Sample records for pl peak position

  1. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The effects of different annealing conditions on the photoluminescence of nanoporous alumina film are reasonably explained.

  2. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  3. Partial purification and characterization of protection-inducing antigens from the muscle larva of Trichinella spiralis by molecular sizing chromatography and preparative flatbed isoelectric focusing.

    PubMed

    Despommier, D D

    1981-01-01

    The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed strongly at 206 nm. Neither the pl 4.0 or pl 9.0 antigen stained positively with the PAS reaction.

  4. The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, C. M.; Huang, X. Y.; Lei, M. Y.

    2017-01-01

    In this paper, ZnO-MoS2-FT (FT is the fabrication temperature of MoS2) core shell nano-material samples (with ZnO as a core and MoS2 as a shell material) were fabricated on ITO substrate using hydrothermal method. The crystal structure, morphology, optical absorption and photoluminescence (PL) of samples were investigated. Compared with that of pure ZnO nanorods, ZnO-MoS2-FT samples show an enhanced light absorption. In addition, ultraviolet (UV) and visible (Vis) PL intensity of ZnO-MoS2-FT samples excited by 325 nm laser are greatly weakened. The UV PL peak position is not changed obviously. However, the Vis PL peak position is changed visibly. The Vis PL of ZnO-MoS2-FT samples under UV excitation indicates that the ratio of oxygen interstitial to oxygen vacancy is decreased. The suppression of UV PL of ZnO-MoS2-FT samples may be related to the weakening of crystal quality of ZnO, easier separation of electron-hole pairs, enhancement of light absorption, and newly introduced defects in the interface between ZnO and MoS2. Under 514 nm laser excitation, the PL peak position of ZnO-MoS2-FT samples has a red shift with FT being increased from 80 to 160 °C. The influence of excitation power (EP) on the PL of ZnO-MoS2-FT samples was also investigated. The PL of ZnO-MoS2-FT samples have a red shift with EP being increased. This may be due to the sample temperature is increased with EP, resulting an enhancement of electron-phonon interaction. A schematic diagram of charge generation and transfer is presented to understand the mechanism of PL of ZnO-MoS2 under UV and Vis excitation.

  5. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  6. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  7. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  8. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    NASA Astrophysics Data System (ADS)

    Liao, Hongbo; Wen, Weijia; Wong, George K.

    2006-12-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO2, ZnO, and TiO2) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity.

  9. Unusual Carrier Thermalization in a Dilute GaAs1-xNx Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, P. H.; Xu, Z. Y.; Luo, X. D.

    2007-01-01

    Photoluminescence (PL) properties of the E{sub 0}, E{sub 0} + {Delta}{sub 0}, and E{sub +} bands in an x=0.62% GaAs{sub 1-x}N{sub x} alloy were investigated in detail, including their peak position, linewidth, and line shape dependences on the excitation energy, excitation power, and temperature, using micro-PL. The hot electrons within the E{sub +} band are found to exhibit highly unusual thermalization, which results in a large blueshift in its PL peak energy by >2k{sub B}T, suggesting peculiar density of states and carrier dynamics of the E{sub +} band.

  10. Optical studies of CdSe/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Kushwaha, Kamal Kumar; Ramrakhaini, Meera

    2018-05-01

    The nanocomposite films of CdSe nanocrystals in polyvinyl alcohol (PVA) matrix were synthesized by environmental friendly chemical method. These composites were characterized by X-ray diffraction which indicates the hexagonal crystalline structure of CdSe with crystal size up to a few nm. The crystal size is found to decrease by increasing PVA Concentration. The photoluminescence (PL) characteristics of these composite films with varying concentration of PVA as well as Cd2+ content have been investigated. The PL peak of CdSe was observed at 510 nm and higher intensity is observed by increasing PVA concentration without any change in position of PL peak. Due to proper passivation of surface states non-radiative transition are reduced which enhance the PL intensity. By increasing concentration of Cd2+ content in the CdSe/PVA nanocomposite films, smaller CdSe nanocrystals were obtained giving higher intensity and blue shift in the PL peak due to enhanced oscillator strength and quantum confinement effect. The PL peak in green and blue region makes these composite films promising materials for optical display devices. The Refractive index of these composites was also measured at sodium line with the help of Abee's refractometer and was found in the range of 2.20-2.45. It is seen that refractive index varies with polymer concentration. This may be useful for their potential application in anti-reflection coating, display devices and optical sensors.

  11. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC{sub x}O{sub y} thin films and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian

    2016-07-25

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy.more » A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.« less

  12. Carbon as a source for yellow luminescence in GaN: Isolated C{sub N} defect or its complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christenson, Sayre G.; Xie, Weiyu; Sun, Y. Y., E-mail: suny4@rpi.edu

    2015-10-07

    We study three carbon defects in GaN, isolated C{sub N} and its two complexes with donors C{sub N}–O{sub N}, and C{sub N}–Si{sub Ga}, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated C{sub N} defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that ofmore » the C{sub N} defect. The role of the positively charged donors (O{sub N} or Si{sub Ga}) next to C{sub N} is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated C{sub N}. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated C{sub N} defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes.« less

  13. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

    PubMed

    Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru

    2014-01-31

    Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.

  14. Temperature-dependent photoluminescence of CuAlO2 single crystals fabricated by using a flux self-removal method

    NASA Astrophysics Data System (ADS)

    Nam, Y. S.; Yoon, J. S.; Ju, H. L.; Chang, S. K.; Baek, K. S.

    2014-10-01

    The temperature-dependent behavior of p-type transparent semiconducting oxide CuAlO2 single crystals prepared by using a flux self-removal method in alumina crucibles was investigated through transmittance and photoluminescence (PL) measurements at temperatures from 12 K to room temperature. The low-temperature (12 K) PL spectrum shows two weak, broad emission peaks, one at 3.52 eV and the other at 3.08 eV, which we assign to excitonic emission and to defectrelated emission originating from copper vacancies. The positions of the PL peaks as functions of temperature exhibit a normal behavior satisfying the standard Varshini law, and the Debye temperature is found to be θ D = 610 ± 80 K. The exciton-binding energy of the CuAlO2 single crystal is estimated to be 49 meV from the PL intensity change with temperature.

  15. Using Microsensor Technology to Quantify Match Demands in Collegiate Women's Volleyball.

    PubMed

    Vlantes, Travis G; Readdy, Tucker

    2017-12-01

    Vlantes, TG and Readdy, T. Using microsensor technology to quantify match demands in collegiate women's volleyball. J Strength Cond Res 31(12): 3266-3278, 2017-The purpose of this study was to quantify internal and external load demands of women's NCAA Division I collegiate volleyball competitions using microsensor technology and session rating of perceived exertion (S-RPE). Eleven collegiate volleyball players wore microsensor technology (Optimeye S5; Catapult Sports, Chicago, IL, USA) during 15 matches played throughout the 2016 season. Parameters examined include player load (PL), high impact PL, percentage of HI PL, explosive efforts (EEs), and jumps. Session rating of perceived exertion was collected 20 minutes postmatch using a modified Borg scale. The relationship between internal and external load was explored, comparing S-RPE data with the microsensor metrics (PL, HI PL, % HI PL, EEs, and jumps). The setter had the greatest mean PL and highest number of jumps of all positions in a 5-1 system, playing all 6 rotations. Playing 4 sets yielded a mean PL increase of 25.1% over 3 sets, whereas playing 5 sets showed a 31.0% increase in PL. A multivariate analysis of variance revealed significant differences (p < 0.01) across all position groups when examining % HI PL and jumps. Cohen's d analysis revealed large (≥0.8) effect sizes for these differences. Defensive specialists recorded the greatest mean S-RPE values over all 15 matches (886 ± 384.6). Establishing positional load demands allows coaches, trainers, and strength and conditioning professionals to implement training programs for position-specific demands, creating consistent peak performance, and reducing injury risk.

  16. Bound exciton and free exciton states in GaSe thin slab.

    PubMed

    Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng

    2016-09-22

    The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.

  17. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  18. Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra.

    PubMed

    Christopher, Jason W; Goldberg, Bennett B; Swan, Anna K

    2017-10-25

    Monolayer molybdenum disulfide (MoS 2 ) has emerged as a model system for studying many-body physics because the low dimensionality reduces screening leading to tightly bound states stable at room temperature. Further, the many-body states possess a pseudo-spin degree of freedom that corresponds with the two direct-gap valleys of the band structure, which can be optically manipulated. Here we focus on one bound state, the negatively charged trion. Unlike excitons, trions can radiatively decay with non-zero momentum by kicking out an electron, resulting in an asymmetric trion photoluminescence (PL) peak with a long low-energy tail and peak position that differs from the zero momentum trion energy. The asymmetry of the trion PL peak and resulting peak red-shift depends both on the trion size and a temperature-dependent contribution. Ignoring the trion asymmetry will result in over estimating the trion binding energy by nearly 20 meV at room temperature. We analyze the temperature-dependent PL to reveal the effective trion size, consistent with the literature, and the temperature dependence of the band gap and spin-orbit splitting of the valence band. This is the first time the temperature-dependence of the trion PL has been analyzed with such detail in any system.

  19. Photoluminescence properties of anodic aluminum oxide formed in a mixture of ammonium fluoride and oxalic acid

    NASA Astrophysics Data System (ADS)

    Li, Shou-Yi; Wang, Jian; Li, Yan

    2017-06-01

    Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.

  20. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    NASA Astrophysics Data System (ADS)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  1. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  2. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Al-Heuseen, K.; Hashim, M. R.; Ali, N. K.

    2011-05-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2SO 4:H 2O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2H 5OH.

  3. Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials

    DTIC Science & Technology

    2018-01-24

    TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra

  4. Adjustable YAG : Ce3+ photoluminescence from photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Li, Yigang; Almeida, Rui M.

    2013-04-01

    Four different photonic bandgap (PBG) structures embedding a YAG : Ce3+ layer inside two three-period Bragg mirrors were prepared by sol-gel processing, forming Fabry-Perot microcavities whose defect peaks moved from red to green. Under irradiation of blue Ar+ laser light, the typical broad YAG : Ce3+ photoluminescence (PL) emission band was highly narrowed in these four samples, with the new position of the modified PL peaks corresponding to the resonance wavelength of each microcavity sample, while the simultaneous colour changes could be easily observed by the human eye. The adjustable range demonstrated here was wide enough to generate white light with colour temperatures from warm white (˜2700 K) to daylight white (˜5600 K), by mixing the modified PL with light from any usual blue LED excitation source. This result provides a novel technique to solve the red-deficiency problem in the white LED industry: instead of relying on the development of new phosphors, the well-known PL of YAG : Ce3+ can be conveniently adjusted by 1D PBG structures.

  5. Shaping the photoluminescence from gold nanoshells by cavity plasmons in dielectric-metal core-shell resonators

    NASA Astrophysics Data System (ADS)

    Sun, Ren; Wan, Mingjie; Wu, Wenyang; Gu, Ping; Chen, Zhuo; Wang, Zhenlin

    2016-08-01

    We report experimental investigation of the photoluminescence (PL) generated from the gold nanoshells of the dielectric-metal core-shell resonators (DMCSR) that support multipolar electric and magnetic based cavity plasmon resonances. Significantly enhanced and modulated PL spectrum is observed. By comparing the experimental results with analytical Mie calculations, we are able to demonstrate that the observed reshaping effects are due to the excitations of those narrow-band cavity plasmon resonances. We also present that the variation on the dielectric core size allows for tuning the cavity plasmon resonance wavelengths and thus the peak positions of the PL spectrum.

  6. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  7. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  8. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties.

    PubMed

    Liang, Yucang; Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-04

    Crystalline ZnO -ROH and ZnO -OR (R = Me, Et, i Pr, n Bu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)₂ deriving from the reaction of Zn[N(SiMe₃)₂]₂ with ROH and of the freshly prepared Zn(OR)₂ under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO -ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO -OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)₂ generated ZnO -R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.

  9. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties

    PubMed Central

    Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-01

    Crystalline ZnO-ROH and ZnO-OR (R = Me, Et, iPr, nBu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)2 deriving from the reaction of Zn[N(SiMe3)2]2 with ROH and of the freshly prepared Zn(OR)2 under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO-ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO-OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)2 generated ZnO-R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons’ movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties. PMID:29300343

  10. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  11. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  12. Strong photoluminescence characteristics of sulforhodamine B attached on photonic crystal

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Kang, Kwang-Sun

    2014-10-01

    The optical properties of sulforhodamine B (SRH) impregnated in photonic crystal by two step synthetic processes including a urethane bond formation between a 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) and a SRH with elevated temperature in pyridine and hydrolysis-condensation reactions between synthesized ICPTES/SRH (ICPSRH) and tetraethoxyorthosilicate (TEOS) in NH4OH. The monodisperse silica spheres impregnated the ICPSRH (ICPSRHS) are fabricated. The reduction of the absorption peak at 2270 cm-1 representing asymmetric stretching vibration of -N=C=O indicates the progress of the reaction and new absorption peak at 1712 cm-1 characterizing -C=O stretching vibration indicates the formation of urethane bond. The UV-visible absorption spectra show the broadened spectral line width by intermolecular interaction. The photoluminescence (PL) peak of the SRH in methanol shows a hypsochromic shift with the increase the excitation wavelength. However, the PL peak for the ICPSRH exhibits a bathochromic shift as the excitation wavelength increases. The PL peak for the ICPSRH shows no hypsochromic or bathochromic shift. The PL peaks for SRH in methanol, ICPSRH and ICPSRHS are at 568, 598 and 572 nm, respectively. The main cause of the PL peak shift is due to the intermolecular interaction.

  13. Photoluminescence and contactless electroreflectance characterization of BexCd1-xSe alloys

    NASA Astrophysics Data System (ADS)

    Huang, P. J.; Huang, Y. S.; Firszt, F.; Meczynska, H.; Maksimov, O.; Tamargo, M. C.; Tiong, K. K.

    2007-01-01

    A detailed optical characterization of a Bridgman-grown wurtzite- (WZ-) type Be0.075Cd0.925Se mixed crystal and three zinc-blende (ZB) BexCd1-xSe epilayers grown by MBE on InP substrates has been carried out via photoluminescence (PL) and contactless electroreflectance (CER) in the temperature range of 15-400 K. The PL spectrum of the WZ-BeCdSe at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep-level defects, while the PL emission peaks of the ZB-BeCdSe epilayers show an asymmetric shape with a tail on the low-energy side. Various interband transitions, originating from the band edge and spin-orbit splitting critical points, of the samples have been observed in the CER spectra. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the energies of the fundamental transitions determined from electromodulation data. The parameters that describe the temperature dependence of the fundamental and spin split-off bandgaps and the broadening function of the band-edge exciton are evaluated and discussed.

  14. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  15. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  16. Two dimensional imaging of photoluminescence from rice for quick and non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Katsumata, T.; Suzuki, T.; Aizawa, H.; Matashige, E.

    2005-05-01

    The visible PL with broad peak at wavelength of λ=462 nm are observed from polished rice, flour and corn starch under illumination of ultra-violet (UV) light. PL peaking at λ=462 nm is excited effectively with UV light at λ=365 nm. Peak intensity is found to vary with the source and the breed of the rice specimens. PL images from rice also reveal the uniformity of the rice products. Two-dimensional images of PL, which reavealed the uniformity of rice under UV irradiation, are potentially useful for the evaluation and the quality control of the rice products.

  17. Relationship of Hip and Trunk Muscle Function with Single Leg Step-Down Performance: Implications for Return to Play Screening and Rehabilitation.

    PubMed

    Burnham, Jeremy M; Yonz, Michael C; Robertson, Kaley E; McKinley, Rachelle; Wilson, Benjamin R; Johnson, Darren L; Ireland, Mary Lloyd; Noehren, Brian

    2016-11-01

    Evaluate the relationship of hip and trunk muscle function with the Single Leg Step-Down test (SLSD). Laboratory study. Biomechanics Laboratory. 71 healthy participants with no history of anterior cruciate ligament (ACL) or lower extremity injury in the last 3 months completed this study (38 males, 33 females; mean 25.49 ± 0.62 years). Hip abduction (HABD), external rotation (HER), and extension (HEXT) peak isometric force were measured. Trunk endurance was measured with plank (PL) and side plank (SPL) tests. SLSD repetitions in 60-s and dynamic knee valgus (VAL) were recorded. PL, SPL, HABD, HER, and HEXT were positively correlated with SLSD repetitions. PL (r = 0.598, p < 0.001) was most correlated with SLSD repetitions, and regression demonstrated that PL (p = 0.001, R 2  = 0.469) was a predictor of SLSD repetitions. VAL trended toward negative correlation with PL and SPL. Sex-specific differences were present, with PL, SPL, HABD, and HER showing stronger relationships with SLSD in females. Hip and trunk muscle function were positively correlated with SLSD performance, and these relationships were strongest in females. PL predicted performance on the SLSD. Further research is needed to investigate the utility of SLSD as a screening or return-to-play test for lower extremity conditions such as ACL injury and patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Momentum peak shift and width of longitudinal momentum distribution of projectilelike fragments produced at E =290 MeV /nucleon

    NASA Astrophysics Data System (ADS)

    Momota, S.; Kanazawa, M.; Kitagawa, A.; Sato, S.

    2018-04-01

    Longitudinal momentum (PL) distributions of projectilelike fragments produced at E =290 MeV /nucleon are investigated. PL distributions of fragments produced by Ar and Kr beams with a wide variety of targets (C, Al, Nb, Tb, and Au) were measured using the fragment separator at HIMAC. PL distributions observed for fragments with a wide range of mass losses Δ A (1-30 for Ar beam and 1-64 for Kr beam), show a slightly, but definitely asymmetric nature. The peak shift and width were obtained from the observed PL distributions. No significant target dependence was found in either the peak shift or width. For the practical application, the variation in momentum peak shift with fragment mass (AF) was represented by a parabolic function. The width on the high-PL side (σHigh) is well reproduced by the Goldhaber formula, which is obtained from the contribution of the Fermi momentum. The behavior of the reduced width, σ0, obtained from σHigh via the Goldhaber formulation, is consistent with the mass-dependent Fermi momentum of a nucleon. The width on the low-PL side (σLow) is markedly larger than σHigh and exhibits a clear AF dependence.

  19. Optical properties of self-assembled ZnTe quantum dots grown by molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.S.; Lai, Y.J.; Chou, W.C.

    2005-02-01

    The morphology and the size-dependent photoluminescence (PL) spectra of the type-II ZnTe quantum dots (QDs) grown in a ZnSe matrix were obtained. The coverage of ZnTe varied from 2.5 to 3.5 monolayers (MLs). The PL peak energy decreased as the dot size increased. Excitation power and temperature-dependent PL spectra are used to characterize the optical properties of the ZnTe quantum dots. For 2.5- and 3.0-ML samples, the PL peak energy decreased monotonically as the temperature increased. However, for the 3.5-ML sample, the PL peak energy was initially blueshifted and then redshifted as the temperature increased above 40 K. Carrier thermalizationmore » and carrier transfer between QDs are used to explain the experimental data. A model of temperature-dependent linewidth broadening is employed to fit the high-temperature data. The activation energy, which was found by the simple PL intensity quenching model, of the 2.5, 3.0, and 3.5 MLs were determined to be 6.35, 9.40, and 18.87 meV, respectively.« less

  20. Excitation-Power Dependence of the Near Band-Edge PL Spectra of CdMnTe with High Mn Concentrations

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho; Park, Hyoyeol

    2011-12-01

    Temperature and excitation power dependences of photoluminescence (PL) measurements were studied for the CdMnTe crystal grown by the vertical Bridgman method. The near band-edge and intra-Mn2+ emissions were investigated as a function of temperature. The observed band-edge peak of the PL spectrum showed a clear blue-shift with decreasing temperature. However, the peak energy of the intra-Mn2+ transition did not decrease monotonically with changing temperature, as can be seen above 70 K. With increasing the excitation power, the intensity of the emission peak was increased.

  1. Emission mechanisms in stabilized iron-passivated porous silicon: Temperature and laser power dependences

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Moadhen, A.; Mabrouk Kamkoum, A.; Zaïbi, M.-A.; Chtourou, R.; Haji, L.; Oueslati, M.

    2012-02-01

    Photoluminescence (PL) measurements of porous silicon (PS) and iron-porous silicon nanocomposites (PS/Fe) with stable optical properties versus temperature and laser power density have been investigated. The presence of iron in PS matrix is confirmed by Raman spectroscopy. The PL intensity of PS and PS/Fe increases at low temperature, the evolution of integrated PL intensity follows the modified Arrhenius model. The incorporation of iron in PS matrix reduces the activation energy traducing the existence of shallow levels related to iron atoms. Also, the temperature dependence of the porous silicon PL peak position follows a linear evolution at high temperature and a quadratic one at low temperature. Such evolution is due to the thermal carriers' redistribution and an energy transfer. Similarly, we have compared the laser power dependence of the PL in PS and PS/Fe layers. The results prove that the recombination process in PS is realised through the lower energy traps localised in the electronic gap. However, the observed emission in PS/Fe is essentially due to direct transitions. So, we can conclude that the presence of iron in PS matrix induces a strong modification of the PL mechanisms.

  2. The study of optical property of sapphire irradiated with 73 MeV Ca ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang

    2015-12-01

    Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.

  3. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less

  4. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.

    2018-03-01

    Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

  5. A new approach for white organic light-emitting diodes of single emitting layer using large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Kim, Seungho; Lee, Younggu; Park, Jongwook

    2014-08-01

    DPPZ showed UV-Vis. and PL maximum values of 412 and 638 nm, meaning the large stokes shift. Blue host compound, TAT was synthesized and used for co-mixed white emission. TAT exhibited UV-Vis. and PL maximum values of 403 nm and 445 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TAT to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 449 and 631 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 457 and 634 nm peaks and two separate EL peaks, respectively. As the operation voltage is increased from 7 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.29 cd/A, 0.14 lm/W, and CIE (0.325, 0.195) at 7 V.

  6. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  7. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2008-09-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions ( \\chi _{O_2 } =0 , 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at \\chi _{O_2 } =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (~one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm-1) in the spectral range of their PL emission, attractive for possible integrated optics devices.

  8. Femtosecond transient photoluminescence of the substituted poly(diphenylacetulene)s.

    NASA Astrophysics Data System (ADS)

    Piskun, N. V.; Wang, D. K.; Lim, H.; Epstein, A. J.; Vanwoerkom, L. D.; Gustafson, T. L.

    2000-03-01

    We present the results of a femtosecond transient photoluminescence (PL) study of solutions of two derivatives of substituted poly(diphenylacetylene) using an up-conversion technique. n-Butyl (nBu) and p-carbazole (Cz) substituted poly(diphenylacetylene), PDPA-nBu and PDPA-Cz respectively, have band gaps determined by maxima in the slope of absorption vs. energy of 2.75 eV and 2.63 eV. The steady state emission peaks are at 2.4 eV for PDPA-nBu and at 2.3 eV for PDPA-Cz respectively. The PL peak for PDPA-Cz is red shifted in comparison to the PL peak for PDPA-nBu. Roles of phenyl groups, electron donating effect of the carbazole side units and planarity of the backbone are discussed. Exciting at 3.1 eV, the fs PL shows a faster decay for PDPA-Cz than that for PDPA-nBu, in accord with the decrease of PL quantum efficiency of PDPA-Cz. The 200 fs - 80 ps PL(t) agrees with ~1 ns lifetime. The PDPA-Cz has larger red shift in the 0.2-20 ps time frame. The origin of that shift will be discussed. This work is supported in part by ONR.

  9. Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2018-02-01

    The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.

  10. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  11. A new approach way for white organic light-emitting diodes based on single emitting layer and large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Shin, Yunseop; Lee, Jiwon; Shin, Hwangyu; Park, Jongwook

    2014-07-01

    New red dopant, DPPZ based on porphyrin moiety was synthesized. DPPZ showed UV-Vis and PL maximum values of 412 and 638 nm, indicating the large stokes shift. New blue host compound, TATa was also synthesized and used for co-mixed white emission. TATa exhibited UV-Vis. and PL maximum values of 403 nm and 463 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TATa to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 466 and 638 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 481 and 646 nm peaks and two separate EL peaks. As the operation voltage is increased from 8 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.041 cd/A, 0.018 Im/W, and CIE (0.457, 0.331) at 8 V.

  12. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  13. Placental lactogen secretion during prolonged-pregnancy in the rat: the ovary plays a pivotal role in the control of placental function.

    PubMed

    Shiota, K; Furuyama, N; Takahashi, M

    1991-10-01

    The serum of rats at mid-pregnancy contains at least 2 distinct placental lactogen (PL)-like substances tentatively termed placental lactogen-alpha (PL-alpha) and placental lactogen-beta (PL-beta) (Endocrinol Japon 38: 533-540, 1991). We have investigated the secretory patterns of three placental lactogens (PL-alpha, PL-beta and placental lactogen-II) during normal pregnancy and in two prolonged-pregnancy models. Pregnancy was prolonged by the introduction of new corpora lutea by inducing ovulation on day 15 of pregnancy by successive treatments with PMSG (30 IU/rat, sc on day 12) and hCG (10 IU/rat, iv on day 14), and in the second model by progesterone implants on day 15 of pregnancy. During normal pregnancy, each of the 3 PLs exhibited only one secretory peak in the serum; PL-alpha and PL-beta on day 12 and placental lactogen II (PL-II) on day 20. Interestingly, in the rats with new sets of corpora lutea, serum PL-alpha and PL-beta levels began to increase again on day 18 and showed peaks on day 20 for PL-alpha and on day 22 for PL-beta. In this model, the initiation of PL-II secretion was not affected, but high levels were maintained until day 26, when parturition occurred. In rats receiving either PMSG or hCG, the secretory patterns of the PLs were similar to as those during normal pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less

  15. Room temperature visible photoluminescence of silicon nanocrystallites embedded in amorphous silicon carbide matrix

    NASA Astrophysics Data System (ADS)

    Coscia, U.; Ambrosone, G.; Basa, D. K.

    2008-03-01

    The nanocrystalline silicon embedded in amorphous silicon carbide matrix was prepared by varying rf power in high vacuum plasma enhanced chemical vapor deposition system using silane methane gas mixture highly diluted in hydrogen. In this paper, we have studied the evolution of the structural, optical, and electrical properties of this material as a function of rf power. We have observed visible photoluminescence at room temperature and also have discussed the role played by the Si nanocrystallites and the amorphous silicon carbide matrix. The decrease of the nanocrystalline size, responsible for quantum confinement effect, facilitated by the amorphous silicon carbide matrix, is shown to be the primary cause for the increase in the PL intensity, blueshift of the PL peak position, decrease of the PL width (full width at half maximum) as well as the increase of the optical band gap and the decrease of the dark conductivity.

  16. Competition of the self-activated and Mn-related luminescence in ZnS single crystals

    NASA Astrophysics Data System (ADS)

    Bacherikov, Yu. Yu.; Vorona, I. P.; Markevich, I. V.; Korsunska, N. O.; Kurichka, R. V.

    2018-06-01

    The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnS single crystals thermally doped from ZnS/MnS mixture were studied at 300 and 77 K. PL spectra exhibit bands caused by Mn-related centers and centers of self-activated (SA) emission. Besides intrinsic maximum, a number of narrow peaks corresponded to Mn-related absorption are found in the PLE spectra of both SA and Mn-related emission. A redistribution of SA and Mn-related emission intensities is observed with temperature change. The mechanism of this phenomenon involving free hole trapping by MnZn and the possible position of a ground energy level of substitutional Mn are discussed.

  17. Redshift and blueshift of GaNAs/GaAs multiple quantum wells induced by rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Sun, Yijun; Cheng, Zhiyuan; Zhou, Qiang; Sun, Ying; Sun, Jiabao; Liu, Yanhua; Wang, Meifang; Cao, Zhen; Ye, Zhi; Xu, Mingsheng; Ding, Yong; Chen, Peng; Heuken, Michael; Egawa, Takashi

    2018-02-01

    The effects of rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs multiple quantum wells (MQWs) grown by chemical beam epitaxy (CBE) are studied by photoluminescence (PL) at 77 K. The results show that the optical quality of the MQWs improves significantly after RTA. With increasing RTA temperature, PL peak energy of the MQWs redshifts below 1023 K, while it blueshifts above 1023 K. Two competitive processes which occur simultaneously during RTA result in redshift at low temperature and blueshift at high temperature. It is also found that PL peak energy shift can be explained neither by nitrogen diffusion out of quantum wells nor by nitrogen reorganization inside quantum wells. PL peak energy shift can be quantitatively explained by a modified recombination coupling model in which redshift nonradiative recombination and blueshift nonradiative recombination coexist. The results obtained have significant implication on the growth and RTA of GaNAs material for high performance optoelectronic device application.

  18. Comparison of long-term outcome between anti-Jo1- and anti-PL7/PL12 positive patients with antisynthetase syndrome.

    PubMed

    Marie, I; Josse, S; Decaux, O; Dominique, S; Diot, E; Landron, C; Roblot, P; Jouneau, S; Hatron, P Y; Tiev, K P; Vittecoq, O; Noel, D; Mouthon, L; Menard, J-F; Jouen, F

    2012-08-01

    The aims of the present study were to: compare the characteristics between antisynthetase syndrome (ASS) patients with anti-Jo1 antibody and those with anti-PL7/PL12 antibody. The medical records of 95 consecutive patients with ASS were reviewed. Seventy-five of these patients had anti-Jo1 antibody; the other patients had anti-PL7 (n=15) or anti-PL12 (n=5) antibody. At ASS diagnosis, the prevalence of myalgia (p=0.007) and muscle weakness (p=0.02) was significantly lower in the group of anti-PL7/PL12-positive patients than in those with anti-Jo1 antibody; median value of CK (p=0.00003) was also lower in anti-PL7/PL12 patients. Anti-Jo1 positive patients developed more rarely myositis resolution (21.3% vs. 46.2%); in addition, the overall recurrence rate of myositis was higher in anti-Jo1 positive patients than in patients with anti-PL7/PL12 antibody (65.9% vs. 19.4%). Anti-Jo1-positive patients, compared with those with anti-PL7/PL12 antibody, more often experienced: joint involvement (63.3%vs. 40%) and cancer (13.3% vs. 5%). By contrast, anti-PL7/PL12 positive patients, compared with those with anti-Jo1 antibody, more commonly exhibited: ILD (90% vs. 68%); in anti-PL7/PL12 positive patients, ILD was more often symptomatic at diagnosis, and led more rarely to resolution of lung manifestations (5.6% vs. 29.4%). Finally, the group of anti-PL7/PL12 positive patients more commonly experienced gastrointestinal manifestations related to ASS (p=0.02). Taken together, although anti-Jo1 positive patients with ASS share some features with those with anti-PL7/PL12 antibody, they exhibit many differences regarding clinical phenotype and long-term outcome. Our study underscores that the presence of anti-Jo1 antibody results in more severe myositis, joint impairment and increased risk of cancer. On the other hand, the presence of anti-PL7/PL12 antibody is markedly associated with: early and severe ILD, and gastrointestinal complications. Thus, our study interestingly indicates that the finding for anti-Jo1 and anti-PL7/PL12 antibodies impacts both the long-term outcome and prognosis of patients with ASS. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong Lingmin; Feng Zhechuan; Wu Zhengyun

    Four types of self-assembled InAs/GaAs quantum dots (QDs) were grown by molecular beam epitaxy and studied via temperature-dependent and time-resolved photoluminescence (PL) spectroscopy measurements. A thin InGaAs stain reducing layer (SRL) is adopted which extends the emission wavelength to 1.3 mum and the influence of strain on QDs is investigated. The SRL releases the strain between the wetting layer and QDs, and enlarges the size of QDs, as shown by atomic force microscopy measurements. As the thickness of InAs layer decreases to 1.7 ML, the QDs with the SRL are chained to strings and the density of QDs increases significantly,more » which leads to an abnormal redshift of 1.3 mum PL peak at room temperature. PL peaks of InAs QDs with the SRL show redshift compared with the QDs directly deposited on GaAs matrix. The dependences of PL lifetime on the QD size, density and temperature (T) are systematically studied. It is observed that the PL lifetime of QDs is insensitive to T below 50 K. Beyond 50 K, increases and then drops at higher temperature, with a peak at T{sub C}, which was determined by the SRL and the thickness of InAs. We have also observed an obvious PL spectral redshift of the QDs with 1.7 ML InAs coverage on SRL at low T as the measuring time delays. The PL lifetime of QDs with the SRL is smaller than that of QDs without the SRL. The QDs with different densities have different PL lifetime dependence on the QDs size. These observations can be explained by the competition between the carrier redistribution and thermal emission.« less

  1. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua

    2013-11-01

    A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.

  2. The location of the peroneus longus tendon in the cuboid groove: sonographic study in various positions of the ankle-foot in asymptomatic volunteers.

    PubMed

    Choo, Hye Jung; Lee, Sun Joo; Huang, Brady K; Resnick, Donald L

    2018-04-10

    To evaluate the normal location of the peroneus longus tendon (PL) in the cuboid groove in various ankle-foot positions by ultrasonography in asymptomatic volunteers. Ultrasonographic assessment of the PL in the cuboid groove was performed in 20 feet of ten healthy volunteers. Each PL was examined in five ankle-foot positions (i.e., neutral, dorsiflexion, plantar-flexion, supination, and pronation). The PL location was qualitatively categorized as "inside" when the PL was entirely within the cuboid groove, as "overlying" when some part of the PL was perched on the cuboid tuberosity, and as "outside" when the PL was entirely on the cuboid tuberosity. For quantitative evaluation of the PL location, the distance between the PL and the cuboid groove was measured. The width of the cuboid groove was measured in the neutral position. The PL location did not significantly change with changes in the ankle-foot position. Qualitatively, an "overlying" PL was the most common type, regardless of the ankle-foot position. "Inside" PLs were found in only 35, 20, 30, 25, and 35% of feet in neutral, dorsiflexion, plantar-flexion, supination, and pronation positions, respectively. The quantitative PL location was also not significantly different among all ankle-foot positions and it was significantly negatively correlated with the cuboid groove width. In healthy volunteers, 65% or more of the PLs were partially or completely located outside of the cuboid groove, regardless of the ankle-foot position. The PL location relative to the cuboid groove was related to the cuboid groove width.

  3. Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation.

    PubMed

    Zhang, Tiankai; Long, Mingzhu; Yan, Keyou; Zeng, Xiaoliang; Zhou, Fengrui; Chen, Zefeng; Wan, Xi; Chen, Kun; Liu, Pengyi; Li, Faming; Yu, Tao; Xie, Weiguang; Xu, Jianbin

    2016-11-30

    Quantification of intergrain length scale properties of CH 3 NH 3 PbI 3 (MAPbI 3 ) can provide further understanding of material physics, leading to improved device performance. In this work, we noticed that two typical types of facets appear in sequential deposited perovskite (SDP) films: smooth and steplike morphologies. By mapping the surface potential as well as the photoluminescence (PL) peak position, we revealed the heterogeneity of SDP thin films that smooth facets are almost intrinsic with a PL peak at 775 nm, while the steplike facets are p-type-doped with 5-nm blue-shifted PL peak. Considering the reaction process, we propose that the smooth facets have well-defined crystal lattices that resulted from the interfacial reaction between MAI and PbI 2 domains containing low trap states density. The steplike facets are MAI-rich originated from the grain boundaries of PbI 2 film and own more trap states. Conversion of steplike facets to smooth facets can be controlled by increasing the reaction time through Ostwald ripening. The improved stability, photoresponsivity up to 0.3 A/W, on/off ratio up to 3900, and decreased photo response time to ∼160 μs show that the trap states can be annihilated effectively to improve the photoelectrical conversion with prolonged reaction time and elimination of steplike facets. Our findings demonstrate the relationship between the facet heterogeneity of SDP films and crystal growth process for the first time, and imply that the systematic control of crystal grain modification will enable amelioration of crystallinity for more-efficient perovskite photoelectrical applications.

  4. Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi

    2015-01-01

    In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.

  5. Atmospheric pressure-MOVPE growth of GaSb/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Tile, Ngcali; Ahia, Chinedu C.; Olivier, Jaco; Botha, Johannes Reinhardt

    2018-04-01

    This study focuses on the growth of GaSb/GaAs quantum dots (QD) using an atmospheric pressure MOVPE system. For the best uncapped dots, the average dot height, base diameter and density are 5 nm, 45 nm and 4.5×1010 cm-2, respectively. Capping of GaSb QDs at high temperatures caused flattening and formation of thin inhomogeneous GaSb layer inside GaAs resulting in no obvious QD PL peak. Capping at low temperatures lead to the formation of dot-like features and a wetting layer (WL) with distinct PL peaks for QD and WL at 1097 nm and 983 nm respectively. Some of the dot-like features had voids. An increase in excitation power caused the QD and WL peaks to shift to higher energies. This is attributed to electrostatic band bending leading to triangular potential wells, typical of type-II alignment between GaAs and strained GaSb. Variable temperature PL measurements of the QD sample showed the decrease in the intensity of the WL peak to be faster than that of the QD peak as the temperature increased.

  6. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  7. Effect of Chemicals on Morphology and Luminescence of CdSe Quantum Dots.

    PubMed

    Zhang, Xiao; Li, Xiaoyu; Zhang, Ruili; Yang, Ping

    2015-04-01

    CdSe quantum dots (QDs) with several morphologies were fabricated using various reaction sys- tems. In a trioctylamine (TOA) and octadecylphosphonic acid (ODPA) system, yellow-emitting (a photoluminescence (PL) peak wavelength of 583 nm) CdSe QDs revealed rod morphology and nar- row size distribution. When ODPA was replaced by tetradecylphosphonic acid (TDPA), red-emitting CdSe rods (a PL peak wavelength of 653 nm) with broad size distribution were fabricated. This is ascribed that the short carbon chain accelerated the growth of CdSe QDs. As a result, the use of ODPA resulted in CdSe QDs with high PL efficiency (3.1%). Furthermore, cubic-like CdSe QDs were created in a stearic acid (SA) and octadecene (ODE) reaction system. The PL efficiency of the QDs is low (0.2%). When hexadecylamine (HDA) was added in such SA and ODE reaction system, spherical CdSe QDs with narrow size distribution and high PL efficiency (3.4%) were prepared.

  8. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    NASA Astrophysics Data System (ADS)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  9. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    DTIC Science & Technology

    2015-08-28

    from surface dangling bonds and behave as effective nonradiative recombination centers.17 Upon the growth of CdSe, the main PL peak exhibits a redshift...as nonradiative recombination sites and cause PL degradation. With a 4.5 ML CdSe shell, the QY drops to 4%. As seen in Fig. 6, the PL QY is

  10. Effect of time varying phosphorus implantation on optoelectronics properties of RF sputtered ZnO thin-films

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.

  11. Degradation mechanisms of optoelectric properties of GaN via highly-charged 209Bi33+ ions irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Zhang, C. H.; Xian, Y. Q.; Liu, J.; Ding, Z. N.; Yan, T. X.; Chen, Y. G.; Su, C. H.; Li, J. Y.; Liu, H. P.

    2018-05-01

    N-type gallium nitride (GaN) epitaxial layers were subjected to 990-keV Bi33+ ions irradiation to various fluences. Optoelectric properties of the irradiated-GaN specimens were studied by means of Raman scattering and variable temperature photoluminescence (PL) spectroscopy. Raman spectra reveal that both the free-carrier concentration and its mobility generally decrease with a successive increase in ion fluence. Electro-optic mechanisms dominated the electrical transport to a fluence of 1.061 × 1012 Bi33+/cm2. Above this fluence, electrical properties were governed by the deformation potential. The appearance of vacancy-type defects results in an abrupt degradation in electrical transports. Varying temperature photoluminescence (PL) spectra display that all emission lines of 1.061 × 1012 Bi33+/cm2-irradiated specimen present a general remarkable thermal redshift, quenching, and broadening, including donor-bound-exciton peak, yellow luminescence band, and LO-phonon replicas. Moreover, as the temperature rises, a transformation from excitons (donor-acceptor pairs' luminescence) to band-to-band transitions (donor-acceptor combinations) was found, and the shrinkage effect of the band gap dominated the shift of the peak position gradually, especially the temperature increases above 150 K. In contrast to the un-irradiated specimen, a sensitive temperature dependence of all photoluminescence (PL) lines' intensity obtained from 1.061 × 1012 Bi33+/cm2-irradiated specimen was found. Mechanisms underlying were discussed.

  12. Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides.

    PubMed

    Jeong, Hyun; Oh, Hye Min; Gokarna, Anisha; Kim, Hyun; Yun, Seok Joon; Han, Gang Hee; Jeong, Mun Seok; Lee, Young Hee; Lerondel, Gilles

    2017-05-01

    This paper reports on the integration of freestanding transition metal dichalcogenides (TMDs). Monolayer (1-L) MoS 2 , WS 2 , and WSe 2 as representative TMDs are transferred on ZnO nanorods (NRs), used here as nanostructured substrates. The photoluminescence (PL) spectra of 1-L TMDs on NRs show a giant PL intensity enhancement, compared with those of 1-L TMDs on SiO 2 . The strong increases in Raman and PL intensities, along with the characteristic peak shifts, confirm the absence of stress in the TMDs on NRs. In depth analysis of the PL emission also reveals that the ratio between the exciton and trion peak intensity is almost not modified after transfer. The latter shows that the effect of charge transfer between the 1-L TMDs and ZnO NRs is here negligible. Furthermore, confocal PL and Raman spectroscopy reveal a fairly consistent distribution of PL and Raman intensities. These observations are in agreement with a very limited points contact between the support and the 1-L TMDs. The entire process reported here is scalable and may pave the way for the development of very efficient ultrathin optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nature of exciton transitions in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Cao, X. K.; Lin, J. Y.

    2016-03-21

    In contrast to other III-nitride semiconductors GaN and AlN, the intrinsic (or free) exciton transition in hexagonal boron nitride (h-BN) consists of rather complex fine spectral features (resolved into six sharp emission peaks) and the origin of which is still unclear. Here, the free exciton transition (FX) in h-BN bulk crystals synthesized by a solution method at atmospheric pressure has been probed by deep UV time-resolved photoluminescence (PL) spectroscopy. Based on the separations between the energy peak positions of the FX emission lines, the identical PL decay kinetics among different FX emission lines, and the known phonon modes in h-BN,more » we suggest that there is only one principal emission line corresponding to the direct intrinsic FX transition in h-BN, whereas all other fine features are a result of phonon-assisted transitions. The identified phonon modes are all associated with the center of the Brillouin zone. Our results offer a simple picture for the understanding of the fundamental exciton transitions in h-BN.« less

  14. Donor-acceptor pair recombination luminescence from monoclinic Cu{sub 2}SnS{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihara, Naoya; Tanaka, Kunihiko, E-mail: tanaka@vos.nagaokaut.ac.jp; Uchiki, Hisao

    2015-07-20

    The defect levels in Cu{sub 2}SnS{sub 3} (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermalmore » activation energies of which were determined to be 22.9 and 24.8 meV, respectively.« less

  15. Photoluminescence of Er-doped silicon-rich oxide thin films with high Al concentrations

    NASA Astrophysics Data System (ADS)

    Rozo, Carlos; Fonseca, Luis F.; Jaque, Daniel; García Solé, José

    Er-doped silicon-rich oxide (SRO) thin films co-doped with Al in high concentrations were prepared by sputtering. Some films were deposited using a substrate heater (150 °C

  16. Effect of Fontan geometry on exercise haemodynamics and its potential implications.

    PubMed

    Tang, Elaine; Wei, Zhenglun Alan; Whitehead, Kevin K; Khiabani, Reza H; Restrepo, Maria; Mirabella, Lucia; Bethel, James; Paridon, Stephen M; Marino, Bradley S; Fogel, Mark A; Yoganathan, Ajit P

    2017-11-01

    Exercise intolerance afflicts Fontan patients with total cavopulmonary connections (TCPCs) causing a reduction in quality of life. Optimising TCPC design is hypothesised to have a beneficial effect on exercise capacity. This study investigates relationships between TCPC geometries and exercise haemodynamics and performance. This study included 47 patients who completed metabolic exercise stress test with cardiac magnetic resonance (CMR). Phase-contrast CMR images were acquired immediately following supine lower limb exercise. Both anatomies and exercise vessel flow rates at ventilatory anaerobic threshold (VAT) were extracted. The vascular modelling toolkits were used to analyse TCPC geometries. Computational simulations were performed to quantify TCPC indexed power loss (iPL) at VAT. A highly significant inverse correlation was found between the TCPC diameter index, which factors in the narrowing of TCPC vessels, with iPL at VAT (r=-0.723, p<0.001) but positive correlations with exercise performance variables, including minute oxygen consumption (VO 2 ) at VAT (r=0.373, p=0.01), VO 2 at peak exercise (r=0.485, p=0.001) and work at VAT/weight (r=0.368, p=0.01). iPL at VAT was negatively correlated with VO 2 at VAT (r=-0.337, p=0.02), VO 2 at peak exercise (r=-0.394, p=0.007) and work at VAT/weight (r=-0.208, p=0.17). Eliminating vessel narrowing in TCPCs and reducing elevated iPL at VAT could enhance exercise tolerance for patients with TCPCs. These findings could help plan surgical or catheter-based strategies to improve patients' exercise capacity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-04-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  18. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-07-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  19. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  20. Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency.

    PubMed

    Ezzedini, Maher; Hidouri, Tarek; Alouane, Mohamed Helmi Hadj; Sayari, Amor; Shalaan, Elsayed; Chauvin, Nicolas; Sfaxi, Larbi; Saidi, Faouzi; Al-Ghamdi, Ahmed; Bru-Chevallier, Catherine; Maaref, Hassen

    2017-12-01

    This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations.

  1. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation.

    PubMed

    Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni

    2010-01-01

    Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U mL(-1) or 300 Ug(-1) of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL I', II', III', IV', and VII'. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35 degrees C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45 degrees C. Crude enzyme from SmF and PL III' showed thermophilic profiles of activity, with maximum activity at 60 and 55 degrees C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0-10.0 and PL III was most stable in the pH range 4.0-7.0. Crude enzyme from SmF retained 70%-80% of its maximum activity in the acid-neutral pH range (4.0-7.0), but PIII showed high stability at alkaline pH (7.5-9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55 degrees C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes.

  2. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4

    NASA Astrophysics Data System (ADS)

    Yangui, A.; Pillet, S.; Mlayah, A.; Lusson, A.; Bouchez, G.; Triki, S.; Abid, Y.; Boukheddaden, K.

    2015-12-01

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ˜138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ˜130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.

  3. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4].

    PubMed

    Yangui, A; Pillet, S; Mlayah, A; Lusson, A; Bouchez, G; Triki, S; Abid, Y; Boukheddaden, K

    2015-12-14

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.

  4. Shallow Carrier Trap Levels in GaAsN Investigated by Photoluminescence

    NASA Astrophysics Data System (ADS)

    Inagaki, Makoto; Suzuki, Hidetoshi; Suzuki, Akio; Mutaguchi, Kazumasa; Fukuyama, Atsuhiko; Kojima, Nobuaki; Ohshita, Yoshio; Yamagichi, Masafumi

    2011-04-01

    Shallow carrier trap levels in GaAs1-xNx (0.0010≤x≤0.0038) were investigated by photoluminescence (PL) and photoreflectance (PR) ranging from 4.2 to 300 K. The band gap energies of the GaAsN were clearly determined in the whole temperature range by the PR fitting analysis. It is clarified by peak decomposing that there were three emission peaks in the near-band-edge PL spectra of GaAsN. One of them was originated from band-to-band transition. The energies of two emission peaks were located at approximately 6 and 17 meV below the band edge. The existence of these peaks is evidence of carrier localization at the near-band-edge. The intensity ratio of the peak at the low energy side to other peaks increases with increasing N composition. This behavior is similar to the degradation of electrical properties.

  5. [Migraine in SLE: role of antiphospholipid antibodies and Raynaud's phenomenon].

    PubMed

    Annese, Virginia; Tomietto, Paola; Venturini, Paolo; D'Agostini, Serena; Ferraccioli, Gianfranco

    2006-01-01

    To determine the role of antiphospholipid antibodies (aPL) and of Raynaud's phenomenon (RP) in the development of migraine in patients with systemic lupus erythematosus (SLE). 50 unselected SLE patients and 20 rheumatoid arthritis (RA) controls underwent an interview to define the presence of migraine according to the guidelines of the International Headache Society (1988). Serological tests for aPL were performed in all patients. SLE patients were divided according to positivity for RP and/or aPL into 4 subsets: R-/aPL-, R-/aPL+, R+/aPL- and R+/aPL+. Data were analysed using Fisher's exact test, Chi-square test and U Mann-Whitney test. SLE and RA patients were similar for demographic and clinical features; aPL positivity was found in a greater proportion of SLE patients versus RA controls (68% vs 25%, p=0.0036). 31 of the 50 lupic patients (62%) and 7 of the 20 RA controls (35%) suffered from migraine (OR=3, CI:1-8.9). Among SLE and RA patients, migraine was associated with aPL positivity (p=0.027 and p=0.019). Analysing the combined effect of aPL and RP on migraine, in R+/aPL+ patients we detected an higher frequency of migraine (85.7%) with respect to the patients negative for these two features (27%, p=0.0051, OR=16, CI:2.2-118) and to the patients positive only for aPL (65%, p=0.0031, OR=6.2, CI:1.2-32). Migraine in SLE and RA associates with aPL positivity. The simultaneous presence of RP increases by 2,5 times the probability of having migraine, suggesting that cerebral vasospasm might be more common in patients with peripheral vasospasm, given the presence of aPL.

  6. β-Ecdysone Augments Peak Bone Mass in Mice of Both Sexes.

