on PK. We were unable to demonstrate a clear relationship between the Cmax and treatment outcome in this data set. Twice-weekly weight-adjusted dosing of INH appears to be quite robust with respect to important potentially influential patient factors under program conditions. Copyright © 2014 Requena-Méndez et al.

  16. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome

    PubMed Central

    Politis, Marios; Su, Paul; Turkheimer, Federico E.; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Waldman, Adam; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

    2015-01-01

    The most accurate predictor of the subsequent development of multiple sclerosis in clinically isolated syndrome is the presence of lesions at magnetic resonance imaging. We used in vivo positron emission tomography with 11C-(R)-PK11195, a biomarker of activated microglia, to investigate the normal-appearing white matter and grey matter of subjects with clinically isolated syndrome to explore its role in the development of multiple sclerosis. Eighteen clinically isolated syndrome and eight healthy control subjects were recruited. Baseline assessment included: history, neurological examination, expanded disability status scale, magnetic resonance imaging and PK11195-positron emission tomography scans. All assessments except the PK11195-positron emission tomography scan were repeated over 2 years. SUPERPK methodology was used to measure the binding potential relative to the non-specific volume, BPND. We show a global increase of normal-appearing white matter PK11195 BPND in clinically isolated syndrome subjects compared with healthy controls (P = 0.014). Clinically isolated syndrome subjects with T2 magnetic resonance imaging lesions had higher PK11195 BPND in normal-appearing white matter (P = 0.009) and their normal-appearing white matter PK11195 BPND correlated with the Expanded Disability Status Scale (P = 0.007; r = 0.672). At 2 years those who developed dissemination in space or multiple sclerosis, had higher PK11195 BPND in normal-appearing white matter at baseline (P = 0.007 and P = 0.048, respectively). Central grey matter PK11195 BPND was increased in subjects with clinically isolated syndrome compared to healthy controls but no difference was found in cortical grey matter PK11195 BPND. Microglial activation in clinically isolated syndrome normal-appearing white matter is diffusely increased compared with healthy control subjects and is further increased in those who have magnetic resonance imaging lesions. Furthermore microglial activation in clinically isolated syndrome normal-appearing white matter is also higher in those subjects who developed multiple sclerosis at 2 years. Our finding, if replicated in a larger study, could be of prognostic value and aid early treatment decisions in clinically isolated syndrome. PMID:25416179

  17. Identification of Dmt-D-Lys-Phe-Phe-OH as a highly antinociceptive tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20.

    PubMed

    Kleczkowska, Patrycja; Bojnik, Engin; Leśniak, Anna; Kosson, Piotr; Van den Eynde, Isabelle; Ballet, Steven; Benyhe, Sandor; Tourwé, Dirk; Lipkowski, Andrzej W

    2013-01-01

    Recently, we presented a novel compound (PK20, Dmt-D-Lys-Phe-Phe-Lys-Lys-Pro-Phe-Tle-Leu-OH) that targets single entity opioid and neurotensin pharmacophores. This endomorphin-2-like opioid peptide was introduced as a highly active analgesic because it elicited a strong dose- and time-dependent antinociceptive response when administered centrally and peripherally. Its pain-relieving activity was observed as rapidly as 5 min after drug injection. Such promising results led us to perform further studies, such as determining the resistance to enzymatic degradation, which resulted in obtaining a very stable opioid pharmacore PK20 metabolite. The synthesis of PK20 and its N-terminal tetrapeptide fragment has been accomplished using solid phase peptide chemistry. The biological stability of peptides has been measured in human serum and analyzed by HPLC/MS. Peptides were pharmacologically characterized in in vitro MOP and DOP receptor binding as well as [(35)S]GTPγS receptor binding assays. Antinociceptive properties of compounds were measured by in vivo assays in C57Bl6 mice after intravenous or intrathecal applications. Dmt-D-Lys-Phe-Phe-OH (PK20M), an N-terminal tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20, is characterized by a long duration of action, as demonstrated by a preserved, long-lasting analgesic effect even 2 h post-injection (average % MPE = 69.33). In rat brain membranes, PK20M efficiently displaced both the MOP and DOP receptor selective radioprobes [(3)H]DAMGO and [(3)H]DIDI (pKi of 9.52 and 7.86, respectively) and potently stimulated [(35)S]GTPγS binding, proving full agonism at both receptor types. In the [(35)S]GTPγS assay, which measured the agonist-mediated G protein activation, PK20M together with PK20 and Met-enkephalin were potent stimulators of the regulatory G proteins. The relative affinities of PK20M for the μ and δ receptor subtypes revealed μ-receptor selectivity. The novel MOP receptor selective metabolite has been shown to possess opioid subtype receptor selectivity, high potency, and effective analgesic activities as measured in various bioassays.

