Sample records for pl peak shift

  1. Strong photoluminescence characteristics of sulforhodamine B attached on photonic crystal

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Kang, Kwang-Sun

    2014-10-01

    The optical properties of sulforhodamine B (SRH) impregnated in photonic crystal by two step synthetic processes including a urethane bond formation between a 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) and a SRH with elevated temperature in pyridine and hydrolysis-condensation reactions between synthesized ICPTES/SRH (ICPSRH) and tetraethoxyorthosilicate (TEOS) in NH4OH. The monodisperse silica spheres impregnated the ICPSRH (ICPSRHS) are fabricated. The reduction of the absorption peak at 2270 cm-1 representing asymmetric stretching vibration of -N=C=O indicates the progress of the reaction and new absorption peak at 1712 cm-1 characterizing -C=O stretching vibration indicates the formation of urethane bond. The UV-visible absorption spectra show the broadened spectral line width by intermolecular interaction. The photoluminescence (PL) peak of the SRH in methanol shows a hypsochromic shift with the increase the excitation wavelength. However, the PL peak for the ICPSRH exhibits a bathochromic shift as the excitation wavelength increases. The PL peak for the ICPSRH shows no hypsochromic or bathochromic shift. The PL peaks for SRH in methanol, ICPSRH and ICPSRHS are at 568, 598 and 572 nm, respectively. The main cause of the PL peak shift is due to the intermolecular interaction.

  2. Momentum peak shift and width of longitudinal momentum distribution of projectilelike fragments produced at E =290 MeV /nucleon

    NASA Astrophysics Data System (ADS)

    Momota, S.; Kanazawa, M.; Kitagawa, A.; Sato, S.

    2018-04-01

    Longitudinal momentum (PL) distributions of projectilelike fragments produced at E =290 MeV /nucleon are investigated. PL distributions of fragments produced by Ar and Kr beams with a wide variety of targets (C, Al, Nb, Tb, and Au) were measured using the fragment separator at HIMAC. PL distributions observed for fragments with a wide range of mass losses Δ A (1-30 for Ar beam and 1-64 for Kr beam), show a slightly, but definitely asymmetric nature. The peak shift and width were obtained from the observed PL distributions. No significant target dependence was found in either the peak shift or width. For the practical application, the variation in momentum peak shift with fragment mass (AF) was represented by a parabolic function. The width on the high-PL side (σHigh) is well reproduced by the Goldhaber formula, which is obtained from the contribution of the Fermi momentum. The behavior of the reduced width, σ0, obtained from σHigh via the Goldhaber formulation, is consistent with the mass-dependent Fermi momentum of a nucleon. The width on the low-PL side (σLow) is markedly larger than σHigh and exhibits a clear AF dependence.

  3. A new approach for white organic light-emitting diodes of single emitting layer using large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Kim, Seungho; Lee, Younggu; Park, Jongwook

    2014-08-01

    DPPZ showed UV-Vis. and PL maximum values of 412 and 638 nm, meaning the large stokes shift. Blue host compound, TAT was synthesized and used for co-mixed white emission. TAT exhibited UV-Vis. and PL maximum values of 403 nm and 445 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TAT to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 449 and 631 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 457 and 634 nm peaks and two separate EL peaks, respectively. As the operation voltage is increased from 7 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.29 cd/A, 0.14 lm/W, and CIE (0.325, 0.195) at 7 V.

  4. Femtosecond transient photoluminescence of the substituted poly(diphenylacetulene)s.

    NASA Astrophysics Data System (ADS)

    Piskun, N. V.; Wang, D. K.; Lim, H.; Epstein, A. J.; Vanwoerkom, L. D.; Gustafson, T. L.

    2000-03-01

    We present the results of a femtosecond transient photoluminescence (PL) study of solutions of two derivatives of substituted poly(diphenylacetylene) using an up-conversion technique. n-Butyl (nBu) and p-carbazole (Cz) substituted poly(diphenylacetylene), PDPA-nBu and PDPA-Cz respectively, have band gaps determined by maxima in the slope of absorption vs. energy of 2.75 eV and 2.63 eV. The steady state emission peaks are at 2.4 eV for PDPA-nBu and at 2.3 eV for PDPA-Cz respectively. The PL peak for PDPA-Cz is red shifted in comparison to the PL peak for PDPA-nBu. Roles of phenyl groups, electron donating effect of the carbazole side units and planarity of the backbone are discussed. Exciting at 3.1 eV, the fs PL shows a faster decay for PDPA-Cz than that for PDPA-nBu, in accord with the decrease of PL quantum efficiency of PDPA-Cz. The 200 fs - 80 ps PL(t) agrees with ~1 ns lifetime. The PDPA-Cz has larger red shift in the 0.2-20 ps time frame. The origin of that shift will be discussed. This work is supported in part by ONR.

  5. A new approach way for white organic light-emitting diodes based on single emitting layer and large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Shin, Yunseop; Lee, Jiwon; Shin, Hwangyu; Park, Jongwook

    2014-07-01

    New red dopant, DPPZ based on porphyrin moiety was synthesized. DPPZ showed UV-Vis and PL maximum values of 412 and 638 nm, indicating the large stokes shift. New blue host compound, TATa was also synthesized and used for co-mixed white emission. TATa exhibited UV-Vis. and PL maximum values of 403 nm and 463 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TATa to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 466 and 638 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 481 and 646 nm peaks and two separate EL peaks. As the operation voltage is increased from 8 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.041 cd/A, 0.018 Im/W, and CIE (0.457, 0.331) at 8 V.

  6. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    NASA Astrophysics Data System (ADS)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  7. Redshift and blueshift of GaNAs/GaAs multiple quantum wells induced by rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Sun, Yijun; Cheng, Zhiyuan; Zhou, Qiang; Sun, Ying; Sun, Jiabao; Liu, Yanhua; Wang, Meifang; Cao, Zhen; Ye, Zhi; Xu, Mingsheng; Ding, Yong; Chen, Peng; Heuken, Michael; Egawa, Takashi

    2018-02-01

    The effects of rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs multiple quantum wells (MQWs) grown by chemical beam epitaxy (CBE) are studied by photoluminescence (PL) at 77 K. The results show that the optical quality of the MQWs improves significantly after RTA. With increasing RTA temperature, PL peak energy of the MQWs redshifts below 1023 K, while it blueshifts above 1023 K. Two competitive processes which occur simultaneously during RTA result in redshift at low temperature and blueshift at high temperature. It is also found that PL peak energy shift can be explained neither by nitrogen diffusion out of quantum wells nor by nitrogen reorganization inside quantum wells. PL peak energy shift can be quantitatively explained by a modified recombination coupling model in which redshift nonradiative recombination and blueshift nonradiative recombination coexist. The results obtained have significant implication on the growth and RTA of GaNAs material for high performance optoelectronic device application.

  8. Effects of Pressure on Optically Active Deep Levels in Phosphorus Doped ZnSe

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Iota, V.

    1998-03-01

    We report high pressure photoluminescence (PL) and PL-excitation (PLE) studies at 8K of the 'midgap' emission in P-doped ZnSe using a diamond-cell with He medium. The dominant emission at low pressure is due to donor-acceptor-pair (DAP) transitions between shallow donors and deep trigonally relaxed P_Se acceptors.(J. Davies, et al., J. Luminescence 18/19, 322 (1979)) Its PL and PLE peaks shift by 8.2meV/kbar and 5.9meV/kbar, respectively -- Stokes shift decreasing with pressure. At 35kbar a new PL band, shifting to lower energy (-5.4meV/kbar), emerges from above the absorption edge, and concurrently the original DAP PL quenches. This shows that a resonant level, a deep donor or possibly a P_Se antibonding state,(R. Watts, et al., Phys. Rev. B3), 404 (1971) crosses the conduction edge into the gap. A third PL band is seen only with internse UV excitation. It occurs initially as a high energy shoulder of the original DAP peak, but shifts more rapidly upward (9.4meV/kbar) until it crosses the edge and quenches at 40kbar. We discuss candidates for this band, including donor-P_Se complexes, and we compare our results to similar work on the Zn vacancy in ZnSe. (figures)

  9. Excitation-Power Dependence of the Near Band-Edge PL Spectra of CdMnTe with High Mn Concentrations

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho; Park, Hyoyeol

    2011-12-01

    Temperature and excitation power dependences of photoluminescence (PL) measurements were studied for the CdMnTe crystal grown by the vertical Bridgman method. The near band-edge and intra-Mn2+ emissions were investigated as a function of temperature. The observed band-edge peak of the PL spectrum showed a clear blue-shift with decreasing temperature. However, the peak energy of the intra-Mn2+ transition did not decrease monotonically with changing temperature, as can be seen above 70 K. With increasing the excitation power, the intensity of the emission peak was increased.

  10. Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra.

    PubMed

    Christopher, Jason W; Goldberg, Bennett B; Swan, Anna K

    2017-10-25

    Monolayer molybdenum disulfide (MoS 2 ) has emerged as a model system for studying many-body physics because the low dimensionality reduces screening leading to tightly bound states stable at room temperature. Further, the many-body states possess a pseudo-spin degree of freedom that corresponds with the two direct-gap valleys of the band structure, which can be optically manipulated. Here we focus on one bound state, the negatively charged trion. Unlike excitons, trions can radiatively decay with non-zero momentum by kicking out an electron, resulting in an asymmetric trion photoluminescence (PL) peak with a long low-energy tail and peak position that differs from the zero momentum trion energy. The asymmetry of the trion PL peak and resulting peak red-shift depends both on the trion size and a temperature-dependent contribution. Ignoring the trion asymmetry will result in over estimating the trion binding energy by nearly 20 meV at room temperature. We analyze the temperature-dependent PL to reveal the effective trion size, consistent with the literature, and the temperature dependence of the band gap and spin-orbit splitting of the valence band. This is the first time the temperature-dependence of the trion PL has been analyzed with such detail in any system.

  11. Photoluminescence spectral reliance on aggregation order of 1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole.

    PubMed

    Chen, Junwu; Xu, Bin; Yang, Kaixia; Cao, Yong; Sung, Herman H Y; Williams, Ian D; Tang, Ben Zhong

    2005-09-15

    1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole (1) was prepared and characterized crystallographically. Silole 1 exhibited aggregation-induced emission (AIE) behavior like other 2,3,4,5-tetraphenylsiloles. Unexpectedly, aggregates formed in water/acetone (6:4 by volume) mixture emitted a blue light that peaked at 474 nm, while aggregates formed in the mixtures with higher water fractions emitted green light that peaked at 500 nm. Transmission electron microscopy demonstrated that the aggregates formed in the mixture with water fraction of 60% were single crystals, while aggregates that formed in the mixture with water fraction of 90% were irregular and poorly ordered particles. The unusual PL spectral reliance on aggregation order was further confirmed by PL emissions of macroscopic crystal powders and amorphous powders of the silole in the dry state. PL spectral blue shifting was observed upon aging of the poorly ordered aggregates formed in mixtures with water fractions of 70-90%, and they finally exhibited the same blue emission as the crystalline aggregates. The as-deposited thin solid film was amorphous and it could be transformed to a transparent crystalline film upon treatment in the vapor of an ethanol/water (1:1 by volume) mixture, along with PL spectral blue shifting due to changing of aggregation order. It was also found that the crystalline film showed a blue-shifted absorption spectrum relative to the amorphous film and the shift of the absorption edge of the spectra could match that of corresponding PL spectra. The FT-IR spectrum of crystal powders of 1 displayed more vibration modes compared with that of amorphous powders, suggesting the existence of different pi-overlaps or different molecular conformations. The crystals of 1-methyl-1,2,3,4,5-pentaphenylsilole and hexaphenylsilole also showed blue-shifted PL emissions of their amorphous solids, with a comparable PL spectral shift of 1. Developing of a silole solution on a TLC plate readily brought about an amorphous thin layer. Our results suggest that crystalline films of AIE-active siloles are potential emissive layers for efficient blue OLEDs with stable color and long lifetime.

  12. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    NASA Astrophysics Data System (ADS)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  13. The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, C. M.; Huang, X. Y.; Lei, M. Y.

    2017-01-01

    In this paper, ZnO-MoS2-FT (FT is the fabrication temperature of MoS2) core shell nano-material samples (with ZnO as a core and MoS2 as a shell material) were fabricated on ITO substrate using hydrothermal method. The crystal structure, morphology, optical absorption and photoluminescence (PL) of samples were investigated. Compared with that of pure ZnO nanorods, ZnO-MoS2-FT samples show an enhanced light absorption. In addition, ultraviolet (UV) and visible (Vis) PL intensity of ZnO-MoS2-FT samples excited by 325 nm laser are greatly weakened. The UV PL peak position is not changed obviously. However, the Vis PL peak position is changed visibly. The Vis PL of ZnO-MoS2-FT samples under UV excitation indicates that the ratio of oxygen interstitial to oxygen vacancy is decreased. The suppression of UV PL of ZnO-MoS2-FT samples may be related to the weakening of crystal quality of ZnO, easier separation of electron-hole pairs, enhancement of light absorption, and newly introduced defects in the interface between ZnO and MoS2. Under 514 nm laser excitation, the PL peak position of ZnO-MoS2-FT samples has a red shift with FT being increased from 80 to 160 °C. The influence of excitation power (EP) on the PL of ZnO-MoS2-FT samples was also investigated. The PL of ZnO-MoS2-FT samples have a red shift with EP being increased. This may be due to the sample temperature is increased with EP, resulting an enhancement of electron-phonon interaction. A schematic diagram of charge generation and transfer is presented to understand the mechanism of PL of ZnO-MoS2 under UV and Vis excitation.

  14. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  15. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Al-Heuseen, K.; Hashim, M. R.; Ali, N. K.

    2011-05-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2SO 4:H 2O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2H 5OH.

  16. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  17. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2008-09-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions ( \\chi _{O_2 } =0 , 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at \\chi _{O_2 } =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (~one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm-1) in the spectral range of their PL emission, attractive for possible integrated optics devices.

  18. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The effects of different annealing conditions on the photoluminescence of nanoporous alumina film are reasonably explained.