    PubMed

    Dai, Weiwei; Zhang, HongLiang; Zhong, Zhendong A; Jiang, Li; Chen, Haiyan; Lay, Yu-An Evan; Kot, Alexander; Ritchie, Robert O; Lane, Nancy E; Yao, Wei

    2015-08-01

    One of the strongest predictors for osteoporosis is peak bone mass. Interventions to augment peak bone mass have yet to be developed. β-Ecdysone (βEcd), a natural steroid-like compound produced by arthropods to initiate metamorphosis, is believed to have androgenic effects and so may be used to augment bone mass. The purpose of this study was to use both male and female (1) gonadal-sufficient; and (2) -insufficient mice to investigate sex differences in terms of bone development and structure after βEcd administration. Two-month-old male and female Swiss-Webster mice were randomized to receive either vehicle or βEcd (0.5 mg/kg) for 3 weeks. In a separate experiment to evaluate the effects of βEcd on sex hormone-deficient mice, gonadectomy was performed in male (orchiectomy [ORX]) and female mice (ovariectomy [OVX]). Sham-operated and the ORX/OVX mice were then treated for 3 weeks with βEcd. Primary endpoints for the study were trabecular bone structure and bone strength. In male mice, the trabecular bone volume was 0.18±0.02 in the placebo-treated (PL) and 0.23±0.02 in the βEcd-treated group (p<0.05 versus PL); and 0.09±0.01 in the ORX group (p<0.05 versus PL) and 0.12±0.01 in the ORX+βEcd group. Vertebral bone strength (maximum load) was 43±2 in PL and 51±1 in the βEcd-treated group (p<0.05 versus PL); and 30±4 in the ORX group (p<0.05 versus PL) and 37±3 in the ORX+βEcd group. In female mice, trabecular bone volume was 0.23±0.02 in PL and 0.26±0.02 in the βEcd-treated group (p<0.05 versus PL); and 0.15±0.01 in the OVX group (p<0.05 versus PL) and 0.14±0.01 in the OVX+βEcd group. Maximum load of the vertebrae was 45±2 in PL and 48±4 in the βEcd-treated group; and 39±4 in the OVX group (p<0.05 versus PL) and 44±4 in the OVX+βEcd group. These findings suggest the potential use of βEcd in the augmentation of bone mass in growing male and female mice. It may also partially prevent the detrimental effects of gonadectomy on trabecular bone. Our results support the potential use of βEcd or nature products that are rich in βEcd to augment peak bone mass. βEcd may differ from the other anabolic hormone treatments that may have severe side effects such as serious cardiac complications. However, its effects on humans remain to be determined.

  7. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    PubMed Central

    Ford, Brian; Tabassum, Natasha; Nikas, Vasileios; Gallis, Spyros

    2017-01-01

    The following study focuses on the photoluminescence (PL) enhancement of chemically synthesized silicon oxycarbide (SiCxOy) thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD), and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2) ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O) bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR) and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL) behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield. PMID:28772802

  8. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE PAGES

    Limbach, F.; Gotschke, T.; Stoica, T.; ...

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  9. Structural and optical properties of InGaN-GaN nanowire heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Höfling, S.; Worschech, L.; Grützmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  10. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    PubMed

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  11. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  12. Optical properties of ion-beam-synthesized Au nanoparticles in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Lin; Oyoshi, Keiji; Chao, Der-Sheng; Tsai, Hsu-Sheng; Hong, Wei-Lun; Takeda, Yoshihiko; Liang, Jenq-Horng

    2016-05-01

    In recent years, gold (Au) nanoparticles have been synthesized via various methods and used in optical and biomedical detection. Au nanoparticles contain some remarkable dimension-dependent optical properties due to surface plasmon resonance (SPR) in Au nanoparticles which causes high absorption in visible light regions. Since SPR in well-crystallized Au nanoparticles can enhance the local electromagnetic field, it is thus expected that greater efficiency in the photoluminescence (PL) originating from oxygen deficiency centers (ODC) can be achieved in Au-implanted SiO2 matrix. In order to demonstrate the enhancement of PL, Au nanoparticles were formed in SiO2 film using ion beam synthesis and their optical and microstructural properties were also investigated in this study. The results revealed that a clear absorption peak at approximately 530 nm was identified in the UV-Vis spectra and was attributed to SPR induced by Au nanoparticles in SiO2. The SPR of Au nanoparticles is also dependent on thermal treatment conditions, such as post-annealing temperature and ambient. The Au nanoparticle-containing SiO2 film also displayed several distinctive peaks at approximately 320, 360, 460, and 600 nm in the PL spectra and were found to be associated with ODC-related defects and non-bridging oxygen hole centers (NBOHC) in SiO2. In addition, the PL peak intensities increased as post-annealing temperature increased, a finding contradictory to the defect recovery but highly consistent with the SPR tendency. A maximum PL emission was achieved when the Au-implanted SiO2 film was annealed at 1100 °C for 1 h under N2. Therefore, the existence of Au nanoparticles in SiO2 film can induce SPR effects as well as enhance PL emission resulting from defect-related luminescence centers.

  13. Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.

    PubMed

    Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain

    2016-04-01

    In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices.

  14. Antiphospholipid Antibodies and Recurrent Thrombotic Events: Persistence and Portfolio

    PubMed Central

    Amory, Colum F.; Levine, Steve R.; Brey, Robin L.; Gebregziabher, Mulugeta; Tuhrim, Stanley; Tilley, Barbara C.; Simpson, Ann-Catherin N.; Sacco, Ralph L.; Mohr, J.P.

    2015-01-01

    Background There are very limited prospective data on the significance of persistent of antiphospholipid antibodies (aPL) and recurrent thrombo-occlusive events (TOEs). We investigated the prognostic value of (1) two newer aPL assays, (2) an aPL portfolio, and (3) persistent aPL positivity following stroke. Methods 1,770 subjects from the APASS-WARSS study underwent further aPL testing for antibodies to phosphatidylserine (aPS) and β2-glycoprotein-I (anti-β2GPI) from stored sera. Follow-up aPL status was also tested in a subset of subjects. Primary analysis was based on time to any TOE (ischemic stroke, MI, TIA, DVT, PE, or systemic arterial occlusion)/death at 2 years. Cox proportional hazard analyses assessed whether aPL independently related to outcome. Results Persistent anti-β2GPI decreased the time to TOE/death after adjustment for potential confounders (HR=2.86, CI 1.21-6.76, p=0.017). When persistent anti-β2GPI was combined with another persistently positive aPL, time to TOE/death was also reduced (HR=3.79, CI 1.18-12.14, p=0.025). Neither persistent aCL, persistent aPS alone, nor a single positive anti-β2GPI or aPS was associated with decreased time to TOE/death. No single positive aPL, portfolio of baseline aPL, or any persistent aPL increased the rate of TOE/death. Conclusions Rates of TOE/death were not influenced by aPL results at baseline or follow-up. Persistent anti-β2GPI alone and with persistent second aPL were independently associated with decreased time to TOE/death. Persistent aPL, an aPL portfolio, and newer aPL in ischemic stroke patients are not helpful in predicting an increased rate of recurrent TOEs. PMID:26513489

  15. Method And Apparatus For Determining Health Of Thermal Barrier Coatings

    DOEpatents

    Srivastava, Alok Mani; Setlur, Anant Achyut; Comanzo, Holly Ann; Devitt, John William; Ruud, James Anthony; Brewer, Luke Nathaniel

    2005-09-13

    A method for determining past-service conditions and/or remaining useful life of a component of a combustion engine and/or a thermal barrier coating ("TBC") of the component comprises providing a photoluminescent ("PL") material in the TBC, directing an exciting radiation at the TBC, measuring the intensity of a characteristic peak in the emission spectrum of the PL material, and correlating the intensity of the characteristic peak or another quantity derived therefrom to an amount of a new phase that has been formed as a result of the exposure of the component to extreme temperatures. An apparatus for carrying out the method comprises a radiation source that provides the exciting radiation to the TBC, a radiation detector for detecting radiation emitted by the PL material, and means for relating a characteristic of the emission spectrum of the PL material to the amount of the new phase in the TBC, thereby inferring the past-service conditions or the remaining useful life of the component.

  16. Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Ho, Ching-Yuan; Yang, Chun-Chuen; Shen, Ji-Lin; Chiu, Kuan-Cheng

    2017-01-01

    We report on the optical and structural characterization of rubrene polycrystalline films fabricated from vacuum deposition with various substrate temperatures (Tsub). Depending on Tsub, the role of twisted and planar rubrene conformational isomers on the properties of rubrene films is focused. The temperature (T)-dependent inverse optical transmission (IOT) and photoluminescence (PL) spectra were performed on these rubrene films. The origins of these IOT and PL peaks are explained in terms of the features from twisted and planar rubrene molecules and of the band characteristics from rubrene molecular solid films. Here, two rarely reported weak-peaks at 2.431 and 2.605 eV were observed from IOT spectra, which are associated with planar rubrene. Besides, the T-dependence of optical bandgap deduced from IOT spectra is discussed with respect to Tsub. Together with IOT and PL spectra, for Tsub > 170 °C, the changes in surface morphology and unit cell volume were observed for the first time, and are attributed to the isomeric transformation from twisted to planar rubrenes during the deposition processes. Furthermore, a unified schematic diagram in terms of Frenkel exciton recombination is suggested to explain the origins of the dominant PL peaks performed on these rubrene films at 15 K.

  17. Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    PubMed Central

    Wang, Rui; Lu, Fen; Fan, Wei Jun; Liu, Chong Yang; Loh, Ter-Hoe; Nguyen, Hoai Son; Narayanan, Balasubramanian

    2007-01-01

    Si/Si0.66Ge0.34coupled quantum well (CQW) structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD) system. The samples were characterized using high resolution x-ray diffraction (HRXRD), cross-sectional transmission electron microscopy (XTEM) and photoluminescence (PL) spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.

  18. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  19. Comparison of the Distribution of Unsaturated Fatty Acids at the Sn-2 Position of Phospholipids and Triacylglycerols in Marine Fishes and Mammals.

    PubMed

    Beppu, Fumiaki; Yasuda, Keiko; Okada, Ayako; Hirosaki, Yoshitsugu; Okazaki, Masako; Gotoh, Naohiro

    2017-11-01

    Highly unsaturated fatty acid (HUFA) binding at the sn-2 position of phospholipids (PL) becomes a resource for prostaglandin, leukotriene, resolvin, and protectin synthesis. Both triacylglycerol (TAG) and PL synthesis pathways in vivo are via phosphatidic acid; therefore, the distribution of fatty acid species at the sn-2 position must theoretically be the same for TAG and PL if rearrangement does not occur. However, it is known that little HUFA is located at the sn-2 position of TAG in marine mammals. Therefore, distribution of fatty acid species at the sn-2 position of TAG and PL was compared between marine fishes and mammals in this study. The composition of fatty acids binding at the sn-2 or sn-1,3 position of PL and TAG was analyzed via hydrolysis with enzymes and GC-FID. The results showed that 20:4n-6, 20:5n-3, 22:5n-3, and 22:6n-3 were primarily located at the sn-1,3 positions of TAG in marine mammals. Comparison of the binding positions of HUFA and 16:0 in PL and TAG suggested the existence of Lands' cycle in marine fishes and mammals. In conclusion, both marine fishes and mammals condensed HUFA as a source of eicosanoid at the sn-2 position of PL. Furthermore, abundance ratios for 22:5n-3 or 22:6n-3 at the sn-2 position (sn-2 ratio) in TAG and PL (calculated by the equation: [abundance ratio at sn-2 position of TAG]/[abundance ratio at sn-2 position of PL]) was less than 0.35 in marine mammals; however, it was greater than 0.80 in marine fishes. These differences suggested that the HUFA consisted of 22 carbon atoms and had different roles in marine fishes and mammals.

  20. Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method

    NASA Astrophysics Data System (ADS)

    Guruvammal, D.; Selvaraj, S.; Meenakshi Sundar, S.

    2018-04-01

    Microwave irradiation method is employed to synthesis of Zn1-xCoxO (x = 0.001-0.004) nanoparticles and investigate their structural, optical and magnetic properties using various characterization techniques. Structural studies reveal single phase hexagonal structure with average crystallite size 18-28 nm. FTIR study identifies the functional group present in the samples. The incorporation of Co2+ ions into the ZnO lattice is confirmed through XRD and UV-Vis studies. PL spectra exhibit a strong emission peak in UV region and a defect related visible emission peak in orange red region. These peaks are attributed to near band edge emission and the presence of oxygen related defects in the samples respectively. The blue shift observed in the UV emission peak shows an increase in the carrier concentration caused by the interstitial incorporation of ions into the ZnO lattice. The oxygen related defect is also confirmed through a peak obtained around g factor 1.9933 in ESR studies. Further, the number of spin contributing the ESR signal demonstrates the dependence of the strength of ferromagnetism on the concentration of oxygen ion vacancies. The VSM, ESR and PL measurements confirm the origin of RTFM of Co doped ZnO nanoparticles from the exchange interaction between the localized spin moments resulting from oxygen vacancies. The reason for the obtained super paramagnetic nature for x = 0.002 and x = 0.003 may be either due to some of nanoparticles or due to the weakly coupled Co ions in the Zn2+ site in the ZnO lattice. Further, the ferromagnetic behavior arises again for x = 0.004 due to the incorporation of Co2+ ions in the interstitial positions.

  1. Effects of Pressure on Optically Active Deep Levels in Phosphorus Doped ZnSe

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Iota, V.

    1998-03-01

    We report high pressure photoluminescence (PL) and PL-excitation (PLE) studies at 8K of the 'midgap' emission in P-doped ZnSe using a diamond-cell with He medium. The dominant emission at low pressure is due to donor-acceptor-pair (DAP) transitions between shallow donors and deep trigonally relaxed P_Se acceptors.(J. Davies, et al., J. Luminescence 18/19, 322 (1979)) Its PL and PLE peaks shift by 8.2meV/kbar and 5.9meV/kbar, respectively -- Stokes shift decreasing with pressure. At 35kbar a new PL band, shifting to lower energy (-5.4meV/kbar), emerges from above the absorption edge, and concurrently the original DAP PL quenches. This shows that a resonant level, a deep donor or possibly a P_Se antibonding state,(R. Watts, et al., Phys. Rev. B3), 404 (1971) crosses the conduction edge into the gap. A third PL band is seen only with internse UV excitation. It occurs initially as a high energy shoulder of the original DAP peak, but shifts more rapidly upward (9.4meV/kbar) until it crosses the edge and quenches at 40kbar. We discuss candidates for this band, including donor-P_Se complexes, and we compare our results to similar work on the Zn vacancy in ZnSe. (figures)

  2. Cognitive dysfunction in antiphospholipid antibody (aPL)-negative systemic lupus erythematosus (SLE) versus aPL-positive non-SLE patients.

    PubMed

    Kozora, Elizabeth; Erkan, Doruk; Zhang, Lening; Zimmerman, Robert; Ramon, Glendalee; Ulug, Aziz M; Lockshin, Michael D

    2014-01-01

    The aim of this study was to compare the cognitive function of antiphospholipid antibody (aPL)-negative systemic lupus erythematosus (SLE) and aPL-positive non-SLE patients. Twenty aPL-negative SLE and 20 aPL-positive non-SLE female patients with no history of overt neuropsychiatric manifestations took standardised cognitive tests of learning and memory, attention and working memory, executive functions, verbal fluency, visuoconstruction, and motor function. The primary outcome measure was an established global cognitive impairment index (CII). Cranial magnetic resonance imaging (MRI) was also obtained on all patients. Twelve of 20 (60%) of the SLE and 8/20 (40%) of the aPL-positive patients had global cognitive impairment on CII; there were no group differences on CII or on individual measures. Cognitive impairment was not associated with duration of disease, level of disease activity, or prednisone use. No correlations were found between clinical disease factors and cognitive impairment, and neither group showed an association between incidental or major MRI abnormalities and cognitive dysfunction. Both aPL-negative SLE and aPL-positive non-SLE patients, without other overt neuropsychiatric disease, demonstrated high levels of cognitive impairment. No clinical, serologic, or radiologic characteristics were associated with cognitive impairment. Cognitive dysfunction is common in APS and in SLE, but its mechanisms remain unknown.

  3. Antiphospholipid Antibodies and Recurrent Thrombotic Events: Persistence and Portfolio.

    PubMed

    Amory, Colum F; Levine, Steven R; Brey, Robin L; Gebregziabher, Mulugeta; Tuhrim, Stanley; Tilley, Barbara C; Simpson, Ann-Catherin C; Sacco, Ralph L; Mohr, Jay P

    2015-01-01

    There are very limited prospective data on the significance of persistent antiphospholipid antibodies (aPL) and recurrent thrombo-occlusive events (TOEs). We investigated the prognostic value of (1) 2 newer aPL assays, (2) an aPL portfolio and (3) persistent aPL positivity following stroke. A total of 1,770 subjects from the APASS-WARSS study underwent further aPL testing for antibodies to phosphatidylserine (aPS) and anti-β2-glycoprotein-I (anti-β2GPI) from stored sera. Follow-up aPL status was also tested in a subset of subjects. Primary analysis was based on time to any TOE (ischemic stroke, myocardial infarction, transient ischemic attack, deep vein thrombosis, pulmonary embolism or systemic arterial occlusion)/death at 2 years. Cox proportional hazard analyses assessed whether aPL independently related to outcome. Persistent anti-β2GPI decreased the time to TOE/death after adjustment for potential confounders (hazards ratio (HR) 2.86, 95% CI 1.21-6.76, p = 0.017). When persistent anti-β2GPI was combined with another persistently positive aPL, time to TOE/death was also reduced (HR 3.79, 95% CI 1.18-12.14, p = 0.025). Neither persistent anticardiolipin antibodies nor persistent aPS alone nor a single positive anti-β2GPI nor aPS was associated with decreased time to TOE/death. No single positive aPL, portfolio of baseline aPL or any persistent aPL increased the rate of TOE/death. Rates of TOE/death were not influenced by aPL results at baseline or follow-up. Persistent anti-β2GPI alone, and with persistent second aPL, was independently associated with decreased time to TOE/death. Persistent aPL, an aPL portfolio and newer aPL in ischemic stroke patients are not helpful in predicting an increased rate of recurrent TOEs. © 2015 S. Karger AG, Basel.

  4. Effect of antimony segregation on the electronic properties of InAs/InAsSb superlattices

    NASA Astrophysics Data System (ADS)

    Haugan, H. J.; Szmulowicz, F.; Hudgins, J. J.; Cordonnier, L. E.; Brown, G. J.

    2017-08-01

    There has been great progress in recent years in advancing the state-of-the-art of Ga-free InAs/InAsSb superlattice (SL) materials for infrared detector applications, spurred by the observation of long minority carrier lifetimes in this material system. However, compositional and dimensional changes through antimony (Sb) segregation alter the detector properties from those originally designed. For this reason, in this work, the authors explore epitaxial conditions that can mitigate this segregation in order to produce high-quality SL materials for optimum detector performance. A nominal SL structure of 7.7 nm InAs/3.5 nm InAs0.7 Sb0.3 tailored for an approximately six-micron response at 5 K was used to optimize the epitaxial parameters. Since the growth of mixed AsSb alloys is complicated by the potential reaction of As with Sb surfaces, the authors vary the substrate temperature (Ts) in order to control the As surface reaction on a Sb surface. Experimental results indicate that the SL sample grown at the lowest investigated Ts produces the highest Sb-mole fraction x of 0.3 in InAs1-x Sbx layers, which then decreases by 21 % as the Ts increases from 395 to 440 °C. This reduction causes an approximately 30 meV blueshift in the position of the excitonic photoluminescence (PL) peak. This finding differs from the results obtained from the Ga-containing InAs/GaSb SL equivalents, where the PL peak position remains constant at about 220 meV, regardless of Ts. The Ga-free SLs generally generate a broader PL linewidth than the corresponding Ga-containing SLs due to the higher spatial Sb distribution at the hetero-interfaces engendered by Sb segregation. In order for this newly proposed Ga-free SL materials to be viable for detector applications, the material problem associated with Sb segregation needs to be adequately controlled and further mitigated.

  5. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  6. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  7. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  8. An integrative discourse perspective on positive leadership in public health care.

    PubMed

    Pietiläinen, Ville; Salmi, Ilkka

    2017-02-06

    Purpose This study aims to take a discursive view on positive leadership (PL). A positive approach has gained momentum in recent years as appropriate leadership practices are implemented in organizations. Despite the turn toward discursive approaches in organization studies, there is insufficient evidence supporting PL as a socially constructed experience. Design/methodology/approach The present study addresses an integrative discourse perspective for capturing the PL concept as a social process within the public health-care context. Findings Four meanings of PL are highlighted: role-taking, servicing, balancing and deciphering. Research limitations/implications The meanings shift the emphasis of certain PL definitions to a contextual interpretation. For scholars, the perspective demonstrates a multidimensional process approach in the desired organizational context as a counterbalance to one unanimously agreed-upon PL definition. Practical implications For leaders, an integrative discourse perspective offers tools for comprehending PL as a process: how to identify, negotiate and reconcile various PL meanings. Originality/value An integrative discourse perspective provides a novel perspective capturing the PL concept within the public health-care field.

  9. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation

    PubMed Central

    Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni

    2010-01-01

    Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U  mL−1 or 300 Ug−1 of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL  I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35°C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45°C. Crude enzyme from SmF and PL III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55°C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0), but PIII showed high stability at alkaline pH (7.5–9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55°C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes. PMID:20689719

  10. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy.

    PubMed

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-03-30

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the In x Ga 1-x N/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E 2 (high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the In x Ga 1-x N/GaN MQWs active layer.

  11. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy

    PubMed Central

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-01-01

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the InxGa1−xN/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E2(high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the InxGa1−xN/GaN MQWs active layer. PMID:28358119

  12. Physical Demands of Representative Match-Play in Adolescent Rugby Union.

    PubMed

    Read, Dale B; Jones, Ben; Phibbs, Padraic J; Roe, Gregory A B; Darrall-Jones, Joshua D; Weakley, Jonathon J S; Till, Kevin

    2017-05-01

    Read, DB, Jones, B, Phibbs, PJ, Roe, GAB, Darrall-Jones, J, Weakley, JJS, and Till, K. Physical demands of representative match-play in adolescent rugby union. J Strength Cond Res 31(5): 1290-1296, 2017-The purpose of this study was to quantify the physical demands of representative adolescent rugby union match-play and investigate the difference between playing positions and age groups. Players (n = 112) were classified into 6 groups by playing position (forwards and backs) and age group (U16, U18, and U20). The physical demands were measured using microsensor-based technology and analyzed using magnitude-based inferences to assess practical importance. Backs had a greater relative distance (except U16s) and a greater high-speed running distance per minute than forwards, with the magnitude of difference between the positions becoming larger in older age groups. Forwards had higher values of PlayerLoad (PL) per minute (accumulated accelerations from the 3 axes of movement) and PL slow per minute (accumulated accelerations from the 3 axes of movement where velocity is <2 m·s) than backs at all age groups. Relative distance, low-, and high-speed running per minute all had a trend to be lower in older age groups for both positions. PlayerLoad per minute was greater in U18 than that in U16 and U20 for both positions. PlayerLoad slow per minute was greater for older age groups besides the U18 and U20 comparisons, which were unclear. The contrasts in physical demands experienced by different positions reinforce the need for greater exposure to sprinting and collision-based activity for backs and forwards, respectively. Given PL metrics peak at U18 and locomotor demands seem to be lower in older ages, the demands of representative adolescent rugby union do not seem to be greater at U20 as expected.

  13. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  14. Potassium doping: Tuning the optical properties of graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fuli; Li, Xueming, E-mail: lxmscience@163.com; Lu, Chaoyu

    2016-07-15

    Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nmmore » which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.« less

  15. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    NASA Astrophysics Data System (ADS)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  16. OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.

    We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

  17. Exciton localization and large Stokes shift in quaternary BeMgZnO grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Toporkov, Mykyta; Ullah, Md. Barkat; Hafiz, Shopan; Nakagawara, Tanner; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Owing to wide range bandgap tunability to more than 5 eV, the quaternary (Be,Mg)ZnO solid solutions are attractive for a variety of UV optoelectronic applications, inclusive of solar blind photodetectors, and intersubband transition devices. The mutual compensation effects of Be and Mg on the formation energy and strain allows a wide range of compositions and bandgaps beyond those achievable by MgZnO and BeZnO ternaries. Localization effects are well pronounced in such wide-bandgap semiconductor alloys due to large differences in metal covalent radii and the lattice constants of the binaries, resulting in strain-driven compositional variations within the film and consequently large potential fluctuations, in addition to that possibly caused by defects. However, carrier localization may suppress recombination through nonradiative channels, and thus, facilitate high-efficiency optoelectronic devices. To investigate potential fluctuations and localization in BexMgyZn(1-x-y)O films grown by plasma-assisted molecular beam epitaxy, optical absorption and steady-state and time-resolved photoluminescence (PL) measurements were performed. O-polar BexMgyZn(1-x-y)O samples grown on GaN templates with compositions up to x = 0.04 and y = 0.18 were used for timeresolved studies, and O-polar BexMgyZn(1-x-y)O samples grown on sapphire with compositions up to x = 0.19 and y = 0.52 were used for absorption measurements. From spectrally resolved PL transients, BeMgZnO samples with higher Mg/Be content ratio were found to exhibit smaller localization depth, Δ0=98 meV for Be0.04Mg0.17Zn0.79O and Δ0=173 meV for Be0.10Mg0.25Zn0.65O, compared to samples with smaller Mg/Be ratio, Δ0=268 meV for Be0.11Mg0.15Zn0.74O. Similar correlation is observed in temporal redshift of the PL peak position of 8 meV, 42 meV and 55 meV for Be0.04Mg0.17Zn0.79O, Be0.10Mg0.25Zn0.65O and Be0.11Mg0.15Zn0.74O, respectively, that originates from potential fluctuations and removal of band filling effect in the localized states. PL transients indicate that emission at low temperature is dominated by recombination of localized excitons, which exhibit decay times as long as τ = 0.36 ns at the peak position. The Sshaped behavior of PL peak with change in temperature was observed for the quaternary alloy Be0.04Mg0.17Zn0.79O. The degree of localization σ was determined to be 22 meV. Relatively high potential fluctuations and localization energy lead to a strong Stokes shift, which increased with bandgap reaching ~0.5 eV for O-polar BeMgZnO on sapphire with 4.6 eV absorption edge.

  18. A Prospective Open-label Pilot Study of Fluvastatin on Pro-inflammatory and Pro-thrombotic Biomarkers in Antiphospholipid Antibody Positive Patients

    PubMed Central

    Erkan, Doruk; Willis, Rohan; Murthy, Vijaya L.; Basra, Gurjot; Vega, JoAnn; Ruiz Limón, Patricia; Carrera, Ana Laura; Papalardo, Elizabeth; Martínez-Martínez, Laura Aline; González, Emilio B.; Pierangeli, Silvia S.

    2014-01-01

    Objective: To determine if pro-inflammatory and pro-thrombotic biomarkers are differentially upregulated in persistently antiphospholipid antibody (aPL)-positive patients, and to examine the effects of fluvastatin on these biomarkers. Methods: Four groups of patients (age 18-65) were recruited: a) Primary Antiphospholipid Syndrome (PAPS); b) Systemic Lupus Erythematosus (SLE) with APS (SLE/APS); c) Persistent aPL positivity without SLE or APS (Primary aPL); and d) Persistent aPL positivity with SLE but no APS (SLE/aPL). The frequency-matched control group, used for baseline data comparison, was identified from a databank of healthy persons. Patients received fluvastatin 40 mg daily for three months. At three months, patients stopped the study medication and they were followed for another three months. Blood samples for 12 pro-inflammatory and pro-thrombotic biomarkers were collected monthly for six months. Results: Based on the comparison of the baseline samples of 41 aPL-positive patients with 30 healthy controls, 9/12 (75%) biomarkers (interleukin [IL]-6, IL1β, vascular endothelial growth factor [VEGF], tumor necrosis factor [TNF]-□α, interferon [IFN]-α, inducible protein-10 [IP10], soluble CD40 ligand [sCD40L], soluble tissue factor [sTF], and intracellular cellular adhesion molecule [ICAM]-1) were significantly elevated. Twenty-four patients completed the study; fluvastatin significantly and reversibly reduced the levels of 6/12 (50%) biomarkers (IL1β, VEGF, TNFα, IP10, sCD40L, and sTF). Conclusion: Our prospective mechanistic study demonstrates that pro-inflammatory and pro-thrombotic biomarkers, which are differentially upregulated in persistently aPL-positive patients, can be reversibly reduced by fluvastatin. Thus, statin-induced modulation of the aPL effects on target cells can be a valuable future approach in the management of aPL-positive patients. PMID:23933625

  19. Solid cancer, antiphospholipid antibodies, and venous thromboembolism.

    PubMed

    Font, Carme; Vidal, Laura; Espinosa, Gerard; Tàssies, Dolors; Monteagudo, Joan; Farrús, Blanca; Visa, Laura; Cervera, Ricard; Gascon, Pere; Reverter, Joan C

    2011-02-01

    The pathogenic role of antiphospholipid antibodies (aPL) in the development of venous thromboembolism (VTE) in patients with malignancies has not been established. From May 2006 to April 2008, 258 consecutive patients with solid-organ malignancies who developed VTE (VTE+) were recruited. A group of 142 patients matched for age, sex and tumor type cancer patients without VTE (VTE-) and an age-and-sex matched group of 258 healthy subjects were also included. A second blood sample was taken in positive aPL patients at least 12 weeks later. Twenty-one (8.1%) VTE+ patients, 2 (1.4%) VTE- patients (p=0.006) and 2 (0.8%) healthy subjects (p<0.001) were positive for aPL. Persistent aPL positivity was observed in only 4 out of 15 available VTE+ patients. No differences in demographic characteristics, clinical pattern and outcome were observed in VTE+ patients according to aPL status. The low prevalence and transience of aPL positivity in patients with solid-organ malignancies with VTE argues against a pathogenic role in the development of thrombosis in this setting. The published evidence of the relationship between cancer, aPL, and thrombosis is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport.

    PubMed

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A; Contreras-Puente, Gerardo

    2013-03-15

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.

  1. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport

    PubMed Central

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B. Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A.; Contreras-Puente, Gerardo

    2013-01-01

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case. PMID:28809356

  2. Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Sun Gyu; Youn, Jong Won; Lee, Yongjun; Kim, Jeongyong; Joo, Jinsoo

    2018-05-01

    Two-dimensional (2D) semiconducting MoS2 and WSe2 flakes grown by chemical vapor deposition were mechanically hybridized. A hexagonal boron nitride (h-BN) dielectric flake was inserted between MoS2 and WSe2 flakes to investigate the nanoscale optical properties of 2D van der Waals hybrid nanostructures. The fabricated MoS2/WSe2 and MoS2/h-BN/WSe2 van der Waals hybrid nanostructures were loaded on a periodic gold nanopost (Au-NPo) array to study energy and charge transfer effects at the surface plasmon resonance (SPR) condition. Nanoscale photoluminescence (PL) spectra of the 2D hybrid nanostructures were measured using a high-resolution laser confocal microscope (LCM). A shift of the LCM PL peak of the MoS2/WSe2 n-p hybrid nanostructures was observed owing to the charge transfer. In contrast, the shift of the LCM PL peak of the MoS2/h-BN/WSe2 n-insulator-p hybrid nanostructure was not considerable, as the inserted h-BN dielectric layer prevented the charge transfer. The intensity of the LCM PL peak of the MoS2/h-BN/WSe2 hybrid nanostructure considerably increased once the nanostructure was loaded on the Au-NPo array, owing to the energy transfer between the 2D materials and the Au-NPo array at the SPR condition, which was confirmed by the increase in the LCM Raman intensity.

  3. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.

    PubMed

    Tiwari, A; Dhoble, S J; Kher, R S

    2015-11-01

    Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.

    The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phononmore » coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.« less

  5. An investigation on physical properties of SiOx nanowires deposited by chemical vapor deposition method: The effect of substrate to boat distance

    NASA Astrophysics Data System (ADS)

    Heidaryan, Narges; Eshghi, Hosein

    2017-09-01

    Large-scale silicon oxide nanowires (SiOx NWs) with a diameter about 250 nm on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO) powder. In order to investigate the role of distance on the physical properties of SiOx NWs, Si substrates were positioned at 5 cm and 10 cm apart from the boat position set at 1150∘C. The local temperatues of the samples were 1100∘C and 1050∘C, respectively. The SEM images and EDS spectra showed interweaved networks of SiOx NWs with x = 0.62 and 0.65 in these layers. The XRD patterns showed S1 has a polycrystalline structure (cristobalite), while S2 has amorphous nature. The PL spectra showed an intense blue peak at 468 nm in S1, and a violet peak at 427 nm in S2 that could be related to the differences in the crystallite structures and oxygen vacancies in these samples.

  6. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.

    PubMed

    Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang

    2017-04-01

    Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  8. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law.

    PubMed

    Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao

    2016-09-27

    Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

  9. Enhanced emission of charged-exciton polaritons from colloidal quantum dots on a SiN/SiO2 slab waveguide

    PubMed Central

    Xu, Xingsheng; Li, Xingyun

    2015-01-01

    We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709

  10. CdS quantum dots in a novel glass with a very low activation energy and its variation of diffusivity with temperature

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati

    2011-07-01

    CdS quantum dots of different average sizes in the range 2 to 3.8 nm were grown by diffusion-limited growth process in indigenously made silicate glass. The absorption spectra showed a strong quantum confinement effect with a blue shift of the order of 500 meV depending on the average size. Critical radius of quantum dots was found to be 1.8 nm. The size dispersion decreased from 15.2 to 12.5% with a 20% increase in the particle size. The activation energy for diffusion was found to be very low i.e. 193 kJ mol-1 and the diffusion coefficient increased by 60% for 10 K rise in temperature. The PL emission spectra showed the presence of only deep traps around 600 nm with a red shift of 200 nm. No shallow traps or band edge emission was observed. The PL peak position changed from 560 to 640 nm with a 35 K increase in annealing temperature.

  11. Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi

    2011-01-01

    In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.

  12. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  13. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo.

    PubMed

    Feng, Q; Huang, Y; Chen, M; Li, G; Chen, Y

    2015-01-01

    In this study, the antimicrobial activities based on the synergistic effects of traditional antibiotics (imipenem, cefepime, levofloxacin hydrochloride and vancomycin) and antimicrobial peptides (AMPs; PL-5, PL-31, PL-32, PL-18, PL-29 and PL-26), alone or in combination, against three Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae and Staphylococcus epidermidis) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) were investigated. In addition, the antimicrobial activity that was based on the synergistic effects of levofloxacin hydrochloride and PL-5 against Staphylococcus aureus in vivo was explored in a mouse infection model. Traditional antibiotics and AMPs showed significant synergistic effects on the antibacterial activities against the different Gram-positive and Gram-negative bacteria in vitro. A strong synergistic effect in the PL-5 and levofloxacin hydrochloride combination against Staphylococcus aureus was observed in the mouse infection model in vivo. The mechanism of synergistic action was due to the different targets of AMPs and traditional antibiotics. The combination of AMPs and traditional antibiotics can dramatically enhance antimicrobial activity and may help prevent or delay the emergence of antibiotic resistance. Thus, this combination therapy could be a promising approach to treat bacterial infections, particularly mixed infections and multi-antibiotic-resistant infections, in the clinics.

  14. GaInNAs Structures Grown by MBE for High-Efficiency Solar Cells: Final Report; 25 June 1999--24 August 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, C. W.

    The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAsmore » quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.« less

  15. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  16. Influence of antiphospholipid antibody positivity on glomerular filtration rate markers in a group of systemic sclerosis patients - a 24-month observation.

    PubMed

    Wielosz, Ewa; Majdan, Maria; Koszarny, Arkadiusz; Dryglewska, Magdalena; Tabarkiewicz, Jacek

    2017-01-01

    The aim of the study was the assessment of changes in the glomerular filtration rate (GFR) during long-term observation in a group of systemic sclerosis (SSc) patients with and without chronic antiphospholipid (aPL) antibody positivity. The observation comprised 50 patients - 23 with diffuse cutaneous SSc - dcSSc and 27 limited cutaneous SSc - lcSSc. After 24 months we assessed 27 patients (9 died, 14 lost follow up); 24 patients (88%) were treated chronically with angiotensin-converting-enzyme inhibitors (ACEIs). Patients were investigated for the presence of aPL: to cardiolipin and to β2 glycoprotein I in IgM and IgG classes. Serum levels of creatinine (S-Cr), cystatin C and creatinine clearance values were determined in all patients. According to the presence of a significant level of at least one of aPL antibodies, pts were divided into groups: group I aPL positive: 14 patients, group II aPL negative - 13 patients. We did not find significant differences in S-Cr, cystatin C levels and creatinine clearance before and after 24 months of observation between both groups. In follow up observations, the presence of anti-centromere antibodies was significantly more frequent in the aPL positive, as compared to the aPL negative group (p = 0.01). In follow up observations, the level of anticardiolipin antibodies in IgG class was significantly higher in dcSSc compared to lcSSc patients (p = 0.02). In long-term observation chronic positivity for aPL antibodies does not significantly decrease the GFR in patients with SSc treated with ACEIs.

  17. Antiphospholipid antibodies and non-thrombotic manifestations of systemic lupus erythematosus.

    PubMed

    İlgen, U; Yayla, M E; Ateş, A; Okatan, İ E; Yurteri, E U; Torgutalp, M; Keleşoğlu, A B D; Turgay, T M; Kınıklı, G

    2018-04-01

    Objectives The aim of this study was to investigate the association between antiphospholipid antibodies and non-thrombotic and non-gestational manifestations of systemic lupus erythematosus. Methods Systemic lupus erythematosus patients with persistently positive antiphospholipid antibodies or lupus anticoagulant were identified and grouped as systemic lupus erythematosus with antiphospholipid syndrome (SLE-APS), systemic lupus erythematosus with positive antiphospholipid antibodies/lupus anticoagulant without antiphospholipid syndrome (SLE-aPL), and systemic lupus erythematosus with negative aPLs (SLE-No aPL). Groups were compared in terms of non-thrombotic systemic lupus erythematosus manifestations and laboratory features retrospectively. Results A total of 150 systemic lupus erythematosus patients, 26 with SLE-APS, 25 with SLE-aPL, and 99 with SLE-No aPL, were identified. Livedo reticularis, neurologic involvement, and thrombocytopenia were more common in antiphospholipid antibody positive systemic lupus erythematosus cases. Malar rash, arthritis, and pleuritis were more common in the SLE-No aPL, SLE-APS, and SLE-aPL groups, respectively. Positivity rates and titers of specific antiphospholipid antibodies did not differ between the SLE-APS and SLE-aPL groups. Conclusions Presence of antiphospholipid syndrome or persistent antiphospholipid antibodies may be related to non-thrombotic and non-gestational systemic lupus erythematosus manifestations. Patients with systemic lupus erythematosus plus antiphospholipid syndrome and persistent antiphospholipid antibodies without antiphospholipid syndrome also differ in terms of systemic lupus erythematosus manifestations.

  18. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine.

    PubMed

    Zhang, Liming; Li, Ruichao; Dong, Feng; Tian, Aiying; Li, Zhengjun; Dai, Yujie

    2015-01-01

    Starch/ε-poly-L-lysine (ε-PL) composite films were prepared by combining 4% (w/v) gelatinized cornstarch and varying the level of ε-PL. The physical, mechanical and antimicrobial properties of these films were investigated. Fourier-transform infrared spectra (FT-IR) showed that the carbonyl group stretching vibration band of the ε-PL molecule shifted from 1646 cm(-1) to 1673 cm(-1) in the composite films. Differential scanning calorimetry (DSC) results indicated that there were sharp endothermal peaks at 215-230 °C for the composite films. These results indicated that there was an intense interaction between the two components. The films incorporated with ε-PL showed a higher tensile strength (TS) and elongation-at-break (E) than those of the starch film alone. These composite films exhibited effective inhibition against Escherichia coli and Bacillus subtilis, films containing 2% (w/w) ε-PL effectively suppressed the growth of the tested microbes (P<0.05). The starch/ε-PL films showed a low inhibitory effect on Aspergillus niger. This antimicrobial trend of the composite films was in agreement with the results of free ε-PL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen

    2018-04-01

    The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.

  20. Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals

    DOE PAGES

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed; ...

    2017-05-25

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  1. Quantum Dots' Photo-luminescence Line Shape Modeling

    NASA Astrophysics Data System (ADS)

    Hua, Muchuan; Decca, Ricardo

    Two usual phenomena observed in quantum dots (QDs) photo-luminescence (PL) spectra are line broadening and energy shift between absorption and emission peaks. They have been attributed to electron-phonon coupling and surface trapping during the PL process. Although many qualitative work describing these phenomena has been carried out, quantitative results are far less common. In this work, a semi-empirical model is introduced to simulate steady state QDs' PL processes at room temperature. It was assumed that the vast majority of radiative recombination happens from surface trapped states. Consequently, the PL line shape should be highly modulated by transition rates between states in the conduction band and between them and surface trapping states. CdSe/ZnS (core/shell) colloidal QD samples with different sizes were used to examine the model. The model was able to successfully reproduce the PL spectra of these samples even when the excitation happens within the emission spectra, giving raise to up-conversion events. This model might help understand and make more precise predictions of QDs' PL spectra and could also aid on the design of QDs' optical devices.

  2. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates

    NASA Astrophysics Data System (ADS)

    Brammertz, Guy; Mols, Yves; Degroote, Stefan; Motsnyi, Vasyl; Leys, Maarten; Borghs, Gustaaf; Caymax, Matty

    2006-05-01

    Thin epitaxial GaAs films, with thickness varying from 140 to 1000 nm and different Si doping levels, were grown at 650 °C by organometallic vapor phase epitaxy on Ge substrates and analyzed by low-temperature photoluminescence (PL) spectroscopy. All spectra of thin GaAs on Ge show two different structures, one narrow band-to-band (B2B) structure at an energy of ~1.5 eV and a broad inner-band-gap (IB) structure at an energy of ~1.1 eV. Small strain in the thin GaAs films causes the B2B structure to be separated into a light-hole and a heavy-hole peak. At 2.5 K the good structural quality of the thin GaAs films on Ge can be observed from the narrow excitonic peaks. Peak widths of less than 1 meV are measured. GaAs films with thickness smaller than 200 nm show B2B PL spectra with characteristics of an n-type doping level of approximately 1018 at./cm3. This is caused by heavy Ge diffusion from the substrate into the GaAs at the heterointerface between the two materials. The IB structure observed in all films consists of two Gaussian peaks with energies of 1.04 and 1.17 eV. These deep trapping states arise from Ge-based complexes formed within the GaAs at the Ge-GaAs heterointerface, due to strong diffusion of Ge atoms into the GaAs. Because of similarities with Si-based complexes, the peak at 1.04 eV was identified to be due to a GeGa-GeAs complex, whereas the peak at 1.17 eV was attributed to the GeGa-VGa complex. The intensity of the IB structure decreases strongly as the GaAs film thickness is increased. PL intensity of undoped GaAs films containing antiphase domains (APDs) is four orders of magnitude lower than for similar films without APDs. This reduction in intensity is due to the electrically active Ga-Ga and As-As bonds at the boundaries between the different APDs. When the Si doping level is increased, the PL intensity of the APD-containing films is increased again as well. A film containing APDs with a Si doping level of ~1018 at./cm3 has only a factor 10 reduced intensity. We tentatively explain this observation by Si or Ge clustering at antiphase boundaries, which eliminates the effects of the Ga-Ga and As-As bonds. This assumption is confirmed by the fact that, at 77 K, the ratio between the intensity of the IB peak at 1.17 eV to the intensity of the peak at 1.04 eV is smaller than 1.4 for all films containing APDs, whereas it is larger than 1.4 for all films without APDs. This shows stronger clustering of Si or Ge in the material with APDs. For future electronic applications, Ge diffusion into the GaAs will have to be reduced. PL analysis will be a rapid tool for studying the Ge diffusion into the GaAs thin films.

  3. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  4. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  5. Rethinking the theoretical description of photoluminescence in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  6. Synthesis and properties of ultra-long InP nanowires on glass.

    PubMed

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  7. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  8. Light-emitting Si nanostructures formed by swift heavy ions in a-Si:H/SiO2 multilayer heterostructures

    NASA Astrophysics Data System (ADS)

    Cherkova, S. G.; Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Kamaev, G. N.; Skuratov, V. A.

    2017-08-01

    Light-emitting nanoclusters were formed in Si/SiO2 multilayer structures irradiated with 167 MeV Xe ions to the doses of 1011-3  ×  1014 cm-2 and annealed in the forming-gas at 500 °C and in nitrogen at 800-1100 °C, 30 min. The thicknesses were ~4 nm or ~7-8 for the Si, and ~10 nm for the SiO2 layers. The structures were studied using photoluminescence (PL), Raman spectroscopy, and the cross-sectional high resolution transmission electron microscopy (HRTEM). As-irradiated samples showed the PL, correlating with the growth of the ion doses. HRTEM found the layers to be partly disintegrated. The thickness of the amorphous Si layer was crucial. For 4 nm thick Si layers the PL was peaking at ~490 nm, and quenched by the annealing. It was ascribed to the structural imperfections. For the thicker Si layers the PL was peaking at ~600 nm and was attributed to the Si-rich nanoclusters in silicon oxide. The annealing increases the PL intensity and shifts the band to ~790 nm, typical of Si nanocrystals. Its intensity was proportional to the dose. Raman spectra confirmed the nanocrystals formation. All the results obtained evidence the material melting in the tracks for 10-11-10-10 s providing thereby fast diffusivities of the atoms. The thicker Si layers provide more excess Si to create the nanoclusters via a molten state diffusion.

  9. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.

    PubMed

    Jung, Boo Young; Kim, Nam Young; Lee, Changhee; Hwangbo, Chang Kwon; Seoul, Chang

    2002-06-01

    We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air[Ag[Alq3]Ag]glass]; type B, of [air[dielectric[Alq3]dielectric]glass]; and type C, of [air[Ag[Alq2]dielectric]glass]. A bare Alq3 film of [air[Alq3]glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15-27.5, 7-10.5, and 16-16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

  10. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  11. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  12. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  13. Functional Magnetic Resonance Imaging of Working Memory and Executive Dysfunction in Systemic Lupus Erythematosus and Antiphospholipid Antibody-Positive Patients.

    PubMed

    Kozora, E; Uluğ, A M; Erkan, D; Vo, A; Filley, C M; Ramon, G; Burleson, A; Zimmerman, R; Lockshin, M D

    2016-11-01

    Standardized cognitive tests and functional magnetic resonance imaging (fMRI) studies of systemic lupus erythematosus (SLE) patients demonstrate deficits in working memory and executive function. These neurobehavioral abnormalities are not well studied in antiphospholipid syndrome, which may occur independently of or together with SLE. This study compares an fMRI paradigm involving motor skills, working memory, and executive function in SLE patients without antiphospholipid antibody (aPL) (the SLE group), aPL-positive non-SLE patients (the aPL-positive group), and controls. Brain MRI, fMRI, and standardized cognitive assessment results were obtained from 20 SLE, 20 aPL-positive, and 10 healthy female subjects with no history of neuropsychiatric abnormality. Analysis of fMRI data showed no differences in performance across groups on bilateral motor tasks. When analysis of variance was used, significant group differences were found in 2 executive function tasks (word generation and word rhyming) and in a working memory task (N-Back). Patients positive for aPL demonstrated higher activation in bilateral frontal, temporal, and parietal cortices compared to controls during working memory and executive function tasks. SLE patients also demonstrated bilateral frontal and temporal activation during working memory and executive function tasks. Compared to controls, both aPL-positive and SLE patients had elevated cortical activation, primarily in the frontal lobes, during tasks involving working memory and executive function. These findings are consistent with cortical overactivation as a compensatory mechanism for early white matter neuropathology in these disorders. © 2016, American College of Rheumatology.

  14. Photoluminescence from Au ion-implanted nanoporous single-crystal 12CaO•7Al2O3

    NASA Astrophysics Data System (ADS)

    Miyakawa, Masashi; Kamioka, Hayato; Hirano, Masahiro; Kamiya, Toshio; Sushko, Peter V.; Shluger, Alexander L.; Matsunami, Noriaki; Hosono, Hideo

    2006-05-01

    Implantation of Au+ ions into a single crystalline 12CaO•7Al2O3 (C12A7) was performed at high temperatures with fluences from 1×1014 to 3×1016cm-2 . This material is composed of positively charged sub-nanometer-sized cages compensated by extra-framework negatively charged species. The depth profile of concentrations of Au species was analyzed using Rutherford backscattering spectrometry. The measured optical spectra and ab initio embedded cluster calculations show that the implanted Au species are stabilized in the form of negative Au- ions below the fluences of ˜1×1016cm-2 (Au volume concentration of ˜2×1021cm-3 ). These ions are trapped in the cages and exhibit photoluminescence (PL) bands peaking at 3.05 and 2.34eV at temperatures below 150K . At fluences exceeding ˜3×1016cm-2 , the implanted Au atoms form nano-sized clusters. This is manifested in quenching of the PL bands and creation of an optical absorption band at 2.43eV due to the surface plasmon of free carriers in the cluster. The PL bands are attributed to the charge transfer transitions (Au0+e-→Au-) due to recombination of photo-excited electrons (e-) , transiently transferred by ultraviolet excitation into a nearby cages, with Au0 atoms.

