Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease.
Krall, Paola; Pineda, Cristina; Ruiz, Patricia; Ejarque, Laia; Vendrell, Teresa; Camacho, Juan Antonio; Mendizábal, Santiago; Oliver, Artur; Ballarín, José; Torra, Roser; Ars, Elisabet
2014-02-01
Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients. Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases. Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86%. The screening of five exons (58, 32, 34, 36, 37) yielded a 54% chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76%. The c.9689delA mutation was present in 17 (34%) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases. Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.
Audrézet, Marie-Pierre; Corbiere, Christine; Lebbah, Said; Morinière, Vincent; Broux, Françoise; Louillet, Ferielle; Fischbach, Michel; Zaloszyc, Ariane; Cloarec, Sylvie; Merieau, Elodie; Baudouin, Véronique; Deschênes, Georges; Roussey, Gwenaelle; Maestri, Sandrine; Visconti, Chiara; Boyer, Olivia; Abel, Carine; Lahoche, Annie; Randrianaivo, Hanitra; Bessenay, Lucie; Mekahli, Djalila; Ouertani, Ines; Decramer, Stéphane; Ryckenwaert, Amélie; Cornec-Le Gall, Emilie; Salomon, Rémi; Ferec, Claude; Heidet, Laurence
2016-03-01
Prenatal forms of autosomal dominant polycystic kidney disease (ADPKD) are rare but can be recurrent in some families, suggesting a common genetic modifying background. Few patients have been reported carrying, in addition to the familial mutation, variation(s) in polycystic kidney disease 1 (PKD1) or HNF1 homeobox B (HNF1B), inherited from the unaffected parent, or biallelic polycystic kidney and hepatic disease 1 (PKHD1) mutations. To assess the frequency of additional variations in PKD1, PKD2, HNF1B, and PKHD1 associated with the familial PKD mutation in early ADPKD, these four genes were screened in 42 patients with early ADPKD in 41 families. Two patients were associated with de novo PKD1 mutations. Forty patients occurred in 39 families with known ADPKD and were associated with PKD1 mutation in 36 families and with PKD2 mutation in two families (no mutation identified in one family). Additional PKD variation(s) (inherited from the unaffected parent when tested) were identified in 15 of 42 patients (37.2%), whereas these variations were observed in 25 of 174 (14.4%, P=0.001) patients with adult ADPKD. No HNF1B variations or PKHD1 biallelic mutations were identified. These results suggest that, at least in some patients, the severity of the cystic disease is inversely correlated with the level of polycystin 1 function. Copyright © 2016 by the American Society of Nephrology.
Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1
Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.
2014-01-01
Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bo; Department of Medicine, Vanderbilt University, Nashville, TN 37232; He, Xiusheng
2011-01-15
Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1{sup -/-} renal cells displayed aberrant cell-cell contacts and tubulomorphogenesis. The Pkhd1{sup -/-} cellsmore » also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1{sup -/-} mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1{sup -/-} kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.« less
An integrated genetic and physical map of the autosomal recessive polycystic kidney disease region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lens, X.M.; Onuchic, L.F.; Daoust, M.
1997-05-01
Autosomal recessive polycystic kidney disease is one of the most common hereditary renal cystic diseases in children. Genetic studies have recently assigned the only known locus for this disorder, PKHD1, to chromosome 6p21-p12. We have generated a YAC contig that spans {approximately}5 cM of this region, defined by the markers D6S1253-D6S295, and have mapped 43 sequence-tagged sites (STS) within this interval. This set includes 20 novel STSs, which define 12 unique positions in the region, and three ESTs. A minimal set of two YACs spans the segment D6S465-D6S466, which contains PKHD1, and estimates of their sizes based on information inmore » public databases suggest that the size of the critical region is <3.1 Mb. Twenty-eight STSs map to this interval, giving an average STS density of <1/150 kb. These resources will be useful for establishing a complete trancription map of the PKHD1 region. 10 refs., 1 fig., 1 tab.« less
Xiong, Huaqi; Chen, Yongxiong; Yi, Yajun; Tsuchiya, Karen; Moeckel, Gilbert; Cheung, Joseph; Liang, Dan; Tham, Kyi; Xu, Xiaohu; Chen, Xing-Zhen; Pei, York; Zhao, Zhizhuang Jeo; Wu, Guanqing
2002-07-01
Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-p12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. We recently identified a novel gene in this genetic interval from kidney cDNA, using cloning strategies. The gene PKHD1 (PKHD1-tentative) encodes a novel 3396-amino-acid protein with no apparent homology with any known proteins. We named its gene product "tigmin" because it contains multiple TIG domains, which usually are seen in proteins containing immunoglobulin-like folds. PKHD1 encodes an 11.6-kb transcript and is composed of 61 exons spanning an approximately 365-kb genomic region on chromosome 6p12-p11.2 adjacent to the marker D6S1714. Northern blot analyses demonstrated that the gene has discrete bands with one peak signal at approximately 11 kb, indicating that PKHD1 is likely to have multiple alternative transcripts. PKHD1 is highly expressed in adult and infant kidneys and weakly expressed in liver in northern blot analysis. This expression pattern parallels the tissue involvement observed in ARPKD. In situ hybridization analysis further revealed that the expression of PKHD1 in the kidney is mainly localized to the epithelial cells of the collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features of PKHD1 make it a strong positional candidate gene for ARPKD.
Edrees, Burhan M; Athar, Mohammad; Abduljaleel, Zainularifeen; Al-Allaf, Faisal A; Taher, Mohiuddin M; Khan, Wajahatullah; Bouazzaoui, Abdellatif; Al-Harbi, Naffaa; Safar, Ramzia; Al-Edressi, Howaida; Alansary, Khawala; Anazi, Abulkareem; Altayeb, Naji; Ahmed, Muawia A
2016-12-01
A targeted customized sequencing of genes implicated in autosomal recessive polycystic kidney disease (ARPKD) phenotype was performed to identify candidate variants using the Ion torrent PGM next-generation sequencing. The results identified four potential pathogenic variants in PKHD1 gene [c.4870C > T, p.(Arg1624Trp), c.5725C > T, p.(Arg1909Trp), c.1736C > T, p.(Thr579Met) and c.10628T > G, p.(Leu3543Trp)] among 12 out of 18 samples. However, one variant c.4870C > T, p.(Arg1624Trp) was common among eight patients. Some patient samples also showed few variants in autosomal dominant polycystic kidney disease (ADPKD) disease causing genes PKD1 and PKD2 such as c.12433G > A, p.(Val4145Ile) and c.1445T > G, p.(Phe482Cys), respectively. All causative variants were validated by capillary sequencing and confirmed the presence of a novel homozygous variant c.10628T > G, p.(Leu3543Trp) in a male proband. We have recently published the results of these studies (Edrees et al., 2016). Here we report for the first time the effect of the common mutation p.(Arg1624Trp) found in eight samples on the protein structure and function due to the specific amino acid changes of PKHD1 protein using molecular dynamics simulations. The computational approaches provide tool predict the phenotypic effect of variant on the structure and function of the altered protein. The structural analysis with the common mutation p.(Arg1624Trp) in the native and mutant modeled protein were also studied for solvent accessibility, secondary structure and stabilizing residues to find out the stability of the protein between wild type and mutant forms. Furthermore, comparative genomics and evolutionary analyses of variants observed in PKHD1 , PKD1 , and PKD2 genes were also performed in some mammalian species including human to understand the complexity of genomes among closely related mammalian species. Taken together, the results revealed that the evolutionary comparative analyses and characterization of PKHD1 , PKD1 , and PKD2 genes among various related and unrelated mammalian species will provide important insights into their evolutionary process and understanding for further disease characterization and management.
Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Liping; Wang, Shixuan; Hu, Chaofeng
2011-04-15
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less
Gunay–Aygun, Meral; Font–Montgomery, Esperanza; Lukose, Linda; Gerstein, Maya Tuchman; Piwnica–Worms, Katie; Choyke, Peter; Daryanani, Kailash T.; Turkbey, Baris; Fischer, Roxanne; Bernardini, Isa; Sincan, Murat; Zhao, Xiongce; Sandler, Netanya G.; Roque, Annelys; Douek, Daniel C.; Graf, Jennifer; Huizing, Marjan; Bryant, Joy C.; Mohan, Parvathi; Gahl, William A.; Heller, Theo
2013-01-01
BACKGROUND & AIMS Autosomal recessive polycystic kidney disease (ARPKD), the most common ciliopathy of childhood, is characterized by congenital hepatic fibrosis and progressive cystic degeneration of kidneys. We aimed to describe congenital hepatic fibrosis in patients with ARPKD, confirmed by detection of mutations in PKHD1. METHODS Patients with ARPKD and congenital hepatic fibrosis were evaluated at the National Institutes of Health from 2003 to 2009. We analyzed clinical, molecular, and imaging data from 73 patients (age, 1–56 years; average, 12.7 ± 13.1 years) with kidney and liver involvement (based on clinical, imaging, or biopsy analyses) and mutations in PKHD1. RESULTS Initial symptoms were liver related in 26% of patients, and others presented with kidney disease. One patient underwent liver and kidney transplantation, and 10 others received kidney transplants. Four presented with cholangitis and one with variceal bleeding. Sixty-nine percent of patients had enlarged left lobes on magnetic resonance imaging, 92% had increased liver echogenicity on ultrasonography, and 65% had splenomegaly. Splenomegaly started early in life; 60% of children younger than 5 years had enlarged spleens. Spleen volume had an inverse correlation with platelet count and prothrombin time but not with serum albumin level. Platelet count was the best predictor of spleen volume (area under the curve of 0.88905), and spleen length corrected for patient’s height correlated inversely with platelet count (R2 = 0.42, P < .0001). Spleen volume did not correlate with renal function or type of PKHD1 mutation. Twenty-two of 31 patients who underwent endoscopy were found to have varices. Five had variceal bleeding, and 2 had portosystemic shunts. Forty-percent had Caroli syndrome, and 30% had an isolated dilated common bile duct. CONCLUSIONS Platelet count is the best predictor of the severity of portal hypertension, which has early onset but is underdiagnosed in patients with ARPKD. Seventy percent of patients with ARPKD have biliary abnormalities. Kidney and liver disease are independent, and variability in severity is not explainable by type of PKHD1 mutation; PMID:23041322
Mi, Xiao-Xiao; Li, Xiao-Guang; Wang, Zi-Rong; Lin, Ling; Xu, Chun-Hai; Shi, Jun-Ping
2017-08-16
Abernethy malformation is a rare congenital anomaly characterised by the partial or complete absence of the portal vein and the subsequent development of an extrahepatic portosystemic shunt. Caroli's disease is a rare congenital condition characterised by non-obstructive saccular intrahepatic bile duct dilation. Caroli's disease combined with congenital hepatic fibrosis and/or renal cystic disease is referred to - Caroli's syndrome. The combination of Abernethy malformation and Caroli's syndrome has not been reported previously. We present the case of a 23-year-old female who was found to have both type II Abernethy malformation and Caroli's syndrome. Radiological imaging was performed, including computed tomography with three-dimensional reconstruction and magnetic resonance imaging with (magnetic resonance cholangiopancreatography (MRCP), which revealed a side-to-side portocaval shunt, intrahepatic bile duct dilation, congenital hepatic fibrosis, and renal cysts. In addition, PKHD1 (polycystic kidney and hepatic disease 1) gene mutational analysis revealed a paternally inherited heterozygous missense mutation (c.1877A > G, p.Lys626Arg). A liver biopsy confirmed the pathological features of Caroli's syndrome. To our knowledge, this is the first reported case of a patient with both type II Abernethy malformation and Caroli's syndrome diagnosed using a comprehensive approach that included imaging, mutational analysis, and liver biopsy. Additionally, this is the second reported case to date of an Asian patient presenting with liver and renal disorders with the same paternally inherited PKHD1 missense mutation.
Clinical and genetic characterization of a founder PKHD1 mutation in Afrikaners with ARPKD.
Lambie, Lindsay; Amin, Rasheda; Essop, Fahmida; Cnaan, Avital; Krause, Amanda; Guay-Woodford, Lisa M
2015-02-01
Autosomal recessive polycystic kidney disease (ARPKD; MIM 263200) occurs in 1:20,000 live births. Disease expression is widely variable, with approximately 30 % of affected neonates dying perinatally, while others survive to adulthood. Mutations at the PKHD1 locus are responsible for all typical presentations. The objectives of this study were to define the clinical and genetic characteristics in a cohort of South African patients of Afrikaner origin, a population with a high prevalence of ARPKD. DNA from the cohort was analyzed for background haplotypes and the p.M627K mutation previously identified in two unrelated Afrikaner patients. The clinical phenotype of the homozygous group was characterized. Analysis of 36 Afrikaner families revealed that 27 patients, from 24 (67 %) families, were homozygous for the p.M627K substitution, occurring on a common haplotype. The clinical phenotype of the homozygous individuals was variable. Our data provide strong evidence that the p.M627K substitution is a founder mutation in the Afrikaner population and can be used for streamlined diagnostic testing for at-risk pregnancies. The observed clinical variability suggests that disease expression is modulated by other genetic loci or by gene-environment interactions.
Vivante, Asaf; Hwang, Daw-Yang; Kohl, Stefan; Chen, Jing; Shril, Shirlee; Schulz, Julian; van der Ven, Amelie; Daouk, Ghaleb; Soliman, Neveen A.; Kumar, Aravind Selvin; Senguttuvan, Prabha; Kehinde, Elijah O.; Tasic, Velibor
2017-01-01
Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease–causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1. Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease–causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology–based diagnosis and improved clinical management. PMID:27151922
[Autosomal-recessive renal cystic disease and congenital hepatic fibrosis: clinico-anatomic case].
Rostol'tsev, K V; Burenkov, R A; Kuz'micheva, I A
2012-01-01
Clinico-anatomic observation of autosomal-recessive renal cystic disease and congenital hepatic fibrosis at two fetuses from the same family was done. Mutation of His3124Tyr in 58 exon of PKHD1 gene in heterozygous state was found out. The same pathomorphological changes in the epithelium of cystic renal tubules and bile ducts of the liver were noted. We suggest that the autopsy research of fetuses with congenital abnormalities, detected after prenatal ultrasonic screening, has high diagnostic importance.
Vivante, Asaf; Hwang, Daw-Yang; Kohl, Stefan; Chen, Jing; Shril, Shirlee; Schulz, Julian; van der Ven, Amelie; Daouk, Ghaleb; Soliman, Neveen A; Kumar, Aravind Selvin; Senguttuvan, Prabha; Kehinde, Elijah O; Tasic, Velibor; Hildebrandt, Friedhelm
2017-01-01
Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease-causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1 Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease-causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology-based diagnosis and improved clinical management. Copyright © 2016 by the American Society of Nephrology.
Fujimaru, T; Mori, T; Sekine, A; Mandai, S; Chiga, M; Kikuchi, H; Ando, F; Mori, Y; Nomura, N; Iimori, S; Naito, S; Okado, T; Rai, T; Hoshino, J; Ubara, Y; Uchida, S; Sohara, E
2018-07-01
Distinguishing autosomal-dominant polycystic kidney disease (ADPKD) from other inherited renal cystic diseases in patients with adult polycystic kidney disease and no family history is critical for correct treatment and appropriate genetic counseling. However, for patients with no family history, there are no definitive imaging findings that provide an unequivocal ADPKD diagnosis. We analyzed 53 adult polycystic kidney disease patients with no family history. Comprehensive genetic testing was performed using capture-based next-generation sequencing for 69 genes currently known to cause hereditary renal cystic diseases including ADPKD. Through our analysis, 32 patients had PKD1 or PKD2 mutations. Additionally, 3 patients with disease-causing mutations in NPHP4, PKHD1, and OFD1 were diagnosed with an inherited renal cystic disease other than ADPKD. In patients with PKD1 or PKD2 mutations, the prevalence of polycystic liver disease, defined as more than 20 liver cysts, was significantly higher (71.9% vs 33.3%, P = .006), total kidney volume was significantly increased (median, 1580.7 mL vs 791.0 mL, P = .027) and mean arterial pressure was significantly higher (median, 98 mm Hg vs 91 mm Hg, P = .012). The genetic screening approach and clinical features described here are potentially beneficial for optimal management of adult sporadic polycystic kidney disease patients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Investigation of major genetic alterations in neuroblastoma.
Costa, Régis Afonso; Seuánez, Héctor N
2018-06-01
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. This malignancy shows a wide spectrum of clinical outcome and its prognosis is conditioned by manifold biological and genetic factors. We investigated the tumor genetic profile and clinical data of 29 patients with NB by multiplex ligation-dependent probe amplification (MLPA) to assess therapeutic risk. In 18 of these tumors, MYCN status was assessed by fluorescence in situ hybridization (FISH). Copy number variation was also determined for confirming MLPA findings in two 6p loci. We found 2p, 7q and 17q gains, and 1p and 11q losses as the most frequent chromosome alterations in this cohort. FISH confirmed all cases of MYCN amplification detected by MLPA. In view of unexpected 6p imbalance, copy number variation of two 6p loci was assessed for validating MLPA findings. Based on clinical data and genetic profiles, patients were stratified in pretreatment risk groups according to international consensus. MLPA proved to be effective for detecting multiple genetic alterations in all chromosome regions as requested by the International Neuroblastoma Risk Group (INRG) for therapeutic stratification. Moreover, this technique proved to be cost effective, reliable, only requiring standard PCR equipment, and attractive for routine analysis. However, the observed 6p imbalances made PKHD1 and DCDC2 inadequate for control loci. This must be considered when designing commercial MLPA kits for NB. Finally, four patients showed a normal MLPA profile, suggesting that NB might have a more complex genetic pattern than the one assessed by presently available MLPA kits.
Hou, Q; Chen, K; Shan, Z
2015-01-01
To construct the cDNA library of the ascites tumor cells of ovarian cancer, which can be used to screen the related antigen for the early diagnosis of ovarian cancer and therapeutic targets of immune treatment. Four cases of ovarian serous cystadenocarcinoma, two cases of ovarian mucinous cystadenocarcinoma, and two cases of ovarian endometrial carcinoma in patients with ascitic tumor cells which were used to construct the cDNA library. To screen the ovarian cancer antigen gene, evaluate the enzyme, and analyze nucleotide sequence, serological analysis of recombinant tumor cDNA expression libraries (SEREX) and suppression subtractive hybridization technique (SSH) techniques were utilized. The detection method of recombinant expression-based serological mini-arrays (SMARTA) was used to detect the ovarian cancer antigen and the positive reaction of 105 cases of ovarian cancer patients and 105 normal women's autoantibodies correspondingly in serum. After two rounds of serologic screening and glycosides sequencing analysis, 59 candidates of ovarian cancer antigen gene fragments were finally identified, which corresponded to 50 genes. They were then divided into six categories: (1) the homologous genes which related to the known ovarian cancer genes, such as BARD 1 gene, etc; (2) the homologous genes which were associated with other tumors, such as TM4SFI gene, etc; (3) the genes which were expressed in a special organization, such as ILF3, FXR1 gene, etc; (4) the genes which were the same with some protein genes of special function, such as TIZ, ClD gene; (5) the homologous genes which possessed the same source with embryonic genes, such as PKHD1 gene, etc; (6) the remaining genes were the unknown genes without the homologous sequence in the gene pool, such as OV-189 genes. SEREX technology combined with SSH method is an effective research strategy which can filter tumor antigen with high specific character; the corresponding autoantibodies of TM4SFl, ClD, TIZ, BARDI, FXRI, and OV-189 gene's recombinant antigen in serum can be regarded as the biomarkers which are used to diagnose ovarian cancer. The combination of multiple antigen detection can improve diagnostic efficiency.
Spuesens, Emiel B M; Oduber, Minoushka; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis
2009-07-01
The gene encoding major adhesin protein P1 of Mycoplasma pneumoniae, MPN141, contains two DNA sequence stretches, designated RepMP2/3 and RepMP4, which display variation among strains. This variation allows strains to be differentiated into two major P1 genotypes (1 and 2) and several variants. Interestingly, multiple versions of the RepMP2/3 and RepMP4 elements exist at other sites within the bacterial genome. Because these versions are closely related in sequence, but not identical, it has been hypothesized that they have the capacity to recombine with their counterparts within MPN141, and thereby serve as a source of sequence variation of the P1 protein. In order to determine the variation within the RepMP2/3 and RepMP4 elements, both within the bacterial genome and among strains, we analysed the DNA sequences of all RepMP2/3 and RepMP4 elements within the genomes of 23 M. pneumoniae strains. Our data demonstrate that: (i) recombination is likely to have occurred between two RepMP2/3 elements in four of the strains, and (ii) all previously described P1 genotypes can be explained by inter-RepMP recombination events. Moreover, the difference between the two major P1 genotypes was reflected in all RepMP elements, such that subtype 1 and 2 strains can be differentiated on the basis of sequence variation in each RepMP element. This implies that subtype 1 and subtype 2 strains represent evolutionarily diverged strain lineages. Finally, a classification scheme is proposed in which the P1 genotype of M. pneumoniae isolates can be described in a sequence-based, universal fashion.
Bellissimo, Daniel B; Christopherson, Pamela A; Flood, Veronica H; Gill, Joan Cox; Friedman, Kenneth D; Haberichter, Sandra L; Shapiro, Amy D; Abshire, Thomas C; Leissinger, Cindy; Hoots, W Keith; Lusher, Jeanne M; Ragni, Margaret V; Montgomery, Robert R
2012-03-01
Diagnosis and classification of VWD is aided by molecular analysis of the VWF gene. Because VWF polymorphisms have not been fully characterized, we performed VWF laboratory testing and gene sequencing of 184 healthy controls with a negative bleeding history. The controls included 66 (35.9%) African Americans (AAs). We identified 21 new sequence variations, 13 (62%) of which occurred exclusively in AAs and 2 (G967D, T2666M) that were found in 10%-15% of the AA samples, suggesting they are polymorphisms. We identified 14 sequence variations reported previously as VWF mutations, the majority of which were type 1 mutations. These controls had VWF Ag levels within the normal range, suggesting that these sequence variations might not always reduce plasma VWF levels. Eleven mutations were found in AAs, and the frequency of M740I, H817Q, and R2185Q was 15%-18%. Ten AA controls had the 2N mutation H817Q; 1 was homozygous. The average factor VIII level in this group was 99 IU/dL, suggesting that this variation may confer little or no clinical symptoms. This study emphasizes the importance of sequencing healthy controls to understand ethnic-specific sequence variations so that asymptomatic sequence variations are not misidentified as mutations in other ethnic or racial groups.
HIV-1 sequence variation between isolates from mother-infant transmission pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wike, C.M.; Daniels, M.R.; Furtado, M.
1991-12-31
To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants` isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between eachmore » linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.« less
Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B
2015-07-01
The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.
Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa
Spencer, David H.; Kas, Arnold; Smith, Eric E.; Raymond, Christopher K.; Sims, Elizabeth H.; Hastings, Michele; Burns, Jane L.; Kaul, Rajinder; Olson, Maynard V.
2003-01-01
Whole-genome shotgun sequencing was used to study the sequence variation of three Pseudomonas aeruginosa isolates, two from clonal infections of cystic fibrosis patients and one from an aquatic environment, relative to the genomic sequence of reference strain PAO1. The majority of the PAO1 genome is represented in these strains; however, at least three prominent islands of PAO1-specific sequence are apparent. Conversely, ∼10% of the sequencing reads derived from each isolate fail to align with the PAO1 backbone. While average sequence variation among all strains is roughly 0.5%, regions of pronounced differences were evident in whole-genome scans of nucleotide diversity. We analyzed two such divergent loci, the pyoverdine and O-antigen biosynthesis regions, by complete resequencing. A thorough analysis of isolates collected over time from one of the cystic fibrosis patients revealed independent mutations resulting in the loss of O-antigen synthesis alternating with a mucoid phenotype. Overall, we conclude that most of the PAO1 genome represents a core P. aeruginosa backbone sequence while the strains addressed in this study possess additional genetic material that accounts for at least 10% of their genomes. Approximately half of these additional sequences are novel. PMID:12562802
Cases, Aleix
2002-12-01
The 35th Annual Meeting of the American Society of Nephrology, held in Philadelphia, Pennsylvania, United States (October 30 to November 4, 2002) presented the newest advances in basic and clinical nephrology science. Several presentations and symposia discussed the effects of various interventions and risk factors in clinical outcomes in dialysis patients. The recent evidences of pure red cell aplasia secondary to neutralizing antibodies against erythropoietin were also extensively discussed in a special symposium. Recent advances in the management of calcium phosphorus metabolism and secondary hyperparathyroidism, such as the clinical efficacy and safety of AMG-073, a new calcimimetic agent in the control of hyperparathyroidism in chronic kidney disease patients, or the use of sevelamer or lanthanum carbonate as phosphate binders, were presented. The results in animal models on improved sparing of renal function with rapamycin versus cyclosporin A represent a promising advance in renal transplantation. Finally, the recent discoveries with the newly identified disease gene PKHD1, which causes autosomal recessive polycystic kidney disease, were also presented at the meeting. (c) 2002 Prous Science. All rights reserved.
Chen, Fen; Li, Juan; Sugiyama, Hiromu; Zhou, Dong-Hui; Song, Hui-Qun; Zhao, Guang-Hui; Zhu, Xing-Quan
2015-02-01
The present study examined sequence variability in the mitochondrial (mt) protein-coding genes cytochrome b (cytb), NADH dehydrogenase subunits 2 and 6 (nad2 and nad6) among 24 isolates of Schistosoma japonicum from different endemic regions in the Philippines, Japan and China. The complete cytb, nad2 and nad6 genes were amplified and sequenced separately from individual schistosome. Sequence variations for isolates from the Philippines were 0-0.5% for cytb, 0-0.6% for nad2, and 0-0.9% for nad6. Variation was 0-0.5%, 0.1-0.8%, 0-0.7% for corresponding genes for schistosome samples from mainland China. For worms in Japan, genetic variations were 0-0.2%, 0.1-0.2% and 0 for the three genes, respectively. Sequence variations were 0-1.0%, 0-1.8% and 0-1.1% for cytb, nad2 and nad6, respectively, among schistosome isolates from different geographical strains in the Philippines, Japan and China. Of the three countries, lowest sequence variations were found between isolates from mainland China and the Philippines and highest were detected between Japan and the Philippines in three mtDNA genes. Phylogenetic analyses based on the combined sequences of cytb, nad2 and nad6 revealed that all isolates in the Philippines clustered together sistered to samples from Yunnan and Zhejiang provinces in China, while isolates from Yamanashi in Japan were in a solitary clade. These results demonstrated the usefulness of the combined three mtDNA sequences for studying genetic diversity and population structure among S. japonicum isolates from the Philippines, China and Japan.
Variation, Repetition, And Choice
Abreu-Rodrigues, Josele; Lattal, Kennon A; dos Santos, Cristiano V; Matos, Ricardo A
2005-01-01
Experiment 1 investigated the controlling properties of variability contingencies on choice between repeated and variable responding. Pigeons were exposed to concurrent-chains schedules with two alternatives. In the REPEAT alternative, reinforcers in the terminal link depended on a single sequence of four responses. In the VARY alternative, a response sequence in the terminal link was reinforced only if it differed from the n previous sequences (lag criterion). The REPEAT contingency generated low, constant levels of sequence variation whereas the VARY contingency produced levels of sequence variation that increased with the lag criterion. Preference for the REPEAT alternative tended to increase directly with the degree of variation required for reinforcement. Experiment 2 examined the potential confounding effects in Experiment 1 of immediacy of reinforcement by yoking the interreinforcer intervals in the REPEAT alternative to those in the VARY alternative. Again, preference for REPEAT was a function of the lag criterion. Choice between varying and repeating behavior is discussed with respect to obtained behavioral variability, probability of reinforcement, delay of reinforcement, and switching within a sequence. PMID:15828592
Liu, G H; Zhou, W; Nisbet, A J; Xu, M J; Zhou, D H; Zhao, G H; Wang, S K; Song, H Q; Lin, R Q; Zhu, X Q
2014-03-01
Trichuris trichiura and Trichuris suis parasitize (at the adult stage) the caeca of humans and pigs, respectively, causing trichuriasis. Despite these parasites being of human and animal health significance, causing considerable socio-economic losses globally, little is known of the molecular characteristics of T. trichiura and T. suis from China. In the present study, the entire first and second internal transcribed spacer (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) of T. trichiura and T. suis from China were amplified by polymerase chain reaction (PCR), the representative amplicons were cloned and sequenced, and sequence variation in the ITS rDNA was examined. The ITS rDNA sequences for the T. trichiura and T. suis samples were 1222-1267 bp and 1339-1353 bp in length, respectively. Sequence analysis revealed that the ITS-1, 5.8S and ITS-2 rDNAs of both whipworms were 600-627 bp and 655-661 bp, 154 bp, and 468-486 bp and 530-538 bp in size, respectively. Sequence variation in ITS rDNA within and among T. trichiura and T. suis was examined. Excluding nucleotide variations in the simple sequence repeats, the intra-species sequence variation in the ITS-1 was 0.2-1.7% within T. trichiura, and 0-1.5% within T. suis. For ITS-2 rDNA, the intra-species sequence variation was 0-1.3% within T. trichiura and 0.2-1.7% within T. suis. The inter-species sequence differences between the two whipworms were 60.7-65.3% for ITS-1 and 59.3-61.5% for ITS-2. These results demonstrated that the ITS rDNA sequences provide additional genetic markers for the characterization and differentiation of the two whipworms. These data should be useful for studying the epidemiology and population genetics of T. trichiura and T. suis, as well as for the diagnosis of trichuriasis in humans and pigs.
Potenza, L; Cafiero, M A; Camarda, A; La Salandra, G; Cucchiarini, L; Dachà, M
2009-10-01
In the present work mites previously identified as Dermanyssus gallinae De Geer (Acari, Mesostigmata) using morphological keys were investigated by molecular tools. The complete internal transcribed spacer 1 (ITS1), 5.8S ribosomal DNA, and ITS2 region of the ribosomal DNA from mites were amplified and sequenced to examine the level of sequence variations and to explore the feasibility of using this region in the identification of this mite. Conserved primers located at the 3'end of 18S and at the 5'start of 28S rRNA genes were used first, and amplified fragments were sequenced. Sequence analyses showed no variation in 5.8S and ITS2 region while slight intraspecific variations involving substitutions as well as deletions concentrated in the ITS1 region. Based on the sequence analyses a nested PCR of the ITS2 region followed by RFLP analyses has been set up in the attempt to provide a rapid molecular diagnostic tool of D. gallinae.
McRobie, Helen R; King, Linda M; Fanutti, Cristina; Coussons, Peter J; Moncrief, Nancy D; Thomas, Alison P M
2014-01-01
Sequence variations in the melanocortin 1 receptor (MC1R) gene are associated with melanism in many different species of mammals, birds, and reptiles. The gray squirrel (Sciurus carolinensis), found in the British Isles, was introduced from North America in the late 19th century. Melanism in the British gray squirrel is associated with a 24-bp deletion in the MC1R. To investigate the origin of this mutation, we sequenced the MC1R of 95 individuals including 44 melanic gray squirrels from both the British Isles and North America. Melanic gray squirrels of both populations had the same 24-bp deletion associated with melanism. Given the significant deletion associated with melanism in the gray squirrel, we sequenced the MC1R of both wild-type and melanic fox squirrels (Sciurus niger) (9 individuals) and red squirrels (Sciurus vulgaris) (39 individuals). Unlike the gray squirrel, no association between sequence variation in the MC1R and melanism was found in these 2 species. We conclude that the melanic gray squirrel found in the British Isles originated from one or more introductions of melanic gray squirrels from North America. We also conclude that variations in the MC1R are not associated with melanism in the fox and red squirrels.
Wang, Yan; Liu, Guo-Hua; Li, Jia-Yuan; Xu, Min-Jun; Ye, Yong-Gang; Zhou, Dong-Hui; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan
2013-02-01
This study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 5 (nad5) and cytochrome b (cytb), among Trichuris ovis isolates from different hosts in Guangdong Province, China. A portion of the cox1 (pcox1), nad5 (pnad5) and cytb (pcytb) genes was amplified separately from individual whipworms by PCR, and was subjected to sequencing from both directions. The size of the sequences of pcox1, pnad5 and pcytb was 618, 240 and 464 bp, respectively. Although the intra-specific sequence variations within T. ovis were 0-0.8% for pcox1, 0-0.8% for pnad5 and 0-1.9% for pcytb, the inter-specific sequence differences among members of the genus Trichuris were significantly higher, being 24.3-26.5% for pcox1, 33.7-56.4% for pnad5 and 24.8-26.1% for pcytb, respectively. Phylogenetic analyses using combined sequences of pcox1, pnad5 and pcytb, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), indicated that all of the T. ovis isolates grouped together with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA sequences among T. ovis isolates from different hosts, and have implications for studying molecular epidemiology and population genetics of T. ovis.
2013-01-01
Background Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons. Findings We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene. Conclusions Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons. PMID:23915680
Child Development and Structural Variation in the Human Genome
ERIC Educational Resources Information Center
Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.
2013-01-01
Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…
Lacerra, Giuseppina; Fiorito, Mirella; Musollino, Gennaro; Di Noce, Francesca; Esposito, Maria; Nigro, Vincenzo; Gaudiano, Carlo; Carestia, Clementina
2004-10-01
The alpha-globin chains are encoded by two duplicated genes (HBA2 and HBA1, 5'-3') showing overall sequence homology >96% and average CG content >60%. alpha-Thalassemia, the most prevalent worldwide autosomal recessive disorder, is a hereditary anemia caused by sequence variations of these genes in about 25% of carriers. We evaluated the overall sensitivity and suitability of DHPLC and DG-DGGE in scanning both the alpha-globin genes by carrying out a retrospective analysis of 19 variant alleles in 29 genotypes. The HBA2 alleles c.1A>G, c.79G>A, and c.281T>G, and the HBA1 allele c.475C>A were new. Three pathogenic sequence variations were associated in cis with nonpathogenic variations in all families studied; they were the HBA2 variation c.2T>C associated with c.-24C>G, and the HBA2 variations c.391G>C and c.427T>C, both associated with c.565G>A. We set up original experimental conditions for DHPLC and DG-DGGE and analyzed 10 normal subjects, 46 heterozygotes, seven homozygotes, seven compound heterozygotes, and six compound heterozygotes for a hybrid gene. Both the methodologies gave reproducible results and no false-positive was detected. DHPLC showed 100% sensitivity and DG-DGGE nearly 90%. About 100% of the sequence from the cap site to the polyA addition site could be scanned by DHPLC, about 87% by DG-DGGE. It is noteworthy that the three most common pathogenic sequence variations (HBA2 alleles c.2T>C, c.95+2_95+6del, and c.523A>G) were unambiguously detected by both the methodologies. Genotype diagnosis must be confirmed with PCR sequencing of single amplicons or with an allele-specific method. This study can be helpful for scanning genes with high CG content and offers a model suitable for duplicated genes with high homology. Copyright 2004 Wiley-Liss, Inc.
Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing
Guo, Meng; Luo, Guopei; Jin, Kaizhou; Long, Jiang; Cheng, He; Lu, Yu; Wang, Zhengshi; Yang, Chao; Xu, Jin; Ni, Quanxing; Yu, Xianjun; Liu, Chen
2017-01-01
Solid pseudopapillary tumor of the pancreas (SPT) is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels) and single nucleotide polymorphisms (SNPs). In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%), and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism. PMID:28054945
Küpper, Clemens; Burke, Terry; Lank, David B.
2015-01-01
Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species. PMID:25534935
Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E
2012-07-01
Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.
Neocortical malformation as consequence of nonadaptive regulation of neuronogenetic sequence
NASA Technical Reports Server (NTRS)
Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.
2000-01-01
Variations in the structure of the neocortex induced by single gene mutations may be extreme or subtle. They differ from variations in neocortical structure encountered across and within species in that these "normal" structural variations are adaptive (both structurally and behaviorally), whereas those associated with disorders of development are not. Here we propose that they also differ in principle in that they represent disruptions of molecular mechanisms that are not normally regulatory to variations in the histogenetic sequence. We propose an algorithm for the operation of the neuronogenetic sequence in relation to the overall neocortical histogenetic sequence and highlight the restriction point of the G1 phase of the cell cycle as the master regulatory control point for normal coordinate structural variation across species and importantly within species. From considerations based on the anatomic evidence from neocortical malformation in humans, we illustrate in principle how this overall sequence appears to be disrupted by molecular biological linkages operating principally outside the control mechanisms responsible for the normal structural variation of the neocortex. MRDD Research Reviews 6:22-33, 2000. Copyright 2000 Wiley-Liss, Inc.
Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome.
Boon, E; Zimmerman, E; Lang, B F; Hijri, M
2010-07-01
Arbuscular mycorrhizal fungi (AMF) are heterokaryotes with an unusual genetic makeup. Substantial genetic variation occurs among nuclei within a single mycelium or isolate. AMF reproduce through spores that contain varying fractions of this heterogeneous population of nuclei. It is not clear whether this genetic variation on the genome level actually contributes to the AMF phenotype. To investigate the extent to which polymorphisms in nuclear genes are transcribed, we analysed the intra-isolate genomic and cDNA sequence variation of two genes, the large subunit ribosomal RNA (LSU rDNA) of Glomus sp. DAOM-197198 (previously known as G. intraradices) and the POL1-like sequence (PLS) of Glomus etunicatum. For both genes, we find high sequence variation at the genome and transcriptome level. Reconstruction of LSU rDNA secondary structure shows that all variants are functional. Patterns of PLS sequence polymorphism indicate that there is one functional gene copy, PLS2, which is preferentially transcribed, and one gene copy, PLS1, which is a pseudogene. This is the first study that investigates AMF intra-isolate variation at the transcriptome level. In conclusion, it is possible that, in AMF, multiple nuclear genomes contribute to a single phenotype.
Grievink, Liat Shavit; Penny, David; Hendy, Mike D; Holland, Barbara R
2009-01-01
Correction to Shavit Grievink L, Penny D, Hendy MD, Holland BR: LineageSpecificSeqgen: generating sequence data with lineage-specific variation in the proportion of variable sites. BMC Evol Biol 2008, 8(1):317.
Benz, Matthias R; Bongartz, Georg; Froehlich, Johannes M; Winkel, David; Boll, Daniel T; Heye, Tobias
2018-07-01
The aim was to investigate the variation of the arterial input function (AIF) within and between various DCE MRI sequences. A dynamic flow-phantom and steady signal reference were scanned on a 3T MRI using fast low angle shot (FLASH) 2d, FLASH3d (parallel imaging factor (P) = P0, P2, P4), volumetric interpolated breath-hold examination (VIBE) (P = P0, P3, P2 × 2, P2 × 3, P3 × 2), golden-angle radial sparse parallel imaging (GRASP), and time-resolved imaging with stochastic trajectories (TWIST). Signal over time curves were normalized and quantitatively analyzed by full width half maximum (FWHM) measurements to assess variation within and between sequences. The coefficient of variation (CV) for the steady signal reference ranged from 0.07-0.8%. The non-accelerated gradient echo FLASH2d, FLASH3d, and VIBE sequences showed low within sequence variation with 2.1%, 1.0%, and 1.6%. The maximum FWHM CV was 3.2% for parallel imaging acceleration (VIBE P2 × 3), 2.7% for GRASP and 9.1% for TWIST. The FWHM CV between sequences ranged from 8.5-14.4% for most non-accelerated/accelerated gradient echo sequences except 6.2% for FLASH3d P0 and 0.3% for FLASH3d P2; GRASP FWHM CV was 9.9% versus 28% for TWIST. MRI acceleration techniques vary in reproducibility and quantification of the AIF. Incomplete coverage of the k-space with TWIST as a representative of view-sharing techniques showed the highest variation within sequences and might be less suited for reproducible quantification of the AIF. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of human herpesvirus-6 IE1 sequence variation in clinical samples.
Stanton, Richard; Wilkinson, Gavin W G; Fox, Julie D
2003-12-01
Herpesvirus immediate early (IE) proteins are known to play key roles in establishing productive infections, regulating reactivation from latency, and creating a cellular environment favourable to viral replication. Human herpesvirus-6 (HHV-6) IE genes have not been studied as intensively as their homologues in the prototype betaherpesvirus human cytomegalovirus (HCMV). Whilst the HCMV IE1 gene is relatively conserved, early studies indicated that HHV-6 IE1 exhibited a high level of sequence variation between HHV-6A and HHV-6B isolates, although the observation was based primarily on virus stocks that had been isolated and propagated in vitro. In this study, we investigated the level of HHV-6 IE1 sequence variation in vivo by direct sequencing of circulating virus in clinical samples without prior in vitro culture. Sequences exactly matching those reported for reference HHV-6 isolates were identified in clinical samples, thus the HHV-6 laboratory strains used in the majority of in vitro studies appear to be representative of virus circulating in vivo with respect to the IE1 gene. The HHV-6 IE1 sequence is also conserved in reference strains that had been passaged extensively in vitro. The high degree of divergence between variant A and B type IE1 sequences was confirmed, but interestingly HHV-6B IE1 sequences were observed to further segregate into two distinct subgroups, with the laboratory strains Z29 and HST representative of these two subgroups. Within each HHV-6B subgroup, a remarkably high level of homology was observed. Thus the HHV-6 IE1 sequence appears highly stable, underlining its potential importance to the viral life cycle. Copyright 2003 Wiley-Liss, Inc.
He, Xiao-Lan; Li, Qian; Peng, Wei-Hong; Zhou, Jie; Cao, Xue-Lian; Wang, Di; Huang, Zhong-Qian; Tan, Wei; Li, Yu; Gan, Bing-Cheng
2017-06-26
The internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), and elongation factor 1-alpha (EF1α) are often used in fungal taxonomy and phylogenetic analysis. As we know, an ideal molecular marker used in molecular identification and phylogenetic studies is homogeneous within species, and interspecific variation exceeds intraspecific variation. However, during our process of performing ITS, RPB2, and EF1α sequencing on the Pleurotus spp., we found that intra-isolate sequence polymorphism might be present in these genes because direct sequencing of PCR products failed in some isolates. Therefore, we detected intra- and inter-isolate variation of the three genes in Pleurotus by polymerase chain reaction amplification and cloning in this study. Results showed that intra-isolate variation of ITS was not uncommon but the polymorphic level in each isolate was relatively low in Pleurotus; intra-isolate variations of EF1α and RPB2 sequences were present in an unexpectedly high amount. The polymorphism level differed significantly between ITS, RPB2, and EF1α in the same individual, and the intra-isolate heterogeneity level of each gene varied between isolates within the same species. Intra-isolate and intraspecific variation of ITS in the tested isolates was less than interspecific variation, and intra-isolate and intraspecific variation of RPB2 was probably equal with interspecific divergence. Meanwhile, intra-isolate and intraspecific variation of EF1α could exceed interspecific divergence. These findings suggested that RPB2 and EF1α are not desirable barcoding candidates for Pleurotus. We also discussed the reason why rDNA and protein-coding genes showed variants within a single isolate in Pleurotus, but must be addressed in further research. Our study demonstrated that intra-isolate variation of ribosomal and protein-coding genes are likely widespread in fungi. This has implications for studies on fungal evolution, taxonomy, phylogenetics, and population genetics. More extensive sampling of these genes and other candidates will be required to ensure reliability as phylogenetic markers and DNA barcodes.
Characterization of genetic sequence variation of 58 STR loci in four major population groups.
Novroski, Nicole M M; King, Jonathan L; Churchill, Jennifer D; Seah, Lay Hong; Budowle, Bruce
2016-11-01
Massively parallel sequencing (MPS) can identify sequence variation within short tandem repeat (STR) alleles as well as their nominal allele lengths that traditionally have been obtained by capillary electrophoresis. Using the MiSeq FGx Forensic Genomics System (Illumina), STRait Razor, and in-house excel workbooks, genetic variation was characterized within STR repeat and flanking regions of 27 autosomal, 7 X-chromosome and 24 Y-chromosome STR markers in 777 unrelated individuals from four population groups. Seven hundred and forty six autosomal, 227 X-chromosome, and 324 Y-chromosome STR alleles were identified by sequence compared with 357 autosomal, 107 X-chromosome, and 189 Y-chromosome STR alleles that were identified by length. Within the observed sequence variation, 227 autosomal, 156 X-chromosome, and 112 Y-chromosome novel alleles were identified and described. One hundred and seventy six autosomal, 123 X-chromosome, and 93 Y-chromosome sequence variants resided within STR repeat regions, and 86 autosomal, 39 X-chromosome, and 20 Y-chromosome variants were located in STR flanking regions. Three markers, D18S51, DXS10135, and DYS385a-b had 1, 4, and 1 alleles, respectively, which contained both a novel repeat region variant and a flanking sequence variant in the same nucleotide sequence. There were 50 markers that demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. These population data illustrate the genetic variation that exists in the commonly used STR markers in the selected population samples and provide allele frequencies for statistical calculations related to STR profiling with MPS data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DYZ1 arrays show sequence variation between the monozygotic males
2014-01-01
Background Monozygotic twins (MZT) are an important resource for genetical studies in the context of normal and diseased genomes. In the present study we used DYZ1, a satellite fraction present in the form of tandem arrays on the long arm of the human Y chromosome, as a tool to uncover sequence variations between the monozygotic males. Results We detected copy number variation, frequent insertions and deletions within the sequences of DYZ1 arrays amongst all the three sets of twins used in the present study. MZT1b showed loss of 35 bp compared to that in 1a, whereas 2a showed loss of 31 bp compared to that in 2b. Similarly, 3b showed 10 bp insertion compared to that in 3a. MZT1a germline DNA showed loss of 5 bp and 1b blood DNA showed loss of 26 bp compared to that of 1a blood and 1b germline DNA, respectively. Of the 69 restriction sites detected in DYZ1 arrays, MboII, BsrI, TspEI and TaqI enzymes showed frequent loss and or gain amongst all the 3 pairs studied. MZT1 pair showed loss/gain of VspI, BsrDI, AgsI, PleI, TspDTI, TspEI, TfiI and TaqI restriction sites in both blood and germline DNA. All the three sets of MZT showed differences in the number of DYZ1 copies. FISH signals reflected somatic mosaicism of the DYZ1 copies across the cells. Conclusions DYZ1 showed both sequence and copy number variation between the MZT males. Sequence variation was also noticed between germline and blood DNA samples of the same individual as we observed at least in one set of sample. The result suggests that DYZ1 faithfully records all the genetical changes occurring after the twining which may be ascribed to the environmental factors. PMID:24495361
Sampathkumar, Raghavan; Shadabi, Elnaz; Luo, Ma
2012-01-01
As of February 2012, 50 circulating recombinant forms (CRFs) have been reported for HIV-1 while one CRF for HIV-2. Also according to HIV sequence compendium 2011, the HIV sequence database is replete with 414,398 sequences. The fact that there are CRFs, which are an amalgamation of sequences derived from six or more subtypes (CRF27_cpx (cpx refers to complex) is a mosaic with sequences from 6 different subtypes besides an unclassified fragment), serves as a testimony to the continual divergent evolution of the virus with its approximate 1% per year rate of evolution, and this phenomena per se poses tremendous challenge for vaccine development against HIV/AIDS, a devastating disease that has killed 1.8 million patients in 2010. Here, we explore the interaction between HIV-1 and host genetic variation in the context of HIV/AIDS and antiretroviral therapy response. PMID:22666249
VaDiR: an integrated approach to Variant Detection in RNA.
Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy
2018-02-01
Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.
Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle.
Carignano, Hugo A; Roldan, Dana L; Beribe, María J; Raschia, María A; Amadio, Ariel; Nani, Juan P; Gutierrez, Gerónimo; Alvarez, Irene; Trono, Karina; Poli, Mario A; Miretti, Marcos M
2018-02-13
Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log 10 p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r 2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A
2011-01-01
PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, B; Yin, F; Cai, J
Purpose: To determine the variation in tumor contrast between different MRI sequences and between patients for the purpose of MRI-based treatment planning. Methods: Multiple MRI scans of 11 patients with cancer(s) in the liver were included in this IRB-approved study. Imaging sequences consisted of T1W MRI, Contrast-Enhanced T1W MRI, T2W MRI, and T2*/T1W MRI. MRI images were acquired on a 1.5T GE Signa scanner with a four-channel torso coil. We calculated the tumor-to-tissue contrast to noise ratio (CNR) for each MR sequence by contouring the tumor and a region of interest (ROI) in a homogeneous region of the liver usingmore » the Eclipse treatment planning software. CNR was calculated (I-Tum-I-ROI)/SD-ROI, where I-Tum and I-ROI are the mean values of the tumor and the ROI respectively, and SD-ROI is the standard deviation of the ROI. The same tumor and ROI structures were used in all measurements for different MR sequences. Inter-patient Coefficient of variation (CV), and inter-sequence CV was determined. In addition, mean and standard deviation of CNR were calculated and compared between different MR sequences. Results: Our preliminary results showed large inter-patient CV (range: 37.7% to 88%) and inter-sequence CV (range 5.3% to 104.9%) of liver tumor CNR, indicating great variations in tumor CNR between MR sequences and between patients. Tumor CNR was found to be largest in CE-T1W (8.5±7.5), followed by T2W (4.2±2.4), T1W (3.4±2.2), and T2*/T1W (1.7±0.6) MR scans. The inter-patient CV of tumor CNR was also the largest in CE-T1W (88%), followed by T1W (64.3%), T1W (56.2%), and T2*/T1W (37.7) MR scans. Conclusion: Large inter-sequence and inter-patient variations were observed in liver tumor CNR. CE-T1W MR images on average provided the best tumor CNR. Efforts are needed to optimize tumor contrast and its consistency for MRI-based treatment planning of cancer in the liver. This project is supported by NIH grant: 1R21CA165384.« less
Intraspecific variation in Cryptocaryon irritans.