  19. Optical studies of CdSe/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Kushwaha, Kamal Kumar; Ramrakhaini, Meera

    2018-05-01

    The nanocomposite films of CdSe nanocrystals in polyvinyl alcohol (PVA) matrix were synthesized by environmental friendly chemical method. These composites were characterized by X-ray diffraction which indicates the hexagonal crystalline structure of CdSe with crystal size up to a few nm. The crystal size is found to decrease by increasing PVA Concentration. The photoluminescence (PL) characteristics of these composite films with varying concentration of PVA as well as Cd2+ content have been investigated. The PL peak of CdSe was observed at 510 nm and higher intensity is observed by increasing PVA concentration without any change in position of PL peak. Due to proper passivation of surface states non-radiative transition are reduced which enhance the PL intensity. By increasing concentration of Cd2+ content in the CdSe/PVA nanocomposite films, smaller CdSe nanocrystals were obtained giving higher intensity and blue shift in the PL peak due to enhanced oscillator strength and quantum confinement effect. The PL peak in green and blue region makes these composite films promising materials for optical display devices. The Refractive index of these composites was also measured at sodium line with the help of Abee's refractometer and was found in the range of 2.20-2.45. It is seen that refractive index varies with polymer concentration. This may be useful for their potential application in anti-reflection coating, display devices and optical sensors.

  20. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  1. Rethinking the theoretical description of photoluminescence in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  2. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  3. Atmospheric pressure-MOVPE growth of GaSb/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Tile, Ngcali; Ahia, Chinedu C.; Olivier, Jaco; Botha, Johannes Reinhardt

    2018-04-01

    This study focuses on the growth of GaSb/GaAs quantum dots (QD) using an atmospheric pressure MOVPE system. For the best uncapped dots, the average dot height, base diameter and density are 5 nm, 45 nm and 4.5×1010 cm-2, respectively. Capping of GaSb QDs at high temperatures caused flattening and formation of thin inhomogeneous GaSb layer inside GaAs resulting in no obvious QD PL peak. Capping at low temperatures lead to the formation of dot-like features and a wetting layer (WL) with distinct PL peaks for QD and WL at 1097 nm and 983 nm respectively. Some of the dot-like features had voids. An increase in excitation power caused the QD and WL peaks to shift to higher energies. This is attributed to electrostatic band bending leading to triangular potential wells, typical of type-II alignment between GaAs and strained GaSb. Variable temperature PL measurements of the QD sample showed the decrease in the intensity of the WL peak to be faster than that of the QD peak as the temperature increased.

  4. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport.

    PubMed

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A; Contreras-Puente, Gerardo

    2013-03-15

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.

  5. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport

    PubMed Central

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B. Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A.; Contreras-Puente, Gerardo

    2013-01-01

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case. PMID:28809356

  6. Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Sun Gyu; Youn, Jong Won; Lee, Yongjun; Kim, Jeongyong; Joo, Jinsoo

    2018-05-01

    Two-dimensional (2D) semiconducting MoS2 and WSe2 flakes grown by chemical vapor deposition were mechanically hybridized. A hexagonal boron nitride (h-BN) dielectric flake was inserted between MoS2 and WSe2 flakes to investigate the nanoscale optical properties of 2D van der Waals hybrid nanostructures. The fabricated MoS2/WSe2 and MoS2/h-BN/WSe2 van der Waals hybrid nanostructures were loaded on a periodic gold nanopost (Au-NPo) array to study energy and charge transfer effects at the surface plasmon resonance (SPR) condition. Nanoscale photoluminescence (PL) spectra of the 2D hybrid nanostructures were measured using a high-resolution laser confocal microscope (LCM). A shift of the LCM PL peak of the MoS2/WSe2 n-p hybrid nanostructures was observed owing to the charge transfer. In contrast, the shift of the LCM PL peak of the MoS2/h-BN/WSe2 n-insulator-p hybrid nanostructure was not considerable, as the inserted h-BN dielectric layer prevented the charge transfer. The intensity of the LCM PL peak of the MoS2/h-BN/WSe2 hybrid nanostructure considerably increased once the nanostructure was loaded on the Au-NPo array, owing to the energy transfer between the 2D materials and the Au-NPo array at the SPR condition, which was confirmed by the increase in the LCM Raman intensity.

  7. Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    PubMed Central

    Wang, Rui; Lu, Fen; Fan, Wei Jun; Liu, Chong Yang; Loh, Ter-Hoe; Nguyen, Hoai Son; Narayanan, Balasubramanian

    2007-01-01

    Si/Si0.66Ge0.34coupled quantum well (CQW) structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD) system. The samples were characterized using high resolution x-ray diffraction (HRXRD), cross-sectional transmission electron microscopy (XTEM) and photoluminescence (PL) spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.

  8. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

    PubMed

    Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru

    2014-01-31

    Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.

  9. Conformation Effects on the Photoluminescence Behavior of Anchored MEH-PPV Pancakes and Brushes

    NASA Astrophysics Data System (ADS)

    Shih, Kuo Sheng; Chen, Po-Tsun; Yang, Arnold C.-M.

    2012-02-01

    Single molecular layer of poly[2-methoxy-5-(2'-ethylhexyl)oxy)-1,4- phenylenevinylene] (MEH-PPV) grafted on primed silicon wafer were synthesized, forming brushes (chain spacing 0.54 nm via graft-from) or pancakes (˜ 7nm to 34 nm via graft-to). For the tight-packed brushes, the PL emission peak, residing in the range from 434 nm to 550 nm depending on the chain length, was generally unchanged when transferring between the dry and solvent immersion states. However, for the pancakes, the emission peak blue-shifted dramatically (up to 100 nm) when dried in the air relative to that in the solvent. These shifts were fully reversible in the dry-wet cycles. The large blue shifts of the anchored pancakes were attributed to the mechanical stretching of entangled MEH-PPV segments in contact with substrate upon solvent loss. In contrast, the blue shifts disappeared and small red shifts emerged instead for extremely slowly drying (24 hrs drying time), revealing the stress-relaxation pathways in the equilibrium conditions. The drying-induced blue shift was also observed in the un-anchored drop-casting samples but the reversibility vanished. Finally, a large enhancement of PL intensity was accompanied with the blue shifts, manifesting the effect of the molecular constraints.

  10. Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides.

    PubMed

    Jeong, Hyun; Oh, Hye Min; Gokarna, Anisha; Kim, Hyun; Yun, Seok Joon; Han, Gang Hee; Jeong, Mun Seok; Lee, Young Hee; Lerondel, Gilles

    2017-05-01

    This paper reports on the integration of freestanding transition metal dichalcogenides (TMDs). Monolayer (1-L) MoS 2 , WS 2 , and WSe 2 as representative TMDs are transferred on ZnO nanorods (NRs), used here as nanostructured substrates. The photoluminescence (PL) spectra of 1-L TMDs on NRs show a giant PL intensity enhancement, compared with those of 1-L TMDs on SiO 2 . The strong increases in Raman and PL intensities, along with the characteristic peak shifts, confirm the absence of stress in the TMDs on NRs. In depth analysis of the PL emission also reveals that the ratio between the exciton and trion peak intensity is almost not modified after transfer. The latter shows that the effect of charge transfer between the 1-L TMDs and ZnO NRs is here negligible. Furthermore, confocal PL and Raman spectroscopy reveal a fairly consistent distribution of PL and Raman intensities. These observations are in agreement with a very limited points contact between the support and the 1-L TMDs. The entire process reported here is scalable and may pave the way for the development of very efficient ultrathin optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.

    PubMed

    Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain

    2016-04-01

    In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices.

  12. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  13. Strain Dependence of Photoluminescense of Individual Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram

    2007-01-01

    We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.

  14. Potassium doping: Tuning the optical properties of graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fuli; Li, Xueming, E-mail: lxmscience@163.com; Lu, Chaoyu

    2016-07-15

    Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nmmore » which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.« less

  15. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  16. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.

    PubMed

    Tiwari, A; Dhoble, S J; Kher, R S

    2015-11-01

    Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  18. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy.

    PubMed

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-03-30

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the In x Ga 1-x N/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E 2 (high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the In x Ga 1-x N/GaN MQWs active layer.

  19. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy

    PubMed Central

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-01-01

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the InxGa1−xN/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E2(high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the InxGa1−xN/GaN MQWs active layer. PMID:28358119

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sarla; Vijay, Y. K.; Vyas, Rishi

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag{sup +12} ions at different fluences varying from 1 Multiplication-Sign 10{sup 11} to 1 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increasemore » up to a critical fluence and then found to be suppressed for higher fluence (1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.« less

  1. Ag+12 ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Sharma, Sarla; Vyas, Rishi; Vijay, Y. K.

    2013-02-01

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag+12 ions at different fluences varying from 1×1011 to 1×1013 ions/cm2. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1×1012 ion/cm2). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  2. Carbon as a source for yellow luminescence in GaN: Isolated C{sub N} defect or its complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christenson, Sayre G.; Xie, Weiyu; Sun, Y. Y., E-mail: suny4@rpi.edu

    2015-10-07

    We study three carbon defects in GaN, isolated C{sub N} and its two complexes with donors C{sub N}–O{sub N}, and C{sub N}–Si{sub Ga}, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated C{sub N} defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that ofmore » the C{sub N} defect. The role of the positively charged donors (O{sub N} or Si{sub Ga}) next to C{sub N} is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated C{sub N}. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated C{sub N} defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes.« less

  3. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    NASA Astrophysics Data System (ADS)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  4. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  6. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  7. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  8. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  9. Isoelectronic bound-exciton photoluminescence in strained beryllium-doped Si0.92Ge0.08 epilayers and Si0.92Ge0.08/Si superlattices at ambient and elevated hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kim, Sangsig; Chang, Ganlin; Herman, Irving P.; Bevk, Joze; Moore, Karen L.; Hall, Dennis G.

    1997-03-01

    Photoluminescence (PL) from a beryllium-doped Si0.92Ge0.08 epilayer and three different beryllium-doped Si0.92Ge0.08/Si superlattices (SL's) commensurately grown on Si(100) substrates is examined at 9 K at ambient pressure and, for the epilayer and one SL, as a function of hydrostatic pressure. In each structure, excitons bind to the isoelectronic Be pairs in the strained Si0.92Ge0.08 layers. The zero-phonon PL peaks of the epilayer and the in situ doped 50-Å Si0.92Ge0.08/100-Å Si SL shift linearly with pressure toward lower energy at the rate of 0.68+/-0.03 and 0.97+/-0.03 meV/kbar, respectively, which are near the 0.77-meV/kbar value for Si:Be. The PL energies at ambient and elevated pressure are analyzed by accounting for strain, quantum confinement, and exciton binding. A modified Hopfield-Thomas-Lynch model is used to model exciton binding to the Be pairs. This model, in which potential wells bind electrons to a site (that then trap holes), predicts a distribution of electron binding energies when an inhomogeneous distribution of potential-well depths is used. This accounts for the large PL linewidth and the decrease of linewidth with increasing pressure, among other observations. In SL's, the exciton binding energy is shown to depend on the width of the wells as well as the spatial distribution of Be dopants in the superlattice. Also, at and above 58 kbar a very unusual peak is observed in one of the SL's, which is associated with a free-exciton peak in Si, that shifts very fast with pressure (-6.02+/-0.03 meV/kbar).

  10. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  11. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  12. Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals

    DOE PAGES

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed; ...

    2017-05-25

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  13. Quantum Dots' Photo-luminescence Line Shape Modeling

    NASA Astrophysics Data System (ADS)

    Hua, Muchuan; Decca, Ricardo

    Two usual phenomena observed in quantum dots (QDs) photo-luminescence (PL) spectra are line broadening and energy shift between absorption and emission peaks. They have been attributed to electron-phonon coupling and surface trapping during the PL process. Although many qualitative work describing these phenomena has been carried out, quantitative results are far less common. In this work, a semi-empirical model is introduced to simulate steady state QDs' PL processes at room temperature. It was assumed that the vast majority of radiative recombination happens from surface trapped states. Consequently, the PL line shape should be highly modulated by transition rates between states in the conduction band and between them and surface trapping states. CdSe/ZnS (core/shell) colloidal QD samples with different sizes were used to examine the model. The model was able to successfully reproduce the PL spectra of these samples even when the excitation happens within the emission spectra, giving raise to up-conversion events. This model might help understand and make more precise predictions of QDs' PL spectra and could also aid on the design of QDs' optical devices.

  14. Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.

    2018-01-01

    We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.

  15. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine.

    PubMed

    Zhang, Liming; Li, Ruichao; Dong, Feng; Tian, Aiying; Li, Zhengjun; Dai, Yujie

    2015-01-01

    Starch/ε-poly-L-lysine (ε-PL) composite films were prepared by combining 4% (w/v) gelatinized cornstarch and varying the level of ε-PL. The physical, mechanical and antimicrobial properties of these films were investigated. Fourier-transform infrared spectra (FT-IR) showed that the carbonyl group stretching vibration band of the ε-PL molecule shifted from 1646 cm(-1) to 1673 cm(-1) in the composite films. Differential scanning calorimetry (DSC) results indicated that there were sharp endothermal peaks at 215-230 °C for the composite films. These results indicated that there was an intense interaction between the two components. The films incorporated with ε-PL showed a higher tensile strength (TS) and elongation-at-break (E) than those of the starch film alone. These composite films exhibited effective inhibition against Escherichia coli and Bacillus subtilis, films containing 2% (w/w) ε-PL effectively suppressed the growth of the tested microbes (P<0.05). The starch/ε-PL films showed a low inhibitory effect on Aspergillus niger. This antimicrobial trend of the composite films was in agreement with the results of free ε-PL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning

    2018-06-01

    GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.

  17. Size tunability and optical properties of CdSe quantum dots for various growth conditions

    NASA Astrophysics Data System (ADS)

    Ko, Eun Yee; Lee, Joo In; Jeon, Ju-Won; Lee, In Hwan; Shin, Yong Hyeon; Han, Il Ki

    2013-01-01

    We report the optical properties of CdSe quantum dots (QDs) synthesized under various growth conditions, such as growth temperature, growth time, ligand ratio, and Cd:Se ratio of the precursors. As the growth temperature and time was increased, the peaks of the photoluminescence (PL) spectra were a red shifted, indicating that the size of QDs increased. Different ligand ratios and Cd:Se ratios of the precursors played important roles in determining the QDs size. From the PL spectra and the transmission electron microscopy image, the size distribution, as well as the size of CdSe QDs, could be controlled by using the growth conditions. The temperature-dependent PL of CdSe QDs dropped and dried on Si substrates was measured at temperatures from 15 K to 290 K. With increasing temperature, the red shift of the QDs was about 35 meV, which is noticeably smaller than that of bulk CdSe (˜100 meV). The influence of the temperature on the optical properties of colloidal CdSe QDs is important for an application to various devices.