  15. Fabrication of Ta nanoparticles induced by nanosecond laser ablation in ethanol: the study of laser fluence effects

    NASA Astrophysics Data System (ADS)

    Azadi Kenari, Fariba; Moniri, Samira; Hantehzadeh, Mohammad Reza; Dorranian, Davoud; Ghoranneviss, Mahmood

    2018-05-01

    Tantalum nanoparticles (Ta NPs) were synthesized in ethanol solution by ablation with a 1064 nm Nd:YAG laser. Prepared NPs were investigated by UV-visible absorption spectroscopy, Transmission electron microscopy, X-ray diffraction and Photoluminescence measurement. The average sizes of NPs were calculated to be in the range of 12-18 nm. From the UV-visible studies, the plasmon peak position of Ta NPs was observed in the spectral range of 206-208 nm. The XRD spectra clearly showed the crystalline structure of NPs and various peaks of Ta and Ta2O5. Moreover, the UV region in the PL spectrum included the free exciton and the bound exciton emission correlated with the defect concentration. In fact, the laser ablation in the organic and inorganic solvents is a strong technique to obtain some NPs with particular structures, which are impossible to produce by conventional methods.

  16. Role of Ni2+(d8) ions in electrical, optical and magnetic properties of CdS nanowires for optoelectronic and spintronic applications.

    PubMed

    Kamran, Muhammad Arshad

    2018-06-29

    For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd 0.886 Ni 0.114 S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni 2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni 2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d-d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm -1 ) and 750.98 nm (13 316 cm -1 ) are very close to NIR emission. Orange emission not only remained at same peak position-its PL intensity was also significantly enhanced at 78 K; this was assigned to d-d transition ( 3 A 2g  →  1 E g ) of Ni 2+ ions. It was observed that 11.4% Ni 2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (M s ) increased from 7.2 × 10 -5 Am 2 /Kg to 1.17 × 10 -4 Am 2 /Kg, which shows promise for optoelectronic and spintronic applications.

  17. Evolution of superclusters and delocalized states in GaAs1-xNx

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.

    2012-11-01

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs1-xNx was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster is fully developed by 0.32% N.

  18. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  19. Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications

    PubMed Central

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Liu, Sha; Law, Wing-Cheung; Wu, Fang; Swihart, Mark T.; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We have synthesized core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with an average size of 15 nm and exceptionally high photoluminescence (PL) quantum yield. When excited at 740 nm, the nanocrystals manifest spectrally distinguished, near infrared to near infrared (NIR-to-NIR) downconversion PL peaked at ~900, ~1050, and ~1300 nm. The absolute quantum yield of NIR-to-NIR PL reached 40% for core-shell nanoparticles dispersed in hexane. Time-resolved PL measurements revealed that this high quantum yield was achieved through suppression of nonradiative recombination originating from surface states and cross relaxations between dopants. NaGdF4:Nd3+/NaGdF4 nanocrystals, synthesized in organic media, were further converted to be water-dispersible by eliminating the capping ligand of oleic acid. NIR-to-NIR PL bioimaging was demonstrated both in vitro and in vivo through visualization of the NIR-to-NIR PL at ~900 nm under incoherent lamp light excitation. The fact that both excitation and the PL of these nanocrystals are in the biological window of optical transparency, combined with their high quantum efficiency, spectral sharpness and photostability, makes these nanocrystals extremely promising as optical biomaging probes. PMID:22401578

  20. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: Effect of laser ablation time.

    PubMed

    Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong

    2018-06-19

    Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.

  1. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  2. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers

    DOE PAGES

    Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.; ...

    2017-07-24

    Excitonic states in monolayer transition metal dichalcogenides (TMDCs) have been the subject of extensive recent interest. Their intrinsic properties can, however, be obscured due to the influence of inhomogeneity in the external environment. Here we report methods for fabricating high quality TMDC monolayers with narrow photoluminescence (PL) linewidth approaching the intrinsic limit. We find that encapsulation in hexagonal boron nitride (h-BN) sharply reduces the PL linewidth, and that passivation of the oxide substrate by an alkyl monolayer further decreases the linewidth and also minimizes the charged exciton (trion) peak. The combination of these sample preparation methods results in much reducedmore » spatial variation in the PL emission, with a full-width-at-half-maximum as low as 1.7 meV. Furthermore, analysis of the PL line shape yields a homogeneous width of 1.43 ± 0.08 meV and inhomogeneous broadening of 1.1 ± 0.3 meV.« less

  3. Atmospheric pressure organometallic vapor-phase epitaxial growth of (Al/x/Ga/1-x/)0.51In0.49P (x from 0 to 1) using trimethylalkyls

    NASA Technical Reports Server (NTRS)

    Cao, D. S.; Kimball, A. W.; Stringfellow, G. B.

    1990-01-01

    This paper describes growth of (Al/x/Ga/1-x)0.51In0.49P layers (with x from 0 to 1) lattice-matched to (001)-oriented GaAs substrates by atmospheric-pressure OMVPE, using trimethylindium, trimethylaluminum, and trimethylgallium and PH3 as source materials in a horizontal reactor. Excellent surface morphologies were obtained over the entire range of Al compositions at a growth temperature of 680 C. Photoluminescence (PL) was observed for all samples with x values not below 0.52, with PL peak energies as high as 2.212 eV. The PL FWHM for Ga(0.51)In(0.49)P was 7.2 meV at 10 K and 35 meV at 300 K. At 10 K, the PL intensity was nearly a constant over the composition range from x = 0 to 0.52.

  4. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained bymore » varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.« less

  5. Photoluminescence and energy transfer process in Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvalakshmi, T.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    Variation in photoluminescence (PL) properties of Eu{sup 3+} and Tb{sup 3+} as a function of co-dopant (Tb{sup 3+}) concentration are studied for Gd{sub 2-x-y}O{sub 3}: Eu{sup 3+}{sub x} Tb{sup 3+}{sub y} (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu{sup 3+} and Tb{sup 3+}. The bandgap calculated from Kubelka – Munk function is also reported. PL spectra are recorded at the excitation wavelength ofmore » 307 nm and the emission peak corresponding to Eu{sup 3+} confirms the energy transfer from Tb{sup 3+} to Eu{sup 3+}. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.« less

  6. Role of the copper-oxygen defect in cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.

  7. Photoluminescence spectral reliance on aggregation order of 1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole.

    PubMed

    Chen, Junwu; Xu, Bin; Yang, Kaixia; Cao, Yong; Sung, Herman H Y; Williams, Ian D; Tang, Ben Zhong

    2005-09-15

    1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole (1) was prepared and characterized crystallographically. Silole 1 exhibited aggregation-induced emission (AIE) behavior like other 2,3,4,5-tetraphenylsiloles. Unexpectedly, aggregates formed in water/acetone (6:4 by volume) mixture emitted a blue light that peaked at 474 nm, while aggregates formed in the mixtures with higher water fractions emitted green light that peaked at 500 nm. Transmission electron microscopy demonstrated that the aggregates formed in the mixture with water fraction of 60% were single crystals, while aggregates that formed in the mixture with water fraction of 90% were irregular and poorly ordered particles. The unusual PL spectral reliance on aggregation order was further confirmed by PL emissions of macroscopic crystal powders and amorphous powders of the silole in the dry state. PL spectral blue shifting was observed upon aging of the poorly ordered aggregates formed in mixtures with water fractions of 70-90%, and they finally exhibited the same blue emission as the crystalline aggregates. The as-deposited thin solid film was amorphous and it could be transformed to a transparent crystalline film upon treatment in the vapor of an ethanol/water (1:1 by volume) mixture, along with PL spectral blue shifting due to changing of aggregation order. It was also found that the crystalline film showed a blue-shifted absorption spectrum relative to the amorphous film and the shift of the absorption edge of the spectra could match that of corresponding PL spectra. The FT-IR spectrum of crystal powders of 1 displayed more vibration modes compared with that of amorphous powders, suggesting the existence of different pi-overlaps or different molecular conformations. The crystals of 1-methyl-1,2,3,4,5-pentaphenylsilole and hexaphenylsilole also showed blue-shifted PL emissions of their amorphous solids, with a comparable PL spectral shift of 1. Developing of a silole solution on a TLC plate readily brought about an amorphous thin layer. Our results suggest that crystalline films of AIE-active siloles are potential emissive layers for efficient blue OLEDs with stable color and long lifetime.

  8. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography

    NASA Astrophysics Data System (ADS)

    Wu, P.; Stayman, J. W.; Mow, M.; Zbijewski, W.; Sisniega, A.; Aygun, N.; Stevens, R.; Foos, D.; Wang, X.; Siewerdsen, J. H.

    2018-06-01

    Timely evaluation of neurovasculature via CT angiography (CTA) is critical to the detection of pathology such as ischemic stroke. Cone-beam CTA (CBCT-A) systems provide potential advantages in the timely use at the point-of-care, although challenges of a relatively slow gantry rotation speed introduce tradeoffs among image quality, data consistency and data sparsity. This work describes and evaluates a new reconstruction-of-difference (RoD) approach that is robust to such challenges. A fast digital simulation framework was developed to test the performance of the RoD over standard reference reconstruction methods such as filtered back-projection (FBP) and penalized likelihood (PL) over a broad range of imaging conditions, grouped into three scenarios to test the trade-off between data consistency, data sparsity and peak contrast. Two experiments were also conducted using a CBCT prototype and an anthropomorphic neurovascular phantom to test the simulation findings in real data. Performance was evaluated primarily in terms of normalized root mean square error (NRMSE) in comparison to truth, with reconstruction parameters chosen to optimize performance in each case to ensure fair comparison. The RoD approach reduced NRMSE in reconstructed images by up to 50%–53% compared to FBP and up to 29%–31% compared to PL for each scenario. Scan protocols well suited to the RoD approach were identified that balance tradeoffs among data consistency, sparsity and peak contrast—for example, a CBCT-A scan with 128 projections acquired in 8.5 s over a 180°  +  fan angle half-scan for a time attenuation curve with ~8.5 s time-to-peak and 600 HU peak contrast. With imaging conditions such as the simulation scenarios of fixed data sparsity (i.e. varying levels of data consistency and peak contrast), the experiments confirmed the reduction of NRMSE by 34% and 17% compared to FBP and PL, respectively. The RoD approach demonstrated superior performance in 3D angiography compared to FBP and PL in all simulation and physical experiments, suggesting the possibility of CBCT-A on low-cost, mobile imaging platforms suitable to the point-of-care. The algorithm demonstrated accurate reconstruction with a high degree of robustness against data sparsity and inconsistency.

  9. Background frequency of Bacillus species at the Canberra Airport: A 12 month study.

    PubMed

    Gahan, Michelle E; Thomas, Rory; Rossi, Rebecca; Nelson, Michelle; Roffey, Paul; Richardson, Michelle M; McNevin, Dennis

    2015-12-01

    Anthrax, caused by Bacillus anthracis, is a naturally occurring disease in Australia. Whilst mainly limited to livestock in grazing regions of Victoria and New South Wales, movement of people, stock and vehicles means B. anthracis could be present outside this region. Of particular interest is the "background" prevalence of B. anthracis at transport hubs including airports. The aim of this study was to determine the background frequency of B. anthracis and the commonly used hoax agent Bacillus thuringiensis at the Canberra Airport over a 12 month period. Samples were collected daily for seven days each month from August 2011-July 2012 and analyzed using species specific real-time polymerase chain reaction. Fourteen samples (of a total of 575) were positive for the B. anthracis PL3 genomic marker, 24 for the cya (pXO1) plasmid marker and five for the capB (pXO2) plasmid marker. Whilst five samples were positive for both PL3 and cya, no samples were positive for all three markers hence there is no evidence to suggest the presence of pathogenic B. anthracis strains. B. anthracis targets were detected primarily in February 2012 and B. thuringiensis peaked in October and November 2011 and again in April and May 2012. This study provides a rapid method to screen for, and differentiate, Bacillus species. Armed with this information investigators will be able to discriminate a "threat" from "background" frequencies should the need arise. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. [Cardiac abnormalities in patients with systemic lupus erythematosus: the role of antiphospholipid antibodies].

    PubMed

    Monti, Manuel; Borgognoni, Francesco; Pastacci, Loredana; Vincentelli, Giovanni Maria

    2016-12-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory disease that has protean manifestations and follows a relapsing and remitting course. More than 90% of cases of SLE occur in women, frequently starting at childbearing age. It is characterized by the presence of autoantibodies potentially directed toward every organ or apparatus. Cardiac alterations are frequent in patients affected by SLE and the simultaneous presence of antiphospholipid antibodies (aPL), able to cause arterial thrombosis in any vascular district, is considered a possible risk factor for cardiac damage in SLE patients. The aim of this study is to correlate the main cardiac disorders, estimable through transthoracic echocardiography, in SLE patients as well as the typical autoantibody pattern of the disease. Our study included 76 patients: 38 SLE and 38 controls patients. Control patients have been properly selected to be comparable in gender, age and risks factors for cardiovascular disease. We performed autoantibody panel to assess the prevalence of various autoantibodies during SLE development (antinuclear antibody [ANA], double-stranded DNA [dsDNA], extractable nuclear antigen antibodies [ENA], aPL). In the study, the determination of the IgG and IgM isotypes for aPL (cardiolipin, phosphatidylinositol [aPI], phosphatidylserine, phosphatidic acid [aPA], and anti-β2-glycoprotein I antibodies) were checked. Echocardiography was performed in all patients. In patients affected by SLE, 94.7% was positive to ANA (relative risk 20; 95% confidence interval 4.9-340; p<0.0001) whereas 60.5% was positive for aPL. In patients with SLE, valvular alterations were observed, with a statistically significant correlation between mitral and aortic insufficiency (p=0.01 and p=0.02, respectively). Among aPL-positive patients, 68% (17/25) exhibited at least one hemodynamically significant echocardiographic alteration, vss 3/13 (23%) of patients with negative aPL, with a statistically significant correlation (relative risk 2; 95% confidence interval 1.0-29.8; p=0.01). Among positive-aPL patients, a statistically significant correlation was also observed between mitral insufficiency and aPI-IgG positivity (p=0.01) and, regarding non-valvular alterations, between left atrial enlargement and aPI-IgG positivity (p=0.01) and between left ventricular hypertrophy and aPA-IgG positivity (p=0.03). The present study confirms that SLE is an important risk factor for the presence of cardiac alterations, especially for valvular damage. Moreover, the presence of aPL antibodies in patients with SLE is significantly associated with an increased risk of heart disease, and some specific cardiac alterations are correlated with the positivity of some subclasses of aPL.

  11. Optical, scintillation and dosimeter properties of MgO:Tb translucent ceramics synthesized by the SPS method

    NASA Astrophysics Data System (ADS)

    Kawano, Naoki; Kato, Takumi; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    MgO translucent ceramics doped with different concentrations of Tb (0.01, 0.05, 0.1, 0.5%) were prepared by the Spark Plasma Sintering (SPS) method. Further, the optical, scintillation, dosimeter properties of were evaluated systematically. In the photoluminescence (PL) and scintillation spectra, sharp emission peaks due to the 4f-4f transitions of Tb3+ were observed. In the PL and scintillation decay curves, the decay time constants were a few ms which were on a typical order of the 4f-4f transitions of Tb3+. The thermally-stimulated luminescence (TSL) glow curves exhibited glow peaks around 80, 160 °C after X ray irradiation of 10 mGy. The intensity of TSL peak at 160 °C exhibited a linear response against X-ray dose over a dose range of 0.1-10 mGy. The optically-stimulated luminescence (OSL) under 590 nm stimulation exhibited strong emissions due to Tb3+ around 385-550 nm after X-ray irradiation. As in TSL, the intensity of OSL peak showed a linear response to X-ray dose, and the dynamic range confirmed was 0.1-1000 mGy.

  12. The role of clinically significant antiphospholipid antibodies in systemic lupus erythematosus.

    PubMed

    Taraborelli, M; Lazzaroni, M G; Martinazzi, N; Fredi, M; Cavazzana, I; Franceschini, F; Tincani, A

    2016-12-16

    The objective is to investigate the role of clinically significant antiphospholipid antibodies (aPL) in a cohort of systemic lupus erythematosus (SLE) patients. All SLE patients followed for at least 5 years and with available aPL profile at the beginning of the follow-up in our center were studied. Clinically significant aPL were defined as: positive lupus anticoagulant test, anti-cardiolipin and/or anti- β2Glycoprotein I IgG/IgM >99th percentile on two or more occasions at least 12 weeks apart. Patients with and without clinically significant aPL were compared by univariate (Chi square or Fisher's exact test for categorical variables and Student's t or Mann-Whitney test for continuous variables) and multivariate analysis (logistic regression analysis). P values <0.05 were considered significant. Among 317 SLE patients studied, 117 (37%) had a clinically significant aPL profile at baseline. Such patients showed at univariate analysis an increased prevalence of deep venous thrombosis, pulmonary embolism, cardiac valvular disease, cognitive dysfunction and antiphospholipid syndrome (APS), but a reduced prevalence of acute cutaneous lupus and anti-extractable nuclear antigens (ENA) when compared with patients without clinically significant aPL. Multivariate analysis confirmed the association between clinically significant aPL and reduced risk of acute cutaneous lupus [p=0.003, odds ratio (OR) 0.43] and ENA positivity (p<0.001, OR 0.37), with increased risk of cardiac valvular disease (p=0.024, OR 3.1) and APS (p<0.0001, OR 51.12). Triple positivity was the most frequent profile and was significantly associated to APS (p<0.0001, OR 28.43). Our study showed that one third of SLE patients had clinically significant aPL, and that this is associated with an increased risk, especially for triple positive, of APS, and to a different clinical and serological pattern of disease even in the absence of APS.

  13. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2018-01-01

    High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.

  14. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    NASA Astrophysics Data System (ADS)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  15. Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Ahmad, Nafis; Lee, Gun Hee; Seo, Tae Hoon; Suh, Eun-kyung; Kim, Jae Hyun

    2015-05-01

    Al rich zinc oxide nano-structured films were synthesized using spin coating sol-gel technique. The films were annealed in oxygen ambient in the temperature range of 200-700 °C. The structural, optical, and photoluminescence (PL) properties of the films were studied at various annealing temperatures using X-ray diffraction spectroscopy, field emission scanning electron microscopy, photoluminescence emission spectra measurement, and Raman and UV-Vis spectroscopy. The optical band gap was found to decrease with the increase of the annealing temperature following the Gauss Amp function due to the confinement of the exciton. The PL peak intensity in the near band region (INBE) was found to increase with the increase of the annealing temperature up to 600 °C, then to decrease fast to a lower value for the annealing temperature of 700 °C due to crystalline quality. The Raman peak of E2 (low) was red shifted from 118 cm-1 to 126 cm-1 with the increase of the annealing temperature. The intensity of the second order phonon (TA+LO) at 674 cm-1 was found to decrease with the increase of the annealing temperature. The normalized values of the reflectance and the PL intensity in the NBE region were highest for the annealing temperature of 600 °C. A special correlation was found between the reflectance at λ = 1000 nm and the normalized PL intensity in the green region due to scattering due to presence of grains.

  16. Oxygen related recombination defects in Ta{sub 3}N{sub 5} water splitting photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Gao; Yu, Tao, E-mail: yscfei@nju.edu.cn, E-mail: yutao@nju.edu.cn; Zou, Zhigang

    2015-10-26

    A key route to improving the performance of Ta{sub 3}N{sub 5} photoelectrochemical film devices in solar driving water splitting to hydrogen is to understand the nature of the serious recombination of photo-generated carriers. Here, by using the temperature-dependent photoluminescence (PL) spectrum, we confirmed that for the Ta{sub 3}N{sub 5} films prepared by nitriding Ta{sub 2}O{sub 5} precursor, one PL peak at 561 nm originates from deep-level defects recombination of the oxygen-enriched Ta{sub 3}N{sub 5} phases, and another one at 580 nm can be assigned to band recombination of Ta{sub 3}N{sub 5} itself. Both of the two bulk recombination processes may decrease themore » photoelectrochemical performance of Ta{sub 3}N{sub 5}. It was difficult to remove the oxygen-enriched impurities in Ta{sub 3}N{sub 5} films by increasing the nitriding temperatures due to their high thermodynamically stability. In addition, a broadening PL peak between 600 and 850 nm resulting from oxygen related surface defects was observed by the low-temperature PL measurement, which may induce the surface recombination of photo-generated carriers and can be removed by increasing the nitridation temperature. Our results provided direct experimental evidence to understand the effect of oxygen-related crystal defects in Ta{sub 3}N{sub 5} films on its photoelectric performance.« less

  17. Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.

    2018-01-01

    We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.

  18. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  19. Improvement in wettability of porous Si by carboxylate termination

    NASA Astrophysics Data System (ADS)

    Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya

    2018-02-01

    The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.

  20. Isoelectronic bound-exciton photoluminescence in strained beryllium-doped Si0.92Ge0.08 epilayers and Si0.92Ge0.08/Si superlattices at ambient and elevated hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kim, Sangsig; Chang, Ganlin; Herman, Irving P.; Bevk, Joze; Moore, Karen L.; Hall, Dennis G.

    1997-03-01

    Photoluminescence (PL) from a beryllium-doped Si0.92Ge0.08 epilayer and three different beryllium-doped Si0.92Ge0.08/Si superlattices (SL's) commensurately grown on Si(100) substrates is examined at 9 K at ambient pressure and, for the epilayer and one SL, as a function of hydrostatic pressure. In each structure, excitons bind to the isoelectronic Be pairs in the strained Si0.92Ge0.08 layers. The zero-phonon PL peaks of the epilayer and the in situ doped 50-Å Si0.92Ge0.08/100-Å Si SL shift linearly with pressure toward lower energy at the rate of 0.68+/-0.03 and 0.97+/-0.03 meV/kbar, respectively, which are near the 0.77-meV/kbar value for Si:Be. The PL energies at ambient and elevated pressure are analyzed by accounting for strain, quantum confinement, and exciton binding. A modified Hopfield-Thomas-Lynch model is used to model exciton binding to the Be pairs. This model, in which potential wells bind electrons to a site (that then trap holes), predicts a distribution of electron binding energies when an inhomogeneous distribution of potential-well depths is used. This accounts for the large PL linewidth and the decrease of linewidth with increasing pressure, among other observations. In SL's, the exciton binding energy is shown to depend on the width of the wells as well as the spatial distribution of Be dopants in the superlattice. Also, at and above 58 kbar a very unusual peak is observed in one of the SL's, which is associated with a free-exciton peak in Si, that shifts very fast with pressure (-6.02+/-0.03 meV/kbar).

  1. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers

    PubMed Central

    Venkatesh, Mayandi; Barathi, Veluchamy Amutha; Goh, Eunice Tze Leng; Anggara, Raditya; Fazil, Mobashar Hussain Urf Turabe; Ng, Alice Jie Ying; Harini, Sriram; Aung, Thet Tun; Fox, Stephen John; Liu, Shouping; Barkham, Timothy Mark Sebastian; Loh, Xian Jun

    2017-01-01

    ABSTRACT The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections. PMID:28784676

  2. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  3. Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Si nanopowder is fabricated using the simple beads milling method. Fabricated Si nanopowder reacts with water in the neutral pH region between 7 and 9 to generate hydrogen. The hydrogen generation rate greatly increases with pH, while pH does not change after the hydrogen generation reaction. In the case of the reactions of Si nanopowder with strong alkaline solutions (eg pH13.9), 1600 mL hydrogen is generated from 1 g Si nanopowder in a short time (eg 15 min). When Si nanopowder is etched with HF solutions and immersed in ethanol, green photoluminescence (PL) is observed, and it is attributed to band-to-band transition of Si nanopowder. The Si nanopowder without HF etching in hexane shows blue PL. The PL spectra possess peaked structure, and it is attributed to vibronic bands of 9,10-dimethylantracene (DMA) in hexane solutions. The PL intensity is increased by more than 3,000 times by adsorption of DMA on Si nanopowder.

  4. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  5. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning

    2018-06-01

    GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.

  6. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Ji, Huiqiang; Shen, Junling; Xu, Yonghao; Liu, Xiaolian; Fu, Ziyi

    2018-04-01

    The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.

  7. Evolution of superclusters and delocalized states in GaAs 1–xN x

    DOE PAGES

    Fluegel, B.; Alberi, K.; Beaton, D. A.; ...

    2012-11-21

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs 1–xN x was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinitemore » supercluster is fully developed by 0.32% N.« less

  8. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  9. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in systemic lupus erythematosus.

    PubMed

    Broder, Anna; Putterman, Chaim

    2013-01-01

    Antiphospholipid antibodies (aPL) play an active role in the pathogenesis of the antiphospholipid syndrome (APS). Primary prevention in APS may be aimed at decreasing existing elevated aPL levels, or preventing high aPL titers and/or lupus anticoagulant (LAC) from developing in the first place. Hydroxychloroquine (HCQ) has been shown in retrospective studies to decrease aPL titers in laboratory studies, and to decrease thrombosis risk in patients with systemic lupus erythematosus (SLE). We investigated an association between HCQ use and persistent aPL and/or LAC in SLE. We identified all patients over 21 years old with SLE from an urban tertiary care center who had aPL and LAC measured on at least 2 occasions at least 12 weeks apart. We defined the presence of persistent LAC+ and/or at least 1 aPL ≥ 40 U [immunoglobulin A (IgA), IgG, or IgM] as the main outcome variable. Among 90 patients included in the study, 17 (19%) had persistent LAC+ and/or at least 1 aPL ≥ 40 U. HCQ use was associated with significantly lower odds of having persistent LAC+ and/or aPL ≥ 40 U (OR 0.21, 95% CI 0.05, 0.79, p = 0.02), adjusted for age, ethnicity, and sex. This is the first study to show that HCQ use is associated with lower odds of having persistently positive LAC and/or aPL. Data from this study provide a basis for the design of future prospective studies investigating the role of HCQ in primary and secondary prevention of APS.

  10. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  11. Emission and Structure-Varying ZnO and Carbon Nanocrystal Composite in Mechanical Processing

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Perez Millan, B.; Polupan, G.; Kakazey, M.

    2018-03-01

    Morphology, photoluminescence (PL), and Raman scattering spectra have been investigated for mixtures of ZnO+0.1%C nanocrystals (NCs) at different stages of mechanical processing (MP). The transformation of graphite into graphene monolayers covering the ZnO NC surface is revealed for the first MP stage. The interaction with oxygen has been detected in the second MP stage which leads to the dissolution of oxygen interstitials in the ZnO NCs and to the formation of graphene (graphite) oxides. Increasing the concentration of the oxygen interstitials in ZnO NCs also enhances the intensity stimulation of the orange PL band (2.18eV). Simultaneously, the PL band peaking at 2.82-2.90 eV is detected in the PL spectra of the ZnO+0.1%C NC mixture after MP for 9-90 min. Then, the variation of the ZnO NC shape, agglomeration of ZnO NCs, modification of ZnO defects and decreasing PL intensity have been detected after prolonged MP for 390 min. It is expected that short stages of MP can be useful for ZnO NC surface covering by graphene layers or graphene (graphite) oxides.

  12. Growth and characterization of AlInAsSb layers lattice-matched to GaSb

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Rouillard, Y.; Tournié, E.

    2017-11-01

    We report on the growth by solid-source MBE of random-alloy AlxIn1-xAsySb1-y layers lattice-matched to (0 0 1)-GaSb substrates, with xAl ∈ [0.25; 0.75]. The samples quality and morphology were characterized by X-ray diffraction, Nomarski microscopy and atomic force microscopy. Layers grown at 400 °C demonstrated smooth surfaces and no sign of phase decomposition. Samples with xAl ≤ 0.60 demonstrated photoluminescence (PL) at 300 K whereas samples with higher Al content only demonstrated PL at low temperature. Samples grown at 430 °C, in contrast, exhibited PL at low temperature only, whatever their composition. Inferred bandgap energies corroborate the estimation of a non-null quaternary bowing parameter made by Donati, Kaspi and Malloy in Journal of Applied Physics 94 (2003) 5814. Upon annealing, the PL peak energies increased, getting even closer to the theoretical values. These results are in agreement with recently published results on digital AlInAsSb alloys. Our work, which reports the first evidence for PL emission from random-alloy AlInAsSb layers lattice-matched to GaSb, opens the way to their use in optoelectronic devices.

  13. Luminescence studies of a combustion-synthesized blue-green BaAlxOy:Eu2+,Dy3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bem, Daniel B.; Dejene, F. B.; Luyt, A. S.; Swart, H. C.

    2012-05-01

    Blue-green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.

  14. Synthesis and luminescence properties of KSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The KSrPO4:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO4:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO4:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al2O3:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  15. The preparation of high quality alumina defective photonic crystals and their application of photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    An, Yu-Ying; Wang, Jian; Zhou, Wen-Ming; Jin, Hong-Xia; Li, Jian-Feng; Wang, Cheng-Wei

    2018-07-01

    The high quality anodic aluminum oxide (AAO) defective photonic crystals (DPCs) have been successfully prepared by using a modified periodic pulse anodization technique including an effective voltage compensating strategy. The test results confirmed that the AAO DPCs were with a perfect regular layered-structure and had a narrow defective photonic band gap (DPBG) with a high quality defective mode. When the rhodamine B (rhB) was absorbed onto the pore walls of the AAO DPCs, it was found that the DPBG blue edge and localized defective mode inside could significantly enhance the photoluminescence (PL) intensity of rhodamine B (rhB), while they were carefully regulated to match with the emission peak position of rhB respectively. Even more intriguing was that the localized defective peak in DPBG had more notable effect on rhB's photoluminescence, 3.1 times higher than that of the control samples under the same conditions. The corresponding mechanism for photoluminescence enhancement was also discussed in detail.

  16. In-vitro antibacterial study of zinc oxide nanostructures on Streptococcus sobrinus

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Sirelkhatim, Amna; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Rahman, Rosliza Abd

    2014-10-01

    Zinc oxide nanostructures were prepared using a pilot plant of zinc oxide boiling furnace. Generally, it produced two types of nanostructures different in morphology; one is rod-like shaped (ZnO-1) and a plate-like shape (ZnO-2). The properties of ZnO were studied by structural, optical and morphological using XRD, PL and FESEM respectively. The XRD patterns confirmed the wurtzite structures of ZnO with the calculated crystallite size of 41 nm (ZnO-1) and 42 nm (ZnO-2) using Scherrer formula. The NBE peaks were determined by photoluminescence spectra which reveal peak at 3.25 eV and 3.23 eV for ZnO-1 and ZnO-2 respectively. Prior to that, the morphologies for both ZnO-1 and ZnO-2 were demonstrated from FESEM micrographs. Subsequently the antibacterial study was conducted using in-vitro broth dilution technique towards a gram positive bacterium Streptococcus sobrinus (ATCC 33478) to investigate the level of antibacterial effect of zinc oxide nanostructures as antibacterial agent. Gradual increment of ZnO concentrations from 10-20 mM affected the inhibition level after twenty four hours of incubation. In conjunction with concentration increment of ZnO, the percentage inhibition towards Streptococcus sobrinus was also increased accordingly. The highest inhibition occurred at 20 mM of ZnO-1 and ZnO-2 for 98% and 77% respectively. It showed that ZnO has good properties as antibacterial agent and relevancy with data presented by XRD, PL and FESEM were determined.

  17. A mechanistic approach on the self-organization of the two-component thermoreversible hydrogel of riboflavin and melamine.

    PubMed

    Saha, Abhijit; Manna, Swarup; Nandi, Arun K

    2007-12-18

    The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (

  18. Optical properties of pure and PbSe doped TiS2 nanodiscs

    NASA Astrophysics Data System (ADS)

    Parvaz, M.; Islamuddin; Khan, Zishan H.

    2018-06-01

    Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.

  19. Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.

  20. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    NASA Astrophysics Data System (ADS)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  1. The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts.

    PubMed

    Ferreira, R M; Ayres, H; Chiaratti, M R; Ferraz, M L; Araújo, A B; Rodrigues, C A; Watanabe, Y F; Vireque, A A; Joaquim, D C; Smith, L C; Meirelles, F V; Baruselli, P S

    2011-05-01

    It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n=36 and 34, respectively), peak-lactation (PL; n=37 and 32, respectively), and RB (n=36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H=51.7% ± 4.5 (n=375), PL=37.9% ± 5.1 (n=390), RB=41.9% ± 4.5 (n=666)], blastocyst rate was compromised by HS, especially in RB cows [H=30.3% ± 4.8 (n=244) vs. 23.3% ± 6.4 (n=150), PL=22.0% ± 4.7 (n=191) vs. 14.6% ± 7.6 (n=103), RB=22.5% ± 5.4 (n=413) vs. 7.9% ± 4.3 (n=177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% ± 0.7 (n=14) vs. 2.2% ± 0.2 (n=78)] and other groups [H=2.5% ± 0.7 (n=13), and PL=2.7% ± 0.6 (n=14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Russell, Keith A.; Gibson, Thomas W. G.; Chong, Andrew; Co, Carmon; Koch, Thomas G.

    2015-01-01

    Background Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation. Results 1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis. Conclusions/Significance Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects. PMID:26353112

  3. Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.

    PubMed

    Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A

    2015-03-05

    Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file.

    PubMed Central

    Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.; Bowring, Andrea R.

    2015-01-01

    We report on reversible, light-induced transformations in (CH3NH3)Pb(BrxI1–x)3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics. PMID:28706629

  5. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  6. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide.

    PubMed

    Tsuchiya, Takashi; Tsuruoka, Tohru; Terabe, Kazuya; Aono, Masakazu

    2015-02-24

    In situ and nonvolatile tuning of photoluminescence (PL) has been achieved based on graphene oxide (GO), the PL of which is receiving much attention because of various potential applications of the oxide (e.g., display, lighting, and nano-biosensor). The technique is based on in situ and nonvolatile tuning of the sp(2) domain fraction to the sp(3) domain fraction (sp(2)/sp(3) fraction) in GO through an electrochemical redox reaction achieved by solid electrolyte thin films. The all-solid-state variable PL device was fabricated by GO and proton-conducting mesoporous SiO2 thin films, which showed an extremely low PL background. The device successfully tuned the PL peak wavelength in a very wide range from 393 to 712 nm, covering that for chemically tuned GO, by adjusting the applied DC voltage within several hundred seconds. We also demonstrate the sp(2)/sp(3) fraction tuning using a conductive atomic force microscope. The device achieved not only writing, but also erasing of the sp(2)/sp(3)-fraction-tuned nanodomain (both directions operation). The combination of these techniques is applicable to a wide range of nano-optoelectronic devices including nonvolatile PL memory devices and on-demand rewritable biosensors that can be integrated into nano- and microtips which are transparent, ultrathin, flexible, and inexpensive.

  7. Thermal transfer and interaction mechanisms of localized excitons in families of InAs quantum dashes grown on InP(001) vicinal substrate emitting near 1.55 μm wavelength

    NASA Astrophysics Data System (ADS)

    Besahraoui, Fatiha; Bouslama, M.'Hamed; Bouzaiene, Lotfi; Saidi, Faouzi; Maaref, Hassen; Gendry, Michel

    2016-06-01

    With the help of photoluminescence Spectroscopy (PLS), we have investigated the optoelectronic properties of two different families of InAs quantum dashes (QDashes) grown on misoriented InP(001) substrate with 2∘off miscut angle toward the [110] direction (2∘F type). The lowest full width at half maximum (FWHM) of the PL spectrum measured at 12 K indicates the good self organization of InAs QDashes. The weak ratio of the integrated PL measured in 12-300 K temperature range denotes the good spatial confinement of the photogenerated carriers in InAs QDashes. The fast redshift of the PL peaks energy and the anomalous decrease of the FWHM with the increase of the temperature are attributed to an efficient thermal relaxation process of photogenerated carriers in the vicinal sample. This result is highlighted with the help of theoretical modeling of the PL peak energy as a function of the temperature, using three models (Varshni, “Vina, Logothetidis and Cardona” and Pässler). From experimental and theoretical results, we have evidenced the contribution of longitudinal acoustic-phonons (LA-phonons) in the PL of InAs/InP QDashes, via the deformation potential, especially in high temperatures range. We have attributed this behavior to the strained InAs/InP QDashes and/or to the topography of the vicinal InP(001) substrate which favors the presence of stepped phonons polarized along the steps. These vibrational modes can further interact with the excitons at high temperatures. The measured thermal activation energies of each family of InAs QDashes demonstrate that the InAs wetting layer act as a barrier for the thermoionic emission of photogenerated carriers. This result confirms the good spatial confinement of excitons in this sample.

  8. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    NASA Astrophysics Data System (ADS)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  9. Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species.

    PubMed

    Gupta, Mahiti; Saxena, Sanjai; Goyal, Dinesh

    2015-02-01

    Pancreatic lipase (PL) is considered as one of the safest target for diet-induced anti-obesity drug development. Orlistat is the only PL inhibitor approved for anti-obesity treatment till date. In the process of exploration of new PL inhibitors, we have screened culture filtrates of 70 endophytic fungi of medicinal plants using qualitative as well as quantitative in-vitro PL assays. The qualitative assays indicated potential PL inhibition in only three isolates, namely #57 TBBALM, #33 TBBALM and #1 CSSTOT. Only ethyl acetate extracts of the culture filtrates of these isolates exhibited the PL inhibition. #57 TBBLAM ethyl acetate extract of culture filtrate exhibited potential PL inhibition with an IC50 of 3.69 µg/ml which was comparable to the positive control, i.e. Orlistat exhibiting IC50 value of 2.73 µg/ml. Further molecular phylogenetic tools and morphological studies were used to identify the isolate #57 TBBALM as Penicillium species.

  10. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jun, E-mail: jshao@mail.sitp.ac.cn; Qi, Zhen; Zhu, Liang

    The effects of thermal annealing on the interfaces of InGa(N)As/GaAs single quantum wells (SQWs) are investigated by excitation-, temperature-, and magnetic field-dependent photoluminescence (PL). The annealing at 750 °C results in more significant blueshift and narrowing to the PL peak than that at 600 °C. Each of the PL spectra can be reproduced with two PL components: (i) the low-energy component (LE) keeps energetically unchanged, while the high-energy component (HE) moves up with excitation and shows at higher energy for the In{sub 0.375}Ga{sub 0.625}As/GaAs but crosses over with the LE at a medium excitation power for the In{sub 0.375}Ga{sub 0.625}N{sub 0.012}As{sub 0.988}/GaAsmore » SQWs. The HE is broader than the corresponding LE, the annealing at 750 °C narrows the LE and HE and shrinks their energetic separation; (ii) the PL components are excitonic, and the InGaNAs shows slightly enhanced excitonic effects relative to the InGaAs SQW; (iii) no typical S-shape evolution of PL energy with temperature is detectable, and similar blueshift and narrowing are identified for the same annealing. The phenomena are mainly from the interfacial processes. Annealing improves the intralayer quality, enhances the interfacial In-Ga interdiffusion, and reduces the interfacial fluctuation. The interfacial interdiffusion does not change obviously by the small N content and hence similar PL-component narrowing and blueshift are observed for the SQWs after a nominally identical annealing. Comparison with previous studies is made and the PL measurements under different conditions are shown to be effective for probing the interfacial evolution in QWs.« less

  11. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance.

    PubMed

    Tobias, Gabriel; Benatti, Fabiana Braga; de Salles Painelli, Vitor; Roschel, Hamilton; Gualano, Bruno; Sale, Craig; Harris, Roger C; Lancha, Antonio Herbert; Artioli, Guilherme Gianinni

    2013-08-01

    We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) (6.4 g day⁻¹) was ingested for 4 weeks and 500 mg kg⁻¹ BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect.

  12. Preparation of Cu-doped nickel oxide thin films and their properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowthami, V.; Meenakshi, M.; Anandhan, N.

    2014-04-24

    Copper doped Nickel oxide film was preferred on glass substrate by simple nebulizer technique keeping the substrate temperature at 350°C and characterized by X-ray diffraction (XRD), Photoluminescence (PL) and Four probe resistivity measurements. XRD studies indicated cubic structure and the crystallites are preferentially oriented along the [111] direction. Interesting results have been obtained from the study of PL spectra. A peak corresponding to 376nm in the emission spectra for 0%, 5% and 10% copper doped samples. The samples show sharp and strong UV emission corresponding to the near band edge emission under excitation of 275nm.

  13. Antibacterial activity and mechanism of action of ε-poly-L-lysine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ruosong; Xu, Hengyi; Wan, Cuixiang

    Highlights: •Antibacterial activity and mechanism of ε-PL against E. coli O157:H7 was investigated. •Critical inhibitory factors toward the growth of E. coli O157:H7 by ε-PL was analyzed. •Cell membrane integrity and cell morphology of E. coli O157:H7 was affected by ε-PL. •A positive correlation between reactive oxygen species levels and ε-PL concentration in E. coli O157:H7 cells. •ε-PL induced the expression of different genes related to oxidative/redox stress, SOS response, virulence. -- Abstract: ε-Poly-L-lysine (ε-PL) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level hasmore » not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence.« less

  14. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE PAGES

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.; ...

    2016-10-25

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  15. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  16. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Fei; Zhang, Bei; Liu, Huixian; Jia, Guangyi; Liu, Changlong

    2012-11-01

    Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm-2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm-2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm-2.

  17. Nanophosphor CaSO4:Eu2+ for photoluminescence liquid crystal display (PLLCD)

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Moharil, S. V.

    2018-05-01

    In this work PL enhancement of CaSO4:Eu2+ nanophosphor which was synthesized with 0.01M molarity by co-precipitation method is presented. Synthesized phosphor was characterized by XRD, SEM, TEM and PL measurements. Average particle size is found to be in the range 80-100nm with Hexagonal morphology and PL studies showed emission peaks at 380nm, when samples were excited by 254nm. The observed PL emission is characteristic emission of Eu2+ similar to that observed in bulk CaSO4:Eu2. However under identical condition it is observed that intensity of emission get enhanced for 0.01M size which is doubled to that of 0.1M with similar emission at 380nm. A phosphor with narrow emission band around 390 nm is desirable, since at this wavelength the transmission of standard glass, polarizing plastic, other coating and LCD material is at acceptable level. Strong Eu2+ emission is observed in CaSO4:Eu nanophosphor which finds applications for PLLCD (photoluminescent liquid crystal display).

  18. Impact of practice leadership management style on staff experience in services for people with intellectual disability and challenging behaviour: A further examination and partial replication.

    PubMed

    Deveau, Roy; McGill, Peter

    2016-09-01

    Practice leadership (PL) style of frontline management has been shown to be associated with better experiences for staff working with people who may exhibit challenging behaviours (Deveau & McGill, 2014). This study aimed to examine additional staff experience factors with a different, larger sample and to partially replicate the findings of (Deveau & McGill, 2014). This study was a survey of staff self-reported data collected as part of a larger study. Information was collected on PL and staff experiences of: stress, turnover, job satisfaction and positive work experiences. The results broadly supported Deveau and McGill (2014) and demonstrated an association between PL and greater job satisfaction and positive experiences for staff. Results on staff turnover were inconsistent. The positive impact of PL on staff experience was further supported by this study. Suggestions are made for further research. These findings suggest further research is needed to examine the potential of interventions in frontline management/leadership practice to improve staff experience of working in challenging environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prediction of Preeclampsia Using the Soluble fms-Like Tyrosine Kinase 1 to Placental Growth Factor Ratio

    PubMed Central

    Gaccioli, Francesca; Cook, Emma; Hund, Martin; Charnock-Jones, D. Stephen; Smith, Gordon C.S.

    2017-01-01

    We sought to assess the ratio of sFlt-1 (soluble fms-like tyrosine kinase 1) to PlGF (placental growth factor) in maternal serum as a screening test for preeclampsia in unselected nulliparous women with a singleton pregnancy. We studied 4099 women recruited to the POP study (Pregnancy Outcome Prediction) (Cambridge, United Kingdom). The sFlt-1:PlGF ratio was measured using the Roche Cobas e411 platform at ≈20, ≈28, and ≈36 weeks of gestational age (wkGA). Screen positive was defined as an sFlt-1:PlGF ratio >38, but higher thresholds were also studied. At 28 wkGA, an sFlt-1:PlGF ratio >38 had a positive predictive value (PPV) of 32% for preeclampsia and preterm birth, and the PPV was similar comparing women with low and high prior risk of disease. At 36 wkGA, an sFlt-1:PlGF ratio >38 had a PPV for severe preeclampsia of 20% in high-risk women and 6.4% in low-risk women. At 36 wkGA, an sFlt-1:PlGF ratio >110 had a PPV of 30% for severe preeclampsia, and the PPV was similar comparing low- and high-risk women. Overall, at 36 wkGA, 195 (5.2%) women either had an sFlt-1:PlGF ratio of >110 or an sFlt-1:PlGF ratio >38 plus maternal risk factors: 43% of these women developed preeclampsia, about half with severe features. Among low-risk women at 36 wkGA, an sFlt-1:PlGF ratio ≤38 had a negative predictive value for severe preeclampsia of 99.2%. The sFlt-1:PlGF ratio provided clinically useful prediction of the risk of the most important manifestations of preeclampsia in a cohort of unselected nulliparous women. PMID:28167687

  20. [Phosphorescent effect of Ir (ppy)3 on the luminescent characteristic of Rubrene].

    PubMed

    Xu, Hong-Hua; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Yuan, Guang-Cai; Chen, Yue-Ning

    2008-07-01

    Many organic matters including heavy metal ions can validly utilize the singlet and triplet for luminescence owiog to the spin-orbit coupling. As a result, the internal quantum efficiency can easily achieve a value higher than traditional organic light emitting diodes in theory. There is a strong luminescence of PVK in PVK : PBD : Rubrene system. PL spectra excited by 345 nm of PVK : PBD : Rubrene thin film has a 410 nm PVK luminescent peak and a 560 nm Rubrene peak. EL still has a PVK luminescent peak, which should be kept from happening. Excitons can not adequately transferred from the matrix solution to Rubrene. The doping with Ir(ppy)3 improves the PVK : PBD : Rubrene system performance. PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with low concentration of Rubrene has a 510 nm Ir(ppy)3 peak and a new 548 nm one. However, the Ir(ppy)3 peak is smaller and the Rubrene one is bigger in EL spectra. Notably a strong and single luminescence of Rubrene is obtained in EL and PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with high concentration of Rubrene. Meanwhile, the Ir(ppy)3 luminescent peak disappears. The mechanism originates from the phosphorescent effect of Ir (ppy)3. The singlet excitons can basically be transferred from PVK : PBD or Ir(ppy)3 to Rubrene. But most excitons from Ir (ppy)3 can directly tunnel to the fluorescent material and come into being singlet states that can return to ground states and cause luminescence. Rubrene can accept proportional excitons with low concentration. While the concentration of Rubrene is higher, excitons can be entirely accepted by Rubrene. The effect also restricts the luminescent intensity of Ir(ppy)3 and boosts up that of Rubrene. Furthermore, the energy transfer in PVK : PBD : Ir(ppy)3 : Rubrene system is primary the Forester energy transfer. Excitation spectra of Rubrene and emission spectra of Ir(ppy)3 have a large overlap revealing that there is a strong energy transfer and further confirmed the phosphorescent effect of Ir(ppy)3. The doping system with phosphorescence material and small molecules can enhance the brightness and internal quantum efficiency.

  1. Differences in Lateral Drop Jumps From an Unknown Height Among Individuals With Functional Ankle Instability

    PubMed Central

    Rosen, Adam; Swanik, Charles; Thomas, Stephen; Glutting, Joseph; Knight, Christopher; Kaminski, Thomas W.

    2013-01-01

    Context: Functional ankle instability (FAI) is a debilitating condition that has been reported to occur after 20% to 50% of all ankle sprains. Landing from a jump is one common mechanism of ankle injury, yet few researchers have explored the role of visual cues and anticipatory muscle contractions, which may influence ankle stability, in lateral jumping maneuvers. Objective: To examine muscle-activation strategies between FAI and stable ankles under a lateral load and to evaluate the differences in muscle activation in participants with FAI and participants with stable ankles when they were unable to anticipate the onset of lateral loads during eyes-open versus eyes-closed conditions. Design: Case-control study. Setting: Controlled laboratory setting. Patients or Other Participants: A total of 40 people participated: 20 with FAI and 20 healthy, uninjured, sex- and age-matched persons (control group). Intervention(s): Participants performed a 2-legged lateral jump off a platform onto a force plate set to heights of 35 cm or 50 cm and then immediately jumped for maximal height. They performed jumps in 2 conditions (eyes open, eyes closed) and were unaware of the jump height when their eyes were closed. Main Outcome Measure(s): Amplitude normalized electromyographic (EMG) area (%), peak (%), and time to peak in the tibialis anterior (TA), peroneus longus (PL), and lateral gastrocnemius (LG) muscles were measured. Results: Regardless of the eyes-open or eyes-closed condition, participants with FAI had less preparatory TA (t158 = 2.22, P = .03) and PL (t158 = 2.09, P = .04) EMG area and TA (t158 = 2.45, P = .02) and PL (t158 = 2.17, P = .03) peak EMG than control-group participants. Conclusions: By removing visual cues, unanticipated lateral joint loads occurred simultaneously with decreased muscle activity, which may reduce dynamic restraint capabilities in persons with FAI. Regardless of visual impairment and jump height, participants with FAI exhibited PL and TA inhibition, which may limit talonavicular stability and intensify lateral joint surface compression and pain. PMID:23952040

  2. Investigation on photoluminescence emission of (reduced) graphene oxide paper

    NASA Astrophysics Data System (ADS)

    Ding, J. J.; Chen, H. X.; Feng, D. Q.; Fu, H. W.

    2018-01-01

    In order to contrastively investigate optical properties of graphene oxide (GO) and reduced graphene oxide (rGO) paper, GO is prepared by improved Hummer method and controlled reduced using hydration hydrazine to obtain good dispersive rGO in organic solvent. Finally, GO and rGO paper are obtained by vacuum filtration method. Samples morphology and optical properties are analyzed by scanning electron microscopy (SEM) images, Raman spectra, absorbance spectra and photoluminescence (PL) spectra. Results indicate that there are large numbers of localized states in both GO and rGO paper, and optical gaps of two samples are 0.62 eV. In PL spectra of GO paper, we observe three emission peaks at 565, 578 and 608 nm, respectively whose intensity decreases evidently after reduced, which is due to the decrease of oxide functionalized groups and expansion of sp2 clusters. PL emission will gradually decrease during GO are reduced.