Diggles, B K; Adlard, R D
1997-01-01
Intraspecific variation in the ciliate Cryptocaryon irritans was examined using sequences of the first internal transcribed spacer region (ITS-1) of ribosomal DNA (rDNA) combined with developmental and morphological characters. Amplified rDNA sequences consisting of 151 bases of the flanking 18 S and 5.8 S regions, and the entire ITS-1 region (169 or 170 bases), were determined and compared for 16 isolates of C. irritans from Australia, Israel and the USA. There was one variable base between isolates in the 18 S region and 11 variable bases in the ITS-1 region. Despite their similar morphology, significant sequence variation (4.1% divergence) and developmental differences indicate that Australian C. irritans isolates from estuarine (Moreton Bay) and coral reef (Heron Island) environments are distinct. The Heron Island isolate was genetically closer to morphologically dissimilar isolates from Israel (1.8% divergence) and the USA (2.3% divergence) than it was to the Moreton Bay isolates. Three isolates maintained in our laboratory since February 1994 differed in sequence from earlier laboratory isolates (2.9% to 3.5% divergence), even though all were similar morphologically and originated from the same source. During this time the sequence of the isolates from wild fish in Moreton Bay remained unchanged. These genetic differences indicate the existence of a founder effect in laboratory populations of C. irritans. The genetic variation found here, combined with known morphological and developmental differences, is used to characterise four strains of C. irritans.
Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Chauhan, Ranjeet S; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Pati, Binod K
2016-10-01
Taenia solium is the major cause of taeniasis and cysticercosis/neurocysticercosis (NCC) in the developing countries including India, but the existence of other Taenia species and genetic variation have not been studied in India. So, we studied the existence of different Taenia species, and sequence variation in Taenia isolates from human (proglottids and cysticerci) and swine (cysticerci) in North India. Amplification of cytochrome c oxidase subunit 1 gene (cox1) was done by polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis. We identified two species of Taenia i.e. T. solium and Taenia asiatica in our isolates. T. solium isolates showed similarity with Asian genotype and nucleotide variations from 0.25 to 1.01 %, whereas T. asiatica displayed nucleotide variations ranged from 0.25 to 0.5 %. These findings displayed the minimal genetic variations in North Indian isolates of T. solium and T. asiatica.
Natural Allelic Variations in Highly Polyploidy Saccharum Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.
Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less
Natural Allelic Variations in Highly Polyploidy Saccharum Complex
Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.; ...
2016-06-08
Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less
Equivalent Indels – Ambiguous Functional Classes and Redundancy in Databases
Assmus, Jens; Kleffe, Jürgen; Schmitt, Armin O.; Brockmann, Gudrun A.
2013-01-01
There is considerable interest in studying sequenced variations. However, while the positions of substitutions are uniquely identifiable by sequence alignment, the location of insertions and deletions still poses problems. Each insertion and deletion causes a change of sequence. Yet, due to low complexity or repetitive sequence structures, the same indel can sometimes be annotated in different ways. Two indels which differ in allele sequence and position can be one and the same, i.e. the alternative sequence of the whole chromosome is identical in both cases and, therefore, the two deletions are biologically equivalent. In such a case, it is impossible to identify the exact position of an indel merely based on sequence alignment. Thus, variation entries in a mutation database are not necessarily uniquely defined. We prove the existence of a contiguous region around an indel in which all deletions of the same length are biologically identical. Databases often show only one of several possible locations for a given variation. Furthermore, different data base entries can represent equivalent variation events. We identified 1,045,590 such problematic entries of insertions and deletions out of 5,860,408 indel entries in the current human database of Ensembl. Equivalent indels are found in sequence regions of different functions like exons, introns or 5' and 3' UTRs. One and the same variation can be assigned to several different functional classifications of which only one is correct. We implemented an algorithm that determines for each indel database entry its complete set of equivalent indels which is uniquely characterized by the indel itself and a given interval of the reference sequence. PMID:23658777
Doddapaneni, Harshavardhan; Yao, Jiqiang; Lin, Hong; Walker, M Andrew; Civerolo, Edwin L
2006-01-01
Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c), 54 (Dixon), 83 (Ann1) and 9 (Temecula-1). A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes have been identified as the main source of variations among strains, with individual strains showing different rates of genome evolution. Based on these genome comparisons, it appears that the Pierce's disease strain Temecula-1 genome represents the ancestral genome of the X. fastidiosa. Results of this analysis are publicly available in the form of a web database. PMID:16948851
Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C
1993-01-01
DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)
Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California
NASA Astrophysics Data System (ADS)
Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.
2016-02-01
Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.
Kooshavar, Daniz; Tabatabaiefar, Mohammad Amin; Farrokhi, Effat; Abolhasani, Marziye; Noori-Daloii, Mohammad-Reza; Hashemzadeh-Chaleshtori, Morteza
2013-02-01
Autosomal recessive non-syndromic hearing loss (ARNSHL) can be caused by many genes. However, mutations in the GJB2 gene, which encodes the gap-junction (GJ) protein connexin (Cx) 26, constitute a considerable proportion differing among population. Between 10 and 42 percent of patients with recessive GJB2 mutations carry only one mutant allele. Mutations in GJB4, GJA1, and GJC3 encoding Cx30.3, Cx43, and Cx29, respectively, can lead to HL. Combination of different connexins in heteromeric and heterotypic GJ assemblies is possible. This study aims to determine whether variations in any of the genes GJB4, GJA1 or GJC3 can be the second mutant allele causing the disease in the digenic mode of inheritance in the studied GJB2 heterozygous cases. We examined 34 unrelated GJB2 heterozygous ARNSHL subjects from different geographic and ethnic areas in Iran, using polymerase chain reaction (PCR) followed by direct DNA sequencing to identify any sequence variations in these genes. Restriction fragment length polymorphism (RFLP) assays were performed on 400 normal hearing individuals. Sequence analysis of GJB4 showed five heterozygous variations including c.451C>A, c.219C>T, c.507C>G, c.155_158delTCTG and c.542C>T, with only the latter variation not being detected in any of control samples. There were three heterozygous variations including c.758C>T, c.717G>A and c.3*dupA in GJA1 in four cases. We found no variations in GJC3 gene sequence. Our data suggest that GJB4 c.542C>T variant and less likely some variations of GJB4 and GJA1, but not possibly GJC3, can be assigned to ARNSHL in GJB2 heterozygous mutation carriers providing clues of the digenic pattern. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Michael, Todd P.; Park, Sohyun; Kim, Tae-Sung; Booth, Jim; Byer, Amanda; Sun, Qi; Chory, Joanne; Lee, Kwangwon
2007-01-01
Background WHITE COLLAR-1 (WC-1) mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ) domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR) being essential for clock function. Methodology/Principal Findings Since SSRs are often polymorphic in length across natural populations, we reasoned that investigating natural variation of the WC-1 NpolyQ may provide insight into its role in the circadian clock. We observed significant phenotypic variation in the period, phase and temperature compensation of circadian regulated asexual conidiation across 143 N. crassa accessions. In addition to the NpolyQ, we identified two other simple sequence repeats in WC-1. The sizes of all three WC-1 SSRs correlated with polymorphisms in other clock genes, latitude and circadian period length. Furthermore, in a cross between two N. crassa accessions, the WC-1 NpolyQ co-segregated with period length. Conclusions/Significance Natural variation of the WC-1 NpolyQ suggests a mechanism by which period length can be varied and selected for by the local environment that does not deleteriously affect WC-1 activity. Understanding natural variation in the N. crassa circadian clock will facilitate an understanding of how fungi exploit their environments. PMID:17726525
Lee, Chao-Hung; Helweg-Larsen, Jannik; Tang, Xing; Jin, Shaoling; Li, Baozheng; Bartlett, Marilyn S.; Lu, Jang-Jih; Lundgren, Bettina; Lundgren, Jens D.; Olsson, Mats; Lucas, Sebastian B.; Roux, Patricia; Cargnel, Antonietta; Atzori, Chiara; Matos, Olga; Smith, James W.
1998-01-01
Pneumocystis carinii f. sp. hominis isolates from 207 clinical specimens from nine countries were typed based on nucleotide sequence variations in the internal transcribed spacer regions I and II (ITS1 and ITS2, respectively) of rRNA genes. The number of ITS1 nucleotides has been revised from the previously reported 157 bp to 161 bp. Likewise, the number of ITS2 nucleotides has been changed from 177 to 192 bp. The number of ITS1 sequence types has increased from 2 to 15, and that of ITS2 has increased from 3 to 14. The 15 ITS1 sequence types are designated types A through O, and the 14 ITS2 types are named types a through n. A total of 59 types of P. carinii f. sp. hominis were found in this study. PMID:9508304
Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Millard, Glenda M; O'Brien, Helen; Roulis, Eileen V; Liew, Yew-Wah; Martin, Jacqueline R; McGrath, Kelli A; Powley, Tanya; Flower, Robert L; Hyland, Catherine A
2017-04-01
Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting. © 2017 AABB.
Ma, Zhengqiang
2013-01-01
Rht-B1c, allelic to the DELLA protein-encoding gene Rht-B1a, is a natural mutation documented in common wheat (Triticum aestivum). It confers variation to a number of traits related to cell and plant morphology, seed dormancy, and photosynthesis. The present study was conducted to examine the sequence variations of Rht-B1c and their functional impacts. The results showed that Rht-B1c was partially dominant or co-dominant for plant height, and exhibited an increased dwarfing effect. At the sequence level, Rht-B1c differed from Rht-B1a by one 2kb Veju retrotransposon insertion, three coding region single nucleotide polymorphisms (SNPs), one 197bp insertion, and four SNPs in the 1kb upstream sequence. Haplotype investigations, association analyses, transient expression assays, and expression profiling showed that the Veju insertion was primarily responsible for the extreme dwarfing effect. It was found that the Veju insertion changed processing of the Rht-B1c transcripts and resulted in DELLA motif primary structure disruption. Expression assays showed that Rht-B1c caused reduction of total Rht-1 transcript levels, and up-regulation of GATA-like transcription factors and genes positively regulated by these factors, suggesting that one way in which Rht-1 proteins affect plant growth and development is through GATA-like transcription factor regulation. PMID:23918966
Koho, N M; Mykkänen, A K; Reeben, M; Raekallio, M R; Ilves, M; Pösö, A R
2012-01-01
MCT1-CD147 complex is the prime lactate transporter in mammalian plasma membranes. In equine red blood cells (RBCs), activity of the complex and expression of MCT1 and CD147 is bimodal; high in 70% and low in 30%. We studied whether sequence variations contribute to the bimodal expression of MCT1 and CD147. Samples of blood and cremaster muscle were collected in connection of castration from 24 horses. Additional gluteus muscle samples were collected from 15 Standardbreds of which seven were known to express low amounts of CD147 in RBCs. The cDNA of MCT1 and CD147 together with a promoter region of CD147 was sequenced. The amounts of MCT1 and CD147 expressed in RBC and muscle membranes were measured by Western blot and mRNA levels in muscles by qPCR. MCT1 and CD147 were expressed in 20 castrates, and in four only were traces found. Sequence variations found in MCT1 were not linked to MCT1 expression. In CD147 linked heterozygous single nucleotide polymorphisms (SNPs) 389A>G (Met(125)Val) and 990C>T (3'-UTR) were associated to low expression of CD147. Also a mutation 168A>G (Ile(51)Val) in CD147 was associated to low MCT1 and CD147 expression. Low MCT1 and CD147 mRNA levels in gluteus were found in Standardbreds with low CD147 expression in RBCs. The results suggest that sequence variations affect the expression level of CD147, but do not explain its bimodality. The levels of MCT1 and CD147 mRNA correlated with the expression of CD147 and suggest that bimodality of their expression is regulated at transcriptional level. Copyright © 2011 Elsevier B.V. All rights reserved.
Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations.
Casals, Ferran; Anglada, Roger; Bonet, Núria; Rasal, Raquel; van der Gaag, Kristiaan J; Hoogenboom, Jerry; Solé-Morata, Neus; Comas, David; Calafell, Francesc
2017-09-01
We have genotyped the 58 STRs (27 autosomal, 24 Y-STRs and 7 X-STRs) and 94 autosomal SNPs in Illumina ForenSeq™ Primer Mix A in 88 Spanish Roma (Gypsy) samples and 143 Catalans. Since this platform is based in massive parallel sequencing, we have used simple R scripts to uncover the sequence variation in the repeat region. Thus, we have found, across 58 STRs, 541 length-based alleles, which, after considering repeat-sequence variation, became 804 different alleles. All loci in both populations were in Hardy-Weinberg equilibrium. F ST between both populations was 0.0178 for autosomal SNPs, 0.0146 for autosomal STRs, 0.0101 for X-STRs and 0.1866 for Y-STRs. Combined a priori statistics showed quite large; for instance, pooling all the autosomal loci, the a priori probabilities of discriminating a suspect become 1-(2.3×10 -70 ) and 1-(5.9×10 -73 ), for Roma and Catalans respectively, and the chances of excluding a false father in a trio are 1-(2.6×10 -20 ) and 1-(2.0×10 -21 ). Copyright © 2017 Elsevier B.V. All rights reserved.
Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles
2014-04-23
Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.
Widespread Transient Hoogsteen Base-Pairs in Canonical Duplex DNA with Variable Energetics
Alvey, Heidi S.; Gottardo, Federico L.; Nikolova, Evgenia N.; Al-Hashimi, Hashim M.
2015-01-01
Hoogsteen base-pairing involves a 180 degree rotation of the purine base relative to Watson-Crick base-pairing within DNA duplexes, creating alternative DNA conformations that can play roles in recognition, damage induction, and replication. Here, using Nuclear Magnetic Resonance R1ρ relaxation dispersion, we show that transient Hoogsteen base-pairs occur across more diverse sequence and positional contexts than previously anticipated. We observe sequence-specific variations in Hoogsteen base-pair energetic stabilities that are comparable to variations in Watson-Crick base-pair stability, with Hoogsteen base-pairs being more abundant for energetically less favorable Watson-Crick base-pairs. Our results suggest that the variations in Hoogsteen stabilities and rates of formation are dominated by variations in Watson-Crick base pair stability, suggesting a late transition state for the Watson-Crick to Hoogsteen conformational switch. The occurrence of sequence and position-dependent Hoogsteen base-pairs provide a new potential mechanism for achieving sequence-dependent DNA transactions. PMID:25185517
CNV-seq, a new method to detect copy number variation using high-throughput sequencing.
Xie, Chao; Tammi, Martti T
2009-03-06
DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Simulation of various sequencing methods with coverage between 0.1x to 8x show overall specificity between 91.7 - 99.9%, and sensitivity between 72.2 - 96.5%. We also show the results for assessment of CNV between two individual human genomes.
A global reference for human genetic variation
2016-01-01
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245
2010-01-01
Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation. PMID:20470441
An, Z; Tang, Z; Ma, B; Mason, A S; Guo, Y; Yin, J; Gao, C; Wei, L; Li, J; Fu, D
2014-07-01
Although many studies have shown that transposable element (TE) activation is induced by hybridisation and polyploidisation in plants, much less is known on how different types of TE respond to hybridisation, and the impact of TE-associated sequences on gene function. We investigated the frequency and regularity of putative transposon activation for different types of TE, and determined the impact of TE-associated sequence variation on the genome during allopolyploidisation. We designed different types of TE primers and adopted the Inter-Retrotransposon Amplified Polymorphism (IRAP) method to detect variation in TE-associated sequences during the process of allopolyploidisation between Brassica rapa (AA) and Brassica oleracea (CC), and in successive generations of self-pollinated progeny. In addition, fragments with TE insertions were used to perform Blast2GO analysis to characterise the putative functions of the fragments with TE insertions. Ninety-two primers amplifying 548 loci were used to detect variation in sequences associated with four different orders of TE sequences. TEs could be classed in ascending frequency into LTR-REs, TIRs, LINEs, SINEs and unknown TEs. The frequency of novel variation (putative activation) detected for the four orders of TEs was highest from the F1 to F2 generations, and lowest from the F2 to F3 generations. Functional annotation of sequences with TE insertions showed that genes with TE insertions were mainly involved in metabolic processes and binding, and preferentially functioned in organelles. TE variation in our study severely disturbed the genetic compositions of the different generations, resulting in inconsistencies in genetic clustering. Different types of TE showed different patterns of variation during the process of allopolyploidisation. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.
Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D
2016-10-01
Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Consensus generation and variant detection by Celera Assembler.
Denisov, Gennady; Walenz, Brian; Halpern, Aaron L; Miller, Jason; Axelrod, Nelson; Levy, Samuel; Sutton, Granger
2008-04-15
We present an algorithm to identify allelic variation given a Whole Genome Shotgun (WGS) assembly of haploid sequences, and to produce a set of haploid consensus sequences rather than a single consensus sequence. Existing WGS assemblers take a column-by-column approach to consensus generation, and produce a single consensus sequence which can be inconsistent with the underlying haploid alleles, and inconsistent with any of the aligned sequence reads. Our new algorithm uses a dynamic windowing approach. It detects alleles by simultaneously processing the portions of aligned reads spanning a region of sequence variation, assigns reads to their respective alleles, phases adjacent variant alleles and generates a consensus sequence corresponding to each confirmed allele. This algorithm was used to produce the first diploid genome sequence of an individual human. It can also be applied to assemblies of multiple diploid individuals and hybrid assemblies of multiple haploid organisms. Being applied to the individual human genome assembly, the new algorithm detects exactly two confirmed alleles and reports two consensus sequences in 98.98% of the total number 2,033311 detected regions of sequence variation. In 33,269 out of 460,373 detected regions of size >1 bp, it fixes the constructed errors of a mosaic haploid representation of a diploid locus as produced by the original Celera Assembler consensus algorithm. Using an optimized procedure calibrated against 1 506 344 known SNPs, it detects 438 814 new heterozygous SNPs with false positive rate 12%. The open source code is available at: http://wgs-assembler.cvs.sourceforge.net/wgs-assembler/
Fast T2*-weighted MRI of the prostate at 3 Tesla.
Hardman, Rulon L; El-Merhi, Fadi; Jung, Adam J; Ware, Steve; Thompson, Ian M; Friel, Harry T; Peng, Qi
2011-04-01
To describe a rapid T2*-weighted (T2*W), three-dimensional (3D) echo planar imaging (EPI) sequence and its application in mapping local magnetic susceptibility variations in 3 Tesla (T) prostate MRI. To compare the sensitivity of T2*W EPI with routinely used T1-weighted turbo-spin echo sequence (T1W TSE) in detecting hemorrhage and the implications on sequences sensitive to field inhomogeneities such as MR spectroscopy (MRS). B(0) susceptibility weighted mapping was performed using a 3D EPI sequence featuring a 2D spatial excitation pulse with gradients of spiral k-space trajectory. A series of 11 subjects were imaged using 3T MRI and combination endorectal (ER) and six-channel phased array cardiac coils. T1W TSE and T2*W EPI sequences were analyzed quantitatively for hemorrhage contrast. Point resolved spectroscopy (PRESS MRS) was performed and data quality was analyzed. Two types of susceptibility variation were identified: hemorrhagic and nonhemorrhagic T2*W-positive areas. Post-biopsy hemorrhage lesions showed on average five times greater contrast on the T2*W images than T1W TSE images. Six nonhemorrhage regions of severe susceptibility artifact were apparent on the T2*W images that were not seen on standard T1W or T2W images. All nonhemorrhagic susceptibility artifact regions demonstrated compromised spectral quality on 3D MRS. The fast T2*W EPI sequence identifies hemorrhagic and nonhemorrhagic areas of susceptibility variation that may be helpful in prostate MRI planning at 3.0T. Copyright © 2011 Wiley-Liss, Inc.
Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.
Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J
2017-08-01
Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known type 1/type 2 strains are demonstrated, and a novel classification of EBNA1 and the BART miRNAs is proposed. Copyright © 2017 Correia et al.
A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.
Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W
2011-10-01
Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution.
Genotype diversity of hepatitis C virus (HCV) in HCV-associated liver disease patients in Indonesia.
Utama, Andi; Tania, Navessa Padma; Dhenni, Rama; Gani, Rino Alvani; Hasan, Irsan; Sanityoso, Andri; Lelosutan, Syafruddin A R; Martamala, Ruswhandi; Lesmana, Laurentius Adrianus; Sulaiman, Ali; Tai, Susan
2010-09-01
Hepatitis C virus (HCV) genotype distribution in Indonesia has been reported. However, the identification of HCV genotype was based on 5'-UTR or NS5B sequence. This study was aimed to observe HCV core sequence variation among HCV-associated liver disease patients in Jakarta, and to analyse the HCV genotype diversity based on the core sequence. Sixty-eight chronic hepatitis (CH), 48 liver cirrhosis (LC) and 34 hepatocellular carcinoma (HCC) were included in this study. HCV core variation was analysed by direct sequencing. Alignment of HCV core sequences demonstrated that the core sequence was relatively varied among the genotype. Indeed, 237 bases of the core sequence could classify the HCV subtype; however, 236 bases failed to differentiate several subtypes. Based on 237 bases of the core sequences, the HCV strains were classified into genotypes 1 (subtypes 1a, 1b and 1c), 2 (subtypes 2a, 2e and 2f) and 3 (subtypes 3a and 3k). The HCV 1b (47.3%) was the most prevalent, followed by subtypes 1c (18.7%), 3k (10.7%), 2a (10.0%), 1a (6.7%), 2e (5.3%), 2f (0.7%) and 3a (0.7%). HCV 1b was the most common in all patients, and the prevalence increased with the severity of liver disease (36.8% in CH, 54.2% in LC and 58.8% in HCC). These results were similar to a previous report based on NS5B sequence analysis. Hepatitis C virus core sequence (237 bases) could identify the HCV subtype and the prevalence of HCV subtype based on core sequence was similar to those based on the NS5B region.
SRD5A1 Genetic Variation and Prostate Cancer Epidemiology
2006-05-01
DAMD17-03-1-0136 TITLE: SRD5A1 Genetic Variation and Prostate Cancer Epidemiology PRINCIPAL INVESTIGATOR: Troy Phipps...DATES COVERED (From - To) 1 May 2003 – 30 Apr 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER SRD5A1 Genetic Variation and Prostate Cancer...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The human steroid 5-alpha reductase type I ( SRD5A1 ) gene was sequenced in 101
Kim, Daniel Seung; Crosslin, David R; Auer, Paul L; Suzuki, Stephanie M; Marsillach, Judit; Burt, Amber A; Gordon, Adam S; Meschia, James F; Nalls, Mike A; Worrall, Bradford B; Longstreth, W T; Gottesman, Rebecca F; Furlong, Clement E; Peters, Ulrike; Rich, Stephen S; Nickerson, Deborah A; Jarvik, Gail P
2014-06-01
HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10(-3)). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10(-3)). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10(-3); AA P = 6.52 × 10(-4)), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted.
Study on the Evolution of Genes Mutation Related With Gastrointestinal Stromal Tumors
2012-01-05
Full Gene Sequences of c-KIT、PDGFRA and DOG1 Are Analyzed With the Screening-sequencing Approach; Investigate the Characteristics and Variations Associated With the Different Gene Mutations of c-KIT、PDGFRA and DOG1 in GIST Patients
Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species
Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe
2011-01-01
Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996
Sweet taste receptor gene variation and aspartame taste in primates and other species.
Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B
2011-06-01
Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.
The nucleotide sequence and genome organization of Plasmopara halstedii virus.
Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar
2011-03-17
Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates. Insignificant viral sequence variation indicated that the virus did not account for differences in pathogenicity of the oomycete P. halstedii.
Zhang, Tongwu; Hu, Songnian; Zhang, Guangyu; Pan, Linlin; Zhang, Xiaowei; Al-Mssallem, Ibrahim S.; Yu, Jun
2012-01-01
Hassawi rice (Oryza sativa L.) is a landrace adapted to the climate of Saudi Arabia, characterized by its strong resistance to soil salinity and drought. Using high quality sequencing reads extracted from raw data of a whole genome sequencing project, we assembled both chloroplast (cp) and mitochondrial (mt) genomes of the wild-type Hassawi rice (Hassawi-1) and its dwarf hybrid (Hassawi-2). We discovered 16 InDels (insertions and deletions) but no SNP (single nucleotide polymorphism) is present between the two Hassawi cp genomes. We identified 48 InDels and 26 SNPs in the two Hassawi mt genomes and a new type of sequence variation, termed reverse complementary variation (RCV) in the rice cp genomes. There are two and four RCVs identified in Hassawi-1 when compared to 93–11 (indica) and Nipponbare (japonica), respectively. Microsatellite sequence analysis showed there are more SSRs in the genic regions of both cp and mt genomes in the Hassawi rice than in the other rice varieties. There are also large repeats in the Hassawi mt genomes, with the longest length of 96,168 bp and 96,165 bp in Hassawi-1 and Hassawi-2, respectively. We believe that frequent DNA rearrangement in the Hassawi mt and cp genomes indicate ongoing dynamic processes to reach genetic stability under strong environmental pressures. Based on sequence variation analysis and the breeding history, we suggest that both Hassawi-1 and Hassawi-2 originated from the Indonesian variety Peta since genetic diversity between the two Hassawi cultivars is very low albeit an unknown historic origin of the wild-type Hassawi rice. PMID:22870184
Camats, Núria; Fernández-Cancio, Mónica; Carrascosa, Antonio; Andaluz, Pilar; Albisu, M Ángeles; Clemente, María; Gussinyé, Miquel; Yeste, Diego; Audí, Laura
2012-10-01
Molecular causes of isolated severe growth hormone deficiency (ISGHD) in several genes have been established. The aim of this study was to analyse the contribution of growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to GH deficiency in a series of prepubertal ISGHD patients and to normal adult height. A systematic GHRHR gene sequence analysis was performed in 69 ISGHD patients and 60 normal adult height controls (NAHC). Four GHRHR single-nucleotide polymorphisms (SNPs) were genotyped in 248 additional NAHC. An analysis was performed on individual SNPs and combined genotype associations with diagnosis in ISGHD patients and with height-SDS in NAHC. Twenty-one SNPs were found. P3, P13, P15 and P20 had not been previously described. Patients and controls shared 12 SNPs (P1, P2, P4-P11, P16 and P21). Significantly different frequencies of the heterozygous genotype and alternate allele were detected in P9 (exon 4, rs4988498) and P12 (intron 6, rs35609199); P9 heterozygous genotype frequencies were similar in patients and the shortest control group (heights between -2 and -1 SDS) and significantly different in controls (heights between -1 and +2 SDS). GHRHR P9 together with 4 GH1 SNP genotypes contributed to 6·2% of height-SDS variation in the entire 308 NAHC. This study established the GHRHR gene sequence variation map in ISGHD patients and NAHC. No evidence of GHRHR mutation contribution to ISGHD was found in this population, although P9 and P12 SNP frequencies were significantly different between ISGHD and NAHC. Thus, the gene sequence may contribute to normal adult height, as demonstrated in NAHC. © 2012 Blackwell Publishing Ltd.
2014-01-01
Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115
Zapata, Luis; Ding, Jia; Willing, Eva-Maria; Hartwig, Benjamin; Bezdan, Daniela; Jiao, Wen-Biao; Patel, Vipul; Velikkakam James, Geo; Koornneef, Maarten; Ossowski, Stephan; Schneeberger, Korbinian
2016-07-12
Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.
Hartl, Daniel L.
2008-01-01
Simple models of molecular evolution assume that sequences evolve by a Poisson process in which nucleotide or amino acid substitutions occur as rare independent events. In these models, the expected ratio of the variance to the mean of substitution counts equals 1, and substitution processes with a ratio greater than 1 are called overdispersed. Comparing the genomes of 10 closely related species of Drosophila, we extend earlier evidence for overdispersion in amino acid replacements as well as in four-fold synonymous substitutions. The observed deviation from the Poisson expectation can be described as a linear function of the rate at which substitutions occur on a phylogeny, which implies that deviations from the Poisson expectation arise from gene-specific temporal variation in substitution rates. Amino acid sequences show greater temporal variation in substitution rates than do four-fold synonymous sequences. Our findings provide a general phenomenological framework for understanding overdispersion in the molecular clock. Also, the presence of substantial variation in gene-specific substitution rates has broad implications for work in phylogeny reconstruction and evolutionary rate estimation. PMID:18480070
Zhao, Man; Gu, Yongzhe; He, Lingli; Chen, Qingshan; He, Chaoying
2015-05-15
The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.
Li, Dora A; Walker, Esther; Francki, Michael G
2015-12-01
Carotenoids (especially lutein) are known to be the pigment source for flour b* colour in bread wheat. Flour b* colour variation is controlled by a quantitative trait locus (QTL) on wheat chromosome 7AL and one gene from the carotenoid pathway, phytoene synthase, was functionally associated with the QTL on 7AL in some, but not all, wheat genotypes. A SNP marker within a sequence similar to catalase (Cat3-A1snp) derived from full-length (FL) cDNA (AK332460), however, was consistently associated with the QTL on 7AL and implicated in regulating hydrogen peroxide (H2O2) to control carotenoid accumulation affecting flour b* colour. The number of catalase genes on chromosome 7AL was investigated in this study to identify which gene may be implicated in flour b* variation and two were identified through interrogation of the draft wheat genome survey sequence consisting of five exons and a further two members having eight exons identified through comparative analysis with the single catalase gene on rice chromosome 6, PCR amplification and sequencing. It was evident that the catalase genes on chromosome 7A had duplicated and diverged during evolution relative to its counterpart on rice chromosome 6. The detection of transcripts in seeds, the co-location with Cat3-A1snp marker and maximised alignment of FL-cDNA (AK332460) with cognate genomic sequence indicated that TaCat3-A1 was the member of the catalase gene family associated with flour b* colour variation. Re-sequencing identified three alleles from three wheat varieties, TaCat3-A1a, TaCat3-A1b and TaCat3-A1c, and their predicted protein identified differences in peroxisomal targeting signal tri-peptide domain in the carboxyl terminal end providing new insights into their potential role in regulating cellular H2O2 that contribute to flour b* colour variation.
Mining sequence variations in representative polyploid sugarcane germplasm accessions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiping; Song, Jian; You, Qian
Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.more » To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related species. A large number of sequence variations were discovered in the Saccharum complex, including SNPs, InDels, PAVs, and CNVs. Genome-wide SNPs were further used to illustrate sequence features of polyploid species and demonstrated the divergence of different species in the Saccharum complex. The results of this study showed that GBS was an effective NGS-based method to discover genomic sequence variations in highly polyploid and heterozygous species.« less
Mining sequence variations in representative polyploid sugarcane germplasm accessions
Yang, Xiping; Song, Jian; You, Qian; ...
2017-08-09
Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.more » To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related species. A large number of sequence variations were discovered in the Saccharum complex, including SNPs, InDels, PAVs, and CNVs. Genome-wide SNPs were further used to illustrate sequence features of polyploid species and demonstrated the divergence of different species in the Saccharum complex. The results of this study showed that GBS was an effective NGS-based method to discover genomic sequence variations in highly polyploid and heterozygous species.« less
Liu, Hanmei; Wang, Xuewen; Wei, Bin; Wang, Yongbin; Liu, Yinghong; Zhang, Junjie; Hu, Yufeng; Yu, Guowu; Li, Jian; Xu, Zhanbin; Huang, Yubi
2016-01-01
In southwest China, some maize landraces have long been isolated geographically, and have phenotypes that differ from those of widely grown cultivars. These landraces may harbor rich genetic variation responsible for those phenotypes. Four-row Wax is one such landrace, with four rows of kernels on the cob. We resequenced the genome of Four-row Wax, obtaining 50.46 Gb sequence at 21.87× coverage, then identified and characterized 3,252,194 SNPs, 213,181 short InDels (1–5 bp) and 39,631 structural variations (greater than 5 bp). Of those, 312,511 (9.6%) SNPs were novel compared to the most detailed haplotype map (HapMap) SNP database of maize. Characterization of variations in reported kernel row number (KRN) related genes and KRN QTL regions revealed potential causal mutations in fea2, td1, kn1, and te1. Genome-wide comparisons revealed abundant genetic variations in Four-row Wax, which may be associated with environmental adaptation. The sequence and SNP variations described here enrich genetic resources of maize, and provide guidance into study of seed numbers for crop yield improvement. PMID:27242868
Brander, Christian; Yang, Otto O.; Jones, Norman G.; Lee, Yun; Goulder, Philip; Johnson, R. Paul; Trocha, Alicja; Colbert, David; Hay, Christine; Buchbinder, Susan; Bergmann, Cornelia C.; Zweerink, Hans J.; Wolinsky, Steven; Blattner, William A.; Kalams, Spyros A.; Walker, Bruce D.
1999-01-01
Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences. PMID:10559335
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan
2013-04-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu
2013-01-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species. PMID:23710087
Natarajan, Sathishkumar; Kim, Hoy-Taek; Thamilarasan, Senthil Kumar; Veerappan, Karpagam; Park, Jong-In; Nou, Ill-Sup
2016-01-01
Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L.) and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs), 1.9 million InDels, and 182,398 putative structural variations (SVs). Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.
Wu, Gary D; Lewis, James D; Hoffmann, Christian; Chen, Ying-Yu; Knight, Rob; Bittinger, Kyle; Hwang, Jennifer; Chen, Jun; Berkowsky, Ronald; Nessel, Lisa; Li, Hongzhe; Bushman, Frederic D
2010-07-30
Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80 degrees C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method.
Wyllie, David H; Sanderson, Nicholas; Myers, Richard; Peto, Tim; Robinson, Esther; Crook, Derrick W; Smith, E Grace; Walker, A Sarah
2018-06-06
Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed the reporting of artefactual variation between M. tuberculosis isolates during routine next generation sequencing of Mycobacterium spp, we investigated its basis in 2,018 consecutive M. tuberculosis isolates. In the routine process used, clinical samples were decontaminated and inoculated into broth cultures; from positive broth cultures DNA was extracted, sequenced, reads mapped, and consensus sequences determined. We investigated the process of consensus sequence determination, which selects the most common nucleotide at each position. Having determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis genomic regions, we quantified the relationship between the minor variant depth and the amount of non-Mycobacterial bacterial DNA, which originates from commensal microbes killed during sample decontamination. In the presence of non-Mycobacterial bacterial DNA, we found significant increases in minor variant frequencies of more than 1.5 fold in 242 regions covering 5.1% of the M. tuberculosis genome. Included within these were four high variation regions strongly influenced by the amount of non-Mycobacterial bacterial DNA. Excluding these four regions from pairwise distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent validation set derived from 226 individuals. Thus, we have demonstrated an approach identifying critical genomic regions contributing to clinically relevant artefactual variation in bacterial similarity searches. The approach described monitors the outputs of the complex multi-step laboratory and bioinformatics process, allows periodic process adjustments, and will have application to quality control of routine bacterial genomics. Copyright © 2018 Wyllie et al.
Hirose, Yusuke; Onuki, Mamiko; Tenjimbayashi, Yuri; Mori, Seiichiro; Ishii, Yoshiyuki; Takeuchi, Takamasa; Tasaka, Nobutaka; Satoh, Toyomi; Morisada, Tohru; Iwata, Takashi; Miyamoto, Shingo; Matsumoto, Koji; Sekizawa, Akihiko; Kukimoto, Iwao
2018-06-15
Persistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied by the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here, we explored within-host genetic diversity of HPV by performing deep-sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52, and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC) and were deep sequenced. After constructing a reference viral genome sequence for each specimen, nucleotide positions showing changes with >0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1, n = 56; CIN2/3, n = 68; ICC, n = 27), with various numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the trinucleotide context encompassing substituted bases revealed that TpCpN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions. IMPORTANCE HPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep-sequencing analyses, we show for the first time a comprehensive snapshot of the within-host genetic diversity of high-risk HPVs during cervical carcinogenesis. Quasispecies harboring minor nucleotide variations in viral whole-genome sequences were extensively observed across different grades of CIN and cervical cancer. Among the within-host variations, C-to-T transitions, a characteristic change mediated by cellular APOBEC cytosine deaminases, were predominantly detected throughout the whole viral genome, most strikingly in low-grade CIN lesions. The results strongly suggest that within-host variations of the HPV genome are primarily generated through the interaction with host cell DNA-editing enzymes and that such within-host variability is an evolutionary source of the genetic diversity of HPVs. Copyright © 2018 American Society for Microbiology.
Våge, D I; Nieminen, M; Anderson, D G; Røed, K H
2014-10-01
The protein-coding region of melanocortin 1 receptor (MC1R) was sequenced to identify potential variation affecting coat color in reindeer (Rangifer tarandus). A T→C sequence variation at nucleotide position 218 (c.218T>C) causing an amino acid (aa) change from methionine to threonine at aa position 73 (p.Met73Thr) was identified. In addition, a T→G sequence variation was found at nucleotide position 839 (c.839T>G), causing phenylalanine to be exchanged by cysteine at aa position 280 (p.Phe280Cys). The two sequence variants (c.218C and c.839G) were found to be closely associated with a darker belly coat compared with animals not having any of these two variants. The aa acid change p.Met73Thr affects the same position as p.Met73Lys previously reported to give constitutive activation of MC1R in black sheep (Ovis aries), whereas p.Phe280Cys is identical to one of two variants previously reported to be associated with dark coat color in Arctic fox (Alopex lagopus), supporting that the two variants found in reindeer are functional. The complete absence of Thr73 and Cys280 among the 51 wild reindeer analyzed provides some evidence that these variants are more common in the domestic herds. © 2014 Stichting International Foundation for Animal Genetics.
Iskow, Rebecca C.; Austermann, Christian; Scharer, Christopher D.; Raj, Towfique; Boss, Jeremy M.; Sunyaev, Shamil; Price, Alkes; Stranger, Barbara; Simon, Viviana; Lee, Charles
2013-01-01
Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. PMID:23593015
Kim, Daniel Seung; Crosslin, David R.; Auer, Paul L.; Suzuki, Stephanie M.; Marsillach, Judit; Burt, Amber A.; Gordon, Adam S.; Meschia, James F.; Nalls, Mike A.; Worrall, Bradford B.; Longstreth, W. T.; Gottesman, Rebecca F.; Furlong, Clement E.; Peters, Ulrike; Rich, Stephen S.; Nickerson, Deborah A.; Jarvik, Gail P.
2014-01-01
HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted. PMID:24711634
Yokoyama, Naoaki; Sivakumar, Thillaiampalam; Tuvshintulga, Bumduuren; Hayashida, Kyoko; Igarashi, Ikuo; Inoue, Noboru; Long, Phung Thang; Lan, Dinh Thi Bich
2015-03-01
The genes that encode merozoite surface antigens (MSAs) in Babesia bovis are genetically diverse. In this study, we analyzed the genetic diversity of B. bovis MSA-1, MSA-2b, and MSA-2c genes in Vietnamese cattle and water buffaloes. Blood DNA samples from 258 cattle and 49 water buffaloes reared in the Thua Thien Hue province of Vietnam were screened with a B. bovis-specific diagnostic PCR assay. The B. bovis-positive DNA samples (23 cattle and 16 water buffaloes) were then subjected to PCR assays to amplify the MSA-1, MSA-2b, and MSA-2c genes. Sequencing analyses showed that the Vietnamese MSA-1 and MSA-2b sequences are genetically diverse, whereas MSA-2c is relatively conserved. The nucleotide identity values for these MSA gene sequences were similar in the cattle and water buffaloes. Consistent with the sequencing data, the Vietnamese MSA-1 and MSA-2b sequences were dispersed across several clades in the corresponding phylogenetic trees, whereas the MSA-2c sequences occurred in a single clade. Cattle- and water-buffalo-derived sequences also often clustered together on the phylogenetic trees. The Vietnamese MSA-1, MSA-2b, and MSA-2c sequences were then screened for recombination with automated methods. Of the seven recombination events detected, five and two were associated with the MSA-2b and MSA-2c recombinant sequences, respectively, whereas no MSA-1 recombinants were detected among the sequences analyzed. Recombination between the sequences derived from cattle and water buffaloes was very common, and the resultant recombinant sequences were found in both host animals. These data indicate that the genetic diversity of the MSA sequences does not differ between cattle and water buffaloes in Vietnam. They also suggest that recombination between the B. bovis MSA sequences in both cattle and water buffaloes might contribute to the genetic variation in these genes in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.
Saijuntha, Weerachai; Sithithaworn, Paiboon; Duenngai, Kunyarat; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N
2011-03-01
Multilocus enzyme electrophoresis (MEE) and DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to genetically compare four species of echinostomes of human health importance. Fixed genetic differences among adults of Echinostoma revolutum, Echinostoma malayanum, Echinoparyphium recurvatum and Hypoderaeum conoideum were detected at 51-75% of the enzyme loci examined, while interspecific differences in CO1 sequence were detected at 16-32 (8-16%) of the 205 alignment positions. The results of the MEE analyses also revealed fixed genetic differences between E. revolutum from Thailand and Lao PDR at five (19%) of 27 loci, which could either represent genetic variation between geographically separated populations of a single species, or the existence of a cryptic (i.e. genetically distinct but morphologically similar) species. However, there was no support for the existence of cryptic species within E. revolutum based on the CO1 sequence between the two geographical areas sampled. Genetic variation in CO1 sequence was also detected among E. malayanum from three different species of snail intermediate host. Separate phylogenetic analyses of the MEE and DNA sequence data revealed that the two species of Echinostoma (E. revolutum and E. malayanum) did not form a monophyletic clade. These results, together with the large number of morphologically similar species with inadequate descriptions, poor specific diagnoses and extensive synonymy, suggest that the morphological characters used for species taxonomy of echinostomes in South-East Asia should be reconsidered according to the concordance of biology, morphology and molecular classification. Copyright © 2010 Elsevier B.V. All rights reserved.
Hoy, Marshal S.; Rodriguez, Rusty J.
2013-01-01
Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.
Yao, Hui; Song, Jing-Yuan; Ma, Xin-Ye; Liu, Chang; Li, Ying; Xu, Hong-Xi; Han, Jian-Ping; Duan, Li-Sheng; Chen, Shi-Lin
2009-05-01
DNA barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Although a consensus has not been reached regarding which DNA sequences can be used as the best plant barcodes, the psbA-trnH spacer region has been tested extensively in recent years. In this study, we hypothesize that the psbA-trnH spacer regions are also effective barcodes for Dendrobium species. We have sequenced the chloroplast psbA-trnH intergenic spacers of 17 Dendrobium species to test this hypothesis. The sequences were found to be significantly different from those of other species, with percentages of variation ranging from 0.3 % to 2.3 % and an average of 1.2 %. In contrast, the intraspecific variation among the Dendrobium species studied ranged from 0 % to 0.1 %. The sequence difference between the psbA-trnH sequences of 17 Dendrobium species and one Bulbophyllum odoratissimum ranged from 2.0 % to 3.1 %, with an average of 2.5 %. Our results support the notion that the psbA-trnH intergenic spacer region could be used as a barcode to distinguish various Dendrobium species and to differentiate Dendrobium species from other adulterating species. Copyright Georg Thieme Verlag KG Stuttgart. New York.
Bazsalovicsová, Eva; Králová-Hromadová, Ivica; Stefka, Jan; Scholz, Tomáš
2012-05-01
Sequence structure of complete internal transcribed spacer 1 and 2 (ITS1 and ITS2) of the ribosomal DNA region and partial mitochondrial cytochrome c oxidase subunit I (cox1) gene sequences were studied in the monozoic tapeworm Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965) (Cestoda: Caryophyllidea), a parasite of common carp (Cyprinus carpio carpio L.). Intraindividual sequence diversity was observed in both ribosomal spacers. In ITS1, a total number of 19 recombinant clones yielded eight different sequence types (pairwise sequence identity, 99.7-100%) which, however, did not resemble the structure typical for divergent intragenomic ITS copies (paralogues). Polymorphism was displayed by several single nucleotide mutations present exclusively in single clones, but variation in the number of short repetitive motifs was not observed. In ITS2, a total of 21 recombinant clones yielded ten different sequence types (pairwise sequence identity, 97.5-100%). They were mostly characterized by a varying number of (TCGT)(n) repeats resulting in assortment of ITS2 sequences into two sequence variants, which reflected the structure specific for ITS paralogues. The third DNA region analysed, mitochondrial cox1 gene (669 bp) was detected to be 100% identical in all studied A. sagittatus individuals. Comparison of molecular data on A. sagittatus with those on Atractolytocestus huronensis Anthony, 1958, an invasive parasite of common carp, has shown that interspecific differences significantly exceeded intraspecific variation in both ribosomal spacers (81.4-82.5% in ITS1, 74.4-75.2% in ITS2) as well as in mitochondrial cox1, which confirms validity of both congeneric tapeworms parasitic in the same fish host.
Molecular discrimination of tall fescue morphotypes in association with Festuca relatives
Chekhovskiy, Konstantin
2018-01-01
Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species used as forage and turf, and in conservation plantings. There are three morphotypes in hexaploid tall fescue: Continental, Mediterranean and Rhizomatous. This study was conducted to develop morphotype-specific molecular markers to distinguish Continental and Mediterranean tall fescues, and establish their relationships with other species of the Festuca genus for genomic inference. Chloroplast sequence variation and simple sequence repeat (SSR) polymorphism were explored in 12 genotypes of three tall fescue morphotypes and four Festuca species. Hypervariable chloroplast regions were retrieved by using 33 specifically designed primers followed by sequencing the PCR products. SSR polymorphism was studied using 144 tall fescue SSR primers. Four chloroplast (NFTCHL17, NFTCHL43, NFTCHL45 and NFTCHL48) and three SSR (nffa090, nffa204 and nffa338) markers were identified which can distinctly differentiate Continental and Mediterranean morphotypes. A primer pair, NFTCHL45, amplified a 47 bp deletion between the two morphotypes is being routinely used in the Noble Research Institute’s core facility for morphotype discrimination. Both chloroplast sequence variation and SSR diversity showed a close association between Rhizomatous and Continental morphotypes, while the Mediterranean morphotype was in a distant clade. F. pratensis and F. arundinacea var. glaucescens, the P and G1G2 genome donors, respectively, were grouped with the Continental clade, and F. mairei (M1M2 genome) grouped with the Mediterranean clade in chloroplast sequence variation, while both F. pratensis and F. mairei formed independent clade in SSR analysis. Age estimation based on chloroplast sequence variation indicated that the Continental and Mediterranean clades might have been colonized independently during 0.65 ± 0.06 and 0.96 ± 0.1 million years ago (Mya) respectively. The findings of the study will enhance tall fescue breeding for persistence and productivity. PMID:29342197
Cánovas, A; Rincón, G; Islas-Trejo, A; Jimenez-Flores, R; Laubscher, A; Medrano, J F
2013-04-01
The technological properties of milk have significant importance for the dairy industry. Citrate, a normal constituent of milk, forms one of the main buffer systems that regulate the equilibrium between Ca(2+) and H(+) ions. Higher-than-normal citrate content is associated with poor coagulation properties of milk. To identify the genes responsible for the variation of citrate content in milk in dairy cattle, the metabolic steps involved in citrate and fatty acid synthesis pathways in ruminant mammary tissue using RNA sequencing were studied. Genetic markers that could influence milk citrate content in Holstein cows were used in a marker-trait association study to establish the relationship between 74 single nucleotide polymorphisms (SNP) in 20 candidate genes and citrate content in 250 Holstein cows. This analysis revealed 6 SNP in key metabolic pathway genes [isocitrate dehydrogenase 1 (NADP+), soluble (IDH1); pyruvate dehydrogenase (lipoamide) β (PDHB); pyruvate kinase (PKM2); and solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 (SLC25A1)] significantly associated with increased milk citrate content. The amount of the phenotypic variation explained by the 6 SNP ranged from 10.1 to 13.7%. Also, genotype-combination analysis revealed the highest phenotypic variation was explained combining IDH1_23211, PDHB_5562, and SLC25A1_4446 genotypes. This specific genotype combination explained 21.3% of the phenotypic variation. The largest citrate associated effect was in the 3' untranslated region of the SLC25A1 gene, which is responsible for the transport of citrate across the mitochondrial inner membrane. This study provides an approach using RNA sequencing, metabolic pathway analysis, and association studies to identify genetic variation in functional target genes determining complex trait phenotypes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rare variants and autoimmune disease.
Massey, Jonathan; Eyre, Steve
2014-09-01
The study of rare variants in monogenic forms of autoimmune disease has offered insight into the aetiology of more complex pathologies. Research in complex autoimmune disease initially focused on sequencing candidate genes, with some early successes, notably in uncovering low-frequency variation associated with Type 1 diabetes mellitus. However, other early examples have proved difficult to replicate, and a recent study across six autoimmune diseases, re-sequencing 25 autoimmune disease-associated genes in large sample sizes, failed to find any associated rare variants. The study of rare and low-frequency variation in autoimmune diseases has been made accessible by the inclusion of such variants on custom genotyping arrays (e.g. Immunochip and Exome arrays). Whole-exome sequencing approaches are now also being utilised to uncover the contribution of rare coding variants to disease susceptibility, severity and treatment response. Other sequencing strategies are starting to uncover the role of regulatory rare variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.
Wang, Nian; Badar, Farid; Xia, Yang
2018-01-01
Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.
Arias-Pulido, Hugo; Peyton, Cheri L; Torrez-Martínez, Norah; Anderson, D Nelson; Wheeler, Cosette M
2005-07-20
While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.