  18. A continuous-time adaptive particle filter for estimations under measurement time uncertainties with an application to a plasma-leucine mixed effects model

    PubMed Central

    2013-01-01

    Background When mathematical modelling is applied to many different application areas, a common task is the estimation of states and parameters based on measurements. With this kind of inference making, uncertainties in the time when the measurements have been taken are often neglected, but especially in applications taken from the life sciences, this kind of errors can considerably influence the estimation results. As an example in the context of personalized medicine, the model-based assessment of the effectiveness of drugs is becoming to play an important role. Systems biology may help here by providing good pharmacokinetic and pharmacodynamic (PK/PD) models. Inference on these systems based on data gained from clinical studies with several patient groups becomes a major challenge. Particle filters are a promising approach to tackle these difficulties but are by itself not ready to handle uncertainties in measurement times. Results In this article, we describe a variant of the standard particle filter (PF) algorithm which allows state and parameter estimation with the inclusion of measurement time uncertainties (MTU). The modified particle filter, which we call MTU-PF, also allows the application of an adaptive stepsize choice in the time-continuous case to avoid degeneracy problems. The modification is based on the model assumption of uncertain measurement times. While the assumption of randomness in the measurements themselves is common, the corresponding measurement times are generally taken as deterministic and exactly known. Especially in cases where the data are gained from measurements on blood or tissue samples, a relatively high uncertainty in the true measurement time seems to be a natural assumption. Our method is appropriate in cases where relatively few data are used from a relatively large number of groups or individuals, which introduce mixed effects in the model. This is a typical setting of clinical studies. We demonstrate the method on a small artificial example and apply it to a mixed effects model of plasma-leucine kinetics with data from a clinical study which included 34 patients. Conclusions Comparisons of our MTU-PF with the standard PF and with an alternative Maximum Likelihood estimation method on the small artificial example clearly show that the MTU-PF obtains better estimations. Considering the application to the data from the clinical study, the MTU-PF shows a similar performance with respect to the quality of estimated parameters compared with the standard particle filter, but besides that, the MTU algorithm shows to be less prone to degeneration than the standard particle filter. PMID:23331521

  19. Tumor type M2 pyruvate kinase expression in advanced breast cancer.

    PubMed

    Lüftner, D; Mesterharm, J; Akrivakis, C; Geppert, R; Petrides, P E; Wernecke, K D; Possinger, K

    2000-01-01

    Recently, a high validity correlation of the tumor M2 pyruvate kinase (Tu M2-PK) isoenzyme in comparison to standard tumor markers has been demonstrated in solid tumors. We investigated this marker in 67 patients with advanced breast cancer (ABC) in comparison to healthy controls. Plasma Tu M2-PK was measured using an ELISA assay (ScheBo Tech, Giessen, Germany) while serum CA27.29 was determined using a chemiluminescent immunoassay (Bayer Diagnostics, Tarrytown, USA). In a ROC analysis, the cut-off to discriminate patients from controls was established at 15 U/ml for Tu M2-PK (specificity 85%; positive predictive value 81%) and 30 U/ml for CA27.29 (specificity 91%; positive predictive value 92%). Median ABC baseline levels (ranges) in patients with ABC for Tu M2-PK and CA27.29 were 12.8 U/ml (4.8-252,495) and 130 U/ml (13.3-8130), respectively. Response assessment was done in 45 chemotherapy courses of 38 pts. In 13 out of 19 blocks (68.4%) with PD (progressive disease), an elevated level of Tu M2-PK at baseline or in the follow-up was found. In 17 out of 20 blocks (85%) with SD (stable disease), the Tu M2-PK level was normal at baseline or normalised within 4 weeks of treatment. All 6 patients with disease remission had a normal baseline Tu M2-PK level or the levels decreased promptly. Tu M2-PK gives additional information about ABC, indicating disease activity and sensitivity to chemotherapy while CA27.29 reflects tumor burden.