  3. Photoluminescence of Reduced Graphene Oxide Prepared from Old Coconut Shell with Carbonization Process at Varying Temperatures

    NASA Astrophysics Data System (ADS)

    Jayanti, Dwi Noor; Yogi Nugraheni, Ananda; Kurniasari; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    Reduced graphene oxide (rGO) powder has been prepared from coconut shells by carbonization process at 400°C, 600°C, 800°C and 1000°C for 5 hours at ambient air. In this study the exfoliation rGO was added into distilled water with variation of concentration solution using the sonication process for 3 hours and centrifugation at 4000 rpm for 20 minutes. The characterization were performed by using XRD and photoluminescence (PL) spectroscopy. The photoluminescence or rGO showed the peak of excitation and emission at wavelengths ranging from 340 nm to 800 nm. The PL emission spectra are at wavelength ranging from UV to visible region approaching red. Observation showed that the photoluminescence intensity was significantly increased by the increasing content of rGO in the solution. The influence of the varying temperature on the PL spectra will also be discussed in this study.

  4. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    NASA Astrophysics Data System (ADS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  5. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces.

    PubMed

    Kornfelt, L F; Weisbjerg, M R; Nørgaard, P

    2013-02-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37%, late: NDF 44% in dry matter (DM)), and from each harvest, a chopped (theoretical cutting length: 19 mm) and an unchopped crop was ensiled in bales. The silages were fed restrictively to four rumen cannulated non-lactating Jersey cows (391 ± 26 kg) in a 4 × 4 Latin square design. The cows were fed restrictively 80% of their ad libitum intake twice daily. Chewing activity was recorded for 96 h continuously. Swallowed boli, rumen content, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500 and 0.212 mm pore sizes into six fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P < 0.01) and min/kg NDF (P < 0.05)) was affected by harvest time. The mean ruminating time (min/kg DM) was affected by harvest time (P < 0.01), physical form (P < 0.05) and NDF intake per kg BW (P < 0.01). The proportion of washed particle DM of total DM in boli, rumen content, rumen fluid and faeces was affected by harvest time (P < 0.01) and highest by feeding late-harvested alfalfa silage. Two peaks on the probability density distribution function (PDF) of PW and PL values of boli, rumen content and faeces were identified. Chopping of the silage decreased the mean PL and PW, the most frequent PL (mode) and 95% percentile PL and PW values in boli. In the rumen content, chopping increased the mean PW (P < 0.05). The dimension sizes of faeces particles were not significantly affected by chopping. The mode PW value was lower in rumen content and faeces than in boli (P < 0.001), and the mode PL value was higher in boli and lower in faeces compared with rumen contents (P < 0.001). In conclusion, the mean total chewing activity per kg NDF decreased due to chopping and early harvest time. The mean PL and PW in boli decreased due to chopping and late harvest. The two peak values on the PDF (PL) and PDF (PW) of boli, rumen content and faeces particles are most likely related to the leaf and the stem residues.

  6. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming.

    PubMed

    Santo, Vítor E; Duarte, Ana Rita C; Popa, Elena G; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-08-20

    A new generation of scaffolds capable of acting not only as support for cells but also as a source of biological cues to promote tissue regeneration is currently a hot topic of in bone Tissue Engineering (TE) research. The inclusion of growth factor (GF) controlled release functionalities in the scaffolds is a possible strategy to achieve such goal. Platelet Lysate (PL) is an autologous source of GFs, providing several bioactive agents known to act on bone regeneration. In this study, chitosan-chondroitin sulfate nanoparticles loaded with PL were included in a poly(D,L-lactic acid) foam produced by supercritical fluid foaming. The tridimensional (3D) structures were then seeded with human adipose-derived stem cells (hASCs) and cultured in vitro under osteogenic stimulus. The osteogenic differentiation of the seeded hASCs was observed earlier for the PL-loaded constructs, as shown by the earlier alkaline phosphatase peak and calcium detection and stronger Runx2 expression at day 7 of culture, in comparison with the control scaffolds. Osteocalcin gene expression was upregulated in presence of PL during all culture period, which indicates an enhanced osteogenic induction. These results suggest the synergistic effect of PL and hASCs in combinatory TE strategies and support the potential of PL to increase the multifunctionality of the 3D hybrid construct for bone TE applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery Suture Zone, southern India: Petrology and zircon SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Saitoh, Yohsuke; Tsunogae, Toshiaki; Santosh, M.; Chetty, T. R. K.; Horie, Kenji

    2011-08-01

    We report the metamorphic pressure-temperature ( P- T) history of mafic granulites from two localities in southern India, one from Kanja Malai in the northern margin and the other from Perundurai in the central domain of the Palghat-Cauvery Suture Zone (PCSZ). The PCSZ is described in recent models as the trace of the suture along which crustal blocks were amalgamated within the Gondwana supercontinent during Late Neoproterozoic-Cambrian. The mafic granulite from Kanja Malai yields P- T conditions of 750-800 °C and 8-12 kbar reflecting the partially retrograded conditions following a peak high-pressure (HP) metamorphic event. The common Grt + Cpx + Qtz assemblage in these rocks and lack of decompression texture suggest that peak metamorphism was probably buffered by Grt + Cpx + Opx + Pl + Qtz assemblage, following which the rocks were exhumed through a gradual P- T decrease. The mafic granulite from Perundurai (Grt + Cpx + Pl) contains Opx + Pl symplectite commonly occurring between garnet and clinopyroxene, suggesting the progress of reaction: Grt + Cpx + Qtz → Opx + Pl, with the Grt + Cpx + Qtz representing the peak metamorphic assemblage. The reaction microstructures and calculated P- T conditions suggest that the mafic granulites from Perundurai underwent peak HP metamorphism at P > 12 kbar and T = 800-900 °C and subsequent isothermal decompression along a clockwise P- T path, in contrast to the P- T path inferred for Kanja Malai. The contrasting P- T paths obtained from the two localities suggest that whereas Perundurai is a part of the metamorphic orogen developed within the PCSZ during Gondwana assembly, the high-pressure granulites of Kanja Malai belong to a different orogenic regime. In order to evaluate this aspect further, we analyzed zircons in a charnockite and garnet-bearing quartzo-feldspathic gneiss associated with the HP granulites from Kanja Malai which yielded mean 207Pb/ 206Pb magmatic protolith emplacement ages of 2536.1 ± 1.4 Ma and 2532.4 ± 3.7 Ma, and peak metamorphic ages of 2477.6 ± 1.8 Ma and 2483.9 ± 2.5 Ma, respectively. These results closely compare with the available magmatic (2530-2540 Ma) and metamorphic (2470-2480 Ma) ages reported from charnockites in the Salem Block at the southern fringe of the Archean Dharwar craton, immediately north of the PCSZ. The Neoarchean/Paleoproterozoic ages obtained from Kanja Malai correlate with the tectonic history at the margin of the Archean craton. Although no age data are available for the Perundurai mafic granulite, the close correspondence of their P- T data and exhumation path with those reported for Late Neoproterozoic-Cambrian HP-UHT metamorphism within the PCSZ suggest that these rocks form part of the Gondwana-forming orogen.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sarla; Vijay, Y. K.; Vyas, Rishi

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag{sup +12} ions at different fluences varying from 1 Multiplication-Sign 10{sup 11} to 1 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increasemore » up to a critical fluence and then found to be suppressed for higher fluence (1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.« less

  9. LSE investigation of the thermal effect on band gap energy and thermodynamic parameters of BInGaAs/GaAs Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Hidouri, T.; Saidi, F.; Maaref, H.; Rodriguez, Ph.; Auvray, L.

    2016-12-01

    In this paper, we report on the experimental and theoretical study of BInGaAs/GaAs Single Quantum Well elaborated by Metal Organic Chemical Vapor Deposition (MOCVD). We carried out the photoluminescence (PL) peak energy temperature-dependence over a temperature range of 10-300 K. It shows the S-shaped behavior as a result of a competition process between localized and delocalized states. We simulate the peak evolution by the empirical model and modified models. The first one is limited at high PL temperature. For the second one, a correction due to the thermal redistribution based on the Localized State Ensemble model (LSE). The new fit gives a good agreement between theoretical and experimental data in the entire temperature range. Furthermore, we have investigated an approximate analytical expressions and interpretation for the entropy and enthalpy of formation of electron-hole pairs in quaternary BInGaAs/GaAs SQW.

  10. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  11. Synthesis and luminescence properties of KSrPO{sub 4}:Eu{sup 2+} phosphor for radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palan, C. B., E-mail: chetanpalan27@yahoo.in; Bajaj, N. S.; Omanwar, S. K.

    The KSrPO{sub 4}:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO{sub 4}:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO{sub 4}:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al{sub 2}O{sub 3}:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activationmore » energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.« less

  12. Ag+12 ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Sharma, Sarla; Vyas, Rishi; Vijay, Y. K.

    2013-02-01

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag+12 ions at different fluences varying from 1×1011 to 1×1013 ions/cm2. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1×1012 ion/cm2). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  13. Analysis of muscle activity and ankle joint movement during the side-hop test.

    PubMed

    Yoshida, Masahiro; Taniguchi, Keigo; Katayose, Masaki

    2011-08-01

    Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.

  14. Verification of the Polish Geodetic Reference Frame by Means of a New Solution Based on Permanent GNSS Data from the Years 2011-2014

    NASA Astrophysics Data System (ADS)

    Liwosz, T.; Ryczywolski, M.

    2016-12-01

    The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.

  15. Kinetic properties of dromedary pancreatic lipase: a comparative study on emulsified and monomolecular substrate.

    PubMed

    Jemel, Ikram; Fendri, Ahmed; Gargouri, Youssef; Bezzine, Sofiane

    2009-05-01

    Using the classical emulsified system and the monomolecular film technique, we compared several interfacial properties of dromedary pancreatic lipase (DrPL) with those of a mammal (human) and an avian (turkey) model. Like turkey pancreatic lipase (TPL) and unlike human pancreatic lipase (HPL), in the absence of colipase and bile salts, using tributyrin emulsion or monomolecular films of dicaprin at low surface pressure, DrPL hydrolyses pure tributyrin emulsion, as well as dicaprin films maintained at low surface pressures. DrPL was also able to hydrolyse triolein emulsion in the absence of any additive and despite the accumulation of long-chain free fatty acids at the interface. The difference of behaviours between the two mammal pancreatic lipases (DrPL and HPL) can be explained by the penetration capacity of each enzyme. DrPL presents a critical surface pressure value (21 m Nm(-1)) that is more important than this of HPL. Subsequently, the dromedary pancreatic lipase interacts efficiently with interfaces and it is not denaturated at high interfacial energy. A kinetic study on the surface pressure dependency, stereospecificity and regioselectivity of DrPL was performed using optically pure stereoisomers of either three dicaprin isomers containing a single hydrolysable decanoyl ester bond that were spread as monomolecular films at the air/water interface. Interestingly, in comparison with all the previously studied mammal pancreatic lipases, DrPL presents the highest preference for adjacent ester groups of dicaprin isomers (1,2-sn-dicaprin and 2,3-sn-dicaprin) at high surface pressure. Furthermore, DrPL forms a pancreatic lipase subgroup in which the stereopreference switches from sn-3 position to the sn-1 position when increasing the surface pressure.

  16. Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues of xenogenicity and species variability.

    PubMed

    Allen, Ashley B; Butts, Emily B; Copland, Ian B; Stevens, Hazel Y; Guldberg, Robert E

    2017-10-01

    Immunogenicity of fetal bovine serum (FBS) poses a problem for its use in the propagation of autologous mesenchymal stromal cells (MSCs) for cell therapy. Human platelet lysate (hPL), an enriched growth factor solution containing mitogenic and angiogenic cues, has potential utility in replacing FBS for human MSC (hMSC) delivery strategies. Despite its potentiation of hMSC number in vitro, little is known concerning its capacity to supplement implanted hMSC-seeded constructs and promote tissue regeneration in vivo. In this study, we tested the effects of incorporating hPL in cell-seeded constructs implanted subcutaneously into immunocompromised rats, investigated in vitro interactions between hPL and rat MSCs (rMSCs) and determined interspecies variability in the PL product [hPL vs rat PL (rPL)] and its effect on cultured MSCs (hPL/hMSCs vs rPL/rMSCs). The overarching aim was to determine the utility of hPL to foster MSC survival in preclinical rodent models. Exposure to hPL-supplemented media resulted in rMSC death, by a process attributable to heat-labile proteins, but not membrane attack complex formation. In the in vitro syngeneic model, the rodent product proved fundamentally distinct from the human product, with rPL having substantially lower growth factor content than hPL. Moreover, contrary to the positive effects of hPL on hMSC expansion, rPL did not reduce rMSC doubling time for the serum concentrations examined. When tested in vivo, hPL did not improve cell survival within hydrogel constructs through 2 weeks postimplantation. In summary, this study highlights the many facets of xenogenicity and interspecies variability that must be considered in the preclinical evaluation of hPL. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Do Health Claims and Front-of-Pack Labels Lead to a Positivity Bias in Unhealthy Foods?

    PubMed Central

    Talati, Zenobia; Pettigrew, Simone; Dixon, Helen; Neal, Bruce; Ball, Kylie; Hughes, Clare

    2016-01-01

    Health claims and front-of-pack labels (FoPLs) may lead consumers to hold more positive attitudes and show a greater willingness to buy food products, regardless of their actual healthiness. A potential negative consequence of this positivity bias is the increased consumption of unhealthy foods. This study investigated whether a positivity bias would occur in unhealthy variations of four products (cookies, corn flakes, pizzas and yoghurts) that featured different health claim conditions (no claim, nutrient claim, general level health claim, and higher level health claim) and FoPL conditions (no FoPL, the Daily Intake Guide (DIG), Multiple Traffic Lights (MTL), and the Health Star Rating (HSR)). Positivity bias was assessed via measures of perceived healthiness, global evaluations (incorporating taste, quality, convenience, etc.) and willingness to buy. On the whole, health claims did not produce a positivity bias, while FoPLs did, with the DIG being the most likely to elicit this bias. The HSR most frequently led to lower ratings of unhealthy foods than the DIG and MTL, suggesting that this FoPL has the lowest risk of creating an inaccurate positivity bias in unhealthy foods. PMID:27918426

  18. Evaluating the distance between the femoral tunnel centers in anatomic double-bundle anterior cruciate ligament reconstruction using a computer simulation

    PubMed Central

    Tashiro, Yasutaka; Okazaki, Ken; Iwamoto, Yukihide

    2015-01-01

    Purpose We aimed to clarify the distance between the anteromedial (AM) bundle and posterolateral (PL) bundle tunnel-aperture centers by simulating the anatomical femoral tunnel placement during double-bundle anterior cruciate ligament reconstruction using 3-D computer-aided design models of the knee, in order to discuss the risk of tunnel overlap. Relationships between the AM to PL center distance, body height, and sex difference were also analyzed. Patients and methods The positions of the AM and PL tunnel centers were defined based on previous studies using the quadrant method, and were superimposed anatomically onto the 3-D computer-aided design knee models from 68 intact femurs. The distance between the tunnel centers was measured using the 3-D DICOM software package. The correlation between the AM–PL distance and the subject’s body height was assessed, and a cutoff height value for a higher risk of overlap of the AM and PL tunnel apertures was identified. Results The distance between the AM and PL centers was 10.2±0.6 mm in males and 9.4±0.5 mm in females (P<0.01). The AM–PL center distance demonstrated good correlation with body height in both males (r=0.66, P<0.01) and females (r=0.63, P<0.01). When 9 mm was defined as the critical distance between the tunnel centers to preserve a 2 mm bony bridge between the two tunnels, the cutoff value was calculated to be a height of 160 cm in males and 155 cm in females. Conclusion When AM and PL tunnels were placed anatomically in simulated double-bundle anterior cruciate ligament reconstruction, the distance between the two tunnel centers showed a strong positive correlation with body height. In cases with relatively short stature, the AM and PL tunnel apertures are considered to be at a higher risk of overlap when surgeons choose the double-bundle technique. PMID:26170727

  19. Synthesis and properties of Rb2GeF6:Mn4+ red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Sakurai, Shono; Nakamura, Toshihiro; Adachi, Sadao

    2018-02-01

    Rb2GeF6:Mn4+ red-emitting phosphors were synthesized by coprecipitation and their structural and optical properties were investigated by laser microscopy observation, X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurement. Single-crystalline ingots in the form of a hexagonal pyramid were prepared with a basal plane diameter of ˜2 mm. The XRD analysis suggested that Rb2GeF6 crystallizes in the hexagonal structure (C6v4 = P63mc) with a = 0.5955 nm and c = 0.9672 nm. The phosphor exhibited the strong Mn4+-related zero-phonon line (ZPL) emission peak typically observed in host crystals with piezoelectrically active lattices such as a hexagonal lattice. The quantum efficiencies of the bulk ingot and powdered samples were 87 and 74%, respectively, with nearly the same luminescence decay time of ˜6 ms. The exact ZPL energies and related crystal-field and Racah parameters were obtained from the PL and PLE spectra by Franck-Condon analysis. Temperature-dependent PL intensities were analyzed from T = 20 to 500 K using a thermal quenching model by considering Bose-Einstein phonon statistics. A comparative discussion on the phosphor properties of Rb2GeF6:Mn4+ and Rb2MF6:Mn4+ with M = Si and Ti was also given.

  20. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang

    2018-05-01

    In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.

  2. Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. II. Loading of the Hemoderivative Platelet Lysate.

    PubMed

    Mori, Michela; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria C; Sandri, Giuseppina; Riva, Federica; Tenci, Marika; Del Fante, Claudia; Nicoletti, Giovanni; Caramella, Carla

    2016-03-01

    Platelet lysate (PL) was loaded into dressings based on chitosan glutamate (CSG) low and high molecular weight, sericin (Ser), and glycine (Gly). A synergic effect of Ser and PL on fibroblast proliferation was proved in vitro. Two different PL loading approaches were considered: the first provided to prepare dressings by freeze-drying a mixture of PL and CSG/Gly/Ser solution, the second approach consisted in the extemporarily loading of PL in the CSG/Gly/Ser freeze-dried dressings. As for the first approach, PL loading did not produce any variation in dressing mechanical properties. Such dressings absorbed a high amount (about 8-fold of dry weight) of phosphate-buffered saline (fluid mimicking wound exudate), forming a gel with pseudoplastic and elastic properties. Platelet-derived growth factor AB assay indicated that neither freeze-drying nor the excipients alter PL growth factor content. As for the second approach, mechanical and rheological properties of the gel formed upon PL absorption enabled to choose a PL loading of about 90 μL/cm(2). Upon contact with fibroblasts, all PL loaded formulations increased the number not only of viable cells but also of those in the proliferative phase. Histological studies effected on human skin strips pointed out the positive effect of PL loaded dressings on dermal matrix reconstruction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury.

    PubMed

    Yoshida, Takeshi; Amato, Marcelo B P; Grieco, Domenico Luca; Chen, Lu; Lima, Cristhiano A S; Roldan, Rollin; Morais, Caio C A; Gomes, Susimeire; Costa, Eduardo L V; Cardoso, Paulo F G; Charbonney, Emmanuel; Richard, Jean-Christophe M; Brochard, Laurent; Kavanagh, Brian P

    2018-04-15

    Esophageal manometry is the clinically available method to estimate pleural pressure, thus enabling calculation of transpulmonary pressure (Pl). However, many concerns make it uncertain in which lung region esophageal manometry reflects local Pl. To determine the accuracy of esophageal pressure (Pes) and in which regions esophageal manometry reflects pleural pressure (Ppl) and Pl; to assess whether lung stress in nondependent regions can be estimated at end-inspiration from Pl. In lung-injured pigs (n = 6) and human cadavers (n = 3), Pes was measured across a range of positive end-expiratory pressure, together with directly measured Ppl in nondependent and dependent pleural regions. All measurements were obtained with minimal nonstressed volumes in the pleural sensors and esophageal balloons. Expiratory and inspiratory Pl was calculated by subtracting local Ppl or Pes from airway pressure; inspiratory Pl was also estimated by subtracting Ppl (calculated from chest wall and respiratory system elastance) from the airway plateau pressure. In pigs and human cadavers, expiratory and inspiratory Pl using Pes closely reflected values in dependent to middle lung (adjacent to the esophagus). Inspiratory Pl estimated from elastance ratio reflected the directly measured nondependent values. These data support the use of esophageal manometry in acute respiratory distress syndrome. Assuming correct calibration, expiratory Pl derived from Pes reflects Pl in dependent to middle lung, where atelectasis usually predominates; inspiratory Pl estimated from elastance ratio may indicate the highest level of lung stress in nondependent "baby" lung, where it is vulnerable to ventilator-induced lung injury.

  4. Floral adaptation and diversification under pollen limitation

    PubMed Central

    Harder, Lawrence D.; Aizen, Marcelo A.

    2010-01-01

    Pollen limitation (PL) of seed production creates unique conditions for reproductive adaptation by angiosperms, in part because, unlike under ovule or resource limitation, floral interactions with pollen vectors can contribute to variation in female success. Although the ecological and conservation consequences of PL have received considerable attention in recent times, its evolutionary implications are poorly appreciated. To identify general influences of PL on reproductive adaptation compared with those under other seed-production limits and their implications for evolution in altered environments, we derive a model that incorporates pollination and post-pollination aspects of PL. Because PL always favours increased ovule fertilization, even when population dynamics are not seed limited, it should pervasively influence selection on reproductive traits. Significantly, under PL the intensity of inbreeding does not determine whether outcrossing or autonomous selfing can evolve, although it can affect which response is most likely. Because the causes of PL are multifaceted in both natural and anthropogenically altered environments, the possible outcrossing solutions are diverse and context dependent, which may contribute to the extensive variety of angiosperm reproductive characteristics. Finally, the increased adaptive options available under PL may be responsible for positive global associations between it and angiosperm diversity. PMID:20047878

  5. Optical investigation of microscopic defect distribution in semi-polar (1-101 and 11-22) InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Andrade, Nicolas; Monavarian, Morteza; Izyumskaya, Natalia; Das, Saikat; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.

  6. Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Yang, Ping

    2013-05-01

    High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.

  7. Current performance of planter technology to support variable-rate seeding in the Southern US

    USDA-ARS?s Scientific Manuscript database

    Advances in planting technology are expanding opportunities to vary seeding rates on–the-go. Variable-rate seeding can help maximize overall profits by matching optimal planting rates to field production variability. An important aspect of variable-rate seeding is ensuring peak performance of the pl...

  8. [Use of sFlt-1/PlGF ratio in preeclampsia : a monocentric retrospective analysis].

    PubMed

    Verbeurgt, L; Chantraine, F; De Marchin, J; Minon, J-M; Nisolle, M

    2017-09-01

    Soluble Fms-like tyrosine kinase 1 (sFlt-1) is an anti-angiogenic factor released in higher amounts in preeclampsia and implicated in endothelial dysfunction. sFlt-1/PlGF ratio is used in the prediction of preeclampsia. An sFlt-1/PlGF ratio inferior to 38 predicts the short-term absence of preeclampsia. A ratio ? 85 (early-onset PE) or ? 110 (late-onset of PE) could diagnose preeclampsia. In this study, sFlt-1/PlGF ratio has been measured in 183 patients. Sixty-seven preeclampsia have been diagnosed preeclamptic at delivery. The median sFlt-1/PlGF ratio was 100.3. The median ratio among women with preeclampsia (N=67) versus no preeclampsia (N=116) was 212.7 versus 35.4. In accordance with this analysis, an sFlt-1/PlGF ratio ? 38 has a sensibility of 95,5 % and a specificity of 73.3 %. The positive predictive value and the negative predictive value were 67.4 % and 96.6 %, respectively. These results suggest that sFlt-1/PlGF ratio is helpful in the diagnosis of preeclampsia.

  9. Erbium doped aluminum nitride nanoparticles for nano-thermometer applications

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Kordesch, Martin E.

    2015-06-01

    We have synthesized nanoparticles (NPs) of aluminum nitride (AlN) doped in situ with erbium (Er) using the inert gas condensation technique. These NPs have optical properties that make them good candidates for nanoscale temperature sensors. The photoluminescence (PL) spectrum of Er3+ in these NPs shows two emission peaks in the green region at around 540 and 560 nm. The ratio of the intensities of these luminescence peaks is related to temperature. Using Boltzmann’s distribution, the temperature of the NP and its surrounding can be calculated. The NPs were directly deposited on (111) p-type silicon wafers, transmission electron microscope grids and glass cover slips. XRD and HRTEM study indicates that most of the NPs have crystalline hexagonal AlN structure. An enhancement of the luminescence from these NPs was observed after heating in-air at 770 K for 3 h. The sample was then heated in air using a scanning optical microscope laser. The corresponding change in PL peak intensities of the NPs was recorded for laser powers ranging from 0.2 to 15.1 mW. Temperature calculated using the Boltzmann’s distribution was in the range of 300-470 K. This temperature range is of interest for semiconductor device heating and for thermal treatment of cancerous cells, for example.

  10. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  11. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.

    PubMed

    Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang

    2006-02-28

    Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.

  12. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  13. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    NASA Astrophysics Data System (ADS)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge applications of graphene-ZnO based 2D-1D hybrid nanostructures.

  14. SU-C-201-01: Core/shell and Multishell Colloidal Quantum Dots Nanodosimeters Behaviour Under Repeated MV and KV Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage, M; Cloutier, E; Lecavalier, M

    2016-06-15

    Purpose: This study intends to characterize the energy dependence of the effect of radiation damage on CdSe multi-shell (MS) (CdS/CdZnS/ZnS) and CdSe core/shell (CS)(ZnS) cQDs. It also aims to investigate irregularities resulting of pauses between subsequent irradiations. Methods: Radioluminescence (RL) measurements were performed with a CCD camera as dose was cumulated by the cQDs (up to 10 kGy), for beam energies 120 kVp, 220 kVp and 6 MV. Repeated expositions of 1999 MU were cumulated. Pauses between subsequent irradiations were varied from 2 to 50 minutes. cQDs photoluminescence (PL) and RL spectral stability was tracked by quantifying the position andmore » FWHM of the luminescence peak. Results: Both types of cQDs showed a clear energy dependence of the RL signal decrease between the kV and the MV beams. For 1.2 kGy of dose cumulated, MS cQDs had 92% of the initial signal left at 6 MV compared to 98% at 120 kVp. The same was observed for CS cQDs: 87% at 6 MV vs 94% at 120 kVp. MS cQDs were found to have a systematic (though small, ∼1%) RL intensity recovery for pauses of 15 minutes or more, while CS cQDs maintain a stable loss regardless of the pause duration. PL and RL spectral measurements revealed a good stability (< 1% variation of the peak position and FWHM) for both types of cQDs. Conclusion: In all, both MS and CS cQDs have a sufficient resistance to large doses of radiation for standard radiation therapy and imaging. Since this resistance is better for lower energy, the utilization of cQDs could be optimized for low energy applications (e.g. theragnostic applications for small animal studies and others). Finally, the ionizing radiation damage mechanisms for this new type of nano-scintillator still have to be identified properly.« less

  15. Estimation of genetic parameters for productive life, reproduction, and milk-production traits in US dairy goats.

    PubMed

    Castañeda-Bustos, V J; Montaldo, H H; Torres-Hernández, G; Pérez-Elizalde, S; Valencia-Posadas, M; Hernández-Mendo, O; Shepard, L

    2014-01-01

    Heritabilities and correlations for milk yield (MY), fat yield (FY), protein yield (PY), combined fat and protein yield (FPY), fat percentage (F%), protein percentage (P%), age at first kidding (AFK), interval between the first and second kidding (KI), and real and functional productive life at 72mo (FPL72) of 33,725 US dairy goats, were estimated using animal models. Productive life was defined as the total days in production until 72mo of age (PL72) for goats having the opportunity to express the trait. Functional productive life was obtained by correcting PL72 for MY, FY, PY, and final type score (FS). Six selection indexes were used, including or excluding PL72, with 6 groups of different economic weights, to estimate the responses to selection considering MY, FY, PY, and PL72 as selection criteria. The main criteria that determined the culling of a goat from the herd were low FS, MY, and FY per lactation. Heritability estimates were 0.22, 0.17, 0.37, 0.37, 0.38, 0.39, 0.54, 0.64, 0.09, and 0.16 for PL72, FPL72, MY, FY, PY, FPY, F%, P%, KI, and AFK, respectively. Most genetic correlations between the evaluated traits and PL72 or FPL72 were positive, except for F% (-0.04 and -0.06, respectively), P% (-0.002 and -0.03, respectively), and AFK (-0.03 and -0.01, respectively). The highest genetic correlations were between FPL72 and MY (0.39) and between PL72 and MY (0.33). Most phenotypic correlations between the traits evaluated and FPL72 and PL72 were positive (>0.23 and >0.26, respectively), except for F% (-0.004 and -0.02, respectively), P% (-0.05 and -0.02), KI (-0.01 and -0.07), and AFK (-0.08 and -0.08). The direct selection for PL72 increased it by 102.28d per generation. The use of MY, FY, PY, KI, or AFK as selection criteria increased PL72 by 39.21, 27.33, 35.90, -8.28, or 2.77d per generation, respectively. The inclusion of PL72 as selection criterion increased the expected response per generation from 0.15 to 17.35% in all selection indices studied. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. A study of the effects of aligned vertically growth time on ZnO nanorods deposited for the first time on Teflon substrate

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Oglat, Ammar A.; Abuelsamen, A. A.; Bououdina, M.; Qaeed, M. A.

    2017-12-01

    In this study, ZnO nanorods (NRs) were well deposited on Teflon substrates (PTFE) via a chemical bath deposition (CBD) method at low temperature. The consequences of growth time (1 h-4 h) on the structural and optical properties of the aligned ZnO (NRs) were investigated through X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) analyses. The results show that the ZnO (NRs) were preferred to grew aligned along the c-axis as hexagonal wurtzite structure as proved by the sharp and strong ZnO (002) peaks of the ZnO (NRs). Irrespective of the growth continuation, FESEM photos confirmed that the ZnO nanorods arrays were fit to be aligned along the c-axis and perpendicular to (PTFE) substrates. The ZnO nanorods that exhibited the sharper stand most intense PL peaks among the sample were grown for 3hs as demonstrated by PL spectra. The device further showed a sensitivity of 4068 to low-power (1.25 mW/cm2) 375 nm light pulses without an external bias. The measurements of photoresponse demonstrated the highly reproducible characteristics of the fabricated UV detector with rapid response and baseline recovery times of 48.05 ms. Thus, this work introduced a simple, low-cost method of fabricating rapid-response, and highly photosensitive UV detectors with zero power consumption on Teflon substrates.

  17. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less

  18. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  19. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  20. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  1. Properties of Cadmium-(bis)dodecylthiolate and Polymeric Composites Based on It

    PubMed Central

    Agareva, Nadezhda; Smirnov, Anton A.; Afanasiev, Andrey; Sologubov, Semen; Markin, Alexey; Salomatina, Evgenia; Smirnova, Larisa; Bityurin, Nikita

    2015-01-01

    We study the thermo-physical and photoluminescence (PL) properties of cadmium-(bis)dodecylthiolate (Cd(C12H25S)2). Significant attention is drawn to characterization of Cd(C12H25S)2 by different methods. The laser-induced PLs of Cd(C12H25S)2 and Cd(C12H25S)2/(polymethyl methacrylate) (PMMA) composites are studied. Samples of Cd(C12H25S)2/PMMA are synthesized by the polymerization method. Ultraviolet (UV)-pulsed laser irradiation of the samples under relatively small fluences leads to the formation of induced PL with the maximum near the wavelength of 600 nm. This process can be attributed to the transformation of Cd(C12H25S)2 within the precursor grains. Another PL peak at 450–500 nm, which appears under the higher fluences, relies on the formation of CdS complexes with a significant impact of the polymer matrix. PMID:28793738

  2. Effects of post-annealing treatment on the structure and photoluminescence properties of CdS/PS nanocomposites prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-yan

    2016-03-01

    CdS nanocrystals have been successfully grown on porous silicon (PS) by sol-gel method. The plan-view field emission scanning electron microscopy (FESEM) shows that the pore size of PS is smaller than 5 μm in diameter and the agglomerates of CdS are broadly distributed on the surface of PS substrate. With the increase of annealing time, the CdS nanoparticles grow in both length and diameter along the preferred orientation. The cross-sectional FESEM images of ZnO/PS show that CdS nanocrystals are uniformly penetrated into all PS layers and adhere to them very well. photoluminescence (PL) spectra demonstrate that the intensity of PL peak located at about 425 nm has almost no change after the annealing time increases. The range of emission wavelength of CdS/PS is from 425 nm to 455 nm and the PL intensity is decreasing with the annealing temperature increasing from 100 °C to 200 °C.

  3. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Chunxu; Zhang, Jisen; Chen, Yongyi; Jing, Pengtao; Zhang, Ligong; Zhao, Haifeng; Fu, Xihong; Wang, Lijun

    2018-02-01

    Photoluminescence (PL) and time-resolved spectroscopic studies on plasmonically coupled semiconductor nanoparticles (SNPs) have demonstrated the PL quenched and lifetime enhanced of SNPs in the presence of metal nanoparticles (MNPs). The hybrid colloidal CsPbBr3 perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can’t be well described by the theory based on conventional Fӧster resonance energy transfer (FRET). The differences between theory and experiment may be due to the missing some PbBr2 PL peaks, the reason will be revealed further.

  4. Assessment of spectroscopic parameters of solvated Eu(dmh)3 phen organometallic complex in various basic and acidic solvents.

    PubMed

    Chitnis, Dipti; Kalyani, N Thejo; Dhoble, Sanjay

    2018-05-31

    We report on the comprehension of novel europium activated hybrid organic Eu(dmh) 3 phen (Eu: europium, dmh: 2,6-dimethyl-3,5-heptanedione, phen: 1,10 phenanthroline) organo-metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV-vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV-vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross-section σ(λ), radiative lifetime (τ 0 ) and oscillator strength (f) were calculated from UV-vis spectra. The relative intensity ratio (R-ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light-emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert-Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid-state lighting. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Pyridoxal 5'-phosphate, pyridoxal, and 4-pyridoxic acid in the paired serum and cerebrospinal fluid of children.

    PubMed

    Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Tsuchiya, Hiroki; Yamaguchi, Tokito; Kobayashi, Katsuhiro

    2017-09-01

    We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in paired serum and cerebrospinal fluid (CSF) samples from children and investigated the effect of age on the concentrations and CSF-to-serum ratios of these vitamers. Serum and CSF samples prospectively collected from 49 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age on these vitamers, the PLP-to-PL ratio, CSF-to-serum PLP ratio, and CSF-to-serum PL ratio were evaluated using correlation analysis. The PLP, PL, and PA concentrations in the serum and CSF were higher at younger ages, except for CSF PA concentrations that were mostly below the limit of detection (<1.2nmol/l). The PLP-to-PL ratios in the serum and CSF correlated positively with age. The CSF-to-serum PLP ratio and CSF-to-serum PL ratio were independent of age. Age-related changes in PLP, PL, and PA in serum and in CSF from pediatric patients and CSF-to-serum ratios of PLP and PL demonstrated in this study will provide valuable information for evaluating PLP supply to the central nervous system from the peripheral blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measurement of pyridoxal 5'-phosphate, pyridoxal, and 4-pyridoxic acid in the cerebrospinal fluid of children.

    PubMed

    Akiyama, Tomoyuki; Akiyama, Mari; Hayashi, Yumiko; Shibata, Takashi; Hanaoka, Yoshiyuki; Toda, Soichiro; Imai, Katsumi; Hamano, Shin-Ichiro; Okanishi, Tohru; Yoshinaga, Harumi; Kobayashi, Katsuhiro

    2017-03-01

    We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in the cerebrospinal fluid (CSF) of children and to investigate the effect of age, sex, epilepsy, and anti-epileptic drug (AED) therapy on these vitamers. CSF samples prospectively collected from 116 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age, sex, epilepsy, and AEDs on these vitamers and the PLP/PL ratio were evaluated using multiple linear regression models. The PLP, PL, and PA concentrations were correlated negatively with age and the PLP/PL ratio was correlated positively with age. Multiple regression analysis revealed that the presence of epilepsy was associated with lower PLP concentrations and PLP/PL ratios but sex and AED therapy had no influence on these values. The observed ranges of these vitamers in epileptic and non-epileptic patients were demonstrated. We showed the age dependence of PLP and PL in CSF from pediatric patients. Epileptic patients had lower PLP concentrations and PLP/PL ratios than non-epileptic patients, but it is unknown whether this is the cause, or a result, of epilepsy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.

    2016-12-01

    We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  8. Toward single-chirality carbon nanotube device arrays.

    PubMed

    Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph

    2010-05-25

    The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.

  9. [The photoluminescence characteristics of organic multilayer quantum wells].

    PubMed

    Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong

    2007-04-01

    By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.

  10. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.

    PubMed

    Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D

    2015-01-01

    We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

  11. Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.

    2018-04-01

    A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.

  12. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less

  13. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power performance, marksmanship and target engagement speed from pre-ingestion levels. PMID:24716994

  14. [Antibodies to various phospholipids in SLE patients with primary antiphospholipid syndrome].

    PubMed

    Reshetniak, T M; Boĭtsekhovskaia, B; Alekberova, Z S; Kalashnikova, L A; Mach, E S; Zabek, Ia

    1999-01-01

    Antiphospholipid antibodies (aPL) represent a heterogeneous population reacting with negatively charged, less frequently neutral phospholipids and/or phospholipid-binding serum proteins. The study was made of antibodies to a wide spectrum of phospholipids: to negatively charged phospholipids such as phosphatide acid (aPA), cardiolipin (aCL), phosphatidylcholine (aPS), phosphatidylinositol (aPI), phosphatidylglycerol (aPG) and to neutrally charged phospholipid--phosphatidylcholine (aPC)--in 54 patients with systemic lupus erythematosus (SLE) and 29 patients with primary antiphospholipid syndrome (PAPS). The test for lupus anticoagulant (LAC) was also made. aPL in SLE patients free of antiphospholipid syndrome were detected in 61, 36 and 9% (aPC, aPS and aPA, aCL, respectively). aPI and aPG did not exceed normal values. 81% of SLE patients with antiphospholipid syndrome were LAC positive and 88% aPL positive. 60, 53, 44, 40, 13 and 17 were positive to aPC, aPA, aPS, aCL, aPG and aPI, respectively. Among patients with PAPS, the highest positivity was by LAC, occurrence of the other aPL was the same as in SLE patients with antiphospholipid syndrome. aCL, aPA, aPC, aPS, aPG and aPI were found in 55, 52, 41, 38, 31 and 21% of cases, respectively. In clinical manifestations of antiphospholipid syndrome and negative tests for LAC and aCL it is advisable to make tests for aPS and aPC. aPC occur in SLE patients more frequently than the other aPL: in 63% of SLE patients free of antiphospholipid syndrome and in 60% of SLE patients with this syndrome. Antibodies to other phospholipids, but not to cardiolipin, were present in SLE + APS in half of the cases but in SLE + PAPS in one third of the patients. Occurrence of aCL in the serum of SLE + PAPS patients is associated with the presence of antibodies to any other phospholipid irrespective of the charge. The severity of vascular changes did not correlate with the number of aPL variant found in the serum.

  15. Infrared Emitters and Photodetectors with InAsSb Bulk Active Region

    DTIC Science & Technology

    2013-04-29

    SLS) buffers on GaSb substrates [9]. By that time, 145 meV (A.= 8.6 J.lm) was reported to be the minimum energy gap for the bulk lnAsSb alloys at 77...substrate side (b) GaSb substrate thinned to 200iJm Figure 5. (a) The band diagram of the heterostructure with the undoped bulk InAsSb0.2 layer...shift of the EL energy peak compared to the PL peak at/, ... I 0 1-1m is explained by band filling under electrical injection. A sublinear

  16. Relations between policy for medical teaching and basic need satisfaction in teaching.

    PubMed

    Engbers, Rik; Fluit, Cornelia R M G; Bolhuis, Sanneke; Sluiter, Roderick; Stuyt, Paul M J; Laan, Roland F J M

    2015-10-01

    Policy initiatives that aim to elevate the position of medical teaching to that of medical research could influence the satisfaction of three basic psychological needs related to motivation for medical teaching. To explore relations between the satisfaction of three basic psychological needs towards medical teaching and two policy initiatives for medical teaching: (Junior) Principal Lecturer positions [(J)PL positions] and Subsidized Innovation and Research Projects in Medical Education (SIRPMEs). An online questionnaire was used to collect data about medical teaching in the setting of a university hospital. We adapted the Work-related Basic Need Satisfaction scale (Van den Broeck et al. in J Occup Organ Psychol, 83(4):981-1002, 2010), in order to measure feelings of autonomy, competence, and relatedness in teaching. We examined the relations between (J)PL positions and SIRPMEs and the satisfaction of three basic psychological needs. A total of 767 medical teachers participated. The initiatives appear to be related to different beneficial outcomes in terms of feelings of autonomy, competence, and relatedness in medical teaching. Either a (J)PL position is obtained by teachers who feel competent and related towards medical teaching, or obtaining a (J)PL position makes teachers feel more competent and related towards teaching, or these relations could be interacting. Also, either a SIRPME is obtained by teachers who feel competent and autonomous towards medical teaching, or obtaining a SIRPME makes teachers feel more competent and autonomous towards teaching, or these relations could be interacting. Additional research needs to scrutinize the causal or interacting relations further and to determine optimal conditions for these policy initiatives more specifically. Implications for future research are discussed.

  17. GMP-grade platelet lysate enhances proliferation and migration of tenon fibroblasts.

    PubMed

    Carducci, Augusto; Scafetta, Gaia; Siciliano, Camilla; Carnevale, Roberto; Rosa, Paolo; Coccia, Andrea; Mangino, Giorgio; Bordin, Antonella; Vingolo, Enzo Maria; Pierelli, Luca; Lendaro, Eugenio; Ragona, Giuseppe; Frati, Giacomo; De Falco, Elena

    2016-01-01

    Tenon's fibroblasts (TFs), widely employed as in vitro model for many ophthalmological studies, are routinely cultured with FBS. Platelet Lysate (PL), a hemoderivate enriched with growth factors and cytokines has been largely tested in several clinical applications and as substitute of FBS in culture. Here, we investigate whether PL can exert biological effects on TF populations similarly to other cell types. Results show that PL significantly enhances cell proliferation and migration vs. FBS, without influencing cell size/granularity. Upregulation of EGF, VEGF, KDR, MMP2-9, FAK mRNA levels also occurs and phosphorylation of AKT but not of ERK1/2 is significantly enhanced. The inhibition of the PI3kinase/AKT pathway with the specific inhibitor wortmannin, decreases PL-induced cell migration but not proliferation. Condition supernatants containing PL show increased bioavailability of Nitric Oxide and reduced levels of 8-Iso-PGF2-alpha, correlating with cell proliferation and migration. Pro-angiogenic/inflammatory soluble factors (GRO, Angiogenin, EGF, I-309, PARC) are exclusively or greater expressed in media containing PL than FBS. GMP-grade PL preparations positively influence in vitro biological effects of TFs representing a suitable and safer alternative to FBS.

  18. Reliability and clinical utility of Enzyme-linked immunosorbent assay for detection of anti-aminoacyl-tRNA synthetase antibody.

    PubMed

    Abe, Takeo; Tsunoda, Shinichiro; Nishioka, Aki; Azuma, Kouta; Tsuboi, Kazuyuki; Ogita, Chie; Yokoyama, Yuichi; Furukawa, Tetsuya; Maruoka, Momo; Tamura, Masao; Yoshikawa, Takahiro; Saito, Atsushi; Sekiguchi, Masahiro; Azuma, Naoto; Kitano, Masayasu; Matsui, Kiyoshi; Hosono, Yuji; Nakashima, Ran; Ohmura, Koichiro; Mimori, Tsuneyo; Sano, Hajime

    2016-01-01

    Anti-aminoacyl-tRNA synthetase (ARS) antibody is one of the myositis-specific autoantibodies to make a diagnosis of polymyositis (PM) and dermatomyositis (DM). Recently a new enzyme-linked immunosorbent assay (ELISA) kit of concurrently detected anti-ARS antibodies (anti-Jo-1, anti-PL-7, anti-PL-12, anti-EJ and anti-KS) have become to measure in the clinical setting. To evaluate the reliability of this ELISA kit, we measured anti-ARS antibodies in 75 PM and DM patients using by this ELISA assay and compared them with the results by RNA immunoprecipitation assay. Between the measurements of anti-PL-7, anti-PL-12, anti-EJ and anti-KS autoantibodies by ELISA assay and RNA-IP assay, the concordance rate of reproducibility is 95.1% and the positive agreement rate is 90.9% and negative agreement rate is 96.0% and kappa statistic is 0.841. Between the measurements of existing anti-Jo-1 antibody ELISA kit and anti-ARS antibody ELISA kit, the concordance rate of reproducibility is 96.9%, the positive agreement rate is 100%, negative agreement rate is 96.1% and kappa statistic is 0.909. The lung involvement in patients with PM and DM patients are positive of anti-ARS antibodies and anti-melanoma differentiation associated gene5 (MDA5) antibody at a rate around 70%. Then most life-threatening ILD with anti-MDA5 positive clinically amyopathic dermatomyositis patients could be highly guessed when anti-ARS antibodies are negative.

  19. X-ray induced luminescence properties of (Y,Eu)AlO3 single crystals

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Nakauchi, Daisuke; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-02-01

    We investigated photoluminescence, scintillation and dosimeter properties of (Y1-x Eux)AlO3 (x = 0.001, 0.5 and 1) single crystals (hereafter denoted as Eu:YAP for x = 0.001, EYAP for x = 0.5 and EAP for x = 1). The samples were prepared by the Floating Zone method. In photoluminescence (PL), we observed a broad emission around 300-400 nm due to host under excitation of 280 nm, and emissions due to the 4f state transitions of Eu3+ appeared around 590 nm and 615 nm. Scintillation spectra also show emission peaks around 590 and 615 nm due to the 4f state transitions of Eu3+ in all the samples. In addition, emissions around 300-400 nm due to YAP host and around 550-700 nm due to 5d-4f transitions of Eu2+ appeared in Eu:YAP. The PL and scintillation decay time profiles consisted of several exponential decay components. The fast (ns) component group was possibly due to host emission, and especially Eu:YAP demonstrated a very fast PL decay time of 16 ns. The intermediate (μs) component group was due to the 5d-4f transitions of Eu2+. The slow (ms) component group was ascribed to the 4f state transitions of Eu3+ ion. The Eu:YAP sample showed intense thermally-stimulated luminescence (TSL) with peaks at 46, 155, 255 and 443 °C. The intensity was much higher than those of EAP and EYAP. In particular, the peak at 254 °C, which showed the highest intensity, was due to doping with Eu. The TSL dose response function showed a good linearity (R2 > 0.99) over a wide dose range from 0.1 mGy to 100 mGy for Eu:YAP, which showed the highest sensitivity among the present samples.

  20. Preparations of PbSe quantum dots in silicate glasses by a melt-annealing technique

    NASA Astrophysics Data System (ADS)

    Ma, D. W.; Cheng, C.; Zhang, Y. N.; Xu, Z. S.

    2014-11-01

    Silicate glass containing PbSe quantum dots (QDs) has important prospective applications in near infra-red optoelectronic devices. In this study, single-stage and double-stage heat-treatment methods were used respectively to prepare PbSe QDs in silicate glasses. Investigation results show that the double-stage heat-treatment is a favorable method to synthesize PbSe QDs with strong photoluminescence (PL) intensity and narrow full weight at half maximum (FWHM) in PL peak. Therefore, the method to prepare PbSe QDs was emphasized on the double-stage heat-treatment. Transmission electron microscopy measurements show that the standard deviations of the average QD sizes from the samples heat-treated at the development temperature of 550 °C fluctuate slightly in the range of 0.6-0.8 nm, while this deviation increases up to 1.2 nm for the sample with the development temperature of 600 °C. In addition, the linear relationship between the QD size and holding time indicates that the crystallization behavior of PbSe QDs in silicate glasses is interface-controlled growth in early stage of crystallization. The growth rates of PbSe QDs are determined to be 0.24 nm/h at 550 °C and 0.72 nm/h at 600 °C. In short, the double-stage heat-treatment at 450 °C for 20 h followed by heat-treatment at 550 °C for 5 h is a preferred process for the crystallization of PbSe QDs in silicate glass. Through this treatment, PbSe QDs with a narrow size dispersion of 5.0 ± 0.6 nm can be obtained, the PL peak from this sample is highest in intensity and narrowest in FWHM among all samples, and the peak is centered on 1575 nm, very close to the most common wavelength of 1550 nm in fiber-optic communication systems.

  1. Effect of harvest time of red and white clover silage on chewing activity and particle size distribution in boli, rumen content and faeces in cows.