  18. The study of optical property of sapphire irradiated with 73 MeV Ca ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang

    2015-12-01

    Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.

  19. Bound exciton and free exciton states in GaSe thin slab.

    PubMed

    Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng

    2016-09-22

    The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.

  20. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.

    PubMed

    Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi

    2017-11-09

    Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.

  1. Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Yang, Ping

    2013-05-01

    High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.

  2. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.

    2018-03-01

    Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

  3. Infrared Emitters and Photodetectors with InAsSb Bulk Active Region

    DTIC Science & Technology

    2013-04-29

    SLS) buffers on GaSb substrates [9]. By that time, 145 meV (A.= 8.6 J.lm) was reported to be the minimum energy gap for the bulk lnAsSb alloys at 77...substrate side (b) GaSb substrate thinned to 200iJm Figure 5. (a) The band diagram of the heterostructure with the undoped bulk InAsSb0.2 layer...shift of the EL energy peak compared to the PL peak at/, ... I 0 1-1m is explained by band filling under electrical injection. A sublinear

  4. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  5. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.0–1.2 μm due to increased charge carrier's localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Yablonsky, A. N.; Morozov, S. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2 μm) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiativemore » recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.« less

  6. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, S.; Mukherjee, S.; Sarkar, K.

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurementsmore » confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.« less

  7. Effect of temperature on the spectral properties of InP/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2018-01-01

    Optical absorption (OA) and photoluminescence (PL) spectra of InP/ZnS core/shell nanocrystals with 2.3 nm average size were investigated in the temperature range of 6.5-296 K. Using second derivative spectrophotometry technique energies of the OA transitions at 296 K in quantum dot (QD) solutions and films are evaluated to be E 1 = 2.37, E 2 = 4.10 and E 3 = 4.68 eV. Temperature shifts of the E 1 and E 2 levels are found to result from interaction with effective phonons of 59 and 37 meV energies, respectively. Herewith the 370 meV half-width of the first exciton absorption peak remains constant due to the dominance of inhomogeneous broadening effects caused by QD parameters distribution. Measured PL spectra have a complex structure and can be described in 6.5-296 K range by two independent Gaussian components associated with exciton and defect-related states. In addition, Stokes shift of 320 meV is observed to decrease at T > 200 K. PL thermal quenching analysis in frame of Mott mechanism points to presence of non-radiative relaxation channel with an activation energy of 74 meV.

  8. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  9. Partial purification and characterization of protection-inducing antigens from the muscle larva of Trichinella spiralis by molecular sizing chromatography and preparative flatbed isoelectric focusing.

    PubMed

    Despommier, D D

    1981-01-01

    The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed strongly at 206 nm. Neither the pl 4.0 or pl 9.0 antigen stained positively with the PAS reaction.

  10. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  11. Light-emitting Si nanostructures formed by swift heavy ions in a-Si:H/SiO2 multilayer heterostructures

    NASA Astrophysics Data System (ADS)

    Cherkova, S. G.; Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Kamaev, G. N.; Skuratov, V. A.

    2017-08-01

    Light-emitting nanoclusters were formed in Si/SiO2 multilayer structures irradiated with 167 MeV Xe ions to the doses of 1011-3  ×  1014 cm-2 and annealed in the forming-gas at 500 °C and in nitrogen at 800-1100 °C, 30 min. The thicknesses were ~4 nm or ~7-8 for the Si, and ~10 nm for the SiO2 layers. The structures were studied using photoluminescence (PL), Raman spectroscopy, and the cross-sectional high resolution transmission electron microscopy (HRTEM). As-irradiated samples showed the PL, correlating with the growth of the ion doses. HRTEM found the layers to be partly disintegrated. The thickness of the amorphous Si layer was crucial. For 4 nm thick Si layers the PL was peaking at ~490 nm, and quenched by the annealing. It was ascribed to the structural imperfections. For the thicker Si layers the PL was peaking at ~600 nm and was attributed to the Si-rich nanoclusters in silicon oxide. The annealing increases the PL intensity and shifts the band to ~790 nm, typical of Si nanocrystals. Its intensity was proportional to the dose. Raman spectra confirmed the nanocrystals formation. All the results obtained evidence the material melting in the tracks for 10-11-10-10 s providing thereby fast diffusivities of the atoms. The thicker Si layers provide more excess Si to create the nanoclusters via a molten state diffusion.

  12. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  13. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  14. Effect of Ga3+ and Gd3+ ions substitution on the structural and optical properties of Ce3+ -doped yttrium aluminium garnet phosphor nanopowders.

    PubMed

    Wako, A H; Dejene, F B; Swart, H C

    2016-11-01

    The structural and optical properties of commercially obtained Y 3 Al 5 O 12 :Ce 3 + phosphor were investigated by replacing Al 3 + with Ga 3 + and Y 3 + with Gd 3 + in the Y 3 Al 5 O 12 :Ce 3 + structure to form Y 3 (Al,Ga) 5 O 12 :Ce 3 + and (Y,Gd) 3 Al 5 O 12 :Ce 3 + . X-Ray diffraction (XRD) results showed slight 2-theta peak shifts to lower angles when Ga 3 + was used and to higher angles when Gd 3 + was used, with respect to peaks from Y 3 Al 5 O 12 :Ce 3 + and JCPDS card no. 73-1370. This could be attributed to induced crystal-field effects due to the different ionic sizes of Ga 3 + and Gd 3 + compared with Al 3 + and Y 3 + . The photoluminescence (PL) spectra showed broad excitation from 350 to 550 nm with a maximum at 472 nm, and broad emission bands from 500 to 650 nm, centred at 578 nm for Y 3 Al 5 O 12 :Ce 3 + arising from the 5d → 4f transition of Ce 3 + . PL revealed a blue shift for Ga 3 + substitution and a red shift for Gd 3 + substitution. UV-Vis showed two absorption peaks at 357 and 457 nm for Y 3 Al 5 O 12 :Ce 3 + , with peaks shifting to 432 nm for Ga 3 + and 460 nm for Gd 3 + substitutions. Changes in the trap levels or in the depth and number of traps due to Ce 3 + were analysed using thermoluminescence (TL) spectroscopy. This revealed the existence of shallow and deep traps. It was observed that Ga 3 + substitution contributes to the shallowest traps at 74 °C and fewer deep traps at 163 °C, followed by Gd 3 + with shallow traps at 87 °C and deep traps at 146 °C. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure

    NASA Astrophysics Data System (ADS)

    Das, M.; Nath, P.; Sarkar, D.

    2016-02-01

    In this article effect of etching current density (J) on the microstructural, optical and electrical properties of photoelectrochemically prepared heterostructure is reported. Prepared samples are characterized by FESEM, XRD, UV-Visible, Raman and photoluminescence (PL) spectra and current-voltage (I-V) characteristics. FESEM shows presence of mixture of randomly distributed meso- and micro-pores. Porous layer thickness determined by cross section view of SEM is proportional to J. XRD shows crystalline nature but gradually extent of crystallinity decreases with increasing J. Raman spectra show large red-shift and asymmetric broadening with respect to crystalline silicon (c-Si). UV-visible reflectance and PL show blue shift in peaks with increasing J. The I-V characteristics are analyzed by the conventional thermionic emission (TE) model and Cheung's model to estimate the barrier height (φb), ideality factor (n) and series resistance (Rs) for comparison between the two models. The latter model is found to fit better.

  16. CdS quantum dots in a novel glass with a very low activation energy and its variation of diffusivity with temperature

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati

    2011-07-01

    CdS quantum dots of different average sizes in the range 2 to 3.8 nm were grown by diffusion-limited growth process in indigenously made silicate glass. The absorption spectra showed a strong quantum confinement effect with a blue shift of the order of 500 meV depending on the average size. Critical radius of quantum dots was found to be 1.8 nm. The size dispersion decreased from 15.2 to 12.5% with a 20% increase in the particle size. The activation energy for diffusion was found to be very low i.e. 193 kJ mol-1 and the diffusion coefficient increased by 60% for 10 K rise in temperature. The PL emission spectra showed the presence of only deep traps around 600 nm with a red shift of 200 nm. No shallow traps or band edge emission was observed. The PL peak position changed from 560 to 640 nm with a 35 K increase in annealing temperature.

  17. Micromachined structures for vertical microelectrooptical devices on InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seassal, C.; Leclercq, J.L.; Letartre, X.

    1996-12-31

    The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less

  18. Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Ahmad, Nafis; Lee, Gun Hee; Seo, Tae Hoon; Suh, Eun-kyung; Kim, Jae Hyun

    2015-05-01

    Al rich zinc oxide nano-structured films were synthesized using spin coating sol-gel technique. The films were annealed in oxygen ambient in the temperature range of 200-700 °C. The structural, optical, and photoluminescence (PL) properties of the films were studied at various annealing temperatures using X-ray diffraction spectroscopy, field emission scanning electron microscopy, photoluminescence emission spectra measurement, and Raman and UV-Vis spectroscopy. The optical band gap was found to decrease with the increase of the annealing temperature following the Gauss Amp function due to the confinement of the exciton. The PL peak intensity in the near band region (INBE) was found to increase with the increase of the annealing temperature up to 600 °C, then to decrease fast to a lower value for the annealing temperature of 700 °C due to crystalline quality. The Raman peak of E2 (low) was red shifted from 118 cm-1 to 126 cm-1 with the increase of the annealing temperature. The intensity of the second order phonon (TA+LO) at 674 cm-1 was found to decrease with the increase of the annealing temperature. The normalized values of the reflectance and the PL intensity in the NBE region were highest for the annealing temperature of 600 °C. A special correlation was found between the reflectance at λ = 1000 nm and the normalized PL intensity in the green region due to scattering due to presence of grains.

  19. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file.

    PubMed Central

    Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.; Bowring, Andrea R.

    2015-01-01

    We report on reversible, light-induced transformations in (CH3NH3)Pb(BrxI1–x)3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics. PMID:28706629

  20. Structural and optical characterization of pure Si-rich nitride thin films

    PubMed Central

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447

  1. Structural and optical characterization of pure Si-rich nitride thin films

    NASA Astrophysics Data System (ADS)

    Debieu, Olivier; Nalini, Ramesh Pratibha; Cardin, Julien; Portier, Xavier; Perrière, Jacques; Gourbilleau, Fabrice

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiN x>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiN x<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiN x>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiN x>0.9 could be then due to a size effect of Si-np but having an amorphous phase.

  2. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    NASA Astrophysics Data System (ADS)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

  3. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    PubMed Central

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  4. [Enhanced ε-poly-L-lysine production through pH regulation and organic nitrogen addition in fed-batch fermentation].

    PubMed

    Sun, Qixing; Chen, Xusheng; Ren, Xidong; Zheng, Gencheng; Mao, Zhonggui

    2015-05-01

    During the production of ε-poly-L-lysine (ε-PL) in fed-batch fermentation, the decline of ε-PL synthesis often occurs at middle or late phase of the fermentation. To solve the problem, we adopted two strategies, namely pH shift and feeding yeast extract, to improve the productivity of ε-PL. ε-PL productivity in fermentation by pH shift and feeding yeast extract achieved 4.62 g/(L x d) and 5.16 g/(L x d), which were increased by 27.3% and 42.2% compared with the control ε-PL fed-batch fermentation, respectively. Meanwhile, ε-PL production enhanced 36.95 g/L and 41.32 g/L in 192 h with these two strategies, increased by 27.4% and 42.48% compared to the control, respectively. ε-PL production could be improved at middle or late phase of fed-batch fermentation by pH shift or feeding yeast extract.

  5. Optical investigation of microscopic defect distribution in semi-polar (1-101 and 11-22) InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Andrade, Nicolas; Monavarian, Morteza; Izyumskaya, Natalia; Das, Saikat; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.

  6. Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation.

    PubMed

    Zhang, Tiankai; Long, Mingzhu; Yan, Keyou; Zeng, Xiaoliang; Zhou, Fengrui; Chen, Zefeng; Wan, Xi; Chen, Kun; Liu, Pengyi; Li, Faming; Yu, Tao; Xie, Weiguang; Xu, Jianbin

    2016-11-30

    Quantification of intergrain length scale properties of CH 3 NH 3 PbI 3 (MAPbI 3 ) can provide further understanding of material physics, leading to improved device performance. In this work, we noticed that two typical types of facets appear in sequential deposited perovskite (SDP) films: smooth and steplike morphologies. By mapping the surface potential as well as the photoluminescence (PL) peak position, we revealed the heterogeneity of SDP thin films that smooth facets are almost intrinsic with a PL peak at 775 nm, while the steplike facets are p-type-doped with 5-nm blue-shifted PL peak. Considering the reaction process, we propose that the smooth facets have well-defined crystal lattices that resulted from the interfacial reaction between MAI and PbI 2 domains containing low trap states density. The steplike facets are MAI-rich originated from the grain boundaries of PbI 2 film and own more trap states. Conversion of steplike facets to smooth facets can be controlled by increasing the reaction time through Ostwald ripening. The improved stability, photoresponsivity up to 0.3 A/W, on/off ratio up to 3900, and decreased photo response time to ∼160 μs show that the trap states can be annihilated effectively to improve the photoelectrical conversion with prolonged reaction time and elimination of steplike facets. Our findings demonstrate the relationship between the facet heterogeneity of SDP films and crystal growth process for the first time, and imply that the systematic control of crystal grain modification will enable amelioration of crystallinity for more-efficient perovskite photoelectrical applications.

  7. Two dimensional imaging of photoluminescence from rice for quick and non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Katsumata, T.; Suzuki, T.; Aizawa, H.; Matashige, E.

    2005-05-01

    The visible PL with broad peak at wavelength of λ=462 nm are observed from polished rice, flour and corn starch under illumination of ultra-violet (UV) light. PL peaking at λ=462 nm is excited effectively with UV light at λ=365 nm. Peak intensity is found to vary with the source and the breed of the rice specimens. PL images from rice also reveal the uniformity of the rice products. Two-dimensional images of PL, which reavealed the uniformity of rice under UV irradiation, are potentially useful for the evaluation and the quality control of the rice products.

  8. [The photoluminescence characteristics of organic multilayer quantum wells].

    PubMed

    Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong

    2007-04-01

    By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.

  9. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.