  20. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  1. Pyruvate kinase (PK) deficiency in newborns: the pitfalls of diagnosis.

    PubMed

    Pissard, Serge; de Montalembert, Mariane; Bachir, Dora; Max-Audit, Isabelle; Goossens, Michel; Wajcman, Henri; Bader-Meunier, Brigitte

    2007-04-01

    Pyruvate kinase (PK) deficiency is asymptomatic in heterozygotes, but it can lead in homozygous neonates to a severe neonatal hemolysis, sometimes life-threatening. We report five cases, with a 1- to 17-month delayed diagnosis, highlighting the need to measure PK activity in neonates and parents in case of an hemolysis at birth.

  2. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  3. Pharmacokinetics of Intranasal Scopolamine Gel Formation During Antiorthostatic Bedrest - A Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Lakshmi, Putcha; Singh, R. P.; Crady, V. A.; Derendorf, H.

    2011-01-01

    Space Motion sickness (SMS) is an age old problem for astronauts on both short and long duration space flights. Scopolamine (SCOP) is the most frequently used drug for the treatment of motion sickness (MS) which is currently available in transdermal patch and tablet dosage forms. These formulations of SCOP are ineffective for the treatment of SMS. Intranasal dosage forms are noninvasive with rapid absorption and enhanced bioavailability thus allowing precise and reduced dosing options in addition to offering rescue and treatment options. As such, an intranasal gel dosage formulation of scopolamine (INSCOP) was developed and Pharmacokinetics (PK) and bioavailability were determined under IND guidelines. The present clinical trial compares PK and bioavailability of INSCOP in 12 normal, healthy subjects (6 male/ 6 female) during ambulation (AMB) and antiorthostatic bedrest (ABR) used as a ground-based microgravity analog. Subjects received 0.2 and 0.4 mg doses of INSCOP during AMB and ABR in a four-way crossover design. Results indicated no difference between AMB and ABR in PK parameters after 0.2 mg dose. Clearance (Cls) decreased with a concomitant increase in maximum concentration and area under concentration versus time curve (AUC) during ABR after the 0.4 mg dose. This difference in AUC and Cls at the higher but not the lower dose during ABR may suggest that ABR may affect metabolism and/or clearance at higher doses of INSCOP. These results indicate that dosing adjustment may be required for treatment of SMS with INSCOP in space.

  4. Effects of Milk or Apple Juice Ingestion on the Pharmacokinetics of Elvitegravir and Cobicistat in Healthy Japanese Male Volunteers: A Randomized, Single-Dose, Three-Way Crossover Study.

    PubMed

    Yonemura, Takuma; Okada, Nozomi; Sagane, Koichi; Okamiya, Kazuhiro; Ozaki, Hideki; Iida, Toshiaki; Yamada, Hiroyuki; Yagura, Hiroki

    2018-01-24

    Elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide (EVG/COBI/FTC/TAF) is specified in its package insert to be taken with food to obtain sufficient exposure of EVG. It has been reported that a nutritional protein-rich drink shows comparable pharmacokinetics (PK) of EVG to those with a standard breakfast. In this study, the PK profiles of EVG and COBI were evaluated by administration of a single dose of EVG/COBI/FTC/TAF, after ingestion of either a nutritional protein-rich drink, milk, or apple juice. The geometric means for C max and AUC inf of EVG following milk ingestion slightly decreased by 21% and 14%, respectively, and those following apple juice ingestion decreased by 67% and 61%, respectively, compared with a nutritional protein-rich drink. There were no differences in any PK parameters of COBI. Therefore, taking EVG/COBI/FTC/TAF after milk or apple juice ingestion appeared to be not appropriate. However, for plasma trough concentrations (C tau ), it is known that C tau is best correlated with the efficacy of EVG. The mean C 24 of EVG after milk ingestion was 620.6 ng/mL, which was more than 10-fold the protein binding-adjusted 95% inhibitory concentration. With all the above considerations, it was concluded that taking EVG/COBI/FTC/TAF with milk could be an option to maintain sufficient plasma concentrations of EVG. © 2018, The American College of Clinical Pharmacology.