    PubMed

    Kornfelt, L F; Nørgaard, P; Weisbjerg, M R

    2013-06-01

    The study examined the effects of harvest time of red and white clover silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in cows. The clover crops were harvested at two stages of growth and ensiled in bales. Red clover crops had 36% and 45% NDF in dry matter (DM) at early (ER) and late (LR) harvest, respectively, and the white clover crops had 19% and 29% NDF in DM at the early (EW) and late (LW) harvest, respectively. The silages were fed restrictively (80% of ad libitum intake) twice daily to four rumen cannulated non-lactating Jersey cows (588 ± 52 kg) in a 4 × 4 Latin square design. Jaw movements (JM) were recorded for 96 h continuously. Swallowed boli, rumen mat, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500, 0.212 and 0.106 mm into seven fractions. The length (PL) and width (PW) values of rumen and faeces particles within each fraction were measured by use of image analysis. The eating activity (min/kg DM intake; P < 0.05) was higher in LR compared with the other treatments. The eating activity (min/kg NDF intake; P < 0.05) was affected by clover type with highest values for white clover silage. The mean ruminating time (min/kg DM), daily ruminating cycles (P < 0.001) and JM during ruminating (P < 0.05) were affected by treatment with increasing values at later harvest time. The proportion of washed particle DM of total DM in boli (P < 0.001), rumen mat (P < 0.001), rumen fluid (P < 0.01) and faeces was (P < 0.001) highest by feeding LR. There were identified two peaks (modes 1 and 2) on the probability density distribution (PDF) of PW values of rumen mat and faeces, but only one peak (mode 1) for PL values. There was no difference in the mean and mode 1 PW and PL value in rumen mat between the four treatments. The mean PL, mode PL, mode 2 PW and mean PW in faeces were highest for LR (P < 0.05). The mean particle size in boli measured by sieving was higher at white clover compared with red clover treatments (P < 0.001) and the highest value in faeces was found in LR (P < 0.01). The two peaks on PDF for width values of rumen mat and faeces particles are most likely related to the leaves and the stems/petioles. In conclusion, the mean total chewing activity per kg DM was lowest for the white clover silage and increased for both silages due to later harvest time. The mean particle size in boli was smallest for LR, whereas the mean PL and PW in faeces were highest for the LR.

  2. Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix

    NASA Astrophysics Data System (ADS)

    Xiong, Z. W.; Cao, L. H.

    2018-07-01

    In this work, the self-organized Ni nanocrystals (NCs) were embedded in the epitaxial SrTiO3 matrix using pulsed laser deposition method. With the in-situ monitoring of reflection high-energy electron diffraction, both matrix and NCs could be precisely engineered with desired qualities by regulating the growth conditions according to the full release of stress energy at the interfaces of Ni NCs and SrTiO3. We achieved a controllable strained system according to the transformation of growth modes from three dimensional (3D) islands of Ni NCs to 2D layer-by-layer of SrTiO3, corresponding to the (1 1 1) and (0 0 l) orientation for Ni and SrTiO3, respectively. With the increase of Ni NCs concentration, the absorption intensity is increasing in the regions of 190-300 nm, and the band gap is gradually decreased. Besides, photoluminescence (PL) spectra reveal that the energy levels of Ni 3d bands contribute to the different PL colors, further inducing the enhancement of PL intensity and red-shift of emission peaks. Compared with the pure SrTiO3 published in the literature, much wider ranges of PL emission from red to ultraviolet can be tuned by the Ni NCs.

  3. Carrier concentration dependent photoluminescence properties of Si-doped InAs nanowires

    NASA Astrophysics Data System (ADS)

    Sonner, M.; Treu, J.; Saller, K.; Riedl, H.; Finley, J. J.; Koblmüller, G.

    2018-02-01

    We report the effects of intentional n-type doping on the photoluminescence (PL) properties of InAs nanowires (NWs). Employing silicon (Si) as a dopant in molecular beam epitaxy grown NWs, the n-type carrier concentration is tuned between 1 × 1017 cm-3 and 3 × 1018 cm-3 as evaluated from Fermi-tail fits of the high-energy spectral region. With the increasing carrier concentration, the PL spectra exhibit a distinct blueshift (up to ˜50 meV), ˜2-3-fold peak broadening, and a redshift of the low-energy tail, indicating both the Burstein-Moss shift and bandgap narrowing. The low-temperature bandgap energy (EG) decreases from ˜0.44 eV (n ˜ 1017 cm-3) to ˜0.41 eV (n ˜ 1018 cm-3), following a ΔEG ˜ n1/3 dependence. Simultaneously, the PL emission is quenched nearly 10-fold, while the pump-power dependent analysis of the integrated PL intensity evidences a typical 2/3-power-law scaling, indicative of non-radiative Auger recombination at high carrier concentrations. Carrier localization and activation at stacking defects are further observed in undoped InAs NWs by temperature-dependent measurements but are absent in Si-doped InAs NWs due to the increased Fermi energy.

  4. Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocola, Leonidas E.; Connolly, Aine; Gosztola, David J.

    We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (VO). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from VO states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles,more » the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications.« less

  5. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Xiaodong; Gao, Caitian; Wang, Jiangtao; Lu, Bingan; Chen, Wanjun; Song, Jie; Zhang, Shanshan; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2012-09-01

    Highly transparent nanocrystalline TiO2 films have been fabricated by electrospinning (ES) technique based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine (TEOA) added to the precursor. A possible evolution mechanism of the transparent nanocrystalline TiO2 films is proposed. It is found that the films prepared via transmutation from electrospun nanofibers possess rich bulk oxygen vacancies (BOVs, PL band at 621-640 nm) by using photoluminescence (PL) spectroscopy. Contrastively, the dominant peak in PL spectrum of the spin-coated film is the emission from surface oxygen vacancies (SOVs, PL band at 537-555 nm). The electrospun TiO2 films with rich BOVs induce large open-circuit voltage (Voc) and fill factor (FF) improvements in dye-sensitized solar cells (DSCs), and thus a large improvement of energy conversion efficiency (η). In addition, these performance advantages are maintained for a double-layer cell with a doctor-bladed ˜7 μm top layer (P25 nanometer TiO2, Degussa) and an electrospun ˜3 μm bottom layer. The double-layer cell yields a high η of 6.01%, which has increased by 14% as compared with that obtained from a 10 μm thick P25 film.

  6. Antiglutamate Receptor Antibodies and Cognitive Impairment in Primary Antiphospholipid Syndrome and Systemic Lupus Erythematosus

    PubMed Central

    Gerosa, Maria; Poletti, Barbara; Pregnolato, Francesca; Castellino, Gabriella; Lafronza, Annalisa; Silani, Vincenzo; Riboldi, Piersandro; Meroni, Pier Luigi; Merrill, Joan T.

    2016-01-01

    Systemic lupus erythematosus (SLE) and antiphospholipid syndrome have an increased risk to develop cognitive impairment. A possible role for antiphospholipid antibodies (aPL) and antiglutamate receptor (anti-NMDA) antibodies in the pathogenesis of neurological manifestations of these two conditions, have been suggested. In particular, the role of anti-NMDA antibodies in the pathogenesis of neuropsychiatric SLE is supported by several experimental studies in animal models and by the finding of a correlation between anti-NMDA positivity in cerebrospinal fluid and neurological manifestations of SLE. However, data from the literature are controversial, as several studies have reported a correlation of these antibodies with mild cognitive impairment in SLE, but more recent studies have not confirmed this finding. The synergism between anti-NMDA and other concomitant autoantibodies, such as aPL, can be hypothesized to play a role in inducing the tissue damage and eventually the functional abnormalities. In line with this hypothesis, we have found a high incidence of at least one impaired cognitive domain in a small cohort of patients with primary APS (PAPS) and SLE. Interestingly, aPL were associated with low scoring for language ability and attention while anti-NMDA titers and mini-mental state examination scoring were inversely correlated. However, when patients were stratified according to the presence/absence of aPL, the correlation was confirmed in aPL positive patients only. Should those findings be confirmed, the etiology of the prevalent defects found in PAPS patients as well as the synergism between aPL and anti-NMDA antibodies would need to be explored. PMID:26870034

  7. Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures.

    PubMed

    Zhang, Jian-Hua; Zeng, Xin; Chen, Xu-Sheng; Mao, Zhong-Gui

    2018-04-21

    The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of ε-poly-L-lysine (ε-PL) production, leading to higher productivity of both biomass and ε-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the ε-PL biosynthesis, while the direct influence of mixed carbon source on ε-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of ε-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h -1 . The results indicated that the mixed carbon source could enhance the ε-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and ε-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD + ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for ε-PL biosynthesis. Therefore, the significantly higher ε-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.

  8. Anti-phospholipid Antibodies and Smoking: An Overview.

    PubMed

    Binder, Steven R; Litwin, Christine M

    2017-08-01

    Antiphospholipid syndrome is characterized by the presence of antiphospholipid antibodies, specifically lupus anticoagulant, anticardiolipin antibodies, and anti-β2 glycoprotein-I antibodies. Antiphospholipid syndrome can occur on its own or in association with other autoimmune diseases, most commonly systemic lupus erythematosus (SLE). A connection between cigarette smoking and anti-phospholipid antibodies (aPL) was first reported in the late1980s. Systemic lupus erythematosus patients with aPL are more likely to be smokers than those without aPL. These patients have a particularly high frequency of vascular events. Recently, a potential link between periodontitis, tobacco, and aPL has been proposed. Research has also suggested that periodontitis and Porphyromonas gingivalis infection are associated with citrullination through the action of peptidylarginine deiminase. A strong correlation between smoking and the presence of citrillunated autoantibodies, which are characteristic of rheumatoid arthritis, has also been observed. While many studies have investigated possible links between infection and aPL in patients with autoimmune diseases, the association of smoking with aPL has not been systematically examined. The fact that both aPL and tobacco are risk factors for thrombosis has complicated efforts to evaluate these factors separately. Also, there has been great variability in measurement techniques, and laboratories lack routine methods for differentiating transient and persistent aPL; both of these factors can make interpretation of autoantibody results quite challenging. This review summarizes the clinical evidence supporting a posited link between aPL and smoking, both in patients with a systemic autoimmune disease and in patients with other medical conditions.

  9. Structure and photoluminescence properties of ZnS films grown on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing

    2011-11-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.

  10. Impact of surface morphology on the properties of light emission in InGaN epilayers

    NASA Astrophysics Data System (ADS)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  11. Micromachined structures for vertical microelectrooptical devices on InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seassal, C.; Leclercq, J.L.; Letartre, X.

    1996-12-31

    The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less

  12. Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template

    PubMed Central

    2014-01-01

    Two-dimensional Zinc sulfide (ZnS) nanobowl arrays were synthesized via self-assembled monolayer polystyrene sphere template floating on precursor solution surface. A facile approach was proposed to investigate the morphology evolution of nanobowl arrays by post-annealing procedure. Photoluminescence (PL) measurement of as-grown nanoarrays shows that the spectrum mainly includes two parts: a purple emission peak at 382 nm and a broad blue emission band centering at 410 nm with a shoulder around 459 nm, and a blue emission band at 440 nm was obtained after the annealing procedure. ZnS nanoarrays with special morphologies and PL emission are benefits to their promising application in novel photoluminescence nanodevice. PMID:25246857

  13. Protein S deficiency complicated pregnancy in women with recurrent pregnancy loss.

    PubMed

    Shinozaki, Nanae; Ebina, Yasuhiko; Deguchi, Masashi; Tanimura, Kenji; Morizane, Mayumi; Yamada, Hideto

    2016-08-01

    This prospective study aimed to evaluate pregnancy outcome and complications in women with recurrent pregnancy loss (RPL) and protein S (PS) deficiency, who received low dose aspirin (LDA) or LDA plus heparin (LDA/H) therapies. Clinical characteristics, pregnancy outcome and complications of 38 women with two or more RPL and <60% of plasma free PS antigen were compared among three groups: antiphospholipid antibody (aPL)-negative women who received LDA (group A), aPL-negative women who received LDA/H (group B) and aPL-positive women who received LDA/H (group C). Gestational weeks (GW) at delivery in group C (median 32 GW) were earlier than 40 GW in group A and 38.5 GW in group B (p < 0.05). The birth weight in group C (median 1794 g) was less than 2855 g in group B (p < 0.05). The incidences of fetal growth restriction (37.5%), pregnancy-induced hypertension (37.5%), and preterm delivery (62.5%) in group C were higher than those (4.5%, 0%, and 4.5%, respectively) in group B (p<0.05). Women with RPL, PS deficiency, and positive aPL had high risks for adverse pregnancy outcome and complications, even when they received LDA/H therapy. Among women with RPL, PS, and negative aPL, there was no difference in these risks between LDA alone and LDA/H therapies.

  14. 14th International Congress on Antiphospholipid Antibodies: task force report on antiphospholipid syndrome treatment trends.

    PubMed

    Erkan, Doruk; Aguiar, Cassyanne L; Andrade, Danieli; Cohen, Hannah; Cuadrado, Maria J; Danowski, Adriana; Levy, Roger A; Ortel, Thomas L; Rahman, Anisur; Salmon, Jane E; Tektonidou, Maria G; Willis, Rohan; Lockshin, Michael D

    2014-06-01

    Antiphospholipid Syndrome (APS) is characterized by vascular thrombosis and/or pregnancy morbidity occurring in patients with persistent antiphospholipid antibodies (aPL). The primary objective of the APS Treatment Trends Task Force, created as part of the 14th International Congress on aPL, was to systematically review the potential future treatment strategies for aPL-positive patients. The task force chose as future clinical research directions: a) determining the necessity for controlled clinical trials in venous thromboembolism with the new oral direct thrombin or anti-factor Xa inhibitors pending the results of the ongoing rivaroxaban in APS (RAPS) trial, and designing controlled clinical trials in other forms of thrombotic APS; b) systematically analyzing the literature as well as aPL/APS registries, and creating specific registries for non-warfarin/heparin anticoagulants; c) increasing recruitment for an ongoing primary thrombosis prevention trial, and designing secondary thrombosis and pregnancy morbidity prevention trials with hydroxychloroquine; d) determining surrogate markers to select patients for statin trials; e) designing controlled studies with rituximab and other anti-B-cell agents; f) designing mechanistic and clinical studies with eculizumab and other complement inhibitors; and g) chemically modifying peptide therapy to improve the half-life and minimize immunogenicity. The report also includes recommendations for clinicians who consider using these agents in difficult-to-manage aPL-positive patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizal, Umesh, E-mail: umeshrizal680@gmail.com; Swain, Bibhu P., E-mail: bibhu.s@smit.smu.edu.in; Swain, Bhabani S., E-mail: bsswain@kookmin.ac.kr

    Gallium nitride nanowires (GaN-NWs) of diameters ranging from 20 to 80 nm were grown on the p-type Si substrate by Thermal Chemical Vapor Deposition (TCVD) using Iron (Fe) catalyst via VLS mechanism. Raman and FTIR spectra reveal the presence of broad transverse optic (TO) and longitudinal optic (LO) phonon peak spreads over 500-600 cm{sup −1} and 720 cm{sup −1} respectively. The detail deconvolution of integrated transverse and longitudinal phonon analysis reveals phonon confinement brought out by incorporation of hydrogen atom. The red shifts of TO and LO phonon peak position indicates nanosized effect. I{sub A1(LO)}/I{sub A1(TO)} increases from 0.073 to 1.0 and theirmore » respective fwhm{sub A1(LO)}/fwhm{sub A1(TO)} also increases from 0.71 to 1.31 with increasing H{sub 2} flow rate. E{sub 1}(LO) - E{sub 1}(TO) and A{sub 1}(LO) - A{sub 1}(TO) increases from 173.83 to 190.73 and 184.89 to 193.22 respectively. Apart from this usual TO and LO phonon, we have found Surface Optic (SO) phonon at 671 cm{sup −1} in FTIR spectra. The intensity of PL peak increases with increasing H{sub 2} dilution reveals efficient passivation of defect centre at surface of GaN-NWs.« less

  16. Impact of hepatitis B virus (HBV) infection on platelet response to clopidogrel in patients undergoing coronary stent implantation.

    PubMed

    Ying, Lianghong; Wang, Fei; Zhang, Jing; Yang, Lu; Gong, Xiaoxuan; Fan, Yuansheng; Xu, Ke; Li, Juan; Lu, Yi; Mei, Lianlian; Zhou, Zihao; Li, Chunjian

    2018-04-19

    Hepatitis B virus (HBV) infection has been reported to down-regulate the expression of CYP2C19 gene, which may decrease the bioactivation of clopidogrel into active metabolites. We aimed to evaluate the impact of HBV infection on platelet response to clopidogrel in patients undergoing coronary stent implantation. A total of 1805 patients who had received coronary stent implantation and taken aspirin 100 mg in combination with clopidogrel 75 mg daily ≥5 days were consecutively recruited. The serologic identifications for HBV, platelet aggregations in response to arachidonic acid (PL AA ) and adenosine diphosphate (PL ADP ), as well as ABCB1, CYP2C19, CYP3A5, PON1 and P2RY12 genotypes were determined. Clopidogrel low response (CLR) was defined as PL ADP  > 40%. Among the recruited subjects, 102 patients showed hepatitis B surface antigen (HBsAg) positive and 1703 patients negative. PL ADP was significantly higher in HBsAg positive group than that in HBsAg negative group [38 (24-48) % vs. 29 (20-39) %, p < 0.001] while the difference of PL AA was not statistically significant (p = 0.329). The incidence of CLR was significantly higher in HBsAg positive group compared with that in HBsAg negative group (43.1% vs. 23.4%, p < 0.001). After adjusted for CYP2C19 genotype and known risk factors, HBsAg positive patients exhibited a significantly higher risk of CLR (adjusted odds ratio: 2.81, 95% confidence interval: 1.73 to 4.58, p < 0.001). HBV infection is an independent risk factor of CLR, in addition to CYP2C19 gene mutations. (Pharmacogenetic and Pharmacokinetic Study of Clopidogrel; NCT01968499). Copyright © 2018. Published by Elsevier Ltd.

  17. Effect of dietary manipulation on substrate flux and energy balance in obese women taking the appetite suppressant dexfenfluramine.

    PubMed

    Poppitt, S D; Swann, D L; Murgatroyd, P R; Elia, M; McDevitt, R M; Prentice, A M

    1998-11-01

    Studies in lean men show poor regulation of energy (EB) and fat balance (FB) during manipulation of dietary ratios of fat to carbohydrate. High-fat (HF), high-energy diets cause hyperphagia and a positive EB and FB. The protocol was designed to measure substrate flux and EB in obese women taking dexfenfluramine (DF) or placebo (PL) during an HF (50% of energy) or low-fat (25% of energy; LF) diet. We hypothesized that alterations in dietary fat would not be regulated and would lead to a positive EB and FB. The study was double-blind, randomized, and placebo-controlled, with 4 treatments (LF/DF, HF/DF, LF/PL, and HF/PL) and a crossover. Five days of continuous, whole-body calorimetry measurements were made in 6 subjects after 8 d of home DF/PL treatment. Macronutrient balance and EB were measured within the chamber as the cumulative difference between ad libitum intake and oxidation. The HF diet increased energy (HF, 10.50 MJ/d; LF, 8.13 MJ/d; P < 0.0001) and fat intakes (HF, 5.34 MJ/d; LF, 2.06 MJ/d; P < 0.0001), leading to a positive EB (delta = 2.37 MJ/d) and FB (delta = 2.31 MJ/d). DF reduced energy (DF, 8.96 MJ/d; PL, 9.66 MJ/d; P < 0.01) and macronutrient intakes, but did not increase energy expenditure (delta = -0.31 MJ/d; P < 0.01), or 24-h fat oxidation (delta = 0.03 MJ/d; P = 0.46). EB and FB are poorly regulated with HF, energy-dense diets in obese women, which leads to fat deposition and weight gain.

  18. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    NASA Astrophysics Data System (ADS)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  19. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE PAGES

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...

    2017-09-28

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  20. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  1. Antenatal screening for Down syndrome using serum placental growth factor with the combined, quadruple, serum integrated and integrated tests.

    PubMed

    Wald, Nicholas J; Bestwick, Jonathan P; George, Lynne M; Huttly, Wayne J

    2012-01-01

    To estimate the value of first or second trimester placental growth factor (PlGF) as an additional antenatal screening marker for Down syndrome. Nested case-control study. Antenatal screening service. 532 Down syndrome pregnancies and 1,155 matched unaffected pregnancies. Stored maternal serum samples (-40°C) were assayed for PlGF. Monte Carlo simulation was used to estimate the screening performance of PlGF with the Combined, Quadruple, serum Integrated and Integrated tests. Median PlGF levels in affected and unaffected pregnancies and screening performance (detection rates [DR] for specified false-positive rates [FPR] and vice versa). First trimester median PlGF was 15%, 28% and 39% lower in Down syndrome than unaffected pregnancies at 11, 12 and 13 completed weeks' gestation respectively (all p<0.001). Second trimester median PlGF was 31% lower at 14 weeks (p<0.001), and the difference decreased (6% lower at 17 weeks). At a 90% DR with first trimester markers measured at 13 weeks, adding PlGF decreased the FPR from 11.1 to 5.1% using the Combined test, 9.3% to 4.5% using the serum Integrated test, and 3.4% to 1.5% using the Integrated test (or 1.5 to 1.4% with first trimester markers measured at 11 weeks). Adding PlGF to the Quadruple test (measured at 15 weeks) decreased the FPR from 10.0% to 9.6% at a 90% DR. First trimester PlGF measurements improve the performance of antenatal screening for Down syndrome using the Combined, serum Integrated and Integrated tests. Second trimester PlGF measurements are of limited value.

  2. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits.

    PubMed

    Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda

    2004-02-25

    Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.

  3. The clinical significance of antiphospholipid antibodies in systemic lupus erythematosus

    PubMed Central

    Ünlü, Ozan; Zuily, Stephane; Erkan, Doruk

    2016-01-01

    Antiphospholipid syndrome (APS) is the association of thrombosis and/or pregnancy morbidity with antiphospholipid antibodies (aPL). Thirty to forty percent of systemic lupus erythematosus (SLE) patients are tested positive for aPL, which may have an impact on the SLE presentation, management, and prognosis. Compared with SLE patients without aPL, those with aPL have a higher prevalence of thrombosis, pregnancy morbidity, valve disease, pulmonary hypertension, livedo reticularis, thrombocytopenia, hemolytic anemia, acute/chronic renal vascular lesions, and moderate/severe cognitive impairment; worse quality of life; and higher risk of organ damage. The use of low-dose aspirin (LDA) is controversial for primary thrombosis and pregnancy morbidity prevention because of the lack of strong prospective controlled data. Similarly, the use of anticoagulation is controversial for patients with an aPL-related nephropathy. Until further studies are available, physicians should discuss the risk/benefits of LDA or anticoagulation as well as the available literature with patients. PMID:27708976

  4. Strain Dependence of Photoluminescense of Individual Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram

    2007-01-01

    We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.

  5. Hughes syndrome and epilepsy: when to test for antiphospholipid antibodies?

    PubMed

    Noureldine, M H A; Harifi, G; Berjawi, A; Haydar, A A; Nader, M; Elnawar, R; Sweid, A; Al Saleh, J; Khamashta, M A; Uthman, I

    2016-11-01

    Epilepsy and seizures are reported among the neurological manifestations of antiphospholipid syndrome (APS) at a prevalence rate of approximately 8%, which is nearly 10 times the prevalence of epilepsy in the general population. The association of seizures with antiphospholipid antibodies (aPL) is even more significant in the presence of systemic lupus erythematosus (SLE). In this review, we discuss the epidemiological, pathophysiological, laboratory, clinical, and radiological aspects of this association, and derive suggestions on when to consider testing for aPL in epileptic patients and how to manage seizures secondary to APS based on literature data. Epilepsy due to APS should be considered in young patients presenting with seizures of unknown origin. Temporal lobe epilepsy seems to be particularly prevalent in APS patients. The pathogenesis is complex and may not only involve micro-thrombosis, but also a possible immune-mediated neuronal damage. Patients with seizures and positive aPL tend to develop thrombocytopenia and livedo racemosa more frequently compared with those without aPL. Magnetic resonance imaging (MRI) remains the imaging modality of choice in these patients. The presence of SLE and the presence of neurological symptoms significantly correlate with the presence of white matter changes on MRI. In contrast, the correlation between aPL positivity and the presence of white matter changes is very weak. Furthermore, MRI can be normal in more than 30-40% of neuropsychiatric lupus patients with or without aPL. aPL testing is recommended in young patients presenting with atypical seizures and multiple hyper-intensity lesions on brain MRI in the absence of other possible conditions. New MRI techniques can better understand the pathology of brain damage in neuro-APS. The therapeutic management of epileptic APS patients relies on anti-epileptic treatment and anticoagulant agents when there is evidence of a thrombotic event. In the absence of consensual recommendations, the decision of lifelong anticoagulation is discussed on a case-by-case basis. The anti-thrombotic benefit of hydroxychloroquine and statins is supported by several studies.

  6. Size tunability and optical properties of CdSe quantum dots for various growth conditions

    NASA Astrophysics Data System (ADS)

    Ko, Eun Yee; Lee, Joo In; Jeon, Ju-Won; Lee, In Hwan; Shin, Yong Hyeon; Han, Il Ki

    2013-01-01

    We report the optical properties of CdSe quantum dots (QDs) synthesized under various growth conditions, such as growth temperature, growth time, ligand ratio, and Cd:Se ratio of the precursors. As the growth temperature and time was increased, the peaks of the photoluminescence (PL) spectra were a red shifted, indicating that the size of QDs increased. Different ligand ratios and Cd:Se ratios of the precursors played important roles in determining the QDs size. From the PL spectra and the transmission electron microscopy image, the size distribution, as well as the size of CdSe QDs, could be controlled by using the growth conditions. The temperature-dependent PL of CdSe QDs dropped and dried on Si substrates was measured at temperatures from 15 K to 290 K. With increasing temperature, the red shift of the QDs was about 35 meV, which is noticeably smaller than that of bulk CdSe (˜100 meV). The influence of the temperature on the optical properties of colloidal CdSe QDs is important for an application to various devices.

  7. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  8. CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2012-01-01

    Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.

  9. An optical fiber glass containing PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Jiang, Huilü; Ma, Dewei; Cheng, Xiaoyu

    2011-09-01

    An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO 2 fibers. It can be easily fused and spliced with SiO 2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.

  10. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers

    PubMed Central

    Almeida, Rui M.; Ribeiro, Tiago

    2017-01-01

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO1.5. Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er3+ was used as an internal reference to compare the intensities of the Yb3+ PL peaks at ~ 1020 nm. The Yb3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO2-14 AlO1.5-15 YbO1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated. PMID:28869488

  11. Studies on annealed ZnO:V thin films deposited by nebulised spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Malini, D. Rachel

    2018-04-01

    Structural, optical and photoluminescence properties of annealed ZnO:V thin films deposited by nebulized spray pyrolysis technique by varying vanadium concentration are studied. Thickness of thin films varies from 1.52µm to 7.78µm. V2O5, VO2 and ZnO peaks are observed in XRD patterns deposited with high vanadium concentration and the intensity of peaks corresponding to ZnO decreases in those samples. Morphological properties were studied by analysing SEM images and annealed thin films deposited at ZnO:V = 50:50 possess dumb bell shape grains. Emission peaks corresponding to both Augur transition and deep level transition are observed in the PL spectra of the samples.

  12. HLA-DRB1*04/*13 alleles are associated with vascular disease and antiphospholipid antibodies in systemic lupus erythematosus.

    PubMed

    Lundström, Emeli; Gustafsson, Johanna T; Jönsen, Andreas; Leonard, Dag; Zickert, Agneta; Elvin, Kerstin; Sturfelt, Gunnar; Nordmark, Gunnel; Bengtsson, Anders A; Sundin, Ulf; Källberg, Henrik; Sandling, Johanna K; Syvänen, Ann-Christine; Klareskog, Lars; Gunnarsson, Iva; Rönnblom, Lars; Padyukov, Leonid; Svenungsson, Elisabet

    2013-06-01

    Vascular disease is common in systemic lupus erythematosus (SLE) and patients with antiphospholipid antibodies (aPL) are at high risk to develop arterial and venous thrombosis. Since HLA class II genotypes have been linked to the presence of pro-thrombotic aPL, we investigated the relationship between HLA-DRB1 alleles, aPL and vascular events in SLE patients. 665 SLE patients of Caucasian origin and 1403 controls were included. Previous manifestations of ischaemic heart disease, ischaemic cerebrovascular disease (ICVD) and venous thromboembolism (together referred to as any vascular events (AVE)) were tabulated. aPL were measured with ELISA. Two-digit HLA-DRB1 typing was performed by sequence-specific primer-PCR. HLA-DRB1*04 was more frequent among SLE patients with ICVD compared to unaffected patients. This association remained after adjustment for known traditional cardiovascular risk factors. HLA-DRB1*13 was associated with AVE. All measured specificities of aPL-cardiolipin IgG and IgM, β2-glycoprotein-1 IgG, prothrombin (PT) IgG and a positive lupus anticoagulant test were associated with HLA-DRB1*04-while HLA-DRB1*13 was associated with IgG antibodies (β2-glycoprotein-1, cardiolipin and PT). In patients with the combined risk alleles, HLA-DRB1*04/*13, there was a significant additive interaction for the outcomes AVE and ICVD. The HLA-DRB1*04 and HLA-DRB1*13 alleles are associated with vascular events and an aPL positive immune-phenotype in SLE. Results demonstrate that a subset of SLE patients is genetically disposed to vascular vulnerability.

  13. Synoptic characteristics of heavy snowfalls at Busan of Korea caused by polar lows over the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong

    2018-02-01

    The results of the present study prove that snowfall occurred due to the polar low (PL) in the Korean Peninsula and six cases of snowfall exceeding a snow depth of 2 cm over the past 16 years in Busan, South Korea. A strong northwesterly air current with a cold outbreak at the lower level passed through the Korean Peninsula and penetrated into the East/Japan Sea causing the generation and characteristics of a PL. However, a northeasterly air current due to a synoptic low (SL) in East Japan approached the east coast via the East/Japan Sea, which generated a wind field with mesoscale cyclonic circulation. In the center of this cyclone, a strong positive vorticity region was revealed from the lower level to the upper level. The air temperature in the center of the PL was warmer than the surrounding areas at the lower level. As the PL developed and the air temperature decreased, a rapid tropopause drop followed due to the effect of the cold core along with the cutoff low at the mid-level or the higher level. As a result, the stratification became more unstable. The PL moved into Busan as the cold core at the upper level rapidly moved to the lower latitudes, which formed an unstable region around Busan. The PL decayed because the cutoff low, the cold core, and the positive vorticity region at the upper level quickly moved to the east, thereby causing the stratification to stabilize. Also, because the approach to the Japanese Archipelago caused an increase in surface friction, the original structure could no longer be maintained.

  14. Toward a better understanding of the GRB phenomenon: a new model for GRB prompt emission and its effects on the new L i NT$-$E peak,i rest,NT relation

    DOE PAGES

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; ...

    2015-07-09

    Gamma-ray burst (GRB) prompt emission spectra in the keV–MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. Here in this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like "twins" in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity–hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal Band function and its E peak only when the three components are fitted simultaneously to the data (i.e.,more » $${F}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{NT}}$$ relation). In addition, this result points toward a universal relation between those two quantities when transposed to the central engine rest frame for all GRBs (i.e., $${L}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{rest},\\mathrm{NT}}$$ relation). We discuss a possible theoretical interpretation of the three spectral components within this new empirical model. Lastly, we suggest that (i) the BB component may be interpreted as the photosphere emission of a magnetized relativistic outflow, (ii) the Band component has synchrotron radiation in an optically thin region above the photosphere, either from internal shocks or magnetic field dissipation, and (iii) the extra PL component extending to high energies likely has an inverse Compton origin of some sort, even though its extension to a much lower energy remains a mystery.« less

  15. Observation of the 63 micron (0 1) emission line in the Orion and Omega Nebulae

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1978-01-01

    The 63 micron fine structure transition P4 : 3Pl yields 3P2 for neutral atomic oxygen was obtained during a series of flights at an altitude of approximately 13.7 km. In the Orion Nebula (M42), the observed line strength was 8 x 10 to the minus 15 power watt cm/2 which is estimated to be approximately 0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebulae (M17), the line strength was 2.4 x 10 to the minus 15 power watt cm/2, and the fraction of the total radiated power was slightly higher. These figures refer to a 4' x 6' field of view centered on the peak for infrared emission from each source. The uncertainty in the line strength is approximately 50% and is caused by variable water vapor absorption along the flight path of the airplane. The line position estimate is 63.2 micron (+0.1, -0.2) micron. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in the field of view.

  16. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnowski, Grzegorz, E-mail: gchojnowski@genesilico.pl; Waleń, Tomasz; University of Warsaw, Banacha 2, 02-097 Warsaw

    2015-03-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure ismore » RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.« less

  17. Circulating cell-derived microparticles in women with pregnancy loss.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  18. Temperature dependent surface and spectral modifications of nano V2O5 films

    NASA Astrophysics Data System (ADS)

    Manthrammel, M. Aslam; Fatehmulla, A.; Al-Dhafiri, A. M.; Alshammari, A. S.; Khan, Aslam

    2017-03-01

    Nanocrystalline V2O5 films have been deposited on glass substrates at 300°C substrate temperature using thermal evaporation technique and were subjected to thermal annealing at different temperatures 350, 400, and 550°C. X-ray diffraction (XRD) spectra exhibit sharper and broader characteristic peaks respectively indicating the rearrangement of nanocrystallite phases with annealing temperatures. Other phases of vanadium oxides started emerging with the rise in annealing temperature and the sample converted completely to VO2 (B) phase at 550°C annealing. FESEM images showed an increase in crystallite size with 350 and 400°C annealing temperatures followed by a decrease in crystallite size for the sample annealed at 550°C. Transmission spectra showed an initial redshift of the fundamental band edge with 350 and 400°C while a blue shift for the sample annealed at 550°C, which was in agreement with XRD and SEM results. The films exhibited smart window properties as well as nanorod growth at specific annealing temperatures. Apart from showing the PL and defect related peaks, PL studies also supported the observations made in the transmission spectra.

  19. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  20. Anomalous luminescence phenomena of indium-doped ZnO nanostructures grown on Si substrates by the hydrothermal method

    PubMed Central

    2012-01-01

    In recent years, zinc oxide (ZnO) has become one of the most popular research materials due to its unique properties and various applications. ZnO is an intrinsic semiconductor, with a wide bandgap (3.37 eV) and large exciton binding energy (60 meV) making it suitable for many optical applications. In this experiment, the simple hydrothermal method is used to grow indium-doped ZnO nanostructures on a silicon wafer, which are then annealed at different temperatures (400°C to 1,000°C) in an abundant oxygen atmosphere. This study discusses the surface structure and optical characteristic of ZnO nanomaterials. The structure of the ZnO nanostructures is analyzed by X-ray diffraction, the superficial state by scanning electron microscopy, and the optical measurements which are carried out using the temperature-dependent photoluminescence (PL) spectra. In this study, we discuss the broad peak energy of the yellow-orange emission which shows tendency towards a blueshift with the temperature increase in the PL spectra. This differs from other common semiconductors which have an increase in their peak energy of deep-level emission along with measurement temperature. PMID:22647253

  1. Posterior root tear fixation of the lateral meniscus combined with arthroscopic ACL double-bundle reconstruction: technical note of a transosseous fixation using the tibial PL tunnel.

    PubMed

    Forkel, Philipp; Petersen, Wolf

    2012-03-01

    According to our observation in ACL reconstruction, we find root tears of the posterior horn of the lateral meniscus as a common concomitant injury in ACL-deficient knees. This might be a consequence of initial trauma or of the increased anterior-posterior translation of the tibia and an overload impact on the posterior meniscus root in ACL-deficient knees. A tear of the posterior horn of the medial meniscus causes a 25% increase in peak pressure in the medial compartment compared with that found in the intact condition. The repair restores the peak contact pressure to normal (Allaire et al. in J Bone Joint Surg Am 90(9):1922-1931, [2008]). A tear of the posterior horn of the lateral meniscus might have similar consequences. We hypothesize the surgical anatomical reattachment of the root at the tibia helping to restore knee joint kinematics and helping to advance ACL-graft function. This article presents an arthroscopical technique to reattach the posterior meniscus root in combination with ACL double-bundle reconstruction. The procedure uses the tibial PL tunnel to fix the meniscus suture.

  2. Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Venkatramana Reddy, S.

    2018-02-01

    We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemark, M.; Comer, M.; Mularoni, T.

    We have recently identified and purified from fetal liver a distinct receptor that mediates the effects of placental lactogen (PL) on amino acid transport, glycogen synthesis, and somatomedin production in fetal tissues. At present, the factors that regulate the number and affinity of PL receptors in the fetus are unknown. Since maternal nutrition plays a critical role in fetal metabolism and growth, we have examined the role of nutrition in the regulation of the PL receptor in fetal lambs. Pregnant ewes at 123-126 days gestation were fed ad libitum (FED), fasted for 3 days (FASTED), or fasted for 3 daysmore » and then refed for an additional 3 days (REFED). The ewes were then killed, and the binding of (125I)ovine (o) PL to hepatic microsomes from the fetal lambs was examined. Maternal fasting caused a 60-75% reduction in the specific binding of oPL to fetal liver; the effect of fasting was reversed in part by refeeding. The decrease in oPL binding resulted from an 80% reduction in the number of fetal oPL-binding sites (Scatchard analysis); there were no changes in the affinity of the oPL receptor (Kd, 0.6 nM), the subunit structure of the receptor, or the degree of occupancy of the receptor in vivo by endogenous fetal hormones. The specific bindings of GH (0.6%), PRL (0.3%), and insulin (35%) to fetal liver were not affected by maternal fasting, indicating that caloric restriction exerted a specific effect on oPL binding in the fetus. The number of fetal oPL-binding sites was positively correlated with the fetal liver glycogen content (r = 0.69; P less than 0.01) and the fetal plasma concentrations of glucose (r = 0.68; P less than 0.01) and insulin-like growth factor-I (r = 0.74; P less than 0.001), suggesting a role for the PL receptor in the regulation of fetal carbohydrate metabolism and growth.« less

  4. New comparisons of ISR and RO data with the model IRI-Plas

    NASA Astrophysics Data System (ADS)

    Maltseva, Olga; Mozhaeva, Natalya; Zhbankov, Gennadii

    2012-07-01

    Space Weather events lead to strong changes in peak parameters of the ionosphere. These parameters, foF2 and hmF2, define the N(h)-profile, which is known to include bottom side and topside parts. Numerous studies have shown that adaptation of the IRI model to the experimental values of foF2 and hmF2 gave a good agreement between experimental and model N(h)-profiles of the bottom side ionosphere. This is not about the topside N(h)-profile. To improve the situation measurements of the total electron content TEC are involved. This work is devoted to the use of peak parameters with the TEC during Space Weather events for the evaluation of propagation conditions in both the bottom side and the topside ionosphere, based on the model IRI-Plas. To assess how well the model N(h)-profile matches the experimental one, the model IRI-Plas is tested according to the Incoherent Scatter Radars and the Radio Occultation measurements in various parts of the globe and at different levels of solar activity. The experimental N(h)-profiles are compared with profiles for the original model, the model adapted to the foF2 and hmF2, and for a model with full adaptation (including the TEC). The best fit is obtained in the European region, so the SW variations of peak parameters and N(h)-profiles are studied on the example of the European area. The IRI-Plas model allows to estimate the relative contributions of each region (bottom side BOT, topside TOP and plasmaspheric PL parts) in the value of the TEC. As the analysis of two W- and Wp-indexes (Gulyaeva, 2008; Gulyaeva and Stanislawska, 2008) is shown, TEC-storms occur in 2 times more likely than foF2-storms. This testifies that the variations of parts BOT, TOP and PL in the TEC are different. It determines different variations of N(h)-profiles. Results are given for several types of SW-events, in particular, for the strong positive and negative disturbances, when the variations of TEC and foF2 are of the same sign and the corresponding perturbation covers all regions of the ionosphere. Particular attention is paid to variations of peak parameters and N(h)-profiles during weak and moderate disturbances and bursts of TEC in long period of low activity, when the TEC and foF2 variations and variations of different parts of TEC are in the opposite phase.

  5. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Rosales, Daniel; Gil, Bernard; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Excitonic recombination dynamics in (11-22) -oriented semipolar In0.2Ga0.8N/In0.06Ga0.94N multiquantum wells (MQWs) grown on GaN/m-sapphire templates have been investigated by temperature-dependent time-resolved photoluminescence (TRPL). The radiative and nonradiative recombination contributions to the PL intensity at different temperatures were evaluated by analysing temperature dependences of PL peak intensity and decay times. The obtained data indicate the existence of exciton localization with a localization energy of Eloc(15K) =7meV and delocalization temperature of Tdeloc = 200K in the semipolar InGaN MQWs. Presence of such exciton localization in semipolar (11-22) -oriented structures could lead to improvement of excitonic emission and internal quantum efficiency.

  6. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  7. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  8. Biosensors from conjugated polyelectrolyte complexes

    PubMed Central

    Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.

    2002-01-01

    A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675

  9. Tests for penicillin allergy in man

    PubMed Central

    Vickers, Margaret R.; Assem, E. S. K.

    1974-01-01

    The value of using benzylpenicilloyl (BPO) conjugates rather than benzylpenicillin (B.Pen.) itself in skin tests and in in vitro diagnostic tests for penicillin allergy in man is assessed. The effect of various carriers on the outcome of these tests has also been investigated in order to find the most appropriate. Skin tests with B.Pen. and BPO conjugates (with polylysine, PL, and human serum albumin, HSA) in penicillin allergic patients were positive in 36 per cent and up to 50 per cent respectively. The two carriers used were equally effective. Negative results were obtained in the non-allergic control subjects. For in vitro studies two tests were selected on the basis of their well established value, the lymphocyte transformation test (LTT) and histamine release from sensitized leucocytes (HRL). In the HRL test BPO conjugates with PL, HSA, bovine serum albumin (BSA) and bovine gamma globulin (BGG) were also compared with B.Pen. The BPO conjugates were all more effective than B.Pen. and the proportion of patients giving positive results with these conjugates was much higher than with B.Pen. (up to 86 per cent compared with 29 per cent). The rank order of effectiveness of the various carriers as judged from maximal histamine release by various penicilloyl conjugates was PL

  10. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes.

    PubMed

    Kramer, Samuel J; Baur, Daniel A; Spicer, Maria T; Vukovich, Matthew D; Ormsbee, Michael J

    2016-01-01

    While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d -1 ) or a non-caloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t -tests were utilized to assess changes over time and to compare changes between treatments. Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p  = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p  = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes.

  11. Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model.

    PubMed

    Iriuchishima, Takanori; Tajima, Goro; Ingham, Sheila J M; Shen, Wei; Horaguchi, Takashi; Saito, Akiyoshi; Smolinski, Patrick; Fu, Freddie H

    2009-06-01

    Anterior cruciate ligament (ACL) graft impingement against the intercondylar roof has been postulated, but not thoroughly investigated. The roof impingement pressure changes with different tibial and femoral tunnel positions in ACL reconstruction. Anterior tibial translation is also affected by the tunnel positions of ACL reconstruction. The study design included a controlled laboratory study. In 15 pig knees, the impingement pressure between ACL and intercondylar roof was measured using pressure sensitive film before and after ACL single bundle reconstruction. ACL reconstructions were performed in each knee with two different tibial and femoral tunnel position combinations: (1) tibial antero-medial (AM) tunnel to femoral AM tunnel (AM to AM) and (2) tibial postero-lateral (PL) tunnel to femoral High-AM tunnel (PL to High-AM). Anterior tibial translation (ATT) was evaluated after each ACL reconstruction using robotic/universal force-moment sensor testing system. Neither the AM to AM nor the PL to High-AM ACL reconstruction groups showed significant difference when compared with intact ACL in roof impingement pressure. The AM to AM group had a significantly higher failure load than PL to High-AM group. This study showed how different tunnel placements affect the ACL-roof impingement pressure and anterior-posterior laxity in ACL reconstruction. Anatomical ACL reconstruction does not cause roof impingement and it has a biomechanical advantage in ATT when compared with non-anatomical ACL reconstructions in the pig knee. There is no intercondylar roof impingement after anatomical single bundle ACL reconstruction.

  12. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars.

    PubMed

    Chen, Bo; Sun, Hai-Hua; Wang, Han-Guo; Kong, Hui; Chen, Fa-Ming; Yu, Qing

    2012-07-01

    Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) in the large-scale expansion of dental pulp stem cells (DPSCs). However, the biological effects and the optimal concentrations of PL for the proliferation and differentiation of human DPSCs remain unexplored. We isolated and expanded stem cells from the dental pulp of extracted third molars and evaluated the effects of PL on the cells' proliferative capacity and differentiation potential in vitro and in vivo. Before testing, immunocytochemical staining and flow cytometry-based cell sorting showed that the cells derived from human dental pulp contained mesenchymal stem cell populations. Cells were grown on tissue culture plastic or on hydroxyapatite-tricalcium phosphate (HA/TCP) biomaterials and were incubated with either normal or odontogenic/osteogenic media in the presence or absence of various concentrations of human PL for further investigation. The proliferation of DPSCs was significantly increased when the cells were cultured in 5% PL under all testing conditions (P < 0.05). However, this enhancement was inconsistent when the cells were cultured in 1% PL or in 10% PL; 10% PL significantly inhibited cell proliferation and was therefore excluded from further differentiation testing. Culture medium containing 5% PL also significantly promoted the mineralized differentiation of DPSCs, as indicated by the measurement of alkaline phosphatase activity and calcium deposition under mineral-conditioned media (P < 0.05). Scanning electron microscopy and modified Ponceau trichrome staining showed that the cells treated with 5% PL and mineralizing media were highly capable of integrating with the HA/TCP biomaterials and had fully covered the surface of the scaffold with an extensive sheet-like structure 14 d after seeding. In addition, 5% PL showed significantly positive effects on tissue regeneration in two in vivo transplantation models. We conclude that the appropriate concentration of PL enhances the proliferation and mineralized differentiation of human DPSCs both in vitro and in vivo, which supports the use of PL as an alternative to FBS or a nonzoonotic adjuvant for cell culture in future clinical trials. However, the elucidation of the molecular complexity of PL products and the identification of both the essential growth factors that determine the fate of a specific stem cell and the criteria to establish dosing require further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The electronic structure of indium arsenide/gallium arsenide self-assembled quantum dots in a high magnetic field

    NASA Astrophysics Data System (ADS)

    Awirothananon, Sunida

    The electronic energy levels of dome-shape InAs self-assembled quantum dots (SAQD) grown by the Stranski-Krastanow mode on GaAs substrates are similar to those obtained from a two-dimensional harmonic-oscillator. A simple selection rule allows transitions only that preserve angular momentum, depicted with atomic-like orbital labels s, p, d, f, etc. This electronic structure was examined with photoluminescence (PL) and photoluminescence excitation (PLE) techniques. As well, in magnetic fields up to 28 Tesla applied parallel to the growth direction, SAQD energy-level degeneracies were lifted. The number of branches observed is correlated to the angular momentum. The ground state (GS) level at zero angular momentum is shifted quadratically under the magnetic field and the behavior could be explained with the Fock-Darwin (F-D) spectral model. The effect of annealing at temperatures from 825°C to 900°C in 25°C steps on the SAQD electronic structure was also examined with the PL technique combined with an applied magnetic field in the Faraday configuration. The PL lines were similar to the F-D spectral lines with their degeneracy lifted by the applied magnetic field. These lines exhibited ten (anti-)crossings: three each at 10 T and 28 T, four at 18 T, while the inter-level spacing and the FWHM were reduced with increasing annealing temperature. Thus an increase in the observed (anti-)crossings resulted for the higher anneal temperatures. The in-plane excitonic reduced-mass was inferred from the systematic splitting of the PL p-branches in a magnetic field. The reduced-mass for all the annealed QD samples was about 0.066 m0 +/- 0.012m0 which decreased slightly with anneal temperature. An 8-band k*p model predicted a similar reduced-mass at low alloying of gallium, but an incorrect trend was observed as the alloying increased with annealing temperature. Unrealistic reduced-masses at 50 percent gallium content were reached. This discrepancy is explained assuming the F-D model is a single (independent) bulk particle picture neglecting many-body effects, and also the k*p model assumes identical disks before and after annealing. The SAQDs were in fact inhomogeneous shallow domes whose height is reduced with annealing temperatures. It is an attempt to reduce the effect of many-body interactions such as exchange, configuration and screened coulomb interactions dominant in the PL technique, the PLE technique was use. In this technique, a single level in a collection or 'ensemble' of dots is excited with tuned laser-light and only the Coulomb interactions are assumed to be important. The PLE peaks were found to be blue-shifted relative to PL peaks. Furthermore, under the influence of a magnetic field, two PLE peaks were observed that corresponded to the p and d energy states. However, three 'd' lines were expected and is hypothesized that one of the d lines remained degenerate. Moreover, the carrier dynamics observed in PLE spectra are much more difficult to interpret than that of the PL spectra. Applying the same method, the analysis of the p-branch peaks suggested an in-plane reduced-mass of ˜0.084m0 +/- 0.002m0, higher than obtained from PL measurement. Since the effective mass is normally associated with the mobility of the carriers, this would imply that the excitons in the PLE measurement are less mobile than in PL. This is despite the reduced many-body effects, suggesting that some extra interactions in the PL excitation may actually enhance the carrier mobility. Given the current interest in devices such as QD infrared photo-detectors and the necessary controls on the number of charge carriers in these devices, a single-layer and 25-layer SAQD samples with doping in the top cap layer were compared to un-doped sample using PLE at various detection energies. No absorption signatures appeared for the doped single layer, whereas they were recovered in the 25-layer doped sample. Evidently either dopants or injected carriers diffused into the QD layers beneath the cap. This diffusion and its influence is expected to be decreasing with depth. Finally, the number of injected charge-carriers in doped GaAs barriers interleaving 50 SAQD layers was studied in order to understand the influence on their electronic structure. From the relation between the dot density and the dopant dose, two to twenty-two charge carriers were estimated to be present in the barriers of each QD. The PLE results indicated that as this number was increased, direct radiative recombination from the higher levels decreased. In addition to Auger scattering and multi-phonon scattering, the enhanced scattering by the dopants impurities appears to add further decay channels toward the lower-energy recombination. This suggests that the PLE technique is sensitive for characterizing the doping effects in SAQD materials. Some fundamental questions regarding the optical and electronic properties of InAs/GaAs SAQD have been answered in this dissertation and the results can be used to support the future development of opto-electronic devices at the nano-scale level.