    PubMed

    Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D

    2015-01-01

    We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

  10. Degradation mechanisms of optoelectric properties of GaN via highly-charged 209Bi33+ ions irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Zhang, C. H.; Xian, Y. Q.; Liu, J.; Ding, Z. N.; Yan, T. X.; Chen, Y. G.; Su, C. H.; Li, J. Y.; Liu, H. P.

    2018-05-01

    N-type gallium nitride (GaN) epitaxial layers were subjected to 990-keV Bi33+ ions irradiation to various fluences. Optoelectric properties of the irradiated-GaN specimens were studied by means of Raman scattering and variable temperature photoluminescence (PL) spectroscopy. Raman spectra reveal that both the free-carrier concentration and its mobility generally decrease with a successive increase in ion fluence. Electro-optic mechanisms dominated the electrical transport to a fluence of 1.061 × 1012 Bi33+/cm2. Above this fluence, electrical properties were governed by the deformation potential. The appearance of vacancy-type defects results in an abrupt degradation in electrical transports. Varying temperature photoluminescence (PL) spectra display that all emission lines of 1.061 × 1012 Bi33+/cm2-irradiated specimen present a general remarkable thermal redshift, quenching, and broadening, including donor-bound-exciton peak, yellow luminescence band, and LO-phonon replicas. Moreover, as the temperature rises, a transformation from excitons (donor-acceptor pairs' luminescence) to band-to-band transitions (donor-acceptor combinations) was found, and the shrinkage effect of the band gap dominated the shift of the peak position gradually, especially the temperature increases above 150 K. In contrast to the un-irradiated specimen, a sensitive temperature dependence of all photoluminescence (PL) lines' intensity obtained from 1.061 × 1012 Bi33+/cm2-irradiated specimen was found. Mechanisms underlying were discussed.

  11. Photoluminescence Studies of P-type Modulation Doped GaAs/AlGaAs Quantum Wells in the High Doping Regime

    NASA Astrophysics Data System (ADS)

    Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.

    The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.

  12. Effect of time varying phosphorus implantation on optoelectronics properties of RF sputtered ZnO thin-films

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.

  13. Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs

    PubMed Central

    Sadofyev, Yuri G.; Samal, Nigamananda

    2010-01-01

    An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.

  14. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang

    2018-05-01

    In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.

  16. Role of Ni2+(d8) ions in electrical, optical and magnetic properties of CdS nanowires for optoelectronic and spintronic applications

    NASA Astrophysics Data System (ADS)

    Arshad Kamran, Muhammad

    2018-06-01

    For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd0.886Ni0.114S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d‑d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm–1) and 750.98 nm (13 316 cm–1) are very close to NIR emission. Orange emission not only remained at same peak position—its PL intensity was also significantly enhanced at 78 K; this was assigned to d‑d transition (3A2g → 1Eg) of Ni2+ ions. It was observed that 11.4% Ni2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (Ms) increased from 7.2 × 10‑5 Am2/Kg to 1.17 × 10‑4 Am2/Kg, which shows promise for optoelectronic and spintronic applications.

  17. Role of Ni2+(d8) ions in electrical, optical and magnetic properties of CdS nanowires for optoelectronic and spintronic applications.

    PubMed

    Kamran, Muhammad Arshad

    2018-06-29

    For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd 0.886 Ni 0.114 S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni 2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni 2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d-d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm -1 ) and 750.98 nm (13 316 cm -1 ) are very close to NIR emission. Orange emission not only remained at same peak position-its PL intensity was also significantly enhanced at 78 K; this was assigned to d-d transition ( 3 A 2g  →  1 E g ) of Ni 2+ ions. It was observed that 11.4% Ni 2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (M s ) increased from 7.2 × 10 -5 Am 2 /Kg to 1.17 × 10 -4 Am 2 /Kg, which shows promise for optoelectronic and spintronic applications.

  18. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  19. An optical fiber glass containing PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Jiang, Huilü; Ma, Dewei; Cheng, Xiaoyu

    2011-09-01

    An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO 2 fibers. It can be easily fused and spliced with SiO 2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.

  20. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  1. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  2. Mechanofluorochromic Carbon Nanodots: Controllable Pressure-Triggered Blue- and Red-Shifted Photoluminescence.

    PubMed

    Liu, Cui; Xiao, Guanjun; Yang, Mengli; Zou, Bo; Zhang, Zhi-Ling; Pang, Dai-Wen

    2018-02-12

    Mechanofluorochromic materials, which change their photoluminescence (PL) colors in responding to mechanical stimuli, can be used as mechanosensors, security papers, and photoelectronic devices. However, traditional mechanofluorochromic materials can only be adjusted to a monotone direction upon the external stimuli. Controllable pressure-triggered blue- and red-shifted PL is reported for C-dots. The origin of mechanofluorochromism (MFC) in C-dots is interpreted based on structure-property relationships. The carbonyl group and the π-conjugated system play key roles in the PL change of C-dots under high pressure. As the pressure increases, the enhanced π-π stacking of the π-conjugated system causes the red-shift of PL, while the conversion of carbonyl groups eventually induces a blue-shift. Together with their low toxicity, good hydrophilicity, and small size, the tunable MFC property would boost various potential applications of C-dots. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix

    NASA Astrophysics Data System (ADS)

    Xiong, Z. W.; Cao, L. H.

    2018-07-01

    In this work, the self-organized Ni nanocrystals (NCs) were embedded in the epitaxial SrTiO3 matrix using pulsed laser deposition method. With the in-situ monitoring of reflection high-energy electron diffraction, both matrix and NCs could be precisely engineered with desired qualities by regulating the growth conditions according to the full release of stress energy at the interfaces of Ni NCs and SrTiO3. We achieved a controllable strained system according to the transformation of growth modes from three dimensional (3D) islands of Ni NCs to 2D layer-by-layer of SrTiO3, corresponding to the (1 1 1) and (0 0 l) orientation for Ni and SrTiO3, respectively. With the increase of Ni NCs concentration, the absorption intensity is increasing in the regions of 190-300 nm, and the band gap is gradually decreased. Besides, photoluminescence (PL) spectra reveal that the energy levels of Ni 3d bands contribute to the different PL colors, further inducing the enhancement of PL intensity and red-shift of emission peaks. Compared with the pure SrTiO3 published in the literature, much wider ranges of PL emission from red to ultraviolet can be tuned by the Ni NCs.

  4. Carrier concentration dependent photoluminescence properties of Si-doped InAs nanowires

    NASA Astrophysics Data System (ADS)

    Sonner, M.; Treu, J.; Saller, K.; Riedl, H.; Finley, J. J.; Koblmüller, G.

    2018-02-01

    We report the effects of intentional n-type doping on the photoluminescence (PL) properties of InAs nanowires (NWs). Employing silicon (Si) as a dopant in molecular beam epitaxy grown NWs, the n-type carrier concentration is tuned between 1 × 1017 cm-3 and 3 × 1018 cm-3 as evaluated from Fermi-tail fits of the high-energy spectral region. With the increasing carrier concentration, the PL spectra exhibit a distinct blueshift (up to ˜50 meV), ˜2-3-fold peak broadening, and a redshift of the low-energy tail, indicating both the Burstein-Moss shift and bandgap narrowing. The low-temperature bandgap energy (EG) decreases from ˜0.44 eV (n ˜ 1017 cm-3) to ˜0.41 eV (n ˜ 1018 cm-3), following a ΔEG ˜ n1/3 dependence. Simultaneously, the PL emission is quenched nearly 10-fold, while the pump-power dependent analysis of the integrated PL intensity evidences a typical 2/3-power-law scaling, indicative of non-radiative Auger recombination at high carrier concentrations. Carrier localization and activation at stacking defects are further observed in undoped InAs NWs by temperature-dependent measurements but are absent in Si-doped InAs NWs due to the increased Fermi energy.

  5. Optical properties of self-assembled ZnTe quantum dots grown by molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.S.; Lai, Y.J.; Chou, W.C.

    2005-02-01

    The morphology and the size-dependent photoluminescence (PL) spectra of the type-II ZnTe quantum dots (QDs) grown in a ZnSe matrix were obtained. The coverage of ZnTe varied from 2.5 to 3.5 monolayers (MLs). The PL peak energy decreased as the dot size increased. Excitation power and temperature-dependent PL spectra are used to characterize the optical properties of the ZnTe quantum dots. For 2.5- and 3.0-ML samples, the PL peak energy decreased monotonically as the temperature increased. However, for the 3.5-ML sample, the PL peak energy was initially blueshifted and then redshifted as the temperature increased above 40 K. Carrier thermalizationmore » and carrier transfer between QDs are used to explain the experimental data. A model of temperature-dependent linewidth broadening is employed to fit the high-temperature data. The activation energy, which was found by the simple PL intensity quenching model, of the 2.5, 3.0, and 3.5 MLs were determined to be 6.35, 9.40, and 18.87 meV, respectively.« less

  6. Temperature dependent surface and spectral modifications of nano V2O5 films

    NASA Astrophysics Data System (ADS)

    Manthrammel, M. Aslam; Fatehmulla, A.; Al-Dhafiri, A. M.; Alshammari, A. S.; Khan, Aslam

    2017-03-01

    Nanocrystalline V2O5 films have been deposited on glass substrates at 300°C substrate temperature using thermal evaporation technique and were subjected to thermal annealing at different temperatures 350, 400, and 550°C. X-ray diffraction (XRD) spectra exhibit sharper and broader characteristic peaks respectively indicating the rearrangement of nanocrystallite phases with annealing temperatures. Other phases of vanadium oxides started emerging with the rise in annealing temperature and the sample converted completely to VO2 (B) phase at 550°C annealing. FESEM images showed an increase in crystallite size with 350 and 400°C annealing temperatures followed by a decrease in crystallite size for the sample annealed at 550°C. Transmission spectra showed an initial redshift of the fundamental band edge with 350 and 400°C while a blue shift for the sample annealed at 550°C, which was in agreement with XRD and SEM results. The films exhibited smart window properties as well as nanorod growth at specific annealing temperatures. Apart from showing the PL and defect related peaks, PL studies also supported the observations made in the transmission spectra.

  7. Optical properties of pure and PbSe doped TiS2 nanodiscs

    NASA Astrophysics Data System (ADS)

    Parvaz, M.; Islamuddin; Khan, Zishan H.

    2018-06-01

    Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.

  8. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less

  9. Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films

    NASA Astrophysics Data System (ADS)

    Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.

    2017-01-01

    We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.

  10. Pressure-induced photoluminescence of MgO

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yuan, Ye; Zhang, Jinbo; Kim, Taehyun; Zhang, Dongzhou; Yang, Ke; Lee, Yongjae; Wang, Lin

    2018-05-01

    It is reported in this paper that pressure can promote strong photoluminescence (PL) in MgO. The PL measurements of MgO indicate that it has no obvious luminescence at pressures lower than 13 GPa. PL starts to appear upon further compression and reaches a maximum intensity at about 35 GPa. The center of the emission band shows a red shift at lower pressures and turns to a blue shift as pressure exceeds 25 GPa. The PL is preserved upon complete decompression. The defects and micro-strain due to the plastic deformation of MgO are likely responsible for the origin of the luminescence.

  11. Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method

    NASA Astrophysics Data System (ADS)

    Guruvammal, D.; Selvaraj, S.; Meenakshi Sundar, S.

    2018-04-01

    Microwave irradiation method is employed to synthesis of Zn1-xCoxO (x = 0.001-0.004) nanoparticles and investigate their structural, optical and magnetic properties using various characterization techniques. Structural studies reveal single phase hexagonal structure with average crystallite size 18-28 nm. FTIR study identifies the functional group present in the samples. The incorporation of Co2+ ions into the ZnO lattice is confirmed through XRD and UV-Vis studies. PL spectra exhibit a strong emission peak in UV region and a defect related visible emission peak in orange red region. These peaks are attributed to near band edge emission and the presence of oxygen related defects in the samples respectively. The blue shift observed in the UV emission peak shows an increase in the carrier concentration caused by the interstitial incorporation of ions into the ZnO lattice. The oxygen related defect is also confirmed through a peak obtained around g factor 1.9933 in ESR studies. Further, the number of spin contributing the ESR signal demonstrates the dependence of the strength of ferromagnetism on the concentration of oxygen ion vacancies. The VSM, ESR and PL measurements confirm the origin of RTFM of Co doped ZnO nanoparticles from the exchange interaction between the localized spin moments resulting from oxygen vacancies. The reason for the obtained super paramagnetic nature for x = 0.002 and x = 0.003 may be either due to some of nanoparticles or due to the weakly coupled Co ions in the Zn2+ site in the ZnO lattice. Further, the ferromagnetic behavior arises again for x = 0.004 due to the incorporation of Co2+ ions in the interstitial positions.

  12. Si-nanocrystal-based nanofluids for nanothermometry

    NASA Astrophysics Data System (ADS)

    Cardona-Castro, M. A.; Morales-Sánchez, A.; Licea-Jiménez, L.; Alvarez-Quintana, J.

    2016-06-01

    The measurement of local temperature in nanoscale volumes is becoming a technological frontier. Photoluminescent nanoparticles and nanocolloids are the natural choice for nanoscale temperature probes. However, the influence of a surrounding liquid on the cryogenic behavior of oxidized Si-nanocrystals (Si-NCs) has never been investigated. In this work, the photoluminescence (PL) of oxidized Si-NCs/alcohol based nanocolloids is measured as a function of the temperature and the molecule length of monohydric alcohols above their melting-freezing point. The results unveil a progressive blue shift on the emission peak which is dependent on the temperature as well as the dielectric properties of the surrounding liquid. Such an effect is analyzed in terms of thermal changes of the Si-NCs bandgap, quantum confinement and the polarization effects of the embedding medium; revealing an important role of the dielectric constant of the surrounding liquid. These results are relevant because they offer a general insight to the fundamental behavior of photoluminescent nanocolloids under a cooling process and moreover, enabling PL tuning based on the dielectric properties of the surrounding liquid. Hence, the variables required to engineer PL of nanofluids are properly identified for use as temperature sensors at the nanoscale.

  13. Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2018-02-01

    The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.

  14. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  15. Placental lactogen secretion during prolonged-pregnancy in the rat: the ovary plays a pivotal role in the control of placental function.