NASA Astrophysics Data System (ADS)
Veglia, A. J.; Milford, C. R.; Marston, M.
2016-02-01
Viruses infecting marine Synechococcus are abundant in coastal marine environments and influence the community composition and abundance of their cyanobacterial hosts. In this study, we focused on the cyanopodoviruses which have smaller genomes and narrower host ranges relative to cyanomyoviruses. While previous studies have compared the genomes of diverse podoviruses, here we analyzed the genomic variation, host ranges, and infection kinetics of podoviruses within the same OTU. The genomes of fifty-five podoviral isolates from the coastal waters of New England were fully sequenced. Based on DNA polymerase gene sequences, these isolates fall into five discrete OTUs (termed RIP - Rhode Island Podovirus). Although all the isolates belonging to the same RIP have very similar DNA polymerase gene sequences (>98% sequence identity), differences in genome content, particularly in regions associated with tail fiber genes, were observed among isolates in the same RIP. Host range tests reveal variation both across and within RIPs. Notably within RIP1, isolates that had similar tail fiber regions also had similar host ranges. Isolates belonging to RIP4 do not contain the host-derived psbA photosynthesis gene, while isolates in the other four RIPs do possess a psbA gene. Nevertheless, infection kinetic experiments suggest that the latent period and burst size for RIP4 isolates are similar to RIP1 isolates. We are continuing to investigate the correlations among genome content, host range, and infection kinetics of isolates belonging to the same OTU. Our results to date suggest that there is substantial genomic variation within an OTU and that this variation likely influences cyanopodoviral - host interactions.
Anantaphruti, Malinee Thairungroj; Thaenkham, Urusa; Watthanakulpanich, Dorn; Phuphisut, Orawan; Maipanich, Wanna; Yoonuan, Tippayarat; Nuamtanong, Supaporn; Pubampen, Somjit; Sanguankiat, Surapol
2013-02-01
Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species.
Thaenkham, Urusa; Watthanakulpanich, Dorn; Phuphisut, Orawan; Maipanich, Wanna; Yoonuan, Tippayarat; Nuamtanong, Supaporn; Pubampen, Somjit; Sanguankiat, Surapol
2013-01-01
Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species. PMID:23467439
Dumas, Laura; Dickens, C Michael; Anderson, Nathan; Davis, Jonathan; Bennett, Beth; Radcliffe, Richard A; Sikela, James M
2014-06-01
It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to contribute to the alcohol-related phenotypic differences associated with these strains.
Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer.
Wojcik, Sylwia E; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z; Rai, Kanti R; Kipps, Thomas J; Keating, Michael J; Croce, Carlo M; Calin, George A
2010-02-01
Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas.
Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer
Wojcik, Sylwia E.; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S.; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z.; Rai, Kanti R.; Kipps, Thomas J.; Keating, Michael J.
2010-01-01
Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas. PMID:19926640
Aguadé, M
2001-01-01
The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis thaliana ecotypes and one Arabidopsis lyrata spp. petraea stock. In contrast with most previously studied genes, the percentage of singletons was rather low in both the FAH1 and the F3H gene regions. There was, therefore, no footprint of a recent species expansion in the pattern of nucleotide variation in these regions. In both FAH1 and F3H, nucleotide variation was structured into two major highly differentiated haplotypes. In both genes, there was a peak of silent polymorphism in the 5' part of the coding region without a parallel increase in silent divergence. In FAH1, the peak was centered at the beginning of the second exon. In F3H, nucleotide diversity was highest at the beginning of the gene. The observed pattern of variation in both FAH1 and F3H, although suggestive of balancing selection, was compatible with a neutral model with no recombination.
Single haplotype assembly of the human genome from a hydatidiform mole.
Steinberg, Karyn Meltz; Schneider, Valerie A; Graves-Lindsay, Tina A; Fulton, Robert S; Agarwala, Richa; Huddleston, John; Shiryev, Sergey A; Morgulis, Aleksandr; Surti, Urvashi; Warren, Wesley C; Church, Deanna M; Eichler, Evan E; Wilson, Richard K
2014-12-01
A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. © 2014 Steinberg et al.; Published by Cold Spring Harbor Laboratory Press.
Single haplotype assembly of the human genome from a hydatidiform mole
Steinberg, Karyn Meltz; Schneider, Valerie A.; Graves-Lindsay, Tina A.; Fulton, Robert S.; Agarwala, Richa; Huddleston, John; Shiryev, Sergey A.; Morgulis, Aleksandr; Surti, Urvashi; Warren, Wesley C.; Church, Deanna M.; Eichler, Evan E.; Wilson, Richard K.
2014-01-01
A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. PMID:25373144
Selection of a DNA barcode for Nectriaceae from fungal whole-genomes.
Zeng, Zhaoqing; Zhao, Peng; Luo, Jing; Zhuang, Wenying; Yu, Zhihe
2012-01-01
A DNA barcode is a short segment of sequence that is able to distinguish species. A barcode must ideally contain enough variation to distinguish every individual species and be easily obtained. Fungi of Nectriaceae are economically important and show high species diversity. To establish a standard DNA barcode for this group of fungi, the genomes of Neurospora crassa and 30 other filamentous fungi were compared. The expect value was treated as a criterion to recognize homologous sequences. Four candidate markers, Hsp90, AAC, CDC48, and EF3, were tested for their feasibility as barcodes in the identification of 34 well-established species belonging to 13 genera of Nectriaceae. Two hundred and fifteen sequences were analyzed. Intra- and inter-specific variations and the success rate of PCR amplification and sequencing were considered as important criteria for estimation of the candidate markers. Ultimately, the partial EF3 gene met the requirements for a good DNA barcode: No overlap was found between the intra- and inter-specific pairwise distances. The smallest inter-specific distance of EF3 gene was 3.19%, while the largest intra-specific distance was 1.79%. In addition, there was a high success rate in PCR and sequencing for this gene (96.3%). CDC48 showed sufficiently high sequence variation among species, but the PCR and sequencing success rate was 84% using a single pair of primers. Although the Hsp90 and AAC genes had higher PCR and sequencing success rates (96.3% and 97.5%, respectively), overlapping occurred between the intra- and inter-specific variations, which could lead to misidentification. Therefore, we propose the EF3 gene as a possible DNA barcode for the nectriaceous fungi.
Banko, Ana; Lazarevic, Ivana; Cupic, Maja; Stevanovic, Goran; Boricic, Ivan; Jovanovic, Tanja
2012-04-01
Seven strains of Epstein-Barr virus (EBV) are defined based on C-terminal sequence variations of the latent membrane protein 1 (LMP1). Some strains, especially those with a 30-bp deletion, are thought to be related to tumorigenic activity and geographical localization. The aims of the study were to determine the prevalence of different LMP1 strains and to investigate sequence variation in the C-terminal region of LMP1 in Serbian isolates. This study included 53 EBV-DNA-positive plasma and tissue block samples from patients with mononucleosis syndrome, renal transplantation, and tumors, mostly nasopharyngeal carcinoma. The sequence of the 506-bp fragment of LMP1 C terminus was used for phylogenetic analyses and identification of LMP1 strains, deletions, and mutations. The majority of isolates were non-deleted (66%), and the rest had 30-bp, rare 69-bp, or yet unknown 27-bp deletions, which were not related to malignant or non-malignant isolate origin. However, the majority of 69-bp deletion isolates were derived from patients with nasopharyngeal carcinoma. Less than five 33-bp repeats were found in the majority of non-deleted isolates (68.6%), whereas most 69-bp deletion isolates (75%) had five or six repeats. Serbian isolates were assigned to four LMP1 strains: B95-8 (32.1%), China 1 (24.5%), North Carolina (NC; 18.9%), and Mediterranean (Med; 24.5%). In NC isolates, three new mutations unique for this strain were identified. EBV EBNA2 genotypes 1 and 2 were both found, with dominance of genotype 1 (90.7%). This study demonstrated noticeable geographical-associated characteristics in the LMP1 C terminus of investigated isolates. Copyright © 2012 Wiley Periodicals, Inc.
Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease
Nuytemans, Karen; Bademci, Guney; Inchausti, Vanessa; Dressen, Amy; Kinnamon, Daniel D.; Mehta, Arpit; Wang, Liyong; Züchner, Stephan; Beecham, Gary W.; Martin, Eden R.; Scott, William K.
2013-01-01
Objective: Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as 2 causal Parkinson disease (PD) genes. We used whole exome sequencing for rapid, parallel analysis of variations in these 2 genes. Methods: We performed whole exome sequencing in 213 patients with PD and 272 control individuals. Those rare variants (RVs) with <5% frequency in the exome variant server database and our own control data were considered for analysis. We performed joint gene-based tests for association using RVASSOC and SKAT (Sequence Kernel Association Test) as well as single-variant test statistics. Results: We identified 3 novel VPS35 variations that changed the coded amino acid (nonsynonymous) in 3 cases. Two variations were in multiplex families and neither segregated with PD. In EIF4G1, we identified 11 (9 nonsynonymous and 2 small indels) RVs including the reported pathogenic mutation p.R1205H, which segregated in all affected members of a large family, but also in 1 unaffected 86-year-old family member. Two additional RVs were found in isolated patients only. Whereas initial association studies suggested an association (p = 0.04) with all RVs in EIF4G1, subsequent testing in a second dataset for the driving variant (p.F1461) suggested no association between RVs in the gene and PD. Conclusions: We confirm that the specific EIF4G1 variation p.R1205H seems to be a strong PD risk factor, but is nonpenetrant in at least one 86-year-old. A few other select RVs in both genes could not be ruled out as causal. However, there was no evidence for an overall contribution of genetic variability in VPS35 or EIF4G1 to PD development in our dataset. PMID:23408866
Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol
2007-06-01
In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.
Xing, Libo; Zhang, Dong; Song, Xiaomin; Weng, Kai; Shen, Yawen; Li, Youmei; Zhao, Caiping; Ma, Juanjuan; An, Na; Han, Mingyu
2016-01-01
Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, ‘Nagafu No. 2’ and ‘Qinguan,’ which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in ‘Nagafu No. 2’ and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in ‘Qinguan.’ The ‘SNP,’ ‘INDEL,’ and ‘SV’ distributions were non-random, with variation-rich or -poor regions throughout the genomes. In ‘Nagafu No. 2’ and ‘Qinguan’ there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in ‘Nagafu No. 2,’ ‘Qinguan,’ and ‘Golden Delicious,’ identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between ‘Nagafu No. 2’ and ‘Qinguan.’ The genome variation data provided a foundation for the further exploration of apple diversity and gene–phenotype relationships, and for future research on molecular breeding to improve apple and related species. PMID:27446138
Motamayor, Juan C; Mockaitis, Keithanne; Schmutz, Jeremy; Haiminen, Niina; Livingstone, Donald; Cornejo, Omar; Findley, Seth D; Zheng, Ping; Utro, Filippo; Royaert, Stefan; Saski, Christopher; Jenkins, Jerry; Podicheti, Ram; Zhao, Meixia; Scheffler, Brian E; Stack, Joseph C; Feltus, Frank A; Mustiga, Guiliana M; Amores, Freddy; Phillips, Wilbert; Marelli, Jean Philippe; May, Gregory D; Shapiro, Howard; Ma, Jianxin; Bustamante, Carlos D; Schnell, Raymond J; Main, Dorrie; Gilbert, Don; Parida, Laxmi; Kuhn, David N
2013-06-03
Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. We describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina 1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation. We report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.
2013-01-01
Background Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. Results We describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina 1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation. Conclusions We report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits. PMID:23731509
Martin-Fernandez, Laura; Gavidia-Bovadilla, Giovana; Corrales, Irene; Brunel, Helena; Ramírez, Lorena; López, Sonia; Souto, Juan Carlos; Vidal, Francisco; Soria, José Manuel
2017-01-01
Venous thromboembolism is a complex disease with a high heritability. There are significant associations among Factor XI (FXI) levels and SNPs in the KNG1 and F11 loci. Our aim was to identify the genetic variation of KNG1 and F11 that might account for the variability of FXI levels. The KNG1 and F11 loci were sequenced completely in 110 unrelated individuals from the GAIT-2 (Genetic Analysis of Idiopathic Thrombophilia 2) Project using Next Generation Sequencing on an Illumina MiSeq. The GAIT-2 Project is a study of 935 individuals in 35 extended Spanish families selected through a proband with idiopathic thrombophilia. Among the 110 individuals, a subset of 40 individuals was chosen as a discovery sample for identifying variants. A total of 762 genetic variants were detected. Several significant associations were established among common variants and low-frequency variants sets in KNG1 and F11 with FXI levels using the PLINK and SKAT packages. Among these associations, those of rs710446 and five low-frequency variant sets in KNG1 with FXI level variation were significant after multiple testing correction and permutation. Also, two putative pathogenic mutations related to high and low FXI levels were identified by data filtering and in silico predictions. This study of KNG1 and F11 loci should help to understand the connection between genotypic variation and variation in FXI levels. The functional genetic variants should be useful as markers of thromboembolic risk.
Baeßler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C
2015-11-01
Previous studies showed that myocardial T2 relaxation times measured by cardiac T2-mapping vary significantly depending on sequence and field strength. Therefore, a systematic comparison of different T2-mapping sequences and the establishment of dedicated T2 reference values is mandatory for diagnostic decision-making. Phantom experiments using gel probes with a range of different T1 and T2 times were performed on a clinical 1.5T and 3T scanner. In addition, 30 healthy volunteers were examined at 1.5 and 3T in immediate succession. In each examination, three different T2-mapping sequences were performed at three short-axis slices: Multi Echo Spin Echo (MESE), T2-prepared balanced SSFP (T2prep), and Gradient Spin Echo with and without fat saturation (GraSEFS/GraSE). Segmented T2-Maps were generated according to the AHA 16-segment model and statistical analysis was performed. Significant intra-individual differences between mean T2 times were observed for all sequences. In general, T2prep resulted in lowest and GraSE in highest T2 times. A significant variation with field strength was observed for mean T2 in phantom as well as in vivo, with higher T2 values at 1.5T compared to 3T, regardless of the sequence used. Segmental T2 values for each sequence at 1.5 and 3T are presented. Despite a careful selection of sequence parameters and volunteers, significant variations of the measured T2 values were observed between field strengths, MR sequences and myocardial segments. Therefore, we present segmental T2 values for each sequence at 1.5 and 3T with the inherent potential to serve as reference values for future studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...
Gonzalez, Patrice; Labarère, Jacques
1998-01-01
A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same species were the same length and had the same sequence, while variations were found among the 10 species. Alignment of the sequences showed that nucleotide motifs encountered in the smallest sequence of each variable domain were also found in the largest sequence, indicating that the sequences evolved by insertion-deletion events. Determination of the secondary structure of each domain revealed that the insertion-deletion events commonly occurred in regions not directly involved in the secondary structure (i.e., the loops). Moreover, conserved sequences ranging from 4 to 25 nucleotides long were found at the beginning and end of each domain and could constitute genus-specific sequences. Comparisons of the V4, V6, and V9 secondary structures resulted in identification of the following four groups: (i) group I, which was characterized by the presence of additional P23-1 and P23-3 helices in the V4 domain and the lack of the P49-1 helix in V9 and included A. aegerita, A. chaxingu, and A. erebia; (ii) group II, which had the P23-3 helix in V4 and the P49-1 helix in V9 and included A. pediades; (iii) group III, which did not have additional helices in V4, had the P49-1 helix in V9 and included A. paludosa, A. firma, A. alnetorum, and A. praecox; and (iv) group IV, which lacked both the V4 additional helices and the P49-1 helix in V9 and included A. vervacti and A. dura. This grouping of species was supported by the structure of a consensus tree based on the variable domain sequences. The conservation of the sequences of the V4, V6, and V9 domains of the mitochondrial SSU rRNA within species and the high degree of interspecific variation found in the Agrocybe species studied open the way for these sequences to be used as specific molecular markers of the Basidiomycota. PMID:9797259
Gonzalez, P; Labarère, J
1998-11-01
A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same species were the same length and had the same sequence, while variations were found among the 10 species. Alignment of the sequences showed that nucleotide motifs encountered in the smallest sequence of each variable domain were also found in the largest sequence, indicating that the sequences evolved by insertion-deletion events. Determination of the secondary structure of each domain revealed that the insertion-deletion events commonly occurred in regions not directly involved in the secondary structure (i.e., the loops). Moreover, conserved sequences ranging from 4 to 25 nucleotides long were found at the beginning and end of each domain and could constitute genus-specific sequences. Comparisons of the V4, V6, and V9 secondary structures resulted in identification of the following four groups: (i) group I, which was characterized by the presence of additional P23-1 and P23-3 helices in the V4 domain and the lack of the P49-1 helix in V9 and included A. aegerita, A. chaxingu, and A. erebia; (ii) group II, which had the P23-3 helix in V4 and the P49-1 helix in V9 and included A. pediades; (iii) group III, which did not have additional helices in V4, had the P49-1 helix in V9 and included A. paludosa, A. firma, A. alnetorum, and A. praecox; and (iv) group IV, which lacked both the V4 additional helices and the P49-1 helix in V9 and included A. vervacti and A. dura. This grouping of species was supported by the structure of a consensus tree based on the variable domain sequences. The conservation of the sequences of the V4, V6, and V9 domains of the mitochondrial SSU rRNA within species and the high degree of interspecific variation found in the Agrocybe species studied open the way for these sequences to be used as specific molecular markers of the Basidiomycota.
Genetic characterization of the UCS and Kex1 loci of Pneumocystis jirovecii.
Esteves, F; Tavares, A; Costa, M C; Gaspar, J; Antunes, F; Matos, O
2009-02-01
Nucleotide variation in the Pneumocystis jirovecii upstream conserved sequence (UCS) and kexin-like serine protease (Kex1) loci was studied in pulmonary specimens from Portuguese HIV-positive patients. DNA was extracted and used for specific molecular sequence analysis. The number of UCS tandem repeats detected in 13 successfully sequenced isolates ranged from three (9 isolates, 69%) to four (4 isolates, 31%). A novel tandem repeat pattern and two novel polymorphisms were detected in the UCS region. For the Kex1 gene, the wild-type (24 isolates, 86%) was the most frequent sequence detected among the 28 sequenced isolates. Nevertheless, a nonsynonymous (1 isolate, 3%) and three synonymous (3 isolates, 11%) polymorphisms were detected and are described here for the first time.
Sitt, Tatjana; Pelle, Roger; Chepkwony, Maurine; Morrison, W Ivan; Toye, Philip
2018-05-06
The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.
NASA Astrophysics Data System (ADS)
Dominguez, L. A.; Taira, T.; Hjorleifsdottir, V.; Santoyo, M. A.
2015-12-01
Repeating earthquake sequences are sets of events that are thought to rupture the same area on the plate interface and thus provide nearly identical waveforms. We systematically analyzed seismic records from 2001 through 2014 to identify repeating earthquakes with highly correlated waveforms occurring along the subduction zone of the Cocos plate. Using the correlation coefficient (cc) and spectral coherency (coh) of the vertical components as selection criteria, we found a set of 214 sequences whose waveforms exceed cc≥95% and coh≥95%. Spatial clustering along the trench shows large variations in repeating earthquakes activity. Particularly, the rupture zone of the M8.1, 1985 earthquake shows an almost absence of characteristic repeating earthquakes, whereas the Guerrero Gap zone and the segment of the trench close to the Guerrero-Oaxaca border shows a significantly larger number of repeating earthquakes sequences. Furthermore, temporal variations associated to stress changes due to major shows episodes of unlocking and healing of the interface. Understanding the different components that control the location and recurrence time of characteristic repeating sequences is a key factor to pinpoint areas where large megathrust earthquakes may nucleate and consequently to improve the seismic hazard assessment.
Fluorescent signatures for variable DNA sequences
Rice, John E.; Reis, Arthur H.; Rice, Lisa M.; Carver-Brown, Rachel K.; Wangh, Lawrence J.
2012-01-01
Life abounds with genetic variations writ in sequences that are often only a few hundred nucleotides long. Rapid detection of these variations for identification of genetic diseases, pathogens and organisms has become the mainstay of molecular science and medicine. This report describes a new, highly informative closed-tube polymerase chain reaction (PCR) strategy for analysis of both known and unknown sequence variations. It combines efficient quantitative amplification of single-stranded DNA targets through LATE-PCR with sets of Lights-On/Lights-Off probes that hybridize to their target sequences over a broad temperature range. Contiguous pairs of Lights-On/Lights-Off probes of the same fluorescent color are used to scan hundreds of nucleotides for the presence of mutations. Sets of probes in different colors can be combined in the same tube to analyze even longer single-stranded targets. Each set of hybridized Lights-On/Lights-Off probes generates a composite fluorescent contour, which is mathematically converted to a sequence-specific fluorescent signature. The versatility and broad utility of this new technology is illustrated in this report by characterization of variant sequences in three different DNA targets: the rpoB gene of Mycobacterium tuberculosis, a sequence in the mitochondrial cytochrome C oxidase subunit 1 gene of nematodes and the V3 hypervariable region of the bacterial 16 s ribosomal RNA gene. We anticipate widespread use of these technologies for diagnostics, species identification and basic research. PMID:22879378
Epstein-Barr Virus Sequence Variation—Biology and Disease
Tzellos, Stelios; Farrell, Paul J.
2012-01-01
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease. PMID:25436768
2014-01-01
Background Neisseria meningitidis expresses type four pili (Tfp) which are important for colonisation and virulence. Tfp have been considered as one of the most variable structures on the bacterial surface due to high frequency gene conversion, resulting in amino acid sequence variation of the major pilin subunit (PilE). Meningococci express either a class I or a class II pilE gene and recent work has indicated that class II pilins do not undergo antigenic variation, as class II pilE genes encode conserved pilin subunits. The purpose of this work was to use whole genome sequences to further investigate the frequency and variability of the class II pilE genes in meningococcal isolate collections. Results We analysed over 600 publically available whole genome sequences of N. meningitidis isolates to determine the sequence and genomic organization of pilE. We confirmed that meningococcal strains belonging to a limited number of clonal complexes (ccs, namely cc1, cc5, cc8, cc11 and cc174) harbour a class II pilE gene which is conserved in terms of sequence and chromosomal context. We also identified pilS cassettes in all isolates with class II pilE, however, our analysis indicates that these do not serve as donor sequences for pilE/pilS recombination. Furthermore, our work reveals that the class II pilE locus lacks the DNA sequence motifs that enable (G4) or enhance (Sma/Cla repeat) pilin antigenic variation. Finally, through analysis of pilin genes in commensal Neisseria species we found that meningococcal class II pilE genes are closely related to pilE from Neisseria lactamica and Neisseria polysaccharea, suggesting horizontal transfer among these species. Conclusions Class II pilins can be defined by their amino acid sequence and genomic context and are present in meningococcal isolates which have persisted and spread globally. The absence of G4 and Sma/Cla sequences adjacent to the class II pilE genes is consistent with the lack of pilin subunit variation in these isolates, although horizontal transfer may generate class II pilin diversity. This study supports the suggestion that high frequency antigenic variation of pilin is not universal in pathogenic Neisseria. PMID:24690385
Sun, Lingling; Che, Kui; Zhao, Zhenzhen; Liu, Song; Xing, Xiaoming; Luo, Bing
2015-09-04
NK/T cell lymphoma is an aggressive lymphoma almost always associated with EBV. BamHI-A rightward open reading frame 1 (BARF1) and BamHI-H rightward open reading frame 1 (BHRF1) are two EBV early genes, which may be involved in the oncogenicity of EBV. It has been found that V29A strains, a BARF1 mutant subtype, showed higher prevalence in NPC, which may suggest the association between this variation and nasopharyngeal carcinoma (NPC). To characterize the sequence variation patterns of the Epstein-Barr virus (EBV) early genes and to elucidate their association with NK/T cell lymphoma, we analyzed the sequences of BARF1 and BHRF1 in EBV-positive NK/T cell lymphoma samples from Northern China. In situ hybridization (ISH) performed for EBV-encoded small RNA1 (EBER1) with specific digoxigenin-labeled probes was used to select the EBV positive lymphoma samples. Nested-polymerase chain reaction (nested-PCR) and DNA sequence analysis technique were used to obtain the sequences of BARF1 and BHRF1. The polymorphisms of these two genes were classified according to the signature changes and compared with the known corresponding EBV gene variation data. Two major subtypes of BARF1 gene, designated as B95-8 and V29A subtype, were identified. B95-8 subtype was the dominant subtype. The V29A subtype had one consistent amino acid change at amino acid residue 29 (V → A). Compared with B95-8, AA change at 88 (L → V) of BHRF1 was found in the majority of the isolates, and AA79 (V → L) mutation in a few isolates. Functional domains of BARF1 and BHRF1 were highly conserved. The distributions of BARF1 and BHRF1 subtypes had no significant differences among different EBV-associated malignancies and healthy donors. The sequences of BARF1 and BHRF1 are highly conserved which may contribute to maintain the biological function of these two genes. There is no evidence that particular EBV substrains of BARF1 or BHRF1 is region-restricted or disease-specific.
2010-01-01
Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80°C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method. PMID:20673359
Zhou, Daniel X M; Chan, Paul K S; Zhang, Tiejun; Tully, Damien C; Tam, John S
2010-10-01
Studies on the association between sequence variability of the interferon sensitivity-determining region (ISDR) of hepatitis C virus and the outcome of treatment have reached conflicting results. In this study, 25 patients infected with HCV 6a who had received interferon-alpha/ribavirin combination treatment were analyzed for the sequence variations. 14 of them had the full genome sequences obtained from a previous study, whereas the other 11 samples were sequenced for the extended ISDR (eISDR). This eISDR fragment covers 192 bp (64 amino acids) upstream and 201 bp (67 amino acids) downstream from the ISDR previously defined for HCV 1b. The comparison between interferon-alpha resistance and response groups for the amino acid mutations located in the full genome (6 and 8 patients respectively) as well as the mutations located in the eISDR (10 and 15 patients respectively) showed that the mutations I2160V, I2256V, V2292I (P<0.05) within eISDR were significantly associated with resistance to treatment. However, the extent of amino acid variations within previously defined ISDR was not associated with resistance to treatment as previously reported. Four amino acid variations I248V (P=0.03-0.06) within E1, R445K (P=0.02-0.05) and S747T (P=0.03) within E2, I861V (P=0.01) within NS2 which located outside the eISDR may also associate with treatment outcome as identified by a prescreening of variations within 14 HCV 6a full genomes. (c) 2010 Elsevier B.V. All rights reserved.
Cavusoglu, M; Ciloglu, T; Serinagaoglu, Y; Kamasak, M; Erogul, O; Akcam, T
2008-08-01
In this paper, 'snore regularity' is studied in terms of the variations of snoring sound episode durations, separations and average powers in simple snorers and in obstructive sleep apnoea (OSA) patients. The goal was to explore the possibility of distinguishing among simple snorers and OSA patients using only sleep sound recordings of individuals and to ultimately eliminate the need for spending a whole night in the clinic for polysomnographic recording. Sequences that contain snoring episode durations (SED), snoring episode separations (SES) and average snoring episode powers (SEP) were constructed from snoring sound recordings of 30 individuals (18 simple snorers and 12 OSA patients) who were also under polysomnographic recording in Gülhane Military Medical Academy Sleep Studies Laboratory (GMMA-SSL), Ankara, Turkey. Snore regularity is quantified in terms of mean, standard deviation and coefficient of variation values for the SED, SES and SEP sequences. In all three of these sequences, OSA patients' data displayed a higher variation than those of simple snorers. To exclude the effects of slow variations in the base-line of these sequences, new sequences that contain the coefficient of variation of the sample values in a 'short' signal frame, i.e., short time coefficient of variation (STCV) sequences, were defined. The mean, the standard deviation and the coefficient of variation values calculated from the STCV sequences displayed a stronger potential to distinguish among simple snorers and OSA patients than those obtained from the SED, SES and SEP sequences themselves. Spider charts were used to jointly visualize the three parameters, i.e., the mean, the standard deviation and the coefficient of variation values of the SED, SES and SEP sequences, and the corresponding STCV sequences as two-dimensional plots. Our observations showed that the statistical parameters obtained from the SED and SES sequences, and the corresponding STCV sequences, possessed a strong potential to distinguish among simple snorers and OSA patients, both marginally, i.e., when the parameters are examined individually, and jointly. The parameters obtained from the SEP sequences and the corresponding STCV sequences, on the other hand, did not have a strong discrimination capability. However, the joint behaviour of these parameters showed some potential to distinguish among simple snorers and OSA patients.
Timofeeva, Maria N.; Kinnersley, Ben; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F A; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Försti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P M; Dunlop, Malcolm G.; Houlston, Richard S.
2015-01-01
Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC. PMID:26553438
Arif, Rabia; Akram, Faiza; Jamil, Tazeen; Lee, Siu Fai
2017-01-01
Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora, we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution. PMID:28717646
Arif, Rabia; Akram, Faiza; Jamil, Tazeen; Mukhtar, Hamid; Lee, Siu Fai; Saleem, Muhammad
2017-01-01
Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora , we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution.
Nabavi, Reza; Conneely, Brendan; McCarthy, Elaine; Good, Barbara; Shayan, Parviz; DE Waal, Theo
2014-09-01
Accurate identification of sheep nematodes is a critical point in epidemiological studies and monitoring of drug resistance in flocks. However, due to a close morphological similarity between the eggs and larval stages of many of these nematodes, such identification is not a trivial task. There are a number of studies showing that molecular targets in ribosomal DNA (Internal transcribed spacer 1, 2 and Intergenic spacer) are suitable for accurate identification of sheep bursate nematodes. The objective of present study was to compare the ITS1, ITS2 and IGS regions of Iranian common bursate nematodes in order to choose best target for specific identification methods. The first and second internal transcribed spacers (ITS1and ITS2) and intergenic spacer (IGS) of the ribosomal DNA (rDNA) of 5 common Iranian bursate nematodes of sheep were sequenced. The sequences of some non-Iranian isolates were used for comparison in order to evaluate the variation in sequence homology between geographically different nematode populations. Comparison of the ITS1 and ITS2 sequences of Iranian nematodes showed greatest similarity among Teladorsagia circumcincta and Marshallagia marshalli of 94% and 88%, respectively. While Trichostrongylus colubriformis and M. marshalli showed the highest homology (99%) in the IGS sequences. Comparison of the spacer sequences of Iranian with non-Iranian isolates showed significantly higher variation in Haemonchus contortus compared to the other species. Both the ITS1 and ITS2 sequences are convenient targets to have species-specific identification of Iranian bursate nematodes. On the other hand the IGS region may be a less suitable molecular target.
Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki
2016-07-01
Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.
Major histocompatibility complex variation in the endangered Przewalski's horse.
Hedrick, P W; Parker, K M; Miller, E L; Miller, P S
1999-01-01
The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594
Ma, Xin-Ye; Xie, Cai-Xiang; Liu, Chang; Song, Jing-Yuan; Yao, Hui; Luo, Kun; Zhu, Ying-Jie; Gao, Ting; Pang, Xiao-Hui; Qian, Jun; Chen, Shi-Lin
2010-01-01
Medicinal pteridophytes are an important group used in traditional Chinese medicine; however, there is no simple and universal way to differentiate various species of this group by morphological traits. A novel technology termed "DNA barcoding" could discriminate species by a standard DNA sequence with universal primers and sufficient variation. To determine whether DNA barcoding would be effective for differentiating pteridophyte species, we first analyzed five DNA sequence markers (psbA-trnH intergenic region, rbcL, rpoB, rpoC1, and matK) using six chloroplast genomic sequences from GeneBank and found psbA-trnH intergenic region the best candidate for availability of universal primers. Next, we amplified the psbA-trnH region from 79 samples of medicinal pteridophyte plants. These samples represented 51 species from 24 families, including all the authentic pteridophyte species listed in the Chinese pharmacopoeia (2005 version) and some commonly used adulterants. We found that the sequence of the psbA-trnH intergenic region can be determined with both high polymerase chain reaction (PCR) amplification efficiency (94.1%) and high direct sequencing success rate (81.3%). Combined with GeneBank data (54 species cross 12 pteridophyte families), species discriminative power analysis showed that 90.2% of species could be separated/identified successfully by the TaxonGap method in conjunction with the Basic Local Alignment Search Tool 1 (BLAST1) method. The TaxonGap method results further showed that, for 37 out of 39 separable species with at least two samples each, between-species variation was higher than the relevant within-species variation. Thus, the psbA-trnH intergenic region is a suitable DNA marker for species identification in medicinal pteridophytes.
Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus.
Chun, J; Huq, A; Colwell, R R
1999-05-01
Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae.
Using chaos to generate variations on movement sequences
NASA Astrophysics Data System (ADS)
Bradley, Elizabeth; Stuart, Joshua
1998-12-01
We describe a method for introducing variations into predefined motion sequences using a chaotic symbol-sequence reordering technique. A progression of symbols representing the body positions in a dance piece, martial arts form, or other motion sequence is mapped onto a chaotic trajectory, establishing a symbolic dynamics that links the movement sequence and the attractor structure. A variation on the original piece is created by generating a trajectory with slightly different initial conditions, inverting the mapping, and using special corpus-based graph-theoretic interpolation schemes to smooth any abrupt transitions. Sensitive dependence guarantees that the variation is different from the original; the attractor structure and the symbolic dynamics guarantee that the two resemble one another in both aesthetic and mathematical senses.
Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann
2014-01-01
• Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625
Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.
McNally, Elizabeth M; Puckelwartz, Megan J
2015-01-01
With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.
[Hydrologic variability and sensitivity based on Hurst coefficient and Bartels statistic].
Lei, Xu; Xie, Ping; Wu, Zi Yi; Sang, Yan Fang; Zhao, Jiang Yan; Li, Bin Bin
2018-04-01
Due to the global climate change and frequent human activities in recent years, the pure stochastic components of hydrological sequence is mixed with one or several of the variation ingredients, including jump, trend, period and dependency. It is urgently needed to clarify which indices should be used to quantify the degree of their variability. In this study, we defined the hydrological variability based on Hurst coefficient and Bartels statistic, and used Monte Carlo statistical tests to test and analyze their sensitivity to different variants. When the hydrological sequence had jump or trend variation, both Hurst coefficient and Bartels statistic could reflect the variation, with the Hurst coefficient being more sensitive to weak jump or trend variation. When the sequence had period, only the Bartels statistic could detect the mutation of the sequence. When the sequence had a dependency, both the Hurst coefficient and the Bartels statistics could reflect the variation, with the latter could detect weaker dependent variations. For the four variations, both the Hurst variability and Bartels variability increased with the increases of variation range. Thus, they could be used to measure the variation intensity of the hydrological sequence. We analyzed the temperature series of different weather stations in the Lancang River basin. Results showed that the temperature of all stations showed the upward trend or jump, indicating that the entire basin had experienced warming in recent years and the temperature variability in the upper and lower reaches was much higher. This case study showed the practicability of the proposed method.
A map of human genome variation from population-scale sequencing.
Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A
2010-10-28
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.
Ishida, Yasuko; McCallister, Chelsea; Nikolaidis, Nikolas; Tsangaras, Kyriakos; Helgen, Kristofer M; Greenwood, Alex D; Roca, Alfred L
2015-01-15
The koala retrovirus (KoRV), which is transitioning from an exogenous to an endogenous form, has been associated with high mortality in koalas. For other retroviruses, the envelope protein p15E has been considered a candidate for vaccine development. We therefore examined proviral sequence variation of KoRV p15E in a captive Queensland and three wild southern Australian koalas. We generated 163 sequences with intact open reading frames, which grouped into 39 distinct haplotypes. Sixteen distinct haplotypes comprising 139 of the sequences (85%) coded for the same polypeptide. Among the remaining 23 haplotypes, 22 were detected only once among the sequences, and each had 1 or 2 non-synonymous differences from the majority sequence. Several analyses suggested that p15E was under purifying selection. Important epitopes and domains were highly conserved across the p15E sequences and in previously reported exogenous KoRVs. Overall, these results support the potential use of p15E for KoRV vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.
Dissecting the relationship between protein structure and sequence variation
NASA Astrophysics Data System (ADS)
Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team
2015-03-01
Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.
Fogt-Wyrwas, R; Mizgajska-Wiktor, H; Pacoń, J; Jarosz, W
2013-12-01
Some parasitic nematodes can inhabit different definitive hosts, which raises the question of the intraspecific variability of the nematode genotype affecting their preferences to choose particular species as hosts. Additionally, the issue of a possible intraspecific DNA microheterogeneity in specimens from different parts of the world seems to be interesting, especially from the evolutionary point of view. The problem was analysed in three related species - Toxocara canis, Toxocara cati and Toxascaris leonina - specimens originating from Central Europe (Poland). Using specific primers for species identification, internal transcribed spacer (ITS)-1 and ITS-2 regions were amplified and then sequenced. The sequences obtained were compared with sequences previously described for specimens originating from other geographical locations. No differences in nucleotide sequences were established in T. canis isolated from two different hosts (dogs and foxes). A comparison of ITS sequences of T. canis from Poland with sequences deposited in GenBank showed that the scope of intraspecific variability of the species did not exceed 0.4%, while in T. cati the differences did not exceed 2%. Significant differences were found in T. leonina, where ITS-1 differed by 3% and ITS-2 by as much as 7.4% in specimens collected from foxes in Poland and dogs in Australia. Such scope of differences in the nucleotide sequence seems to exceed the intraspecific variation of the species.
The African Genome Variation Project shapes medical genetics in Africa
NASA Astrophysics Data System (ADS)
Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.
2015-01-01
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
The African Genome Variation Project shapes medical genetics in Africa.
Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S
2015-01-15
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Akuffo, Afua A; Alontaga, Aileen Y; Metcalf, Rainer; Beatty, Matthew S; Becker, Andreas; McDaniel, Jessica M; Hesterberg, Rebecca S; Goodheart, William E; Gunawan, Steven; Ayaz, Muhammad; Yang, Yan; Karim, Md Rezaul; Orobello, Morgan E; Daniel, Kenyon; Guida, Wayne; Yoder, Jeffrey A; Rajadhyaksha, Anjali M; Schönbrunn, Ernst; Lawrence, Harshani R; Lawrence, Nicholas J; Epling-Burnette, Pearlie K
2018-04-20
Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Intra-specific variation in genome size in maize: cytological and phenotypic correlates
Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther
2016-01-01
Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343
Evolutionary Pattern of the FAE1 Gene in Brassicaceae and Its Correlation with the Erucic Acid Trait
Li, Mimi; Peng, Bin; Guo, Haisong; Yan, Qinqin; Hang, Yueyu
2013-01-01
The fatty acid elongase 1 (FAE1) gene catalyzes the initial condensation step in the elongation pathway of VLCFA (very long chain fatty acid) biosynthesis and is thus a key gene in erucic acid biosynthesis. Based on a worldwide collection of 62 accessions representing 14 tribes, 31 genera, 51 species, 4 subspecies and 7 varieties, we conducted a phylogenetic reconstruction and correlation analysis between genetic variations in the FAE1 gene and the erucic acid trait, attempting to gain insight into the evolutionary patterns and the correlations between genetic variations in FAE1 and trait variations. The five clear, deeply diverged clades detected in the phylogenetic reconstruction are largely congruent with a previous multiple gene-derived phylogeny. The Ka/Ks ratio (<1) and overall low level of nucleotide diversity in the FAE1 gene suggest that purifying selection is the major evolutionary force acting on this gene. Sequence variations in FAE1 show a strong correlation with the content of erucic acid in seeds, suggesting a causal link between the two. Furthermore, we detected 16 mutations that were fixed between the low and high phenotypes of the FAE1 gene, which constitute candidate active sites in this gene for altering the content of erucic acid in seeds. Our findings begin to shed light on the evolutionary pattern of this important gene and represent the first step in elucidating how the sequence variations impact the production of erucic acid in plants. PMID:24358289
Buckley, Mike
2016-03-24
Collagen is one of the most ubiquitous proteins in the animal kingdom and the dominant protein in extracellular tissues such as bone, skin and other connective tissues in which it acts primarily as a supporting scaffold. It has been widely investigated scientifically, not only as a biomedical material for regenerative medicine, but also for its role as a food source for both humans and livestock. Due to the long-term stability of collagen, as well as its abundance in bone, it has been proposed as a source of biomarkers for species identification not only for heat- and pressure-rendered animal feed but also in ancient archaeological and palaeontological specimens, typically carried out by peptide mass fingerprinting (PMF) as well as in-depth liquid chromatography (LC)-based tandem mass spectrometric methods. Through the analysis of the three most common domesticates species, cow, sheep, and pig, this research investigates the advantages of each approach over the other, investigating sites of sequence variation with known functional properties of the collagen molecule. Results indicate that the previously identified species biomarkers through PMF analysis are not among the most variable type 1 collagen peptides present in these tissues, the latter of which can be detected by LC-based methods. However, it is clear that the highly repetitive sequence motif of collagen throughout the molecule, combined with the variability of the sites and relative abundance levels of hydroxylation, can result in high scoring false positive peptide matches using these LC-based methods. Additionally, the greater alpha 2(I) chain sequence variation, in comparison to the alpha 1(I) chain, did not appear to be specific to any particular functional properties, implying that intra-chain functional constraints on sequence variation are not as great as inter-chain constraints. However, although some of the most variable peptides were only observed in LC-based methods, until the range of publicly available collagen sequences improves, the simplicity of the PMF approach and suitable range of peptide sequence variation observed makes it the ideal method for initial taxonomic identification prior to further analysis by LC-based methods only when required.
Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.
Havlová, Kateřina; Dvořáčková, Martina; Peiro, Ramon; Abia, David; Mozgová, Iva; Vansáčová, Lenka; Gutierrez, Crisanto; Fajkus, Jiří
2016-11-01
Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.
Bashir, Ali; Bansal, Vikas; Bafna, Vineet
2010-06-18
Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.
Genetic diversity among isolates of Autographa californica multiple nucleopolyhedrovirus
USDA-ARS?s Scientific Manuscript database
Our knowledge of genetic variation at the nucleotide sequence level of Autographa californica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus) derives from complete genome sequences of the C6 clonal isolate of AcMNPV and the R1 and CL3 clonal isolates of AcMNPV variants Rachip...
Rostami, S; Salavati, R; Beech, R N; Babaei, Z; Sharbatkhori, M; Baneshi, M R; Hajialilo, E; Shad, H; Harandi, M F
2015-03-01
Although Taenia hydatigena is one of the most prevalent taeniid species of livestock, very little molecular genetic information exists for this parasite. Up to 100 sheep isolates of T. hydatigena were collected from 19 abattoirs located in the provinces of Tehran, Alborz and Kerman. A calibrated microscope was used to measure the larval rostellar hook lengths. Following DNA extraction, fragments of cytochrome c oxidase 1 (CO1) and 12S rRNA genes were amplified by the polymerase chain reaction method and the amplicons were subjected to sequencing. The mean total length of large and small hooks was 203.4 μm and 135.9 μm, respectively. Forty CO1 and 39 12S rRNA sequence haplotypes were obtained in the study. The levels of pairwise nucleotide variation between individual haplotypes of CO1 and 12S rRNA genes were determined to be between 0.3-3.4% and 0.2-2.1%, respectively. The overall nucleotide variation among all the CO1 haplotypes was 9.7%, and for all the 12S rRNA haplotypes it was 10.1%. A significant difference was observed between rostellar hook morphometry and both CO1 and 12S rRNA sequence variability. A significantly high level of genetic variation was observed in the present study. The results showed that the 12S rRNA gene is more variable than CO1.
Hong, Min Eui; Do, In-Gu; Kang, So Young; Ha, Sang Yun; Kim, Seung Tae; Park, Se Hoon; Kang, Won Ki; Choi, Min-Gew; Lee, Jun Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Sung; Kim, Duk-Hwan; Kim, Kyoung-Mee
2014-01-01
In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%), APC (10.1%), PIK3CA (5.6%), KRAS (4.5%), SMO (3.4%), STK11 (3.4%), CDKN2A (3.4%) and SMAD4 (3.4%). Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%), 4 (4.5%), 2 (2.2%), 1 (1.1%) and 1 (1.1%) cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes. PMID:25372287
Fokkema, Ivo F A C; den Dunnen, Johan T; Taschner, Peter E M
2005-08-01
The completion of the human genome project has initiated, as well as provided the basis for, the collection and study of all sequence variation between individuals. Direct access to up-to-date information on sequence variation is currently provided most efficiently through web-based, gene-centered, locus-specific databases (LSDBs). We have developed the Leiden Open (source) Variation Database (LOVD) software approaching the "LSDB-in-a-Box" idea for the easy creation and maintenance of a fully web-based gene sequence variation database. LOVD is platform-independent and uses PHP and MySQL open source software only. The basic gene-centered and modular design of the database follows the recommendations of the Human Genome Variation Society (HGVS) and focuses on the collection and display of DNA sequence variations. With minimal effort, the LOVD platform is extendable with clinical data. The open set-up should both facilitate and promote functional extension with scripts written by the community. The LOVD software is freely available from the Leiden Muscular Dystrophy pages (www.DMD.nl/LOVD/). To promote the use of LOVD, we currently offer curators the possibility to set up an LSDB on our Leiden server. (c) 2005 Wiley-Liss, Inc.
Viswanathan, R; Balamuralikrishnan, M; Karuppaiah, R
2008-12-01
Sugarcane yellow leaf virus (SCYLV) that causes yellow leaf disease (YLD) in sugarcane (recently reported in India) belongs to Polerovirus. Detailed studies were conducted to characterize the virus based on partial open reading frames (ORFs) 1 and 2 and complete ORFs 3 and 4 sequences in their genome. Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on 48 sugarcane leaf samples to detect the virus using a specific set of primers. Of the 48 samples, 36 samples (field samples with and without foliar symptoms) including 10 meristem culture derived plants were found to be positive to SCYLV infection. Additionally, an aphid colony collected from symptomatic sugarcane in the field was also found to be SCYLV positive. The amplicons from 22 samples were cloned, sequenced and acronymed as SCYLV-CB isolates. The nucleotide (nt) and amino acid (aa) sequence comparison showed a significant variation between SCYLV-CB and the database sequences at nt (3.7-5.1%) and aa (3.2-5.3%) sequence level in the CP coding region. However, the database sequences comprising isolates of three reported genotypes, viz., BRA, PER and REU, were observed with least nt and aa sequence dissimilarities (0.0-1.6%). The phylogenetic analyses of the overlapping ORFs (ORF 3 and ORF 4) of SCYLV encoding CP and MP determined in this study and additional sequences of 26 other isolates including an Indian isolate (SCYLV-IND) available from GenBank were distributed in four phylogenetic clusters. The SCYLV-CB isolates from this study lineated in two clusters (C1 and C2) and all the other isolates from the worldwide locations into another two clusters (C3 and C4). The sequence variation of the isolates in this study with the database isolates, even in the least variable region of the SCYLV genome, showed that the population existing in India is significantly different from rest of the world. Further, comparison of partial sequences encoding for ORFs 1 and 2 revealed that YLD in sugarcane in India is caused by at least three genotypes, viz., CUB, IND and BRA-PER, of which a majority of the samples were found infected with Cuban genotype (CUB) and lesser by IND and BRA-PER genotypes. The genotype IND was identified as a new genotype from this study, and this was found to have significant variation with the reported genotypes.
Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C
2013-01-01
The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.
Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.
2013-01-01
The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghanem, N.; Costes, B.; Girodon, E.
1994-05-15
To determine cystic fibrosis (CF) defects in a sample of 224 non-[Delta]F508 CF chromosomes, the authors used denaturing gradient gel multiplex analysis of CF transmembrane conductance regulator gene segments, a strategy based on blind exhaustive analysis rather than a search for known mutations. This process allowed detection of 11 novel variations comprising two nonsense mutations (Q890X and W1204X), a splice defect (405 + 4 A [yields] G), a frameshift (3293delA), four presumed missense mutations (S912L, H949Y, L1065P, Q1071P), and three sequence polymorphisms (R31C or 223 C/T, 3471 T/C, and T1220I or 3791 C/T). The authors describe these variations, together withmore » the associated phenotype when defects on both CF chromosomes were identified. 8 refs., 1 fig., 1 tab.« less
Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers.
Kumari, P; Basal, N; Singh, A K; Rai, V P; Srivastava, C P; Singh, P K
2013-03-13
The genetic diversity among 28 pea (Pisum sativum L.) genotypes was analyzed using 32 simple sequence repeat markers. A total of 44 polymorphic bands, with an average of 2.1 bands per primer, were obtained. The polymorphism information content ranged from 0.657 to 0.309 with an average of 0.493. The variation in genetic diversity among these cultivars ranged from 0.11 to 0.73. Cluster analysis based on Jaccard's similarity coefficient using the unweighted pair-group method with arithmetic mean (UPGMA) revealed 2 distinct clusters, I and II, comprising 6 and 22 genotypes, respectively. Cluster II was further differentiated into 2 subclusters, IIA and IIB, with 12 and 10 genotypes, respectively. Principal component (PC) analysis revealed results similar to those of UPGMA. The first, second, and third PCs contributed 21.6, 16.1, and 14.0% of the variation, respectively; cumulative variation of the first 3 PCs was 51.7%.
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform
Van Nostrand, Joy D.; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong
2017-01-01
Illumina’s MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1–3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility. PMID:28453559
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Chongqing; Wu, Liyou; Qin, Yujia
Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform
Wen, Chongqing; Wu, Liyou; Qin, Yujia; ...
2017-04-28
Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform.
Wen, Chongqing; Wu, Liyou; Qin, Yujia; Van Nostrand, Joy D; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong
2017-01-01
Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.
Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon
2015-01-01
An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.
Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon
2015-01-01
An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits. PMID:26700647
Utachee, Piraporn; Jinnopat, Piyamat; Isarangkura-Na-Ayuthaya, Panasda; de Silva, Udayanga Chandimal; Nakamura, Shota; Siripanyaphinyo, Uamporn; Wichukchinda, Nuanjun; Tokunaga, Kenzo; Yasunaga, Teruo; Sawanpanyalert, Pathom; Ikuta, Kazuyoshi; Auwanit, Wattana; Kameoka, Masanori
2009-02-01
CRF01_AE is a major subtype of human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia, including Thailand. HIV-1 env genes were amplified by polymerase chain reaction from blood samples of HIV-1-infected patients residing in Thailand in 2006, and cloned into the pNL4-3-derived reporter viral construct. Generated envelope protein (Env)-recombinant virus was examined for its infectivity, and then 35 infectious CRF01_AE Env-recombinant viruses were selected. Sequencing analysis revealed that the interclone variation of the deduced amino acid sequences was higher in CRF01_AE env genes isolated in 2006 than in those isolated in the early 1990s, suggesting that env gene variation has been increasing gradually among CRF01_AE viruses prevalent in Thailand. We also examined the characteristics of the deduced amino acid sequences of 35 CRF01_AE env genes. Our results may provide useful information to help in better understanding the genotype of env genes of CRF01_AE viruses currently circulating in Thailand.
Wei, Guang-hui; Zhao, Bo; Wang, Zhen-jun
2008-09-01
To compare the sensibility and specificity between single-stranded conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) in screening hMSH2 and hMLH1 gene mutations for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). Seven Chinese HNPCC kindreds were collected. PCR-SSCP and DHPLC were used to screen the coding regions of hMSH2 and hMLH1 genes and the abnormal profiles were sequenced by a 377 DNA sequencer. Seven gene sequence variations of hMSH2 or hMLH1 were found. Among them, 4 variations were not found by SSCP, but by DHPLC. The sensibility of SSCP and DHPLC were 51.6% and 100% respectively, and the specificity were 66.6% and 93.3% respectively. DHPLC has better sensibility and specificity in screening hMSH2 and hMLH1 gene mutation as compared to SSCP. DHPLC is an ideal method in the diagnosis of HNPCC.
Alam, Nuhu; Shim, Mi Ja; Lee, Min Woong; Shin, Pyeong Gyun; Yoo, Young Bok; Lee, Tae Soo
2009-09-01
The molecular phylogeny in nine different commercial cultivated strains of Pleurotus nebrodensis was studied based on their internal transcribed spacer (ITS) region and RAPD. In the sequence of ITS region of selected strains, it was revealed that the total length ranged from 592 to 614 bp. The size of ITS1 and ITS2 regions varied among the strains from 219 to 228 bp and 211 to 229 bp, respectively. The sequence of ITS2 was more variable than ITS1 and the region of 5.8S sequences were identical. Phylogenetic tree of the ITS region sequences indicated that selected strains were classified into five clusters. The reciprocal homologies of the ITS region sequences ranged from 99 to 100%. The strains were also analyzed by RAPD with 20 arbitrary primers. Twelve primers were efficient to applying amplification of the genomic DNA. The sizes of the polymorphic fragments obtained were in the range of 200 to 2000 bp. RAPD and ITS analysis techniques were able to detect genetic variation among the tested strains. Experimental results suggested that IUM-1381, IUM-3914, IUM-1495 and AY-581431 strains were genetically very similar. Therefore, all IUM and NCBI gene bank strains of P. nebrodensis were genetically same with some variations.
Genomic Sequence Variation Markup Language (GSVML).
Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi
2010-02-01
With the aim of making good use of internationally accumulated genomic sequence variation data, which is increasing rapidly due to the explosive amount of genomic research at present, the development of an interoperable data exchange format and its international standardization are necessary. Genomic Sequence Variation Markup Language (GSVML) will focus on genomic sequence variation data and human health applications, such as gene based medicine or pharmacogenomics. We developed GSVML through eight steps, based on case analysis and domain investigations. By focusing on the design scope to human health applications and genomic sequence variation, we attempted to eliminate ambiguity and to ensure practicability. We intended to satisfy the requirements derived from the use case analysis of human-based clinical genomic applications. Based on database investigations, we attempted to minimize the redundancy of the data format, while maximizing the data covering range. We also attempted to ensure communication and interface ability with other Markup Languages, for exchange of omics data among various omics researchers or facilities. The interface ability with developing clinical standards, such as the Health Level Seven Genotype Information model, was analyzed. We developed the human health-oriented GSVML comprising variation data, direct annotation, and indirect annotation categories; the variation data category is required, while the direct and indirect annotation categories are optional. The annotation categories contain omics and clinical information, and have internal relationships. For designing, we examined 6 cases for three criteria as human health application and 15 data elements for three criteria as data formats for genomic sequence variation data exchange. The data format of five international SNP databases and six Markup Languages and the interface ability to the Health Level Seven Genotype Model in terms of 317 items were investigated. GSVML was developed as a potential data exchanging format for genomic sequence variation data exchange focusing on human health applications. The international standardization of GSVML is necessary, and is currently underway. GSVML can be applied to enhance the utilization of genomic sequence variation data worldwide by providing a communicable platform between clinical and research applications. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Zhao, Zhong-Hui; Bian, Qing-Qing; Ren, Wan-Xin; Cheng, Wen-Yu; Jia, Yan-Qing; Fang, Yan-Qin; Zhao, Guang-Hui
2014-06-01
The present study examined the variations in three mitochondrial (mt) DNA sequences, namely cytochrome b (cytb), cytochrome c oxidase subunit 3 (cox3) and NADH dehydrogenase subunit 5 (nad5), among Baylisascaris schroederi isolates from the Qinling subspecies of the giant panda in Shaanxi province, northwestern China. No differences in length were detected in the three mt fragments from different isolates. The intra-specific sequence variations within all B. schroederi samples were 0-2.6% for pcytb, 0-1.8% for pcox3 and 0-2.1% for pnad5, while the inter-specific sequence differences among members of the genus Baylisascaris were 8.2-15.2%, 6.2-15.9% and 8.4-16.0% for pcytb, pcox3, pnad5, respectively. A phylogenetic analysis of the combined sequences of pcytb, pcox3 and pnad 5 showed that all B. schroederi samples in the present study were located in two large clusters, with one cluster containing samples from giant pandas in Sichuan province. These findings provide basic information for further study of molecular epidemiology and control of B. schroederi infection in the Qinling subspecies of the giant panda and throughout China.
TUMOR HAPLOTYPE ASSEMBLY ALGORITHMS FOR CANCER GENOMICS
AGUIAR, DEREK; WONG, WENDY S.W.; ISTRAIL, SORIN
2014-01-01
The growing availability of inexpensive high-throughput sequence data is enabling researchers to sequence tumor populations within a single individual at high coverage. But, cancer genome sequence evolution and mutational phenomena like driver mutations and gene fusions are difficult to investigate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity, tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While computational and experimental haplotype phasing of diploid genomes has seen much progress in recent years, haplotype assembly in cancer genomes remains uncharted territory. In this work, we describe HapCompass-Tumor a computational modeling and algorithmic framework for haplotype assembly of copy number variable cancer genomes containing haplotypes at different frequencies and complex variation. We extend our polyploid haplotype assembly model and present novel algorithms for (1) complex variations, including copy number changes, as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass graph which constrain the space of haplotype assembly solutions. The model and algorithm are implemented in the software package HapCompass-Tumor which is available for download from http://www.brown.edu/Research/Istrail_Lab/. PMID:24297529
Genetic diversity among pandemic 2009 influenza viruses isolated from a transmission chain
2013-01-01
Background Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly respond to selection pressures, such as those imposed by the immunological host response and antiviral therapy. We have applied deep sequencing to characterize influenza intra-host variation in a transmission chain consisting of three cases due to oseltamivir-sensitive viruses, and one derived oseltamivir-resistant case. Methods Following detection of the A(H1N1)pdm09 infections, we deep-sequenced the complete NA gene from two of the oseltamivir-sensitive virus-infected cases, and all eight gene segments of the viruses causing the remaining two cases. Results No evidence for the resistance-causing mutation (resulting in NA H275Y substitution) was observed in the oseltamivir-sensitive cases. Furthermore, deep sequencing revealed a subpopulation of oseltamivir-sensitive viruses in the case carrying resistant viruses. We detected higher levels of intra-host variation in the case carrying oseltamivir-resistant viruses than in those infected with oseltamivir-sensitive viruses. Conclusions Oseltamivir-resistance was only detected after prophylaxis with oseltamivir, suggesting that the mutation was selected for as a result of antiviral intervention. The persisting oseltamivir-sensitive virus population in the case carrying resistant viruses suggests either that a small proportion survive the treatment, or that the oseltamivir-sensitive virus rapidly re-establishes itself in the virus population after the bottleneck. Moreover, the increased intra-host variation in the oseltamivir-resistant case is consistent with the hypothesis that the population diversity of a RNA virus can increase rapidly following a population bottleneck. PMID:23587185
Kinkar, Liina; Laurimäe, Teivi; Simsek, Sami; Balkaya, Ibrahim; Casulli, Adriano; Manfredi, Maria Teresa; Ponce-Gordo, Francisco; Varcasia, Antonio; Lavikainen, Antti; González, Luis Miguel; Rehbein, Steffen; VAN DER Giessen, Joke; Sprong, Hein; Saarma, Urmas
2016-11-01
Echinococcus granulosus is the causative agent of cystic echinococcosis. The disease is a significant global public health concern and human infections are most commonly associated with E. granulosus sensu stricto (s. s.) genotype G1. The objectives of this study were to: (i) analyse the genetic variation and phylogeography of E. granulosus s. s. G1 in part of its main distribution range in Europe using 8274 bp of mtDNA; (ii) compare the results with those derived from previously used shorter mtDNA sequences and highlight the major differences. We sequenced a total of 91 E. granulosus s. s. G1 isolates from six different intermediate host species, including humans. The isolates originated from seven countries representing primarily Turkey, Italy and Spain. Few samples were also from Albania, Greece, Romania and from a patient originating from Algeria, but diagnosed in Finland. The analysed 91 sequences were divided into 83 haplotypes, revealing complex phylogeography and high genetic variation of E. granulosus s. s. G1 in Europe, particularly in the high-diversity domestication centre of western Asia. Comparisons with shorter mtDNA datasets revealed that 8274 bp sequences provided significantly higher phylogenetic resolution and thus more power to reveal the genetic relations between different haplotypes.
Jørgensen, Agnete; Fagerheim, Toril; Rand-Hendriksen, Svend; Lunde, Per I; Vorren, Torgrim O; Pepin, Melanie G; Leistritz, Dru F; Byers, Peter H
2015-01-01
Vascular Ehlers–Danlos Syndrome (vEDS), also known as EDS type IV, is considered to be an autosomal dominant disorder caused by sequence variants in COL3A1, which encodes the chains of type III procollagen. We identified a family in which there was marked clinical variation with the earliest death due to extensive aortic dissection at age 15 years and other family members in their eighties with no complications. The proband was born with right-sided clubfoot but was otherwise healthy until he died unexpectedly at 15 years. His sister, in addition to signs consistent with vascular EDS, had bilateral frontal and parietal polymicrogyria. The proband and his sister each had two COL3A1 sequence variants, c.1786C>T, p.(Arg596*) in exon 26 and c.3851G>A, p.(Gly1284Glu) in exon 50 on different alleles. Cells from the compound heterozygote produced a reduced amount of type III procollagen, all the chains of which had abnormal electrophoretic mobility. Biallelic sequence variants have a significantly worse outcome than heterozygous variants for either null mutations or missense mutations, and frontoparietal polymicrogyria may be an added phenotype feature. This genetic constellation provides a very rare explanation for marked intrafamilial clinical variation due to sequence variants in COL3A1. PMID:25205403
Jiang, Yi-Fan; Chou, Chung-Hsi; Lin, En-Chung; Chiu, Chih-Hsien
2011-02-01
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that senses and adapts cells to hypoxic environmental conditions. HIF-1 is composed of an oxygen-regulated α subunit (HIF-1α) and a constitutively expressed β subunit (HIF-1β). Taiwan voles (Microtus kikuchii) are an endemic species in Taiwan, found only in mountainous areas greater than 2000m above sea level. In this study, the full-length HIF-1α cDNA was cloned and sequenced from liver tissues of Taiwan voles. We found that HIF-1α of Taiwan voles had high sequence similarity to HIF-1α of other species. Sequence alignment of HIF-1α functional domains indicated basic helix-loop-helix (bHLH), PER-ARNT-SIM (PAS) and C-terminal transactivation (TAD-C) domains were conserved among species, but sequence variations were found between the oxygen-dependent degradation domains (ODDD). To measure Taiwan vole HIF-1α responses to hypoxia, animals were challenged with cobalt chloride, and HIF-1α mRNA and protein expression in brain, lung, heart, liver, kidney, and muscle was assessed by quantitative RT-PCR and Western blot analysis. Upon induction of hypoxic stress with cobalt chloride, an increase in HIF-1α mRNA levels was detected in lung, heart, kidney, and muscle tissue. In contrast, protein expression levels showed greater variation between individual animals. These results suggest that the regulation of HIF-1α may be important to the Taiwan vole under cobalt chloride treatments. But more details regarding the evolutionary effect of environmental pressure on HIF-1α primary sequence, HIF-1α function and regulation in Taiwan voles remain to be identified. Copyright © 2010 Elsevier Inc. All rights reserved.
Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.
Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E
2012-01-01
HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.
Human germline and pan-cancer variomes and their distinct functional profiles
Pan, Yang; Karagiannis, Konstantinos; Zhang, Haichen; Dingerdissen, Hayley; Shamsaddini, Amirhossein; Wan, Quan; Simonyan, Vahan; Mazumder, Raja
2014-01-01
Identification of non-synonymous single nucleotide variations (nsSNVs) has exponentially increased due to advances in Next-Generation Sequencing technologies. The functional impacts of these variations have been difficult to ascertain because the corresponding knowledge about sequence functional sites is quite fragmented. It is clear that mapping of variations to sequence functional features can help us better understand the pathophysiological role of variations. In this study, we investigated the effect of nsSNVs on more than 17 common types of post-translational modification (PTM) sites, active sites and binding sites. Out of 1 705 285 distinct nsSNVs on 259 216 functional sites we identified 38 549 variations that significantly affect 10 major functional sites. Furthermore, we found distinct patterns of site disruptions due to germline and somatic nsSNVs. Pan-cancer analysis across 12 different cancer types led to the identification of 51 genes with 106 nsSNV affected functional sites found in 3 or more cancer types. 13 of the 51 genes overlap with previously identified Significantly Mutated Genes (Nature. 2013 Oct 17;502(7471)). 62 mutations in these 13 genes affecting functional sites such as DNA, ATP binding and various PTM sites occur across several cancers and can be prioritized for additional validation and investigations. PMID:25232094
Whiley, David M; Jacob, Kevin; Nakos, Jennifer; Bletchly, Cheryl; Nimmo, Graeme R; Nissen, Michael D; Sloots, Theo P
2012-06-01
Numerous real-time PCR assays have been described for detection of the influenza A H275Y alteration. However, the performance of these methods can be undermined by sequence variation in the regions flanking the codon of interest. This is a problem encountered more broadly in microbial diagnostics. In this study, we developed a modification of hybridization probe-based melting curve analysis, whereby primers are used to mask proximal mutations in the sequence targets of hybridization probes, so as to limit the potential for sequence variation to interfere with typing. The approach was applied to the H275Y alteration of the influenza A (H1N1) 2009 strain, as well as a Neisseria gonorrhoeae mutation associated with antimicrobial resistance. Assay performances were assessed using influenza A and N. gonorrhoeae strains characterized by DNA sequencing. The modified hybridization probe-based approach proved successful in limiting the effects of proximal mutations, with the results of melting curve analyses being 100% consistent with the results of DNA sequencing for all influenza A and N. gonorrhoeae strains tested. Notably, these included influenza A and N. gonorrhoeae strains exhibiting additional mutations in hybridization probe targets. Of particular interest was that the H275Y assay correctly typed influenza A strains harbouring a T822C nucleotide substitution, previously shown to interfere with H275Y typing methods. Overall our modified hybridization probe-based approach provides a simple means of circumventing problems caused by sequence variation, and offers improved detection of the influenza A H275Y alteration and potentially other resistance mechanisms.
Kawabe, Akira; Charlesworth, Deborah
2007-02-01
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.
Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically.
Wang, Jian; Dron, Jacqueline S; Ban, Matthew R; Robinson, John F; McIntyre, Adam D; Alazzam, Maher; Zhao, Pei Jun; Dilliott, Allison A; Cao, Henian; Huff, Murray W; Rhainds, David; Low-Kam, Cécile; Dubé, Marie-Pierre; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2016-12-01
Next-generation sequencing technology is transforming our understanding of heterozygous familial hypercholesterolemia, including revision of prevalence estimates and attribution of polygenic effects. Here, we examined the contributions of monogenic and polygenic factors in patients with severe hypercholesterolemia referred to a specialty clinic. We applied targeted next-generation sequencing with custom annotation, coupled with evaluation of large-scale copy number variation and polygenic scores for raised low-density lipoprotein cholesterol in a cohort of 313 individuals with severe hypercholesterolemia, defined as low-density lipoprotein cholesterol >5.0 mmol/L (>194 mg/dL). We found that (1) monogenic familial hypercholesterolemia-causing mutations detected by targeted next-generation sequencing were present in 47.3% of individuals; (2) the percentage of individuals with monogenic mutations increased to 53.7% when copy number variations were included; (3) the percentage further increased to 67.1% when individuals with extreme polygenic scores were included; and (4) the percentage of individuals with an identified genetic component increased from 57.0% to 92.0% as low-density lipoprotein cholesterol level increased from 5.0 to >8.0 mmol/L (194 to >310 mg/dL). In a clinically ascertained sample with severe hypercholesterolemia, we found that most patients had a discrete genetic basis detected using a comprehensive screening approach that includes targeted next-generation sequencing, an assay for copy number variations, and polygenic trait scores. © 2016 American Heart Association, Inc.
Ahmed, Wael A; Tsutsumi, Makiko; Nakata, Seiichi; Mori, Terumi; Nishimura, Yoichi; Fujisawa, Toshiyuki; Kato, Ichiro; Nakashima, Mayuki; Kurahashi, Hiroki; Suzuki, Kenji
2012-04-01
To evaluate the association of hypocretin neuropeptide precursor gene (HCRT) variations with obstructive sleep apnea syndrome (OSAS) in a cohort of Japanese patients and to further evaluate whether the significant HCRT variations have potential functional consequences on HCRT expression. Case-control genetic association study. We studied the genetic variations within the HCRT gene. The study population consisted of 100 OSAS patients and 100 control subjects. The HCRT gene was amplified by polymerase chain reaction in all study subjects followed by direct sequencing and analysis of sequencing data. Two genetic variations within the HCRT intron, IVS1+16T>C (rs9902709) and IVS1-69G>C, were identified with significant differences between patients and controls (P < .05). A reporter gene assay using HeLa cells showed that the construct containing the C allele of the rs9902709 variation had significantly higher luciferase activity compared with the construct containing the T allele (P = .002). Furthermore, enzyme immunoassay revealed that subjects with T/C and C/C genotypes for rs9902709 had 1.4-fold and 1.5-fold increases in sera levels of orexin-A, respectively. Our genetic association study, followed by functional and quantitative phenotyping assays, demonstrated a functional locus within the HCRT gene, which may act to increase HCRT expression and lead to a protective effect against the development of OSAS. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
α satellite DNA variation and function of the human centromere
Sullivan, Lori L.; Chew, Kimberline
2017-01-01
ABSTRACT Genomic variation is a source of functional diversity that is typically studied in genic and non-coding regulatory regions. However, the extent of variation within noncoding portions of the human genome, particularly highly repetitive regions, and the functional consequences are not well understood. Satellite DNA, including α satellite DNA found at human centromeres, comprises up to 10% of the genome, but is difficult to study because its repetitive nature hinders contiguous sequence assemblies. We recently described variation within α satellite DNA that affects centromere function. On human chromosome 17 (HSA17), we showed that size and sequence polymorphisms within primary array D17Z1 are associated with chromosome aneuploidy and defective centromere architecture. However, HSA17 can counteract this instability by assembling the centromere at a second, “backup” array lacking variation. Here, we discuss our findings in a broader context of human centromere assembly, and highlight areas of future study to uncover links between genomic and epigenetic features of human centromeres. PMID:28406740
CRHR1 genotypes, neural circuits and the diathesis for anxiety and depression.
Rogers, J; Raveendran, M; Fawcett, G L; Fox, A S; Shelton, S E; Oler, J A; Cheverud, J; Muzny, D M; Gibbs, R A; Davidson, R J; Kalin, N H
2013-06-01
The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.
Molecular Population Genetics of the Alcohol Dehydrogenase Gene Region of DROSOPHILA MELANOGASTER
Aquadro, Charles F.; Desse, Susan F.; Bland, Molly M.; Langley, Charles H.; Laurie-Ahlberg, Cathy C.
1986-01-01
Variation in the DNA restriction map of a 13-kb region of chromosome II including the alcohol dehydrogenase structural gene (Adh) was examined in Drosophila melanogaster from natural populations. Detailed analysis of 48 D. melanogaster lines representing four eastern United States populations revealed extensive DNA sequence variation due to base substitutions, insertions and deletions. Cloning of this region from several lines allowed characterization of length variation as due to unique sequence insertions or deletions [nine sizes; 21–200 base pairs (bp)] or transposable element insertions (several sizes, 340 bp to 10.2 kb, representing four different elements). Despite this extensive variation in sequences flanking the Adh gene, only one length polymorphism is clearly associated with altered Adh expression (a copia element approximately 250 bp 5' to the distal transcript start site). Nonetheless, the frequency spectra of transposable elements within and between Drosophila species suggests they are slightly deleterious. Strong nonrandom associations are observed among Adh region sequence variants, ADH allozyme (Fast vs. Slow), ADH enzyme activity and the chromosome inversion ln(2L) t. Phylogenetic analysis of restriction map haplotypes suggest that the major twofold component of ADH activity variation (high vs. low, typical of Fast and Slow allozymes, respectively) is due to sequence variation tightly linked to and possibly distinct from that underlying the allozyme difference. The patterns of nucleotide and haplotype variation for Fast and Slow allozyme lines are consistent with the recent increase in frequency and spread of the Fast haplotype associated with high ADH activity. These data emphasize the important role of evolutionary history and strong nonrandom associations among tightly linked sequence variation as determinants of the patterns of variation observed in natural populations. PMID:3026893
Sensitive detection of KIT D816V in patients with mastocytosis.
Tan, Angela; Westerman, David; McArthur, Grant A; Lynch, Kevin; Waring, Paul; Dobrovic, Alexander
2006-12-01
The 2447 A > T pathogenic variation at codon 816 of exon 17 (D816V) in the KIT gene, occurring in systemic mastocytosis (SM), leads to constitutive activation of tyrosine kinase activity and confers resistance to the tyrosine kinase inhibitor imatinib mesylate. Thus detection of this variation in SM patients is important for determining treatment strategy, but because the population of malignant cells carrying this variation is often small relative to the normal cell population, standard molecular detection methods can be unsuccessful. We developed 2 methods for detection of KIT D816V in SM patients. The first uses enriched sequencing of mutant alleles (ESMA) after BsmAI restriction enzyme digestion, and the second uses an allele-specific competitive blocker PCR (ACB-PCR) assay. We used these methods to assess 26 patients undergoing evaluation for SM, 13 of whom had SM meeting WHO classification criteria (before variation testing), and we compared the results with those obtained by direct sequencing. The sensitivities of the ESMA and the ACB-PCR assays were 1% and 0.1%, respectively. According to the ACB-PCR assay results, 65% (17/26) of patients were positive for D816V. Of the 17 positive cases, only 23.5% (4/17) were detected by direct sequencing. ESMA detected 2 additional exon 17 pathogenic variations, D816Y and D816N, but detected only 12 (70.5%) of the 17 D816V-positive cases. Overall, 100% (15/15) of the WHO-classified SM cases were codon 816 pathogenic variation positive. These findings demonstrate that the ACB-PCR assay combined with ESMA is a rapid and highly sensitive approach for detection of KIT D816V in SM patients.
Use of 16S Ribosomal RNA Sequences to Infer Relationships among Archaebacteria.
1987-04-16
the rRNAs of one or both other kingdoms , and among the archaebacteria there are also substantial variations) (1), echinoderms (5, 11), major...Security Classification) Ln Use of 16S Ribosomal RNA Sequences to infer Relationships among Archaebacteria : Annual Report (U) q 12 PERSONAL AUTHOR(S...FIELD GROUP SUB-GROUP Archaebacteria ; Eubacteria; Eukaryotes; 16S Ribosomal RNA; 08 I Phylogeny; rRNA; RNA Sequencing; Molecular Clock; Urkingdoms; r
Guimaraes, Ana M S; Toth, Balazs; Santos, Andrea P; do Nascimento, Naíla C; Kritchevsky, Janice E; Messick, Joanne B
2012-11-01
We report the complete genome sequence of "Candidatus Mycoplasma haemolamae," an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation.
Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.
Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V
2012-02-17
The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.
Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing.
Miyao, Akio; Nakagome, Mariko; Ohnuma, Takako; Yamagata, Harumi; Kanamori, Hiroyuki; Katayose, Yuichi; Takahashi, Akira; Matsumoto, Takashi; Hirochika, Hirohiko
2012-01-01
Somaclonal variation is a phenomenon that results in the phenotypic variation of plants regenerated from cell culture. One of the causes of somaclonal variation in rice is the transposition of retrotransposons. However, many aspects of the mechanisms that result in somaclonal variation remain undefined. To detect genome-wide changes in regenerated rice, we analyzed the whole-genome sequences of three plants independently regenerated from cultured cells originating from a single seed stock. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were detected in the genomes of the regenerated plants. The transposition of only Tos17 among 43 transposons examined was detected in the regenerated plants. Therefore, the SNPs and indels contribute to the somaclonal variation in regenerated rice in addition to the transposition of Tos17. The observed molecular spectrum was similar to that of the spontaneous mutations in Arabidopsis thaliana. However, the base change ratio was estimated to be 1.74 × 10(-6) base substitutions per site per regeneration, which is 248-fold greater than the spontaneous mutation rate of A. thaliana.
Molecular identification based on ITS sequences for Kappaphycus and Eucheuma cultivated in China
NASA Astrophysics Data System (ADS)
Zhao, Sufen; He, Peimin
2011-11-01
The systematic classification of the Eucheumatoideae is difficult because of their variable morphology and interpretation of reproductive structures. Kappaphycus and Eucheuma specimens cultivated on the Hainan and Fujian coast of China were introduced from Vietnam, the Philippines and Indonesia. Combined with morphological characteristics, all Kappaphycus and Eucheuma cultivated strains were identified by internal transcribed spacer (ITS) sequences. The phylogenetic tree was constructed using neighbor-joining and maximum likelihood methods. The results indicate that different ITS sequence lengths occurred in the different genera and species. An obvious difference in morphology could be found in the protuberance shape between Kappaphycus and Eucheuma. The protuberance in Eucheuma was thorn-like and in Kappaphycus was wartlike or papillate. Their ITS sequence lengths differed significantly in nucleotide variation rates up to 58.55%-63.90%. All nucleotide variations occurred in the ITS1 and ITS2 regions except for five nucleotide transversions in the 5.8S rDNA region. In addition, the difference was at the branches among congeneric species. Kappaphycus sp. had branches with small buds, while K. alvarezii did not have such a feature. The nucleotide variation rates varied from 7.02% to 7.48% among species; within the same species of the clades it was <1.20%. Eucheumatoideae algae cultivated in China consisted of three clades, K. alvarezii, Kappaphycus sp., and E. denticulatum. The results indicate that ITS sequence analysis was an effective way for identification of interspecies and intraspecies phylogenetic relationships and might provide a clue for molecular identification of algal Eucheumatoideae.
A Novel Locomotion-based Validation Assay for Candidate Drugs Using Drosophila DYT1 Disease Model
2013-11-01
the genome using the same parental fly line, minimizing the effect of surrounding sequences and genetic variations on the ...locomotion and GTPC cyclrohydolase protein levels; (3) supplementation of dopamine can partially rescue the locomotion defects of Drosophila larvae...8217- GCGAACAACCAAAAAATCATTGAGATAATAAACTCCTCCATTAG-3’) to make dtorsin cDNA that lacks GAC (D307) (Fig. 1) respectively. After confirming mutated sequences , the insert was again
Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai
2013-08-01
To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.
Mercenaro, Luca; Nieddu, Giovanni; Porceddu, Andrea; Pezzotti, Mario; Camiolo, Salvatore
2017-01-01
The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars. PMID:28775732
Staes, Nicky; Stevens, Jeroen M. G.; Helsen, Philippe; Hillyer, Mia; Korody, Marisa; Eens, Marcel
2014-01-01
Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees. PMID:25405348
Kodama, T; Mori, K; Kawahara, T; Ringler, D J; Desrosiers, R C
1993-01-01
One rhesus macaque displayed severe encephalomyelitis and another displayed severe enterocolitis following infection with molecularly cloned simian immunodeficiency virus (SIV) strain SIVmac239. Little or no free anti-SIV antibody developed in these two macaques, and they died relatively quickly (4 to 6 months) after infection. Manifestation of the tissue-specific disease in these macaques was associated with the emergence of variants with high replicative capacity for macrophages and primary infection of tissue macrophages. The nature of sequence variation in the central region (vif, vpr, and vpx), the env gene, and the nef long terminal repeat (LTR) region in brain, colon, and other tissues was examined to see whether specific genetic changes were associated with SIV replication in brain or gut. Sequence analysis revealed strong conservation of the intergenic central region, nef, and the LTR. However, analysis of env sequences in these two macaques and one other revealed significant, interesting patterns of sequence variation. (i) Changes in env that were found previously to contribute to the replicative ability of SIVmac for macrophages in culture were present in the tissues of these animals. (ii) The greatest variability was located in the regions between V1 and V2 and from "V3" through C3 in gp120, which are different in location from the variable regions observed previously in animals with strong antibody responses and long-term persistent infection. (iii) The predominant sequence change of D-->N at position 385 in C3 is most surprising, since this change in both SIV and human immunodeficiency virus type 1 has been associated with dramatically diminished affinity for CD4 and replication in vitro. (iv) The nature of sequence changes at some positions (146, 178, 345, 385, and "V3") suggests that viral replication in brain and gut may be facilitated by specific sequence changes in env in addition to those that impart a general ability to replicate well in macrophages. These results demonstrate that complex selective pressures, including immune responses and varying cell and tissue specificity, can influence the nature of sequence changes in env. Images PMID:8411355
Kong, Fanrong; Tong, Zhongsheng; Chen, Xiaoyou; Sorrell, Tania; Wang, Bin; Wu, Qixuan; Ellis, David; Chen, Sharon
2008-01-01
DNA sequencing analyses have demonstrated relatively limited polymorphisms within the fungal internal transcribed spacer (ITS) regions among Trichophyton spp. We sequenced the ITS region (ITS1, 5.8S, and ITS2) for 42 dermatophytes belonging to seven species (Trichophyton rubrum, T. mentagrophytes, T. soudanense, T. tonsurans, Epidermophyton floccosum, Microsporum canis, and M. gypseum) and developed a novel padlock probe and rolling-circle amplification (RCA)-based method for identification of single nucleotide polymorphisms (SNPs) that could be exploited to differentiate between Trichophyton spp. Sequencing results demonstrated intraspecies genetic variation for T. tonsurans, T. mentagrophytes, and T. soudanense but not T. rubrum. Signature sets of SNPs between T. rubrum and T. soudanense (4-bp difference) and T. violaceum and T. soudanense (3-bp difference) were identified. The RCA assay correctly identified five Trichophyton species. Although the use of two “group-specific” probes targeting both the ITS1 and the ITS2 regions were required to identify T. soudanense, the other species were identified by single ITS1- or ITS2-targeted species-specific probes. There was good agreement between ITS sequencing and the RCA assay. Despite limited genetic variation between Trichophyton spp., the sensitive, specific RCA-based SNP detection assay showed potential as a simple, reproducible method for the rapid (2-h) identification of Trichophyton spp. PMID:18234865
Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1
Jabbari, Neda; Reddy, Panga Jaipal; Hood, Leroy
2018-01-01
Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain. PMID:29889842
Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H
2014-12-01
In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.
Cornes, Belinda K; Brody, Jennifer A; Nikpoor, Naghmeh; Morrison, Alanna C; Chu, Huan; Ahn, Byung Soo; Wang, Shuai; Dauriz, Marco; Barzilay, Joshua I; Dupuis, Josée; Florez, Jose C; Coresh, Josef; Gibbs, Richard A; Kao, W H Linda; Liu, Ching-Ti; McKnight, Barbara; Muzny, Donna; Pankow, James S; Reid, Jeffrey G; White, Charles C; Johnson, Andrew D; Wong, Tien Y; Psaty, Bruce M; Boerwinkle, Eric; Rotter, Jerome I; Siscovick, David S; Sladek, Robert; Meigs, James B
2014-06-01
Common variation at the 11p11.2 locus, encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, has been associated in genome-wide association studies with fasting glucose and insulin (FI). In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study, we sequenced 5 gene regions at 11p11.2 to identify rare, potentially functional variants influencing fasting glucose or FI levels. Sequencing (mean depth, 38×) across 16.1 kb in 3566 individuals without diabetes mellitus identified 653 variants, 79.9% of which were rare (minor allele frequency <1%) and novel. We analyzed rare variants in 5 gene regions with FI or fasting glucose using the sequence kernel association test. At NR1H3, 53 rare variants were jointly associated with FI (P=2.73×10(-3)); of these, 7 were predicted to have regulatory function and showed association with FI (P=1.28×10(-3)). Conditioning on 2 previously associated variants at MADD (rs7944584, rs10838687) did not attenuate this association, suggesting that there are >2 independent signals at 11p11.2. One predicted regulatory variant, chr11:47227430 (hg18; minor allele frequency=0.00068), contributed 20.6% to the overall sequence kernel association test score at NR1H3, lies in intron 2 of NR1H3, and is a predicted binding site for forkhead box A1 (FOXA1), a transcription factor associated with insulin regulation. In human HepG2 hepatoma cells, the rare chr11:47227430 A allele disrupted FOXA1 binding and reduced FOXA1-dependent transcriptional activity. Sequencing at 11p11.2-NR1H3 identified rare variation associated with FI. One variant, chr11:47227430, seems to be functional, with the rare A allele reducing transcription factor FOXA1 binding and FOXA1-dependent transcriptional activity. © 2014 American Heart Association, Inc.
Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning
2014-11-07
Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.
Liu, Yichuan; Li, Yun; March, Michael E; Nguyen, Kenny; Kenny, Nguyen; Xu, Kexiang; Wang, Fengxiang; Guo, Yiran; Keating, Brendan; Glessner, Joseph; Li, Jiankang; Ganley, Theodore J; Zhang, Jianguo; Deardorff, Matthew A; Xu, Xun; Hakonarson, Hakon
2015-11-11
Absence of the anterior (ACL) or posterior cruciate ligament (PCL) are rare congenital malformations that result in knee joint instability, with a prevalence of 1.7 per 100,000 live births and can be associated with other lower-limb abnormalities such as ACL agnesia and absence of the menisci of the knee. While a few cases of absence of ACL/PCL are reported in the literature, a number of large familial case series of related conditions such as ACL agnesia suggest a potential underlying monogenic etiology. We performed whole exome sequencing of a family with two individuals affected by ACL/PCL. We identified copy number variation (CNV) deletion impacting the exon sequences of CEP57L1, present in the affected mother and her affected daughter based on the exome sequencing data. The deletion was validated using quantitative PCR (qPCR), and the gene was confirmed to be expressed in ACL ligament tissue. Interestingly, we detected reduced expression of CEP57L1 in Epstein-Barr virus (EBV) cells from the two patients in comparison with healthy controls. Evaluation of 3D protein structure showed that the helix-binding sites of the protein remain intact with the deletion, but other functional binding sites related to microtubule attachment are missing. The specificity of the CNV deletion was confirmed by showing that it was absent in ~700 exome sequencing samples as well as in the database of genomic variations (DGV), a database containing large numbers of annotated CNVs from previous scientific reports. We identified a novel CNV deletion that was inherited through an autosomal dominant transmission from an affected mother to her affected daughter, both of whom suffered from the absence of the anterior and posterior cruciate ligaments of the knees.
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Toth, Balazs; Santos, Andrea P.; do Nascimento, Naíla C.; Kritchevsky, Janice E.
2012-01-01
We report the complete genome sequence of “Candidatus Mycoplasma haemolamae,” an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation. PMID:23105057
Buckingham, Kati J.; Shively, Kathryn; Mugo, Nelly R.; Mullins, James I.; McElrath, M. Juliana; Baeten, Jared M.; Celum, Connie
2017-01-01
Host genetic variation modifying HIV-1 acquisition risk can inform development of HIV-1 prevention strategies. However, associations between rare or intermediate-frequency variants and HIV-1 acquisition are not well studied. We tested for the association between variation in genic regions and extreme HIV-1 acquisition phenotypes in 100 sub-Saharan Africans with whole genome sequencing data. Missense variants in immunoglobulin-like regions of CD101 and, among women, one missense/5’ UTR variant in UBE2V1, were associated with increased HIV-1 acquisition risk (p = 1.9x10-4 and p = 3.7x10-3, respectively, for replication). Both of these genes are known to impact host inflammatory pathways. Effect sizes increased with exposure to HIV-1 after adjusting for the independent effect of increasing exposure on acquisition risk. Trial registration: ClinicalTrials.gov NCT00194519; NCT00557245 PMID:29108000
Cho, Kwang-Soo; Yun, Bong-Kyoung; Yoon, Young-Ho; Hong, Su-Young; Mekapogu, Manjulatha; Kim, Kyung-Hee; Yang, Tae-Jin
2015-01-01
We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes—rpoC2, ycf3, accD, and clpP—have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum. PMID:25966355
Setoh, Yin Xiang; Amarilla, Alberto A; Peng, Nias Y; Slonchak, Andrii; Periasamy, Parthiban; Figueiredo, Luiz T M; Aquino, Victor H; Khromykh, Alexander A
2018-01-01
Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).
Zhang, Lu; Cai, You-Ming; Zhuge, Qiang; Zou, Hui-Yu; Huang, Min-Ren
2002-06-01
Xinjiang is a center of distribution and differentiation of genus Dianthus in China, and has a great deal of species resources. The sequences of ITS region (including ITS-1, 5.8S rDNA and ITS-2) of nuclear ribosomal DNA from 8 species of genus Dianthus wildly distributed in Xinjiang were determined by direct sequencing of PCR products. The result showed that the size of the ITS of Dianthus is from 617 to 621 bp, and the length variation is only 4 bp. There are very high homogeneous (97.6%-99.8%) sequences between species, and about 80% homogeneous sequences between genus Dianthus and outgroup. The sequences of ITS in genus Dianthus are relatively conservative. In general, there are more conversion than transition in the variation sites among genus Dianthus. The conversion rates are relatively high, and the ratios of conversion/transition are 1.0-3.0. On the basis of phylogenetic analysis of nucleotide sequences the species of Dianthus in China would be divided into three sections. There is a distant relationship between sect. Barbulatum Williams and sect. Dianthus and between sect. Barbulatum Williams and sect. Fimbriatum Williams, and there is a close relationship between sect. Dianthus and sect. Fimbriatum Williams. From the phylogenetic tree of ITS it was found that the origin of sect. Dianthusis is earlier than that of sect. Fimbriatum Williams and sect. Barbulatum Williams.
Global and disease-associated genetic variation in the human Fanconi anemia gene family
Rogers, Kai J.; Fu, Wenqing; Akey, Joshua M.; Monnat, Raymond J.
2014-01-01
Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57 240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. PMID:25104853
Allen, Upton D; Hu, Pingzhao; Pereira, Sergio L; Robinson, Joan L; Paton, Tara A; Beyene, Joseph; Khodai-Booran, Nasser; Dipchand, Anne; Hébert, Diane; Ng, Vicky; Nalpathamkalam, Thomas; Read, Stanley
2016-02-01
This study examines EBV strains from transplant patients and patients with IM by sequencing major EBV genes. We also used NGS to detect EBV DNA within total genomic DNA, and to evaluate its genetic variation. Sanger sequencing of major EBV genes was used to compare SNVs from samples taken from transplant patients vs. patients with IM. We sequenced EBV DNA from a healthy EBV-seropositive individual on a HiSeq 2000 instrument. Data were mapped to the EBV reference genomes (AG876 and B95-8). The number of EBNA2 SNVs was higher than for EBNA1 and the other genes sequenced within comparable reference coordinates. For EBNA2, there was a median of 15 SNV among transplant samples compared with 10 among IM samples (p = 0.036). EBNA1 showed little variation between samples. For NGS, we identified 640 and 892 variants at an unadjusted p value of 5 × 10(-8) for AG876 and B95-8 genomes, respectively. We used complementary sequence strategies to examine EBV genetic diversity and its application to transplantation. The results provide the framework for further characterization of EBV strains and related outcomes after organ transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula
2018-04-11
The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.
Sutton, Bruce D; Steck, Gary J; Norrbom, Allen L; Rodriguez, Erick J; Srivastava, Pratibha; Alvarado, Norma Nolazco; Colque, Fredy; Landa, Erick Yábar; Sánchez, Juan José Lagrava; Quisberth, Elizabeth; Peñaranda, Emilio Arévalo; Clavijo, P A Rodriguez; Alvarez-Baca, Jeniffer K; Zapata, Tito Guevara; Ponce, Patricio
2015-01-01
The nuclear ribosomal internal transcribed spacer 1 (ITS1) was sequenced for Anastrepha fraterculus (Wiedemann, 1830) originating from 85 collections from the northern and central Andean countries of South America including Argentina (Tucumán), Bolivia, Perú, Ecuador, Colombia, and Venezuela. The ITS1 regions of additional specimens (17 collections) from Central America (México, Guatemala, Costa Rica, and Panamá), Brazil, Caribbean Colombia, and coastal Venezuela were sequenced and together with published sequences (Paraguay) provided context for interpretation. A total of six ITS1 sequence variants were recognized in the Andean region comprising four groups. Type I predominates in the southernmost range of Anastrepha fraterculus. Type II predominates in its northernmost range. In the central and northern Andes, the geographic distributions overlap and interdigitate with a strong elevational effect. A discussion of relationships between observed ITS1 types and morphometric types is included.
Yanek, Lisa R.; Yang, Xiao Ping; Mathias, Rasika; Herrera-Galeano, J. Enrique; Suktitipat, Bhoom; Qayyum, Rehan; Johnson, Andrew D.; Chen, Ming-Huei; Tofler, Geoffrey H.; Ruczinski, Ingo; Friedman, Alan D.; Gylfason, Arnaldur; Thorsteinsdottir, Unnur; Bray, Paul F.; O'Donnell, Christopher J.; Becker, Diane M.; Becker, Lewis C.
2011-01-01
Genetic variation is thought to contribute to variability in platelet function; however, the specific variants and mechanisms that contribute to altered platelet function are poorly defined. With the use of a combination of fine mapping and sequencing of the platelet endothelial aggregation receptor 1 (PEAR1) gene we identified a common variant (rs12041331) in intron 1 that accounts for ≤ 15% of total phenotypic variation in platelet function. Association findings were robust in 1241 persons of European ancestry (P = 2.22 × 10−8) and were replicated down to the variant and nucleotide level in 835 persons of African ancestry (P = 2.31 × 10−27) and in an independent sample of 2755 persons of European descent (P = 1.64 × 10−5). Sequencing confirmed that variation at rs12041331 accounted most strongly (P = 2.07 × 10−6) for the relation between the PEAR1 gene and platelet function phenotype. A dose-response relation between the number of G alleles at rs12041331 and expression of PEAR1 protein in human platelets was confirmed by Western blotting and ELISA. Similarly, the G allele was associated with greater protein expression in a luciferase reporter assay. These experiments identify the precise genetic variant in PEAR1 associated with altered platelet function and provide a plausible biologic mechanism to explain the association between variation in the PEAR1 gene and platelet function phenotype. PMID:21791418
Cingoz, Sultan; Agilkaya, Sinem; Oztura, Ibrahim; Eroglu, Secil; Karadeniz, Derya; Evlice, Ahmet; Altungoz, Oguz; Yilmaz, Hikmet; Baklan, Baris
2014-04-01
The HLA-DQB1*06:02 allele across all ethnic groups and the rs5770917 variation between CPT1B and CHKB genes in Japanese and Koreans are common genetic susceptibility factors for narcolepsy. This comprehensive genetic study sought to assess variations in CHKB and CPT1B susceptibility genes and HLA-DQB1*06:02 allele status in Turkish patients with narcolepsy and healthy persons. CHKB/CPT1B genes were sequenced in patients with narcolepsy (n=37) and healthy persons (n=100) to detect variations. The HLA-DQB1*06:02 allele status was determined by sequence specific polymerase chain reaction. The HLA-DQB1*06:02 allele was significantly more frequent in narcoleptic patients than in healthy persons (p=2×10(-7)) and in patients with narcolepsy and cataplexy than in those without (p=0.018). The mean of the multiple sleep latency test, sleep-onset rapid eye movement periods, and frequency of sleep paralysis significantly differed in the HLA-DQB1*06:02-positive patients. rs5770917, rs5770911, rs2269381, and rs2269382 were detected together as a haplotype in three patients and 11 healthy persons. In addition to this haplotype, the indel variation (rs144647670) was detected in the 5' upstream region of the human CHKB gene in the patients and healthy persons carrying four variants together. This study identified a novel haplotype consisting of the indel variation, which had not been detected in previous studies in Japanese and Korean populations, and observed four single-nucleotide polymorphisms in CHKB/CPT1B. The study confirmed the association of the HLA-DQB1*06:02 allele with narcolepsy and cataplexy susceptibility. The findings suggest that the presence of HLA-DQB1*06:02 may be a predictor of cataplexy in narcoleptic patients and could therefore be used as an additional diagnostic marker alongside hypocretin.
Drobnitzky, Matthias; Klose, Uwe
2017-03-01
Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing the MR signal collection in MPRAGE sequences as a Bellman problem is a new concept. By means of recursively solving a series of overlapping subproblems, this leads to an elegant solution for the problem of maximizing total available MR signal in k-space. A closed-form expression for flip angle variation avoids the complexity of numerical optimization and eases access to controlled variation in an attempt to identify potential clinical applications. © 2017 American Association of Physicists in Medicine.
Théry, Thomas; Brockerhoff, Eckehard G; Carnegie, Angus J; Chen, Rui; Elms, Stephen R; Hullé, Maurice; Glatz, Richard; Ortego, Jaime; Qiao, Ge-Xia; Turpeau, Évelyne; Favret, Colin
2017-06-01
Aphids in the pine-feeding Nearctic genus Essigella (Sternorrhyncha, Aphididae, Lachninae) have been introduced in Europe, North Africa, Oceania, and South America. Mitochondrial, nuclear, and endosymbiont DNA sequences of 12 introduced populations from three continents confirm they all belong to Essigella californica (Essig, 1909). Intron sequence variation of the nuclear gene EF-1α has revealed the existence of four distinct groups. Group I gathers one population from China, where the species is newly reported, and several from Europe (France and Italy); Group II is represented by one population from Argentina; Group III includes two populations from Southern Australia with one from New Zealand; and Group IV corresponds to five populations from Eastern and South-Eastern Australia. These results indicate that introduced populations of E. californica have at least four source populations. They also show that intron variation of EF-1α can be a method to discriminate populations of asexually reproducing aphids. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RN...
Human Genome Sequencing in Health and Disease
Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.
2013-01-01
Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320
Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.
Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi
2016-03-01
Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.
Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen
2014-02-01
Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.
Glycosylation Focuses Sequence Variation in the Influenza A Virus H1 Hemagglutinin Globular Domain
Hensley, Scott E.; Hurt, Darrell E.; Bennink, Jack R.; Yewdell, Jonathan W.
2010-01-01
Antigenic drift in the influenza A virus hemagglutinin (HA) is responsible for seasonal reformulation of influenza vaccines. Here, we address an important and largely overlooked issue in antigenic drift: how does the number and location of glycosylation sites affect HA evolution in man? We analyzed the glycosylation status of all full-length H1 subtype HA sequences available in the NCBI influenza database. We devised the “flow index” (FI), a simple algorithm that calculates the tendency for viruses to gain or lose consensus glycosylation sites. The FI predicts the predominance of glycosylation states among existing strains. Our analyses show that while the number of glycosylation sites in the HA globular domain does not influence the overall magnitude of variation in defined antigenic regions, variation focuses on those regions unshielded by glycosylation. This supports the conclusion that glycosylation generally shields HA from antibody-mediated neutralization, and implies that fitness costs in accommodating oligosaccharides limit virus escape via HA hyperglycosylation. PMID:21124818
DNA methylation Landscape of body size variation in sheep.