  5. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body.

    PubMed

    Fan, Yingfang; Mansoor, Najia; Ahmad, Tasneem; Khan, Rafeeq Alam; Czejka, Martin; Sharib, Syed; Yang, Dong-Hua; Ahmed, Mansoor

    2017-07-18

    Colorectal cancer is the third leading cause of cancer-related deaths in the United States. Treatment of colorectal cancer remains a challenge to clinicians as well as drug developers. Irinotecan, a Camptothecin derivative, is successfully used for the treatment of this rapidly progressing malignancy and finds its place in the first line of therapeutic agents. Irinotecan is also effective in treating SCLC, malignant glioma and pancreatic adenocarcinoma. However, its adverse effects limit its clinical application. Mainly metabolized by hepatic route, and excreted through biliary tract, this dug has been found to possess high variation in patients in its pharmacokinetic (PK) profile. Physiologically based pharmacokinetic (PBPK) models using compartmental approach have attained their position to foresee the possible PK behavior of different drugs before their administration to patients and such models have been proposed for several anticancer agents. In this work, we used WB-PBPK technology to develop a model in a population of tumor patients who used IV irinotecan therapy. This model depicted the concentration of drug and its pharmacologically active metabolite in human body over a specific period of time. Knowledge about pharmacokinetic parameters is extracted from this profile and the model is evaluated by the observed results of clinical study presented in literature. The predicted behavior of the drug by this approach is in good agreement with the observed results and can aid in further exploration of PK of irinotecan in cancer patients, especially in those concomitantly suffer from other morbidity.

  6. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body

    PubMed Central

    Ahmad, Tasneem; Khan, Rafeeq Alam; Czejka, Martin; Sharib, Syed; Yang, Dong-Hua; Ahmed, Mansoor

    2017-01-01

    Colorectal cancer is the third leading cause of cancer-related deaths in the United States. Treatment of colorectal cancer remains a challenge to clinicians as well as drug developers. Irinotecan, a Camptothecin derivative, is successfully used for the treatment of this rapidly progressing malignancy and finds its place in the first line of therapeutic agents. Irinotecan is also effective in treating SCLC, malignant glioma and pancreatic adenocarcinoma. However, its adverse effects limit its clinical application. Mainly metabolized by hepatic route, and excreted through biliary tract, this dug has been found to possess high variation in patients in its pharmacokinetic (PK) profile. Physiologically based pharmacokinetic (PBPK) models using compartmental approach have attained their position to foresee the possible PK behavior of different drugs before their administration to patients and such models have been proposed for several anticancer agents. In this work, we used WB-PBPK technology to develop a model in a population of tumor patients who used IV irinotecan therapy. This model depicted the concentration of drug and its pharmacologically active metabolite in human body over a specific period of time. Knowledge about pharmacokinetic parameters is extracted from this profile and the model is evaluated by the observed results of clinical study presented in literature. The predicted behavior of the drug by this approach is in good agreement with the observed results and can aid in further exploration of PK of irinotecan in cancer patients, especially in those concomitantly suffer from other morbidity. PMID:28636998

  7. Intranasal Pharmacokinetics of Morphine ARER, a Novel Abuse-Deterrent Formulation: Results from a Randomized, Double-Blind, Four-Way Crossover Study in Nondependent, Opioid-Experienced Subjects

    PubMed Central

    Pantaleon, Carmela; Iverson, Matthew; Smith, Michael D.; Kinzler, Eric R.; Aigner, Stefan