  14. Cu+ emission in Li2BPO5 material for thermoluminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Puppalwar, S. P.; Dhoble, S. J.; Kumar, Animesh

    2012-05-01

    In this study, Li2BPO5 doped with Cu and that co-doped with Mg are synthesized by the wet chemical technique and exposed to γ rays of 60Co to determine their thermoluminescence (TL) properties. The X-ray diffraction technique shows the crystalline nature of the prepared material. The photoluminescence (PL) emission spectra of Li2BPO5:Cu phosphor show the strong prominent peak at 368 nm in the violet region of the visible spectrum due to the transition of 3d94s1 ↔ 3d10 of monovalent copper ion. The PL emission of Li2BPO5:Cu is enhanced by the addition of Mg. The TL glow curves of γ-irradiated Li2BPO5:Cu sample show one glow peak at 143°C, indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak of Li2BPO5:Cu are calculated using the glow curve shape (Chen's) method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. A linear TL response is observed in Li2BPO5:Cu in a long span of exposures. The sensitivity of Li2BPO5:Cu sample is observed to be 7.8 times that of (TLD-100) LiF:Mg, Ti.

  15. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

    PubMed

    DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter

    2013-04-01

    Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.

  16. Antibacterial activity and mechanism of action of ε-poly-L-lysine.

    PubMed

    Ye, Ruosong; Xu, Hengyi; Wan, Cuixiang; Peng, Shanshan; Wang, Lijun; Xu, Hong; Aguilar, Zoraida P; Xiong, Yonghua; Zeng, Zheling; Wei, Hua

    2013-09-13

    ε-Poly-L-lysine (ε-PL)(2) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS)(3) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR)(4) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response)(5) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence. Copyright © 2013. Published by Elsevier Inc.

  17. Value of planar lymphoscintigraphy versus SPECT/CT in evaluation of sentinel lymph node in trunk melanoma - one center, large series, retrospective study.

    PubMed

    Benke, Małgorzata; Wocial, Krzysztof; Lewandowska, Weronika; Rutkowski, Piotr Łukasz; Teterycz, Paweł; Jarek, Piotr; Dedecjus, Marek

    2018-06-29

    Background Localization and histopathological examination of sentinel lymph node (SLN) is a standard of melanoma treatment. The first stage of identification of the SLN is the preoperative lymphoscintigraphy. The aim of this study was to assess and compare diagnostic value of planar lymphoscintigraphy (PL) and SPECT/CT in sentinel lymph node biopsy (SLNB) procedure performed in patients with cutaneous trunk melanoma. Material and Methods Between 2015 and 2016, patients with trunk melanoma (N=255, F/M 95/160), aged from 17 to 88 after an excisional biopsy, with primary tumor ≥ pT1b (AJCC 2009, median Breslow thickness 2.0± 3.13) were included in the study. In all the patients PL was followed by SPECT/CT 1-3 h after injection of 99mTc- colloid particles, and SLNB was performed the next day. Results SPECT-CT revealed 78 (18.6%) SLN more than PL, and in 40 patients showed additional lymph drainage regions leading to surgical adjustments. In 18 patients (7.1%) SPECT-CT revealed SLN not visible in the PL (false-negative PL) and in 22 patients (8.6%), foci of uptake interpreted in PL as hot SLNs were found to be non-nodal sites of uptake when assessed on SPECT/CT (false positive PL). SPECT-CT vs. PL mismatch was observed in 31 patients (12.2%) and was the most common in patients with primary lesions located in the anterior inferior medial region (75%). Conclusions Results of the presented study indicates the high diagnostic value of SPECT-CT in assessment of SLNs and proved that SPECT-CT increases the sensitivity and accuracy of SLN identification as compared to PL even in very experienced hands.

  18. The safest parameters for FUS-induced blood-brain barrier opening without effects on the opening volume

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Olumolade, Yemi; Wang, Shutao; Wu, Shih-Ying; Konofagou, Elisa E.

    2012-11-01

    Acoustic cavitation has been identified as the main physical mechanism for the focused ultrasound (FUS) induced blood-brain barrier (BBB) opening. In this paper, the mechanism of stable cavitation (SC) and inertial cavitation (IC) responsible for BBB opening was investigated. Thirty-three (n=33) mice were intravenously injected with bubbles of 4-5 μm in diameter. The right hippocampus was then sonicated using focused 1.5-MHz ultrasound and three different studies were carried out. First, pulse lengths (PLs) of 0.1, 0.5, 2, and 5 ms at 0.18- MPa peak rarefactional pressure with 5-Hz pulse repetition frequency (PRF) and 5-minute duration were used to identify the threshold of PL using SC. Second, the effects of the duty cycle and exposure time were investigated. Third, the BBB opening size was compared between the SC and the IC. In the case of IC-induced BBB opening, a burst sequence (3-cycles PL; 5-Hz burst repetition frequency (BRF); 30 s duration) at 0.45 MPa was applied. Passive cavitation detection was performed with each sonication to detect whether a broadband response was obtained, i.e., if IC occurred, during BBB opening. The properties of BBB opening were measured through MRI. The threshold of PL for BBB opening was identified between 0.1 and 0.5 ms using SC, but the BBB can be opened in few cycles using IC. The BBB opening volume and normalized intensity increased with the PL, but reached saturation when the PL was above 2 ms. Once the PL threshold was reached, the same exposure time induced a similar BBB opening volume, but longer sonication duration induced higher MR intensity. The duty cycle was found not to play an important role on the BBB opening. Comparable BBB opening volume (20-25 mm3) could be reached between long PL (7500 cycles, i.e., 5 ms) at 0.18 MPa and 3 cycles at 0.45 MPa. 3-kDa fluorescently tagged dextran may be able to diffuse to the parenchyma after IC-induced BBB opening at 0.45 MPa but not after SC-induced BBB opening at 0.18 MPa.

  19. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration.

    PubMed

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John A; Gomes, Manuela E; Walboomers, X Frank

    2016-10-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect with the adequate cell populations. In this study, we proposed a bilayered system composed of (1) a platelet lysate (PL)-based construct produced by crosslinking of PL proteins with genipin (gPL) for the delivery of rat periodontal ligament cells (rat-PDLCs); combined with (2) an injectable composite consisting of calcium phosphate cement incorporated with PL-loaded poly(d, l-lactic-co-glycolic acid) microspheres. This system was expected to promote periodontal regeneration by the delivery of adequate progenitor cells and providing a stable system enriched with adequate cytokines and growth factors for the orchestration of tissue regrowth in periodontal defects. The bilayered system was tested in a three-wall intrabony defect in rats and the healing of periodontal tissue was assessed 6 weeks after surgery. Results showed that the bilayered system was able to promote the regrowth of functional periodontal tissues, both with (cells + gPL) and without the loading of PDLCs (gPL). Significant connective tissue attachment (45.0 ± 15.0% and 64.0 ± 15.0% for gPL and cells + gPL group, respectively) and new bone area (33.8 ± 21% and 21.3 ± 3% for gPL and cells + gPL group, respectively) were observed. Nevertheless, rat PDLCs delivered with gPL construct in the defect area were hardly visible 6 weeks after surgery and did not contribute for the regeneration of new periodontal tissue. Overall, our findings show that the bilayered system promotes the stabilization of PL proteins on the root surface and has a positive effect in the repair of periodontal tissues both in quality and in quantity.

  20. Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation.

    PubMed

    Tal, Reshef; Seifer, David B; Grazi, Richard V; Malter, Henry E

    2014-08-20

    Polycystic ovarian syndrome (PCOS) is characterized by increased ovarian angiogenesis and vascularity. Accumulating evidence indicates that vascular endothelial growth factor (VEGF) is increased in PCOS and may play an important role in these vascular changes and the pathogenesis of this disease. Placental growth factor (PlGF), a VEGF family member, has not been previously characterized in PCOS women. We investigated levels and temporal expression patterns of PlGF and its soluble receptor sFlt-1 (soluble Fms-like tyrosine kinase) in serum and follicular fluid (FF) of women with PCOS during controlled ovarian stimulation. This was a prospective cohort study of 14 PCOS women (Rotterdam criteria) and 14 matched controls undergoing controlled ovarian stimulation. Serum was collected on day 3, day of hCG and day of oocyte retrieval. FF was collected on retrieval day. PlGF, sFlt-1 and anti-mullerian hormone (AMH) protein concentrations were measured using ELISA. Since sFlt-1 binds free PlGF, preventing its signal transduction, we calculated PlGF bioavailability as PlGF/sFlt-1 ratio. Serum PlGF and sFlt-1 levels were constant throughout controlled ovarian stimulation, and no significant differences were observed in either factor in PCOS women compared with non-PCOS controls at all three measured time points. However, FF PlGF levels were increased 1.5-fold in PCOS women compared with controls (p < 0.01). Moreover, FF PlGF correlated positively with number of oocytes retrieved and the ovarian reserve marker anti-mullerian hormone (AMH) and negatively with age. In addition, FF sFlt-1 levels were decreased 1.4-fold in PCOS women compared to controls (p = 0.04). PlGF bioavailability in FF was significantly greater (2-fold) in PCOS women compared with non-PCOS controls (p < 0.01). These data provide evidence that FF PlGF correlates with ovarian stimulation and that its bioavailability is increased in women with PCOS undergoing controlled ovarian stimulation. This suggests that PlGF may play a role in PCOS pathogenesis and its angiogenic dysregulation.

  1. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

    PubMed

    Ormsbee, Michael J; Gorman, Katherine A; Miller, Elizabeth A; Baur, Daniel A; Eckel, Lisa A; Contreras, Robert J; Panton, Lynn B; Spicer, Maria T

    2016-07-01

    The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.

  2. Induced structural defects in Ti-doped ZnO and its two-photon-excitation

    NASA Astrophysics Data System (ADS)

    Martínez Julca, Milton A.; Rivera, Ivonnemary; Santillan Mercado, Jaime; Sierra, Heidy; Perales-Pérez, Oscar

    2016-03-01

    ZnO is a well-known luminescent material that reacts with light to generate free radicals enabling its use in cancer treatment by Photodynamic Therapy (PDT). Unfortunately, up to know, the photo-excitation of ZnO-based materials' requires excitation with ultraviolet light, which limits their biomedical applications. In this regard, this work investigates the effect of Ti species incorporation into the lattice of ZnO nanoparticles (NPs) with the aim of improving the corresponding optical properties and enabling the two-photoexcitation with 690nm-light (near infrared light). A modified polyol-based route was used to synthesize pure and Ti-doped (9% at.) ZnO NPs. X-ray diffraction confirmed the formation of ZnO-wurtzite whereas Scanning Electron Microscopy confirmed the formation of monodispersed 100-nm NPs. Raman Spectroscopy measurements evidenced the presence of zinc interstitials (Zni) and oxygen vacancies (VO) in the host oxide strcuture. Asynthesized NPs were excited using the technique of two-photon fluorescence microscopy (TPFM). The photoluminescence (PL) spectra generated from the analysis of TPFM images revealed a high emission peak presence in the green region (555 nm) that was assigned to VO. Also, a weak but noticeable band at 420 nm was detected, which is attributed to electron transition from the shallow donor level of Zni to the valence band. These PL transitions will favor triplet states formation necessary to yield cytotoxic reactive oxygen species. Furthermore, the presence of the PL peaks confirmed the Ti-ZnO NPs capacity to be excited by 690-nm light, thus, opening new possibilities for this NPs to be used in lightinduced bio-medical applications.

  3. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  4. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hssen; Férid, Mokhtar; Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn

    Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimesmore » were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I 13/2 → ⁴I 15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I 13/2 → ⁴I 15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.« less

  6. Effect of two oral doses of 17beta-estradiol associated with dydrogesterone on thrombin generation in healthy menopausal women: a randomized double-blind placebo-controlled study.

    PubMed

    Rousseau, Alexandra; Robert, Annie; Gerotziafas, Grigoris; Torchin, Dahlia; Zannad, Faiez; Lacut, Karine; Libersa, Christian; Dasque, Eric; Démolis, Jean-Louis; Elalamy, Ismail; Simon, Tabassome

    2010-04-01

    Oral hormone therapy is associated with an increased risk of venous thrombosis. Drug agencies recommend the use of the lowest efficient dose to treat menopausal symptoms for a better risk/ratio profile, although this profile has not been totally investigated yet. The aim of the study was to compare the effect of the standard dose of 17beta-estradiol to a lower one on thrombin generation (TG). In a 2-month study, healthy menopausal women were randomized to receive daily 1mg or 2 mg of 17beta-estradiol (E1, n = 24 and E2, n = 26; respectively) with 10 mg dydrogesterone or placebo (PL, n = 22). Plasma levels factors VII, X, VIII and II were assessed before and after treatment as well as Tissue factor triggered TG, which allows the investigation of the different phases of coagulation process. The peak of thrombin was higher in hormone therapy groups (E1: 42.39 +/- 50.23 nm, E2: 31.08 +/- 85.86 nm vs. 10.52 +/- 40.63 nm in PL, P = 0.002 and P = 0.01). Time to reach the peak was also shortened (PL: 0.26 +/- 0.69 min vs. E1: -0.26 +/- 0.80 min, E2: -0.55 +/- 0.79 min, P <10(-3) for both comparisons) and mean rate index of the propagation phase of TG was significantly increased. Among the studied clotting factors, only the levels of FVII were significantly increased after treatment administration. The two doses of 17beta-estradiol induced in a similar degree an acceleration of the initiation and propagation phase of tissue factor triggered thrombin generation and a significant increase of FVII coagulant activity.

  7. Prompt isothermal decay properties of the Sr4Al14O25 co-doped with Eu2+ and Dy3+ persistent luminescent phosphor

    NASA Astrophysics Data System (ADS)

    Asal, Eren Karsu; Polymeris, George S.; Gultekin, Serdar; Kitis, George

    2018-06-01

    Thermoluminescence (TL) techniques are very useful in the research of the persistent Luminescence (PL) phosphors research. It gives information about the existence of energy levels within the forbidden band, its activation energy, kinetic order, lifetime etc. The TL glow curve of Sr4Al14O25 :Eu2+,Dy3+ persistent phosphor, consists of two well separated glow peaks. The TL techniques used to evaluate activation energy were the initial rise, prompt isothermal decay (PID) of TL of each peak at elevated temperatures and the glow - curve fitting. The behavior of the PID curves of the two peak is very different. According to the results of the PID procedure and the subsequent data analysis it is suggested that the mechanism behind the low temperature peak is a delocalized transition. On the other hand the mechanism behind the high temperature peak is localized transition involving a tunneling recombination between electron trap and luminescence center.

  8. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Ahmad, E-mail: Yazdania@modares.ac.ir; Shadrokh, Zohreh; Department of Physics, University of Shahrood, P.O. Box 316-36155, Shahrood

    Highlights: • Opto-crystalline character of the composition of Cu{sub 2}S and S{sub 2}Sn was considered. • The formation Cu{sub 2}SnS{sub 3} is strongly related to phase separation at interface. • The entanglement of phases is strongly due to the chemical bond competition. • The suggested fluctuation region is approved by PL spectra. • Reconstruction and cluster formation is evident by formation of flat-spiral flowers. - Abstract: Optical character of crystal structure of the composition of two different semiconducting metallic sulfides, Cu{sub 2}S and S{sub 2}Sn, in pure phase formation of the ternary chalcogenide Cu{sub 2}SnS{sub 3} was considered. Because ofmore » the difficulties related to the phase separation at the definite Eutectic temperature for the composite formation, which is evident in optical absorption fluctuations, solvothermal synthesis in the intermediate temperature range 180–220 °C seems convenient where tetragonal crystal structure is investigated by XRD. Absorption fluctuations below E = E{sub g} were more pronounced for the lower limit case (180 °C) reflected in a sharp peak located at 1.48 eV on S1 as seen in UV-PL measurement. The characteristic behavior of the interface, resulting in the reconstruction and cluster formation due to the offset of bond rupturing displacement of atomic positions, is in favor of aggregation instead of agglomeration, which is evident by formation of small flat-spiral flowers in SEM images.« less

  10. Structural and optical characterization of pure Si-rich nitride thin films

    PubMed Central

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447

  11. Structural and optical characterization of pure Si-rich nitride thin films

    NASA Astrophysics Data System (ADS)

    Debieu, Olivier; Nalini, Ramesh Pratibha; Cardin, Julien; Portier, Xavier; Perrière, Jacques; Gourbilleau, Fabrice

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiN x>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiN x<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiN x>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiN x>0.9 could be then due to a size effect of Si-np but having an amorphous phase.

  12. Excited states of neutral donor bound excitons in GaN

    NASA Astrophysics Data System (ADS)

    Callsen, G.; Kure, T.; Wagner, M. R.; Butté, R.; Grandjean, N.

    2018-06-01

    We investigate the excited states of a neutral donor bound exciton (D0X) in bulk GaN by means of high-resolution, polychromatic photoluminescence excitation (PLE) spectroscopy. The optically most prominent donor in our sample is silicon accompanied by only a minor contribution of oxygen—the key for an unambiguous assignment of excited states. Consequently, we can observe a multitude of Si0X-related excitation channels with linewidths down to 200 μeV. Two groups of excitation channels are identified, belonging either to rotational-vibrational or electronic excited states of the hole in the Si0X complex. Such identification is achieved by modeling the excited states based on the equations of motion for a Kratzer potential, taking into account the particularly large anisotropy of effective hole masses in GaN. Furthermore, several ground- and excited states of the exciton-polaritons and the dominant bound exciton are observed in the photoluminescence (PL) and PLE spectra, facilitating an estimate of the associated complex binding energies. Our data clearly show that great care must be taken if only PL spectra of D0X centers in GaN are analyzed. Every PL feature we observe at higher emission energies with regard to the Si0X ground state corresponds to an excited state. Hence, any unambiguous peak identification renders PLE spectra highly valuable, as important spectral features are obscured in common PL spectra. Here, GaN represents a particular case among the wide-bandgap, wurtzite semiconductors, as comparably low localization energies for common D0X centers are usually paired with large emission linewidths and the prominent optical signature of exciton-polaritons, making the sole analysis of PL spectra a challenging task.

  13. Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen.

    PubMed

    Jin, Hui; Gui, Rijun; Gong, Jun; Huang, Wenxue

    2017-06-15

    In this article, Ag 2 S quantum dots (QDs) were prepared by a facile aqueous synthesis method, using thiourea as a new sulfur precursor. Based on electrostatic interactions, 5-fluorouracil (5-Fu) was combined with the aptamer of CA125 antigen to fabricate aptamer/5-Fu complex. The surface of as-prepared Ag 2 S QDs was modified with polyethylenimine, followed by combination with the aptamer/5-Fu complex to form Ag 2 S QDs/aptamer/5-Fu hybrids. During the combination of Ag 2 S QDs with aptamer/5-Fu complex, near-infrared (NIR) photoluminescence (PL) of QDs (peaked at 850nm) was markedly reduced under excitation at 625nm, attributed to photo-induced electron transfer from QDs to 5-Fu. However, the addition of CA125 induced obvious NIR PL recovery, which was ascribed to the strong binding affinity of CA125 with its aptamer, and the separation of aptamer/5-Fu complex from the surface of QDs. Hence, the Ag 2 S QDs/aptamer/5-Fu hybrids were developed as a novel NIR PL turn-on probe of CA125. In the concentration range of [CA125] from 0.1 to 10 6 ngmL -1 , there were a good linear relationship between NIR PL intensities of Ag 2 S QDs and Log[CA125], and a low limit of detection of 0.07ngmL -1 . Experimental results revealed the highly selective and sensitive NIR PL responses of this probe to CA125, over other potential interferences. In real human body fluids, this probe also exhibited superior analytical performance, together with high detection recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chih-Yi; Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated andmore » passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.« less

  15. Thermal Quenching of Photoluminescence in ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Albarakati, Nahla Mubarak

    Investigation of the thermal quenching of photoluminescence (PL) in semiconductors provides valuable information on identity and characteristics of point defects in these materials, which helps to better understand and improve the properties of semiconductor materials and devices. Abrupt and tunable thermal quenching (ATQ) of PL is a relatively new phenomenon with an unusual behavior of PL. This mechanism was able to explain what a traditional model failed to explain. Usually, in traditional model used to explain "normal" quenching, the slope of PL quenching in the Arrhenius plot determines the ionization energy of the defect causing the PL band. However, in abrupt quenching when the intensity of PL decreases by several orders of magnitude within a small range of temperature, the slope in the Arrhenius plot has no relation to the ionization energy of any defect. It is not known a priori if the thermal quenching of a particular PL band is normal or abrupt and tunable. Studying new cases of unusual thermal quenching, classifying and explaining them helps to predict new cases and understand deeper the ATQ mechanism of PL thermal quenching. Very few examples of abrupt and tunable quenching of PL in semiconductors can be found in literature. The abrupt and tunable thermal quenching, reported here for the first time for high-resistivity ZnO, provides an evidence to settle the dispute concerning the energy position of the Li Zn acceptor. In high-resistivity GaN samples, the common PL bands related to defects are the yellow luminescence (YL) band and a broad band in the blue spectral region (BL2). In this work, we report for the first time the observation of abrupt and tunable thermal quenching of the YL band in GaN. The activation energies for the YL and BL2 bands calculated through the new mechanism show agreement with the reported values. From this study we predict that the ATQ phenomenon is quite common for high-resistivity semiconductors.

  16. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  17. Mechanical Player Load™ using trunk-mounted accelerometry in football: Is it a reliable, task- and player-specific observation?

    PubMed

    Barreira, Paulo; Robinson, Mark A; Drust, Barry; Nedergaard, Niels; Raja Azidin, Raja Mohammed Firhad; Vanrenterghem, Jos

    2017-09-01

    The aim of the present study was to examine reliability and construct convergent validity of Player Load™ (PL) from trunk-mounted accelerometry, expressed as a cumulative measure and an intensity measure (PL · min - 1 ). Fifteen male participants twice performed an overground football match simulation that included four different multidirectional football actions (jog, side cut, stride and sprint) whilst wearing a trunk-mounted accelerometer inbuilt in a global positioning system unit. Results showed a moderate-to-high reliability as indicated by the intra-class correlation coefficient (0.806-0.949) and limits of agreement. Convergent validity analysis showed considerable between-participant variation (coefficient of variation range 14.5-24.5%), which was not explained from participant demographics despite a negative association with body height for the stride task. Between-task variations generally showed a moderate correlation between ranking of participants for PL (0.593-0.764) and PL · min - 1 (0.282-0.736). It was concluded that monitoring PL ® in football multidirectional actions presents moderate-to-high reliability, that between-participant variability most likely relies on the individual's locomotive skills and not their anthropometrics, and that the intensity of a task expressed by PL · min - 1 is largely related to the running velocity of the task.

  18. Design and demonstration of an advanced data collection/position location system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The final report on a breadboard evaluation and demonstration program is reported concerning the applicability of MSK modulation and chirp-z transformer technology in Advanced Data Collection/Position Location (ADC/PL) systems. The program effort consisted of three phases - design, testing, and evaluation. Section 2 describes the breadboard hardware built during the design phase of the program, Section 3 describes the tests conducted on the breadboard and the results of the tests, and Section 4 presents a brief analysis and summary of the findings of the breadboard tests and develops a sample ADC/PL system which incorporates both MSK modulation and a chirp-z transformer.

  19. The physical characteristics of match-play in English schoolboy and academy rugby union.

    PubMed

    Read, Dale B; Jones, Ben; Phibbs, Padraic J; Roe, Gregory A B; Darrall-Jones, Joshua; Weakley, Jonathon J S; Till, Kevin

    2018-03-01

    The aim was to compare the physical characteristics of under-18 academy and schoolboy rugby union competition by position (forwards and backs). Using a microsensor unit, match characteristics were recorded in 66 players. Locomotor characteristics were assessed by maximum sprint speed (MSS) and total, walking, jogging, striding and sprinting distances. The slow component (<2 m · s -1 ) of PlayerLoad TM (PL slow ), which is the accumulated accelerations from the three axes of movement, was analysed as a measure of low-speed activity (e.g., rucking). A linear mixed-model was assessed with magnitude-based inferences. Academy forwards and backs almost certainly and very likely covered greater total distance than school forwards and backs. Academy players from both positions were also very likely to cover greater jogging distances. Academy backs were very likely to accumulate greater PL slow and the academy forwards a likely greater sprinting distance than school players in their respective positions. The MSS, total, walking and sprinting distances were greater in backs (likely-almost certainly), while forwards accumulated greater PL slow (almost certainly) and jogging distance (very likely). The results suggest that academy-standard rugby better prepares players to progress to senior competition compared to schoolboy rugby.

  20. Low impact of infectious hypodermal and hematopoietic necrosis virus (IHHNV) on growth and reproductive performance of Penaeus monodon.

    PubMed

    Withyachumnarnkul, Boonsirm; Chayaburakul, Kanokporn; Lao-Aroon, Supak; Plodpai, Pornthep; Sritunyalucksana, Kallaya; Nash, Gary

    2006-04-06

    No controlled studies on the effect of infectous hypodermal and necrosis virus (IHHNV) on Penaeus monodon have been previously reported. Here we describe domesticated P. monodon that became positive for IHHNV and other viruses at variable levels of prevalence during cultivation in 16 open-air, earthen ponds. These were stocked with domesticated postlarvae (PL) that tested negative for 7 shrimp viruses including IHHNV at 6% prevalence in 3 checks using polymerase chain reaction (PCR) methods. These PL were derived from domesticated female broodstock that individually tested negative for the same viruses. At 4 mo of culture, the shrimp in some ponds without obvious mortality tested positive by PCR methods for IHHNV and 3 other viruses at variable levels of maximum estimated prevalence (MEP). Stained tissue sections showed no lesions typical of IHHNV, but in situ hybridization tests with an IHHNV-specific DNA probe were positive. There was no significant difference in mean body weight (i.e. ca. 25 g) between shrimp groups positive or negative for IHHNV. Similar results were obtained with IHHNV negative and positive adults at 1 yr. Adults that individually tested negative for all 7 viruses and some that tested lightly positive for IHHNV were bred for the next generation. There were no significant differences in the number of eggs (> 600 000) and nauplii (ca. 300,000) produced by females negative and positive for IHHNV. From these females, 11/49 (22%) IHHNV PCR-positive PL batches were obtained from PCR-negative spawners, while 8/11 (73%) were obtained from IHHNV PCR-positive spawners. The results suggested that IHHNV infection can be transmitted vertically but does not seriously retard growth of P. monodon or affect fecundity of lightly infected broodstock.

  1. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    NASA Astrophysics Data System (ADS)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  2. Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs

    PubMed Central

    Sadofyev, Yuri G.; Samal, Nigamananda

    2010-01-01

    An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.

  3. Penile Length and Anogenital Distance in Male Newborns From Different Iranian Ethnicities in Golestan Province

    PubMed Central

    Alaee, Ehsan; Gharib, Mohammad Javad; Fouladinejad, Mahnaz

    2014-01-01

    Background: Anogenital distance (AGD) is a feasible and accepted parameter of exogenous or endogenous androgens effects on development of reproductive system. Objectives: Since there is no report on penile length (PL) and AGD in our region, we investigated these parameters in male newborns in Golestan Province, Iran. Patients and Methods: In this cross-sectional study, we measured stretched PL and AGD in term newborns from different races in Dezyani Gynecologic Hospital of Gorgan, Iran. We also recorded the anthropometric parameters and maternal age. The data was analyzed using the SPSS 14. Results: Means of PL and AGD of 427 healthy term newborns were 32.1 ± 3.5 and 24.5 ± 2.5 mm, respectively. There was a positive correlation between PL and AGD (r = 0.097, P = 0.046). According to their ethnicity, there were 166 Fars (38.9%), 129 Turkmen (30.2%), and 132 Sistani (30.9%) infants with mean PL of respectively 31.8 ± 3.9, 32.3 ± 3.3, and 32.4 ± 3.3 mm and mean AGD of respectively 25 ± 2.5, 24.3 ± 2.5, and 24 ± 2.5 mm. One Fars neonate (0.23%) had micropenis (PL = 21.3 mm). Conclusions: Using -2.5 standard deviations as the cutoff for micropenis, a newborn infant in Golestan Province with a PL of < 23.3 mm had micropenis; however, more investigations are needed to clarify this issue. PMID:25763234

  4. Si-nanocrystal-based nanofluids for nanothermometry

    NASA Astrophysics Data System (ADS)

    Cardona-Castro, M. A.; Morales-Sánchez, A.; Licea-Jiménez, L.; Alvarez-Quintana, J.

    2016-06-01

    The measurement of local temperature in nanoscale volumes is becoming a technological frontier. Photoluminescent nanoparticles and nanocolloids are the natural choice for nanoscale temperature probes. However, the influence of a surrounding liquid on the cryogenic behavior of oxidized Si-nanocrystals (Si-NCs) has never been investigated. In this work, the photoluminescence (PL) of oxidized Si-NCs/alcohol based nanocolloids is measured as a function of the temperature and the molecule length of monohydric alcohols above their melting-freezing point. The results unveil a progressive blue shift on the emission peak which is dependent on the temperature as well as the dielectric properties of the surrounding liquid. Such an effect is analyzed in terms of thermal changes of the Si-NCs bandgap, quantum confinement and the polarization effects of the embedding medium; revealing an important role of the dielectric constant of the surrounding liquid. These results are relevant because they offer a general insight to the fundamental behavior of photoluminescent nanocolloids under a cooling process and moreover, enabling PL tuning based on the dielectric properties of the surrounding liquid. Hence, the variables required to engineer PL of nanofluids are properly identified for use as temperature sensors at the nanoscale.

  5. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    PubMed Central

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations [5]. PMID:24388851

  6. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    PubMed

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Three-Photon Luminescence of Gold Nanorods Excited by 1040 nm Femtosecond Laser for High Contrast Tissue and In Vivo Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Shaowei; Zhao, Xinyuan; Zhang, Hequn; Cai, Fuhong; Qian, Jun

    2016-01-01

    Gold Nanorods (GNRs) with tunable aspect ratios can strongly absorb and scatter light in the NIR region due to their localized surface plasmon resonance (LSPR) property, and have been demonstrated to exhibit strong plasmon enhanced multiphoton luminescence (MPL) with brightness many times stronger than the conventional organic chromophores. In this study, we synthesized GNRs with longitudinal LSPR peak at 1036 nm to match our home-built light source 1040 nm femtosecond laser, which locates in the “optical window” where the tissue absorbs relatively little light. PEGylated GNRs with great biocompatibility were intravenously injected through the tail vein into mice. Excited by 1040 nm laser, the GNRs exhibit bright three-photon luminescence (3PL) signals while circulating in the blood vessels. The use of GNRs as bright contrast agents for 3PL imaging of mouse ear blood vessels in vivo was demonstrated. And GNRs targeted in tissues can be excited by 1040 nm laser and could be clearly visualized with no autofluorescence background. These results indicated that 3PL of GNRs is very promising for deep in vivo bioimaging and assessing the distribution of GNRs in tissues with high contrast.

  8. Photoluminescence of Co: ZnNiO and Zr: ZnNiO nanocomposites capped with biodegradable polymer poly (2-ethyl-2-oxazoline)

    NASA Astrophysics Data System (ADS)

    John, Sam; George, James Baben; Joseph, Abraham

    2018-05-01

    The optical properties of the semiconducting nanomaterials has a wide variety of applications in the biological and industrial fields, which include the synthesis of UV laser, light emitting diodes, solar cells, gas sensors, piezoelectric transducers etc. Among the various types of optical properties, luminescence especially photoluminescence (PL) of metal oxides are more prominently studied. This is because PL spectrum is an effective way to investigate the electronic structure, optical and photochemical properties of semiconductor materials which deciphers information such as surface oxygen vacancies, defects, efficiency of charge carrier trapping, immigration, transfer etc. To overcome the drawbacks in luminescence studies of metal oxide nanomaterials, polymer technology has also been incorporated. The scientists found that the doping of some elements into the polymer capped ZnO nanocomposites enhanced the luminescence properties of the compound. In the current study, we are investigating the photoluminescence properties of ZnO nanocomposites capped with a biodegradable polymer poly (2-ethyl 2-oxazoline) and doped with the elements Cobalt and Zirconium. We obtained many strong fluorescence peaks in the visible and UV regions in the PL spectrum and UV absorption spectroscopy.

  9. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.0–1.2 μm due to increased charge carrier's localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Yablonsky, A. N.; Morozov, S. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2 μm) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiativemore » recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.« less

  10. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, S.; Mukherjee, S.; Sarkar, K.

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurementsmore » confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.« less

  11. Effect of temperature on the spectral properties of InP/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2018-01-01

    Optical absorption (OA) and photoluminescence (PL) spectra of InP/ZnS core/shell nanocrystals with 2.3 nm average size were investigated in the temperature range of 6.5-296 K. Using second derivative spectrophotometry technique energies of the OA transitions at 296 K in quantum dot (QD) solutions and films are evaluated to be E 1 = 2.37, E 2 = 4.10 and E 3 = 4.68 eV. Temperature shifts of the E 1 and E 2 levels are found to result from interaction with effective phonons of 59 and 37 meV energies, respectively. Herewith the 370 meV half-width of the first exciton absorption peak remains constant due to the dominance of inhomogeneous broadening effects caused by QD parameters distribution. Measured PL spectra have a complex structure and can be described in 6.5-296 K range by two independent Gaussian components associated with exciton and defect-related states. In addition, Stokes shift of 320 meV is observed to decrease at T > 200 K. PL thermal quenching analysis in frame of Mott mechanism points to presence of non-radiative relaxation channel with an activation energy of 74 meV.

  12. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-07-01

    SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.

  13. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Ryo, E-mail: rsasai@riko.shimane-u.ac.jp; Shinomura, Hisashi

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr{sub 4}{sup 2-} layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization.more » Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: Black-Right-Pointing-Pointer PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. Black-Right-Pointing-Pointer Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. Black-Right-Pointing-Pointer PL property of the present hybrid could also be varied by photoisomerization.« less

  14. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak atmore » 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.« less

  15. Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs

    NASA Technical Reports Server (NTRS)

    Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.

    2005-01-01

    In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.

  16. Combined Dietary Nitrate and Exercise Intervention in Peripheral Artery Disease: Protocol Rationale and Design

    PubMed Central

    Woessner, Mary N; VanBruggen, Mitch D; Pieper, Carl F; O'Reilly, Erin K; Kraus, William E

    2017-01-01

    Background Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population. Objective The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection. Methods A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session. Results Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered—EX+BR, n=11; EX+PL, n=13—to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large. Conclusions Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC. Trial Registration ClinicalTrials.gov NCT01684930; https://clinicaltrials.gov/ct2/show/NCT01684930 (Archived by WebCite at http://www.webcitation.org/6raXFyEcP) PMID:28974486

  17. Maternal serum placental growth factor (PlGF) in small for gestational age pregnancy at 11(+0) to 13(+6) weeks of gestation.

    PubMed

    Poon, Leona C Y; Zaragoza, Edgar; Akolekar, Ranjit; Anagnostopoulos, Evangelos; Nicolaides, Kypros H

    2008-12-01

    To investigate the pathogenesis of pregnancies delivering small for gestational age (SGA) neonates by examining biochemical and Doppler indices of placental development during the first trimester of pregnancy. The concentration of placental growth factor (PlGF) at 11(+0)-13(+6) weeks was measured in 296 cases, which delivered SGA neonates, and 609 controls. The newborn was considered to be SGA if the birth weight was less than the fifth percentile after correction for gestation at delivery and sex, maternal racial origin, weight, height and parity. The distributions of uterine artery pulsatility index (PI), PlGF and PAPP-A, expressed in multiples of the median (MoM), in the control and SGA groups were compared. Logistic regression analysis was used to determine if significant contribution is provided by maternal factors, PlGF, PAPP-A and uterine artery PI in predicting SGA. The median PlGF (0.900 MoM) and PAPP-A (0.778 MoM) were lower and uterine artery PI was higher (1.087 MoM) in the SGA group than in the controls (PlGF: 0.991 MoM; PAPP-A: 1.070 MoM; uterine artery PI: 1.030 MoM). In the SGA group there was a significant association between PlGF and PAPP-A (r = 0.368, p < 0.0001) and uterine artery PI (r = 0.191, p = 0.001). Significant contributions for the prediction of SGA were provided by maternal factors, PlGF and PAPP-A and with combined screening the detection rate was 27% at a false-positive rate of 5%. Birth weight is predetermined by placental development during the first trimester of pregnancy. Copyright (c) 2008 John Wiley & Sons, Ltd.

  18. Alteration of the aPA ELISA by UV exposure of polystyrene microtiter plates.

    PubMed

    Goldberg, J S; Wagenknecht, D R; McIntyre, J A

    1996-01-01

    Interlaboratory inconsistencies in antiphospholipid antibody (aPA) solid phase assays have prompted controversy in clinical laboratory testing for aPA. We found that the aPA ELISA can be influenced by the type of microtiter plate utilized and by the conditions in which the plates are stored. By exposing 96-well, flat-bottom polystyrene microtiter plates to short wave UV light (254 nm), the aPA ELISA signal decreased in a UV dose-dependent manner. No effect was seen with long wave UV light (366 nm). These results were independent of the antibody isotype under study or the phospholipid (PL) antigen used: anionic phosphatidylserine (PS) and cardiolipin (CL), or zwitterionic phosphatidylethanolamine (PE). Purified human beta 2-glycoprotein I (beta 2 GPI), a known cofactor for anionic PL, and rabbit anti-beta 2 GPI antisera were used to demonstrate that beta 2 GPI bound equally to UV treated and untreated microtiter plates. In contrast, recognition of beta 2 GPI on an anionic PL surface was decreased on UV treated plates, suggesting that UV exposure alters the lipid binding properties of the microliter plate. To determine whether UV exposure inhibited PL binding directly or caused a change in the way the PL was bound, the amount of PL bound to UV treated and untreated plates was measured by using fluorescent labeled PS and a fluorimeter. PS binding was decreased by 53% in UV treated wells as compared to untreated wells. These data show that short wave UV exposure reduces PL binding to polystyrene microtiter plates, thereby reducing the amount of beta 2 GPI bound to PL coated ELISA plates. Thus by using UV exposed microtiter plates, decreased or false-negative a PA ELISA results may be obtained for aPA positive plasmas.

  19. XPS investigation of the photon degradation of Znq2 green organic phosphor

    NASA Astrophysics Data System (ADS)

    Duvenhage, Mart-Mari; Terblans, Jacobus J.; Ntwaeaborwa, Martin; Swart, Hendrik C.

    2016-01-01

    By substituting Al with Zn to form bis-(8-hydroxyquinoline) zinc (Znq2), the device performance of organic light emitting diodes (OLED) can be improved. Znq2 also has a more closed packed crystal structure that makes it less vulnerable to reactions with atmospheric oxygen and moisture leading to more stable and longer lasting devices. In this work the effect of photon degradation of Znq2 in air was investigated. Znq2 powder was synthesized using a co-precipitation method and recrystallized in acetone. The structure of the sample was confirmed to be Znq2·2H2O by X-ray diffraction. The photoluminescence (PL) emission data also confirmed that the Znq2·2H2O crystal form of Znq2 was present. To study the photon degradation, the sample was irradiated with a UV lamp for 400 h. The emission data was collected and the change in PL intensity with time was monitored. X-ray photoelectron spectroscopy was performed on the as prepared and photon-degraded samples. The Zn2p and N1s peaks showed no change after degradation. The O1s and C1s peaks confirmed that the phenoxide ring ruptured and that C=O and C-O species had formed.

  20. Conformation Effects on the Photoluminescence Behavior of Anchored MEH-PPV Pancakes and Brushes

    NASA Astrophysics Data System (ADS)

    Shih, Kuo Sheng; Chen, Po-Tsun; Yang, Arnold C.-M.

    2012-02-01

    Single molecular layer of poly[2-methoxy-5-(2'-ethylhexyl)oxy)-1,4- phenylenevinylene] (MEH-PPV) grafted on primed silicon wafer were synthesized, forming brushes (chain spacing 0.54 nm via graft-from) or pancakes (˜ 7nm to 34 nm via graft-to). For the tight-packed brushes, the PL emission peak, residing in the range from 434 nm to 550 nm depending on the chain length, was generally unchanged when transferring between the dry and solvent immersion states. However, for the pancakes, the emission peak blue-shifted dramatically (up to 100 nm) when dried in the air relative to that in the solvent. These shifts were fully reversible in the dry-wet cycles. The large blue shifts of the anchored pancakes were attributed to the mechanical stretching of entangled MEH-PPV segments in contact with substrate upon solvent loss. In contrast, the blue shifts disappeared and small red shifts emerged instead for extremely slowly drying (24 hrs drying time), revealing the stress-relaxation pathways in the equilibrium conditions. The drying-induced blue shift was also observed in the un-anchored drop-casting samples but the reversibility vanished. Finally, a large enhancement of PL intensity was accompanied with the blue shifts, manifesting the effect of the molecular constraints.

  1. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  2. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  3. Precise Point Positioning technique for short and long baselines time transfer

    NASA Astrophysics Data System (ADS)

    Lejba, Pawel; Nawrocki, Jerzy; Lemanski, Dariusz; Foks-Ryznar, Anna; Nogas, Pawel; Dunst, Piotr

    2013-04-01

    In this work the clock parameters determination of several timing receivers TTS-4 (AOS), ASHTECH Z-XII3T (OP, ORB, PTB, USNO) and SEPTENTRIO POLARX4TR (ORB, since February 11, 2012) by use of the Precise Point Positioning (PPP) technique were presented. The clock parameters were determined for several time links based on the data delivered by time and frequency laboratories mentioned above. The computations cover the period from January 1 to December 31, 2012 and were performed in two modes with 7-day and one-month solution for all links. All RINEX data files which include phase and code GPS data were recorded in 30-second intervals. All calculations were performed by means of Natural Resource Canada's GPS Precise Point Positioning (GPS-PPP) software based on high-quality precise satellite coordinates and satellite clock delivered by IGS as the final products. The used independent PPP technique is a very powerful and simple method which allows for better control of antenna positions in AOS and a verification of other time transfer techniques like GPS CV, GLONASS CV and TWSTFT. The PPP technique is also a very good alternative for calibration of a glass fiber link PL-AOS realized at present by AOS. Currently PPP technique is one of the main time transfer methods used at AOS what considerably improve and strengthen the quality of the Polish time scales UTC(AOS), UTC(PL), and TA(PL). KEY-WORDS: Precise Point Positioning, time transfer, IGS products, GNSS, time scales.

  4. Effects of Preventative Ankle Taping on Planned Change-of-Direction and Reactive Agility Performance and Ankle Muscle Activity in Basketballers

    PubMed Central

    Jeffriess, Matthew D.; Schultz, Adrian B.; McGann, Tye S.; Callaghan, Samuel J.; Lockie, Robert G.

    2015-01-01

    This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms) with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition) of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL), peroneus brevis (PB), and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG). Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01). Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02). There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers. Key points Ankle taping using the modified subtalar sling will not affect planned change-of-direction or reactive agility performance as measured by the Y-shaped agility test in healthy male basketball players. Ankle taping using the modified subtalar sling will also generally not affect the activity of the muscles about the ankle. There was some indication for reductions in the activity of the PL in the inside leg of certain cuts. The tape used for the modified subtalar sling may have supported the line of action of the PL, which could reduce the kinetic demand placed on this muscle, and provide a potential fatigue-reducing component for cutting actions. The subtalar sling taping of the ankle in healthy basketball players did not have any adverse effects on the muscle activity of the ankle-foot complex during planned change-of-direction or reactive agility performance tasks. PMID:26664285

  5. Understanding the role of Si doping on surface charge and optical properties: Photoluminescence study of intrinsic and Si-doped InN nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.

    2012-06-01

    In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.

  6. Isolation, purification, characterization and bioactivities of a glucan from the root of Pueraria lobata.

    PubMed

    Xu, Can; Qin, Ningbo; Yan, Chunyan; Wang, Shumei

    2018-05-23

    The root of Pueraria lobata is considered to be a medicinal and edible herb for the treatment of diabetes, and it has a long history of application in China. To explore the constituents responsible for the anti-hyperglycemic activities of P. lobata, a water-soluble polysaccharide (PL70-1-1) was isolated and purified by using a DEAE-Cellulose 52 anion exchange column and a Sephacryl S-100 gel filtration column. Its molecular weight (2584 Da) was determined by high performance gel permeation chromatography (HPGPC). Its structure was deduced by Fourier transform-infrared spectroscopy (FT-IR), monosaccharide composition analysis, gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). It was deduced that PL70-1-1 was a glucan, and its main chain consisted of (1→)-linked β-d-glucose, (1→4)-linked α-d-glucose, (1→4, 6)-linked β-d-glucose, and (1→3)-linked α-d-glucose, and the branch chain consisted of (1→)-linked β-d-glucose. The results of scanning electron microscopy showed that PL70-1-1 had a needle-like shape, and the surface had a scaly texture. The Congo red experiment showed that PL70-1-1 did not have a triple-helix structure. In addition, PL70 and PL70-1 displayed selective inhibitory effects on α-amylase and α-glucosidase in vitro. PL70 had remarkable α-glucosidase inhibitory activity. However, PL70-1-1 exhibited outstanding α-amylase inhibitory activity, with an IC50 of 3.945 μM in vitro. This indicated that its activity was 417 times higher than the positive control acarbose. PL70-1-1 may be beneficial as an α-amylase inhibitor, reducing the postprandial blood glucose level and treating type 2 diabetes.

  7. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications.

    PubMed

    Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2016-01-13

    The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.

  8. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. New descriptors of homogeneity of the propagation of ventricular repolarization.

    PubMed

    Batchvarov, V; Dilaveris, P; Färbom, P; Ghuran, A; Acar, B; Hnatkova, K; Camm, A J; Malik, M

    2000-11-01

    Available descriptors of irregularities of ventricular repolarization are of limited clinical value. We studied the effect of autonomic variations on several new descriptors of the three-dimensional T loop. Twelve-lead digital ECGs were recorded continuously in 40 healthy subjects at baseline in the supine position, during postural changes (supine-->sitting-->standing-->supine-->standing), and during Valsalva maneuver performed three times in the supine and three times in the standing positions. A minimum dimensional space was constructed from the 12-lead ECG, using singular value decomposition, on the basis of median ECG beats constructed from 10-second consecutive ECG recordings. Temporal variations (TLA and PL, which measure the T loop area, and LD, the interlead relationship during repolarization) and wavefront direction descriptors (TCRT, the deviation between the QRS and T vectors) were calculated and expressed as normalized values. Values of TLA, PL, and TCRT were significantly lower in the sitting than in the supine position (-38,139 +/- 9099 vs 47,133 +/- 7511, -0.017 +/- 0.005 vs 0.033 +/- 0.005 and -0.032 +/- 0.019 vs 0.071 +/- 0.015, respectively, P < 0.001 for all) and decreased further in the standing position (-88,288 +/- 14,468, -0.067 +/- 0.013, -0.198 +/- 0.025, respectively, P < 0.001 for all). LD increased from supine to sitting (98.7 +/- 29.4 vs -87.5 +/- 15.2, P < 0.001) and increased further, though nonsignificantly in the standing position (118.3 +/- 35.2). TLA, PL, and TCRT decreased from baseline during Valsalva in the supine (-34,118 +/- 11,424 vs 62,234 +/- 12,215, -0.038 +/- 0.014 vs 0.065 +/- 0.010, -0.08 +/- 0.03 vs 0.10 +/- 0.02, respectively, P < 0.001 for all) and standing positions (-108,263 +/- 21,051 vs -68,909 +/- 10,271, -0.109 +/- 0.014 vs -0.048 +/- 0.009, -0.30 +/- 0.035 vs -015 +/- 0.016, respectively, P < 0.05 for all). LD was significantly increased by Valsalva in the supine position (13 +/- 46 vs -153 +/- 30, P < 0.001) and nonsignificantly in the standing position (99 +/- 50 vs 86 +/- 30, P = NS). There were significant correlations among TLA, PL, and LD, and no significant correlation between TCRT and any of the temporal variation descriptors. These new temporal and wavefront direction descriptors are sensitive and rapid detectors of autonomic effects on ventricular repolarization.

  10. Generation of Some First-Order Autoregressive Markovian Sequences of Positive Random Variables with Given Marginal Distributions,

    DTIC Science & Technology

    1981-03-01

    Again E( XnX 1 Xn) Xn + (l-aB)/X PlXn-1 + (l-Pl)/x 2.11) and X0 E0 gives a stationary sequence. Thus the correla- tions and regressions are the...sequence, although the sample paths will tend to have runs-up. A similar analysis given in Lawrance and Lewis [5] shows that 1 1 + i a + au (3.7) E( XnX

  11. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica).

    PubMed

    Gherekhloo, Javid; Fernández-Moreno, Pablo T; Alcántara-de la Cruz, Ricardo; Sánchez-González, Eduardo; Cruz-Hipolito, Hugo E; Domínguez-Valenzuela, José A; De Prado, Rafael

    2017-07-27

    Glyphosate has been used for more than 15 years for weed management in citrus groves in the Gulf of Mexico, at up to 3-4 applications per year. Goosegrass (Eleusine indica (L.) Gaertn.) control has sometimes failed. In this research, the mechanisms governing three goosegrass biotypes (Ein-Or from an orange grove, and Ein-Pl1 and Ein-Pl2 from Persian lime groves) with suspected resistance to glyphosate were characterized and compared to a susceptible biotype (Ein-S). Dose-response and shikimate accumulation assays confirmed resistance of the resistant (R) biotypes. There were no differences in glyphosate absorption, but the R biotypes retained up to 62-78% of the herbicide in the treated leaf at 96 h after treatment (HAT), in comparison to the Ein-S biotype (36%). The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity in the Ein-Or and Ein-S biotypes was over 100-fold lower than the Ein-Pl1 and Ein-Pl2 ones. The latter showed a high EPSPS-basal activity, a mutation at Pro-106-Ser position in the EPSPS gene, and EPSPS overexpression. The EPSPS basal and EPSPS overexpression were positively correlated. The R goosegrass biotypes displayed poor glyphosate translocation. Furthermore, this grassweed showed, for the first time, two mechanisms at the target-site level (Pro-106-Ser mutation + EPSPS overexpression) acting together simultaneously against glyphosate.