    PubMed

    Shiota, K; Furuyama, N; Takahashi, M

    1991-10-01

    The serum of rats at mid-pregnancy contains at least 2 distinct placental lactogen (PL)-like substances tentatively termed placental lactogen-alpha (PL-alpha) and placental lactogen-beta (PL-beta) (Endocrinol Japon 38: 533-540, 1991). We have investigated the secretory patterns of three placental lactogens (PL-alpha, PL-beta and placental lactogen-II) during normal pregnancy and in two prolonged-pregnancy models. Pregnancy was prolonged by the introduction of new corpora lutea by inducing ovulation on day 15 of pregnancy by successive treatments with PMSG (30 IU/rat, sc on day 12) and hCG (10 IU/rat, iv on day 14), and in the second model by progesterone implants on day 15 of pregnancy. During normal pregnancy, each of the 3 PLs exhibited only one secretory peak in the serum; PL-alpha and PL-beta on day 12 and placental lactogen II (PL-II) on day 20. Interestingly, in the rats with new sets of corpora lutea, serum PL-alpha and PL-beta levels began to increase again on day 18 and showed peaks on day 20 for PL-alpha and on day 22 for PL-beta. In this model, the initiation of PL-II secretion was not affected, but high levels were maintained until day 26, when parturition occurred. In rats receiving either PMSG or hCG, the secretory patterns of the PLs were similar to as those during normal pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less

  17. Surface functionalized Cu2Zn1- x Cd x SnS4 quinternary alloyed nanostructure for DNA sensing

    NASA Astrophysics Data System (ADS)

    Ibraheam, A. S.; Al-Douri, Y.; Voon, C. H.; Foo, K. L.; Azizah, N.; Gopinath, S. C. B.; Ameri, M.; Ibrahim, Sattar S.

    2017-03-01

    A sensing plate of extended Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures, fabricated on an oxidized silicon substrate by the sol-gel method, is reported in this paper. The fabricated device was characterized and analyzed via field emission-scanning electron microscopy, X-ray diffraction (XRD), and photoluminescence (PL). The XRD peaks shifted towards the lower angle side alongside increasing concentration of cadmium. The average diameter of the Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures falls between 21.55 and 43.12 nm, while the shift of the PL bandgap was from 1.81 eV ( x = 0) to 1.72 eV ( x = 1). The resulting Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures components were functionalized with oligonucleotides probe DNA molecules and interacted with the target, exhibiting good sensing capabilities due to its large surface-to-volume ratio. The fabrication, immobilization, and hybridization processes were analyzed via representative current-voltage ( I- V) plots. Its electrical profile shows that the device is capable to distinguish biomolecules. Its high performance was evident from the linear relationship between the probe DNA from cervical cancer and the target DNA, showing its applicability for medical applications.

  18. Exciton localization and large Stokes shift in quaternary BeMgZnO grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Toporkov, Mykyta; Ullah, Md. Barkat; Hafiz, Shopan; Nakagawara, Tanner; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Owing to wide range bandgap tunability to more than 5 eV, the quaternary (Be,Mg)ZnO solid solutions are attractive for a variety of UV optoelectronic applications, inclusive of solar blind photodetectors, and intersubband transition devices. The mutual compensation effects of Be and Mg on the formation energy and strain allows a wide range of compositions and bandgaps beyond those achievable by MgZnO and BeZnO ternaries. Localization effects are well pronounced in such wide-bandgap semiconductor alloys due to large differences in metal covalent radii and the lattice constants of the binaries, resulting in strain-driven compositional variations within the film and consequently large potential fluctuations, in addition to that possibly caused by defects. However, carrier localization may suppress recombination through nonradiative channels, and thus, facilitate high-efficiency optoelectronic devices. To investigate potential fluctuations and localization in BexMgyZn(1-x-y)O films grown by plasma-assisted molecular beam epitaxy, optical absorption and steady-state and time-resolved photoluminescence (PL) measurements were performed. O-polar BexMgyZn(1-x-y)O samples grown on GaN templates with compositions up to x = 0.04 and y = 0.18 were used for timeresolved studies, and O-polar BexMgyZn(1-x-y)O samples grown on sapphire with compositions up to x = 0.19 and y = 0.52 were used for absorption measurements. From spectrally resolved PL transients, BeMgZnO samples with higher Mg/Be content ratio were found to exhibit smaller localization depth, Δ0=98 meV for Be0.04Mg0.17Zn0.79O and Δ0=173 meV for Be0.10Mg0.25Zn0.65O, compared to samples with smaller Mg/Be ratio, Δ0=268 meV for Be0.11Mg0.15Zn0.74O. Similar correlation is observed in temporal redshift of the PL peak position of 8 meV, 42 meV and 55 meV for Be0.04Mg0.17Zn0.79O, Be0.10Mg0.25Zn0.65O and Be0.11Mg0.15Zn0.74O, respectively, that originates from potential fluctuations and removal of band filling effect in the localized states. PL transients indicate that emission at low temperature is dominated by recombination of localized excitons, which exhibit decay times as long as τ = 0.36 ns at the peak position. The Sshaped behavior of PL peak with change in temperature was observed for the quaternary alloy Be0.04Mg0.17Zn0.79O. The degree of localization σ was determined to be 22 meV. Relatively high potential fluctuations and localization energy lead to a strong Stokes shift, which increased with bandgap reaching ~0.5 eV for O-polar BeMgZnO on sapphire with 4.6 eV absorption edge.

  19. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    PubMed

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  20. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2.

    PubMed

    Lloyd, David; Liu, Xinghui; Christopher, Jason W; Cantley, Lauren; Wadehra, Anubhav; Kim, Brian L; Goldberg, Bennett B; Swan, Anna K; Bunch, J Scott

    2016-09-14

    We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

  1. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    NASA Astrophysics Data System (ADS)

    Liao, Hongbo; Wen, Weijia; Wong, George K.

    2006-12-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO2, ZnO, and TiO2) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity.

  2. Investigation on Structural and Optical Properties of Copper Telluride Thin Films with Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.

    The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.

  3. Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.

    PubMed

    Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi

    2018-05-03

    We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.

  4. Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs

    NASA Technical Reports Server (NTRS)

    Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.

    2005-01-01

    In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong Lingmin; Feng Zhechuan; Wu Zhengyun

    Four types of self-assembled InAs/GaAs quantum dots (QDs) were grown by molecular beam epitaxy and studied via temperature-dependent and time-resolved photoluminescence (PL) spectroscopy measurements. A thin InGaAs stain reducing layer (SRL) is adopted which extends the emission wavelength to 1.3 mum and the influence of strain on QDs is investigated. The SRL releases the strain between the wetting layer and QDs, and enlarges the size of QDs, as shown by atomic force microscopy measurements. As the thickness of InAs layer decreases to 1.7 ML, the QDs with the SRL are chained to strings and the density of QDs increases significantly,more » which leads to an abnormal redshift of 1.3 mum PL peak at room temperature. PL peaks of InAs QDs with the SRL show redshift compared with the QDs directly deposited on GaAs matrix. The dependences of PL lifetime on the QD size, density and temperature (T) are systematically studied. It is observed that the PL lifetime of QDs is insensitive to T below 50 K. Beyond 50 K, increases and then drops at higher temperature, with a peak at T{sub C}, which was determined by the SRL and the thickness of InAs. We have also observed an obvious PL spectral redshift of the QDs with 1.7 ML InAs coverage on SRL at low T as the measuring time delays. The PL lifetime of QDs with the SRL is smaller than that of QDs without the SRL. The QDs with different densities have different PL lifetime dependence on the QDs size. These observations can be explained by the competition between the carrier redistribution and thermal emission.« less

  6. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-01

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available: A detailed synthesis procedure of DSPC-AgInTe2 and analytical data of AgInTe2 NCs. See DOI: 10.1039/c5nr07532g

  7. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  8. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  9. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua

    2013-11-01

    A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.

  10. Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi

    2015-01-01

    In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.

  11. Synthesis and Characterization of Nano-Structure Metal Oxides and Peroxides Prepared by Laser Ablation in Liquids

    NASA Astrophysics Data System (ADS)

    Drmosh, Qasem Ahmed Qasem

    Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD). ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm. Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. Both FTIR and UV-Vis spectra showed a red shift in the presence of SDS and blue shift in presence of CTAB and OGM. The effect of post annealing temperature on dry ZnO2 nanoparticles prepared by PLA technique of solid zinc target in 3% H2O2 was studied by variation of the annealing temperatures from 100 to 600 °C for 8 hours under 1 atmospheric pressure. The XRD showed the phase transition from ZnO2 to ZnO at 200 °C. Based on XRD data, both the average grain size and lattice parameters of ZnO increased by post annealing of ZnO2 higher than 200 °C. In contrast, the band gap of ZnO nanoparticles decreased when the annealing temperature increased. The average sizes were 5, 6, 9, 15 and 19 nm at 200, 300, 400, 500 and 600 °C respectively. The PL emission spectra for ZnO showed strong UV emission peaks in all samples. In addition, the UV emission peaks were shifted to longer wavelength (red shifting) as the annealing temperature increase from 200 to 600 °C. From the above findings, we concluded that the grain size, lattice parameters, PL and band gap were size dependent as predicted by theoretical studies. (Abstract shortened by UMI.).

  12. Effects of dopamine D1 receptor blockade in the prelimbic prefrontal cortex or lateral dorsal striatum on frontostriatal function in Wistar and Spontaneously Hypertensive Rats.

    PubMed

    Gauthier, Jamie M; Tassin, David H; Dwoskin, Linda P; Kantak, Kathleen M

    2014-07-15

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with dysfunctional prefrontal and striatal circuitry and dysregulated dopamine neurotransmission. Spontaneously Hypertensive Rats (SHR), a heuristically useful animal model of ADHD, were evaluated against normotensive Wistar (WIS) controls to determine whether dopamine D1 receptor blockade of either prelimbic prefrontal cortex (plPFC) or lateral dorsal striatum (lDST) altered learning functions of both interconnected sites. A strategy set shifting task measured plPFC function (behavioral flexibility/executive function) and a reward devaluation task measured lDST function (habitual responding). Prior to tests, rats received bilateral infusions of SCH 23390 (1.0 μg/side) or vehicle into plPFC or lDST. Following vehicle, SHR exhibited longer lever press reaction times, more trial omissions, and fewer completed trials during the set shift test compared to WIS, indicating slower decision-making and attentional/motivational impairment in SHR. After reward devaluation, vehicle-treated SHR responded less than WIS, indicating relatively less habitual responding in SHR. After SCH 23390 infusions into plPFC, WIS expressed the same behavioral phenotype as vehicle-treated SHR during set shift and reward devaluation tests. In SHR, SCH 23390 infusions into plPFC exacerbated behavioral deficits in the set shift test and maintained the lower rate of responding in the reward devaluation test. SCH 23390 infusions into lDST did not modify set shifting in either strain, but produced lower rates of responding than vehicle infusions after reward devaluation in WIS. This research provides pharmacological evidence for unidirectional interactions between prefrontal and striatal brain regions, which has implications for the neurological basis of ADHD and its treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  14. Unusual Carrier Thermalization in a Dilute GaAs1-xNx Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, P. H.; Xu, Z. Y.; Luo, X. D.

    2007-01-01

    Photoluminescence (PL) properties of the E{sub 0}, E{sub 0} + {Delta}{sub 0}, and E{sub +} bands in an x=0.62% GaAs{sub 1-x}N{sub x} alloy were investigated in detail, including their peak position, linewidth, and line shape dependences on the excitation energy, excitation power, and temperature, using micro-PL. The hot electrons within the E{sub +} band are found to exhibit highly unusual thermalization, which results in a large blueshift in its PL peak energy by >2k{sub B}T, suggesting peculiar density of states and carrier dynamics of the E{sub +} band.

  15. Effect of Chemicals on Morphology and Luminescence of CdSe Quantum Dots.

    PubMed

    Zhang, Xiao; Li, Xiaoyu; Zhang, Ruili; Yang, Ping

    2015-04-01

    CdSe quantum dots (QDs) with several morphologies were fabricated using various reaction sys- tems. In a trioctylamine (TOA) and octadecylphosphonic acid (ODPA) system, yellow-emitting (a photoluminescence (PL) peak wavelength of 583 nm) CdSe QDs revealed rod morphology and nar- row size distribution. When ODPA was replaced by tetradecylphosphonic acid (TDPA), red-emitting CdSe rods (a PL peak wavelength of 653 nm) with broad size distribution were fabricated. This is ascribed that the short carbon chain accelerated the growth of CdSe QDs. As a result, the use of ODPA resulted in CdSe QDs with high PL efficiency (3.1%). Furthermore, cubic-like CdSe QDs were created in a stearic acid (SA) and octadecene (ODE) reaction system. The PL efficiency of the QDs is low (0.2%). When hexadecylamine (HDA) was added in such SA and ODE reaction system, spherical CdSe QDs with narrow size distribution and high PL efficiency (3.4%) were prepared.

  16. Heterostructures with diffused interfaces: Luminescent technique for ascertainment of band alignment type

    NASA Astrophysics Data System (ADS)

    Abramkin, D. S.; Gutakovskii, A. K.; Shamirzaev, T. S.

    2018-03-01

    The experimental ascertainment of band alignment type for semiconductor heterostructures with diffused interfaces is discussed. A method based on the analysis of the spectral shift of photoluminescence (PL) band with excitation density (Pex) that takes into account state filling and band bending effects on the PL band shift is developed. It is shown that the shift of PL band maximum position is proportional to ℏωmax ˜ (Ue + Uh).ln(Pex) + b.Pex1/3, where Ue (Uh) are electron (hole) Urbach energy tail, and parameter b characterizes the effect of band bending or is equal to zero for heterostructures with type-II or type-I band alignment, respectively. The method was approved with InAs/AlAs, GaAs/AlAs, GaSb/AlAs, and AlSb/AlAs heterostructures containing quantum wells.

  17. Prominence of fusion temperature and engineering heteroatoms on multifarious emissive shifts in carbon dots.

    PubMed

    Velusamy, Jayaramakrishnan; Ramos-Ortiz, Gabriel; Rodríguez, Mario; Hernández-Cruz, Olivia; Ponce, Arturo

    2018-05-16

    We present a simple but robust strategy to engineering heteroatoms (N, S) on carbon dots (CDs) surface that results in a collection of enhanced photoluminescence (PL) emissions. The use of citric acid (CA) and 2-Imidazolidinethione (2-IZT) as precursors was envisioned to study the impact of thermolysis process on the PL properties. The proposed strategy, implemented at two different temperatures (180 °C and 200 °C), is suitable to produce CDs with tunable PL and quantum yield (QY) up to ∼32%. Similar to earlier reports of CA-based CDs, the self-assembling of fluorophores integrated into the CDs edge is hypothesized, however, in our CDs a double intriguing effect of blue- and red-shifting can be observed for PL as the wavelength of excitation is increased in the range 280-480 nm. Through a comprehensive characterization and evaluation of these CDs in water suspensions, the mechanisms that lead to PL multifarious emissions are proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials.