    2018-01-01

    Objective To investigate the pharmacokinetics (PK) of Morphine ARER, an extended-release (ER), abuse-deterrent formulation of morphine sulfate after oral and intranasal administration. Methods This randomized, double-blind, double-dummy, placebo-controlled, four-way crossover study assessed the PK of morphine and its active metabolite, M6G, from crushed intranasal Morphine ARER and intact oral Morphine ARER compared with crushed intranasal ER morphine following administration to nondependent, recreational opioid users. The correlation between morphine PK and the pharmacodynamic parameter of drug liking, a measure of abuse potential, was also evaluated. Results Mean maximum observed plasma concentration (Cmax) for morphine was lower with crushed intranasal Morphine ARER (26.2 ng/mL) and intact oral Morphine ARER (18.6 ng/mL), compared with crushed intranasal ER morphine (49.5 ng/mL). The time to Cmax (Tmax) was the same for intact oral and crushed intranasal Morphine ARER (1.6 hours) and longer for crushed intranasal morphine ER (1.1 hours). Higher mean maximum morphine Cmax, Tmax, and abuse quotient (Cmax/Tmax) were positively correlated with maximum effect for drug liking (R2 ≥ 0.9795). Conclusion These data suggest that Morphine ARER maintains its ER profile despite physical manipulation and intranasal administration, which may be predictive of a lower intranasal abuse potential compared with ER morphine.

  8. Automated reporting of pharmacokinetic study results: gaining efficiency downstream from the laboratory.

    PubMed

    Schaefer, Peter

    2011-07-01

    The purpose of bioanalysis in the pharmaceutical industry is to provide 'raw' data about the concentration of a drug candidate and its metabolites as input for studies of drug properties such as pharmacokinetic (PK), toxicokinetic, bioavailability/bioequivalence and other studies. Building a seamless workflow from the laboratory to final reports is an ongoing challenge for IT groups and users alike. In such a workflow, PK automation can provide companies with the means to vastly increase the productivity of their scientific staff while improving the quality and consistency of their reports on PK analyses. This report presents the concept and benefits of PK automation and discuss which features of an automated reporting workflow should be translated into software requirements that pharmaceutical companies can use to select or build an efficient and effective PK automation solution that best meets their needs.

  9. Time-lapse cinematography study of the germinal vesicle behaviour in mouse primary oocytes treated with activators of protein kinases A and C.

    PubMed

    Alexandre, H; Mulnard, J

    1988-12-01

    A passive erratic movement of the germinal vesicle (GV), already visible in small incompetent oocytes, is followed by an active scalloping of the nuclear membrane soon before GV breakdown (GVBD) in cultured competent oocytes. Maturation can be inhibited by activators of protein kinase A (PK-A) and protein kinase C (PK-C). Our time-lapse cinematography analysis allowed us to describe an unexpected behaviour of the GV when PK-C, but not PK-A, is activated: GV undergoes a displacement toward the cortex according to the same biological clock which triggers the programmed translocation of the spindle in control oocytes. It is concluded that, when oocytes become committed to undergo maturation, the cytoplasm acquires a PK-A-controlled "centrifugal displacement property" which is not restricted to the spindle.

  10. A new amoxicillin/clavulanate therapeutic system: preparation, in vitro and pharmacokinetic evaluation.

    PubMed

    Kerc, Janez; Opara, Jerneja

    2007-04-20

    A new peroral amoxicillin/clavulanate therapeutic system composed of immediate release tablet and controlled release floating capsule was developed and evaluated by in vivo bioavailability study. Pharmacokinetic (PK) parameters for amoxicillin and clavulanic acid of the new therapeutic systems: AUCt, AUCi, (AUCt/AUCi), Cmax, Tmax, kel, T(1/2) and additionally for amoxicillin T(4) and T(2) were calculated from the plasma levels. The study confirmed enhanced pharmacokinetic parameters of a newly developed therapeutic system containing 1500 mg of amoxicillin and 125 mg of clavulanic acid. Prolonged time over MIC of amoxicillin in relation to a regular immediate release amoxicillin/clavulanate formulation was confirmed.

  11. Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?