Cao, Jiaxue; Wei, Caihong; Liu, Dongming; Wang, Huihua; Wu, Mingming; Xie, Zhiyuan; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Lu, Jian; Liu, Ruizao; Zhang, Shifang; Du, Yongfei; Zhang, Hongping; Du, Lixin
2015-10-16
Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation - sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the "development process" (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.
van den Berg, L; Kwant, L; Hestand, M S; van Oost, B A; Leegwater, P A J
2005-01-01
Aggressive behavior is the most frequently encountered behavioral problem in dogs. Abnormalities in brain serotonin metabolism have been described in aggressive dogs. We studied canine serotonergic genes to investigate genetic factors underlying canine aggression. Here, we describe the characterization of three genes of the canine serotonergic system: the serotonin receptor 1A and 2A gene (htr1A and htr2A) and the serotonin transporter gene (slc6A4). We isolated canine bacterial artificial chromosome clones containing these genes and designed oligonucleotides for genomic sequencing of coding regions and intron-exon boundaries. Golden retrievers were analyzed for DNA sequence variations. We found two nonsynonymous single nucleotide polymorphisms (SNPs) in the coding sequence of htr1A; one SNP close to a splice site in htr2A; and two SNPs in slc6A4, one in the coding sequence and one close to a splice site. In addition, we identified a polymorphic microsatellite marker for each gene. Htr1A is a strong candidate for involvement in the domestication of the dog. We genotyped the htr1A SNPs in 41 dogs of seven breeds with diverse behavioral characteristics. At least three SNP haplotypes were found. Our results do not support involvement of the gene in domestication.
Das Bhowmik, Aneek; Gupta, Neerja; Dalal, Ashwin; Kabra, Madhulika
In the present study we report on genetic analysis in a patient with developmental delay, truncal obesity and vision problem, to find the causative mutation. Whole exome sequencing was performed on genomic DNA extracted from whole blood of the patient which revealed a homozygous nonsense variant (c.2816T>A) in exon 8 of ALMS1 gene that results in a stop codon and premature truncation at codon 939 (p.L939Ter) of the protein. The mutation was confirmed by Sanger sequencing. Exome sequencing was helpful in establishing diagnosis of Alstrom syndrome in this patient. This case highlights the utility of exome sequencing in clinical practice. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Zhao, G H; Jia, Y Q; Bian, Q Q; Nisbet, A J; Cheng, W Y; Liu, Y; Fang, Y Q; Ma, X T; Yu, S K
2015-05-01
Internal transcribed spacer (ITS) rDNA sequences of three Nematodirus species from naturally infected goats or sheep in two endemic provinces of China were analysed to establish an effective molecular approach to differentiate Nematodirus species in small ruminants. The respective intra-specific genetic variations in ITS1 and ITS2 rDNA regions were 0.3-1.8% and 0-0.4% in N. spathiger, 0-6.5% and 0-5.4% in N. helvetianus, and 0-4.4% and 0-6.1% in N. oiratianus from China. The respective intra-specific variations of ITS1 and ITS2 were 1.8-4.4% and 1.6-6.1% between N. oiratianus isolates from China and Iran, 5.7-7.1% and 6.3-8.3% between N. helvetianus samples from China and America. For N. spathiger, compared with samples from China, sequence differences in ITS1 rDNA were 0.3-2.4% in isolates from America, 0.3-2.9% in New Zealand and 2.1-2.4% in Australia. Genetic variations in ITS2 rDNA of N. spathiger were 0-0.4% between samples from China and America, and 0-0.8% between samples from China and New Zealand. Using mutation sites, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and specific PCR techniques were developed to differentiate these three Nematodirus species. The specific PCR assay allowed the accurate identification of N. oiratianus from other common nematodes with a sensitivity of 0.69 pg and further examination of Nematodirus samples demonstrated the reliability of these two molecular methods.
Goossens, Dirk; Moens, Lotte N; Nelis, Eva; Lenaerts, An-Sofie; Glassee, Wim; Kalbe, Andreas; Frey, Bruno; Kopal, Guido; De Jonghe, Peter; De Rijk, Peter; Del-Favero, Jurgen
2009-03-01
We evaluated multiplex PCR amplification as a front-end for high-throughput sequencing, to widen the applicability of massive parallel sequencers for the detailed analysis of complex genomes. Using multiplex PCR reactions, we sequenced the complete coding regions of seven genes implicated in peripheral neuropathies in 40 individuals on a GS-FLX genome sequencer (Roche). The resulting dataset showed highly specific and uniform amplification. Comparison of the GS-FLX sequencing data with the dataset generated by Sanger sequencing confirmed the detection of all variants present and proved the sensitivity of the method for mutation detection. In addition, we showed that we could exploit the multiplexed PCR amplicons to determine individual copy number variation (CNV), increasing the spectrum of detected variations to both genetic and genomic variants. We conclude that our straightforward procedure substantially expands the applicability of the massive parallel sequencers for sequencing projects of a moderate number of amplicons (50-500) with typical applications in resequencing exons in positional or functional candidate regions and molecular genetic diagnostics. 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Awua, Adolf K; Adanu, Richard M K; Wiredu, Edwin K; Afari, Edwin A; Zubuch, Vanessa A; Asmah, Richard H; Severini, Alberto
2017-04-21
In addition to being useful for classification, sequence variations of human Papillomavirus (HPV) genotypes have been implicated in differential oncogenic potential and a differential association with the different histological forms of invasive cervical cancer. These associations have also been indicated for HPV genotype lineages and sub-lineages. In order to better understand the potential implications of lineage variation in the occurrence of cervical cancers in Ghana, we studied the lineages of the three most prevalent HPV genotypes among women with normal cytology as baseline to further studies. Of previously collected self- and health personnel-collected cervical specimen, 54, which were positive for HPV16, 18 and 45, were selected and the long control region (LCR) of each HPV genotype was separately amplified by a nested PCR. DNA sequences of 41 isolates obtained with the forward and reverse primers by Sanger sequencing were analysed. Nucleotide sequence variations of the HPV16 genotypes were observed at 30 positions within the LCR (7460 - 7840). Of these, 19 were the known variations for the lineages B and C (African lineages), while the other 11 positions had variations unique to the HPV16 isolates of this study. For the HPV18 isolates, the variations were at 35 positions, 22 of which were known variations of Africa lineages and the other 13 were unique variations observed for the isolates obtained in this study (at positions 7799 and 7813). HPV45 isolates had variations at 35 positions and 2 (positions 7114 and 97) were unique to the isolates of this study. This study provides the first data on the lineages of HPV 16, 18 and 45 isolates from Ghana. Although the study did not obtain full genome sequence data for a comprehensive comparison with known lineages, these genotypes were predominately of the Africa lineages and had some unique sequence variations at positions that suggest potential oncogenic implications. These data will be useful for comparison with lineages of these genotypes from women with cervical lesion and all the forms of invasive cervical cancers.
Rodriguero, Marcela S; Wirth, Sonia A; Alberghina, Josefina S; Lanteri, Analía A; Confalonieri, Viviana A
2018-01-01
Naupactus cervinus (Boheman) (Curculionidae, Naupactini) is a parthenogenetic weevil native to the Paranaense Forest which displays high levels of genetic variation. Two divergent clades were identified, one ranging in forest areas (Forest clade), and the other in open vegetation areas (Grassland clade). Both of them have individuals with high levels of heterozygosity in ribosomal sequences. Investigation of intraindividual variation in ITS1 sequences through cloning and posterior sequencing suggested that mating between both groups most likely occurred in the Paranaense Forest after a secondary contact, which led to fixed heterozygotes as a consequence of parthenogenesis. Otherwise, sexual segregation would have disrupted multilocus genotypes. Only a small number of heterozygous genotypes of all the possible combinations are found in nature. We propose the occurrence of a hybrid zone in the Paranaense Forest. The fact that it is one of the most important biodiversity hotspots of the world, together with its key role for investigating evolutionary processes, makes it worthy of conservation. This is the first genetic evidence of bisexuality in N. cervinus.
Genetic variations of the SLCO1B1 gene in the Chinese, Malay and Indian populations of Singapore.
Ho, Woon Fei; Koo, Seok Hwee; Yee, Jie Yin; Lee, Edmund Jon Deoon
2008-01-01
OATP1B1 is a liver-specific transporter that mediates the uptake of various endogenous and exogenous compounds including many clinically used drugs from blood into hepatocytes. This study aims to identify genetic variations of SLCO1B1 gene in three distinct ethnic groups of the Singaporean population (n=288). The coding region of the gene encoding the transporter protein was screened for genetic variations in the study population by denaturing high-performance liquid chromatography and DNA sequencing. Twenty-five genetic variations of SLCO1B1, including 10 novel ones, were found: 13 in the coding exons (9 nonsynonymous and 4 synonymous variations), 6 in the introns, and 6 in the 3' untranslated region. Four novel nonsynonymous variations: 633A>G (Ile211Met), 875C>T (Ala292Val), 1837T>C (Cys613Arg), and 1877T>A (Leu626Stop) were detected as heterozygotes. Among the novel nonsynonymous variations, 633A>G, 1837T>C, and 1877T>A were predicted to be functionally significant. These data would provide fundamental and useful information for pharmacogenetic studies on drugs that are substrates of OATP1B1 in Asians.
Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.
Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M
2017-08-16
High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.
Flannick, Jason; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M; Agarwala, Vineeta; Gaulton, Kyle J; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Dennis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana Cn; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Altshuler, David; Burtt, Noël P; Florez, Jose C; Boehnke, Michael; McCarthy, Mark I
2017-12-19
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
Minimizing structural vibrations with Input Shaping (TM)
NASA Technical Reports Server (NTRS)
Singhose, Bill; Singer, Neil
1995-01-01
A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
Jason, Flannick; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M.; Agarwala, Vineeta; Gaulton, Kyle J.; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J.; Rivas, Manuel A.; Perry, John R. B.; Sim, Xueling; Blackwell, Thomas W.; Robertson, Neil R.; Rayner, N William; Cingolani, Pablo; Locke, Adam E.; Tajes, Juan Fernandez; Highland, Heather M.; Dupuis, Josee; Chines, Peter S.; Lindgren, Cecilia M.; Hartl, Christopher; Jackson, Anne U.; Chen, Han; Huyghe, Jeroen R.; van de Bunt, Martijn; Pearson, Richard D.; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M.; Gamazon, Eric R.; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A.; Below, Jennifer E.; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L.; Pasko, Dorota; Parker, Stephen C. J.; Varga, Tibor V.; Green, Todd; Beer, Nicola L.; Day-Williams, Aaron G.; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J.; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P.; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F.; Han, Bok-Ghee; Jenkinson, Christopher P.; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C. Y.; Palmer, Nicholette D.; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E.; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D.; Neale, Benjamin M.; Purcell, Shaun; Butterworth, Adam S.; Howson, Joanna M. M.; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K. L.; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H. T.; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E.; Rybin, Dennis; Farook, Vidya S.; Fowler, Sharon P.; Freedman, Barry I.; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J.; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K.; Puppala, Sobha; Scott, William R.; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A.; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C.; Mangino, Massimo; Bonnycastle, Lori L.; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L.; Herder, Christian; Groves, Christopher J.; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A.; Doney, Alex S. F.; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J.; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E.; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H.; Stirrups, Kathleen; Wood, Andrew R.; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O.; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P.; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B.; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N. A.; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M.; Syvänen, Ann-Christine; Bergman, Richard N.; Bharadwaj, Dwaipayan; Bottinger, Erwin P.; Cho, Yoon Shin; Chandak, Giriraj R.; Chan, Juliana CN; Chia, Kee Seng; Daly, Mark J.; Ebrahim, Shah B.; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A.; Lehman, Donna M.; Jia, Weiping; Ma, Ronald C. W.; Pollin, Toni I.; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J. F.; Small, Kerrin S.; Ried, Janina S.; DeFronzo, Ralph A.; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J.; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W.; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R.; Gloyn, Anna L.; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D.; Hattersley, Andrew T.; Bowden, Donald W.; Collins, Francis S.; Atzmon, Gil; Chambers, John C.; Spector, Timothy D.; Laakso, Markku; Strom, Tim M.; Bell, Graeme I.; Blangero, John; Duggirala, Ravindranath; Tai, E. Shyong; McVean, Gilean; Hanis, Craig L.; Wilson, James G.; Seielstad, Mark; Frayling, Timothy M.; Meigs, James B.; Cox, Nancy J.; Sladek, Rob; Lander, Eric S.; Gabriel, Stacey; Mohlke, Karen L.; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J.; Morris, Andrew P.; Kang, Hyun Min; Altshuler, David; Burtt, Noël P.; Florez, Jose C.; Boehnke, Michael; McCarthy, Mark I.
2017-01-01
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D. PMID:29257133
Turnbaugh, Peter J.; Quince, Christopher; Faith, Jeremiah J.; McHardy, Alice C.; Yatsunenko, Tanya; Niazi, Faheem; Affourtit, Jason; Egholm, Michael; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I.
2010-01-01
We deeply sampled the organismal, genetic, and transcriptional diversity in fecal samples collected from a monozygotic (MZ) twin pair and compared the results to 1,095 communities from the gut and other body habitats of related and unrelated individuals. Using a new scheme for noise reduction in pyrosequencing data, we estimated the total diversity of species-level bacterial phylotypes in the 1.2-1.5 million bacterial 16S rRNA reads obtained from each deeply sampled cotwin to be ~800 (35.9%, 49.1% detected in both). A combined 1.1 million read 16S rRNA dataset representing 281 shallowly sequenced fecal samples from 54 twin pairs and their mothers contained an estimated 4,018 species-level phylotypes, with each sample having a unique species assemblage (53.4 ± 0.6% and 50.3 ± 0.5% overlap with the deeply sampled cotwins). Of the 134 phylotypes with a relative abundance of >0.1% in the combined dataset, only 37 appeared in >50% of the samples, with one phylotype in the Lachnospiraceae family present in 99%. Nongut communities had significantly reduced overlap with the deeply sequenced twins’ fecal microbiota (18.3 ± 0.3%, 15.3 ± 0.3%). The MZ cotwins’ fecal DNA was deeply sequenced (3.8-6.3 Gbp/sample) and assembled reads were assigned to 25 genus-level phylogenetic bins. Only 17% of the genes in these bins were shared between the cotwins. Bins exhibited differences in their degree of sequence variation, gene content including the repertoire of carbohydrate active enzymes present within and between twins (e.g., predicted cellulases, dockerins), and transcriptional activities. These results provide an expanded perspective about features that make each of us unique life forms and directions for future characterization of our gut ecosystems. PMID:20363958
Tantrawatpan, Chairat; Saijuntha, Weerachai; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N
2013-01-01
Genetic differentiation between two synonymous echinostomes species, Artyfechinostomum malayanum and Artyfechinostomum sufrartyfex was determined by using the first and second internal transcribed spacers (ITS1 and ITS2), the non-coding region of rDNA as genetic makers. Of the 699 bp of combined ITS1 and ITS2 sequences examined, 18 variable nucleotide positions (2.58 %) were observed. Of these, 17 positions could be used as diagnostic position between these two sibling species, whereas the other one variation was intraspecific variation of A. malayanum. A clade of A. malayanum was closely aligned with A. sufrartyfex and clearly distance from the cluster of other echinostomes. Our results may sufficiently suggest that the current synonymy of these species is not valid.
Variation block-based genomics method for crop plants.
Kim, Yul Ho; Park, Hyang Mi; Hwang, Tae-Young; Lee, Seuk Ki; Choi, Man Soo; Jho, Sungwoong; Hwang, Seungwoo; Kim, Hak-Min; Lee, Dongwoo; Kim, Byoung-Chul; Hong, Chang Pyo; Cho, Yun Sung; Kim, Hyunmin; Jeong, Kwang Ho; Seo, Min Jung; Yun, Hong Tai; Kim, Sun Lim; Kwon, Young-Up; Kim, Wook Han; Chun, Hye Kyung; Lim, Sang Jong; Shin, Young-Ah; Choi, Ik-Young; Kim, Young Sun; Yoon, Ho-Sung; Lee, Suk-Ha; Lee, Sunghoon
2014-06-15
In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
Ekanayake, Saliya; Ruan, Yang; Schütte, Ursel M. E.; Kaonongbua, Wittaya; Fox, Geoffrey; Ye, Yuzhen; Bever, James D.
2016-01-01
ABSTRACT Arbuscular mycorrhizal (AM) fungi form mutualisms with plant roots that increase plant growth and shape plant communities. Each AM fungal cell contains a large amount of genetic diversity, but it is unclear if this diversity varies across evolutionary lineages. We found that sequence variation in the nuclear large-subunit (LSU) rRNA gene from 29 isolates representing 21 AM fungal species generally assorted into genus- and species-level clades, with the exception of species of the genera Claroideoglomus and Entrophospora. However, there were significant differences in the levels of sequence variation across the phylogeny and between genera, indicating that it is an evolutionarily constrained trait in AM fungi. These consistent patterns of sequence variation across both phylogenetic and taxonomic groups pose challenges to interpreting operational taxonomic units (OTUs) as approximations of species-level groups of AM fungi. We demonstrate that the OTUs produced by five sequence clustering methods using 97% or equivalent sequence similarity thresholds failed to match the expected species of AM fungi, although OTUs from AbundantOTU, CD-HIT-OTU, and CROP corresponded better to species than did OTUs from mothur or UPARSE. This lack of OTU-to-species correspondence resulted both from sequences of one species being split into multiple OTUs and from sequences of multiple species being lumped into the same OTU. The OTU richness therefore will not reliably correspond to the AM fungal species richness in environmental samples. Conservatively, this error can overestimate species richness by 4-fold or underestimate richness by one-half, and the direction of this error will depend on the genera represented in the sample. IMPORTANCE Arbuscular mycorrhizal (AM) fungi form important mutualisms with the roots of most plant species. Individual AM fungi are genetically diverse, but it is unclear whether the level of this diversity differs among evolutionary lineages. We found that the amount of sequence variation in an rRNA gene that is commonly used to identify AM fungal species varied significantly between evolutionary groups that correspond to different genera, with the exception of two genera that are genetically indistinguishable from each other. When we clustered groups of similar sequences into operational taxonomic units (OTUs) using five different clustering methods, these patterns of sequence variation caused the number of OTUs to either over- or underestimate the actual number of AM fungal species, depending on the genus. Our results indicate that OTU-based inferences about AM fungal species composition from environmental sequences can be improved if they take these taxonomically structured patterns of sequence variation into account. PMID:27260357
Yap, Nan Jiun; Goh, Xiang Ting; Koehler, Anson V; William, Timothy; Yeo, Tsin Wen; Vythilingam, Indra; Gasser, Robin B; Lim, Yvonne A L
2017-10-01
Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-1 42 ; consisting of MSP-1 19 and MSP-1 33 ) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-1 42 (comprising Pk-msp-1 19 and Pk-msp-1 33 ) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-1 42 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-1 19 sequence was found to be more conserved than Pk-msp-1 33 . We have found evidence for negative selection in Pk-msp- 42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Fan; Ma, Liying; Feng, Yi; Hu, Jing; Ni, Na; Ruan, Yuhua; Shao, Yiming
2017-06-01
HIV-1 transmission in intravenous drug users (IDUs) has been characterized by high genetic multiplicity and suggests a greater challenge for HIV-1 infection blocking. We investigated a total of 749 sequences of full-length gp160 gene obtained by single genome sequencing (SGS) from 22 HIV-1 early infected IDUs in Xinjiang province, northwest China, and generated a transmitted and founder virus (T/F virus) consensus sequence (IDU.CON). The T/F virus was classified as subtype CRF07_BC and predicted to be CCR5-tropic virus. The variable region (V1, V2, and V4 loop) of IDU.CON showed length variation compared with the heterosexual T/F virus consensus sequence (HSX.CON) and homosexual T/F virus consensus sequence (MSM.CON). A total of 26 N-linked glycosylation sites were discovered in the IDU.CON sequence, which is less than that of MSM.CON and HSX.CON. Characterization of T/F virus from IDUs highlights the genetic make-up and complexity of virus near the moment of transmission or in early infection preceding systemic dissemination and is important toward the development of an effective HIV-1 preventive methods, including vaccines.
Shier, Medhat K; Iles, James C; El-Wetidy, Mohammad S; Ali, Hebatallah H; Al Qattan, Mohammad M
2017-01-01
The source of HCV transmission in Saudi Arabia is unknown. This study aimed to determine HCV genotypes in a representative sample of chronically infected patients in Saudi Arabia. All HCV isolates were genotyped and subtyped by sequencing of the HCV core region and 54 new HCV isolates were identified. Three sets of primers targeting the core region were used for both amplification and sequencing of all isolates resulting in a 326 bp fragment. Most HCV isolates were genotype 4 (85%), whereas only a few isolates were recognized as genotype 1 (15%). With the assistance of Genbank database and BLAST, subtyping results showed that most of genotype 4 isolates were 4d whereas most of genotype 1 isolates were 1b. Nucleotide conservation and variation rates of HCV core sequences showed that 4a and 1b have the highest levels of variation. Phylogenetic analysis of sequences by Maximum Likelihood and Bayesian Coalescent methods was used to explore the source of HCV transmission by investigating the relationship between Saudi Arabia and other countries in the Middle East and Africa. Coalescent analysis showed that transmissions of HCV from Egypt to Saudi Arabia are estimated to have occurred in three major clusters: 4d was introduced into the country before 1900, the major 4a clade's MRCA was introduced between 1900 and 1920, and the remaining lineages were introduced between 1940 and 1960 from Egypt and Middle Africa. Results showed that no lineages seem to have crossed from Egypt to Saudi Arabia in the last 15 years. Finally, sequencing and characterization of new HCV isolates from Saudi Arabia will enrich the HCV database and help further studies related to treatment and management of the virus.
Iles, James C.; El-Wetidy, Mohammad S.; Ali, Hebatallah H.; Al Qattan, Mohammad M.
2017-01-01
The source of HCV transmission in Saudi Arabia is unknown. This study aimed to determine HCV genotypes in a representative sample of chronically infected patients in Saudi Arabia. All HCV isolates were genotyped and subtyped by sequencing of the HCV core region and 54 new HCV isolates were identified. Three sets of primers targeting the core region were used for both amplification and sequencing of all isolates resulting in a 326 bp fragment. Most HCV isolates were genotype 4 (85%), whereas only a few isolates were recognized as genotype 1 (15%). With the assistance of Genbank database and BLAST, subtyping results showed that most of genotype 4 isolates were 4d whereas most of genotype 1 isolates were 1b. Nucleotide conservation and variation rates of HCV core sequences showed that 4a and 1b have the highest levels of variation. Phylogenetic analysis of sequences by Maximum Likelihood and Bayesian Coalescent methods was used to explore the source of HCV transmission by investigating the relationship between Saudi Arabia and other countries in the Middle East and Africa. Coalescent analysis showed that transmissions of HCV from Egypt to Saudi Arabia are estimated to have occurred in three major clusters: 4d was introduced into the country before 1900, the major 4a clade’s MRCA was introduced between 1900 and 1920, and the remaining lineages were introduced between 1940 and 1960 from Egypt and Middle Africa. Results showed that no lineages seem to have crossed from Egypt to Saudi Arabia in the last 15 years. Finally, sequencing and characterization of new HCV isolates from Saudi Arabia will enrich the HCV database and help further studies related to treatment and management of the virus. PMID:28863156
Polymorphism in the Eruption Sequence of Primary Dentition: A Cross-sectional Study
Bhojraj, Nandlal; Narayanappa
2017-01-01
Introduction Primary teeth have shown wide variations in their eruption time among different population. Population specific eruption ages are provided as mean with standard deviations or median ages with its percentile range. This alone will be insufficient for prediction of tooth eruption sequence because they provide no information on the frequency of sequence variation within the pairs of teeth. Norms of polymorphic variation in the eruption sequence can be more useful. Aim This study aims at providing norms for the sequence polymorphism in primary teeth among the children of Mysore population. Materials and Methods A cross-sectional study was designed with 1392 children, recruited from December 2015 to June 2016 by simple random sampling method. Tooth was recorded as present or absent. Across the entire possible intra quadrant tooth pair, cases of present-present, absent-absent, present-absent and absent-present and were counted and computed as percentages. Results Sequence polymorphisms were more common in 82-84 pairs of teeth. Significant polymorphic reverse sequence was observed in 52-54 (9%), 82-84 (35%) in males and 82-84 (18%) in females. There was no polymorphism in maxillary arch in females. Conclusion The present study provides the baseline data values for sequence variation in primary teeth eruption. To the best of investigators knowledge, there are no previous studies describing the sequence polymorphism in primary teeth in Indian population. The results of this study helps in assessment of eruption sequence problems in paediatric dentistry and in evaluation and prediction of tooth eruption sequence in individual child. PMID:28658912
Masters, N; Christie, M; Katouli, M; Stratton, H
2015-06-01
We investigated the usefulness of the β-d-glucuronidase gene variance in Escherichia coli as a microbial source tracking tool using a novel algorithm for comparison of sequences from a prescreened set of host-specific isolates using a high-resolution PhP typing method. A total of 65 common biochemical phenotypes belonging to 318 E. coli strains isolated from humans and domestic and wild animals were analysed for nucleotide variations at 10 loci along a 518 bp fragment of the 1812 bp β-d-glucuronidase gene. Neighbour-joining analysis of loci variations revealed 86 (76.8%) human isolates and 91.2% of animal isolates were correctly identified. Pairwise hierarchical clustering improved assignment; where 92 (82.1%) human and 204 (99%) animal strains were assigned to their respective cluster. Our data show that initial typing of isolates and selection of common types from different hosts prior to analysis of the β-d-glucuronidase gene sequence improves source identification. We also concluded that numerical profiling of the nucleotide variations can be used as a valuable approach to differentiate human from animal E. coli. This study signifies the usefulness of the β-d-glucuronidase gene as a marker for differentiating human faecal pollution from animal sources.
Kuhls, K; Lieckfeldt, E; Samuels, G J; Kovacs, W; Meyer, W; Petrini, O; Gams, W; Börner, T; Kubicek, C P
1996-01-01
The relationship of the important cellulase producing asexual fungus Trichoderma reesei to its putative teleomorphic (sexual) ancestor Hypocrea jecorina and other species of the Trichoderma sect. Longibrachiatum was studied by PCR-fingerprinting and sequence analyses of the nuclear ribosomal DNA region containing the internal transcribed spacers (ITS-1 and ITS-2) and the 5.8S rRNA gene. The differences in the corresponding ITS sequences allowed a grouping of anamorphic (asexual) species of Trichoderma sect. Longibrachiatum into Trichoderma longibrachiatum, Trichoderma pseudokoningii, and Trichoderma reesei. The sexual species Hypocrea schweinitzii and H. jecorina were also clearly separated from each other. H. jecorina and T. reesei exhibited identical sequences, suggesting close relatedness or even species identity. Intraspecific and interspecific variation in the PCR-fingerprinting patterns supported the differentiation of species based on ITS sequences, the grouping of the strains, and the assignment of these strains to individual species. The variations between T. reesei and H. jecorina were at the same order of magnitude as found between all strains of H. jecorina, but much lower than the observed interspecific variations. Identical ITS sequences and the high similarity of PCR-fingerprinting patterns indicate a very close relationship between T. reesei and H. jecorina, whereas differences of the ITS sequences and the PCR-fingerprinting patterns show a clear phylogenetic distance between T. reesei/H. jecorina and T. longibrachiatum. T. reesei is considered to be an asexual, clonal line derived from a population of the tropical ascomycete H. jecorina. Images Fig. 2 PMID:8755548
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel
2004-04-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel
2004-01-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845
Chen, Hui-Xia; Zhang, Lu-Ping; Nakao, Minoru; Li, Liang
2018-06-01
A new cosmocercid species, Cosmocercoides qingtianensis sp. n., collected from the intestine of the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) is described using integrated approaches, including light and scanning electron microscopy, and sequencing and analyzing the ribosomal [small ribosomal DNA (18S) and internal transcribed spacer (ITS)] and mitochondrial [cytochrome c oxidase subunit 1 (cox1)] target regions, respectively. The new species can be distinguished from its congeners by the combination of the following morphological characters, including the large body size, the presence of lateral alae and somatic papillae in both sexes, the length of spicules, the particular morphology and length of gubernaculum, the number, arrangement and morphology of caudal rosettes, the presence of large medioventral precloacal papilla and the long tail. Our molecular analysis revealed the level of intraspecific genetic variation of C. qingtianensis sp. n. distinctly lower than that of the interspecific genetic variation in the ITS and cox1 regions. However, there are some overlaps in the range of intra- and interspecific 18S sequence divergence between the new species and some closely related species. The results of molecular analysis supported the validity of the new species based on the morphological observations. The 18S, ITS, and cox1 regions of C. pulcher collected from Bufo japonicus formosus in Japan were also sequenced and analyzed. The results showed a low level of intraspecific genetic variation in 18S and ITS regions (0-0.12% and 0-0.23% nucleotide differences, respectively), but a relatively high level of intraspecific genetic variation in cox1 region (0.78-4.69% nucleotide differences). In addition, it seems more powerful and practical to use the cox1 region as a genetic marker for the accurate identification and differentiation of species of Cosmocercoides than the 18S and ITS regions, especially for the closely related species.
Sampson, Juliana K.; Sheth, Nihar U.; Koparde, Vishal N.; Scalora, Allison F.; Serrano, Myrna G.; Lee, Vladimir; Roberts, Catherine H.; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H.; Buck, Gregory A.; Neale, Michael C.; Toor, Amir A.
2016-01-01
Summary Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. PMID:24749631
Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio
2015-11-30
Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena. Copyright © 2015 Elsevier B.V. All rights reserved.
Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab
2014-01-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.
Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong
2015-06-09
Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.
Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.
Elder, J F; Turner, B J
1994-01-01
The canonical monomers (approximately 170 bp) of an abundant (1.9 x 10(6) copies per diploid genome) satellite DNA sequence family in the genome of Cyprinodon variegatus, a "pupfish" that ranges along the Atlantic coast from Cape Cod to central Mexico, are divergent in base sequence in 10 of 12 samples collected from natural populations. The divergence involves substitutions, deletions, and insertions, is marked in scope (mean pairwise sequence similarity = 61.6%; range = 35-95.9%), is largely confined to the 3' half of the monomer, and is not correlated with the distance among collecting sites. Repetitive cloning and direct genomic sequencing experiments failed to detect intrapopulation and intraindividual variation, suggesting high levels of sequence homogeneity within populations. The satellite sequence has therefore undergone "concerted evolution," at the level of the local population. Concerted evolution has previously almost always been discussed in terms of the divergence of species or higher taxa; its intraspecific occurrence apparently has not been reported previously. The generality of the observation is difficult to evaluate, for although satellite DNAs from a large number of organisms have been studied in detail, there appear to be little or no other data on their sequence variation in natural populations. The relationship (if any) between concerted, population level, satellite DNA divergence and the extent of gene flow/genetic isolation among conspecific natural populations remains to be established. Images PMID:8302879
Keel, B N; Nonneman, D J; Rohrer, G A
2017-08-01
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Wang, Peikun; Lin, Lulu; Li, Haijuan; Yang, Yongli; Huang, Teng; Wei, Ping
2018-02-01
ALV-J has caused the most serious losses to the poultry industry in China. The gp85-coding sequence of ALV-J is known to be prone to mutation, but any association between the gp85 gene and breed of chicken remains unclear. A comprehensive and systematic study of the evolutionary process of ALV-J in China is needed. In this study, we compared and analyzed gp85 gene sequences from 198 ALV-J isolates, originating from China, USA, UK and France during 1989-2016. These were sorted into five clusters. Cluster 1, 2, 3, 4 and 5 included isolates from chicken types of different genetic backgrounds, e.g. white-feather broiler, Guangxi indigenous chicken breeds, Yellow chickens and layer chickens respectively. A correlation comparison of amino acid sequence similarities in the gp85 protein among the five clusters showed significant differences (P < 0.01) with the exception being when the third and fifth cluster were compared (P > 0.05). Results of entropy analysis of the gp85 sequences revealed that cluster 3 had the largest variation and cluster 1 had the least variation. The N-glycosylation sites in the majority of isolates numbered 14, 16, 17, 16 and 16, respectively, with regards to clusters 1-5. In addition, 5 isolates from cluster 3 had one more glycosylation site than the other isolates from cluster 3. Our study provides evidence that there were five extremely different ALV-J clusters during 1989-2016 and that the gp85 genes isolated from indigenous chicken breed isolates had the largest variation.
Shafer, Robert W.; Hertogs, Kurt; Zolopa, Andrew R.; Warford, Ann; Bloor, Stuart; Betts, Bradley J.; Merigan, Thomas C.; Harrigan, Richard; Larder, Brendon A.
2001-01-01
We assessed the reproducibility of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequencing using cryopreserved plasma aliquots obtained from 46 heavily treated HIV-1-infected individuals in two laboratories using dideoxynucleotide sequencing. The rates of complete sequence concordance between the two laboratories were 99.1% for the protease sequence and 99.0% for the RT sequence. Approximately 90% of the discordances were partial, defined as one laboratory detecting a mixture and the second laboratory detecting only one of the mixture's components. Only 0.1% of the nucleotides were completely discordant between the two laboratories, and these were significantly more likely to occur in plasma samples with lower plasma HIV-1 RNA levels. Nucleotide mixtures were detected at approximately 1% of the nucleotide positions, and in every case in which one laboratory detected a mixture, the second laboratory either detected the same mixture or detected one of the mixture's components. The high rate of concordance in detecting mixtures and the fact that most discordances between the two laboratories were partial suggest that most discordances were caused by variation in sampling of the HIV-1 quasispecies by PCR rather than by technical errors in the sequencing process itself. PMID:11283081
Casartelli, Nicoletta; Di Matteo, Gigliola; Argentini, Claudio; Cancrini, Caterina; Bernardi, Stefania; Castelli, Guido; Scarlatti, Gabriella; Plebani, Anna; Rossi, Paolo; Doria, Margherita
2003-06-13
Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.
Read clouds uncover variation in complex regions of the human genome
Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E.; West, Robert; Sidow, Arend; Batzoglou, Serafim
2015-01-01
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. PMID:26286554
Genomic profiling of plastid DNA variation in the Mediterranean olive tree
2011-01-01
Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271
Nesbitt, T Clint; Tanksley, Steven D
2002-01-01
Sequence variation was sampled in cultivated and related wild forms of tomato at fw2.2--a fruit weight QTL key to the evolution of domesticated tomatoes. Variation at fw2.2 was contrasted with variation at four other loci not involved in fruit weight determination. Several conclusions could be reached: (1) Fruit weight variation attributable to fw2.2 is not caused by variation in the FW2.2 protein sequence; more likely, it is due to transcriptional variation associated with one or more of eight nucleotide changes unique to the promoter of large-fruit alleles; (2) fw2.2 and loci not involved in fruit weight have not evolved at distinguishably different rates in cultivated and wild tomatoes, despite the fact that fw2.2 was likely a target of selection during domestication; (3) molecular-clock-based estimates suggest that the large-fruit allele of fw2.2, now fixed in most cultivated tomatoes, arose in tomato germplasm long before domestication; (4) extant accessions of L. esculentum var. cerasiforme, the subspecies thought to be the most likely wild ancestor of domesticated tomatoes, appear to be an admixture of wild and cultivated tomatoes rather than a transitional step from wild to domesticated tomatoes; and (5) despite the fact that cerasiforme accessions are polymorphic for large- and small-fruit alleles at fw2.2, no significant association was detected between fruit size and fw2.2 genotypes in the subspecies--as tested by association genetic studies in the relatively small sample studied--suggesting the role of other fruit weight QTL in fruit weight variation in cerasiforme. PMID:12242247
BLAZAR ANTI-SEQUENCE OF SPECTRAL VARIATION WITHIN INDIVIDUAL BLAZARS: CASES FOR MRK 501 AND 3C 279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei, E-mail: zhang.jin@hotmail.com
2013-04-10
The jet properties of Mrk 501 and 3C 279 are derived by fitting broadband spectral energy distributions (SEDs) with lepton models. The derived {gamma}{sub b} (the break Lorenz factor of the electron distribution) is 10{sup 4}-10{sup 6} for Mrk 501 and 200 {approx} 600 for 3C 279. The magnetic field strength (B) of Mrk 501 is usually one order of magnitude lower than that of 3C 279, but their Doppler factors ({delta}) are comparable. A spectral variation feature where the peak luminosity is correlated with the peak frequency, which is opposite from the blazar sequence, is observed in the twomore » sources. We find that (1) the peak luminosities of the two bumps in the SEDs for Mrk 501 depend on {gamma}{sub b} in both the observer and co-moving frames, but they are not correlated with B and {delta} and (2) the luminosity variation of 3C 279 is dominated by the external Compton (EC) peak and its peak luminosity is correlated with {gamma}{sub b} and {delta}, but anti-correlated with B. These results suggest that {gamma}{sub b} may govern the spectral variation of Mrk 501 and {delta} and B would be responsible for the spectral variation of 3C 279. The narrow distribution of {gamma}{sub b} and the correlation of {gamma}{sub b} and B in 3C 279 would be due to the cooling from the EC process and the strong magnetic field. Based on our brief discussion, we propose that this spectral variation feature may originate from the instability of the corona but not from the variation of the accretion rate as does the blazar sequence.« less
Gupta, Aayush; Sharma, Yugal; Deo, Kirti; Vellarikkal, Shamsudheen; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Scaria, Vinod; Sivasubbu, Sridhar
2015-01-01
Lamellar ichthyosis (LI), considered an autosomal recessive monogenic genodermatosis, has an incidence of approximately 1 in 250,000. Usually associated with mutations in the transglutaminase gene ( TGM1), mutations in six other genes have, less frequently, been shown to be causative. Two siblings, born in a collodion membrane, presented with fish like scales all over the body. Karyotyping revealed duplication of the chromosome arm on 22q12+ in the father and two siblings. Whole exome sequencing revealed a homozygous p.Gly218Ser variation in TGM1; a variation reported earlier in an isolated Finnish population in association with autosomal recessive non-syndromic ichthyosis. This concurrence of a potentially benign 22q12+ duplication and LI, both rare individually, is reported here likely for the first time. PMID:26594337
ACTG: novel peptide mapping onto gene models.
Choi, Seunghyuk; Kim, Hyunwoo; Paek, Eunok
2017-04-15
In many proteogenomic applications, mapping peptide sequences onto genome sequences can be very useful, because it allows us to understand origins of the gene products. Existing software tools either take the genomic position of a peptide start site as an input or assume that the peptide sequence exactly matches the coding sequence of a given gene model. In case of novel peptides resulting from genomic variations, especially structural variations such as alternative splicing, these existing tools cannot be directly applied unless users supply information about the variant, either its genomic position or its transcription model. Mapping potentially novel peptides to genome sequences, while allowing certain genomic variations, requires introducing novel gene models when aligning peptide sequences to gene structures. We have developed a new tool called ACTG (Amino aCids To Genome), which maps peptides to genome, assuming all possible single exon skipping, junction variation allowing three edit distances from the original splice sites, exon extension and frame shift. In addition, it can also consider SNVs (single nucleotide variations) during mapping phase if a user provides the VCF (variant call format) file as an input. Available at http://prix.hanyang.ac.kr/ACTG/search.jsp . eunokpaek@hanyang.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Chromospheric variations in main-sequence stars
NASA Technical Reports Server (NTRS)
Baliunas, S. L.; Donahue, R. A.; Soon, J. H.; Horne, J. H.; Frazer, J.; Woodard-Eklund, L.; Bradford, M.; Rao, L. M.; Wilson, O. C.; Zhang, Q.
1995-01-01
The fluxes in passbands 0.1 nm wide and centered on the Ca II H and K emission cores have been monitored in 111 stars of spectral type F2-M2 on or near the main sequence in a continuation of an observing program started by O. C. Wilson. Most of the measurements began in 1966, with observations scheduled monthly until 1980, when observations were schedueld sevral times per week. The records, with a long-term precision of about 1.5%, display fluctuations that can be idntified with variations on timescales similar to the 11 yr cycle of solar activity as well as axial rotation, and the growth and decay of emitting regions. We present the records of chromospheric emission and general conclusions about variations in surface magnetic activity on timescales greater than 1 yr but less than a few decades. The results for stars of spectral type G0-K5 V indicate a pattern of change in rotation and chromospheric activity on an evolutionary timescale, in which (1) young stars exhibit high average levels of activity, rapid rotation rates, no Maunder minimum phase and rarely display a smooth, cyclic variation; (2) stars of intermediate age (approximately 1-2 Gyr for 1 solar mass) have moderate levels of activity and rotation rates, and occasional smooth cycles; and (3) stars as old as the Sun and older have slower rotation rates, lower activity levels and smooth cycles with occasional Maunder minimum-phases.
Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2.
Gao, Ting; Yao, Hui; Song, Jingyuan; Liu, Chang; Zhu, Yingjie; Ma, Xinye; Pang, Xiaohui; Xu, Hongxi; Chen, Shilin
2010-07-06
To test whether the ITS2 region is an effective marker for use in authenticating of the family Fabaceae which contains many important medicinal plants. The ITS2 regions of 114 samples in Fabaceae were amplified. Sequence assembly was assembled by CodonCode Aligner V3.0. In combination with sequences from public database, the sequences were aligned by Clustal W, and genetic distances were computed using MEGA V4.0. The intra- vs. inter-specific variations were assessed by six metrics, wilcoxon two-sample tests and "barcoding gaps". Species identification was accomplished using TaxonGAP V2.4, BLAST1 and the nearest distance method. ITS2 sequences had considerable variation at the genus and species level. The intra-specific divergence ranged from 0% to 14.4%, with an average of 1.7%, and the inter-specific divergence ranged from 0% to 63.0%, with an average of 8.6%. Twenty-four species found in the Chinese Pharmacopoeia, along with another 66 species including their adulterants, were successfully identified based on ITS2 sequences. In addition, ITS2 worked well, with over 80.0% of species and 100% of genera being correctly differentiated for the 1507 sequences derived from 1126 species belonging to 196 genera. Our findings support the notion that ITS2 can be used as an efficient and powerful marker and a potential barcode to distinguish various species in Fabaceae. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Sequence diversity of wheat mosaic virus isolates.
Stewart, Lucy R
2016-02-02
Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of High Plains disease in wheat and maize. WMoV and other members of the genus Emaravirus evaded thorough molecular characterization for many years due to the experimental challenges of mite transmission and manipulating multisegmented negative sense RNA genomes. Recently, the complete genome sequence of a Nebraska isolate of WMoV revealed eight segments, plus a variant sequence of the nucleocapsid protein-encoding segment. Here, near-complete and partial consensus sequences of five more WMoV isolates are reported and compared to the Nebraska isolate: an Ohio maize isolate (GG1), a Kansas barley isolate (KS7), and three Ohio wheat isolates (H1, K1, W1). Results show two distinct groups of WMoV isolates: Ohio wheat isolate RNA segments had 84% or lower nucleotide sequence identity to the NE isolate, whereas GG1 and KS7 had 98% or higher nucleotide sequence identity to the NE isolate. Knowledge of the sequence variability of WMoV isolates is a step toward understanding virus biology, and potentially explaining observed biological variation. Published by Elsevier B.V.
Global and disease-associated genetic variation in the human Fanconi anemia gene family.
Rogers, Kai J; Fu, Wenqing; Akey, Joshua M; Monnat, Raymond J
2014-12-20
Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fishman, G A; Stone, E M; Grover, S; Derlacki, D J; Haines, H L; Hockey, R R
1999-04-01
To report the spectrum of ophthalmic findings in patients with Stargardt dystrophy or fundus flavimaculatus who have a specific sequence variation in the ABCR gene. Twenty-nine patients with Stargardt dystrophy or fundus flavimaculatus from different pedigrees were identified with possible disease-causing sequence variations in the ABCR gene from a group of 66 patients who were screened for sequence variations in this gene. Patients underwent a routine ocular examination, including slitlamp biomicroscopy and a dilated fundus examination. Fluorescein angiography was performed on 22 patients, and electroretinographic measurements were obtained on 24 of 29 patients. Kinetic visual fields were measured with a Goldmann perimeter in 26 patients. Single-strand conformation polymorphism analysis and DNA sequencing were used to identify variations in coding sequences of the ABCR gene. Three clinical phenotypes were observed among these 29 patients. In phenotype I, 9 of 12 patients had a sequence change in exon 42 of the ABCR gene in which the amino acid glutamic acid was substituted for glycine (Gly1961Glu). In only 4 of these 9 patients was a second possible disease-causing mutation found on the other ABCR allele. In addition to an atrophic-appearing macular lesion, phenotype I was characterized by localized perifoveal yellowish white flecks, the absence of a dark choroid, and normal electroretinographic amplitudes. Phenotype II consisted of 10 patients who showed a dark choroid and more diffuse yellowish white flecks in the fundus. None exhibited the Gly1961Glu change. Phenotype III consisted of 7 patients who showed extensive atrophic-appearing changes of the retinal pigment epithelium. Electroretinographic cone and rod amplitudes were reduced. One patient showed the Gly1961Glu change. A wide variation in clinical phenotype can occur in patients with sequence changes in the ABCR gene. In individual patients, a certain phenotype seems to be associated with the presence of a Gly1961Glu change in exon 42 of the ABCR gene. The identification of correlations between specific mutations in the ABCR gene and clinical phenotypes will better facilitate the counseling of patients on their visual prognosis. This information will also likely be important for future therapeutic trials in patients with Stargardt dystrophy.
Poon, Art F. Y; Kosakovsky Pond, Sergei L.; Bennett, Phil; Richman, Douglas D; Leigh Brown, Andrew J.; Frost, Simon D. W
2007-01-01
CD8+ cytotoxic T-lymphocytes (CTLs) perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately “toggle” in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1– (n ≥ 3,000) and HCV-infected patients (n ≥ 2,600) by screening bulk RT-PCR sequences for sequencing “mixtures” (i.e., ambiguous nucleotides), which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design. PMID:17397261
Aramrak, Attawan; Kidwell, Kimberlee K; Steber, Camille M; Burke, Ian C
2015-10-23
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway, and is the target of the herbicide glyphosate. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the allohexaploid wheat EPSPS gene were cloned and characterized. Genomic and coding DNA sequences of EPSPS from the three related genomes of allohexaploid wheat were isolated using PCR and inverse PCR approaches from soft white spring "Louise'. Development of genome-specific primers allowed the mapping and expression analysis of TaEPSPS-7A1, TaEPSPS-7D1, and TaEPSPS-4A1 on chromosomes 7A, 7D, and 4A, respectively. Sequence alignments of cDNA sequences from wheat and wheat relatives served as a basis for phylogenetic analysis. The three genomic copies of wheat EPSPS differed by insertion/deletion and single nucleotide polymorphisms (SNPs), largely in intron sequences. RT-PCR analysis and cDNA cloning revealed that EPSPS is expressed from all three genomic copies. However, TaEPSPS-4A1 is expressed at much lower levels than TaEPSPS-7A1 and TaEPSPS-7D1 in wheat seedlings. Phylogenetic analysis of 1190-bp cDNA clones from wheat and wheat relatives revealed that: 1) TaEPSPS-7A1 is most similar to EPSPS from the tetraploid AB genome donor, T. turgidum (99.7 % identity); 2) TaEPSPS-7D1 most resembles EPSPS from the diploid D genome donor, Aegilops tauschii (100 % identity); and 3) TaEPSPS-4A1 resembles EPSPS from the diploid B genome relative, Ae. speltoides (97.7 % identity). Thus, EPSPS sequences in allohexaploid wheat are preserved from the most two recent ancestors. The wheat EPSPS genes are more closely related to Lolium multiflorum and Brachypodium distachyon than to Oryza sativa (rice). The three related EPSPS homoeologues of wheat exhibited conservation of the exon/intron structure and of coding region sequence, but contained significant sequence variation within intron regions. The genome-specific primers developed will enable future characterization of natural and induced variation in EPSPS sequence and expression. This can be useful in investigating new causes of glyphosate herbicide resistance.
Molecular phylogeny of Coxsackievirus A16 in Shenzhen, China, from 2005 to 2009.
Zong, Wenping; He, Yaqing; Yu, Shouyi; Yang, Hong; Xian, Huixia; Liao, Yuxue; Hu, Guifang
2011-04-01
Phylogenetic analysis of a Coxsackievirus A16 (CA16) sequence from Shenzhen, China, and other Chinese and international CA16 sequences revealed a pattern of endemic cocirculation of strains of clusters B2a and B2b within subtype B2 viruses. Amino acid evolution and nucleotide variation in the VP1 region were slight for 5 years.
Sokurenko, E V; Courtney, H S; Maslow, J; Siitonen, A; Hasty, D L
1995-01-01
Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics. PMID:7601831
Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234
Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS
2009-01-01
Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-09-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.
Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing
Kim, Ryong Nam; Kim, Dae-Soo; Choi, Sang-Haeng; Yoon, Byoung-Ha; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Jong-Joo; Ha, Ji-Hong; Toyoda, Atsushi; Fujiyama, Asao; Kim, Aeri; Kim, Min-Young; Park, Kun-Hyang; Lee, Kang Seon; Park, Hong-Seog
2012-01-01
Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics. PMID:22474061
Sri, Tanu; Mayee, Pratiksha; Singh, Anandita
2015-09-01
Whole genome sequence analyses allow unravelling such evolutionary consequences of meso-triplication event in Brassicaceae (∼14-20 million years ago (MYA)) as differential gene fractionation and diversification in homeologous sub-genomes. This study presents a simple gene-centric approach involving microsynteny and natural genetic variation analysis for understanding SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1) homeolog evolution in Brassica. Analysis of microsynteny in Brassica rapa homeologous regions containing SOC1 revealed differential gene fractionation correlating to reported fractionation status of sub-genomes of origin, viz. least fractionated (LF), moderately fractionated 1 (MF1) and most fractionated (MF2), respectively. Screening 18 cultivars of 6 Brassica species led to the identification of 8 genomic and 27 transcript variants of SOC1, including splice-forms. Co-occurrence of both interrupted and intronless SOC1 genes was detected in few Brassica species. In silico analysis characterised Brassica SOC1 as MADS intervening, K-box, C-terminal (MIKC(C)) transcription factor, with highly conserved MADS and I domains relative to K-box and C-terminal domain. Phylogenetic analyses and multiple sequence alignments depicting shared pattern of silent/non-silent mutations assigned Brassica SOC1 homologs into groups based on shared diploid base genome. In addition, a sub-genome structure in uncharacterised Brassica genomes was inferred. Expression analysis of putative MF2 and LF (Brassica diploid base genome A (AA)) sub-genome-specific SOC1 homeologs of Brassica juncea revealed near identical expression pattern. However, MF2-specific homeolog exhibited significantly higher expression implying regulatory diversification. In conclusion, evidence for polyploidy-induced sequence and regulatory evolution in Brassica SOC1 is being presented wherein differential homeolog expression is implied in functional diversification.