    PubMed

    Kwon, Woosung; Lee, Gyeongjin; Do, Sungan; Joo, Taiha; Rhee, Shi-Woo

    2014-02-12

    Size-controlled soft-template synthesis of carbon nanodots (CNDs) as novel photoactive materials is reported. The size of the CNDs can be controlled by regulating the amount of an emulsifier. As the size increases, the CNDs exhibit blue-shifted photoluminescence (PL) or so-called an inverse PL shift. Using time-correlated single photon counting, ultraviolet photoelectron spectroscopy, and low-temperature PL measurements, it is revealed that the CNDs are composed of sp² clusters with certain energy gaps and their oleylamine ligands act as auxochromes to reduce the energy gaps. This insight can provide a plausible explanation on the origin of the inverse PL shift which has been debatable over a past decade. To explore the potential of the CNDs as photoactive materials, several prototypes of CND-based optoelectronic devices, including multicolored light-emitting diodes and air-stable organic solar cells, are demonstrated. This study could shed light on future applications of the CNDs and further expedite the development of other related fields. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    DTIC Science & Technology

    2015-08-28

    from surface dangling bonds and behave as effective nonradiative recombination centers.17 Upon the growth of CdSe, the main PL peak exhibits a redshift...as nonradiative recombination sites and cause PL degradation. With a 4.5 ML CdSe shell, the QY drops to 4%. As seen in Fig. 6, the PL QY is

  20. Perils of Neglecting Lattice Relaxation in the Pressure Dependence of Deep Luminescence Bands in Wide Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1998-03-01

    Deep defect states are often assumed to be insensitive to pressure because of their localized atomic-like character. In apparent conflict with this, experiments on widegap II-VI materials find that the pressure shifts of many 'midgap' photoluminescence (PL) bands associated with large-lattice-relaxation defects are more rapid than the shift of the bandgap(B. Weinstein, T. Ritter, et. al., Phys. Stat. Sol. (b) 198), 167 (1996). To study this, we measured the effects of pressure on the PL and PL-excitation (PLE) bands arising from the Zn-vacancy (V_Zn) and the P_Se deep acceptor centers in ZnSe. Using the observed pressure variation of the Stokes shifts and the established 1 atm. configuration coordinate (CC) models( D.Y. Jeon, H.P Gislason, G.D. Watkins, Phys. Rev. B 48), 7872 (1993), we were able to infer quantitative CC-diagrams at any pressure. Our results show that the pressure dependence of the lattice relaxation contributes a substantial fraction (several meV/kbar) to the overall shift of the PL-bands, and, hence, must be included. For the case of the V_Zn, simple calculations of the Jahn-Teller splitting using dangling-bond orbitals support this conclusion. figures

  1. Visualization of defect-induced excitonic properties of the edges and grain boundaries in synthesized monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Newaz, Akm; Yore, A. E.; Miller, A.; Crumrine, W.; Redd, B.; Tuck, J. A.; Wang, Bin; Smithe, K. K. H.; Pop, E.

    Understanding nanoscale optical behavior of the edges and grain boundaries of synthetically grown transition metal dichalcogenides (TMDCs) is vital for optimizing their optoelectronic properties. Here we present our experimental work on spatial photoluminescence (PL) scanning of large size (>= 50 μ m) monolayer MoS2 grown by chemical vapor deposition (CVD) using a diffraction limited blue laser beam spot (wavelength 405 nm) with a beam diameter as small as 200 nm allowing us to probe nanoscale excitonic phenomena which was not observed before. We have found several important features: (i) there exists a sub-micron width strip ( 500 nm) along the edges that fluoresces 1000 % brighter than the region far inside; (ii) there is another brighter wide region consisting of parallel fluorescing lines ending at the corners of the zig-zag peripheral edges; (iii) there is a giant blue shifted A-excitonic peak, as large as 120 meV, in the PL spectra from the edges. Using density functional theory calculations, we attribute this giant blue shift to the adsorption of oxygen dimers at the edges, which reduces the excitonic binding energy. Our results offer an attractive route to tailor optical properties at the TMDC edges through defect engineering. AFOSR Grant FA9550-14-1-0251, NSF EFRI 2-DARE Grant 1542883, NSF Graduate Research Fellowship under Grant DGE-114747.

  2. Photoluminescence properties of anodic aluminum oxide formed in a mixture of ammonium fluoride and oxalic acid

    NASA Astrophysics Data System (ADS)

    Li, Shou-Yi; Wang, Jian; Li, Yan

    2017-06-01

    Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.

  3. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    PubMed

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Assessment of spectroscopic parameters of solvated Eu(dmh)3 phen organometallic complex in various basic and acidic solvents.

    PubMed

    Chitnis, Dipti; Kalyani, N Thejo; Dhoble, Sanjay

    2018-05-31

    We report on the comprehension of novel europium activated hybrid organic Eu(dmh) 3 phen (Eu: europium, dmh: 2,6-dimethyl-3,5-heptanedione, phen: 1,10 phenanthroline) organo-metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV-vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV-vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross-section σ(λ), radiative lifetime (τ 0 ) and oscillator strength (f) were calculated from UV-vis spectra. The relative intensity ratio (R-ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light-emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert-Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid-state lighting. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Donor-acceptor pair recombination luminescence from monoclinic Cu{sub 2}SnS{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihara, Naoya; Tanaka, Kunihiko, E-mail: tanaka@vos.nagaokaut.ac.jp; Uchiki, Hisao

    2015-07-20

    The defect levels in Cu{sub 2}SnS{sub 3} (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermalmore » activation energies of which were determined to be 22.9 and 24.8 meV, respectively.« less

  6. Temperature-dependent photoluminescence of CuAlO2 single crystals fabricated by using a flux self-removal method

    NASA Astrophysics Data System (ADS)

    Nam, Y. S.; Yoon, J. S.; Ju, H. L.; Chang, S. K.; Baek, K. S.

    2014-10-01

    The temperature-dependent behavior of p-type transparent semiconducting oxide CuAlO2 single crystals prepared by using a flux self-removal method in alumina crucibles was investigated through transmittance and photoluminescence (PL) measurements at temperatures from 12 K to room temperature. The low-temperature (12 K) PL spectrum shows two weak, broad emission peaks, one at 3.52 eV and the other at 3.08 eV, which we assign to excitonic emission and to defectrelated emission originating from copper vacancies. The positions of the PL peaks as functions of temperature exhibit a normal behavior satisfying the standard Varshini law, and the Debye temperature is found to be θ D = 610 ± 80 K. The exciton-binding energy of the CuAlO2 single crystal is estimated to be 49 meV from the PL intensity change with temperature.

  7. Photoluminescence of Er-doped silicon-rich oxide thin films with high Al concentrations

    NASA Astrophysics Data System (ADS)

    Rozo, Carlos; Fonseca, Luis F.; Jaque, Daniel; García Solé, José

    Er-doped silicon-rich oxide (SRO) thin films co-doped with Al in high concentrations were prepared by sputtering. Some films were deposited using a substrate heater (150 °C

  8. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  9. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  10. Polarization induced optical and electrical control of 2D materials by ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zafar, Zainab; You, Yumeng

    Integration of 2D semiconductors with ferroelectrics can provide a route towards control of polarization-switching by piezoelectric effect, allowing the realization of exciting features of next-generation optoelectronic devices. However, a fundamental understanding of spectroscopic investigation based on ferroelectric switching in ferroelectric/2D heterostructures remains elusive. Here, we demonstrate mechanical writing of nanoscale domains in ferroelectric thin film coupled with 2D materials, facilitated by piezoresponse force microscope (PFM). We propose the use of typical Raman/PL imaging to predict the effect of phase change of ferroelectric on 2D materials. Mechanical writing not only controls the local doping region, but also tunes the transport properties of the channel, as confirmed by its electrical characterization. By Raman/PL spectroscopy, we have identified the domain pattern of different polarizations in terms of amplitude modification of thin ferroelectric and possible shifts in wavenumber/energy of the emission peaks of 2D materials. Therefore, the sensitivity of spectroscopic imaging well corroborates the efficacy of mechanical writing for synthesizing ferroelectric gated 2D devices. Southeast University.

  11. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    PubMed Central

    Tang, Yong; Lu, Hanguang; Rao, Longshi; Ding, Xinrui; Yan, Caiman; Yu, Binhai

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc. PMID:29498710

  12. Comparison of structural and optical properties of TeO2 nanostructures synthesized using various substrate conditions

    NASA Astrophysics Data System (ADS)

    Jung, Taek-Kyun; Ryou, Min; Lee, Ji-Woon; Hyun, Soong-Keun; Na, Han Gil; Jin, Changhyun

    2017-11-01

    Several TeO2 low-dimensional nanostructures were prepared by thermal evaporation using four substrate conditions: (1) a bare substrate, (2) a scratched substrate, (3) a Au-catalyst-assisted substrate, and (4) a multi-walled carbon nanotube (MWCNT)-assisted substrate. Scanning electron microscopy and transmission electron microscopy analysis reveals that the morphologies of the nanostructures synthesized using these methods gradually changed from nanoparticles to ultra-thin nanowires with single tetragonal-type TeO2. Photoluminescence (PL) spectra reveal that the PL intensities of the TeO2 nanomaterials obtained using methods (1) and (2) are slightly increased, whereas the intensities of the TeO2 nanostructures obtained using methods (3) and (4) differ significantly depending on the initial substrate conditions. The emission peak is also blue-shifted from 440 nm to 430 nm for the scratched surface condition due to an excitonic transition. The increase in the blue emission for the MWCNT-assisted condition is attributed to the degree and type of excitons and defects in the TeO2 nanostructures.

  13. Intermixing of InP-based quantum dots and application to micro-ring resonator wavelength-selective filter for photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Matsumoto, Atsushi; Matsushita, Asuka; Takei, Yuki; Akahane, Kouichi; Matsushima, Yuichi; Ishikawa, Hiroshi; Utaka, Katsuyuki

    2014-09-01

    In this study, we investigated quantum dot intermixing (QDI) for InAs/InGaAlAs highly stacked QDs on an InP(311)B substrate with low-temperature annealing at 650 °C in order to realize integrated photonic devices with QDs and passive waveguides. In particular, we adopted the method of introducing point defects by ICP-RIE to realize a blue shift of the PL peak wavelength by about 150 nm. Moreover, we successfully fabricated double micro-ring resonators by QDI. The output power contrasts of the devices were found to be 9.0 and 8.6 dB for TE and TM modes, respectively.

  14. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-04-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  15. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-07-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  16. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC{sub x}O{sub y} thin films and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian

    2016-07-25

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy.more » A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.« less

  17. Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency.

    PubMed

    Ezzedini, Maher; Hidouri, Tarek; Alouane, Mohamed Helmi Hadj; Sayari, Amor; Shalaan, Elsayed; Chauvin, Nicolas; Sfaxi, Larbi; Saidi, Faouzi; Al-Ghamdi, Ahmed; Bru-Chevallier, Catherine; Maaref, Hassen

    2017-12-01

    This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations.

  18. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  19. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  20. Synthesis and characterization of porous silicon gas sensors

    NASA Astrophysics Data System (ADS)

    abbas, Roaa A.; Alwan, Alwan M.; Abdulhamied, Zainab T.

    2018-05-01

    In this work, photo-electrochemical etching process of n-type Silicon of resistivity(10 Ω.cm) and (100) orientation, using two illumination sources IR and violet wavelength in HF acid have been used to produce PSi gas detection device. The fabrication process was carried out at a fixed etching current density of 25mA/cm2 and at different etching time (5, 10, 15 and 20) min and (8, 16, 24, and 30) min. Two configurations of gas sensor configuration planer and sandwich have been made and investigated. The morphological properties have been studied using SEM,the FTIR measurement show that the (Si-Hx) and (Si-O-Si) absorption peak were increases with increasing etching time,and Photoluminescence properties of PSi layer show decrease in the peak of PL peak toward the violet shift. The gas detection process is made on the CO2 gas at different operating temperature and fixed gas concentration. In the planner structure, the gas sensing was measured through, the change in the resistance readout as a function to the exposure time, while for sandwich structure J-V characteristic have been made to determine the sensitivity.

  1. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation.

    PubMed

    Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni

    2010-01-01

    Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U mL(-1) or 300 Ug(-1) of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL I', II', III', IV', and VII'. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35 degrees C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45 degrees C. Crude enzyme from SmF and PL III' showed thermophilic profiles of activity, with maximum activity at 60 and 55 degrees C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0-10.0 and PL III was most stable in the pH range 4.0-7.0. Crude enzyme from SmF retained 70%-80% of its maximum activity in the acid-neutral pH range (4.0-7.0), but PIII showed high stability at alkaline pH (7.5-9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55 degrees C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinmin, E-mail: zhxmuga@163.com; Pan, Qi; Kim, Sun Il

    Graphical abstract: - Highlights: • Emission spectrum at 20 K confirms that Eu{sup 2+} ions occupy three sites. • Decay curves of three types of Eu{sup 2+} reflect the characteristics of energy transfer. • The Eu(I) emission is thermally quenched at 323 K. • Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} has good thermal stability. • Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} is a promising phosphor for near UV excited white LEDs. - Abstract: A blue-emitting phosphor Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} peaking at 450 nm was synthesized by a solid state reaction. The XRD patterns, luminescence properties, decay curvesmore » of samples as well as their thermal quenching and comparing the luminescence properties with that of commercial material were investigated. At 20 K, the emission spectrum exhibiting two distinct bands peaking at 437 and 473 nm with a shoulder peak at 510 nm can be attributed to the overlap of Eu(I), Eu(II) and Eu(III) emission bands. At 423 K the PL intensity decreases to 80% of the value at room temperature, and the emission wavelength shifts toward high energy. The derived activation energy indicates that the lowest energy level of the Eu{sup 2+} 4f{sup 6}5d{sup 1} state is well isolated from the host lattice conduction band. The PL spectra and chromaticity coordinates are close to those of BAM. Ca{sub 3}Mg{sub 3}(PO{sub 4}){sub 4}:Eu{sup 2+} could be a potential candidate for near-UV excited white LEDs.« less

  3. Shallow Carrier Trap Levels in GaAsN Investigated by Photoluminescence

    NASA Astrophysics Data System (ADS)

    Inagaki, Makoto; Suzuki, Hidetoshi; Suzuki, Akio; Mutaguchi, Kazumasa; Fukuyama, Atsuhiko; Kojima, Nobuaki; Ohshita, Yoshio; Yamagichi, Masafumi

    2011-04-01

    Shallow carrier trap levels in GaAs1-xNx (0.0010≤x≤0.0038) were investigated by photoluminescence (PL) and photoreflectance (PR) ranging from 4.2 to 300 K. The band gap energies of the GaAsN were clearly determined in the whole temperature range by the PR fitting analysis. It is clarified by peak decomposing that there were three emission peaks in the near-band-edge PL spectra of GaAsN. One of them was originated from band-to-band transition. The energies of two emission peaks were located at approximately 6 and 17 meV below the band edge. The existence of these peaks is evidence of carrier localization at the near-band-edge. The intensity ratio of the peak at the low energy side to other peaks increases with increasing N composition. This behavior is similar to the degradation of electrical properties.