    PubMed

    Temel, Burcin; Meskine, Hakim; Reuter, Karsten; Scheffler, Matthias; Metiu, Horia

    2007-05-28

    Phenomenological kinetics (PK) is widely used in the study of the reaction rates in heterogeneous catalysis, and it is an important aid in reactor design. PK makes simplifying assumptions: It neglects the role of fluctuations, assumes that there is no correlation between the locations of the reactants on the surface, and considers the reacting mixture to be an ideal solution. In this article we test to what extent these assumptions damage the theory. In practice the PK rate equations are used by adjusting the rate constants to fit the results of the experiments. However, there are numerous examples where a mechanism fitted the data and was shown later to be erroneous or where two mutually exclusive mechanisms fitted well the same set of data. Because of this, we compare the PK equations to "computer experiments" that use kinetic Monte Carlo (kMC) simulations. Unlike in real experiments, in kMC the structure of the surface, the reaction mechanism, and the rate constants are known. Therefore, any discrepancy between PK and kMC must be attributed to an intrinsic failure of PK. We find that the results obtained by solving the PK equations and those obtained from kMC, while using the same rate constants and the same reactions, do not agree. Moreover, when we vary the rate constants in the PK model to fit the turnover frequencies produced by kMC, we find that the fit is not adequate and that the rate constants that give the best fit are very different from the rate constants used in kMC. The discrepancy between PK and kMC for the model of CO oxidation used here is surprising since the kMC model contains no lateral interactions that would make the coverage of the reactants spatially inhomogeneous. Nevertheless, such inhomogeneities are created by the interplay between the rate of adsorption, of desorption, and of vacancy creation by the chemical reactions.

  12. NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation

    PubMed Central

    Nonin-Lecomte, Sylvie; Felden, Brice; Dardel, Frédéric

    2006-01-01

    The transfer-messenger RNA (tmRNA) pseudoknot PK1 is essential for bacterial trans-translation, a ribosomal rescue mechanism. We report the solution structure of PK1 from Aquifex aeolicus, which despite an unprecedented small number of nucleotides and thus an unprecented compact size, displays a very high thermal stability. Several unusual structural features account for these properties and indicate that PK1 belongs to the class of ribosomal frameshift pseudoknots. This suggests a similarity between the mechanism of programmed ribosomal frameshifting and trans-translation. PMID:16595798

  13. NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation.

    PubMed

    Nonin-Lecomte, Sylvie; Felden, Brice; Dardel, Frédéric

    2006-01-01

    The transfer-messenger RNA (tmRNA) pseudoknot PK1 is essential for bacterial trans-translation, a ribosomal rescue mechanism. We report the solution structure of PK1 from Aquifex aeolicus, which despite an unprecedented small number of nucleotides and thus an unprecented compact size, displays a very high thermal stability. Several unusual structural features account for these properties and indicate that PK1 belongs to the class of ribosomal frameshift pseudoknots. This suggests a similarity between the mechanism of programmed ribosomal frameshifting and trans-translation.

  14. Bioequivalence of generic and branded amoxicillin capsules in healthy human volunteers

    PubMed Central

    Pathak, Priyanka; Pandit, Vijaya A.; Dhande, Priti P.

    2017-01-01

    CONTEXT: The Medical Council of India urges doctors to prescribe generic drugs as far as possible. The Indian Medical Association had responded earlier saying that it requires guarantees on the quality of generic forms of drugs. Although no published scientific reports are available on the issue of therapeutic inequivalence, unconfirmed clinician accounts and newspaper reports of therapeutic inequivalence exist. AIM: This study was planned to ascertain whether bioequivalence of branded and generic amoxicillin capsule is comparable. SETTINGS AND DESIGN: An open-label, randomized, single-dose, two-treatment, two-sequence, two-period crossover oral bioequivalence study was conducted in 12 healthy, adult human subjects under fasting condition. MATERIALS AND METHODS: Serum samples, collected at 8 time points, were analyzed by a validated ultraviolet spectrophotometer method. Pharmacokinetic (PK) parameters such as area under the curve (AUC)0–t, AUC0–∞, Cmax, and Tmax were determined along with time above minimum inhibitory concentration (MIC). STATISTICAL ANALYSIS USED: The log-transformed PK parameters (Cmax, AUC0–t, AUC0–∞) were analyzed using a Two One-Sided Test ANOVA in SAS for each parameter. Tmax and MIC were analyzed by Wilcoxon rank-sum test in GraphPad Prism. RESULTS: Geometric mean ratio of Cmax fell within bioequivalence criteria. The upper and lower confidence limits of both AUC0–t and AUC0–∞ geometric mean ratio fell below bioequivalence criteria. Time above MIC of generic preparation was significantly lower than that of branded version. CONCLUSIONS: The generic capsule was not bioequivalent to the branded amoxicillin capsule. PMID:28706331