Scanning the human genome at kilobase resolution.
Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming
2008-05-01
Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.
2007-12-11
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Invasive cleavage of nucleic acids
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.
1999-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Invasive cleavage of nucleic acids
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.
2002-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.
2010-11-09
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.
2000-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.
2005-04-05
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.
The African Genome Variation Project shapes medical genetics in Africa
Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.
2014-01-01
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054
Galan, Maxime; Guivier, Emmanuel; Caraux, Gilles; Charbonnel, Nathalie; Cosson, Jean-François
2010-05-11
High-throughput sequencing technologies offer new perspectives for biomedical, agronomical and evolutionary research. Promising progresses now concern the application of these technologies to large-scale studies of genetic variation. Such studies require the genotyping of high numbers of samples. This is theoretically possible using 454 pyrosequencing, which generates billions of base pairs of sequence data. However several challenges arise: first in the attribution of each read produced to its original sample, and second, in bioinformatic analyses to distinguish true from artifactual sequence variation. This pilot study proposes a new application for the 454 GS FLX platform, allowing the individual genotyping of thousands of samples in one run. A probabilistic model has been developed to demonstrate the reliability of this method. DNA amplicons from 1,710 rodent samples were individually barcoded using a combination of tags located in forward and reverse primers. Amplicons consisted in 222 bp fragments corresponding to DRB exon 2, a highly polymorphic gene in mammals. A total of 221,789 reads were obtained, of which 153,349 were finally assigned to original samples. Rules based on a probabilistic model and a four-step procedure, were developed to validate sequences and provide a confidence level for each genotype. The method gave promising results, with the genotyping of DRB exon 2 sequences for 1,407 samples from 24 different rodent species and the sequencing of 392 variants in one half of a 454 run. Using replicates, we estimated that the reproducibility of genotyping reached 95%. This new approach is a promising alternative to classical methods involving electrophoresis-based techniques for variant separation and cloning-sequencing for sequence determination. The 454 system is less costly and time consuming and may enhance the reliability of genotypes obtained when high numbers of samples are studied. It opens up new perspectives for the study of evolutionary and functional genetics of highly polymorphic genes like major histocompatibility complex genes in vertebrates or loci regulating self-compatibility in plants. Important applications in biomedical research will include the detection of individual variation in disease susceptibility. Similarly, agronomy will benefit from this approach, through the study of genes implicated in productivity or disease susceptibility traits.
Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan
2016-05-01
In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species.
The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.
Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M
2015-10-01
The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.
Sampson, Juliana K; Sheth, Nihar U; Koparde, Vishal N; Scalora, Allison F; Serrano, Myrna G; Lee, Vladimir; Roberts, Catherine H; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A
2014-08-01
Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. © 2014 John Wiley & Sons Ltd.
2011-01-01
Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants. PMID:22082336
Bhassu, Subha; Tan, Yee Shin; Vikineswary, Sabaratnam
2014-01-01
Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1 + ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode. PMID:24587752
Hjelle, B; Chaney, R
1992-02-01
Human T-cell leukemia-lymphoma virus type II (HTLV-II) has been isolated from patients with hairy cell leukemia (HCL). We previously described a population with longstanding endemic HTLV-II infection, and showed that there is no increased risk for HCL in the affected groups. We thus have direct evidence that the endemic form(s) of HTLV-II cause HCL infrequently, if at all. By comparison, there is reason to suspect that the viruses isolated from patients with HCL had an etiologic role in the disease in those patients. One way to reconcile these conflicting observations is to consider that isolates of HTLV-II might differ in oncogenic potential. To determine whether the structure of the putative oncogenic determinant of HTLV-II, tax2, might differ in the new isolates compared to the tax of the prototype HCL isolate, MO, four new functional tax cDNAs were cloned from new isolates. Sequence analysis showed only minor (0.9-2.0%) amino acid variation compared to the published sequence of MO tax2. Some codons were consistently different from published sequences of the MO virus, but in most cases, such variations were also found in each of two tax2 clones we isolated from the MO T-cell line. These variations rendered the new clones more similar to the tax1 of the pathogenic virus HTLV-I. Thus we find no evidence that pathologic determinants of HTLV-II can be assigned to the tax gene.
Puttamuk, Thamrongjet; Zhou, Lijuan; Thaveechai, Niphone; Zhang, Shouan; Armstrong, Cheryl M; Duan, Yongping
2014-01-01
Huanglongbing (HLB), also known as citrus greening, is one of the most destructive diseases of citrus worldwide. HLB is associated with three species of 'Candidatus Liberibacter' with 'Ca. L. asiaticus' (Las) being the most widely distributed around the world, and the only species detected in Thailand. To understand the genetic diversity of Las bacteria in Thailand, we evaluated two closely-related effector genes, lasAI and lasAII, found within the Las prophages from 239 infected citrus and 55 infected psyllid samples collected from different provinces in Thailand. The results indicated that most of the Las-infected samples collected from Thailand contained at least one prophage sequence with 48.29% containing prophage 1 (FP1), 63.26% containing prophage 2 (FP2), and 19.38% containing both prophages. Interestingly, FP2 was found to be the predominant population in Las-infected citrus samples while Las-infected psyllids contained primarily FP1. The multiple banding patterns that resulted from amplification of lasAI imply extensive variation exists within the full and partial repeat sequence while the single band from lasAII indicates a low amount of variation within the repeat sequence. Phylogenetic analysis of Las-infected samples from 22 provinces in Thailand suggested that the bacterial pathogen may have been introduced to Thailand from China and the Philippines. This is the first report evaluating the genetic variation of a large population of Ca. L. asiaticus infected samples in Thailand using the two effector genes from Las prophage regions.
Comprehensive view of the population history of Arabia as inferred by mtDNA variation.
Černý, Viktor; Čížková, Martina; Poloni, Estella S; Al-Meeri, Ali; Mulligan, Connie J
2016-04-01
Genetic and archaeological research supports the theory that Arabia was the first region traversed by modern humans as they left Africa and dispersed throughout Eurasia. However, the role of Arabia from the initial migration out of Africa until more recent times is still unclear. We have generated 379 new hypervariable segment 1 (HVS-1) sequences from a range of geographic locations throughout Yemen. We compare these data to published HVS-1 sequences representing Arabia and neighboring regions to build a unique dataset of 186 populations and 14,290 sequences. We identify 4,563 haplotypes unevenly distributed across Arabia and neighboring regions. Arabia contains higher proportions of shared haplotypes than the regions with which it shares these haplotypes, suggesting high levels of migration through the region. Populations in Arabia show higher levels of population expansion than those in East Africa, but lower levels than the Near East, Middle East or India. Arabian populations also show very high levels of genetic variation that overlaps with variation from most other regions. We take a population genetics approach to provide a comprehensive view of the relationships of Arabian and neighboring populations. We show that Arabian populations share closest links to the Near East and North Africa, but have a more ancient origin with slower demographic growth and/or lower migration rates. Our conclusions are supported by phylogenetic studies but also suggest that recent migrations have erased signals of earlier events. © 2015 Wiley Periodicals, Inc.
Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao
2017-02-01
The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.
2011-02-01
Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.
Sutton, Bruce D.; Steck, Gary J.; Norrbom, Allen L.; Rodriguez, Erick J.; Srivastava, Pratibha; Alvarado, Norma Nolazco; Colque, Fredy; Landa, Erick Yábar; Sánchez, Juan José Lagrava; Quisberth, Elizabeth; Peñaranda, Emilio Arévalo; Clavijo, P. A. Rodriguez; Alvarez-Baca, Jeniffer K.; Zapata, Tito Guevara; Ponce, Patricio
2015-01-01
Abstract The nuclear ribosomal internal transcribed spacer 1 (ITS1) was sequenced for Anastrepha fraterculus (Wiedemann, 1830) originating from 85 collections from the northern and central Andean countries of South America including Argentina (Tucumán), Bolivia, Perú, Ecuador, Colombia, and Venezuela. The ITS1 regions of additional specimens (17 collections) from Central America (México, Guatemala, Costa Rica, and Panamá), Brazil, Caribbean Colombia, and coastal Venezuela were sequenced and together with published sequences (Paraguay) provided context for interpretation. A total of six ITS1 sequence variants were recognized in the Andean region comprising four groups. Type I predominates in the southernmost range of Anastrepha fraterculus. Type II predominates in its northernmost range. In the central and northern Andes, the geographic distributions overlap and interdigitate with a strong elevational effect. A discussion of relationships between observed ITS1 types and morphometric types is included. PMID:26798259
Triki, Dhoha; Billot, Telli; Visseaux, Benoit; Descamps, Diane; Flatters, Delphine; Camproux, Anne-Claude; Regad, Leslie
2018-04-10
HIV-2 protease (PR2) is naturally resistant to most FDA (Food and Drug Administration)-approved HIV-1 protease inhibitors (PIs), a major antiretroviral class. In this study, we compared the PR1 and PR2 binding pockets extracted from structures complexed with 12 ligands. The comparison of PR1 and PR2 pocket properties showed that bound PR2 pockets were more hydrophobic with more oxygen atoms and fewer nitrogen atoms than PR1 pockets. The structural comparison of PR1 and PR2 pockets highlighted structural changes induced by their sequence variations and that were consistent with these property changes. Specifically, substitutions at residues 31, 46, and 82 induced structural changes in their main-chain atoms that could affect PI binding in PR2. In addition, the modelling of PR1 mutant structures containing V32I and L76M substitutions revealed a cooperative mechanism leading to structural deformation of flap-residue 45 that could modify PR2 flexibility. Our results suggest that substitutions in the PR1 and PR2 pockets can modify PI binding and flap flexibility, which could underlie PR2 resistance against PIs. These results provide new insights concerning the structural changes induced by PR1 and PR2 pocket variation changes, improving the understanding of the atomic mechanism of PR2 resistance to PIs.
Karas, Vlad O; Sinnott-Armstrong, Nicholas A; Varghese, Vici; Shafer, Robert W; Greenleaf, William J; Sherlock, Gavin
2018-01-01
Abstract Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation. PMID:29361139
RSAT 2015: Regulatory Sequence Analysis Tools
Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A.; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M.; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques
2015-01-01
RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. PMID:25904632
Mapping and phasing of structural variation in patient genomes using nanopore sequencing.
Cretu Stancu, Mircea; van Roosmalen, Markus J; Renkens, Ivo; Nieboer, Marleen M; Middelkamp, Sjors; de Ligt, Joep; Pregno, Giulia; Giachino, Daniela; Mandrile, Giorgia; Espejo Valle-Inclan, Jose; Korzelius, Jerome; de Bruijn, Ewart; Cuppen, Edwin; Talkowski, Michael E; Marschall, Tobias; de Ridder, Jeroen; Kloosterman, Wigard P
2017-11-06
Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.
Zhang, Huibin; Susanto, Teodorus T.; Wan, Yue
2016-01-01
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems. PMID:27035967
Zhang, Huibin; Susanto, Teodorus T; Wan, Yue; Chen, Swaine L
2016-04-12
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.
Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus.
Self, James E; Shawkat, Fatima; Malpas, Crispin T; Thomas, N Simon; Harris, Christopher M; Hodgkins, Peter R; Chen, Xiaoli; Trump, Dorothy; Lotery, Andrew J
2007-09-01
To perform a genotype-phenotype correlation study in an X-linked congenital idiopathic nystagmus pedigree (pedigree 1) and to assess the allelic variance of the FRMD7 gene in congenital idiopathic nystagmus. Subjects from pedigree 1 underwent detailed clinical examination including nystagmology. Screening of FRMD7 was undertaken in pedigree 1 and in 37 other congenital idiopathic nystagmus probands and controls. Direct sequencing confirmed sequence changes. X-inactivation studies were performed in pedigree 1. The nystagmus phenotype was extremely variable in pedigree 1. We identified 2 FRMD7 mutations. However, 80% of X-linked families and 96% of simplex cases showed no mutations. X-inactivation studies demonstrated no clear causal link between skewing and variable penetrance. We confirm profound phenotypic variation in X-linked congenital idiopathic nystagmus pedigrees. We demonstrate that other congenital nystagmus genes exist besides FRMD7. We show that the role of X inactivation in variable penetrance is unclear in congenital idiopathic nystagmus. Clinical Relevance We demonstrate that phenotypic variation of nystagmus occurs in families with FRMD7 mutations. While FRMD7 mutations may be found in some cases of X-linked congenital idiopathic nystagmus, the diagnostic yield is low. X-inactivation assays are unhelpful as a test for carrier status for this disease.
Genomic analysis of the Chinese genotype 1F rubella virus that disappeared after 2002 in China.
Zhu, Zhen; Chen, Min-Hsin; Abernathy, Emily; Zhou, Shujie; Wang, Changyin; Icenogle, Joseph; Xu, Wenbo
2014-12-01
Genotype 1F was likely localized geographically to China as it has not been reported elsewhere. In this study, whole genome sequences of two rubella 1F virus isolates were completed. Both viruses contained 9,761 nt with a single nucleotide deletion in the intergenic region, compared to the NCBI rubella reference sequence (NC 001545). No evidence of recombination was found between 1F and other rubella viruses. The genetic distance between 1F viruses and 10 other rubella virus genotypes (1a, 1B, 1C, 1D, 1E, 1G, 1J 2A, 2B, and 2C) ranged from 3.9% to 8.6% by pairwise comparison. A region known to be hypervariable in other rubella genotypes was also the most variable region in the 1F genomes. Comparisons to all available rubella virus sequences from GenBank identified 22 nucleotide variations exclusively in 1F viruses. Among these unique variations, C9306U is located within the recommended molecular window for rubella virus genotyping assignment, could be useful to confirm 1F viruses. Using the Bayesian Markov Chain Monte Carlo (MCMC) method, the time of the most recent common ancestor for the genotype 1F was estimated between 1976 and 1995. Recent rubella molecular surveillance suggests that this indigenous strain may have circulated for less than three decades, as it has not been detected since 2002. © 2014 Wiley Periodicals, Inc.
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
Read clouds uncover variation in complex regions of the human genome.
Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E; West, Robert; Sidow, Arend; Batzoglou, Serafim
2015-10-01
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. © 2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.
Zhu, Xiangyu; Li, Jie; Ru, Tong; Wang, Yaping; Xu, Yan; Yang, Ying; Wu, Xing; Cram, David S; Hu, Yali
2016-04-01
To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.
How important is interannual variability in the climatic interpretation of moraine sequences?
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.
2017-12-01
Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.
Hong, Soon Gyu; Cramer, Robert A; Lawrence, Christopher B; Pryor, Barry M
2005-02-01
A gene for the Alternaria major allergen, Alt a 1, was amplified from 52 species of Alternaria and related genera, and sequence information was used for phylogenetic study. Alt a 1 gene sequences evolved 3.8 times faster and contained 3.5 times more parsimony-informative sites than glyceraldehyde-3-phosphate dehydrogenase (gpd) sequences. Analyses of Alt a 1 gene and gpd exon sequences strongly supported grouping of Alternaria spp. and related taxa into several species-groups described in previous studies, especially the infectoria, alternata, porri, brassicicola, and radicina species-groups and the Embellisia group. The sonchi species-group was newly suggested in this study. Monophyly of the Nimbya group was moderately supported, and monophyly of the Ulocladium group was weakly supported. Relationships among species-groups and among closely related species of the same species-group were not fully resolved. However, higher resolution could be obtained using Alt a 1 sequences or a combined dataset than using gpd sequences alone. Despite high levels of variation in amino acid sequences, results of in silico prediction of protein secondary structure for Alt a 1 demonstrated a high degree of structural similarity for most of the species suggesting a conservation of function.
BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations
Wang, Junbai; Batmanov, Kirill
2015-01-01
Sequence variations in regulatory DNA regions are known to cause functionally important consequences for gene expression. DNA sequence variations may have an essential role in determining phenotypes and may be linked to disease; however, their identification through analysis of massive genome-wide sequencing data is a great challenge. In this work, a new computational pipeline, a Bayesian method for protein–DNA interaction with binding affinity ranking (BayesPI-BAR), is proposed for quantifying the effect of sequence variations on protein binding. BayesPI-BAR uses biophysical modeling of protein–DNA interactions to predict single nucleotide polymorphisms (SNPs) that cause significant changes in the binding affinity of a regulatory region for transcription factors (TFs). The method includes two new parameters (TF chemical potentials or protein concentrations and direct TF binding targets) that are neglected by previous methods. The new method is verified on 67 known human regulatory SNPs, of which 47 (70%) have predicted true TFs ranked in the top 10. Importantly, the performance of BayesPI-BAR, which uses principal component analysis to integrate multiple predictions from various TF chemical potentials, is found to be better than that of existing programs, such as sTRAP and is-rSNP, when evaluated on the same SNPs. BayesPI-BAR is a publicly available tool and is able to carry out parallelized computation, which helps to investigate a large number of TFs or SNPs and to detect disease-associated regulatory sequence variations in the sea of genome-wide noncoding regions. PMID:26202972
Melendrez, Melanie C.; Lange, Rachel K.; Cohan, Frederick M.; Ward, David M.
2011-01-01
Previous research has shown that sequences of 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions may not have enough genetic resolution to define all ecologically distinct Synechococcus populations (ecotypes) inhabiting alkaline, siliceous hot spring microbial mats. To achieve higher molecular resolution, we studied sequence variation in three protein-encoding loci sampled by PCR from 60°C and 65°C sites in the Mushroom Spring mat (Yellowstone National Park, WY). Sequences were analyzed using the ecotype simulation (ES) and AdaptML algorithms to identify putative ecotypes. Between 4 and 14 times more putative ecotypes were predicted from variation in protein-encoding locus sequences than from variation in 16S rRNA and 16S-23S rRNA internal transcribed spacer sequences. The number of putative ecotypes predicted depended on the number of sequences sampled and the molecular resolution of the locus. Chao estimates of diversity indicated that few rare ecotypes were missed. Many ecotypes hypothesized by sequence analyses were different in their habitat specificities, suggesting different adaptations to temperature or other parameters that vary along the flow channel. PMID:21169433
Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).
da Silva, M N; Patton, J L
1993-09-01
Patterns of evolutionary relationships among haplotype clades of sequences of the mitochondrial cytochrome b DNA gene are examined for five genera of arboreal rodents of the Caviomorph family Echimyidae from the Amazon Basin. Data are available for 798 bp of sequence from a total of 24 separate localities in Peru, Venezuela, Bolivia, and Brazil for Mesomys, Isothrix, Makalata, Dactylomys, and Echimys. Sequence divergence, corrected for multiple hits, is extensive, ranging from less than 1% for comparisons within populations of over 20% among geographic units within genera. Both the degree of differentiation and the geographic patterning of the variation suggest that more than one species composes the Amazonian distribution of the currently recognized Mesomys hispidus, Isothrix bistriata, Makalata didelphoides, and Dactylomys dactylinus. There is general concordance in the geographic range of haplotype clades for each of these taxa, and the overall level of differentiation within them is largely equivalent. These observations suggest that a common vicariant history underlies the respective diversification of each genus. However, estimated times of divergence based on the rate of third position transversion substitutions for the major clades within each genus typically range above 1 million years. Thus, allopatric isolation precipitating divergence must have been considerably earlier than the late Pleistocene forest fragmentation events commonly invoked for Amazonian biota.
Gholizadeh, S; Firooziyan, S; Ladonni, H; Hajipirloo, H Mohammadzadeh; Djadid, N Dinparast; Hosseini, A; Raz, A
2015-06-01
Anopheles (Cellia) stephensi Liston 1901 is known as an Asian malaria vector. Three biological forms, namely "mysorensis", "intermediate", and "type" have been earlier reported in this species. Nevertheless, the present morphological and molecular information is insufficient to diagnose these forms. During this investigation, An. stephensi biological forms were morphologically identified and sequenced for odorant-binding protein 1 (Obp1) gene. Also, intron I sequences were used to construct phylogenetic trees. Despite nucleotide sequence variation in exon of AsteObp1, nearly 100% identity was observed at the amino acid level among the three biological forms. In order to overcome difficulties in using egg morphology characters, intron I sequences of An. stephensi Obp1 opens new molecular way to the identification of the main Asian malaria vector biological forms. However, multidisciplinary studies are needed to establish the taxonomic status of An. stephensi. Copyright © 2015 Elsevier B.V. All rights reserved.
Nishibuchi, M; Murakami, A; Arita, M; Jikuya, H; Takano, J; Honda, T; Miwatani, T
1989-01-01
We examined variations in the genes encoding heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) in 88 strains of Escherichia coli isolated from individuals with traveler's diarrhea to find suitable sequences for use as oligonucleotide probes. Four oligonucleotide probes of the gene encoding ST of human origin (STIb or STh), one oligonucleotide probe of the gene encoding ST of porcine origin (STIa or STp), and three oligonucleotide probes of the gene encoding LT of human origin (LTIh) were used in DNA colony hybridization tests. In 15 of 22 strains possessing the STh gene and 28 of 42 strains producing LT, the sequences of all regions tested were identical to the published sequences. One region in the STh gene examined with a 18-mer probe was relatively well conserved and was shown to be closely associated with the enterotoxicity of the E. coli strains in suckling mice. This oligonucleotide, however, hybridized with strains of Vibrio cholerae O1, V. parahaemolyticus, and Yersinia enterocolitica that gave negative results in the suckling mouse assay. PMID:2685027
Ikehata, Hironobu
2018-05-31
Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5'-TCG-3' sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in the TCG sequence in the UVA wavelength range, which I will designate as a "UVA signature" in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called "collective excitation", has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine sites and probably also preferably at methyl CpG-associated dipyrimidine sites, which include the TCG sequence. In this review, I present a mechanistic consideration on the wavelength-dependent variation of the sequence context preference of the UVR-specific mutations and rationalize the proposition of the UVA-signature mutation, in addition to the UV-signature mutation.
In Silico Detection of Sequence Variations Modifying Transcriptional Regulation
Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob
2008-01-01
Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319
Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.
1996-01-01
The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850
Parallel or convergent evolution in human population genomic data revealed by genotype networks.
R Vahdati, Ali; Wagner, Andreas
2016-08-02
Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The structure of these networks varies widely among genes, indicating different patterns of variation despite a shared evolutionary history. We focus on those genes whose genotype networks show many cycles, which can indicate homoplasy, i.e., parallel or convergent evolution, on the sequence level. For 42 genes, the observed number of cycles is so large that it cannot be explained by either chance homoplasy or recombination. When analyzing possible explanations, we discovered evidence for positive selection in 21 of these genes and, in addition, a potential role for constrained variation and purifying selection. Balancing selection plays at most a small role. The 42 genes with excess cycles are enriched in functions related to immunity and response to pathogens. Genotype networks are representations of genetic variation data that can help understand unusual patterns of genomic variation.
Antell, Gregory C.; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean; Liu, Yucheng; James, Tony; Jacobson, Jeffrey M.; Szep, Zsofia
2017-01-01
Vpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the vpr gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. Genotypic classification of Env-V3 sequences as X4 (CXCR4-utilizing) or R5 (CCR5-utilizing) was used to group colinear Vpr sequences. To reveal the sequences associated with a specific coreceptor usage genotype, Vpr amino acid sequences were assessed for amino acid diversity and Jensen-Shannon divergence between the two groups. Five amino acid alphabets were used to comprehensively examine the impact of amino acid substitutions involving side chains with similar physiochemical properties. Positions 36, 37, 41, 89, and 96 of Vpr were characterized by statistically significant divergence across multiple alphabets when X4 and R5 sequence groups were compared. In addition, consensus amino acid switches were found at positions 37 and 41 in comparisons of the R5 and X4 sequence populations. These results suggest an evolutionary link between Vpr and gp120 in HIV-1-infected patients. PMID:28620613
The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.
Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C
2015-01-01
Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes. © 2016 S. Karger AG, Basel.
Liu, Ying; Tang, Yuanman; Qin, Xiyun; Yang, Liang; Jiang, Gaofei; Li, Shili; Ding, Wei
2017-01-01
Ralstonia solanacearum, an agent of bacterial wilt, is a highly variable species with a broad host range and wide geographic distribution. As a species complex, it has extensive genetic diversity and its living environment is polymorphic like the lowland and the highland area, so more genomes are needed for studying population evolution and environment adaptation. In this paper, we reported the genome sequencing of R. solanacearum strain CQPS-1 isolated from wilted tobacco in Pengshui, Chongqing, China, a highland area with severely acidified soil and continuous cropping of tobacco more than 20 years. The comparative genomic analysis among different R. solanacearum strains was also performed. The completed genome size of CQPS-1 was 5.89 Mb and contained the chromosome (3.83 Mb) and the megaplasmid (2.06 Mb). A total of 5229 coding sequences were predicted (the chromosome and megaplasmid encoded 3573 and 1656 genes, respectively). A comparative analysis with eight strains from four phylotypes showed that there was some variation among the species, e.g., a large set of specific genes in CQPS-1. Type III secretion system gene cluster (hrp gene cluster) was conserved in CQPS-1 compared with the reference strain GMI1000. In addition, most genes coding core type III effectors were also conserved with GMI1000, but significant gene variation was found in the gene ripAA: the identity compared with strain GMI1000 was 75% and the hrpII box promoter in the upstream had significantly mutated. This study provided a potential resource for further understanding of the relationship between variation of pathogenicity factors and adaptation to the host environment. PMID:28620361
Mitochondrial DNA Sequence Variation in North Atlantic Long-Finned Pilot Whales, Globicephala melas
1994-06-01
Delphinapterus leucas : mitochondrial DNA sequence variation within and among North American populations. M.Sc. thesis. McMaster University. Brown, G.G...Delphinapteras leucas ) (Brennin 1992), minke whales {Balaenoptera acutorostratd) (Wada et al. 1991), bottlenose dolphins {Tursiops truncatus) (Dowling & Brown
Structure and Temporal Dynamics of Populations within Wheat Streak Mosaic Virus Isolates
Hall, Jeffrey S.; French, Roy; Morris, T. Jack; Stenger, Drake C.
2001-01-01
Variation within the Type and Sidney 81 strains of wheat streak mosaic virus was assessed by single-strand conformation polymorphism (SSCP) analysis and confirmed by nucleotide sequencing. Limiting-dilution subisolates (LDSIs) of each strain were evaluated for polymorphism in the P1, P3, NIa, and CP cistrons. Different SSCP patterns among LDSIs of a strain were associated with single-nucleotide substitutions. Sidney 81 LDSI-S10 was used as founding inoculum to establish three lineages each in wheat, corn, and barley. The P1, HC-Pro, P3, CI, NIa, NIb, and CP cistrons of LDSI-S10 and each lineage at passages 1, 3, 6, and 9 were evaluated for polymorphism. By passage 9, each lineage differed in consensus sequence from LDSI-S10. The majority of substitutions occurred within NIa and CP, although at least one change occurred in each cistron except HC-Pro and P3. Most consensus sequence changes among lineages were independent, with substitutions accumulating over time. However, LDSI-S10 bore a variant nucleotide (G6016) in NIa that was restored to A6016 in eight of nine lineages by passage 6. This near-global reversion is most easily explained by selection. Examination of nonconsensus variation revealed a pool of unique substitutions (singletons) that remained constant in frequency during passage, regardless of the host species examined. These results suggest that mutations arising by viral polymerase error are generated at a constant rate but that most newly generated mutants are sequestered in virions and do not serve as replication templates. Thus, a substantial fraction of variation generated is static and has yet to be tested for relative fitness. In contrast, nonsingleton variation increased upon passage, suggesting that some mutants do serve as replication templates and may become established in a population. Replicated mutants may or may not rise to prominence to become the consensus sequence in a lineage, with the fate of any particular mutant subject to selection and stochastic processes such as genetic drift and population growth factors. PMID:11581391
Danielewski, Jennifer A.; Garland, Suzanne M.; McCloskey, Jenny; Hillman, Richard J.; Tabrizi, Sepehr N.
2013-01-01
Genetic variation of 49 human papillomavirus (HPV) 6 and 22 HPV11 isolates from recurrent respiratory papillomatosis (RRP) (n = 17), genital warts (n = 43), anal cancer (n = 6) and cervical neoplasia cells (n = 5), was determined by sequencing the long control region (LCR) and the E6 and E7 genes. Comparative analysis of genetic variability was examined to determine whether different disease states resulting from HPV6 or HPV11 infection cluster into distinct variant groups. Sequence variation analysis of HPV6 revealed that isolates cluster into variants within previously described HPV6 lineages, with the majority (65%) clustering to HPV6 sublineage B1 across the three genomic regions examined. Overall 72 HPV6 and 25 HPV11 single nucleotide variations, insertions and deletions were observed within samples examined. In addition, missense alterations were observed in the E6/E7 genes for 6 HPV6 and 5 HPV11 variants. No nucleotide variations were identified in any isolates at the four E2 binding sites for HPV6 or HPV11, nor were any isolates found to be identical to the HPV6 lineage A or HPV11 sublineage A1 reference genomes. Overall, a high degree of sequence conservation was observed between isolates across each of the regions investigated for both HPV6 and HPV11. Genetic variants identified a slight association with HPV6 and anogenital lesions (p = 0.04). This study provides important information on the genetic diversity of circulating HPV 6 and HPV11 variants within the Australian population and supports the observation that the majority of HPV6 isolates cluster to the HPV6 sublineage B1 with anogenital lesions demonstrating an association with this sublineage (p = 0.02). Comparative analysis of Australian isolates for both HPV6 and HPV11 to those from other geographical regions based on the LCR revealed a high degree of sequence similarity throughout the world, confirming previous observations that there are no geographically specific variants for these HPV types. PMID:23691108
Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong
2017-01-01
Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re-sequencing, which proved to be a useful tool to exploit elite NBS-LRR genes in wild rice. The data here provide a foundation for future work aimed at dissecting the genetic basis of disease resistance in rice, and the two wild rice lines will be useful germplasm for the molecular improvement of cultivated rice.
Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim
2017-01-01
Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93–11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93–11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re-sequencing, which proved to be a useful tool to exploit elite NBS-LRR genes in wild rice. The data here provide a foundation for future work aimed at dissecting the genetic basis of disease resistance in rice, and the two wild rice lines will be useful germplasm for the molecular improvement of cultivated rice. PMID:28700714
Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab
2014-06-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wu, Ying; Liu, Fang; Yang, Dai-Gang; Li, Wei; Zhou, Xiao-Jian; Pei, Xiao-Yu; Liu, Yan-Gai; He, Kun-Lun; Zhang, Wen-Sheng; Ren, Zhong-Ying; Zhou, Ke-Hai; Ma, Xiong-Feng; Li, Zhong-Hu
2018-01-01
Cotton is one of the most economically important fiber crop plants worldwide. The genus Gossypium contains a single allotetraploid group (AD) and eight diploid genome groups (A–G and K). However, the evolution of repeat sequences in the chloroplast genomes and the phylogenetic relationships of Gossypium species are unclear. Thus, we determined the variations in the repeat sequences and the evolutionary relationships of 40 cotton chloroplast genomes, which represented the most diverse in the genus, including five newly sequenced diploid species, i.e., G. nandewarense (C1-n), G. armourianum (D2-1), G. lobatum (D7), G. trilobum (D8), and G. schwendimanii (D11), and an important semi-wild race of upland cotton, G. hirsutum race latifolium (AD1). The genome structure, gene order, and GC content of cotton species were similar to those of other higher plant plastid genomes. In total, 2860 long sequence repeats (>10 bp in length) were identified, where the F-genome species had the largest number of repeats (G. longicalyx F1: 108) and E-genome species had the lowest (G. stocksii E1: 53). Large-scale repeat sequences possibly enrich the genetic information and maintain genome stability in cotton species. We also identified 10 divergence hotspot regions, i.e., rpl33-rps18, psbZ-trnG (GCC), rps4-trnT (UGU), trnL (UAG)-rpl32, trnE (UUC)-trnT (GGU), atpE, ndhI, rps2, ycf1, and ndhF, which could be useful molecular genetic markers for future population genetics and phylogenetic studies. Site-specific selection analysis showed that some of the coding sites of 10 chloroplast genes (atpB, atpE, rps2, rps3, petB, petD, ccsA, cemA, ycf1, and rbcL) were under protein sequence evolution. Phylogenetic analysis based on the whole plastomes suggested that the Gossypium species grouped into six previously identified genetic clades. Interestingly, all 13 D-genome species clustered into a strong monophyletic clade. Unexpectedly, the cotton species with C, G, and K-genomes were admixed and nested in a large clade, which could have been due to their recent radiation, incomplete lineage sorting, and introgression hybridization among different cotton lineages. In conclusion, the results of this study provide new insights into the evolution of repeat sequences in chloroplast genomes and interspecific relationships in the genus Gossypium. PMID:29619041
Kulpecz, A.A.; Miller, K.G.; Browning, J.V.; Edwards, L.E.; Powars, D.S.; McLaughlin, P.P.; Harris, A.D.; Feigenson, M.D.
2009-01-01
The Eyreville and Exmore, Virginia, core holes were drilled in the inner basin and annular trough, respectively, of the Chesapeake Bay impact structure, and they allow us to evaluate sequence deposition in an impact crater. We provide new high-resolution geochronologic (<1 Ma) and sequence-stratigraphic interpretations of the Exmore core, identify 12 definite (and four possible) postimpact depositional sequences, and present comparisons with similar results from Eyreville and other mid- Atlantic core holes. The concurrence of increases in ??18O with Chesapeake Bay impact structure sequence boundaries indicates a primary glacioeustatic control on deposition. However, regional comparisons show the differential preservation of sequences across the mid-Atlantic margin. We explain this distribution by the compaction of impactites, regional sediment-supply changes, and the differential movement of basement structures. Upper Eocene strata are thin or missing updip and around the crater, but they thicken into the inner basin (and offshore to the southeast) due to rapid crater infilling and concurrent impactite compaction. Oligocene sequences are generally thin and highly dissected throughout the mid-Atlantic region due to sediment starvation and tectonism, except in southeastern New Jersey. Regional tectonic uplift of the Norfolk Arch coupled with a southward decrease in sediment supply resulted in: (1) largely absent Lower Miocene sections around the Chesapeake Bay impact structure compared to thick sections in New Jersey and Delaware; (2) thick Middle Miocene sequences across the Delmarva Peninsula that thin south of the Chesapeake Bay impact structure; and (3) upper Middle Miocene sections that pinch out just north of the Chesapeake Bay impact structure. Conversely, the Upper Miocene-Pliocene section is thick across Virginia, but it is poorly represented in New Jersey because of regional variations in relative subsidence. ?? 2009 The Geological Society of America.
Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry
2010-01-01
Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101
Molecular mechanisms of epigenetic variation in plants.
Fujimoto, Ryo; Sasaki, Taku; Ishikawa, Ryo; Osabe, Kenji; Kawanabe, Takahiro; Dennis, Elizabeth S
2012-01-01
Natural variation is defined as the phenotypic variation caused by spontaneous mutations. In general, mutations are associated with changes of nucleotide sequence, and many mutations in genes that can cause changes in plant development have been identified. Epigenetic change, which does not involve alteration to the nucleotide sequence, can also cause changes in gene activity by changing the structure of chromatin through DNA methylation or histone modifications. Now there is evidence based on induced or spontaneous mutants that epigenetic changes can cause altering plant phenotypes. Epigenetic changes have occurred frequently in plants, and some are heritable or metastable causing variation in epigenetic status within or between species. Therefore, heritable epigenetic variation as well as genetic variation has the potential to drive natural variation.
RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus.
Widmer, G
1993-03-01
Double-stranded RNA viruses (dsRNA), termed LRV1, have been found in several strains of the protozoan parasite Leishmania. With the aim of constructing a full-length cDNA copy of the viral genome, including its terminal sequences, a protocol based on PCR amplification across the 3'-5' junction of circularized RNA was developed. This method proved to be applicable to dsRNA. It provided a relatively simple alternative to one-sided PCR, without loss of specificity inherent in the use of generic primers. LRV1 terminal nucleotide sequences obtained by this method showed a considerable variation in length, particularly at the 5' end of the positive strand, as well as the potential for forming 3' overhangs. The opposite genomic end terminates in 0, 1, or 2 TCA trinucleotide repeats. These results are compared with terminal sequences derived from one-sided PCR experiments.
Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don
Hirakawa, Hideki; Okada, Yoshihiro; Tabuchi, Hiroaki; Shirasawa, Kenta; Watanabe, Akiko; Tsuruoka, Hisano; Minami, Chiharu; Nakayama, Shinobu; Sasamoto, Shigemi; Kohara, Mitsuyo; Kishida, Yoshie; Fujishiro, Tsunakazu; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yoshinaga, Masaru; Takahata, Yasuhiro; Tanaka, Masaru; Tabata, Satoshi; Isobe, Sachiko N.
2015-01-01
Ipomoea trifida (H. B. K.) G. Don. is the most likely diploid ancestor of the hexaploid sweet potato, I. batatas (L.) Lam. To assist in analysis of the sweet potato genome, de novo whole-genome sequencing was performed with two lines of I. trifida, namely the selfed line Mx23Hm and the highly heterozygous line 0431-1, using the Illumina HiSeq platform. We classified the sequences thus obtained as either ‘core candidates’ (common to the two lines) or ‘line specific’. The total lengths of the assembled sequences of Mx23Hm (ITR_r1.0) was 513 Mb, while that of 0431-1 (ITRk_r1.0) was 712 Mb. Of the assembled sequences, 240 Mb (Mx23Hm) and 353 Mb (0431-1) were classified into core candidate sequences. A total of 62,407 (62.4 Mb) and 109,449 (87.2 Mb) putative genes were identified, respectively, in the genomes of Mx23Hm and 0431-1, of which 11,823 were derived from core sequences of Mx23Hm, while 28,831 were from the core candidate sequence of 0431-1. There were a total of 1,464,173 single-nucleotide polymorphisms and 16,682 copy number variations (CNVs) in the two assembled genomic sequences (under the condition of log2 ratio of >1 and CNV size >1,000 bases). The results presented here are expected to contribute to the progress of genomic and genetic studies of I. trifida, as well as studies of the sweet potato and the genus Ipomoea in general. PMID:25805887
Wang, Juan; Zhang, Li; Zhang, Qi-Lin; Zhou, Min-Qiang; Wang, Xiao-Tong; Yang, Xing-Zhuo; Yuan, Ming-Long
2017-01-01
The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum , Adelphocoris suturalis , Ade. fasciaticollis and Ade. lineolatus ). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) ( cox1 , cox3 , nad1 and nad3 ) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs ( nad4 and nad5 ) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59), but the Ka/Ks values of cox1 -barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + ( Trigonotylus + ( Adelphocoris + ( Apolygus + Lygus ))), as revealed by nad4 , nad5 , rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes ( nad4 , nad5 and rrnL ) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.
Efficient iris recognition by characterizing key local variations.
Ma, Li; Tan, Tieniu; Wang, Yunhong; Zhang, Dexin
2004-06-01
Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.
The study of human Y chromosome variation through ancient DNA.
Kivisild, Toomas
2017-05-01
High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.
Syed, Mudasir Ahmad; Bhat, Farooz Ahmad; Balkhi, Masood-ul Hassan; Bhat, Bilal Ahmad
2016-01-01
Schizothoracine fish commonly called snow trouts inhibit the entire network of snow and spring fed cool waters of Kashmir, India. Over 10 species reported earlier, only five species have been found, these include Schizothorax niger, Schizothorax esocinus, Schizothorax plagiostomus, Schizothorax curvifrons and Schizothorax labiatus. The relationship between these species is contradicting. To understand the evolutionary relation of these species, we examined the sequence information of mitochondrial D-loop of 25 individuals representing five species. Sequence alignment showed D-loop region highly variable and length variation was observed in di-nucleotide (TA)n microsatellite between and within species. Interestingly, all these species have (TA)n microsatellite not associated with longer tandem repeats at the 3' end of the mitochondrial control region and do not show heteroplasmy. Our analysis also indicates the presence of four conserved sequence blocks (CSB), CSB-D, CSB-1, CSB-II and CSB-III, four (Termination Associated Sequence) TAS motifs and 15bp pyrimidine block within the mitochondrial control region, that are highly conserved within genus Schizothorax when compared with other species. The phylogenetic analysis carried by Maximum likelihood (ML), Neighbor Joining (NJ) and Bayesian inference (BI) generated almost identical results. The resultant BI tree showed a close genetic relationship of all the five species and supports two distinct grouping of S. esocinus species. Besides the species relation, the presence of length variation in tandem repeats is attributed to differences in predicting the stability of secondary structures. The role of CSBs and TASs, reported so far as main regulatory signals, would explain the conservation of these elements in evolution.
Detection of nucleic acid sequences by invader-directed cleavage
Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert
1999-01-01
The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.
Identification of structural variation in mouse genomes.
Keane, Thomas M; Wong, Kim; Adams, David J; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz
2014-01-01
Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.
Genetic variability in E6, E7 and L1 genes of Human Papillomavirus 62 and its prevalence in Mexico.
Artaza-Irigaray, Cristina; Flores-Miramontes, María Guadalupe; Olszewski, Dominik; Magaña-Torres, María Teresa; López-Cardona, María Guadalupe; Leal-Herrera, Yelda Aurora; Piña-Sánchez, Patricia; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana
2017-01-01
Human papillomavirus (HPV) is the main etiological agent of cervical cancer, the third most common cancer among women globally and the second most frequent in Mexico. Persistent infection with high-risk HPV genotypes is associated with premalignant lesions and cervical cancer development. HPVs considered as low risk or not yet classified, are often found in coinfection with different HPV genotypes. Indeed, HPV62 is one of the most prevalent HPV detected in some countries, but there is limited information about its prevalence in other regions and there are no HPV62 variants currently described. The aim of this study was to determine the prevalence of HPV62 in cervical samples from Mexican women and to identify mutations in the L1, E6 and E7 genes, which have never been reported in our population. HPV screening was performed by Cobas HPV Test in women who attended prevention health programs and dysplasia clinics. All HPV positive samples ( n = 491) and 87 additional cervical cancer samples were then genotyped with Linear Array HPV Genotyping test. Some samples were selected to corroborate genotyping by Next-Generation sequencing. On the other hand, nucleotide changes in L1, E6 and E7 genes were determined using PCR, Sanger sequencing and analysis with the CLC-MainWorkbench 7.6.1 software. L1 protein structure was predicted with the I-TASSER server. Using Linear Array, HPV62 prevalence was 7.6% in general population, 8% in Cervical Intraepithelial Neoplasia grade 1 (CIN1) samples and 4.6% in cervical samples. The presence of HPV62 was confirmed with Next-Generation sequencing. Regarding L1 gene, novel sequence variations were detected, but they did not alter the tertiary structure of the protein. Moreover, several nucleotide substitutions were found in E6 and E7 genes compared to reference HPV62 genomic sequence. Specifically, three non-synonymous sequence variations were detected, two in E6 and one in E7. HPV62 is a frequent HPV genotype found mainly in general population and in women with CIN1, and in 90.5% of the cases it was found in coinfection with other HPVs. Novel nucleotide changes in its L1, E6 and E7 genes were detected, some of them lead to changes in the protein sequence.
Novel variants of the 5S rRNA genes in Eruca sativa.
Singh, K; Bhatia, S; Lakshmikumaran, M
1994-02-01
The 5S ribosomal RNA (rRNA) genes of Eruca sativa were cloned and characterized. They are organized into clusters of tandemly repeated units. Each repeat unit consists of a 119-bp coding region followed by a noncoding spacer region that separates it from the coding region of the next repeat unit. Our study reports novel gene variants of the 5S rRNA genes in plants. Two families of the 5S rDNA, the 0.5-kb size family and the 1-kb size family, coexist in the E. sativa genome. The 0.5-kb size family consists of the 5S rRNA genes (S4) that have coding regions similar to those of other reported plant 5S rDNA sequences, whereas the 1-kb size family consists of the 5S rRNA gene variants (S1) that exist as 1-kb BamHI tandem repeats. S1 is made up of two variant units (V1 and V2) of 5S rDNA where the BamHI site between the two units is mutated. Sequence heterogeneity among S4, V1, and V2 units exists throughout the sequence and is not limited to the noncoding spacer region only. The coding regions of V1 and V2 show approximately 20% dissimilarity to the coding regions of S4 and other reported plant 5S rDNA sequences. Such a large variation in the coding regions of the 5S rDNA units within the same plant species has been observed for the first time. Restriction site variation is observed between the two size classes of 5S rDNA in E. sativa.(ABSTRACT TRUNCATED AT 250 WORDS)
Genetic Identification of Orientobilharzia turkestanicum from Sheep Isolates in Iran.
Tabaripour, Reza; Youssefi, Mohammad Reza; Tabaripour, Rabeeh
2015-01-01
Adult worms of Orientobilharzia turkestanicum live in the portal veins, or intestinal veins of cattle, sheep, goat and many other mammals causing orientobilharziasis. Orientobilharziasis causes significant economic losses to livestock industry of Iran. However, there is limited information about genotypes of O. turkestanicum in Iran. In this study, 30 isolates of O. turkestanicum obtained from sheep were characterized by sequencing mitochondrial cytochrome c oxidase subunit 1 (cox1) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) gene. The mitochondrial cox1 and nad1 DNA were amplified by polymerase chain reaction (PCR) and then sequenced and compared with O. turkestanicum and that of other members of the Schistosomatidae available in Gen-Bank(™). Phylogenetic relationships between them were re-constructed using the maximum parsimony method. Phylogenetic analyses done in present study placed O. turkestanicum within the Schistosoma genus, and indicates that O. turkestanicum was phylogenetically closer to the African schistosome group than to the Asian schistosome group. Comparison of nad1 and cox1 sequences of O. turkestanicum obtained in this study with corresponding sequences available in Genbank(™) revealed some sequence variations and provided evidence for presence of microvarients in Iran.
Gjerde, Bjørn; Josefsen, Terje D
2015-03-01
Sarcocysts were detected in routinely processed histological sections of skeletal muscle, but not cardiac muscle, of two adult male otters (Lutra lutra; Mustelidae) from northern Norway following their post-mortem examination in 1999 and 2000. The sarcocysts were slender, spindle-shaped, up to 970 μm long and 35-70 μm in greatest diameter. The sarcocyst wall was thin (∼ 0.5 μm) and smooth with no visible protrusions. Portions of unfixed diaphragm of both animals were collected at the autopsies and kept frozen for about 14 years pending further examination. When the study was resumed in 2013, the thawed muscle samples were examined for sarcocysts under a stereo microscope, but none could be found. Genomic DNA was therefore extracted from a total of 36 small pieces of the diaphragm from both otters, and samples found to contain Sarcocystidae DNA were used selectively for PCR amplification and sequencing of the nuclear 18S and 28S ribosomal (r) RNA genes and internal transcribed spacer 1 (ITS1) region, as well as the mitochondrial cytochrome b (cytb) and cytochrome c oxidase subunit 1 (cox1) genes. Sequence comparisons revealed that both otters were infected by the same Sarcocystis sp. and that there was no genetic variation (100 % identity) among sequenced isolates at the 18S and 28S rRNA genes (six identical isolates at both loci) or at cox1 (13 identical isolates). PCR products comprising the ITS1 region, on the other hand, had to be cloned before sequencing due to intraspecific sequence variation. A total of 33 clones were sequenced, and the identities between them were 97.9-99.9 %. These sequences were most similar (93.7-96.0 % identity) to a sequence of Sarcocystis kalvikus from the wolverine in Canada, but the phylogenetic analyses placed all of them as a monophyletic sister group to S. kalvikus. Hence, they were considered to represent a novel species, which was named Sarcocystis lutrae. Sequence comparisons and phylogenetic analyses based on sequences of the 18S and 28S rRNA genes and cox1, for which little or no sequence data were available for S. kalvikus, revealed that S. lutrae otherwise was most closely related to various Sarcocystis spp. using birds or carnivores as intermediate hosts. The cox1 sequences of S. lutrae from the otters were identical to two sequences from an arctic fox, which in a previous study had been assigned to Sarcocystis arctica due to a high identity (99.4 %) with the latter species at this gene and a complete identity with S. arctica at three other loci when using the same DNA samples as templates for PCR reactions. Additional PCR amplifications and sequencing of cox1 (ten sequences) and the ITS1 region (four sequences) using four DNA samples from this fox as templates again generated cox1 sequences exclusively of S. lutrae, but ITS1 sequences of S. arctica, and thus confirmed that this arctic fox had acted as intermediate host for both S. arctica and S. lutrae. Based on the phylogenetic placement of S. lutrae, the geographical location of infected animals (otters, arctic fox) and the distribution of carnivores/raptors which may have interacted with them, the white-tailed eagle (Haliaeetus albicilla) seems to be a possible definitive host of S. lutrae. Some of the muscle samples from both otters were shown to harbour stages of Toxoplasma gondii through PCR amplification and sequencing of the entire ITS1 region (five isolates) and/or the partial cytb (eight isolates) and cox1 (one isolate). These sequences were identical to several previous sequences of T. gondii in GenBank. Thus, both otters had a dual infection with S. lutrae and T. gondii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, O; Lo, G; Yuan, J
Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest.more » Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed that both sequences had insignificant differences on positional and volumetric CV in most head-and-neck tissues except for PGL. This study is majorly limited in its small sample size. Influences of image contrasts(T1w v.s. T2w) and inter-observer difference have to be further investigated.« less
Al-Bustan, Suzanne A; Al-Serri, Ahmad; Annice, Babitha G; Alnaqeeb, Majed A; Al-Kandari, Wafa Y; Dashti, Mohammed
2018-01-01
The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel "rare" variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004-0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001-0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia.