  12. Chemically and biologically-mediated fertilizing value of manure-derived biochar.

    PubMed

    Subedi, R; Taupe, N; Ikoyi, I; Bertora, C; Zavattaro, L; Schmalenberger, A; Leahy, J J; Grignani, C

    2016-04-15

    This study evaluates the potential of manure-derived biochars in promoting plant growth and enhancing soil chemical and biological properties during a 150day pot experiment. Biochars from pyrolysis of poultry litter (PL) and swine manure (SM) at 400 and 600°C, and a commonly available wood chip (WC) biochar produced at high temperature (1000°C) were incorporated to silt-loam (SL) and sandy (SY) soils on a 2% dry soil weight basis. Ryegrass was sown and moisture was adjusted to 60% water filled pore space (WFPS). The PL400 and SM400 biochars significantly increased (p<0.05) shoot dry matter (DM) yields (SL soil) and enhanced nitrogen (N), phosphorus (P) and potassium (K) uptake by the plants in both soils, compared to the Control. All biochars significantly increased the soil carbon (C) contents compared to the Control. Total N contents were significantly greater for PL400 and PL600 treatments in both soils. The dehydrogenase activity (DA) significantly increased for PL400 and SM400 treatments and was positively correlated with the volatile matter (VM) contents of the biochars, while β-glucosidase activity (GA) decreased for the same treatments in both soils. All biochars significantly shifted (p≤0.05) the bacterial community structure compared to the Control. This study suggests that pyrolysis of animal manures can produce a biochar that acts as both soil amendment and an organic fertilizer as proven by increased NPK uptake, positive liming effect and high soil nutrient availability, while WC biochar could work only in combination with fertilizers (organic as well as mineral). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Static respiratory muscle work during immersion with positive and negative respiratory loading.

    PubMed

    Taylor, N A; Morrison, J B

    1999-10-01

    Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.

  14. 14th International Congress on Antiphospholipid Antibodies Task Force report on obstetric antiphospholipid syndrome.

    PubMed

    de Jesus, Guilherme R; Agmon-Levin, Nancy; Andrade, Carlos A; Andreoli, Laura; Chighizola, Cecilia B; Porter, T Flint; Salmon, Jane; Silver, Robert M; Tincani, Angela; Branch, D Ware

    2014-08-01

    Pregnancy morbidity is one of the clinical manifestations used for classification criteria of antiphospholipid syndrome (APS). During the 14th International Congress on Antiphospholipid Antibodies (aPL), a Task Force with internationally-known experts was created to carry out a critical appraisal of the literature available regarding the association of aPL with obstetric manifestations present in actual classification criteria (recurrent early miscarriage, fetal death, preeclampsia and placental insufficiency) and the quality of the evidence that treatment(s) provide benefit in terms of avoiding recurrent adverse obstetric outcomes. The association of infertility with aPL and the effectiveness of the treatment of patients with infertility and positive aPL was also investigated. This report presents current knowledge and limitations of published studies regarding pregnancy morbidity, infertility and aPL, identifying areas that need better investigative efforts and proposing how critical flaws could be avoided in future studies, as suggested by participants of the Task Force. Except for fetal death, there are limitations in the quality of the data supporting the association of aPL with obstetric complications included in the current APS classification criteria. Recommended treatments for all pregnancy morbidity associated to APS also lack well-designed studies to confirm its efficacy. APL does not seem to be associated with infertility and treatment does not improve the outcomes in infertile patients with aPL. In another section of the Task Force, Dr. Jane Salmon reviewed complement-mediated inflammation in reproductive failure in APS, considering new therapeutic targets to obstetric APS (Ob APS). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Loading of free radicals on the functional graphene combined with liquid chromatography-tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants.

    PubMed

    Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju

    2013-11-13

    A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide radical scavenging capacity. The use of the free radical reaction screening method based on LC-PDA-ESI/APCI-MS/MS would provide a new approach for rapid detection and identification of radical-scavenging natural antioxidants from complex matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Frequency of Aquaporin-4 Immunoglobulin G in Longitudinally Extensive Transverse Myelitis With Antiphospholipid Antibodies.

    PubMed

    Guerra, Hilda; Pittock, Sean J; Moder, Kevin G; Fryer, James P; Gadoth, Avi; Flanagan, Eoin P

    2018-04-11

    Antiphospholipid (aPL) antibodies have historically been postulated to cause a poorly understood inflammatory myelitis. Neuromyelitis optica spectrum disorder (NMOSD) causes an inflammatory longitudinally extensive transverse myelitis (LETM). In 2004, aquaporin-4 immunoglobulin G (AQP4-IgG) was first reported as a highly specific (>99%) serum diagnostic biomarker of NMOSD, distinguishing it from other disorders (eg, multiple sclerosis). We sought to assess the frequency of AQP4-IgG (and thus NMOSD diagnosis) in LETM with aPL antibodies. We searched Mayo Clinic records (from January 1, 1996, through December 31, 2014) for patients with (1) LETM and (2) aPL or β 2 -glycoprotein I antibodies and (3) a serum sample available. AQP4-IgG was evaluated in the 24 included patients and in 20 controls with aPL antibodies but without myelitis. Seropositivity for AQP4-IgG was confirmed in 11 of 24 patients with LETM (46%), confirming an AQP4-IgG-seropositive NMOSD diagnosis rather than aPL-associated LETM. Six of 11 AQP4-IgG-seropositive patients (54%) were initially diagnosed as having aPL/lupus-associated myelitis. Recurrent LETM was exclusive to AQP4-IgG-seropositive patients (P=.003). Alternative diagnoses assigned to the remaining 13 AQP4-IgG-seronegative patients included idiopathic transverse myelitis (n=5), seronegative NMOSD (n=2), spinal cord infarct attributed to aPL antibodies (n=2), spinal cord sarcoidosis (n=1), varicella-zoster virus myelitis (n=1), postinfectious myelitis (n=1), and multiple sclerosis (n=1). All 20 controls were seronegative for AQP4-IgG. Clotting disorders occurred in 36% of patients (4 of 11) with LETM with both aPL antibodies and AQP4-IgG. AQP4-IgG should be tested in all patients with LETM and aPL antibodies because AQP4-IgG-seropositive NMOSD accounts for almost half of all cases. Clotting disorders are common in patients with LETM with dual positivity for AQP4-IgG and aPL antibodies. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamioka, K.; Oga, T.; Izawa, Y.

    2013-12-04

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ∼10{sup 3} Ωcm for un-implanted samples to ∼10{sup −2} Ωcm for as-implanted ones are observed. The resistivity is further decreased to ∼10{sup −3} Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33more » eV) related to the Ge donor is observed in 1000 °C annealed samples.« less

  18. Lupus and pregnancy--15 years of experience in a tertiary center.

    PubMed

    Ambrósio, Paula; Lermann, Rita; Cordeiro, Alexandra; Borges, Augusta; Nogueira, Isabel; Serrano, Fátima

    2010-04-01

    This retrospective study was designed to evaluate the outcome of pregnancies in women diagnosed with systemic lupus erythematosus (SLE) followed in a tertiary fetal-maternal center. Data were collected from clinical charts between January 1993 and December 2007, with a total of 136 pregnancies (107 patients). Mean maternal age was 29 years, with the vast majority of patients being Caucasian. Most patients were in remission 6 months prior to pregnancy (93%) and the most frequently affected organs were the skin and joints. Renal lupus accounted for 14% of all cases. Twenty-nine percent of patients were positive for at least one antiphospholid antibody (aPL) and nearly 50% had positive SSa/SSb antibodies. All patients with positive aPL received low-dosage aspirin and low-molecular-weight heparin (LMWH). There were no pregnancy complications in more than 50% of cases and hypertensive disease and intrauterine growth restriction were the most common adverse events. There were 125 live births, one neonatal death, eight miscarriages, and three medical terminations of pregnancy. Preterm delivery occurred in 25% of pregnancies. Our results are probably the conjoined result of a multidisciplinary approach together with a systematic management of SLE pregnancies, with most patients keeping their prior SLE medication combined with low-dosage aspirin and LMWH in the presence of aPL.

  19. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.

    2014-03-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.

  20. Investigation of organic solvents assisted nano magnesium oxide nanoparticles and their structural, morphological, optical and antimicrobial performance

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Rajendran, V.

    2018-01-01

    Investigation on the structural, morphological, optical studies and antimicrobial performance of organic solvent assisted magnesium oxide (MgO) nanoparticles. Nanoparticles are in 16-18 nm of grain size prepared by sol-gel method. The XRD studies shows as synthesized products are in cubic phase with periclase structurer. The well disperesd spherical morphology were obtained in SEM and TEM. The organic solvent methanol had profound effects on the size of the nano particles. The optical absorption edge energy was present in UV region and the corresponding band gap energy values are 4.5 and 4.9 eV for water with ethanol and methanol mediated MgO sample respectively. The PL emission spectrum has a emission peak at 340 and 353 nm which is due to surface defects. The obtained MgO nanoparticles showed superior antimicrobial activities for the gram positive, gram negative and fungus strains using the ELISA reader at 450 nm.

  1. Daughters of the Enamel Organ: Development, Fate, and Function of the Stratum Intermedium, Stellate Reticulum, and Outer Enamel Epithelium

    PubMed Central

    Liu, Hui; Yan, Xiulin; Pandya, Mirali; Luan, Xianghong

    2016-01-01

    The tooth enamel organ (EO) is a complex epithelial cell assembly involved in multiple aspects of tooth development, including amelogenesis. The present study focuses on the role of the nonameloblast layers of the EO, the stratum intermedium, the stellate reticulum, and the outer enamel epithelium (OEE). The secretory stage stratum intermedium was distinguished by p63-positive epithelial stem cell marks, highly specific alkaline phosphatase labeling, as well as multiple desmosomes and gap junctions. At the location of the presecretory stage stellate reticulum, the pre-eruption EO prominently featured the papillary layer (PL) as a keratin immunopositive network of epithelial strands between tooth crowns and oral epithelium. PL cell strands contained numerous p63-positive epithelial stem cells, while BrdU proliferative cells were detected at the outer boundaries of the PL, suggesting that the stellate reticulum/PL epithelial cell sheath proliferated to facilitate an epithelial seal during tooth eruption. Comparative histology studies demonstrated continuity between the OEE and the general lamina of continuous tooth replacement in reptiles, and the outer layer of Hertwig's epithelial root sheath in humans, implicating the OEE as the formative layer for continuous tooth replacement and tooth root extension. Cell fate studies in organ culture verified that the cervical portion of the mouse molar EO gave rise to Malassez rest-like cell islands. Together, these studies indicate that the nonameloblast layers of the EO play multiple roles during odontogenesis, including the maintenance of several p63-positive stem cell reservoirs, a role during tooth root morphogenesis and tooth succession, a stabilizing function for the ameloblast layer, the facilitation of ion transport from the EO capillaries to the enamel layer, as well as safe and seamless tooth eruption. PMID:27611344

  2. Daughters of the Enamel Organ: Development, Fate, and Function of the Stratum Intermedium, Stellate Reticulum, and Outer Enamel Epithelium.

    PubMed

    Liu, Hui; Yan, Xiulin; Pandya, Mirali; Luan, Xianghong; Diekwisch, Thomas G H

    2016-09-09

    The tooth enamel organ (EO) is a complex epithelial cell assembly involved in multiple aspects of tooth development, including amelogenesis. The present study focuses on the role of the nonameloblast layers of the EO, the stratum intermedium, the stellate reticulum, and the outer enamel epithelium (OEE). The secretory stage stratum intermedium was distinguished by p63-positive epithelial stem cell marks, highly specific alkaline phosphatase labeling, as well as multiple desmosomes and gap junctions. At the location of the presecretory stage stellate reticulum, the pre-eruption EO prominently featured the papillary layer (PL) as a keratin immunopositive network of epithelial strands between tooth crowns and oral epithelium. PL cell strands contained numerous p63-positive epithelial stem cells, while BrdU proliferative cells were detected at the outer boundaries of the PL, suggesting that the stellate reticulum/PL epithelial cell sheath proliferated to facilitate an epithelial seal during tooth eruption. Comparative histology studies demonstrated continuity between the OEE and the general lamina of continuous tooth replacement in reptiles, and the outer layer of Hertwig's epithelial root sheath in humans, implicating the OEE as the formative layer for continuous tooth replacement and tooth root extension. Cell fate studies in organ culture verified that the cervical portion of the mouse molar EO gave rise to Malassez rest-like cell islands. Together, these studies indicate that the nonameloblast layers of the EO play multiple roles during odontogenesis, including the maintenance of several p63-positive stem cell reservoirs, a role during tooth root morphogenesis and tooth succession, a stabilizing function for the ameloblast layer, the facilitation of ion transport from the EO capillaries to the enamel layer, as well as safe and seamless tooth eruption.

  3. Addition of N-terminal pro-B natriuretic peptide to soluble fms-like tyrosine kinase-1/placental growth factor ratio > 38 improves prediction of pre-eclampsia requiring delivery within 1 week: a longitudinal cohort study.

    PubMed

    Sabriá, E; Lequerica-Fernández, P; Lafuente-Ganuza, P; Eguia-Ángeles, E; Escudero, A I; Martínez-Morillo, E; Barceló, C; Álvarez, F V

    2018-06-01

    Short-term prediction of pre-eclampsia (PE) using the soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio is characterized by frequent false-positive results. As such, no treatment can be recommended to test-positive patients and multiple measurements are often required. The aim of this study was to evaluate the effectiveness of N-terminal pro-B natriuretic peptide (NT-proBNP), uric acid and the sFlt-1/PlGF ratio for prediction of delivery with PE within 1 week in singleton pregnancies with suspected PE and sFlt-1/PlGF ratio > 38. This was a longitudinal prospective cohort study of singleton pregnancies presenting at 24 + 0 to 36 + 6 weeks of gestation with clinically suspected PE and sFlt-1/PlGF ratio > 38, enrolled between January 2015 and June 2017. Multiple samples per patient were allowed but were restricted to one sample per gestational week. From 495 enrolled patients, 270 blood samples from 134 patients were ultimately analyzed. By using generalized estimating equations (GEE), the best-fit model was selected for prediction of delivery with PE within 1 week. The predictive value of this model was then assessed using area under the paired-ROC curve (AUC) analysis. The best-fit model included the sFlt-1/PlGF ratio, NT-proBNP and the gestational week at the time of the measurement. This combined model was compared with the GEE model based on the sFlt-1/PlGF ratio and the gestational week at the time of the measurement (reduced model). The AUC for the combined model was 0.845 (95% CI, 0.787-0.896), which was significantly greater (P = 0.011) than that of the reduced model (0.786 (95% CI, 0.722-0.844)). The addition of NT-proBNP assessment improves the short-term prediction of delivery as a result of PE compared with sFlt-1/PlGF ratio alone, when the sFlt-1/PlGF ratio is > 38. This finding should be considered in future research on the assessment of short-term risk of delivery as a result of PE. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.

  4. Lupus nephritis and Raynaud's phenomenon are significant risk factors for vascular thrombosis in SLE patients with positive antiphospholipid antibodies.

    PubMed

    Choojitarom, Kittiwan; Verasertniyom, Orawan; Totemchokchyakarn, Kitti; Nantiruj, Kanokrat; Sumethkul, Vasant; Janwityanujit, Suchela

    2008-03-01

    This study is aimed to determine the predictors of nongravid vascular thrombosis in systemic lupus erythematosus (SLE) patients with positive antiphospholipid antibodies (SLE-aPL). A cohort of 67 SLE-aPL patients who had at least one positive test for lupus anticoagulant (LA), anticardiolipin (aCL), or anti-beta2glycoprotein-1(B2) was examined. Main outcome was the presence of vascular thrombosis. Association between thrombosis and risk factors was examined by contingency table. The odds ratio (OR) of significant predictors was determined by logistic regression. Three percent of patients were LA(+), 6% were aCL(+), 31% were B2(+), 3% were aCL(+)LA(+), 35.8% were aCL(+)B2(+), 7.5% were LA(+)B2(+), and 13.4% were positive for all tests. As for clinical manifestations, 79% had lymphopenia, 76% had lupus nephritis (LN), 41.8% had autoimmune hemolytic anemia, 34.3% had thrombocytopenia, 20.9% had abortion, and 19.4% had Raynaud's phenomenon (RP). Thrombosis occurred in 26 patients. The prevalence of thrombosis for SLE-aPL was 38.8%. Thrombosis was observed more frequently in patients with LA(+) (12 of 18) than the others (14 of 49; p = 0.01). Two-by-two table showed that oral contraceptive and LN were significantly associated with increased risk of thrombosis, while lymphopenia and antimalarials were significantly associated with decreased risk of thrombosis. Multivariate analysis confirmed that LN and RP were associated with increased risk of thrombosis (OR = 6.2 and 3.2; p = 0.005 and 0.008), while lymphopenia and antimalarials were associated with decreased risk of thrombosis (OR = 0.86 and 0.18; p = 0.02 and 0.034). LA is the strongest test to determine the risk of thrombosis in SLE-aPL. The presence of LN and RP strongly predicts thrombosis, while lymphopenia and antimalarials are protective. These findings help to identify patients who may benefit from prophylactic therapy.

  5. Radiation-induced luminescence properties of Tb-doped Li3PO4-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Isokawa, Yuya; Hirano, Shotaro; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-02-01

    In this study, we developed Li3PO4-B2O3 glasses doped with different concentrations of Tb (0.1, 0.3, 1.0, 3.0, and 10.0%) as well as undoped glass, and then the prepared glasses were studied for the optical, dosimeter and scintillator properties. The Tb-doped samples indicated radioluminescence and photoluminescence (PL) due to the 4f-4f transitions of Tb3+ with sharp spectral features peaking around 375, 410, 435, 480, 540, 590 and 620 nm. The luminescence decay times of radioluminescence and PL were 2.3-2.7 ms and 2.7-2.9 ms, respectively. The shorter radioluminescence decay time than that of PL indicated quenching effect of excited states in radioluminescence. As the concentration of Tb increased, both the radioluminescence intensity and PL quantum yield (QY) increased, and the 10.0% Tb-doped sample showed the highest radioluminescence intensity and QY (54.3%). In addition, thermally-stimulated luminescence (TSL) was observed after irradiating with X-rays. The sensitivity was the highest for the 3.0% Tb-doped sample having a dynamic range from 0.1 mGy to 10 Gy, which was equivalent to commercial dosimeters. The comprehensive studies suggested that X-ray generated charges are captured at TSL-active centers more effectively at lower concentrations of Tb whereas the recombination probability at Tb center during irradiation increases with the concentration of Tb. Consequently, the optimal Tb concentration was 10% as scintillator and 3.0% for TSL dosimeter, among the present samples.

  6. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems.

    PubMed

    Ou, Jian Zhen; Chrimes, Adam F; Wang, Yichao; Tang, Shi-yang; Strano, Michael S; Kalantar-zadeh, Kourosh

    2014-02-12

    Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.

  7. Role of Ni2+(d8) ions in electrical, optical and magnetic properties of CdS nanowires for optoelectronic and spintronic applications

    NASA Astrophysics Data System (ADS)

    Arshad Kamran, Muhammad

    2018-06-01

    For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd0.886Ni0.114S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d‑d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm–1) and 750.98 nm (13 316 cm–1) are very close to NIR emission. Orange emission not only remained at same peak position—its PL intensity was also significantly enhanced at 78 K; this was assigned to d‑d transition (3A2g → 1Eg) of Ni2+ ions. It was observed that 11.4% Ni2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (Ms) increased from 7.2 × 10‑5 Am2/Kg to 1.17 × 10‑4 Am2/Kg, which shows promise for optoelectronic and spintronic applications.

  8. The quadrant method measuring four points is as a reliable and accurate as the quadrant method in the evaluation after anatomical double-bundle ACL reconstruction.

    PubMed

    Mochizuki, Yuta; Kaneko, Takao; Kawahara, Keisuke; Toyoda, Shinya; Kono, Norihiko; Hada, Masaru; Ikegami, Hiroyasu; Musha, Yoshiro

    2017-11-20

    The quadrant method was described by Bernard et al. and it has been widely used for postoperative evaluation of anterior cruciate ligament (ACL) reconstruction. The purpose of this research is to further develop the quadrant method measuring four points, which we named four-point quadrant method, and to compare with the quadrant method. Three-dimensional computed tomography (3D-CT) analyses were performed in 25 patients who underwent double-bundle ACL reconstruction using the outside-in technique. The four points in this study's quadrant method were defined as point1-highest, point2-deepest, point3-lowest, and point4-shallowest, in femoral tunnel position. Value of depth and height in each point was measured. Antero-medial (AM) tunnel is (depth1, height2) and postero-lateral (PL) tunnel is (depth3, height4) in this four-point quadrant method. The 3D-CT images were evaluated independently by 2 orthopaedic surgeons. A second measurement was performed by both observers after a 4-week interval. Intra- and inter-observer reliability was calculated by means of intra-class correlation coefficient (ICC). Also, the accuracy of the method was evaluated against the quadrant method. Intra-observer reliability was almost perfect for both AM and PL tunnel (ICC > 0.81). Inter-observer reliability of AM tunnel was substantial (ICC > 0.61) and that of PL tunnel was almost perfect (ICC > 0.81). The AM tunnel position was 0.13% deep, 0.58% high and PL tunnel position was 0.01% shallow, 0.13% low compared to quadrant method. The four-point quadrant method was found to have high intra- and inter-observer reliability and accuracy. This method can evaluate the tunnel position regardless of the shape and morphology of the bone tunnel aperture for use of comparison and can provide measurement that can be compared with various reconstruction methods. The four-point quadrant method of this study is considered to have clinical relevance in that it is a detailed and accurate tool for evaluating femoral tunnel position after ACL reconstruction. Case series, Level IV.

  9. The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres.

    PubMed

    Iriuchishima, Takanori; Ryu, Keinosuke; Aizawa, Shin; Fu, Freddie H

    2016-01-01

    The purpose of this study was to compare the centre position of each anterior cruciate ligament bundle in its femoral footprint in measurements including and excluding the fan-like extension fibres. Fourteen non-paired human cadaver knees were used. All soft tissues around the knee were resected except the ligaments. The ACL was divided into antero-medial (AM) and postero-lateral (PL) bundles according to the difference in tension patterns. The ACL was carefully dissected, and two outlines were made of the periphery of each bundle insertion site: those which included and those which excluded the fan-like extension fibres. An accurate lateral view of the femoral condyle was photographed with a digital camera, and the images were downloaded to a personal computer. The centre position of each bundle, including and excluding the fan-like extension fibres, was measured with ImageJ software (National Institution of Health). Evaluation of the centre position was performed using the modified quadrant method. The centre of the femoral AM bundle including the fan-like extension was located at 28.8% in a shallow-deep direction and 37.2% in a high-low direction. When the AM bundle was evaluated without the fan-like extension, the centre was significantly different at 34.6% in a shallow-deep direction (p = 0.000) and 36% in a high-low direction. The centre of the PL bundle including the fan-like extension was found at 37.1% in a shallow-deep direction and 73.4% in a high-low direction. When the PL bundle was evaluated without the fan-like extension, the centre was significantly different at 42.7% in a shallow-deep direction (p = 0.000) and 69.3% in a high-low direction (p = 0.000). The centre position of the AM and PL bundles in the femoral ACL footprint was significantly different depending on the inclusion or exclusion of the fan-like extension fibres. For the clinical relevance, to reproduce the direct femoral insertion in the anatomical ACL reconstruction, tunnels should be placed relatively shallow and high in the femoral ACL footprint.

  10. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  11. Synthesis and luminescence studies of Eu (III) doped Sr2P2O7 phosphor for white LED applications

    NASA Astrophysics Data System (ADS)

    Khan, Z. S.; Ingale, N. B.; Omanwar, S. K.

    2018-05-01

    Europium (III) doped distrontium diphosphate (Sr2P2O7) is synthesized by slow vaporization method and its luminescence properties are carried out. Using X-Ray diffraction, the crystal structure of this material was confirmed. Photoluminescence (PL) measurement make clear the phosphor exhibited intense emission at 593 nm (yellow) and 612 nm (orange) respectively corresponding to 5D0→7F1 and 5D0→7F2 transitions of Eu3+ on excitation with most favourable 394 nm wavelengths. The remaining excitation peaks at 381 nm and 465 nm with broad band 200-310 nm are also witness in the excitation spectra. The particle morphology using SEM images shows micro level particles for this phosphor. The effect of concentration of Eu3+ ions on the PL intensity has also been investigated. It has been observed that the powder sample exhibits highest PL emission intensity for Eu3+ concentration of about 0.02 moles. The emission spectra exhibit orange performance (CIE chromaticity coordinates: X = 0.672, Y = 0.328), which is due to the 5D0→7F2 transitions of Eu3+ ions. This phosphor is very good for white LED applications.

  12. Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Yang; Fang, Te-Hua; Tsai, Ju-Hsuan

    2015-02-01

    A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 A, 1.35 mV, and 1.026 nW/mm, respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.

  13. Carrier localization in In0.21Ga0.79As/GaAs multiple quantum wells: A modified Pässler model for the S-shaped temperature dependence of photoluminescence energy

    NASA Astrophysics Data System (ADS)

    Fraj, Ibtissem; Hidouri, Tarek; Saidi, Faouzi; Maaref, Hassen

    2017-02-01

    The optical properties of In0.21Ga0.79As/GaAs MQWs, with triple unequal layer thickness NW (3 nm), MW (6 nm) and WW (9 nm) grown on (001) and (113) GaAs substrates, is studied by using continuous wave photoluminescence (cw-PL) spectroscopy. A comparative study has been performed to demonstrate the influence of electric field and QW thickness on the exciton localization. An S-shaped form in temperature-dependent PL peak energy has been observed in polar middle QW (MW (113)) but not seen in non-polar ones (MW (001)). This behavior is linked to carrier localization in triangular potential and polarity. We have observed also this atypical evolution in non-polar wide QW (WW (001)) but not in non-polar middle QW (MW (001)), which is attributed to potential fluctuation in larger ones. With the aid of modified Pässler model for including the effect of localized states, we can persuasively reproduce the S-shaped temperature dependence of PL band gap energy and contribute to the estimated value of exciton localization energy. The values of σ are obtained from adjustment of experimental points, which indicate the degree of localization in QW layer.

  14. Alloying effect on bright-dark exciton states in ternary monolayer Mo x W1-x Se2

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Tom, Kyle; Zhang, Xiaowei; Lou, Shuai; Liu, Yin; Yao, Jie

    2017-07-01

    Binary transition metal dichalcogenides (TMDCs) in the class MX2 (M = Mo, W; X = S, Se) have been widely investigated for potential applications in optoelectronics and nanoelectronics. Recently, alloy-based monolayers of TMDCs have provided a stable and versatile technique to tune the physical properties and optimize them for potential applications. Here, we present experimental evidence for the existence of an intermediate alloy state between the MoSe2-like and the WSe2-like behavior of the neutral exciton (X 0) using temperature-dependent photoluminescence (PL) of the monolayer Mo x W1-x Se2 alloy. The existence of a maximum PL intensity around 120 K can be explained by the competition between the thermally activated bright states and the non-radiative quenching of the bright states. Moreover, we also measured localized exciton (XB ) PL peak in the alloy and the observed behavior agrees well with a model previously proposed for the 3D case, which indicates the theory also applies to 2D systems. Our results not only shed light on bright-dark states and localized exciton physics of 2D semiconductors, but also offer a new route toward the control of the bright-dark transition and tailoring optical properties of 2D semiconductors through defect engineering.

  15. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Zeng, Xin; Wang, Liang; Tang, Lei; Mao, Zhong-Gui

    2015-06-01

    ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces.

  16. Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4′,7-O-diglucoside Glucosyltransferase from Pueraria lobata

    PubMed Central

    Wang, Xin; Fan, Rongyan; Li, Jia; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate a rich source of isoflavonoid glycosides, including 7-O- and 4′-O-mono-glucosides, and 4′,7-O-diglucosides, which have numerous human health benefits. Although, isoflavonoid 7-O-glucosyltranferases (7-O-UGTs) have been well-characterized at molecular levels in legume plants, genes, or enzymes that are required for isoflavonoid 4′-O- and 4′,7-O-glucosylation have not been identified in P. lobata to date. Especially for the 4′,7-O-di-glucosylations, the genetic control for this tailing process has never been elucidated from any plant species. Through transcriptome mining, we describe here the identification and characterization of a novel UGT (designated PlUGT2) governing the isoflavonoid 4′,7-O-di-glucosylations in P. lobata. Biochemical roles of PlUGT2 were assessed by in vitro assays with PlUGT2 protein produced in Escherichia coli and analyzed for its qualitative substrate specificity. PlUGT2 was active with various (iso)flavonoid acceptors, catalyzing consecutive glucosylation activities at their O-4′ and O-7 positions. PlUGT2 was most active with genistein, a general isoflavone in legume plants. Real-time PCR analysis showed that PlUGT2 is preferentially transcribed in roots relative to other organs of P. lobata, which is coincident with the accumulation pattern of 4′-O-glucosides and 4′,7-O-diglucosides in P. lobata. The identification of PlUGT2 would help to decipher the P. lobata isoflavonoid glucosylations in vivo and may provide a useful enzyme catalyst for an efficient biotransformation of isoflavones or other natural products for food or pharmacological purposes. PMID:27066037

  17. Evaluation of intra-articular injection of autologous platelet lysate (PL) in horses with osteoarthritis of the distal interphalangeal joint.

    PubMed

    Tyrnenopoulou, Panagiota; Diakakis, Nikolaos; Karayannopoulou, Maria; Savvas, Ioannis; Koliakos, Georgios

    2016-06-01

    Regenerative medicine has become one of the most promising therapies of equine osteoarthritis. Platelet lysate (PL) is rich in bioactive proteins and growth factors that play a crucial role in tissue healing. To evaluate the efficacy of intra-articularly injected autologous PL in equine athletes with naturally occurring osteoarthritis. Fifteen warmblood geldings aged 8-19 years with osteoarthritis of the distal interphalangeal joint were included in this study. They were randomly divided into two groups; 10 horses received intra-articular injections of PL and 5 of normal saline (controls). Before treatment, platelet-derived growth factor (PDGF) levels in basal plasma and prepared PL were estimated. Each joint was injected twice within a three-week period. Lameness was evaluated using the American Association of Equine Practitioners grading system, before treatment and 10 days after each intra-articular injection. Horses were examined fortnightly for one year. Radiographic examination was performed six months post-treatment. The generalized estimating equation test was used for statistical analysis. Acceptable levels of PDGF were detected in PLs (mean ± SD: 258.0 ± 52.3 pg/ml). The majority of horses (9/10) responded positively to PL treatment presenting lower lameness grades (p < 0.0005) compared to controls 10 days after the second injection, and returned to normal athletic activity. Radiographs revealed no changes in osteoarthritis lesions six months after treatment. One year post-injections, however, all horses relapsed to their initial degree of lameness. Intra-articularly injected autologous PL is an efficient method for temporarily managing osteoarthritis of the distal interphalangeal joint in athletic horses.

  18. Effect of Peptides' Binding on the Antimicrobial Activity and Biocompatibility of Protein-Based Substrates

    NASA Astrophysics Data System (ADS)

    Kaisersberger Vincek, Maja

    This work reveals the effect of coupling approach (chemical by using carbodiimide chemistry and grafting-to vs. grafting-from synthesis routes, and enzymatic by using transglutaminase) of a hydrophilic epsilon-poly-L-lysine (epsilonPL) and an amphiphilic oligo-acyl-lysyl (OAK) derivative (K-7alpha 12-OH) to wool fibers and gelatine (GEL) macromolecules, respectively, and substrates antibacterial activity against Gram-negative E. coli and Gram-positive S. aureus bacteria after 1-24 h of exposure, as well as their cytotoxicity. Different spectroscopic (ultraviolet-visible, infrared, fluorescence and electron paramagnetic resonance) and separation techniques (size-exclusion chromatography and capillary zone electrophoresis) as well as zeta potential and potentiometric titration analysis, were performed to confirm the covalent coupling of epsilonPL/OAK, and to determine the amount and orientation of its immobilisation. The highest and kinetically the fastest level of bacterial reduction was achieved with wool/GEL functionalised with epsilonPL/OAK by chemical grafting-to approach. This effect correlated with both the highest grafting yield and conformationally the highly-flexible (brush-like) orientation linkage of epsilonPL/OAK, implicating on the highest amount of accessible amino groups interacting with bacterial membrane. However, OAK's amphipathic structure, the cationic charge and the hydrophobic moieties, resulted to relatively high reduction of S. aureus for grafting-from and the enzymatic coupling approaches using OAK-functionalised GEL. The epsilonPL/OAK-functionalised GEL did not induce toxicity in human osteoblast cells, even at 25-fold higher concentration than bacterial minimum inhibitory (MIC) concentration of epsilonPL/OAK, supporting their potential usage in biomedical applications. It was also shown that non-ionic surfactant adsorbs strongly onto the wool surface during the process of washing, thereby blocking the functional sites of immobilized epsilonPL and decreases its antibacterial efficiency.

  19. Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.

    PubMed

    Kiat Teu, Koon; Kim, Wangdo

    2006-01-01

    The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.

  20. The effects of platelet lysate on maturation, fertilization and embryo development of NMRI mouse oocytes at germinal vesicle stage.

    PubMed

    Pazoki, Hassan; Eimani, Hussein; Farokhi, Farah; Shahverdi, Abdol-Hossein; Tahaei, Leila Sadat

    2016-04-01

    Improving in vitro maturation could increase the rate of pregnancy from oocytes matured in vitro. Consequently, patients will be prevented from using gonadotropin with its related side effects. In this study, the maturation medium was enriched by platelet lysate (PL), then maturation and subsequent developments were monitored. Oocytes at germinal vesicle stage with cumulus cells (cumulus-oocyte complex) and without cumulus cells (denuded oocytes) were obtained from mature female mice. The maturation medium was enriched by 5 and 10 % PL and 5 % PL + 5 % fetal bovine serum (FBS) as experimental groups; the control groups' media consisted of 5 and 10 % FBS. After 18 h, the matured oocytes were collected and, after fertilization, subsequent development was monitored. The rates of maturation, fertilization and 2-cell embryo development for the denuded oocyte groups in experimental media 5 % PL and 5 % PL + 5 % FBS were significantly higher than those of the control groups ( P < 0.05), while the results for the cumulus-oocyte complex groups were similar between the experimental groups and control groups. The results of this study indicated that platelet lysate could improve the maturation rate in the absence of granulosa cells compared to media with FBS. This extract also had positive effects on fertilization and embryo development.

  1. A novel missense mutation p.L76P in the GJB2 gene causing nonsyndromic recessive deafness in a Brazilian family.

    PubMed

    Batissoco, A C; Auricchio, M T B M; Kimura, L; Tabith-Junior, A; Mingroni-Netto, R C

    2009-02-01

    Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.

  2. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simimol, A.; Department of Physics, National Institute of Technology, Calicut 673601; Manikandanath, N. T.

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantlymore » by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.« less

  3. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    NASA Astrophysics Data System (ADS)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2014-08-01

    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  4. Energy expenditure during 2-day trail walking in the mountains (2,857 m) and the effects of amino acid supplementation in older men and women.

    PubMed

    Shimizu, Muneshige; Miyagawa, Ken; Iwashita, Soh; Noda, Tsuneyuki; Hamada, Koichiro; Genno, Hirokazu; Nose, Hiroshi

    2012-03-01

    We compared relative exercise intensity and active energy expenditure (AEE) on trail walking in the mountains, with those of daily exercise training, and whether branched-chain amino acid (BCAA) and arginine supplementation attenuated the release of markers indicating muscle damage and declines in physical performance. Twenty-one subjects (~63 years) were divided into two groups: amino acid (AA, 51 g of amino acids and 40 g of carbohydrate, male/female = 6/4) or placebo (PL, 91 g of carbohydrate, male/female = 6/5) supplementation during 2 days of trail walking in the mountains. We measured heart rate (HR), AEE, fatigue sensation, water and food intake, and sweat loss during walking. In addition, we measured peak aerobic capacity [Formula: see text] and heart rate (HR(peak)) with graded-intensity walking, vertical jumping height (VJ) before and after walking. We found that average HR and AEE during uphill walking were ~100% HR(peak) and ~60% [Formula: see text], while they were ~80 and ~20% during downhill walking, respectively. Moreover, average total AEE per day was sevenfold that of their daily walking training. VJ after walking remained unchanged compared with the baseline in AA (P > 0.2), while it was reduced by ~10% in PL (P < 0.01), although with no significant difference in the reduction between the groups (P > 0.4). The responses of other variables were not significantly different between groups (all, P > 0.2). Thus, trail walking in the mountains required a high-intensity effort for older people, while the effects of BCAA and arginine supplementation were modest in this condition.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinmin, E-mail: zhxmuga@163.com; Pan, Qi; Kim, Sun Il

    Graphical abstract: - Highlights: • Emission spectrum at 20 K confirms that Eu{sup 2+} ions occupy three sites. • Decay curves of three types of Eu{sup 2+} reflect the characteristics of energy transfer. • The Eu(I) emission is thermally quenched at 323 K. • Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} has good thermal stability. • Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} is a promising phosphor for near UV excited white LEDs. - Abstract: A blue-emitting phosphor Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} peaking at 450 nm was synthesized by a solid state reaction. The XRD patterns, luminescence properties, decay curvesmore » of samples as well as their thermal quenching and comparing the luminescence properties with that of commercial material were investigated. At 20 K, the emission spectrum exhibiting two distinct bands peaking at 437 and 473 nm with a shoulder peak at 510 nm can be attributed to the overlap of Eu(I), Eu(II) and Eu(III) emission bands. At 423 K the PL intensity decreases to 80% of the value at room temperature, and the emission wavelength shifts toward high energy. The derived activation energy indicates that the lowest energy level of the Eu{sup 2+} 4f{sup 6}5d{sup 1} state is well isolated from the host lattice conduction band. The PL spectra and chromaticity coordinates are close to those of BAM. Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} could be a potential candidate for near-UV excited white LEDs.« less

  6. Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borysiuk, J., E-mail: jolanta.borysiuk@ifpan.edu.pl; Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw; Sakowski, K.

    2016-07-07

    Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain wasmore » below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.« less

  7. Age and sex alone are insufficient to predict human rib structural response to dynamic A-P loading.

    PubMed

    Schafman, Michelle A; Kang, Yun-Seok; Moorhouse, Kevin; White, Susan E; Bolte, John H; Agnew, Amanda M

    2016-10-03

    Thoracic injuries from motor vehicle crashes (MVCs) are common in children and the elderly and are associated with a high rate of mortality for both groups. Rib fractures, in particular, are linked to high mortality rates which increase with the number of fractures sustained. Anthropomorphic test devices (ATDs) and computational models have been developed to improve vehicle safety, however these tools are constructed based on limited physical datasets. To-date, no study has explored variation of rib structural properties across the entire age spectrum with data obtained using the same experimental methodology to allow for comparison. One-hundred eighty-four ribs from 93 post mortem human subjects (PMHS) (70 male, 23 female; ages 4-99) were subjected to dynamic bending tests simulating a frontal impact to the thorax. Structural mechanical properties were calculated and a multi-level statistical model quantified the sample variance as explained by age and sex. Displacement (δ X ), peak force (F peak ), linear structural stiffness (K), energy absorption to fracture (U tot ), and plastic properties including post-yield energy absorption (U Pl ), plastic displacement (δ Pl ), and the ratio of elastic to secant stiffness (K-ratio) all showed negative relationships with age, while only F peak , K, and U tot were dependent on sex. Despite these relationships being statistically significant, only 7-39% of variance is explained by age and only 3-17% of variance is explained by sex. This demonstrates that variability in bone properties is more complex than simply chronological age- and sex-dependence and should be explored in the context of biological mechanisms instead. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterizations of Pr-doped Yb3Al5O12 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuki; Shinozaki, Kenji; Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-04-01

    Yb3Al5O12 (YbAG) single crystals doped with different concentrations of Pr were synthesized by the Floating Zone (FZ) method. Then, we evaluated their basic optical and scintillation properties. All the samples showed photoluminescence (PL) with two emission bands appeared approximately 300-500 nm and 550-600 nm due to the charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. A PL decay profile of each sample was approximated by a sum of two exponential decay functions, and the obtained decay times were 1 ns and 3-4 ns. In the scintillation spectra, we observed emission peaks in the ranges from 300 to 400 nm and from 450 to 550 nm for all the samples. The origins of these emissions were attributed to charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. The scintillation decay times became longer with increasing the Pr concentrations. Among the present samples, the 0.1% Pr-doped sample showed the lowest scintillation afterglow level. In addition, pulse height spectrum of 5.5 MeV α-rays was demonstrated using the Pr-doped YbAG, and we confirmed that all the samples showed a full energy deposited peak. Above all, the 0.1% Pr-doped sample showed the highest light yield with a value of 14 ph/MeV under α-rays excitation.

  9. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-06-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  10. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-01-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  11. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  12. Pressure Study of Photoluminescence in GaN/InGaN/ AlGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Perlin, Piotr; Iota, V.; Weinstein, B. A.; Wisniewski, P.; Osinski, M.; Eliseev, P. G.

    1997-03-01

    We have studied the photoluminescence (PL) from two commercial high brightness single quantum well light emitting diodes (Nichia Chem. Industs.) with In_xGa_1-x N (x=0.45 and 0.2) as the active layers under hydrostatic pressures up to 7 GPa. These diodes are the best existing light emitters at short wavelengths, having the emission wavelengths of 430 nm and 530 nm depending on the content of indium in the 30 Åthick quantum wells. Although these devices show a remarkable quality and efficiency (luminosity as high as 12 cd), the mechanism of recombination remains obscure. We discovered that the pressure coefficient for each of the observed PL peaks is dramatically (2-3 times) lower than that of the energy gap of its InGaN active layer. These observations, in conjunction with the fact that the observed emission occurs below the energy gap of the quantum well material, and also considering the anomalous temperature behavior of the emission (peak energy increasing with temperature) suggest the involvement of localized states and exclude a simple band-to-band recombination picture. These localized states may be tentatively attributed to the presence of band tails in the gap which stem from composition fluctuations in the InGaN alloy. (figures)

  13. Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens.

    PubMed

    Farrell, H P; Garvey, M; Cormican, M; Laffey, J G; Rowan, N J

    2010-05-01

    To investigate critical electrical and biological factors governing the efficacy of pulsed light (PL) for the in vitro inactivation of bacteria isolated from the clinical environment. Development of this alternative PL decontamination approach is timely, as the incidence of health care-related infections remains unacceptably high. Predetermined cell numbers of clinically relevant Gram-positive and Gram-negative bacteria were inoculated separately on agar plates and were flashed with

  14. Effect of Co doping, capping agent and optical-structural studies of ZnO:Co2+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri Otaqsara, S. M.

    2011-08-01

    Co2+ doped ZnO nanoparticles (NPs) using PEG as a capping agent were prepared by colloidal wet-chemical method. The structure, morphology and characteristics of as-prepared samples were investigated. X-ray diffraction patterns studies revealed wurtzite crystal phase. STM-TEM micrographs show a spherical shape and nearly well distribution with an average particle size of ~15-20 nm. UV-VIS spectra show the presence of exciton peak at 349 nm which can be effectively tuned versus cobalt doping and PEG concentration. PL studies were done under the excitation of 347 nm, which exhibited a UV (~386 nm) and visible (blue-orange) emission peak because of free-exciton recombination and oxygen vacancy.

  15. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria

    2016-08-15

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP 2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL -) with a distinct second site is required for high PIP 2sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP 2sensitivity, even in the absence of PL -. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP 2(2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domainmore » (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL -binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP 2site and explaining the positive allostery between PL -binding and PIP 2sensitivity.« less

  16. On the intrinsic shape of the gamma-ray spectrum for Fermi blazars

    NASA Astrophysics Data System (ADS)

    Kang, Shi-Ju; Wu, Qingwen; Zheng, Yong-Gang; Yin, Yue; Song, Jia-Li; Zou, Hang; Feng, Jian-Chao; Dong, Ai-Jun; Wu, Zhong-Zu; Zhang, Zhi-Bin; Wu, Lin-Hui

    2018-05-01

    The curvature of the γ-ray spectrumin blazarsmay reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law (PL) or a log-normal (call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3LAC Clean Sample.We find that the γ-ray flux (100MeV–100GeV) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.

  17. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  18. Comparison of Olympic vs. traditional power lifting training programs in football players.

    PubMed

    Hoffman, Jay R; Cooper, Joshua; Wendell, Michael; Kang, Jie

    2004-02-01

    Twenty members of an National Collegiate Athletic Association Division III collegiate football team were assigned to either an Olympic lifting (OL) group or power lifting (PL) group. Each group was matched by position and trained 4-days.wk(-1) for 15 weeks. Testing consisted of field tests to evaluate strength (1RM squat and bench press), 40-yard sprint, agility, vertical jump height (VJ), and vertical jump power (VJP). No significant pre- to posttraining differences were observed in 1RM bench press, 40-yard sprint, agility, VJ or in VJP in either group. Significant improvements were seen in 1RM squat in both the OL and PL groups. After log10-transformation, OL were observed to have a significantly greater improvement in Delta VJ than PL. Despite an 18% greater improvement in 1RM squat (p > 0.05), and a twofold greater improvement (p > 0.05) in 40-yard sprint time by OL, no further significant group differences were seen. Results suggest that OL can provide a significant advantage over PL in vertical jump performance changes.

  19. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    PubMed

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.

  20. White light emission and optical gains from a Si nanocrystal thin film

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-01

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  1. Heterostructures with diffused interfaces: Luminescent technique for ascertainment of band alignment type

    NASA Astrophysics Data System (ADS)

    Abramkin, D. S.; Gutakovskii, A. K.; Shamirzaev, T. S.

    2018-03-01

    The experimental ascertainment of band alignment type for semiconductor heterostructures with diffused interfaces is discussed. A method based on the analysis of the spectral shift of photoluminescence (PL) band with excitation density (Pex) that takes into account state filling and band bending effects on the PL band shift is developed. It is shown that the shift of PL band maximum position is proportional to ℏωmax ˜ (Ue + Uh).ln(Pex) + b.Pex1/3, where Ue (Uh) are electron (hole) Urbach energy tail, and parameter b characterizes the effect of band bending or is equal to zero for heterostructures with type-II or type-I band alignment, respectively. The method was approved with InAs/AlAs, GaAs/AlAs, GaSb/AlAs, and AlSb/AlAs heterostructures containing quantum wells.

  2. Formation of InAs nanocrystals in Si by high-fluence ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F.; Vlasukova, L.; Wesch, W.; Kamarou, A.; Milchanin, O.; Grechnyi, S.; Mudryi, A.; Ivaniukovich, A.

    2008-08-01

    We have studied the formation of InAs precipitates with dimensions of several nanometers in silicon by means of As (245 keV, 5 × 10 16 cm -2) and In (350 keV, 4.5 × 10 16 cm -2) implantation at 500 °C and subsequent annealing at 900 °C for 45 min. RBS, SIMS, TEM/TED, RS and PL techniques were used to characterize the implanted layers. The surface density of the precipitates has been found to be about 1.2 × 10 11 cm -2. Most of the crystallites are from 3 nm to 6 nm large. A band at 1.3 μm has been registered in the low-temperature PL spectra of (As + In) implanted and annealed silicon crystals. The PL band position follows the quantum confinement model for InAs.

  3. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    NASA Astrophysics Data System (ADS)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores. Investigation of the non-radiative Auger recombination (AR) process suggests that for high carrier densities in excess of 1019 cm-3, the AR lifetime is about 80 ns and decreases with increasing carrier density. This SiNW AR lifetime is slower than the AR process in Si nanocrystals at similar carrier densities, but faster than the radiative process. I also study the light emission and absorption properties of single SiNWs patterned on Silicon-on-insulator (SOI) substrates and find that a large fraction of NWs is optically dead. Moreover, the active, light-emitting nanostructures exhibit PL blinking, a mechanism often seen for individual nanostructure light emitters. These results are essential to evaluating Si nanostructures as a feasible gain or lasing medium. A second potential application for SiNWs is as a building block for low-cost, Si-based photovoltaics (PV). The market for thin-film PV, particularly organic thin-film PV, exists because it offers potential lower cost solutions for solar power versus bulk Si-based PV. However, many thin film technologies, while possessing superior optical absorption properties compared to Si, suffer from poor electronic transport properties. Here, I present a new Si-based PV design that combines the desirable optical properties of highly absorptive organic molecules and the high-mobility electronic properties of crystalline Si. This synergy is achieved by exploiting efficient Forster energy transfer from the light absorbing organic to SiNWs that enable current extraction. The energy transfer radius of a particular dye and bulk Si is found to be roughly 4 nm. Spectroscopic photocurrent experiments were performed on unpatterned SOI wafers as well as SiNWs patterned in SOI substrates and a significant photocurrent increase was seen in samples coated with organics versus uncoated samples. The photocurrent increase is seen in the wavelength range of the dye's absorption band, suggesting absorption of the dye and subsequent energy transfer to the Si plays a role. These results could pave the way for new low-cost, Si-based solar cell designs that leverage the strengths of the Si PV and microelectronics industries.

  4. Synthesis of high luminescent carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  5. Experimental Verification and Revision of the Venting Rate Model of the Hazard Assessment Computer System and the Vulnerability Model.