  15. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  16. Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation

    PubMed Central

    Pertinez, Henry; Bonnett, Laura; Hodel, Eva Maria; Dartois, Véronique; Johnson, John L; Caws, Maxine; Bolhuis, Mathieu; Alffenaar, Jan-Willem C; Davies, Geraint; Sloan, Derek J

    2018-01-01

    Abstract Objectives The oxazolidinone linezolid is an effective component of drug-resistant TB treatment, but its use is limited by toxicity and the optimum dose is uncertain. Current strategies are not informed by clinical pharmacokinetic (PK)/pharmacodynamic (PD) data; we aimed to address this gap. Methods We defined linezolid PK/PD targets for efficacy (fAUC0–24:MIC >119 mg/L/h) and safety (fCmin <1.38 mg/L). We extracted individual-level linezolid PK data from existing studies on TB patients and performed meta-analysis, producing summary estimates of fAUC0–24 and fCmin for published doses. Combining these with a published MIC distribution, we performed Monte Carlo simulations of target attainment. Results The efficacy target was attained in all simulated individuals at 300 mg q12h and 600 mg q12h, but only 20.7% missed the safety target at 300 mg q12h versus 98.5% at 600 mg q12h. Although suggesting 300 mg q12h should be used preferentially, these data were reliant on a single centre. Efficacy and safety targets were missed by 41.0% and 24.2%, respectively, at 300 mg q24h and by 44.6% and 27.5%, respectively, at 600 mg q24h. However, the confounding effect of between-study heterogeneity on target attainment for q24h regimens was considerable. Conclusions Linezolid dosing at 300 mg q12h may retain the efficacy of the 600 mg q12h licensed dosing with improved safety. Data to evaluate commonly used 300 mg q24h and 600 mg q24h doses are limited. Comprehensive, prospectively obtained PK/PD data for linezolid doses in drug-resistant TB treatment are required. PMID:29584861

  17. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin

    PubMed Central

    Wahle, Christopher W.; Martini, K. Michael; Hollenbeck, Dawn M.; Langner, Andreas; Ross, David S.; Hamilton, John F.; Thurston, George M.

    2018-01-01

    We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γ B) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54 × 54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4 < pH < 8 and Debye screening lengths from 6 to 20 Å. We select the interior dielectric value to model γB titration data. At pH 7.1 and Debye length 6.0 Å, on a given γB molecule the predicted top occupancy pattern is present nearly 20% of the time, and 90% of the time one or another of the first 100 patterns will be present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage profile. We illustrate how charge pattern probabilities deviate from the multinomial distribution that would result from use of effective pK values alone and estimate the extents to which γB charge pattern distributions broaden at lower pH and narrow as ionic strength is lowered. These results suggest that for accurate modeling of orientation-dependent γB-γB interactions, consideration of numerous pairs of proton occupancy patterns will be needed. PMID:29346981

  18. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin.

    PubMed

    Wahle, Christopher W; Martini, K Michael; Hollenbeck, Dawn M; Langner, Andreas; Ross, David S; Hamilton, John F; Thurston, George M

    2017-09-01

    We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γB) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54×54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4

  19. Mutant prevention concentration, pharmacokinetic-pharmacodynamic integration, and modeling of enrofloxacin data established in diseased buffalo calves.

    PubMed

    Ramalingam, B; Sidhu, P K; Kaur, G; Venkatachalam, D; Rampal, S

    2015-12-01

    The pharmacokinetic-pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax ), terminal half-life (t1/2 K10) , apparent volume of distribution (Vd(area) /F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h /MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h /MIC values by modeling PK/PD data. The lipopolysaccharide-induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves. © 2015 John Wiley & Sons Ltd.

  20. Native American Women Perceptions in Pk-12 Administrative Positions in North Dakota Public Schools

    ERIC Educational Resources Information Center

    DeCoteau, Lanelia Irene

    2012-01-01

    Historically Native American women have experienced barriers in their rise to Pk-12 educational leadership positions. There is limited research available on Native American women in educational leadership. Therefore, the purpose for this survey study was to discover what inspired current Pk-12 Native American women educational leaders to choose…

Top