Al-Serri, Ahmad; Annice, Babitha G.; Alnaqeeb, Majed A.; Al-Kandari, Wafa Y.; Dashti, Mohammed
2018-01-01
The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel “rare” variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004–0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001–0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia. PMID:29438437
Demidov, German; Simakova, Tamara; Vnuchkova, Julia; Bragin, Anton
2016-10-22
Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool. We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance. We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.
Sonnenberg, Anton S. M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Schaap, Peter J.; Van Griensven, Leo J. L. D.
1999-01-01
A 300-bp repetitive element was found in the genome of the white button mushroom, Agaricus bisporus, and designated Abr1. It is present in ∼15 copies per haploid genome in the commercial strain Horst U1. Analysis of seven copies showed 89 to 97% sequence identity. The repeat has features typical of class II transposons (i.e., terminal inverted repeats, subterminal repeats, and a target site duplication of 7 bp). The latter shows a consensus sequence. When used as probe on Southern blots, Abr1 identifies relatively little variation within traditional and present-day commercial strains, indicating that most strains are identical or have a common origin. In contrast to these cultivars, high variation is found among field-collected strains. Furthermore, a remarkable difference in copy numbers of Abr1 was found between A. bisporus isolates with a secondarily homothallic life cycle and those with a heterothallic life cycle. Abr1 is a type II transposon not previously reported in basidiomycetes and appears to be useful for the identification of strains within the species A. bisporus. PMID:10427018
Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population.
Solus, Joseph F; Arietta, Brenda J; Harris, James R; Sexton, David P; Steward, John Q; McMunn, Chara; Ihrie, Patrick; Mehall, Janelle M; Edwards, Todd L; Dawson, Elliott P
2004-10-01
The extent of genetic variation found in drug metabolism genes and its contribution to interindividual variation in response to medication remains incompletely understood. To better determine the identity and frequency of variation in 11 phase I drug metabolism genes, the exons and flanking intronic regions of the cytochrome P450 (CYP) isoenzyme genes CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 were amplified from genomic DNA and sequenced. A total of 60 kb of bi-directional sequence was generated from each of 93 human DNAs, which included Caucasian, African-American and Asian samples. There were 388 different polymorphisms identified. These included 269 non-coding, 45 synonymous and 74 non-synonymous polymorphisms. Of these, 54% were novel and included 176 non-coding, 14 synonymous and 21 non-synonymous polymorphisms. Of the novel variants observed, 85 were represented by single occurrences of the minor allele in the sample set. Much of the variation observed was from low-frequency alleles. Comparatively, these genes are variation-rich. Calculations measuring genetic diversity revealed that while the values for the individual genes are widely variable, the overall nucleotide diversity of 7.7 x 10(-4) and polymorphism parameter of 11.5 x 10(-4) are higher than those previously reported for other gene sets. Several independent measurements indicate that these genes are under selective pressure, particularly for polymorphisms corresponding to non-synonymous amino acid changes. There is relatively little difference in measurements of diversity among the ethnic groups, but there are large differences among the genes and gene subfamilies themselves. Of the three CYP subfamilies involved in phase I drug metabolism (1, 2, and 3), subfamily 2 displays the highest levels of genetic diversity.
USDA-ARS?s Scientific Manuscript database
The nuclear ribosomal internal transcribed spacer 1 (ITS1) was sequenced for Anastrepha fraterculus (Wiedemann, 1830) originating from 85 collections from the northern and central Andean countries of South America including Argentina (Tucumán), Bolivia, Perú, Ecuador, Colombia, and Venezuela. The IT...
Production Scheduling of Sequenced Tapes for Printed Circuit Pack Assembly.
1987-07-09
detail. L j 6 The subject matter of this thesis is inspired directly from their technical report. The goals of this research are twofold: 1) Test their...The subject matter of the following chapters describes a heuristic approach to another variation of the sequenced tape production scheduling problem...assignment problem, comprise the subject matter of Chapter 5. It is sufficient to note that the three definitions of the term common correspond to the
McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.
McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array. PMID:24667746
Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.
Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R
2003-11-01
Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley-Liss, Inc.
Buhler, Stéphane; Sanchez-Mazas, Alicia
2011-01-01
Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies. Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution. PMID:21408106
Lei, Yong-Liang; Wang, Xiao-Guang; Tao, Xiao-Yan; Li, Hao; Meng, Sheng-Li; Chen, Xiu-Ying; Liu, Fu-Ming; Ye, Bi-Feng; Tang, Qing
2010-01-01
Based on sequencing the full-length genomes of four Chinese Ferret-Badger and dog, we analyze the properties of rabies viruses genetic variation in molecular level, get the information about rabies viruses prevalence and variation in Zhejiang, and enrich the genome database of rabies viruses street strains isolated from China. Rabies viruses in suckling mice were isolated, overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses from Chinese Ferret-Badger, dog, sika deer, vole, used vaccine strain were determined. The four full-length genomes were sequenced completely and had the same genetic structure with the length of 11, 923 nts or 11, 925 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions(IGRs), 423 nts-Pseudogene-like sequence (psi), 70 nts-Trailer. The four full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by BLAST and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the four full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so the nucleotide mutations happened in these four genomes were most synonymous mutations. Compared with the reference rabies viruses, the lengths of the five protein coding regions had no change, no recombination, only with a few point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the four genomes were similar to the reference vaccine or street strains. And the four strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessed the distinct district characteristics of China. Therefore, these four rabies viruses are likely to be street viruses already existing in the natural world.
Lan, Zhao Jun; Lin, Long Feng; Zhao, Jun
2017-04-18
Both Hemibarbus labeo and H. medius (Cypriniformes: Cyprinidae: Gobioninae) are primary freshwater fishes and are widely distributed. As such, they provide an ideal model for phylogeographical studies. However, the similarity in morphological characters between these two species made the description of their distributions and the validation of species quite challenging. Here we employed variations in the DNA sequences of mitochondrial COI and ND5 genes (2151 bp) to solve this challenge and to study the population genetics structure of these two species. Among the 130 specimens belonging to 8 populations of H. labeo and 9 populations of H. medius from 17 drainage systems in southern China,196 variable sites (9.1% in the full sequences) falling into 50 haplotypes were identified. The haplotype diversity (h) and the nucleotide diversity (π) were 0.964 and 0.019, respectively, indicating a high level of genetic diversity and an evolutionary potential in both species. The result of neighbor-joining tree based on composite nucleotide sequences of the mtDNA COI and ND5 genes showed that the H. labeo and H. medius fell into two major clades (clade1and clade2): clade1was composed of some specimens of Oujiang River, all the specimens of Hanjiang River and Jiulongjiang River, whereas all remaining populations fell in clade2. The genetic distance between clade I and clade II was 0.036, while that between H. labeo and H. medius was 0.027. The haplotype network analyses indicated that the populations of Hanjiang River and Jiulongjiang River had relatively high genetic variation with the rest rivers. The po-pulations of Hainan Island migrated northward to Moyangjaing River. Haplotypes of the rivers of Hainan Island and Moyangjang River had relatively higher genetic variation with the Yangtze River than Pearl River. The populations of Xiangjiang River had no genetic variation with the populations of Guijiang River and Liujiang River. Analysis of molecular variance (AMOVA) indicated that the genetic variance mainly presented in individuals between geographical regions. The genetic variation of populations among regions was 71.2%, the genetic variation among populations within regions was 16.6%, and that within populations within the regions was 12.2%, indicating that most of the genetic variations resided in the populations among regions. The results of mismatch distribution and tests of neutrality suggested that in all populations, H. labeo, H. medius, clade1and clade2 were relatively stable.
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-01-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521
Zhu, X Q; Gasser, R B
1998-06-01
In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.
Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe.
Blanquart, François; Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe
2017-06-01
HIV-1 set-point viral load-the approximately stable value of viraemia in the first years of chronic infection-is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%-43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical "Brownian motion" model and another model ("Ornstein-Uhlenbeck") that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%-43%) is consistent with other studies based on regression of viral load in donor-recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation.
Copy number variation of individual cattle genomes using next-generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...
Copy number variation of individual cattle genomes using next-generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...
A high-resolution cattle CNV map by population-scale genome sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. Prior studies in cattle have produced low-resolution CNV maps. We constructed a draft, high-resolution map of cattle CNVs based on whole genome sequencing data from 7...
Maize HapMap2 identifies extant variation from a genome in flux
USDA-ARS?s Scientific Manuscript database
The maize genome is the largest, most diverse and complex plant genome sequenced to date. Using high-throughput sequencing to access genetic variation and a population genetics model to score the polymorphisms, we characterize and unite the diversity of the world’s key breeding germplasm, wild rela...
RSAT 2015: Regulatory Sequence Analysis Tools.
Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques
2015-07-01
RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Puttamuk, Thamrongjet; Zhou, Lijuan; Thaveechai, Niphone; Zhang, Shouan; Armstrong, Cheryl M.; Duan, Yongping
2014-01-01
Huanglongbing (HLB), also known as citrus greening, is one of the most destructive diseases of citrus worldwide. HLB is associated with three species of ‘Candidatus Liberibacter’ with ‘Ca. L. asiaticus’ (Las) being the most widely distributed around the world, and the only species detected in Thailand. To understand the genetic diversity of Las bacteria in Thailand, we evaluated two closely-related effector genes, lasA I and lasA II, found within the Las prophages from 239 infected citrus and 55 infected psyllid samples collected from different provinces in Thailand. The results indicated that most of the Las-infected samples collected from Thailand contained at least one prophage sequence with 48.29% containing prophage 1 (FP1), 63.26% containing prophage 2 (FP2), and 19.38% containing both prophages. Interestingly, FP2 was found to be the predominant population in Las-infected citrus samples while Las-infected psyllids contained primarily FP1. The multiple banding patterns that resulted from amplification of lasA I imply extensive variation exists within the full and partial repeat sequence while the single band from lasA II indicates a low amount of variation within the repeat sequence. Phylogenetic analysis of Las-infected samples from 22 provinces in Thailand suggested that the bacterial pathogen may have been introduced to Thailand from China and the Philippines. This is the first report evaluating the genetic variation of a large population of Ca. L. asiaticus infected samples in Thailand using the two effector genes from Las prophage regions. PMID:25437428
Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David
2012-01-01
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.
Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David
2012-01-01
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107
Oliveros, R; Cutillas, C; De Rojas, M; Arias, P
2000-12-01
Adult worms of Trichuris ovis and T. globulosa were collected from Ovis aries (sheep) and Capra hircus (goats). T. suis was isolated from Sus scrofa domestica (swine) and T. leporis was isolated from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and a ribosomal internal transcribed spacer (ITS2) was amplified and sequenced using polymerase-chain-reaction (PCR) techniques. The ITS2 of T. ovis and T. globulosa was 407 nucleotides in length and had a GC content of about 62%. Furthermore, the ITS2 of T. suis and T. leporis was 534 and 418 nucleotides in length and had a GC content of about 64.8% and 62.4%, respectively. There was evidence of slight variation in the sequence within individuals of all species analyzed, indicating intraindividual variation in the sequence of different copies of the ribosomal DNA. Furthermore, low-level intraspecific variation was detected. Sequence analyses of ITS2 products of T. ovis and T. globulosa demonstrated no sequence difference between them. Nevertheless, differences were detected between the ITS2 sequences of T. suis, T. leporis, and T. ovis, indicating that Trichuris species can reliably be differentiated by their ITS2 sequences and PCR-linked restriction-fragment-length polymorphism (RFLP).
Ágg, Bence; Meienberg, Janine; Kopps, Anna M.; Fattorini, Nathalie; Stengl, Roland; Daradics, Noémi; Pólos, Miklós; Bors, András; Radovits, Tamás; Merkely, Béla; De Backer, Julie; Szabolcs, Zoltán; Mátyás, Gábor
2018-01-01
Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era. PMID:29850152
Cao, Lili; Li, Tianfeng; Zhu, Yanbei; Zhou, Wei; Guo, Wenwen; Cai, Zhenming; Xie, Yuan; He, Xuan; Li, Xinxiu; Zhu, Dalong; Wang, Yaping
2013-04-01
Mosaicism refers to the presence of genetically distinct cell lines within an organism or a tissue. Somatic mosaicism exists in distinct populations of somatic cells and commonly arises as a result of somatic mutations, mainly in early embryonic development. SNPs are important markers that distinguish between different individuals in heterogeneous biological samples and contribute greatly to disease risk association studies. In this work, we investigated the relationship between the functional variants in the 5'-UTR of the hOGG1 gene and the risk of type 2 diabetes. Upon detection of the polymorphisms c.-53G>C, c.-23A>G, and c.-18G>T in the hOGG1 gene, we found that mosaicism was present in 3/28 (10.71%), 7/51 (13.73%), and 1/44 (2.27%) patients respectively, who were carriers of these single nucleotide variations, by cloning and sequence analysis and pyrosequencing. Statistical analysis showed that the frequency of the variation c.-23A>G in the hOGG1 5'-UTR in type 2 diabetic patients was significantly higher than that in healthy controls. However, sequencing of the mutant alleles in mosaic individuals showed weak peaks that may affect detection of the SNPs and impair association-based investigations. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources
2013-01-01
Background Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. Results Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. Conclusions The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes. PMID:23924375
Molecular basis of length polymorphism in the human zeta-globin gene complex.
Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J
1983-01-01
The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667
Role of promoter DNA sequence variations on the binding of EGR1 transcription factor.
Mikles, David C; Schuchardt, Brett J; Bhat, Vikas; McDonald, Caleb B; Farooq, Amjad
2014-05-01
In response to a wide variety of stimuli such as growth factors and hormones, EGR1 transcription factor is rapidly induced and immediately exerts downstream effects central to the maintenance of cellular homeostasis. Herein, our biophysical analysis reveals that DNA sequence variations within the target gene promoters tightly modulate the energetics of binding of EGR1 and that nucleotide substitutions at certain positions are much more detrimental to EGR1-DNA interaction than others. Importantly, the reduction in binding affinity poorly correlates with the loss of enthalpy and gain of entropy-a trend indicative of a complex interplay between underlying thermodynamic factors due to the differential role of water solvent upon nucleotide substitution. We also provide a rationale for the physical basis of the effect of nucleotide substitutions on the EGR1-DNA interaction at atomic level. Taken together, our study bears important implications on understanding the molecular determinants of a key protein-DNA interaction at the cross-roads of human health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Amexis, Georgios; Oeth, Paul; Abel, Kenneth; Ivshina, Anna; Pelloquin, Francois; Cantor, Charles R.; Braun, Andreas; Chumakov, Konstantin
2001-01-01
RNA viruses exist as quasispecies, heterogeneous and dynamic mixtures of mutants having one or more consensus sequences. An adequate description of the genomic structure of such viral populations must include the consensus sequence(s) plus a quantitative assessment of sequence heterogeneities. For example, in quality control of live attenuated viral vaccines, the presence of even small quantities of mutants or revertants may indicate incomplete or unstable attenuation that may influence vaccine safety. Previously, we demonstrated the monitoring of oral poliovirus vaccine with the use of mutant analysis by PCR and restriction enzyme cleavage (MAPREC). In this report, we investigate genetic variation in live attenuated mumps virus vaccine by using both MAPREC and a platform (DNA MassArray) based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Mumps vaccines prepared from the Jeryl Lynn strain typically contain at least two distinct viral substrains, JL1 and JL2, which have been characterized by full length sequencing. We report the development of assays for characterizing sequence variants in these substrains and demonstrate their use in quantitative analysis of substrains and sequence variations in mixed virus cultures and mumps vaccines. The results obtained from both the MAPREC and MALDI-TOF methods showed excellent correlation. This suggests the potential utility of MALDI-TOF for routine quality control of live viral vaccines and for assessment of genetic stability and quantitative monitoring of genetic changes in other RNA viruses of clinical interest. PMID:11593021
PGen: large-scale genomic variations analysis workflow and browser in SoyKB.
Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti
2016-10-06
With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most efficient analysis of soybean data using thorough testing and validation. This research serves as an example of best practices for development of genomics data analysis workflows by integrating remote HPC resources and efficient data management with ease of use for biological users. PGen workflow can also be easily customized for analysis of data in other species.
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone
2011-01-01
The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.
Cai, Na; Bigdeli, Tim B; Kretzschmar, Warren W; Li, Yihan; Liang, Jieqin; Hu, Jingchu; Peterson, Roseann E; Bacanu, Silviu; Webb, Bradley Todd; Riley, Brien; Li, Qibin; Marchini, Jonathan; Mott, Richard; Kendler, Kenneth S; Flint, Jonathan
2017-02-14
The China, Oxford and Virginia Commonwealth University Experimental Research on Genetic Epidemiology (CONVERGE) project on Major Depressive Disorder (MDD) sequenced 11,670 female Han Chinese at low-coverage (1.7X), providing the first large-scale whole genome sequencing resource representative of the largest ethnic group in the world. Samples are collected from 58 hospitals from 23 provinces around China. We are able to call 22 million high quality single nucleotide polymorphisms (SNP) from the nuclear genome, representing the largest SNP call set from an East Asian population to date. We use these variants for imputation of genotypes across all samples, and this has allowed us to perform a successful genome wide association study (GWAS) on MDD. The utility of these data can be extended to studies of genetic ancestry in the Han Chinese and evolutionary genetics when integrated with data from other populations. Molecular phenotypes, such as copy number variations and structural variations can be detected, quantified and analysed in similar ways.
Tranchida-Lombardo, Valentina; Aiese Cigliano, Riccardo; Anzar, Irantzu; Landi, Simone; Palombieri, Samuela; Colantuono, Chiara; Bostan, Hamed; Termolino, Pasquale; Aversano, Riccardo; Batelli, Giorgia; Cammareri, Maria; Carputo, Domenico; Chiusano, Maria Luisa; Conicella, Clara; Consiglio, Federica; D'Agostino, Nunzio; De Palma, Monica; Di Matteo, Antonio; Grandillo, Silvana; Sanseverino, Walter; Tucci, Marina; Grillo, Stefania
2017-11-14
Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Yan, Ning; Nie, Hua-Ming; Jiang, Zhong-Rong; Yang, Ai-Guo; Deng, Shi-Jin; Guo, Li; Yu, Hua; Yan, Yu-Bao; Tsering, Dawa; Kong, Wei-Shu; Wang, Ning; Wang, Jia-Hai; Xie, Yue; Fu, Yan; Yang, De-Ying; Wang, Shu-Xian; Gu, Xiao-Bin; Peng, Xue-Rong; Yang, Guang-You
2013-09-01
To analyse genetic variability and population structure, 84 isolates of Echinococcus granulosus (Cestoda: Taeniidae) collected from various host species at different sites of the Tibetan plateau in China were sequenced for the whole mitochondrial nad1 (894 bp) and atp6 (513 bp) genes. The vast majority were classified as G1 genotype (n=82), and two samples from human patients in Sichuan province were identified as G3 genotype. Based on the concatenated sequences of nad1+atp6, 28 different haplotypes (NA1-NA28) were identified. A parsimonious network of the concatenated sequence haplotypes showed star-like features in the overall population, with NA1 as the major haplotype in the population networks. By AMOVA it was shown that variation of E. granulosus within the overall population was the main pattern of the total genetic variability. Neutrality indexes of the concatenated sequence (nad1+atp6) were computed by Tajima's D and Fu's Fs tests and showed high negative values for E. granulosus, indicating significant deviations from neutrality. FST and Nm values suggested that the populations were not genetically differentiated. Copyright © 2013 Elsevier B.V. All rights reserved.
Genetic stability of a dengue vaccine based on chimeric yellow fever/dengue viruses.
Mantel, N; Girerd, Y; Geny, C; Bernard, I; Pontvianne, J; Lang, J; Barban, V
2011-09-02
A tetravalent dengue vaccine based on four live, attenuated, chimeric viruses (CYD1-4), constructed by replacing the genes coding for premembrane (prM) and envelope (E) proteins of the yellow fever (YF)-17D vaccine strain with those of the four serotypes of dengue virus, is in clinical phase III evaluation. We assessed the vaccine's genetic stability by fully sequencing each vaccine virus throughout the development and manufacturing process. The four viruses displayed complete genetic stability, with no change from premaster seed lots to bulk lots. When pursuing the virus growth beyond bulk lots, a few genetic variations were observed. Usually both the initial nucleotide and the new one persisted, and mutations appeared after a relatively high number of virus duplication cycles (65-200, depending on position). Variations were concentrated in the prM-E and non-structural (NS)4B regions. PrM-E variations had no impact on lysis-plaque size or neurovirulence in mice. None of the variations located in the YF-17D-derived genes corresponded with reversion to the wild-type Yellow Fever sequence. Variations in NS4B likely reflect virus adaptation to Vero cells growth. A low to undetectable viremia has been reported previously [1-3] in vaccinated non-human and human primates. Combined with the data reported here about the genetic stability of the vaccine strains, the probability of in vivo emergence of mutant viruses appears very low. Copyright © 2011 Elsevier Ltd. All rights reserved.
The evolution of transcriptional regulation in eukaryotes
NASA Technical Reports Server (NTRS)
Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.
2003-01-01
Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.
ALDH1A2 (RALDH2) genetic variation in human congenital heart disease
2009-01-01
Background Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans. PMID:19886994
Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.)
Bednarek, Piotr T; Orłowska, Renata; Koebner, Robert MD; Zimny, Janusz
2007-01-01
Background When plant tissue is passaged through in vitro culture, many regenerated plants appear to be no longer clonal copies of their donor genotype. Among the factors that affect this so-called tissue culture induced variation are explant genotype, explant tissue origin, medium composition, and the length of time in culture. Variation is understood to be generated via a combination of genetic and/or epigenetic changes. A lack of any phenotypic variation between regenerants does not necessarily imply a concomitant lack of genetic (or epigenetic) change, and it is therefore of interest to assay the outcomes of tissue culture at the genotypic level. Results A variant of methylation sensitive AFLP, based on the isoschizomeric combinations Acc65I/MseI and KpnI/MseI was applied to analyze, at both the sequence and methylation levels, the outcomes of regeneration from tissue culture in barley. Both sequence mutation and alteration in methylation pattern were detected. Two sets of regenerants from each of five DH donor lines were compared. One set was derived via androgenesis, and the other via somatic embryogenesis, developed from immature embryos. These comparisons delivered a quantitative assessment of the various types of somaclonal variation induced. The average level of variation was 6%, of which almost 1.7% could be accounted for by nucleotide mutation, and the remainder by changes in methylation state. The nucleotide mutation rates and the rate of epimutations were substantially similar between the andro- and embryo-derived sets of regenerants across all the donors. Conclusion We have developed an AFLP based approach that is capable of describing the qualitative and quantitative characteristics of the tissue culture-induced variation. We believe that this approach will find particular value in the study of patterns of inheritance of somaclonal variation, since non-heritable variation is of little interest for the improvement of plant species which are sexually propagated. Of significant biological interest is the conclusion that the mode of regeneration has no significant effect on the balance between sequence and methylation state change induced by the tissue culture process. PMID:17335560
Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile.
Parris, Darren J; Ganesh, Sangita; Edgcomb, Virginia P; DeLong, Edward F; Stewart, Frank J
2014-01-01
Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 μm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.
Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile
Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; DeLong, Edward F.; Stewart, Frank J.
2014-01-01
Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion. PMID:25389417
Narusaka, Mari; Iuchi, Satoshi; Narusaka, Yoshihiro
2017-03-04
A pair of Arabidopsis thaliana resistance proteins, RPS4 and RRS1, recognizes the cognate Avr effector from the bacterial pathogens Pseudomonas syringae pv. tomato expressing avrRps4 (Pst-avrRps4), Ralstonia solanacearum, and the fungal pathogen Colletotrichum higginsianum and leads to defense signaling activation against the pathogens. In the present study, we analyzed 14 A. thaliana accessions for natural variation in Pst-avrRps4 and C. higginsianum susceptibility, and found new compatible and incompatible Arabidopsis-pathogen interactions. We first found that A. thaliana accession Cvi-0 is susceptible to Pst-avrRps4. Interestingly, the genome sequence assembly indicated that Cvi-0 lost both RPS4 and RRS1, but not RPS4B and RRS1B, compared to the reference genome sequence from A. thaliana accession Col-0. On the other hand, the natural variation analysis of RPS4 alleles from various Arabidopsis accessions revealed that one amino-acid change, Y950H, is responsible for the loss of resistance to Pst-avrRps4 and C. higginsianum in RLD-0. Our data indicate that the amino acid change, Y950H, in RPS4 resulted in the loss of both RPS4 and RRS1 functions and resistance to pathogens.
Parallel gene analysis with allele-specific padlock probes and tag microarrays
Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats
2003-01-01
Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977
DNA barcode analysis of butterfly species from Pakistan points towards regional endemism
Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N
2013-01-01
DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612
Berg, Ingrid L.; Neumann, Rita; Lam, Kwan-Wood G.; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A.; Jeffreys, Alec J.
2011-01-01
PRDM9 has recently been identified as a likely trans-regulator of meiotic recombination hot spots in humans and mice1-3. The protein contains a zinc finger array that in humans can recognise a short sequence motif associated with hot spots4, with binding to this motif possibly triggering hot-spot activity via chromatin remodelling5. We now show that variation in the zinc finger array in humans has a profound effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Very subtle changes within the array can create hot-spot non-activating and enhancing alleles, and even trigger the appearance of a new hot spot. PRDM9 thus appears to be the preeminent global regulator of hot spots in humans. Variation at this locus also influences aspects of genome instability, specifically a megabase-scale rearrangement underlying two genomic disorders6 as well as minisatellite instability7, implicating PRDM9 as a risk factor for some pathological genome rearrangements. PMID:20818382
Rajasekaran, S; Kanna, Rishi Mugesh; Reddy, Ranjani Raja; Natesan, Senthil; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Kao, Patrick Y P; Yee, Anita; Shetty, Ajoy Prasad
2016-11-01
Prospective genetic association study. The aim of this study was to document the variations in the genetic associations, when different magnetic resonance imaging (MRI) phenotypes, age stratification, cohort size, and sequence of cohort inclusion are varied in the same study population. Genetic associations with disc degeneration have shown high inconsistency, generally attributed to hereditary factors and ethnic variations. However, the effect of different phenotypes, size of the study population, age of the cohort, etc have not been documented clearly. Seventy-one single-nucleotide polymorphisms (SNPs) of 41 candidate genes were correlated to six MRI markers of disc degeneration (annular tears, Pfirmann grading, Schmorl nodes, Modic changes, Total Endplate Damage score, and disc bulge) in 809 patients with back pain and/or sciatica. In the same study group, the correlations were then retested for different age groups, different sample, size and sequence of subject inclusion (first 404 and the second 405) and the differences documented. The mean age of population (M: 455, F: 354) was 36.7 ± 10.8 years. Different genetic associations were found with different phenotypes: disc bulge with three SNPs of CILP; annular tears with rs2249350 of ADAMTS5 and rs11247361 IGF1R; modic changes with VDR and MMP20; Pfirmann grading with three SNPs of MMP20 and Schmorl node with SNPs of CALM1 and FN1 and none with Total End Plate Score.Subgroup analysis based on three age groups and dividing the total population into two groups also completely changed the associations for all the six radiographic parameters. In the same study population, SNP associations completely change with different phenotypes. Variations in age, inclusion sequence, and sample size resulted in change of genetic associations. Our study questions the validity of previous studies and necessitates the need for standardizing the description of disc degeneration, phenotype selection, study sample size, age, and other variables in future studies. 4.
Mutsaerts, Henri J M M; van Osch, Matthias J P; Zelaya, Fernando O; Wang, Danny J J; Nordhøy, Wibeke; Wang, Yi; Wastling, Stephen; Fernandez-Seara, Maria A; Petersen, E T; Pizzini, Francesca B; Fallatah, Sameeha; Hendrikse, Jeroen; Geier, Oliver; Günther, Matthias; Golay, Xavier; Nederveen, Aart J; Bjørnerud, Atle; Groote, Inge R
2015-06-01
A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI pseudo-continuous ASL (PCASL) sequence implemented on 3T scanners from three vendors (General Electric Healthcare, Philips Healthcare and Siemens Healthcare) within the same center and with the same subjects. Fourteen healthy volunteers (50% male, age 26.4±4.7years) were scanned twice on each scanner in an interleaved manner within 3h. Because of differences in gradient and coil specifications, two separate studies were performed with slightly different sequence parameters, with one scanner used across both studies for comparison. Reproducibility was evaluated by means of quantitative cerebral blood flow (CBF) agreement and inter-session variation, both on a region-of-interest (ROI) and voxel level. In addition, a qualitative similarity comparison of the CBF maps was performed by three experienced neuro-radiologists. There were no CBF differences between vendors in study 1 (p>0.1), but there were CBF differences of 2-19% between vendors in study 2 (p<0.001 in most gray matter ROIs) and 10-22% difference in CBF values obtained with the same vendor between studies (p<0.001 in most gray matter ROIs). The inter-vendor inter-session variation was not significantly larger than the intra-vendor variation in all (p>0.1) but one of the ROIs (p<0.001). This study demonstrates the possibility to acquire comparable cerebral CBF maps on scanners of different vendors. Small differences in sequence parameters can have a larger effect on the reproducibility of ASL than hardware or software differences between vendors. These results suggest that researchers should strive to employ identical labeling and readout strategies in multi-center ASL studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Blanco-Marchite, Cristina; Sánchez-Sánchez, Francisco; López-Garrido, María-Pilar; Iñigez-de-Onzoño, Mercedes; López-Martínez, Francisco; López-Sánchez, Enrique; Alvarez, Lydia; Rodríguez-Calvo, Pedro-Pablo; Méndez-Hernández, Carmen; Fernández-Vega, Luis; García-Sánchez, Julián; Coca-Prados, Miguel; García-Feijoo, Julián
2011-01-01
Purpose. To investigate the role of WDR36 and P53 sequence variations in POAG susceptibility. Methods. The authors performed a case-control genetic association study in 268 unrelated Spanish patients (POAG1) and 380 control subjects matched for sex, age, and ethnicity. WDR36 sequence variations were screened by either direct DNA sequencing or denaturing high-performance liquid chromatography. P53 polymorphisms p.R72P and c.97–147ins16bp were analyzed by single-nucleotide polymorphism (SNP) genotyping and PCR, respectively. Positive SNP and haplotype associations were reanalyzed in a second sample of 211 patients and in combined cases (n = 479). Results. The authors identified almost 50 WDR36 sequence variations, of which approximately two-thirds were rare and one-third were polymorphisms. Approximately half the variants were novel. Eight patients (2.9%) carried rare mutations that were not identified in the control group (P = 0.001). Six Tag SNPs were expected to be structured in three common haplotypes. Haplotype H2 was consistently associated with the disease (P = 0.0024 in combined cases). According to a dominant model, genotypes containing allele P of the P53 p.R72P SNP slightly increased glaucoma risk. Glaucoma susceptibility associated with different WDR36 genotypes also increased significantly in combination with the P53 RP risk genotype, indicating the existence of a genetic interaction. For instance, the OR of the H2 diplotype estimated for POAG1 and combined cases rose approximately 1.6 times in the two-locus genotype H2/RP. Conclusions. Rare WDR36 variants and the P53 p.R72P polymorphism behaved as moderate glaucoma risk factors in Spanish patients. The authors provide evidence for a genetic interaction between WDR36 and P53 variants in POAG susceptibility, although this finding must be confirmed in other populations. PMID:21931130
Photometric binary stars in Praesepe and the search for globular cluster binaries
NASA Technical Reports Server (NTRS)
Bolte, Michael
1991-01-01
A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.
[Genetic analysis of two children patients affected with CHARGE syndrome].
Li, Guoqiang; Li, Niu; Xu, Yufei; Li, Juan; Ding, Yu; Shen, Yiping; Wang, Xiumin; Wang, Jian
2018-04-10
To analyze two Chinese pediatric patients with multiple malformations and growth and development delay. Both patients were subjected to targeted gene sequencing, and the results were analyzed with Ingenuity Variant Analysis software. Suspected pathogenic variations were verified by Sanger sequencing. High-throughput sequencing showed that both patients have carried heterozygous variants of the CHD7 gene. Patient 1 carried a nonsense mutation in exon 36 (c.7957C>T, p.Arg2653*), while patient 2 carried a nonsense mutation of exon 2 (c.718C>T, p.Gln240*). Sanger sequencing confirmed the above mutations in both patients, while their parents were of wild-type for the corresponding sites, indicating that the two mutations have happened de novo. Two patients were diagnosed with CHARGE syndrome by high-throughput sequencing.
Ahn, Insung; Son, Hyeon S
2007-07-01
To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.
Skoglund, Pontus; Höglund, Jacob
2010-04-23
Population variation in the degree of seasonal polymorphism is rare in birds, and the genetic basis of this phenomenon remains largely undescribed. Both sexes of Scandinavian and Scottish Willow grouse (Lagopus lagopus) display marked differences in their winter phenotypes, with Scottish grouse retaining a pigmented plumage year-round and Scandinavian Willow grouse molting to a white morph during winter. A widely studied pathway implicated in vertebrate pigmentation is the melanin system, for which functional variation has been characterised in many taxa. We sequenced coding regions from four genes involved in melanin pigmentation (DCT, MC1R, TYR and TYRP1), and an additional control involved in the melanocortin pathway (AGRP), to investigate the genetic basis of winter plumage in Lagopus. Despite the well documented role of the melanin system in animal coloration, we found no plumage-associated polymorphism or evidence for selection in a total of approximately 2.6 kb analysed sequence. Our results indicate that the genetic basis of alternating between pigmented and unpigmented seasonal phenotypes is more likely explained by regulatory changes controlling the expression of these or other loci in the physiological pathway leading to pigmentation.
Wang, Xihong; Zheng, Zhuqing; Cai, Yudong; Chen, Ting; Li, Chao; Fu, Weiwei; Jiang, Yu
2017-12-01
The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1-2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species. © The Authors 2017. Published by Oxford University Press.
Wang, Xihong; Zheng, Zhuqing; Cai, Yudong; Chen, Ting; Li, Chao; Fu, Weiwei
2017-01-01
Abstract Background The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Results Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1–2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. Conclusions The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species. PMID:29220491
[Genetic characteristics of hemagglutinin in measles viruses isolated in Henan Province, China].
Feng, Da-Xing; Seng, Ming-Hua; Liu, Qian; Zhang, Zhen-Ying
2014-03-01
This study aims to investigate the genetic characteristics of hemagglutinin in wild-type measles viruses in Henan Province, China and to provide a basis for measles control and elimination. Specimens were collected from suspected measles cases in Henan during 2008-2012. Cell culture was performed for virus isolation, and RT-PCR was used to amplify hemagglutinin gene. The PCR products were sequenced and analyzed, including construction of phylogenetic tree and analysis of the distance between the isolated virus and the reference virus; then, the variations in predicted amino acids were analyzed. The results showed that 12 measles viruses were isolated in Henan Province and identified as H1a genotype; the nucleotide and amino acid homologies were 98.0%-100% and 97.2%-99.8%, respectively. One glycosylation site changed in all the 12 sequences because of the amino acid mutation from serine to asparagine at the 240th site, as compared with Edmonston-wt. USA/54/A. Overall, the wild-type measles virus genotype circulating in Henan Province from 2008 to 2012 was H1a, with high homology between strains; there were some variations in amino acid sequences, resulting in glycosylation site deletion.
Thermal and acid tolerant beta-xylosidases, genes encoding, related organisms, and methods
Thompson, David N [Idaho Falls, ID; Thompson, Vicki S [Idaho Falls, ID; Schaller, Kastli D [Ammon, ID; Apel, William A [Jackson, WY; Lacey, Jeffrey A [Idaho Falls, ID; Reed, David W [Idaho Falls, ID
2011-04-12
Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose and/or xylobiose using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.
USDA-ARS?s Scientific Manuscript database
Little is known about genetic variation of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV; Baculoviridae: Alphabaculovirus) at the nucleotide sequence level. To obtain a more comprehensive view of genetic diversity among isolates of LdMNPV, partial sequences of the lef-8 gene were generated...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Sean
2013-03-01
Sean Gordon of the USDA on Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions at the 8th Annual Genomics of Energy Environment Meeting on March 27, 2013 in Walnut Creek, CA.
Sequence variation of the feline immunodeficiency virus genome and its clinical relevance.
Stickney, A L; Dunowska, M; Cave, N J
2013-06-08
The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.
A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata).
Dhanasekar, P; Reddy, K S
2015-02-01
Mutations in the widely conserved Arabidopsis Terminal Flower 1 (TFL1) gene and its homologs have been demonstrated to result in determinacy across genera, the knowledge of which is lacking in cowpea. Understanding the molecular events leading to determinacy of apical meristems could hasten development of cowpea varieties with suitable ideotypes. Isolation and characterization of a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy is reported here for the first time. Cowpea TFL1 homolog was amplified using primers designed based on conserved sequences in related genera and sequence variation was analysed in three gamma ray-induced determinate mutants, their indeterminate parent "EC394763" and two indeterminate varieties. The analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The non-synonymous point mutation in exon 4 at position 1,176 resulted from transversion of cytosine (C) to adenine (A) leading to an amino acid change (Pro-136 to His) in determinate mutants. The effect of the mutation on protein function and stability was predicted to be detrimental using different bioinformatics/computational tools. The functionally significant novel substitution mutation is hypothesized to affect determinacy in the cowpea mutants. Development of suitable regeneration protocols in this hitherto recalcitrant crop and subsequent complementation assay in mutants or over-expressing assay in parents could decisively conclude the role of the SNP in regulating determinacy in these cowpea mutants.
Genetic variability and haplotypes of Echinococcus isolates from Tunisia.
Boufana, Belgees; Lahmar, Samia; Rebaï, Waël; Ben Safta, Zoubeir; Jebabli, Leïla; Ammar, Adel; Kachti, Mahmoud; Aouadi, Soufia; Craig, Philip S
2014-11-01
The species/genotypes of Echinococcus infecting a range of intermediate, canid and human hosts were examined as well as the intraspecific variation and population structure of Echinococcus granulosus sensu lato (s.l.) within these hosts. A total of 174 Echinococcus isolates from humans and ungulate intermediate hosts and adult tapeworms from dogs and jackals were used. Genomic DNA was used to amplify a fragment within a mitochondrial gene and a nuclear gene, coding for cytochrome c oxidase subunit 1 (cox1; 828 bp) and elongation factor 1-alpha (ef1a; 656 bp), respectively. E. granulosus sensu stricto was identified from all host species examined, E. canadensis (G6) in a camel and, for the first time, fertile cysts of E. granulosus (s.s.) and E. equinus in equids (donkeys) and E. granulosus (s.s.) from wild boars and goats. Considerable genetic variation was seen only for the cox1 sequences of E. granulosus (s.s.). The pairwise fixation index (Fst) for cox1 E. granulosus (s.s.) sequences from donkeys was high and was statistically significant compared with that of E. granulosus populations from other intermediate hosts. A single haplotype (EqTu01) was identified for the cox1 nucleotide sequences of E. equinus. The role of donkeys in the epidemiology of echinococcosis in Tunisia requires further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Alkan, Can; Kavak, Pinar; Somel, Mehmet; Gokcumen, Omer; Ugurlu, Serkan; Saygi, Ceren; Dal, Elif; Bugra, Kuyas; Güngör, Tunga; Sahinalp, S Cenk; Özören, Nesrin; Bekpen, Cemalettin
2014-11-07
Turkey is a crossroads of major population movements throughout history and has been a hotspot of cultural interactions. Several studies have investigated the complex population history of Turkey through a limited set of genetic markers. However, to date, there have been no studies to assess the genetic variation at the whole genome level using whole genome sequencing. Here, we present whole genome sequences of 16 Turkish individuals resequenced at high coverage (32×-48×). We show that the genetic variation of the contemporary Turkish population clusters with South European populations, as expected, but also shows signatures of relatively recent contribution from ancestral East Asian populations. In addition, we document a significant enrichment of non-synonymous private alleles, consistent with recent observations in European populations. A number of variants associated with skin color and total cholesterol levels show frequency differentiation between the Turkish populations and European populations. Furthermore, we have analyzed the 17q21.31 inversion polymorphism region (MAPT locus) and found increased allele frequency of 31.25% for H1/H2 inversion polymorphism when compared to European populations that show about 25% of allele frequency. This study provides the first map of common genetic variation from 16 western Asian individuals and thus helps fill an important geographical gap in analyzing natural human variation and human migration. Our data will help develop population-specific experimental designs for studies investigating disease associations and demographic history in Turkey.
Argüello-García, Raúl; Cruz-Soto, Maricela; Romero-Montoya, Lydia; Ortega-Pierres, Guadalupe
2009-12-01
The susceptibility of Giardia duodenalis trophozoites exposed in vitro to sublethal concentrations of metronidazole (MTZ) and albendazole (ABZ) may exhibit inter-culture (variability) and intra-culture (variation) differences in drug susceptibility. It was previously reported that MTZ-resistant trophozoites may display changes in pyruvate:ferredoxin oxidoreductase (PFOR) expression while changes at the beta-tubulin molecule are apparently absent in ABZ-resistant cultures. To assess the levels of gene expression of these molecules, we obtained cloned cultures growing at concentrations up to 23 microM MTZ (WBRM23) and up to 8muM ABZ (WBRA8) and gene sequence and expression of pfor and beta-tubulin loci were compared with these of drug-susceptible clone WB1. Neither the pfor nor the beta-tubulin genes showed changes at sequence level but the MTZ-resistant clones WBRM21 and WBRM23 showed up-regulation of the pfor RNA using the gdh gene as reference. By using WB1 and WBRA8 clones in representational difference analyses of gene expression (RDA) an insert referred to as ARR-VSP was selected and sequenced. It showed the highest homology to one VSP molecule in the Giardia Genome Database (orf GL50803_101765). This isogene was up-regulated in five ABZ-resistant clones and the clone WBRA8 exhibited the highest RNA expression level. When successive progenies of clones WB1, WBRM23 and WBRA8 were analyzed in Northern blot assays to detect pfor and ARR-VSP RNAs respectively, the expression patterns showed variation for both genes but it was much lower in the clone WBRA8. These results suggest that G. duodenalis cultures either susceptible or resistant to MTZ and ABZ may display variability and variation at RNA expression levels albeit these were more marked in the MTZ-resistant parasites. These data might have further implications defining major mechanisms involved in drug resistance of Giardia.
Reproducibility and quantitation of amplicon sequencing-based detection
Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng
2011-01-01
To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative analysis of the β-diversity of microbial communities. PMID:21346791
Carr, Michael J; McCormack, Grace P; Mutton, Ken J; Crowley, Brendan
2006-04-01
Hematopoietic stem cell transplant recipients frequently develop BK virus (BKV)-associated hemorrhagic cystitis, which coincides with BK viruria. However, the precise role of BKV in the etiology of hemorrhagic cystitis in hematopoietic stem cell transplant recipients remains unclear, since approximately 50% of all such adult transplant recipients excrete BKV, yet do not develop this clinical condition. In the present study, BKV were analyzed to determine if mutations in the non-coding control region (NCCR), and specific BKV sub-types defined by sequence analysis of major capsid protein VP1, were associated with development of hemorrhagic cystitis in hematopoietic stem cell transplant recipients. The regions encoding VP1 and NCCRs of BKV in urine samples collected from 15 hematopoietic stem cell transplant recipients with hemorrhagic cystitis and 20 without this illness were amplified and sequenced. Sequence variations in the NCCRs of BKV were identified in urine samples from those with and without hemorrhagic cystitis. Furthermore, five unique sequence variations within transcription factor binding sites in the canonical NCCR, O-P-Q-R-S, were identified, representing new BKV variants from a population of cloned quasi-species obtained from patients with and without hemorrhagic cystitis. Thirty-five BKV VP1 sequences were analyzed by phylogenetic analysis but no specific BKV sub-type was associated with hemorrhagic cystitis. Five previously unrecognized naturally occurring variants of the BKV are described which involve amplifications, deletions, and rearrangements of the archetypal BKV NCCRs in individuals with and without hemorrhagic cystitis. Architectural rearrangements in the NCCRs of BKV did not appear to be a prerequisite for development of hemorrhagic cystitis in hematopoietic stem cell transplant recipients. Copyright 2006 Wiley-Liss, Inc.
Zhu, Longjiao; Shao, Xiangli; Luo, Yunbo; Huang, Kunlung; Xu, Wentao
2017-05-19
A two-way colorimetric biosensor based on unmodified gold nanoparticles (GNPs) and a switchable double-stranded DNA (dsDNA) concatemer have been demonstrated. Two hairpin probes (H1 and H2) were first designed that provided the fuels to assemble the dsDNA concatemers via hybridization chain reaction (HCR). A functional hairpin (FH) was rationally designed to recognize the target sequences. All the hairpins contained a single-stranded DNA (ssDNA) loop and sticky end to prevent GNPs from salt-induced aggregation. In the presence of target sequence, the capture probe blocked in the FH recognizes the target to form a duplex DNA, which causes the release of the initiator probe by FH conformational change. This process then starts the alternate-opening of H1 and H2 through HCR, and dsDNA concatemers grow from the target sequence. As a result, unmodified GNPs undergo salt-induced aggregation because the formed dsDNA concatemers are stiffer and provide less stabilization. A light purple-to-blue color variation was observed in the bulk solution, termed the light-off sensing way. Furthermore, H1 ingeniously inserted an aptamer sequence to generate dsDNA concatemers with multiple small molecule binding sites. In the presence of small molecule targets, concatemers can be disassembled into mixtures with ssDNA sticky ends. A blue-to-purple reverse color variation was observed due to the regeneration of the ssDNA, termed the light-on way. The two-way biosensor can detect both nucleic acids and small molecule targets with one sensing device. This switchable sensing element is label-free, enzyme-free, and sophisticated-instrumentation-free. The detection limits of both targets were below nanomolar.
Boussaha, Mekki; Michot, Pauline; Letaief, Rabia; Hozé, Chris; Fritz, Sébastien; Grohs, Cécile; Esquerré, Diane; Duchesne, Amandine; Philippe, Romain; Blanquet, Véronique; Phocas, Florence; Floriot, Sandrine; Rocha, Dominique; Klopp, Christophe; Capitan, Aurélien; Boichard, Didier
2016-11-15
In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.
Richardson, David S; Westerdahl, Helena
2003-12-01
The Great reed warbler (GRW) and the Seychelles warbler (SW) are congeners with markedly different demographic histories. The GRW is a normal outbred bird species while the SW population remains isolated and inbred after undergoing a severe population bottleneck. We examined variation at Major Histocompatibility Complex (MHC) class I exon 3 using restriction fragment length polymorphism, denaturing gradient gel electrophoresis and DNA sequencing. Although genetic variation was higher in the GRW, considerable variation has been maintained in the SW. The ten exon 3 sequences found in the SW were as diverged from each other as were a random sub-sample of the 67 sequences from the GRW. There was evidence for balancing selection in both species, and the phylogenetic analysis showing that the exon 3 sequences did not separate according to species, was consistent with transspecies evolution of the MHC.
Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming
2013-01-01
Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.
2013-01-01
Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169
Chen, Shen-Bo; Wang, Yue; Kassegne, Kokouvi; Xu, Bin; Shen, Hai-Mo; Chen, Jun-Hu
2017-02-06
Currently in China, the trend of Plasmodium vivax cases imported from Southeast Asia was increased especially in the China-Myanmar border area. Driven by the increase in P. vivax cases and stronger need for vaccine and drug development, several P. vivax isolates genome sequencing projects are underway. However, little is known about the genetic variability in this area until now. The sequencing of the first P. vivax isolate from China-Myanmar border area (CMB-1) generated 120 million paired-end reads. A percentage of 10.6 of the quality-evaluated reads were aligned onto 99.9% of the reference strain Sal I genome in 62-fold coverage with an average of 4.8 SNPs per kb. We present a 539-SNP marker data set for P. vivax that can identify different parasites from different geographic origins with high sensitivity. We also identified exceptionally high levels of genetic variability in members of multigene families such as RBP, SERA, vir, MSP3 and AP2. The de-novo assembly yielded a database composed of 8,409 contigs with N50 lengths of 6.6 kb and revealed 661 novel predicted genes including 78 vir genes, suggesting a greater functional variation in P. vivax from this area. Our result contributes to a better understanding of P. vivax genetic variation, and provides a fundamental basis for the geographic differentiation of vivax malaria from China-Myanmar border area using a direct sequencing approach without leukocyte depletion. This novel sequencing method can be used as an essential tool for the genomic research of P. vivax in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn
2014-04-01
Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less
Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.
1994-01-01
The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418
Ba Abdullah, Mohammed M; Palermo, Richard D; Palser, Anne L; Grayson, Nicholas E; Kellam, Paul; Correia, Samantha; Szymula, Agnieszka; White, Robert E
2017-12-01
Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of <1 kb, and allelic gene conversion changes the frequency of small regions within the repeat but not close to the flanks. These observations suggest that IR1-and, by extension, EBV-diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four nonconsensus variants within a single IR1 repeat unit, including a stop codon in the EBNA-LP gene. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 bacterial artificial chromosome (BAC). IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage. Copyright © 2017 Ba abdullah et al.