  4. The electronic structure of indium arsenide/gallium arsenide self-assembled quantum dots in a high magnetic field

    NASA Astrophysics Data System (ADS)

    Awirothananon, Sunida

    The electronic energy levels of dome-shape InAs self-assembled quantum dots (SAQD) grown by the Stranski-Krastanow mode on GaAs substrates are similar to those obtained from a two-dimensional harmonic-oscillator. A simple selection rule allows transitions only that preserve angular momentum, depicted with atomic-like orbital labels s, p, d, f, etc. This electronic structure was examined with photoluminescence (PL) and photoluminescence excitation (PLE) techniques. As well, in magnetic fields up to 28 Tesla applied parallel to the growth direction, SAQD energy-level degeneracies were lifted. The number of branches observed is correlated to the angular momentum. The ground state (GS) level at zero angular momentum is shifted quadratically under the magnetic field and the behavior could be explained with the Fock-Darwin (F-D) spectral model. The effect of annealing at temperatures from 825°C to 900°C in 25°C steps on the SAQD electronic structure was also examined with the PL technique combined with an applied magnetic field in the Faraday configuration. The PL lines were similar to the F-D spectral lines with their degeneracy lifted by the applied magnetic field. These lines exhibited ten (anti-)crossings: three each at 10 T and 28 T, four at 18 T, while the inter-level spacing and the FWHM were reduced with increasing annealing temperature. Thus an increase in the observed (anti-)crossings resulted for the higher anneal temperatures. The in-plane excitonic reduced-mass was inferred from the systematic splitting of the PL p-branches in a magnetic field. The reduced-mass for all the annealed QD samples was about 0.066 m0 +/- 0.012m0 which decreased slightly with anneal temperature. An 8-band k*p model predicted a similar reduced-mass at low alloying of gallium, but an incorrect trend was observed as the alloying increased with annealing temperature. Unrealistic reduced-masses at 50 percent gallium content were reached. This discrepancy is explained assuming the F-D model is a single (independent) bulk particle picture neglecting many-body effects, and also the k*p model assumes identical disks before and after annealing. The SAQDs were in fact inhomogeneous shallow domes whose height is reduced with annealing temperatures. It is an attempt to reduce the effect of many-body interactions such as exchange, configuration and screened coulomb interactions dominant in the PL technique, the PLE technique was use. In this technique, a single level in a collection or 'ensemble' of dots is excited with tuned laser-light and only the Coulomb interactions are assumed to be important. The PLE peaks were found to be blue-shifted relative to PL peaks. Furthermore, under the influence of a magnetic field, two PLE peaks were observed that corresponded to the p and d energy states. However, three 'd' lines were expected and is hypothesized that one of the d lines remained degenerate. Moreover, the carrier dynamics observed in PLE spectra are much more difficult to interpret than that of the PL spectra. Applying the same method, the analysis of the p-branch peaks suggested an in-plane reduced-mass of ˜0.084m0 +/- 0.002m0, higher than obtained from PL measurement. Since the effective mass is normally associated with the mobility of the carriers, this would imply that the excitons in the PLE measurement are less mobile than in PL. This is despite the reduced many-body effects, suggesting that some extra interactions in the PL excitation may actually enhance the carrier mobility. Given the current interest in devices such as QD infrared photo-detectors and the necessary controls on the number of charge carriers in these devices, a single-layer and 25-layer SAQD samples with doping in the top cap layer were compared to un-doped sample using PLE at various detection energies. No absorption signatures appeared for the doped single layer, whereas they were recovered in the 25-layer doped sample. Evidently either dopants or injected carriers diffused into the QD layers beneath the cap. This diffusion and its influence is expected to be decreasing with depth. Finally, the number of injected charge-carriers in doped GaAs barriers interleaving 50 SAQD layers was studied in order to understand the influence on their electronic structure. From the relation between the dot density and the dopant dose, two to twenty-two charge carriers were estimated to be present in the barriers of each QD. The PLE results indicated that as this number was increased, direct radiative recombination from the higher levels decreased. In addition to Auger scattering and multi-phonon scattering, the enhanced scattering by the dopants impurities appears to add further decay channels toward the lower-energy recombination. This suggests that the PLE technique is sensitive for characterizing the doping effects in SAQD materials. Some fundamental questions regarding the optical and electronic properties of InAs/GaAs SAQD have been answered in this dissertation and the results can be used to support the future development of opto-electronic devices at the nano-scale level.

  5. β-Ecdysone Augments Peak Bone Mass in Mice of Both Sexes.

    PubMed

    Dai, Weiwei; Zhang, HongLiang; Zhong, Zhendong A; Jiang, Li; Chen, Haiyan; Lay, Yu-An Evan; Kot, Alexander; Ritchie, Robert O; Lane, Nancy E; Yao, Wei

    2015-08-01

    One of the strongest predictors for osteoporosis is peak bone mass. Interventions to augment peak bone mass have yet to be developed. β-Ecdysone (βEcd), a natural steroid-like compound produced by arthropods to initiate metamorphosis, is believed to have androgenic effects and so may be used to augment bone mass. The purpose of this study was to use both male and female (1) gonadal-sufficient; and (2) -insufficient mice to investigate sex differences in terms of bone development and structure after βEcd administration. Two-month-old male and female Swiss-Webster mice were randomized to receive either vehicle or βEcd (0.5 mg/kg) for 3 weeks. In a separate experiment to evaluate the effects of βEcd on sex hormone-deficient mice, gonadectomy was performed in male (orchiectomy [ORX]) and female mice (ovariectomy [OVX]). Sham-operated and the ORX/OVX mice were then treated for 3 weeks with βEcd. Primary endpoints for the study were trabecular bone structure and bone strength. In male mice, the trabecular bone volume was 0.18±0.02 in the placebo-treated (PL) and 0.23±0.02 in the βEcd-treated group (p<0.05 versus PL); and 0.09±0.01 in the ORX group (p<0.05 versus PL) and 0.12±0.01 in the ORX+βEcd group. Vertebral bone strength (maximum load) was 43±2 in PL and 51±1 in the βEcd-treated group (p<0.05 versus PL); and 30±4 in the ORX group (p<0.05 versus PL) and 37±3 in the ORX+βEcd group. In female mice, trabecular bone volume was 0.23±0.02 in PL and 0.26±0.02 in the βEcd-treated group (p<0.05 versus PL); and 0.15±0.01 in the OVX group (p<0.05 versus PL) and 0.14±0.01 in the OVX+βEcd group. Maximum load of the vertebrae was 45±2 in PL and 48±4 in the βEcd-treated group; and 39±4 in the OVX group (p<0.05 versus PL) and 44±4 in the OVX+βEcd group. These findings suggest the potential use of βEcd in the augmentation of bone mass in growing male and female mice. It may also partially prevent the detrimental effects of gonadectomy on trabecular bone. Our results support the potential use of βEcd or nature products that are rich in βEcd to augment peak bone mass. βEcd may differ from the other anabolic hormone treatments that may have severe side effects such as serious cardiac complications. However, its effects on humans remain to be determined.

  6. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    PubMed Central

    Ford, Brian; Tabassum, Natasha; Nikas, Vasileios; Gallis, Spyros

    2017-01-01

    The following study focuses on the photoluminescence (PL) enhancement of chemically synthesized silicon oxycarbide (SiCxOy) thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD), and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2) ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O) bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR) and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL) behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield. PMID:28772802

  7. Optical properties of ion-beam-synthesized Au nanoparticles in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Lin; Oyoshi, Keiji; Chao, Der-Sheng; Tsai, Hsu-Sheng; Hong, Wei-Lun; Takeda, Yoshihiko; Liang, Jenq-Horng

    2016-05-01

    In recent years, gold (Au) nanoparticles have been synthesized via various methods and used in optical and biomedical detection. Au nanoparticles contain some remarkable dimension-dependent optical properties due to surface plasmon resonance (SPR) in Au nanoparticles which causes high absorption in visible light regions. Since SPR in well-crystallized Au nanoparticles can enhance the local electromagnetic field, it is thus expected that greater efficiency in the photoluminescence (PL) originating from oxygen deficiency centers (ODC) can be achieved in Au-implanted SiO2 matrix. In order to demonstrate the enhancement of PL, Au nanoparticles were formed in SiO2 film using ion beam synthesis and their optical and microstructural properties were also investigated in this study. The results revealed that a clear absorption peak at approximately 530 nm was identified in the UV-Vis spectra and was attributed to SPR induced by Au nanoparticles in SiO2. The SPR of Au nanoparticles is also dependent on thermal treatment conditions, such as post-annealing temperature and ambient. The Au nanoparticle-containing SiO2 film also displayed several distinctive peaks at approximately 320, 360, 460, and 600 nm in the PL spectra and were found to be associated with ODC-related defects and non-bridging oxygen hole centers (NBOHC) in SiO2. In addition, the PL peak intensities increased as post-annealing temperature increased, a finding contradictory to the defect recovery but highly consistent with the SPR tendency. A maximum PL emission was achieved when the Au-implanted SiO2 film was annealed at 1100 °C for 1 h under N2. Therefore, the existence of Au nanoparticles in SiO2 film can induce SPR effects as well as enhance PL emission resulting from defect-related luminescence centers.

  8. Water- and humidity-enhanced UV detector by using p-type La-doped ZnO nanowires on flexible polyimide substrate.

    PubMed

    Hsu, Cheng-Liang; Li, Hsieh-Heng; Hsueh, Ting-Jen

    2013-11-13

    High-density La-doped ZnO nanowires (NWs) were grown hydrothermally on flexible polyimide substrate. The length and diameter of the NWs were around 860 nm and 80-160 nm, respectively. All XRD peaks of the La-doped sample shift to a larger angle. The strong PL peak of the La-doped sample is 380 nm, which is close to the 3.3 eV ZnO bandgap. That PL dominated indicates that the La-doped sample has a great amount of oxygen vacancies. The lattice constants ~0.514 nm of the ZnO:La NW were smaller when measured by HR-TEM. The EDX spectrum determined that the La-doped sample contains approximately 1.27 at % La. The La-doped sample was found to be p-type by Hall Effect measurement. The dark current of the p-ZnO:La NWs decreased with increased relative humidity (RH), while the photocurrent of the p-ZnO:La nanowires increased with increased RH. The higher RH environment was improved that UV response performance. Based on the highest 98% RH, the photocurrent/dark current ratio was around 47.73. The UV response of water drops on the p-ZnO:La NWs was around 2 orders compared to 40% RH. In a water environment, the photocurrent/dark current ratio of p-ZnO:La NWs was 212.1, which is the maximum UV response.

  9. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol–gel processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Matras-Postolek, Katarzyna; Song, Xueling

    2015-10-15

    Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL)more » wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.« less

  10. Method And Apparatus For Determining Health Of Thermal Barrier Coatings

    DOEpatents

    Srivastava, Alok Mani; Setlur, Anant Achyut; Comanzo, Holly Ann; Devitt, John William; Ruud, James Anthony; Brewer, Luke Nathaniel

    2005-09-13

    A method for determining past-service conditions and/or remaining useful life of a component of a combustion engine and/or a thermal barrier coating ("TBC") of the component comprises providing a photoluminescent ("PL") material in the TBC, directing an exciting radiation at the TBC, measuring the intensity of a characteristic peak in the emission spectrum of the PL material, and correlating the intensity of the characteristic peak or another quantity derived therefrom to an amount of a new phase that has been formed as a result of the exposure of the component to extreme temperatures. An apparatus for carrying out the method comprises a radiation source that provides the exciting radiation to the TBC, a radiation detector for detecting radiation emitted by the PL material, and means for relating a characteristic of the emission spectrum of the PL material to the amount of the new phase in the TBC, thereby inferring the past-service conditions or the remaining useful life of the component.

  11. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simimol, A.; Department of Physics, National Institute of Technology, Calicut 673601; Manikandanath, N. T.

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantlymore » by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.« less

  12. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    NASA Astrophysics Data System (ADS)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2014-08-01

    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  13. Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Ho, Ching-Yuan; Yang, Chun-Chuen; Shen, Ji-Lin; Chiu, Kuan-Cheng

    2017-01-01

    We report on the optical and structural characterization of rubrene polycrystalline films fabricated from vacuum deposition with various substrate temperatures (Tsub). Depending on Tsub, the role of twisted and planar rubrene conformational isomers on the properties of rubrene films is focused. The temperature (T)-dependent inverse optical transmission (IOT) and photoluminescence (PL) spectra were performed on these rubrene films. The origins of these IOT and PL peaks are explained in terms of the features from twisted and planar rubrene molecules and of the band characteristics from rubrene molecular solid films. Here, two rarely reported weak-peaks at 2.431 and 2.605 eV were observed from IOT spectra, which are associated with planar rubrene. Besides, the T-dependence of optical bandgap deduced from IOT spectra is discussed with respect to Tsub. Together with IOT and PL spectra, for Tsub > 170 °C, the changes in surface morphology and unit cell volume were observed for the first time, and are attributed to the isomeric transformation from twisted to planar rubrenes during the deposition processes. Furthermore, a unified schematic diagram in terms of Frenkel exciton recombination is suggested to explain the origins of the dominant PL peaks performed on these rubrene films at 15 K.