    DTIC Science & Technology

    1980-11-01

    discharge of a nonvolatile liquid can be ob- tained by standard Bernoulli -type relations; it is: WLo = CDA LoPL (2[PT - P-/PL + - ZLh) 1/ (1110) In all...cargo outflow momentum is low (i.e., when the net positive pressure differ- ence across the puncture is near zero). The tests showed that the water...34Benedict-Webb- Rubin Ecuation of State for Methane at Cryogenic Condi- tions," Advances -in Crvccenic ’Encineerinc., 14, po. 49-54, Plen=m Press, 1969

  6. Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres.

    PubMed

    Rannou, F; Droguet, M; Giroux-Metges, M A; Pennec, Y; Gioux, M; Pennec, J P

    2009-11-01

    The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n = 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (I(max)), maximal sodium conductance (g(Na,max)) and time constants of activation and inactivation ((m) and (h)) increase according to the scheme I-->IIa-->IIx-->IIb (P < 0.05). (m) values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P = 0.97) despite different contractile properties. The voltage dependence of activation (V(a,1/2)) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle.

  7. Biological Features of Human Bone Marrow Stromal Cells (hBMSC) Cultured with Animal Protein-Free Medium-Safety and Efficacy of Clinical Use for Neurotransplantation.

    PubMed

    Shichinohe, Hideo; Kuroda, Satoshi; Sugiyama, Taku; Ito, Masaki; Kawabori, Masahito; Nishio, Mitsufumi; Takeda, Yukari; Koike, Takao; Houkin, Kiyohiro

    2011-09-01

    The donor cell culture in animal serum-free medium is quite important for the clinical application of cell transplantation therapy. This study was aimed to test the hypothesis that the human bone marrow stromal cells (hBMSC) expanded with fetal calf serum (FCS)-free, platelet lysate (PL)-containing medium retain their biological features favoring central nervous system regeneration. The hBMSC were cultured with 5% PL or 10% FCS. Their phenotypes were analyzed with flow cytometry, and their production of growth factors was quantified with enzyme-linked immunosorbent assay. Their capacity of neural differentiation was verified by immunocytochemistry. There was no significant difference in morphology and cell surface marker between the hBMSC-FCS and hBMSC-PL. Both of them were positive for CD44, CD90, CD105, and CD166 and were negative for CD34, CD45, and CD271. The production of human brain-derived neurotrophic factor, human hepatocyte growth factor, human β-nerve growth factor, and human platelet-derived growth factor-BB did not differ between the two groups, although the hBMSC-PL produced significantly more amount of TGF-β1 than the hBMSC-FCS. There was no significant difference in their in vitro differentiation into the neurons and astrocytes between the two groups. The hBMSC expanded with PL-containing medium retain their biological capacity of neural differentiation and neuroprotection. The PL may be a clinically valuable and safe substitute for FCS in expanding the hBMSC for cell therapy.

  8. Optimization of sintering conditions for cerium-doped yttrium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Cranston, Robert Wesley McEachern

    YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.

  9. Optical investigation of InAs quantum dashes grown on InP(0 0 1) vicinal substrate

    NASA Astrophysics Data System (ADS)

    Besahraoui, F.; Bouslama, M.; Saidi, F.; Bouzaiene, L.; Hadj Alouane, M. H.; Maaref, H.; Chauvin, N.; Gendry, M.; Lounis, Z.; Ghaffour, M.

    2014-01-01

    We investigate with photoluminescence (PL) measurements the optoelectronic properties of self-organized InAs quantum dots (QDs) grown on nominal InP(0 0 1) substrate. InAs/InP(0 0 1) QDs are grown by Molecular Beam Epitaxy (MBE) method with optimized conditions in Stranski-Krastanov regime. A lateral coupling behavior was shown by photoluminescence spectroscopy. This phenomena is considered as a degradation source of the optoelectronic properties of InAs/InP(0 0 1) QDs used in lasers applications. In order to overcome this disadvantage behavior, we have studied the optical properties of InAs quantum islands (QIs) grown on vicinal InP(0 0 1) with 2° off miscut angle toward the [1 1 0] direction. From Polarized Photoluminescence (PPL) measurements, we have deduced that InAs quantum nanostructures have quantum dashes (QDas) form elongated in [1-10] direction. From excitation density PL measurements, we have evidenced that the different observed PL peaks are attributed to the emission of InAs QDas of different size. The lateral coupling behavior is completely eliminated in the case of this sample. The temperature-dependent PL measurements show a good thermal stability and an emission wavelength at room temperature around 1.55 μm of the vicinal sample. All these properties prove that this sample possess favorable characteristics for microlasers based devices functioning at room temperature and for optical telecommunication with long range weapon. The broad emission range observed at 300 K of the vicinal sample gives the possibility to use it as an active zone in solar cells and in infrared photodectectors of high optical gain and excellent sensitivity on a wide energy range.

  10. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.

    PubMed

    Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi

    2017-11-09

    Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.

  11. Relationship between the concentrations of plasma phospholipid stearic acid and plasma lipoprotein lipids in healthy men.

    PubMed

    Li, D

    2001-01-01

    This study investigated the correlation between the plasma phospholipid (PL) saturated fatty acid (SFA) concentration (as a surrogate marker of SFA intake) and plasma lipid and lipoprotein lipid concentrations in 139 healthy Australian men aged 20-55 years old with widely varying intakes of saturated fat (vegans, n=18; ovolacto vegetarians, n=43; moderate meat eaters, n=60; high meat eaters, n=18). Both the ovolacto vegetarian and vegan groups demonstrated significant decreases in plasma total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C) and triacylglycerol concentrations compared with both the high-meat-eater and moderate-meat-eater groups. Total SFA and individual SFA [palmitic acid (16:0), stearic acid (18:0) and arachidic acid (20:0)] in the plasma PL were significantly lower in both the ovolacto vegetarian and vegan groups than in both the high- and moderate-meat-eater groups, while myristic acid (14:0) was significantly lower in the vegans than in the high-meat-eaters. Bivariate analysis of the results showed that the plasma PL stearic acid concentration was strongly positively correlated with plasma TC (P<0.0001), LDL-C (P<0.0001) and triacylglycerol (P<0.0001), with r(2) values of 0.655, 0.518 and 0.43 respectively. In multiple linear regression, after controlling for potential confounding factors (such as exercise, dietary group, age, body mass index, plasma PL myristic acid, palmitic acid and arachidic acid, and dietary total fat, saturated fat, cholesterol, carbohydrate and fibre intake), the plasma PL stearic acid concentration was still strongly positively correlated with plasma TC (P<0.0001) and LDL-C (P=0.006) concentrations. Based on the present data, it would seem appropriate for the population to reduce their dietary total SFA intake rather than to replace other SFA with stearic acid.

  12. Comparative analysis of magnetic resonance in the polaron pair recombination and the triplet exciton-polaron quenching models

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.

    2018-01-01

    We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.

  13. Multiple beneficial lipids including lecithin detected in the edible invasive mollusk Crepidula fornicata from the French Northeastern Atlantic coast.

    PubMed

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-12-22

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin.

  14. Multiple Beneficial Lipids Including Lecithin Detected in the Edible Invasive Mollusk Crepidula fornicata from the French Northeastern Atlantic Coast

    PubMed Central

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-01-01

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin. PMID:25532566

  15. Synthesis, Surface Modification and Optical Properties of Thioglycolic Acid-Capped ZnS Quantum Dots for Starch Recognition at Ultralow Concentration

    NASA Astrophysics Data System (ADS)

    Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Ahmadieh, Mahnaz; Mogharei, Azadeh; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2016-11-01

    In this research, water-soluble thioglycolic acid-capped ZnS quantum dots (QDs) are synthesized by the chemical precipitation method. The prepared QDs are characterized using x-ray diffraction and transmission electron microscopy. Results revealed that ZnS QDs have a 2.73 nm crystallite size, cubic zinc blende structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence (PL) spectroscopy is performed to determine the presence of low concentrations of starch. Four emission peaks are observed at 348 nm, 387 nm, 422 nm, and 486 nm and their intensities are quenched by increasing concentration of starch. PL intensity variations in the studied concentrations range (0-100 ppm) are best described by a Michaelis-Menten model. The Michaelis constant ( K m) for immobilized α-amylase in this system is about 101.07 ppm. This implies a great tendency for the enzyme to hydrolyze the starch as substrate. Finally, the limit of detection is found to be about 6.64 ppm.

  16. Effects of surface morphology of ZnO seed layers on growth of ZnO nanostructures prepared by hydrothermal method and annealing.

    PubMed

    Yim, Kwang Gug; Kim, Min Su; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown on Si (111) substrates by a hydrothermal method. Prior to growing the ZnO nanostructures, ZnO seed layers with different post-heat temperatures were prepared by a spin-coating process. Then, the ZnO nanostructures were annealed at 500 degrees C for 20 min under an Ar atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out at room temperature (RT) to investigate the structural and optical properties of the as-grown and annealed ZnO nanostructures. The surface morphologies of the seed layers changed from a smooth surface to a mountain chain-like structure as the post-heating temperatures increased. The as-grown and annealed ZnO nanostructures exhibited a strong (002) diffraction peak. Compared to the as-grown ZnO nanostructures, the annealed ZnO nanostructures exhibited significantly strong enhancement in the PL intensity ratio by almost a factor of 2.

  17. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    PubMed

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  18. Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging

    PubMed Central

    Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.

    2011-01-01

    We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646

  19. Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure

    NASA Astrophysics Data System (ADS)

    Das, M.; Nath, P.; Sarkar, D.

    2016-02-01

    In this article effect of etching current density (J) on the microstructural, optical and electrical properties of photoelectrochemically prepared heterostructure is reported. Prepared samples are characterized by FESEM, XRD, UV-Visible, Raman and photoluminescence (PL) spectra and current-voltage (I-V) characteristics. FESEM shows presence of mixture of randomly distributed meso- and micro-pores. Porous layer thickness determined by cross section view of SEM is proportional to J. XRD shows crystalline nature but gradually extent of crystallinity decreases with increasing J. Raman spectra show large red-shift and asymmetric broadening with respect to crystalline silicon (c-Si). UV-visible reflectance and PL show blue shift in peaks with increasing J. The I-V characteristics are analyzed by the conventional thermionic emission (TE) model and Cheung's model to estimate the barrier height (φb), ideality factor (n) and series resistance (Rs) for comparison between the two models. The latter model is found to fit better.

  20. Sintering time optimization on red photoluminescence properties of manganese-doped boron carbon oxynitride (BCNO:Mn) phosphor

    NASA Astrophysics Data System (ADS)

    Wahid Nuryadin, Bebeh; Suryani, Yayu; Yuliani, Yuli; Setiadji, Soni; Yeti Nuryantini, Ade; Iskandar, Ferry

    2018-04-01

    The effect of sintering time to the transient nature and optimization of red photoluminescence manganese-doped boron carbon oxynitride (BCNO:Mn) phosphor was investigated. The BCNO:Mn samples were synthesized using a facile urea-assisted combustion route involving boric acid, citric acid, manganese salt and urea. The optimized intensity of the dual peak emission at 420 nm (blue emission) and 630 nm (red emission) in the photoluminescence (PL) spectrum could be achieved by controlling the sintering time of the BCNO:Mn. The BCNO:Mn samples in high-crystalline form was found to be in a cubic and hexagonal structure. Based on the PL analysis, it is suggested that the BCNO:Mn symmetric band at 630 nm can be attributed to the 4T1(4G)—6A1(6S) transition absorption of Mn2+ ions into the hexagonal structure. Microstructure analysis showed an irregular and agglomerated shape of the BCNO:Mn sample.

  1. Scintillation and optical properties of Sn-doped Ga2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Usui, Yuki; Nakauchi, Daisuke; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-06-01

    Sn-doped Ga2O3 single crystals were synthesized by the Floating Zone (FZ) method. In photoluminescence (PL) under the excitation wavelength of 280 nm, we observed two types of luminescence: (1) defect luminescence due to recombination of the donor/acceptor pairs which appears at 430 nm and (2) the nsnp-ns2 transitions of Sn2+ which appear at 530 nm. The PL and scintillation decay time curves of the Sn-doped samples were approximated by a sum of exponential decay functions. The faster two components were ascribed to the defect luminescence, and the slowest component was owing to the nsnp-ns2 transitions. In the pulse height spectrum measurements under 241Am α-rays irradiation, all the Sn-doped Ga2O3 samples were confirmed to show a full energy absorption peak but the undoped one. Among the present samples, the 1% Sn-doped sample exhibited the highest scintillation light yield (1,500 ± 150 ph/5.5 MeV-α).

  2. Aloe vera mediated hydrothermal synthesis of reduced graphene oxide decorated ZnO nanocomposite: Luminescence and antioxidant properties

    NASA Astrophysics Data System (ADS)

    Kavyashree, D.; Nagabhushana, H.; Ananda Kumari, R.; Basavaraj, R. B.; Suresh, D.; Daruka Prasad, B.; Sharma, S. C.

    2016-05-01

    A zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite was fabricated by facile hydrothermal route using Aloe vera gel as surfactant. The PL emission spectrum of the ZnO/rGO composite consists of four peaks at around 380, 394, 449 and 465nm. The PL intensity is found to diminish in ZnO-rGO composites rather than in pure ZnO, which was attributed to electron transfer from ZnO to rGO. A single intense glow curve was recorded in rGo-ZnO for a dose range of 1-8kGy. The TL response curve of rGO-ZnO is found to be a simple glow curve structure, linear dependence over a dose range of 1-8kGy. The obtained ZnO/rGO composite could provide a facile and eco-friendly method for the development of graphene-based nanocomposites with promising applications in radiation dosimetry and antioxidant activities.

  3. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2.

    PubMed

    Lloyd, David; Liu, Xinghui; Christopher, Jason W; Cantley, Lauren; Wadehra, Anubhav; Kim, Brian L; Goldberg, Bennett B; Swan, Anna K; Bunch, J Scott

    2016-09-14

    We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

  4. Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs1-xNx by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about ximp1 = 0.38% and ximp2 = 0.76%. The GaAs1-xNx layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs1-xNx samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice by FLA for ximp1 = 0.38% and ximp2 = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowland, Clare E.; Fedin, Igor; Diroll, Benjamin T.

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology upmore » to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.« less

  6. Production of monoclonal antibodies specific for antigens derived from tissue of chinook salmon (Oncorhynchus tshawytscha) affected with plasmacytoid leukemia.

    PubMed

    Newbound, G C; Markham, R J; Speare, D J; Saksida, S M; Després, B M; Horney, B S; Kibenge, F S; Sheppard, J A; Wright, G M; Kent, M L

    1993-09-01

    Two distinct monoclonal antibodies (MAB) were prepared for testing with kidney, spleen, and retrobulbar tissue imprints made from chinook salmon (Oncorhynchus tshawytscha) affected with plasmacytoid leukemia. (PL). Hybridomas were prepared from mice immunized with whole and lysed cells purified from renal or retrobulbar PL-positive tissues, which had been obtained from naturally and experimentally infected fish from British Columbia, Canada. The MAB reacted with at least 4 morphologically different cell types; fluorescence was associated with the plasma membrane and cytoplasm. The MAB also reacted with kidney imprints made from chinook salmon affected with a PL-like lymphoproliferative disease in California, indicating that these 2 diseases might be caused by a similar agent. The MAB did not react with any of the kidney or spleen imprints made from wild chinook salmon collected from a river in Ontario, Canada.

  7. Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures

    NASA Astrophysics Data System (ADS)

    Aithal, Srivatsa; Dubowski, Jan J.

    2018-04-01

    Nanostructuring of semiconductor wafers with an atomic level depth resolution is a challenging task, primarily due to the limited availability of instruments for in situ monitoring of such processes. Conventional digital etching relies on calibration procedures and cumbersome diagnostics applied between or at the end of etching cycles. We have developed a photoluminescence (PL) based process for monitoring in situ digital photocorrosion (DPC) of GaAs/AlGaAs microstructures at rates below 0.2 nm per cycle. In this communication, we demonstrate that DPC of GaAs/AlGaAs microstructures could be monitored with open circuit potential (OCP) measured between the photocorroding surface of a microstructure and an Ag/AgCl reference electrode installed in the sample chamber. The excellent correlation between the position of both PL and OCP maxima indicates that the DPC process could be monitored in situ for materials that do not necessarily exhibit measurable PL emission.

  8. Impact of photoluminescence temperature and growth parameter on the exciton localized in BxGa1-xAs/GaAs epilayers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Hidouri, Tarek; Saidi, Faouzi; Maaref, Hassen; Rodriguez, Philippe; Auvray, Laurent

    2016-10-01

    In this work, BxGa1-xAs/GaAs epilayers with three different boron compositions were elaborated by metal organic chemical vapor deposition (MOCVD) on GaAs (001) substrate. Structural study using High resolution X-ray diffraction (HRXRD) spectroscopy and Atomic Force Microscopy (AFM) have been used to estimate the boron fraction. The luminescence keys were carried out as functions of temperature in the range 10-300 K, by the techniques of photoluminescence (PL). The low PL temperature has shown an abnormal emission appeared at low energy side witch attributed to the recombination through the deep levels. In all samples, the PL peak energy and the full width at half maximum (FWHM), present an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the Localized-state Ensemble model to explain the unusual photoluminescence behaviors. Electrical carriers generation, thermal escape, recapture, radiative and non-radiative lifetime are taken into account. The temperature-dependent photoluminescence measurements were found to be in reasonable agreement with the model of localized states. We controlled the evolution of such parameters versus composition by varying the V/III ratio to have a quantitative and qualitative understanding of the recombination mechanisms. At high temperature, the model can be approximated to the band-tail-state emission.

  9. Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases

    NASA Astrophysics Data System (ADS)

    Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei

    2017-09-01

    In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.

  10. Effect of calcination environments and plasma treatment on structural, optical and electrical properties of FTO transparent thin films

    NASA Astrophysics Data System (ADS)

    Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.

    2017-07-01

    The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).

  11. [Evaluation of the clinical results in patients with symptomatic partial tears of the anterior cruciate ligament diagnosed arthroscopically].

    PubMed

    Zeman, P; Cibulková, J; Nepraš, P; Koudela, K; Matějka, J

    2013-01-01

    The study presents a retrospective evaluation of clinical data and arthroscopic findings in a group of our patients with symptomatic knee instability due to a partial tear of the anterior cruciate ligament (ACL). The group included 31 patients diagnosed with symptomatic partial ACL tears, i.e. an isolated tear of the posterolateral (PL) or the anteromedial (AM) bundle. The patients' average age was 26.5 years. A side-to-side difference in ventral knee laxity was assessed using the anterior drawer test and the Lachman test under general anaesthesia before arthroscopy was commenced; rotational knee laxity was evaluated by the pivot shift test. An objective evaluation of side-to-side ventral laxity differences in both knees was performed on the GNRB® arthrometer with an applied pressure of 134 N and 250 N in the conscious patient. During arthroscopic examination, findings on the two ACL bundles were recorded. All 31 patients were diagnosed with symptomatic partial ACL tears, of them 22 had a PL bundle lesion and nine had an AM bundle tear. All patients with PL bundle lesions only reported problems in association with pivot sports, and all patients with AM bundle tears had problems regardless of any sports activities. In all patients with isolated AM bundle tears, the lesion was located close to its femoral attachment. In the patients with PL bundle tears, femoral location was found in 68% and tibial location in 32% of the patients. In the patients with partial PL bundle lesions, + and ++ results in the pivot shift test were recorded in 32% and 68% of the treated patients, respectively. The Lachman test showed + and ++ results in 71% and 9% of the patients, respectively. The anterior drawer test had negative results in 87% and positive + results in 13% of the patients. The side-to-side difference on the GNRB arthrometer ranged from 0.4 to 2.3 mm at a pressure of 134 N and from 1.2 to 4.2 mm at 250 N in the patients with isolated PL bundle lesions. In the patients with AM bundle lesions, the results were as follows: pivot shift test, 89% negative. 11% positive +; Lachman test, 56% negative, 44% positive +; anterior drawer test, 89% +, 11% ++; GNRB test, 2.2 to 4.4 mm at 134 N, and 4.3 to 7.1 at 250 N. The diagnosis of partial ACL lesions, i.e., isolated tears of the AM or the PL bundle, requires accurate knowledge of knee anatomy and its biomechanics. In accordance with other authors our results showed that an arthroscopic examination of both bundles of the ligament as well as knee laxity evaluation under general anaesthesia are most essential for making the definite diagnosis in partial ACL tears. They also confirmed that, in isolated AM bundle lesions, ventral laxity is present more often particularly at a higher degree of knee flexion while, in PL bundle lesions, rotational laxity is more frequent and ranges from 0 to 30 degrees of knee flexion. To make the definite diagnosis of partial ACL tears, patient medical history, clinical knee examination including instability type and degree assessment under general anaesthesia and, most importantly, arthroscopic findings on both ACL bundles are necessary.

  12. Positive Behavior Supports and Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Cheney, Douglas; Jewell, Kelly

    2012-01-01

    The 1990 reauthorization of PL 94-142, the Individuals with Disabilities Act (IDEA), emphasized the need for applied research in schools to prevent the development of emotional disturbance. Prevention research then led to mandates in IDEA 1997 that schools must develop positive behavior interventions and supports (PBIS) for children and youth…

  13. KCNQ1 p.L353L affects splicing and modifies the phenotype in a founder population with long QT syndrome type 1

    PubMed Central

    Kapplinger, Jamie D; Erickson, Anders; Asuri, Sirisha; Tester, David J; McIntosh, Sarah; Kerr, Charles R; Morrison, Julie; Tang, Anthony; Sanatani, Shubhayan; Arbour, Laura; Ackerman, Michael J

    2017-01-01

    Background Variable expressivity and incomplete penetrance between individuals with identical long QT syndrome (LQTS) causative mutations largely remain unexplained. Founder populations provide a unique opportunity to explore modifying genetic effects. We examined the role of a novel synonymous KCNQ1 p.L353L variant on the splicing of exon 8 and on heart rate corrected QT interval (QTc) in a population known to have a pathogenic LQTS type 1 (LQTS1) causative mutation, p.V205M, in KCNQ1-encoded Kv7.1. Methods 419 adults were genotyped for p.V205M, p.L353L and a previously described QTc modifier (KCNH2-p.K897T). Adjusted linear regression determined the effect of each variant on QTc, alone and in combination. In addition, peripheral blood RNA was extracted from three controls and three p.L353L-positive individuals. The mutant transcript levels were assessed via qPCR and normalised to overall KCNQ1 transcript levels to assess the effect on splicing. Results For women and men, respectively, p.L353L alone conferred a 10.0 (p=0.064) ms and 14.0 (p=0.014) ms increase in QTc and in men only a significant interaction effect in combination with the p.V205M (34.6 ms, p=0.003) resulting in a QTc of ∼500 ms. The mechanism of p.L353L's effect was attributed to approximately threefold increase in exon 8 exclusion resulting in ∼25% mutant transcripts of the total KCNQ1 transcript levels. Conclusions Our results provide the first evidence that synonymous variants outside the canonical splice sites in KCNQ1 can alter splicing and clinically impact phenotype. Through this mechanism, we identified that p.L353L can precipitate QT prolongation by itself and produce a clinically relevant interactive effect in conjunction with other LQTS variants. PMID:28264985

  14. Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXVIII. Factors predictive of thrombotic events.

    PubMed

    Ho, K T; Ahn, C W; Alarcón, G S; Baethge, B A; Tan, F K; Roseman, J; Bastian, H M; Fessler, B J; McGwin, G; Vilá, L M; Calvo-Alén, J; Reveille, J D

    2005-10-01

    To determine the relationship between the presence of antiphospholipid (aPL) antibodies, hydroxychloroquine use and the occurrence of thrombotic events in patients with systemic lupus erythematosus (SLE). Four hundred and forty-two SLE patients from the LUMINA (Lupus in Minorities: Nature vs Nurture) cohort, a multiethnic (Hispanics from Texas, n = 99 and Puerto Rico, n = 36; African Americans, n = 172; and Caucasians, n = 135) cohort, were studied by generalized estimating equation (GEE) to determine the relationship between antiphospholipid (aPL) antibodies (measured as IgG and IgM aPL antibodies and/or the lupus anticoagulant) at enrolment or historically prior to enrolment, hydroxychloroquine use (ever) and the occurrence of thrombotic (central and/or peripheral, arterial and/or venous) events after adjusting for known and possible confounders [socioeconomic-demographic features, smoking, disease activity and damage, serum cholesterol levels, anti-oxidized low-density lipoprotein IgG and IgM antibodies, and high-sensitivity (hs) C-reactive protein]. Postanalysis correlation between aPL and anticardiolipin (aCL) assays was attempted by performing aCL assays on random samples of patients whose aPL status was known. A number of clinical variables were significant in the univariable analyses; however, in the multivariable GEE analyses, only smoking [odds ratio (OR) 2.777, 95% confidence interval (CI) 1.317-5.852] and disease activity as measured by the SLAM (Systemic Lupus Activity Measure) (OR 1.099; 95% CI 1.053-1.147) were significant. In particular, hydroxychloroquine use, which appeared to be protective against thrombotic events in the univariable analyses, was not retained in the multivariable analyses. aPL antibodies were not significant in either analysis. Few additional aPL-positive patients emerged from the validation study. Smoking and disease activity emerged as important determinants in the occurrence of thrombotic events in our patients. Comprehensive treatment strategies should be directed to both smoking cessation and control of disease activity in patients with SLE.

  15. Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasenko, L.S.; Watkins, G.D.

    The dominant defect observed in the photoluminescence (PL) of room-temperature electron-irradiated ZnO by optical detection of electron paramagnetic resonance (ODEPR) is determined to be the positively charged oxygen vacancy (V{sub O}{sup +}). Its spectrum, labeled L3, was previously observed in a 4.2 K in situ irradiation study [Yu. V. Gorelkinskii and G. D. Watkins, Phys. Rev. B 69, 115212 (2004)], but it was thought there not to be stable at room temperature and was not identified. Here it is found to be stable to 400 deg. C, where it disappears. It is observed as a competing process (negative signal) tomore » the dominant PL band produced by the irradiation at {approx}700 nm, but is positive in a weaker band at {approx}600 nm. Models are presented for its electrical level position in the gap to explain the results. Two other ODEPR signals are also detected, one of which is tentatively identified as also associated with the oxygen vacancy.« less

  16. The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly.

    PubMed

    Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Maejima, Kensaku; Himeno, Misako; Senshu, Hiroko; Kawanishi, Takeshi; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-06-01

    Potexvirus cell-to-cell movement requires coat protein (CP) and movement proteins. In this study, mutations in two conserved in-frame AUG codons in the 5' region of the CP open reading frame of Plantago asiatica mosaic virus (PlAMV) were introduced, and virus accumulation of these mutants was analyzed in inoculated and upper noninoculated leaves. When CP was translated only from the second AUG codon, virus accumulation in inoculated leaves was lower than that of wild-type PlAMV, and the viral spread was impaired. Trans-complementation analysis showed that the leucine residue at the third position (Leu-3) of CP is important for cell-to-cell movement of PlAMV. The 14-amino-acid N-terminal region of CP was dispensable for virion formation. Immunoprecipitation assays conducted with an anti-TGBp1 antibody indicated that PlAMV CP interacts with TGBp1 in vivo and that this interaction is not affected by alanine substitution at Leu-3. These results support the concept that the N-terminal region of potexvirus CP can be separated into two distinct functional domains.

  17. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    PubMed

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts. © 2016 Elsevier Inc. All rights reserved.

  18. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-01

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available: A detailed synthesis procedure of DSPC-AgInTe2 and analytical data of AgInTe2 NCs. See DOI: 10.1039/c5nr07532g

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hssen, E-mail: fares.hssen@gmail.com; Férid, Mokhtar; Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn

    The melt quenching method is used to prepare tellurite glasses co-activated with erbium ions and silver nanoparticles (Ag NPs). The glass samples are characterized by x-ray diffraction, UV-vis-NIR absorption, transmission electron microscopy (TEM) imaging, and photoluminescence spectroscopy. The XRD pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from TEM micrograph. The absorption spectra reveal not only the peaks due to Er{sup 3+} ions, but also the surface plasmon resonance band of silver NPs in the 510–535 nm range. The J-O model has been applied to the room temperature absorption intensitiesmore » of Er{sup 3+} (4f{sup 11}) transitions to establish the so-called J-O intensity parameters: Ω{sub 2}, Ω{sub 4}, and Ω{sub 6}. The intensity parameters are used to determine the radiative decay rates (emission probabilities of transitions) and branching ratios of the Er{sup 3+} transitions from the excited state J manifolds to the lower-lying J' manifolds. Intensified of 1.53 μm band is obtained for the sample containing 0.5 mol. % of AgNO{sub 3} (Ag0.5 glass) using for excitation a laser operating at 980 nm. The simultaneous influence of the Ag NPs → Er{sup 3+} energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of both the Photoluminescence (PL) intensity and the PL lifetime relative to the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition, whereas the quenching is ascribed to the energy transfer from Er{sup 3+} ions to silver NPs. Based on the analysis of the temperature dependence of the PL intensity and decay time, we identified a weak back transfer process from Er to the glass host that makes the quenching of the PL intensity weak. Large magnitudes of calculated emission cross-section (σ{sub e}), effective bandwidth (Δλ{sub eff}), and bandwidth quality factor (FWHM × σ{sub e}) relatives to {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition in Er doped Ag0.5 glass have been shown. They indicate that this glass sample has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.« less

  20. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  1. Capelli bitableaux and Z-forms of general linear Lie superalgebras.

    PubMed Central

    Brini, A; Teolis, A G

    1990-01-01

    The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048

  2. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    NASA Astrophysics Data System (ADS)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  3. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri

    PubMed Central

    Nishihara, Masateru; Morii, Hiroyuki; Matsuno, Koji; Ohga, Mami; Stetter, Karl O.; Koga, Yosuke

    2002-01-01

    A choline-containing phospholipid (PL-4) in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997). The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography (TLC) followed by positive staining with Dragendorff-reagent and fast-atom bombardment–mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate). Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas–liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea. PMID:15803650

  4. Primary prophylaxis to prevent obstetric complications in asymptomatic women with antiphospholipid antibodies: a systematic review.

    PubMed

    Amengual, O; Fujita, D; Ota, E; Carmona, L; Oku, K; Sugiura-Ogasawara, M; Murashima, A; Atsumi, T

    2015-10-01

    Obstetric complications are common in patients with antiphospholipid syndrome. However, the impact of antiphosholipid antibodies (aPL) in the pregnancy outcomes of asymptomatic aPL carriers is uncertain. The aim of this systematic review is to assess whether primary prophylaxis is beneficial to prevent obstetric complications during pregnancy in asymptomatic women positive for aPL who have no history of recurrent pregnancy loss or intrauterine fetal death. Studies evaluating the effect of prophylactic treatment versus no treatment in asymptomatic pregnant aPL carriers were identified in an electronic database search. Design, population and outcome homogeneity of studies was assessed and meta-analysis was performed. The pooled Mantel-Haenszel relative risk of specific pregnancy outcomes was obtained using random effects models. Heterogeneity was measured with the I(2) statistic. All analyses were conducted using Review Manager 5.3. Data from five studies involving 154 pregnancies were included and three studies were meta-analysed. The risk ratio and 95% confidence interval (CI) of live birth rates, preterm birth, low birth weight and overall pregnancy complications in treated and untreated pregnancies were 1.14 (0.18-7.31); 1.71 (0.32-8.98); 0.98 (0.07-13.54) and 2.15 (0.63-7.33),respectively. Results from the meta-analysis revealed that prophylactic treatment with aspirin is not superior to placebo to prevent pregnancy complications in asymptomatic aPL carriers. This systematic review did not find evidence of the superiority of prophylactic treatment with aspirin compared to placebo or usual care to prevent unfavourable obstetric outcomes in otherwise healthy women with aPL during the first pregnancy. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Prominent blue emission through Tb3+ doped La2O3 nano-phosphors for white LEDs

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr; Srivastava, Amit; Mishra, S. K.; Singh, Jai

    2018-06-01

    In this article, we report the tunable luminescence emission of Tb3+ doped La2O3 nanophosphors synthesized by a facile and effective Polyol method. The structural and surface morphological studies have been carried out by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies elucidate the proper phase formation and the results emanate from Raman spectroscopy of the as synthesized nanophosphor affirms it. The optical properties of the as fabricated nanoparticles have been investigated by Raman and photoluminescence (PL) spectroscopy. The PL spectroscopy shows the occurrence of excitation peaks at 305, 350 and 375 nm for 543 nm emissions, correspond to transition 5D4 →7F5. Emission spectra with 305 nm excitation exhibits characteristic emission peaks of Tb3+ion at 472, 487, 543 and 580 nm. The intensity of emission increases with Tb3+ concentration and is most prominent for 7 at% Tb3+ ion. The characteristic emissions of Tb3+ ion owes to the transition in which intensities of blue and green emission are prominent. The dominant intensity has been found for 472 nm (for blue emission). Commission international d 'Eclairage (CIE) co-ordinates have found in the light blue to green region. The research work provides a new interesting insight dealing with tunable properties with Tb3+ doping in La2O3 nanophosphors, to be useful for display devices, solar cells, LEDs and optoelectronic devices.

  6. Structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor, synthesized using the solid-state reaction method, and its luminescence behavior.

    PubMed

    Tamrakar, Raunak Kumar; Bisen, D P; Brahme, Nameeta

    2016-02-01

    We report the synthesis and structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor. The sample was prepared using the conventional solid-state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er(3+) and Yb(3+) were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light-emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er(3+) and Yb(3+) -doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.

  7. Water- and humidity-enhanced UV detector by using p-type La-doped ZnO nanowires on flexible polyimide substrate.

    PubMed

    Hsu, Cheng-Liang; Li, Hsieh-Heng; Hsueh, Ting-Jen

    2013-11-13

    High-density La-doped ZnO nanowires (NWs) were grown hydrothermally on flexible polyimide substrate. The length and diameter of the NWs were around 860 nm and 80-160 nm, respectively. All XRD peaks of the La-doped sample shift to a larger angle. The strong PL peak of the La-doped sample is 380 nm, which is close to the 3.3 eV ZnO bandgap. That PL dominated indicates that the La-doped sample has a great amount of oxygen vacancies. The lattice constants ~0.514 nm of the ZnO:La NW were smaller when measured by HR-TEM. The EDX spectrum determined that the La-doped sample contains approximately 1.27 at % La. The La-doped sample was found to be p-type by Hall Effect measurement. The dark current of the p-ZnO:La NWs decreased with increased relative humidity (RH), while the photocurrent of the p-ZnO:La nanowires increased with increased RH. The higher RH environment was improved that UV response performance. Based on the highest 98% RH, the photocurrent/dark current ratio was around 47.73. The UV response of water drops on the p-ZnO:La NWs was around 2 orders compared to 40% RH. In a water environment, the photocurrent/dark current ratio of p-ZnO:La NWs was 212.1, which is the maximum UV response.

  8. [Rapid prenatal genetic diagnosis of a fetus with a high risk for Morquio A syndrome].

    PubMed

    Guo, Yi-bin; Ai, Yang; Zhao, Yan; Tang, Jia; Jiang, Wei-ying; Du, Min-lian; Ma, Hua-mei; Zhong, Yan-fang

    2012-04-01

    To provide rapid and accurate prenatal genetic diagnosis for a fetus with high risk of Morquio A syndrome. Based on ascertained etiology of the proband and genotypes of the parents, particular mutations of the GALNS gene were screened at 10th gestational week with amplification refractory mutation system (ARMS), denaturing high performance liquid chromatography (DHPLC), and direct DNA sequencing. DHPLC screening has identified abnormal double peaks in the PCR products of exons 1 and 10, whilst only a single peak was detected in normal controls. Amplification of ARMS specific primers derived a specific product for the fetus's gene, whilst no similar product was detected in normal controls. Sequencing of PCR products confirmed that exons 1 and 10 of the GALNS gene from the fetus contained a heterozygous paternal c.106-111 del (p.L36-L37 del) deletion and a heterozygous maternal c.1097 T>C (p.L366P) missense mutation, which resulted in a compound heterozygote status. The fetus was diagnosed with Morquio A syndrome and a genotype similar to the proband. Termination of the pregnancy was recommended. Combined ARMS, DHPLC and DNA sequencing are effective for rapid and accurate prenatal diagnosis for fetus with a high risk for Morquio A syndrome. Such methods are particularly suitable for early diagnosis when pathogenesis is clear. Furthermore, combined ARMS and DHPLC are suitable for rapid processing of large numbers of samples for the identification of new mutations.

  9. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ-ray and C5+ ion beam irradiation.

    PubMed

    Oza, Abha H; Dhoble, N S; Lochab, S P; Dhoble, S J

    2015-11-01

    The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy(3+) activated LiCaBO3 shows emission at 486 and 577 nm due to (4) F9/2 →(6) H15/2 and (4) F9/2 → (6) H13/2 transition, respectively, whereas the PL emission spectra of Ce(3+) activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce(3+) ion. The thermoluminescence study was also carried out for both these phosphors for γ-ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4-3.1 Rad dose γ-rays. Linear behaviour over this dose range was observed. Gamma ray-irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C(5+) ion beam exposure in the range of 3.75 × 10(12) - 7.5 × 10(13) ion cm(-2) fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training

    PubMed Central

    Thompson, Christopher; Wylie, Lee J.; Blackwell, Jamie R.; Fulford, Jonathan; Black, Matthew I.; Kelly, James; McDonagh, Sinead T. J.; Carter, James; Bailey, Stephen J.; Vanhatalo, Anni

    2017-01-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3−-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3−-rich beetroot juice (~13 mmol NO3−/day; SIT+BR); or 3) no training and NO3−-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training. PMID:27909231

  11. Mapping snow depth from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.

    2016-12-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.

  12. A photoluminescence, thermoluminescence and electron paramagnetic resonance study of EFG grown europium doped lithium fluoride (LiF) crystals

    NASA Astrophysics Data System (ADS)

    Seth, Pooja; Swati, G.; Haranath, D.; Rao, S. M. D.; Aggarwal, Shruti

    2018-07-01

    Europium (Eu) doped LiF crystals have been grown by the Edge-defined film fed growth (EFG) technique. The designing and installation of the furnace used for the growth of the crystals have been discussed in detail. In the present study, Eu (Eu2O3) has been doped in LiF in different concentration (0.02-0.2 wt %). X-ray diffractometry (XRD) and Energy Dispersive X-ray (EDX) spectroscopy confirms the incorporation of Eu in LiF. The influence of Eu on LiF has been investigated through photoluminescence (PL), thermoluminescence (TL) and electron paramagnetic resonance (EPR) in as-grown and annealed crystals. PL emission spectra shows the presence of both Eu3+ and Eu2+ form in the as-grown crystals which is confirmed by EPR results. Whereas, in annealed crystals, Eu is present predominantly as Eu2+ form. This suggests that growing crystals at high temperature (∼900 °C) in argon gas atmosphere through EFG technique favours the reduction of Eu3+ → Eu2+. This reduction phenomenon has been explained on the basis of charge compensation model. TL study of the LiF: Eu (0.02-0.2 wt %) crystals has been done after irradiation with Co60 gamma rays. In this study, it has been observed that the TL intensity as well as glow curve structure of LiF: Eu crystals are a strong function of Eu concentration. The maximum TL is observed at Eu concentration of 0.05 wt% at which a well defined glow curve structure with a prominent peak at 185 °C and a small peak at 253 °C. Beyond this concentration (0.05 wt %), TL intensity decreases due to aggregation of defects in the host. The peak at 185 °C in LiF: Eu (0.05 wt %) is certainly due to the presence of Eu2+ associated defects which is also supported by the PL spectra. It has been observed that Eu doping have a key role in creation of more defect levels which lead to the increased number of electron and hole traps. Further, trapping parameters are analysed using glow curve deconvolution method to have an insight study of TL phenomena. Further, TL glow curve structure of as-grown and annealed crystal are distinct which may be attributed to the nature of defect traps formed inside the LiF.

  13. Effect of Ga3+ and Gd3+ ions substitution on the structural and optical properties of Ce3+ -doped yttrium aluminium garnet phosphor nanopowders.

    PubMed

    Wako, A H; Dejene, F B; Swart, H C

    2016-11-01

    The structural and optical properties of commercially obtained Y 3 Al 5 O 12 :Ce 3 + phosphor were investigated by replacing Al 3 + with Ga 3 + and Y 3 + with Gd 3 + in the Y 3 Al 5 O 12 :Ce 3 + structure to form Y 3 (Al,Ga) 5 O 12 :Ce 3 + and (Y,Gd) 3 Al 5 O 12 :Ce 3 + . X-Ray diffraction (XRD) results showed slight 2-theta peak shifts to lower angles when Ga 3 + was used and to higher angles when Gd 3 + was used, with respect to peaks from Y 3 Al 5 O 12 :Ce 3 + and JCPDS card no. 73-1370. This could be attributed to induced crystal-field effects due to the different ionic sizes of Ga 3 + and Gd 3 + compared with Al 3 + and Y 3 + . The photoluminescence (PL) spectra showed broad excitation from 350 to 550 nm with a maximum at 472 nm, and broad emission bands from 500 to 650 nm, centred at 578 nm for Y 3 Al 5 O 12 :Ce 3 + arising from the 5d → 4f transition of Ce 3 + . PL revealed a blue shift for Ga 3 + substitution and a red shift for Gd 3 + substitution. UV-Vis showed two absorption peaks at 357 and 457 nm for Y 3 Al 5 O 12 :Ce 3 + , with peaks shifting to 432 nm for Ga 3 + and 460 nm for Gd 3 + substitutions. Changes in the trap levels or in the depth and number of traps due to Ce 3 + were analysed using thermoluminescence (TL) spectroscopy. This revealed the existence of shallow and deep traps. It was observed that Ga 3 + substitution contributes to the shallowest traps at 74 °C and fewer deep traps at 163 °C, followed by Gd 3 + with shallow traps at 87 °C and deep traps at 146 °C. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-L-lysine on polystyrene sulfate microspheres.

    PubMed

    Eckenrode, Heather M; Dai, Hai-Lung

    2004-10-12

    A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society

  15. Precision Landing and Hazard Avoidance Doman

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.

  16. Contribution of dot-blot assay to the diagnosis and management of myositis: a three-year practice at a university hospital centre.

    PubMed

    Martel, Clothilde; Vignaud, Guillaume; Liozon, Eric; Magy, Laurent; Gallouedec, Gael; Ly, Kim; Bezanahary, Holly; Cypierre, Anne; Lapébie, François-Xavier; Palat, Sylvain; Gondran, Guillaume; Jauberteau, Marie-Odile; Fauchais, Anne-Laure

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases with wide clinical spectrum that may lead to delayed diagnosis. The aim of this study was to examine the impact of IIM-specific dot-blot assay on diagnostic process of patients presenting with muscular or systemic symptoms evocating of IIM. We collected all the prescriptions of an IIM specific dot-blot assay (8 autoantigens including Jo-1, PL-7, PL-12, SRP, Mi-2, Ku, PM/Scl and Scl-70) over a 38-month period. 316 myositis dot-blot assays (MSD) were performed in 274 patients (156 women, mean age 53±10.6 years) referring for muscular and/or systemic symptoms suggesting IIM. The timing of dot prescription through the diagnostic process was highly variable: without (35%), concomitantly (16%) or after electromyographic studies (35%). Fifty-nine patients (22%) had IIM according to Bohan and Peter's criteria. Among them, 29 (49%) had positive dot (8 Jo-1, 6 PM-Scl, 5 PL-12, 5 SRP, 2 Mi-2, 2 PL-7 and 1 Ku). Various other diagnoses were performed including 35 autoimmune disease or granulomatosis (12%), 19 inflammatory rheumatic disease (7%), 16 non inflammatory muscular disorders (6%), 10 drug-induced myalgia (4%), 11 infectious myositis (4%). Except 11 borderline SRP results and one transient PM-Scl, MSD was positive only in one case of IIM. Dot allowed clinicians to correct diagnosis in 4 cases and improved the diagnosis of IIM subtypes in 4 cases. This study reflects the interest of myositis dot in the rapid diagnosis process of patients with non-specific muscular symptoms leading to various diagnoses including IIM.

  17. The use of droplet digital PCR in liquid biopsies: A highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fluid.

    PubMed

    Hiemcke-Jiwa, Laura S; Minnema, Monique C; Radersma-van Loon, Joyce H; Jiwa, N Mehdi; de Boer, Mirthe; Leguit, Roos J; de Weger, Roel A; Huibers, Manon M H

    2018-04-01

    The gold standard for diagnosis of central nervous system lymphomas still regards a stereotactic brain biopsy, with the risk of major complications for the patient. As tumor cells can be detected in cerebrospinal fluid (CSF), CSF analysis can be used as an alternative. In this respect, mutation analysis in CSF can be of added value to other diagnostic parameters such a cytomorphology and clonality analysis. A well-known example of targeted mutation analysis entails MYD88 p.(L265P) detection, which is present in the majority of Bing Neel syndrome and primary central nervous system lymphoma (PCNSL) patients. Unfortunately, tumor yield in CSF can be very low. Therefore, use of the highly sensitive droplet digital PCR (ddPCR) might be a suitable analysis strategy for targeted mutation detection. We analyzed 26 formalin fixed paraffin embedded (FFPE) samples (8 positive and 18 negative for MYD88 p.(L265P) mutation) by ddPCR, of which the results were compared with next generation sequencing (NGS). Subsequently, 32 CSF samples were analyzed by ddPCR. ddPCR and NGS results on FFPE material showed 100% concordance. Among the 32 CSF samples, 9 belonged to patients with lymphoplasmacytic lymphoma (LPL) and clinical suspicion of Bing Neel syndrome, and 3 belonged to patients with PCNSL. Nine of these samples tested positive for MYD88 p.(L265P) (8 LPL and 1 PCNSL). This study shows that sensitive MYD88 mutation analysis by ddPCR in CSF is highly reliable and can be applied even when DNA input is low. Therefore, ddPCR is of added value to current diagnostic parameters, especially when the available amount of DNA is limited. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  19. NMRNet: A deep learning approach to automated peak picking of protein NMR spectra.

    PubMed

    Klukowski, Piotr; Augoff, Michal; Zieba, Maciej; Drwal, Maciej; Gonczarek, Adam; Walczak, Michal J

    2018-03-14

    Automated selection of signals in protein NMR spectra, known as peak picking, has been studied for over 20 years, nevertheless existing peak picking methods are still largely deficient. Accurate and precise automated peak picking would accelerate the structure calculation, and analysis of dynamics and interactions of macromolecules. Recent advancement in handling big data, together with an outburst of machine learning techniques, offer an opportunity to tackle the peak picking problem substantially faster than manual picking and on par with human accuracy. In particular, deep learning has proven to systematically achieve human-level performance in various recognition tasks, and thus emerges as an ideal tool to address automated identification of NMR signals. We have applied a convolutional neural network for visual analysis of multidimensional NMR spectra. A comprehensive test on 31 manually-annotated spectra has demonstrated top-tier average precision (AP) of 0.9596, 0.9058 and 0.8271 for backbone, side-chain and NOESY spectra, respectively. Furthermore, a combination of extracted peak lists with automated assignment routine, FLYA, outperformed other methods, including the manual one, and led to correct resonance assignment at the levels of 90.40%, 89.90% and 90.20% for three benchmark proteins. The proposed model is a part of a Dumpling software (platform for protein NMR data analysis), and is available at https://dumpling.bio/. michaljerzywalczak@gmail.compiotr.klukowski@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  20. The effects of vibronic coupling on the photophysics of pi-conjugated oligomers and polymers

    NASA Astrophysics Data System (ADS)

    Yamagata, Hajime

    A theoretical model describing photophysics of pi-conjugated aggregates, such as molecular crystals and polymer thin films, is developed. A Holstein-like Hamiltonian expressed with a multi-particle basis set is used to evaluate absorption and photoluminescence (PL) spectra. An analysis with line strength ratio proves to be a powerful diagnostic tool to obtain additional spectral signatures with which to distinguish H- vs. J-aggregation. For the H-aggregates absorption peak ratio, A 0-0/A 0-1, diminishes as the excitonic coupling increases. Also the PL peak ratio, I 0-0/I 0-1, is zero at T=0K with no disorder and the value increases as temperature and disorder increase. By contrast the J-aggregates show the opposite trends. Furthermore we will show the PL peak ratio provides a direct measurement of the exciton coherence length for a linear J-aggregate and could be expressed as I0-0/I 0-1 = Ncoh/gamma2. We will also show that it is inversely proportional to square root of temperature (T-1/2). Applying our theory to the herringbone style oligoacene molecular crystals, we show the lowest singlet exciton states are highly influenced by charge transfer (CT) states and the well known energetic gap in two polarized absorption spectra, so called Davydov Splitting (DS), is a product of the interaction. We have successfully reproduced the DS for all three oligoacenes without any free parameters. Inspired by the CT contribution in oligoacene crystals, we further develop Wannier-Mott exciton model and apply to disorder-free polydiacetylene (PDA) quantum wires, which have been shown to be extremely emissive. We will show the quantum wire is a J-aggregate and we once again derive the peak ratio and the coherence size relation, I0-0/I 0-1 = kappaNcoh/gamma 2, where kappa is a prefactor close to unity. Typical photophysical properties of polymer pi-stacks such as those occurring in P3HT films are well explained by the simple linear H-aggregate model. However several groups have started seeing more J-like behaviors amongst "improved" (less disordered) polymer films such as increased values of A 0-0/A 0-1 and I 0-0/I 0-1 and higher radiative rates. With the new perception of a single polymer chain being a J-aggregate, we apply our new theory to pi-stack of polymer chains. We call this HJ-aggregate model since the interchain interaction induces H-aggregation. In the study we show a competition between intrachain and interchain interactions that leads to unique photophysical features. The new model is capable of explaining a wide range of polymer systems and most importantly the theory uncovers the mechanism of the improved polymer films; reducing disorder urges increasing intrachain reactions within each chain, thus enhancing more J-like spectral features.

Top