Identification of the sequence variations of 15 autosomal STR loci in a Chinese population.
Chen, Wenjing; Cheng, Jianding; Ou, Xueling; Chen, Yong; Tong, Dayue; Sun, Hongyu
2014-01-01
DNA sequence variation including base(s) changes and insertion or deletion in the primer binding region may cause a null allele and, if this changes the length of the amplified fragment out of the allelic ladder, off-ladder (OL) alleles may be detected. In order to provide accurate and reliable DNA evidence for forensic DNA analysis, it is essential to clarify sequence variations in prevalently used STR loci. Suspected null alleles and OL alleles of PlowerPlex16® System from 21,934 unrelated Chinese individuals were verified by alternative systems and sequenced. A total of 17 cases with null alleles were identified, including 12 kinds of point mutations in 16 cases and a 19-base deletion in one case. The total frequency of null alleles was 7.751 × 10(-4). Eight hundred and forty-four OL alleles classified as being of 97 different kinds were observed at 15 STR loci of the PowerPlex®16 system except vWA. All the frequencies of OL alleles were under 0.01. Null alleles should be confirmed by alternative primers and OL alleles should be named appropriately. Particular attention should be paid to sequence variation, since incorrect designation could lead to false conclusions.
The diploid genome sequence of an Asian individual
Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian
2009-01-01
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735
Campos, W N; Massaro, J D; Martinelli, A L C; Halliwell, J A; Marsh, S G E; Mendes-Junior, C T; Donadi, E A
2017-10-01
The HFE molecule controls iron uptake from gut, and defects in the molecule have been associated with iron overload, particularly in hereditary hemochromatosis. The HFE gene including both coding and boundary intronic regions were sequenced in 304 Brazilian individuals, encompassing healthy individuals and patients exhibiting hereditary or acquired iron overload. Six sites of variation were detected: (1) H63D C>G in exon 2, (2) IVS2 (+4) T>C in intron 2, (3) a C>G transversion in intron 3, (4) C282Y G>A in exon 4, (5) IVS4 (-44) T>C in intron 4, and (6) a new guanine deletion (G>del) in intron 5, which were used for haplotype inference. Nine HFE alleles were detected and six of these were officially named on the basis of the HLA Nomenclature, defined by the World Health Organization (WHO) Nomenclature Committee for Factors of the HLA System, and published via the IPD-IMGT/HLA website. Four alleles, HFE*001, *002, *003, and *004 exhibited variation within their exon sequences. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of an imputed pitch velocity model of the auditory tau effect.
Henry, Molly J; McAuley, J Devin; Zaleha, Marta
2009-08-01
This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.
Zhang, J R; Norris, S J
1998-08-01
The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2007-01-01
A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode
The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity
Wang, Quanli; Halvorsen, Matt; Han, Yujun; Weir, William H.; Allen, Andrew S.; Goldstein, David B.
2015-01-01
Noncoding sequence contains pathogenic mutations. Yet, compared with mutations in protein-coding sequence, pathogenic regulatory mutations are notoriously difficult to recognize. Most fundamentally, we are not yet adept at recognizing the sequence stretches in the human genome that are most important in regulating the expression of genes. For this reason, it is difficult to apply to the regulatory regions the same kinds of analytical paradigms that are being successfully applied to identify mutations among protein-coding regions that influence risk. To determine whether dosage sensitive genes have distinct patterns among their noncoding sequence, we present two primary approaches that focus solely on a gene’s proximal noncoding regulatory sequence. The first approach is a regulatory sequence analogue of the recently introduced residual variation intolerance score (RVIS), termed noncoding RVIS, or ncRVIS. The ncRVIS compares observed and predicted levels of standing variation in the regulatory sequence of human genes. The second approach, termed ncGERP, reflects the phylogenetic conservation of a gene’s regulatory sequence using GERP++. We assess how well these two approaches correlate with four gene lists that use different ways to identify genes known or likely to cause disease through changes in expression: 1) genes that are known to cause disease through haploinsufficiency, 2) genes curated as dosage sensitive in ClinGen’s Genome Dosage Map, 3) genes judged likely to be under purifying selection for mutations that change expression levels because they are statistically depleted of loss-of-function variants in the general population, and 4) genes judged unlikely to cause disease based on the presence of copy number variants in the general population. We find that both noncoding scores are highly predictive of dosage sensitivity using any of these criteria. In a similar way to ncGERP, we assess two ensemble-based predictors of regional noncoding importance, ncCADD and ncGWAVA, and find both scores are significantly predictive of human dosage sensitive genes and appear to carry information beyond conservation, as assessed by ncGERP. These results highlight that the intolerance of noncoding sequence stretches in the human genome can provide a critical complementary tool to other genome annotation approaches to help identify the parts of the human genome increasingly likely to harbor mutations that influence risk of disease. PMID:26332131
Vitamin K epoxide reductase complex subunit 1 (Vkorc1) haplotype diversity in mouse priority strains
Song, Ying; Vera, Nicole; Kohn, Michael H
2008-01-01
Background Polymorphisms in the vitamin K-epoxide reductase complex subunit 1 gene, Vkorc1, could affect blood coagulation and other vitamin K-dependent proteins, such as osteocalcin (bone Gla protein, BGP). Here we sequenced the Vkorc1 gene in 40 mouse priority strains. We analyzed Vkorc1 haplotypes with respect to prothrombin time (PT) and bone mineral density and composition (BMD and BMC); phenotypes expected to be vitamin K-dependent and represented by data in the Mouse Phenome Database (MPD). Findings In the commonly used laboratory strains of Mus musculus domesticus we identified only four haplotypes differing in the intron or 5' region sequence of the Vkorc1. Six haplotypes differing by coding and non-coding polymorphisms were identified in the other subspecies of Mus. We detected no significant association of Vkorc1 haplotypes with PT, BMD and BMC within each subspecies of Mus. Vkorc1 haplotype sequences divergence between subspecies was associated with PT, BMD and BMC. Conclusion Phenotypic variation in PT, BMD and BMC within subspecies of Mus, while substantial, appears to be dominated by genetic variation in genes other than the Vkorc1. This was particularly evident for M. m. domesticus, where a single haplotype was observed in conjunction with virtually the entire range of PT, BMD and BMC values of all 5 subspecies of Mus included in this study. Differences in these phenotypes between subspecies also should not be attributed to Vkorc1 variants, but should be viewed as a result of genome wide genetic divergence. PMID:19046458
Spuesens, Emiel B M; van de Kreeke, Nick; Estevão, Silvia; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis
2011-02-01
Mycoplasma pneumoniae is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the M. pneumoniae genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by M. pneumoniae. To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.
Hagino, Kyoko; Bendif, El Mahdi; Young, Jeremy R; Kogame, Kazuhiro; Probert, Ian; Takano, Yoshihito; Horiguchi, Takeo; de Vargas, Colomban; Okada, Hisatake
2011-10-01
Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler is a cosmopolitan coccolithophore occurring from tropical to subpolar waters and exhibiting variations in morphology of coccoliths possibly related to environmental conditions. We examined morphological characters of coccoliths and partial mitochondrial sequences of the cytochrome oxidase 1b (cox1b) through adenosine triphosphate synthase 4 (atp4) genes of 39 clonal E. huxleyi strains from the Atlantic and Pacific Oceans, Mediterranean Sea, and their adjacent seas. Based on the morphological study of culture strains by SEM, Type O, a new morphotype characterized by coccoliths with an open central area, was separated from existing morphotypes A, B, B/C, C, R, and var. corona, characterized by coccoliths with central area elements. Molecular phylogenetic studies revealed that E. huxleyi consists of at least two mitochondrial sequence groups with different temperature preferences/tolerances: a cool-water group occurring in subarctic North Atlantic and Pacific and a warm-water group occurring in the subtropical Atlantic and Pacific and in the Mediterranean Sea. © 2011 Phycological Society of America.
Dynamics of actin evolution in dinoflagellates.
Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F
2011-04-01
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
Gourraud, P A; Karaouni, A; Woo, J M; Schmidt, T; Oksenberg, J R; Hecht, F M; Liegler, T J; Barbour, J D
2011-03-01
We examined single nucleotide polymorphisms (SNP) in the APOBEC3 locus on chromosome 22, paired with population sequences of pro-viral human immunodeficiency virus-1 (HIV-1) vif from peripheral blood mononuclear cells, from 96 recently HIV-1-infected treatment-naive adults. We found evidence for the existence of an APOBEC3H linkage disequilibrium (LD) block associated with variation in GA → AA, or APOBEC3F/H signature, sequence changes in pro-viral HIV-1 vif sequence (top 10 significant SNPs with a significant p = 4.8 × 10(-3)). We identified a common five position risk haplotype distal to APOBEC3H (A3Hrh). These markers were in high LD (D' = 1; r(2) = 0.98) to a previously described A3H "RED" haplotype containing a variant (E121) with enhanced susceptibility to HIV-1 Vif. This association was confirmed by a haplotype analysis. Homozygote carriers of the A3Hrh had lower GA->AA (A3F/H) sequence editing upon pro-viral HIV-1 vif sequence (p = 0.01), and lower HIV-1 RNA levels over time during early, untreated HIV-1 infection, (p = 0.015 mixed effects model). This effect may be due to enhanced susceptibility of A3H forms to HIV-1 Vif mediated viral suppression of sequence editing activity, slowing viral diversification and escape from immune responses. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris
2018-01-22
Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sellem, C H; d'Aubenton-Carafa, Y; Rossignol, M; Belcour, L
1996-06-01
The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group 1 intronic ORFs are mobile elements and that their transfer, and concomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes.
Taylor, E B; Pollard, S; Louie, D
1999-07-01
Bull trout, Salvelinus confluentus (Salmonidae), are distributed in northwestern North America from Nevada to Yukon Territory, largely in interior drainages. The species is of conservation concern owing to declines in abundance, particularly in southern portions of its range. To investigate phylogenetic structure within bull trout that might form the basis for the delineation of major conservation units, we conducted a mitochondrial DNA (mtDNA) survey in bull trout from throughout its range. Restriction fragment length polymorphism (RFLP) analysis of four segments of the mtDNA genome with 11 restriction enzymes resolved 21 composite haplotypes that differed by an average of 0.5% in sequence. One group of haplotypes predominated in 'coastal' areas (west of the coastal mountain ranges) while another predominated in 'interior' regions (east of the coastal mountains). The two putative lineages differed by 0.8% in sequence and were also resolved by sequencing a portion of the ND1 gene in a representative of each RFLP haplotype. Significant variation existed within individual sample sites (12% of total variation) and among sites within major geographical regions (33%), but most variation (55%) was associated with differences between coastal and interior regions. We concluded that: (i) bull trout are subdivided into coastal and interior lineages; (ii) this subdivision reflects recent historical isolation in two refugia south of the Cordilleran ice sheet during the Pleistocene: the Chehalis and Columbia refugia; and (iii) most of the molecular variation resides at the interpopulation and inter-region levels. Conservation efforts, therefore, should focus on maintaining as many populations as possible across as many geographical regions as possible within both coastal and interior lineages.
Valtueña, Francisco J; Preston, Chris D; Kadereit, Joachim W
2012-03-01
The perennial herb Meconopsis cambrica, a western European endemic, is the only European species of the otherwise Himalayan genus Meconopsis and has been interpreted as a Tertiary relict species. Using rbcL and ITS sequence variation, we date the split between M. cambrica and its sister clade Papaver s.str. to the Middle to Upper Miocene (12.8 Myr, 6.4-19.2 Myr HPD). Within M. cambrica, cpDNA sequence variation reveals the existence of two groups of populations with a comparable level of genetic variation: a northern group from Great Britain, the Massif Central, the western Pyrenees and the Iberian System, and a southern group from the central and eastern Pyrenees. Populations from the Cantabrian Mountains were placed in both groups. Based on ITS sequence variation, the divergence between these two groups can be dated to 1.5 Myr (0.4-2.8 Myr HPD), and the age of the British populations is estimated as 0.37 Myr (0.0-0.9 Myr HPD). Amplified fragment length polymorphism results confirm the distinctive nature of the populations from Britain, the Massif Central and the central and eastern Pyrenees. These patterns of latitudinal variation of M. cambrica differ from patterns of longitudinal differentiation found in many other temperate species and imply glacial survival of the northern populations in northerly refugia. The primary differentiation into northern and southern cpDNA groups dates to near the onset of the Quaternary and suggests that an ancient phylogeographic pattern has survived through several glacial periods. Our data provide evidence that the species has persisted for a long period with a highly fragmented and probably very localized distribution. © 2012 Blackwell Publishing Ltd.
Norris, Steven J.
2015-01-01
Summary Spirochetes that cause Lyme borreliosis (also called Lyme disease) possess the vls locus, encoding an elaborate antigenic variation system. This locus contains the expression site vlsE as well as a contiguous array of vls silent cassettes, which contain variations of the central cassette region of vlsE. The locus is present on one of the many linear plasmids in the organism, e.g. plasmid lp28-1 in the strain B. burgdorferi B31. Changes in the sequence of vlsE occur continuously during mammalian infection and consist of random, segmental, unidirectional recombination events between the silent cassettes and the cassette region of vlsE. These gene conversion events do not occur during in vitro culture or the tick portion of the infection cycle of Borrelia burgdorferi or the other related Borrelia species that cause Lyme disease. The mechanism of recombination is largely unknown, but requires the RuvAB Holliday junction branch migrase. Other features of the vls locus also appear to be required, including cis locations of vlsE and the silent cassettes and high G+C content and GC skew. The vls system is required for long-term survival of Lyme Borrelia in infected mammals and represents an important mechanism of immune evasion. In addition to sequence variation, immune selection also results in significant heterogeneity in the sequence of the surface lipoprotein VlsE. Despite antigenic variation, VlsE generates a robust antibody response, and both full length VlsE and the C6 peptide (corresponding to invariant region 6) are widely used in immunodiagnostic tests for Lyme disease. PMID:26104445
Gifford, Robert J.; Rhee, Soo-Yon; Eriksson, Nicolas; Liu, Tommy F.; Kiuchi, Mark; Das, Amar K.; Shafer, Robert W.
2008-01-01
Design Promiscuous guanine (G) to adenine (A) substitutions catalysed by apolipoprotein B RNA-editing catalytic component (APOBEC) enzymes are observed in a proportion of HIV-1 sequences in vivo and can introduce artifacts into some genetic analyses. The potential impact of undetected lethal editing on genotypic estimation of transmitted drug resistance was assessed. Methods Classifiers of lethal, APOBEC-mediated editing were developed by analysis of lentiviral pol gene sequence variation and evaluated using control sets of HIV-1 sequences. The potential impact of sequence editing on genotypic estimation of drug resistance was assessed in sets of sequences obtained from 77 studies of 25 or more therapy-naive individuals, using mixture modelling approaches to determine the maximum likelihood classification of sequences as lethally edited as opposed to viable. Results Analysis of 6437 protease and reverse transcriptase sequences from therapy-naive individuals using a novel classifier of lethal, APOBEC3G-mediated sequence editing, the polypeptide-like 3G (APOBEC3G)-mediated defectives (A3GD) index’, detected lethal editing in association with spurious ‘transmitted drug resistance’ in nearly 3% of proviral sequences obtained from whole blood and 0.2% of samples obtained from plasma. Conclusion Screening for lethally edited sequences in datasets containing a proportion of proviral DNA, such as those likely to be obtained for epidemiological surveillance of transmitted drug resistance in the developing world, can eliminate rare but potentially significant errors in genotypic estimation of transmitted drug resistance. PMID:18356601
Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.
Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T
1996-10-31
Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.
Wang, Shi-Yuan; Zhang, Qi; Zhang, Xiang; Zhao, Pei-Quan
2016-01-01
To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis (LCA) in Chinese. LCA subjects and their families were retrospectively collected from 2013 to 2015. Firstly, whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found, and then homozygous sites was selected, candidate sites were annotated, and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant (SIFT), Polyphen-2, Mutation assessor, Condel, and Functional Analysis through Hidden Markov Models (FATHMM). Furthermore, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test. Sanger sequencing was used to validate single-nucleotide variations (SNVs). Expanded verification was performed in the rest patients. Totally 51 LCA families with 53 patients and 24 family members were recruited. A total of 104 SNVs (66 LCA-related genes and 15 co-segregated genes) were submitted for expand verification. The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families. Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion, biological adhesion, retinoid metabolic process, and eye development biological adhesion. Additionally, WFS1 and STAU2 had the highest homozygous frequencies. LCA is a highly heterogeneous disease. Mutations in KRT12, CYP1A1, WFS1, and STAU2 may be involved in the development of LCA.
Williams, Tony D.; Ames, Caroline E.; Kiparissis, Yiannis; Wynne-Edwards, Katherine E.
2005-01-01
We investigated the relationship between plasma and yolk oestrogens in laying female zebra finches (Taeniopygia guttata) by manipulating plasma oestradiol (E2) levels, via injection of oestradiol-17β, in a sequence-specific manner to maintain chronically high plasma levels for later-developing eggs (contrasting with the endogenous pattern of decreasing plasma E2 concentrations during laying). We report systematic variation in yolk oestrogen concentrations, in relation to laying sequence, similar to that widely reported for androgenic steroids. In sham-manipulated females, yolk E2 concentrations decreased with laying sequence. However, in E2-treated females plasma E2 levels were higher during the period of rapid yolk development of later-laid eggs, compared with control females. As a consequence, we reversed the laying-sequence-specific pattern of yolk E2: in E2-treated females, yolk E2 concentrations increased with laying-sequence. In general therefore, yolk E2 levels were a direct reflection of plasma E2 levels. However, in control females there was some inter-individual variability in the endogenous pattern of plasma E2 levels through the laying cycle which could generate variation in sequence-specific patterns of yolk hormone levels even if these primarily reflect circulating steroid levels. PMID:15695208
Large-scale whole-genome sequencing of the Icelandic population.
Gudbjartsson, Daniel F; Helgason, Hannes; Gudjonsson, Sigurjon A; Zink, Florian; Oddson, Asmundur; Gylfason, Arnaldur; Besenbacher, Soren; Magnusson, Gisli; Halldorsson, Bjarni V; Hjartarson, Eirikur; Sigurdsson, Gunnar Th; Stacey, Simon N; Frigge, Michael L; Holm, Hilma; Saemundsdottir, Jona; Helgadottir, Hafdis Th; Johannsdottir, Hrefna; Sigfusson, Gunnlaugur; Thorgeirsson, Gudmundur; Sverrisson, Jon Th; Gretarsdottir, Solveig; Walters, G Bragi; Rafnar, Thorunn; Thjodleifsson, Bjarni; Bjornsson, Einar S; Olafsson, Sigurdur; Thorarinsdottir, Hildur; Steingrimsdottir, Thora; Gudmundsdottir, Thora S; Theodors, Asgeir; Jonasson, Jon G; Sigurdsson, Asgeir; Bjornsdottir, Gyda; Jonsson, Jon J; Thorarensen, Olafur; Ludvigsson, Petur; Gudbjartsson, Hakon; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Arnar, David O; Magnusson, Olafur Th; Kong, Augustine; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Sulem, Patrick; Stefansson, Kari
2015-05-01
Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.
Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K
2014-01-01
Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun
2015-01-01
Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.
Mukda, Ekchol; Trachoo, Objoon; Pasomsub, Ekawat; Tiyasirichokchai, Rawiphorn; Iemwimangsa, Nareenart; Sosothikul, Darintr; Chantratita, Wasun; Pakakasama, Samart
2017-08-01
In the present study, we used exome sequencing to analyze PRF1, UNC13D, STX11, and STXBP2, as well as genes associated with primary immunodeficiency disease (RAB27A, LYST, AP3B1, SH2D1A, ITK, CD27, XIAP, and MAGT1) in Thai children with hemophagocytic lymphohistiocytosis (HLH). We performed mutation analysis of HLH-associated genes in 25 Thai children using an exome sequencing method. Genetic variations found within these target genes were compared to exome sequencing data from 133 healthy individuals. Variants identified with minor allele frequencies <5% and novel mutations were confirmed using Sanger sequencing. Exome sequencing data revealed 101 non-synonymous single nucleotide polymorphisms (SNPs) in all subjects. These SNPs were classified as pathogenic (n = 1), likely pathogenic (n = 16), variant of unknown significance (n = 12), or benign variant (n = 72). Homozygous, compound heterozygous, and double-gene heterozygous variants, involving mutations in PRF1 (n = 3), UNC13D (n = 2), STXBP2 (n = 3), LYST (n = 3), XIAP (n = 2), AP3B1 (n = 1), RAB27A (n = 1), and MAGT1 (n = 1), were demonstrated in 12 patients. Novel mutations were found in most patients in this study. In conclusion, exome sequencing demonstrated the ability to identify rare genetic variants in HLH patients. This method is useful in the detection of mutations in multi-gene associated diseases.
Molecular identification of Fasciola spp. (Digenea: Platyhelminthes) in cattle from Vietnam
Nguyen, S.; Amer, S.; Ichikawa, M.; Itagaki, T.; Fukuda, Y.; Nakai, Y.
2012-01-01
Fasciola spp. were collected from naturally infected cattle at a local abattoir of Khanh Hoa province, Vietnam, for morphological and genetic investigations. Microscopic examination detected no sperm cells in the seminal vesicles, suggesting a parthenogenetic reproduction of the flukes. Analyses of sequences from the first and second internal transcribed spacers (ITS1 and ITS2) of the ribosomal RNA revealed that 13 out of 16 isolates were of Fasciola gigantica type, whereas three isolates presented a hybrid sequence from F. gigantica and Fasciola hepatica. Interestingly, all the mitochondrial sequences (partial COI and NDI) were of F. gigantica type, suggesting that the maternal lineage of the hybrid form is from F. gigantica. No intra-sequence variation was detected. PMID:22314245
Genetic variation patterns of American chestnut populations at EST-SSRs
Oliver Gailing; C. Dana Nelson
2017-01-01
The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...
Thompson, David N; Thompson, Vicki S; Schaller, Kastli D; Apel, William A; Reed, David W; Lacey, Jeffrey A
2013-04-30
Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose, xylobiose, and/or arabinofuranose-substituted xylan using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.
USDA-ARS?s Scientific Manuscript database
Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next-generation sequence data....
Sharma, Monika; Devi, Kangjam Rekha; Sehgal, Rakesh; Narain, Kanwar; Mahanta, Jagadish; Malla, Nancy
2014-01-01
Taenia solium taeniasis/cysticercosis is a major public health problem in developing countries. This study reports genotypic analysis of T. solium cysticerci collected from two different endemic areas of North (Chandigarh) and North East India (Dibrugarh) by the sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The variation in cox1 sequences of samples collected from these two different geographical regions located at a distance of 2585 km was minimal. Alignment of the nucleotide sequences with different species of Taenia showed the similarity with Asian genotype of T. solium. Among 50 isolates, 6 variant nucleotide positions (0.37% of total length) were detected. These results suggest that population in these geographical areas are homogenous. Copyright © 2013 Elsevier B.V. All rights reserved.
Cutillas, C; Oliveros, R; de Rojas, M; Guevara, D C
2004-06-01
Adults of Trichuris skrjahini have been isolated from the cecum of caprine hosts (Capra hircus), Trichuris ovis and Trichuris globulosa from Ovis aries (sheep) and C. hircus (goats), and Trichuris leporis from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced by polymerase chain reaction (PCR) techniques. The ITS1 of T. skrjabini, T. ovis, T. globulosa, and T. leporis was 495, 757, 757, and 536 nucleotides in length, respectively, and had G + C contents of 59.6, 58.7, 58.7, and 60.8%, respectively. Intraindividual variation was detected in the ITSI sequences of the 4 species. Furthermore, the 5.8S sequences of T. skrjabini, T. ovis, T. globulosa, and T. leporis were compared. A total of 157, 152, 153, and 157 nucleotides in length was observed in the 5.8S sequences of these 4 species, respectively. There were no sequence differences of ITS1 and 5.8S products between T. ovis and T. globulosa. Nevertheless, clear differences were detected between the ITS1 sequences of T. skrjabini, T. ovis, T. leporis, Trichuris muris, and T. arvicolae. The ITS2 fragment from the rDNA of T. skrjabini was sequenced. A comparative study of the ITS2 sequence of T. skrjabini with the previously published ITS2 sequence data of T. ovis, T. leporis, T. muris, and T. arvicolae suggested that the combined use of sequence data from both spacers would be useful in the molecular characterization of trichurid parasites.
Mars-Flyby Comet in False Color
2014-11-07
This frame from a movie sequence of images from NASA Mars Reconnaissance Orbiter MRO shows comet C/2013 A1 Siding Spring before and after its close pass by Mars in October 2014. False color enhances subtle variations in brightness in the comet coma.
Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D
2015-07-01
The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.
Jorge, Paulo H; Mastrochirico-Filho, Vito A; Hata, Milene E; Mendes, Natália J; Ariede, Raquel B; de Freitas, Milena Vieira; Vera, Manuel; Porto-Foresti, Fábio; Hashimoto, Diogo T
2018-01-01
The pirapitinga, Piaractus brachypomus (Characiformes, Serrasalmidae), is a fish from the Amazon basin and is considered to be one of the main native species used in aquaculture production in South America. The objectives of this study were: (1) to perform liver transcriptome sequencing of pirapitinga through NGS and then validate a set of microsatellite markers for this species; and (2) to use polymorphic microsatellites for analysis of genetic variability in farmed stocks. The transcriptome sequencing was carried out through the Roche/454 technology, which resulted in 3,696 non-redundant contigs. Of this total, 2,568 contigs had similarity in the non-redundant (nr) protein database (Genbank) and 2,075 sequences were characterized in the categories of Gene Ontology (GO). After the validation process of 30 microsatellite loci, eight markers showed polymorphism. The analysis of these polymorphic markers in farmed stocks revealed that fish farms from North Brazil had a higher genetic diversity than fish farms from Southeast Brazil. AMOVA demonstrated that the highest proportion of variation was presented within the populations. However, when comparing different groups (1: Wild; 2: North fish farms; 3: Southeast fish farms), a considerable variation between the groups was observed. The F ST values showed the occurrence of genetic structure among the broodstocks from different regions of Brazil. The transcriptome sequencing in pirapitinga provided important genetic resources for biological studies in this non-model species, and microsatellite data can be used as the framework for the genetic management of breeding stocks in Brazil, which might provide a basis for a genetic pre-breeding programme.
Blake, Jonathon; Riddell, Andrew; Theiss, Susanne; Gonzalez, Alexis Perez; Haase, Bettina; Jauch, Anna; Janssen, Johannes W. G.; Ibberson, David; Pavlinic, Dinko; Moog, Ute; Benes, Vladimir; Runz, Heiko
2014-01-01
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception. PMID:24625750
Kim, Sang Hu; Clark, Shawn T.; Surendra, Anuradha; Copeland, Julia K.; Wang, Pauline W.; Ammar, Ron; Collins, Cathy; Tullis, D. Elizabeth; Nislow, Corey; Hwang, David M.; Guttman, David S.; Cowen, Leah E.
2015-01-01
The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients, providing a poignant example of parallel evolution. Together, this combined clinical-genomic approach provides a high-resolution portrait of the fungal microbiome of cystic fibrosis patient lungs and identifies a genetic basis of pathogen adaptation. PMID:26588216
Kim, Sang Hu; Clark, Shawn T; Surendra, Anuradha; Copeland, Julia K; Wang, Pauline W; Ammar, Ron; Collins, Cathy; Tullis, D Elizabeth; Nislow, Corey; Hwang, David M; Guttman, David S; Cowen, Leah E
2015-11-01
The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients, providing a poignant example of parallel evolution. Together, this combined clinical-genomic approach provides a high-resolution portrait of the fungal microbiome of cystic fibrosis patient lungs and identifies a genetic basis of pathogen adaptation.
Wang, Gui-Xiang; Lv, Jing; Zhang, Jie; Han, Shuo; Zong, Mei; Guo, Ning; Zeng, Xing-Ying; Zhang, Yue-Yun; Wang, You-Ping; Liu, Fan
2016-01-01
Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan; Sundaresan, Periasamy
2007-04-19
X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members.
Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia
Jaklitsch, W.M.; Voglmayr, H.
2015-01-01
The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species. PMID:26955191
The evolution processes of DNA sequences, languages and carols
NASA Astrophysics Data System (ADS)
Hauck, Jürgen; Henkel, Dorothea; Mika, Klaus
2001-04-01
The sequences of bases A, T, C and G of about 100 enolase, secA and cytochrome DNA were analyzed for attractive or repulsive interactions by the numbers T 1,T 2,T 3; r of nearest, next-nearest and third neighbor bases of the same kind and the concentration r=other bases/analyzed base. The area of possible T1, T2 values is limited by the linear borders T 2=2T 1-2, T 2=0 or T1=0 for clustering, attractive or repulsive interactions and the border T2=-2 T1+2(2- r) for a variation from repulsive to attractive interactions at r⩽2. Clustering is preferred by most bases in sequences of enolases and secA’ s. Major deviations with repulsive interactions of some bases are observed for archaea bacteria in secA and for highly developed animals and the human species in enolase sequences. The borders of the structure map for enthalpy stabilized structures with maximum interactions are approached in few cases. Most letters of the natural languages and some music notes are at the borders of the structure map.
Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis
2013-08-01
Recent tumor genome sequencing confirmed that one tumor often consists of multiple cell subpopulations (clones) which bear different, but related, genetic profiles such as mutation and copy number variation profiles. Thus far, one tumor has been viewed as a whole entity in cancer functional studies. With the advances of genome sequencing and computational analysis, we are able to quantify and computationally dissect clones from tumors, and then conduct clone-based analysis. Emerging technologies such as single-cell genome sequencing and RNA-Seq could profile tumor clones. Thus, we should reconsider how to conduct cancer systems biology studies in the genome sequencing era. We will outline new directions for conducting cancer systems biology by considering that genome sequencing technology can be used for dissecting, quantifying and genetically characterizing clones from tumors. Topics discussed in Part 1 of this review include computationally quantifying of tumor subpopulations; clone-based network modeling, cancer hallmark-based networks and their high-order rewiring principles and the principles of cell survival networks of fast-growing clones. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain
Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Olsson, R.K.; Feigenson, M.D.; Hernandez, J.C.
2004-01-01
We developed a Late Cretaceous sealevel estimate from Upper Cretaceous sequences at Bass River and Ancora, New Jersey (ODP [Ocean Drilling Program] Leg 174AX). We dated 11-14 sequences by integrating Sr isotope and biostratigraphy (age resolution ??0.5 m.y.) and then estimated paleoenvironmental changes within the sequences from lithofacies and biofacies analyses. Sequences generally shallow upsection from middle-neritic to inner-neritic paleodepths, as shown by the transition from thin basal glauconite shelf sands (transgressive systems tracts [TST]), to medial-prodelta silty clays (highstand systems tracts [HST]), and finally to upper-delta-front quartz sands (HST). Sea-level estimates obtained by backstripping (accounting for paleodepth variations, sediment loading, compaction, and basin subsidence) indicate that large (>25 m) and rapid (???1 m.y.) sea-level variations occurred during the Late Cretaceous greenhouse world. The fact that the timing of Upper Cretaceous sequence boundaries in New Jersey is similar to the sea-level lowering records of Exxon Production Research Company (EPR), northwest European sections, and Russian platform outcrops points to a global cause. Because backstripping, seismicity, seismic stratigraphic data, and sediment-distribution patterns all indicate minimal tectonic effects on the New Jersey Coastal Plain, we interpret that we have isolated a eustatic signature. The only known mechanism that can explain such global changes-glacio-eustasy-is consistent with foraminiferal ??18O data. Either continental ice sheets paced sea-level changes during the Late Cretaceous, or our understanding of causal mechanisms for global sea-level change is fundamentally flawed. Comparison of our eustatic history with published ice-sheet models and Milankovitch predictions suggests that small (5-10 ?? 106 km3), ephemeral, and areally restricted Antarctic ice sheets paced the Late Cretaceous global sea-level change. New Jersey and Russian eustatic estimates are typically one-half of the EPR amplitudes, though this difference varies through time, yielding markedly different eustatic curves. We conclude that New Jersey provides the best available estimate for Late Cretaceous sea-level variations. ?? 2004 Geological Society America.
Evolution and Diversity in Human Herpes Simplex Virus Genomes
Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.
2014-01-01
Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835
Sellem, C. H.; d'Aubenton-Carafa, Y.; Rossignol, M.; Belcour, L.
1996-01-01
The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. PMID:8725226
Cook, David E.; Bayless, Adam M.; Wang, Kai; Guo, Xiaoli; Song, Qijian; Jiang, Jiming; Bent, Andrew F.
2014-01-01
Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide–sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance. PMID:24733883
Kuramae, Eiko E.; Hillekens, Remy; de Hollander, Mattias; Kiers, E. Toby; Röling, Wilfred F. M.; Kowalchuk, George A.; van der Heijden, Marcel G. A.
2012-01-01
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. PMID:22885748
Su, Yingjuan; Wang, Ting; Zheng, Bo; Jiang, Yu; Chen, Guopei; Gu, Hongya
2004-11-01
Sequences of chloroplast DNA (cpDNA) atpB- rbcL intergenic spacers of individuals of a tree fern species, Alsophila spinulosa, collected from ten relict populations distributed in the Hainan and Guangdong provinces, and the Guangxi Zhuang region in southern China, were determined. Sequence length varied from 724 bp to 731 bp, showing length polymorphism, and base composition was with high A+T content between 63.17% and 63.95%. Sequences were neutral in terms of evolution (Tajima's criterion D=-1.01899, P>0.10 and Fu and Li's test D*=-1.39008, P>0.10; F*=-1.49775, P>0.10). A total of 19 haplotypes were identified based on nucleotide variation. High levels of haplotype diversity (h=0.744) and nucleotide diversity (Dij=0.01130) were detected in A. spinulosa, probably associated with its long evolutionary history, which has allowed the accumulation of genetic variation within lineages. Both the minimum spanning network and neighbor-joining trees generated for haplotypes demonstrated that current populations of A. spinulosa existing in Hainan, Guangdong, and Guangxi were subdivided into two geographical groups. An analysis of molecular variance indicated that most of the genetic variation (93.49%, P<0.001) was partitioned among regions. Wright's isolation by distance model was not supported across extant populations. Reduced gene flow by the Qiongzhou Strait and inbreeding may result in the geographical subdivision between the Hainan and Guangdong + Guangxi populations (FST=0.95, Nm=0.03). Within each region, the star-like pattern of phylogeography of haplotypes implied a population expansion process during evolutionary history. Gene genealogies together with coalescent theory provided significant information for uncovering phylogeography of A. spinulosa.
Colinet, F G; Vanderick, S; Charloteaux, B; Eggen, A; Gengler, N; Renaville, B; Brasseur, R; Portetelle, D; Renaville, Robert
2009-01-01
The growth hormone secretagogue receptor (GHSR) is involved in the regulation of energetic homeostasis and GH secretion. In this study, the bovine GHSR gene was mapped to BTA1 between BL26 and BMS4004. Two different bovine GHSR CDS (GHSR1a and GHSR1b) were sequenced. Six polymorphisms (five SNPs and one 3-bp indel) were also identified, three of them leading to amino acid variations L24V, D194N, and Del R242. These variations are located in the extracellular N-terminal end, the exoloop 2, and the cytoloop 3 of the receptor, respectively.
Krieger, Jeannette; Hett, Anne Kathrin; Fuerst, Paul A; Birstein, Vadim J; Ludwig, Arne
2006-01-01
Significant intraindividual variation in the sequence of the 18S rRNA gene is unusual in animal genomes. In a previous study, multiple 18S rRNA gene sequences were observed within individuals of eight species of sturgeon from North America but not in the North American paddlefish, Polyodon spathula, in two species of Polypterus (Polypterus delhezi and Polypterus senegalus), in other primitive fishes (Erpetoichthys calabaricus, Lepisosteus osseus, Amia calva) or in a lungfish (Protopterus sp.). These observations led to the hypothesis that this unusual genetic characteristic arose within the Acipenseriformes after the presumed divergence of the sturgeon and paddlefish families. In the present study, a survey of nearly all Eurasian acipenseriform species was conducted to examine 18S rDNA variation. Intraindividual variation was not found in the polyodontid species, the Chinese paddlefish, Psephurus gladius, but variation was detected in all Eurasian acipenserid species. The comparison of sequences from two major segments of the 18S rRNA gene and identification of sites where insertion/deletion events have occurred are placed in the context of evolutionary relationships within the Acipenseriformes and the evolution of rDNA variation in this group.
Brandstätter, Anita; Peterson, Christine T; Irwin, Jodi A; Mpoke, Solomon; Koech, Davy K; Parson, Walther; Parsons, Thomas J
2004-10-01
Large forensic mtDNA databases which adhere to strict guidelines for generation and maintenance, are not available for many populations outside of the United States and western Europe. We have established a high quality mtDNA control region sequence database for urban Nairobi as both a reference database for forensic investigations, and as a tool to examine the genetic variation of Kenyan sequences in the context of known African variation. The Nairobi sequences exhibited high variation and a low random match probability, indicating utility for forensic testing. Haplogroup identification and frequencies were compared with those reported from other published studies on African, or African-origin populations from Mozambique, Sierra Leone, and the United States, and suggest significant differences in the mtDNA compositions of the various populations. The quality of the sequence data in our study was investigated and supported using phylogenetic measures. Our data demonstrate the diversity and distinctiveness of African populations, and underline the importance of establishing additional forensic mtDNA databases of indigenous African populations.
USDA-ARS?s Scientific Manuscript database
In previous work, we reported on the isolation and genome sequence analysis of Bacillus cereus strain tsu1 NCBI accession number JPYN00000000. The 36 scaffolds in the assembled tsu1 genome were all aligned with B. cereus B4264 genome with variations. Genes encoding for xylanase and cellulase and the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraiwa, Akikazu; Yamanaka, Katsuo; Kwok, W.W.
Although HLA genes have been shown to be associated with certain diseases, the basis for this association is unknown. Recent studies, however, have documented patterns of nucleotide sequence variation among some HLA genes associated with a particular disease. For rheumatoid arthritis, HLA genes in most patients have a shared nucleotide sequence encoding a key structural element of an HLA class II polypeptide; this sequence element is critical for the interaction of the HLA molecule with antigenic peptides and with responding T cells, suggestive of a direct role for this sequence element in disease susceptibility. The authors describe the serological andmore » cellular immunologic characteristics encoded by this rheumatoid arthritis-associated sequence element. Site-directed mutagenesis of the DRB1 gene was used to define amino acids critical for antibody and T-cell recognition of this structural element, focusing on residues that distinguish the rheumatoid arthritis-associated alleles Dw4 and Dw14 from a closely related allele, Dw10, not associated with disease. Both the gain and loss of rheumatoid arthritis-associated epitopes were highly dependent on three residues within a discrete domain of the HLA-DR molecule. Recognition was most strongly influenced by the following amino acids (in order): 70 > 71 > 67. Some alloreactive T-cell clones were also influenced by amino acid variation in portions of the DR molecule lying outside the shared sequence element.« less
Genetic variation and dynamics of infections of equid herpesvirus 5 in individual horses.
Back, Helena; Ullman, Karin; Leijon, Mikael; Söderlund, Robert; Penell, Johanna; Ståhl, Karl; Pringle, John; Valarcher, Jean-François
2016-01-01
Equid herpesvirus 5 (EHV-5) is related to the human Epstein-Barr virus (human herpesvirus 4) and has frequently been observed in equine populations worldwide. EHV-5 was previously assumed to be low to non-pathogenic; however, studies have also related the virus to the severe lung disease equine multinodular pulmonary fibrosis (EMPF). Genetic information of EHV-5 is scanty: the whole genome was recently described and only limited nucleotide sequences are available. In this study, samples were taken twice 1 year apart from eight healthy horses at the same professional training yard and samples from a ninth horse that was diagnosed with EMPF with samples taken pre- and post-mortem to analyse partial glycoprotein B (gB) gene of EHV-5 by using next-generation sequencing. The analysis resulted in 27 partial gB gene sequences, 11 unique sequence types and five amino acid sequences. These sequences could be classified within four genotypes (I-IV) of the EHV-5 gB gene based on the degree of similarity of the nucleotide and amino acid sequences, and in this work horses were shown to be identified with up to three different genotypes simultaneously. The observations showed a range of interactions between EHV-5 and the host over time, where the same virus persists in some horses, whereas others have a more dynamic infection pattern including strains from different genotypes. This study provides insight into the genetic variation and dynamics of EHV-5, and highlights that further work is needed to understand the EHV-5 interaction with its host.
Seal, B S; Neill, J D; Ridpath, J F
1994-07-01
Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.
Unique variations of Epstein-Barr virus-encoded BARF1 gene in nasopharyngeal carcinoma biopsies.
Wang, Yun; Wang, Xiao-Feng; Sun, Zhi-Fu; Luo, Bing
2012-06-01
The Epstein-Barr virus (EBV) BamHI-A rightward frame 1 (BARF1) gene is frequently expressed in EBV-associated epithelial malignancies and involves in oncogenicity and immunomodulation. To characterize the variations of BARF1 gene in different populations, the sequences of BARF1 gene in Northern Chinese nasopharyngeal carcinoma (NPC), EBV-associated gastric carcinoma (EBVaGC) and healthy donors were analyzed. The correlation of BARF1 variation with polymorphisms of BamHI F fragment (type F and f variants) and EBV-coded viral interleukin-10 (vIL-10) gene (B95-8 and SPM patterns) was also explored. Two major subtypes of BARF1 gene, designated as B95-8 and V29A, were identified. B95-8 subtype had identical amino acid sequence to B95-8 and was the dominant subtype among the EBV isolates from Northern China. V29A subtype, with one consistent amino acid change at residue 29 (V→A) and several nucleotide changes, showed higher frequency in NPC cases (25.3%, 20/79) than in EBVaGC cases (0/45) or healthy donors (4.3%, 2/46) (NPC vs. EBVaGC: P=0.0001; NPC vs. healthy donor: P=0.004). A preferential linkage between BamHI F and BARF1/vIL-10 polymorphisms was found. Type f isolates was specially correlated with the V29A/SPM genotype in NPC isolates and type f/V29A/SPM was preferentially found in NPC. BARF1/c-fms homology domain, transforming domain and cytotoxic T lymphocyte (CTL) epitopes of BARF1 were highly conserved in most isolates, suggesting the important role of BARF1 in virus infection and the potential usefulness in EBV-targeting immunotherapy of EBV-associated tumors. The relatively higher prevalence of type f/V29A/SPM strains in NPC may also suggest the association between these variations in multiple viral genes and NPC. Copyright © 2012 Elsevier B.V. All rights reserved.
HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUCLEUS OF COMET C/2012 S1 (ISON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamy, Philippe L.; Toth, Imre; Weaver, Harold A., E-mail: philippe.lamy@lam.fr
2014-10-10
We report on the analysis of several sequences of broadband visible images of comet C/2012 S1 (ISON) taken with the Wide Field Camera 3 of the Hubble Space Telescope on 2013 April 10, May 8, October 9, and November 1 in an attempt to detect and characterize its nucleus. Whereas the overwhelming coma precluded the detection of the nucleus in the first two sequences, the contrast was sufficient in early October to unambiguously retrieve the signal from the nucleus. Two images taken within a few minutes led to similar V magnitudes for the nucleus of 21.97 and 22.0 with amore » 1σ uncertainty of 0.065. Assuming a standard value for the geometric albedo (0.04) and a linear phase function with a coefficient of 0.04 mag deg{sup –1}, these V values imply that the nucleus radius is 0.68 ± 0.02 km. Although this result does depend on these two assumptions, we argue that the radius most likely lies in the range 0.6-0.9 km. This result is consistent with the constraints derived from the water production rates reported by Combi et al. The last sequence of images in 2013 November revealed temporal variation of the innermost coma. If attributed to a single rotating jet, this coma brightness variation suggests the rotational period of the nucleus may be close to ∼10.4 hr.« less
Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.
Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B
2014-12-01
Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.
Korber, B T; Osmanov, S; Esparza, J; Myers, G
1994-11-01
The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.
Minimal Absent Words in Four Human Genome Assemblies
Garcia, Sara P.; Pinho, Armando J.
2011-01-01
Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species. PMID:22220210
Schadt, Eric E.; Banerjee, Onureena; Fang, Gang; Feng, Zhixing; Wong, Wing H.; Zhang, Xuegong; Kislyuk, Andrey; Clark, Tyson A.; Luong, Khai; Keren-Paz, Alona; Chess, Andrew; Kumar, Vipin; Chen-Plotkin, Alice; Sondheimer, Neal; Korlach, Jonas; Kasarskis, Andrew
2013-01-01
Current generation DNA sequencing instruments are moving closer to seamlessly sequencing genomes of entire populations as a routine part of scientific investigation. However, while significant inroads have been made identifying small nucleotide variation and structural variations in DNA that impact phenotypes of interest, progress has not been as dramatic regarding epigenetic changes and base-level damage to DNA, largely due to technological limitations in assaying all known and unknown types of modifications at genome scale. Recently, single-molecule real time (SMRT) sequencing has been reported to identify kinetic variation (KV) events that have been demonstrated to reflect epigenetic changes of every known type, providing a path forward for detecting base modifications as a routine part of sequencing. However, to date no statistical framework has been proposed to enhance the power to detect these events while also controlling for false-positive events. By modeling enzyme kinetics in the neighborhood of an arbitrary location in a genomic region of interest as a conditional random field, we provide a statistical framework for incorporating kinetic information at a test position of interest as well as at neighboring sites that help enhance the power to detect KV events. The performance of this and related models is explored, with the best-performing model applied to plasmid DNA isolated from Escherichia coli and mitochondrial DNA isolated from human brain tissue. We highlight widespread kinetic variation events, some of which strongly associate with known modification events, while others represent putative chemically modified sites of unknown types. PMID:23093720
Schadt, Eric E; Banerjee, Onureena; Fang, Gang; Feng, Zhixing; Wong, Wing H; Zhang, Xuegong; Kislyuk, Andrey; Clark, Tyson A; Luong, Khai; Keren-Paz, Alona; Chess, Andrew; Kumar, Vipin; Chen-Plotkin, Alice; Sondheimer, Neal; Korlach, Jonas; Kasarskis, Andrew
2013-01-01
Current generation DNA sequencing instruments are moving closer to seamlessly sequencing genomes of entire populations as a routine part of scientific investigation. However, while significant inroads have been made identifying small nucleotide variation and structural variations in DNA that impact phenotypes of interest, progress has not been as dramatic regarding epigenetic changes and base-level damage to DNA, largely due to technological limitations in assaying all known and unknown types of modifications at genome scale. Recently, single-molecule real time (SMRT) sequencing has been reported to identify kinetic variation (KV) events that have been demonstrated to reflect epigenetic changes of every known type, providing a path forward for detecting base modifications as a routine part of sequencing. However, to date no statistical framework has been proposed to enhance the power to detect these events while also controlling for false-positive events. By modeling enzyme kinetics in the neighborhood of an arbitrary location in a genomic region of interest as a conditional random field, we provide a statistical framework for incorporating kinetic information at a test position of interest as well as at neighboring sites that help enhance the power to detect KV events. The performance of this and related models is explored, with the best-performing model applied to plasmid DNA isolated from Escherichia coli and mitochondrial DNA isolated from human brain tissue. We highlight widespread kinetic variation events, some of which strongly associate with known modification events, while others represent putative chemically modified sites of unknown types.
Enhancer activity of Helitron in sericin-1 gene promoter from Bombyx mori.
Huang, Ke; Li, Chun-Feng; Wu, Jie; Wei, Jun-Hong; Zou, Yong; Han, Min-Jin; Zhou, Ze-Yang
2016-06-01
Sericin is a kind of water-soluble protein expressed specifically in the middle silk gland of Bombyx mori. When the sericin-1 gene promoter was cloned and a transgenic vector was constructed to express a foreign protein, a specific Helitron, Bmhel-8, was identified in the sericin-1 gene promoter sequence in some genotypes of Bombyx mori and Bombyx mandarina. Given that the Bmhel-8 Helitron transposon was present only in some genotypes, it could be the source of allelic variation in the sericin-1 promoter. The length of the sericin-1 promoter sequence is approximately 1063 or 643 bp. The larger size of the sequence or allele is ascribed to the presence of Bmhel-8. Silkworm genotypes can be homozygous for either the shorter or larger promoter sequence or heterozygous, containing both alleles. Bmhel-8 in the sericin-1 promoter exhibits enhancer activity, as demonstrated by a dual-luciferase reporter system in BmE cell lines. Furthermore, Bmhel-8 displays enhancer activity in a sericin-1 promoter-driven gene expression system but does not regulate the tissue-specific expression of sericin-1. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Artificial mismatch hybridization
Guo, Zhen; Smith, Lloyd M.
1998-01-01
An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.
Tandemly repeated sequences in mtDNA control region of whitefish, Coregonus lavaretus.
Brzuzan, P
2000-06-01
Length variation of the mitochondrial DNA control region was observed with PCR amplification of a sample of 138 whitefish (Coregonus lavaretus). Nucleotide sequences of representative PCR products showed that the variation was due to the presence of an approximately 100-bp motif tandemly repeated two, three, or five times in the region between the conserved sequence block-3 (CSB-3) and the gene for phenylalanine tRNA. This is the first report on the tandem array composed of long repeat units in mitochondrial DNA of salmonids.