  14. Enhanced Raman scattering of graphene by silver nanoparticles with different densities and locations

    NASA Astrophysics Data System (ADS)

    Sun, Hai-Bin; Fu, Can; Xia, Yan-Jie; Zhang, Chong-Wu; Du, Jiang-Hui; Yang, Wen-Chao; Guo, Peng-Fei; Xu, Jun-Qi; Wang, Chun-Lei; Jia, Yong-Lei; Liu, Jiang-Feng

    2017-02-01

    Graphene-metal nanoparticle heterojunctions greatly improve the surface-enhanced Raman scattering (SERS) by strong light-graphene interactions. In this work, to enhance the Raman scattering, Ag nanoparticles (NPs) underneath and on top of the graphene were used. Then, Raman scattering of graphene is significantly enhanced approximately 67-fold, and the enhancement factor of the graphene G peak increases with the Ag NP density at the same location. In addition, an obvious red-shift and broadening of the resonance peak of Ag NPs is presented, which may be correlated to the strength of Raman enhancement, the coupling of the deposited Ag NPs and the graphene. Further, graphene-Ag NP heterojunctions can be used as SERS substrates to obtain the strongest Raman signals of the rhodamine (R6G) molecules and the weakest photoluminescence (PL) background from the Ag NPs. Based on the tunable Raman enhancement, graphene-Ag NPs offer a promising platform for engineering SERS substrates to obtain highly sensitive detection of trace levels of analyte molecules.

  15. Influence of in doping in GaN barriers on luminescence properties of InGaN/GaN multiple quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Yang, Jing; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Liu, Wei; Liang, Feng; Liu, Shuangtao; Xing, Yao; Wang, Wenjie; Li, Mo

    2018-02-01

    Room-temperature photoluminescence (RT PL) spectra of InGaN/GaN multiple quantum well (MQW) structures grown by metalorganic chemical vapor deposition (MOCVD) was investigated. It is found that with increasing In content in GaN barriers, the FWHM and emission intensity decreases, and the emission wavelength is first red shift and then blue shift. The shrinkage of FWHM and emission wavelength blue shift can be attributed to the reduction of piezoelectric field, and the lower height of potential barrier will make carrier confinement weaker and ground state level lower, which resulting in emission intensity decreasing and wavelength red shift. In addition, doping the barrier with In will induce more inhomogeneous and deeper localized states in InGaN QWs, which also contribute to a red shift of PL emission wavelength.

  16. Phosphine Functionalization GaAs(111)A Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traub, M.; Biteen, J; Michalak, D

    Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Gamore » surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity.« less

  17. Cd-free Cu-Zn-In-S/ZnS quantum dots@SiO2 multiple cores nanostructure: preparation and application for white LEDs

    NASA Astrophysics Data System (ADS)

    Jiang, Tongtong; Shen, Mohan; Dai, Peng; Wu, Mingzai; Yu, Xinxin; Li, Guang; Xu, Xiaoliang; Zeng, Haibo

    2017-10-01

    The work reports the fabrication of Cu doped Zn-In-S (CZIS) alloy quantum dots (QDs) using dodecanethiol and oleic acid as stabilizing ligands. With the increase of doped Cu element, the photoluminescence (PL) peak is monotonically red shifted. After coating ZnS shell, the PL quantum yield of CZIS QDs can reach 78%. Using reverse micelle microemulsion method, CZIS/ZnS QDs@SiO2 multi-core nanospheres were synthesized to improve the colloidal stability and avoid the aggregation of QDs. The obtained multi-core nanospheres were dispersed in curing adhesive, and applied as a color conversion layer in down converted light-emitting diodes. After encapsulation in curing adhesive, the newly designed LEDs show artifically regulated color coordinates with varying the weight ratio of green QDs and red QDs, and the concentrations of these two types of QDs. Moreover, natural white and warm white LEDs with correlated color temperature of 5287, 6732, 2731, and 3309 K can be achieved, which indicates that CZIS/ZnS QDs@SiO2 nanostructures are promising color conversion layer material for solid-state lighting application.

  18. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  19. Bile salt incorporated polypyrrole thin film for ethanol sensing.

    PubMed

    Sharma, Partha P D; Sarkar, D

    2015-04-01

    Polypyrrole (PPy)-bile salt composite was used for sensing ethanol vapor. PPy was synthesized by interface polymerization for subsequent fabrication of thin film of its composite with bile salt, by in-situ co-dispersion method and then exposed to ethanol vapour. Sensing was visualized through changes in morphological, structural and optical characterizations. The ethanol exposed film showed larger agglomeration as revealed in its surface morphology on scanning electron microscope (SEM) and greater crystallinity as seen through X-Ray diffraction (XRD). Fourier transform infra red (FTIR) and nuclear magnetic resonance spectroscopy (NMR) of the ethanol incorporated film also gave signature of the presence of bile salt and alcohol. Alcohol incorporation pattern resulted in increase in electrical conductance from 7.08539 x 10(-5) mA/V to 8.0356 x 10(-5) mA/V, as determined from current voltage characterizations. Average molecular weight (M(n)) obtained from gel permeation chromatography changed from 6160 to 10300 on ethanol intake. Photoluminescence (PL) intensity was quenched and the PL peak shifted from 430 to 409 on ethanol exposure. Changes in morphological, structural, optical and electrical properties of the composite on ethanol exposure showed its prospective application for sensing ethanol.

  20. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  1. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  2. An integrative discourse perspective on positive leadership in public health care.

    PubMed

    Pietiläinen, Ville; Salmi, Ilkka

    2017-02-06

    Purpose This study aims to take a discursive view on positive leadership (PL). A positive approach has gained momentum in recent years as appropriate leadership practices are implemented in organizations. Despite the turn toward discursive approaches in organization studies, there is insufficient evidence supporting PL as a socially constructed experience. Design/methodology/approach The present study addresses an integrative discourse perspective for capturing the PL concept as a social process within the public health-care context. Findings Four meanings of PL are highlighted: role-taking, servicing, balancing and deciphering. Research limitations/implications The meanings shift the emphasis of certain PL definitions to a contextual interpretation. For scholars, the perspective demonstrates a multidimensional process approach in the desired organizational context as a counterbalance to one unanimously agreed-upon PL definition. Practical implications For leaders, an integrative discourse perspective offers tools for comprehending PL as a process: how to identify, negotiate and reconcile various PL meanings. Originality/value An integrative discourse perspective provides a novel perspective capturing the PL concept within the public health-care field.

  3. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation

    PubMed Central

    Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni

    2010-01-01

    Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U  mL−1 or 300 Ug−1 of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL  I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35°C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45°C. Crude enzyme from SmF and PL III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55°C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0), but PIII showed high stability at alkaline pH (7.5–9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55°C. The differing behavior of the enzymes with respect to pH and temperature suggests that they are different isozymes. PMID:20689719

  4. Adjustable YAG : Ce3+ photoluminescence from photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Li, Yigang; Almeida, Rui M.

    2013-04-01

    Four different photonic bandgap (PBG) structures embedding a YAG : Ce3+ layer inside two three-period Bragg mirrors were prepared by sol-gel processing, forming Fabry-Perot microcavities whose defect peaks moved from red to green. Under irradiation of blue Ar+ laser light, the typical broad YAG : Ce3+ photoluminescence (PL) emission band was highly narrowed in these four samples, with the new position of the modified PL peaks corresponding to the resonance wavelength of each microcavity sample, while the simultaneous colour changes could be easily observed by the human eye. The adjustable range demonstrated here was wide enough to generate white light with colour temperatures from warm white (˜2700 K) to daylight white (˜5600 K), by mixing the modified PL with light from any usual blue LED excitation source. This result provides a novel technique to solve the red-deficiency problem in the white LED industry: instead of relying on the development of new phosphors, the well-known PL of YAG : Ce3+ can be conveniently adjusted by 1D PBG structures.

  5. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    PubMed

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  6. The effects of platelet lysate patches on the activity of tendon-derived cells.

    PubMed

    Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2018-03-01

    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear

    PubMed Central

    Sharpe, Melissa J.; Killcross, Simon

    2015-01-01

    The prelimbic (PL) cortex allows rodents to adapt their responding under changing experimental circumstances. In line with this, the PL cortex has been implicated in strategy set shifting, attentional set shifting, the resolution of response conflict, and the modulation of attention towards predictive stimuli. One interpretation of this research is that the PL cortex is involved in using information garnered from higher-order cues in the environment to modulate how an animal responds to environmental stimuli. However, data supporting this view of PL function in the aversive domain are lacking. In the following experiments, we attempted to answer two questions. Firstly, we wanted to investigate whether the role of the PL cortex in using higher-order cues to influence responding generalizes across appetitive and aversive domains. Secondly, as much of the research has focused on a role for the PL cortex in performance, we wanted to assess whether this region is also involved in the acquisition of hierarchal associations which facilitate an ability to use higher-order cues to modulate responding. In order to answer these questions, we assessed the impact of PL inactivation during both the acquisition and expression of a contextual bi-conditional discrimination. A contextual bi-conditional discrimination involves presenting two stimuli. In one context, one stimulus is paired with shock while the other is presented without shock. In another context, these contingencies are reversed. Thus, animals have to use the present contextual cues to disambiguate the significance of the stimulus and respond appropriately. We found that PL inactivation disrupted both the encoding and expression of these context-dependent associations. This supports a role for the PL cortex in allowing higher-order cues to modulate both learning about, and responding towards, different cues. We discuss these findings in the broader context of functioning in the medial prefrontal cortex (PFC). PMID:25628542

  8. Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties

    NASA Astrophysics Data System (ADS)

    Niranjan, K.; Dutta, Subhajit; Varghese, Soney; Ray, Ajoy Kumar; Barshilia, Harish C.

    2017-04-01

    We report the growth of flower-like ferromagnetic Cu-doped ZnO (CZO) nanostructures using electrochemical deposition on FTO-coated glass substrates. X-ray photoelectron spectroscopy studies affirmed the presence of Cu in ZnO with an oxidation state of 2+. In order to find the optimized dopant concentration, different Cu dopant concentrations of 0.28, 0.30, 0.32, 0.35, 0.38, and 0.40 mM are applied and their magnetic, optical, and electrical properties are studied. Magnetic moment increased with the increasing dopant concentration up to 0.35 mM and then decreased with further increase in the concentration. Diamagnetic pure ZnO showed ferromagnetic nature even with a low doping concentration of 0.28 mM. Band gap increased with the increasing Cu concentration until a value of 0.35 mM and then remained the same for the higher dopant concentrations. It is ascribed to the Burstein-Moss effect. Defect-related broad photoluminescence (PL) peak is observed for the pure ZnO in the visible range. In contrast, Cu-doped samples showed a sharp and intense PL peak at 426 nm due to increased Zn interstitials. Kelvin probe measurements revealed that the Fermi level shifts toward the conduction band for the Cu-doped samples with respect to pure material. Electron transport mechanism in the samples is observed to be dominated by space charge-limited current and Schottky behavior with improved ideality factor up to 0.38 mM Cu.

  9. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less

  10. OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.

    We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

  11. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  12. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing.

    PubMed

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-12-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3×10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 °C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  13. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    PubMed Central

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO2 films implanted by different doses of Si+ ions. Room-temperature PL from 400-nm-thick SiO2 films implanted to a dose of 3×1016 cm−2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950–1150 °C) and duration (5–20 s). The reported approach of implanting silicon into SiO2 films followed by RTA may be effective for tuning Si-based photonic devices. PMID:27878029

  14. Photoluminescence and contactless electroreflectance characterization of BexCd1-xSe alloys

    NASA Astrophysics Data System (ADS)

    Huang, P. J.; Huang, Y. S.; Firszt, F.; Meczynska, H.; Maksimov, O.; Tamargo, M. C.; Tiong, K. K.

    2007-01-01

    A detailed optical characterization of a Bridgman-grown wurtzite- (WZ-) type Be0.075Cd0.925Se mixed crystal and three zinc-blende (ZB) BexCd1-xSe epilayers grown by MBE on InP substrates has been carried out via photoluminescence (PL) and contactless electroreflectance (CER) in the temperature range of 15-400 K. The PL spectrum of the WZ-BeCdSe at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep-level defects, while the PL emission peaks of the ZB-BeCdSe epilayers show an asymmetric shape with a tail on the low-energy side. Various interband transitions, originating from the band edge and spin-orbit splitting critical points, of the samples have been observed in the CER spectra. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the energies of the fundamental transitions determined from electromodulation data. The parameters that describe the temperature dependence of the fundamental and spin split-off bandgaps and the broadening function of the band-edge exciton are evaluated and discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.

    The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phononmore » coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.« less

  16. Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan

    2014-02-28

    We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5 ns, continuous shifts in PL lifetime distributions with respectmore » to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.« less

  17. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  18. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.

    PubMed

    Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang

    2017-04-01

    Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Blue-light emitting electrochemical cells comprising pyrene-imidazole derivatives

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonji; Sunesh, Chozhidakath Damodharan; Subeesh, Madayanad Suresh; Choe, Youngson

    2018-04-01

    Light-emitting electrochemical cells (LECs), the next-generation lighting sources are the potential replacements for organic light-emitting diodes (OLEDs). In recent years, organic small molecules (SMs) have established the applicability in solid-state lighting, and considered as prospective active materials for LECs with higher device performance. Here, we describe the synthesis of pyrene-imidazole based SMs, PYR1, and PYR2 that differ by one pyrene unit and their characterization by various spectroscopic methods. To investigate the thermal, photophysical, and electrochemical properties of the two synthesized compounds, we performed thermogravimetric, UV-visible, photoluminescence (PL), and voltammetric measurements. The photoluminescence (PL) emission spectra of PYR1 and PYR2 measured in the acetonitrile solution, where PYR1 and PYR2 emit in the blue spectral region with peaks aligned at 383 nm and 389 nm, respectively. The fabricated LEC devices exhibited broader electroluminescence (EL) spectra with a significant red shift of the emission maxima to 446 nm and 487 nm, with CIE coordinates of (0.17, 0.18) and (0.18, 0.25) for PYR1 and PYR2, respectively. The LECs based on PYR1 and PYR2 produced maximum brightness values of 180 and 72 cd m-2 and current densities of 55 and 27 mA cm-2, respectively.

  20. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law.

    PubMed

    Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao

    2016-09-27

    Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

  1. Linearly polarized photoluminescence of InGaN quantum disks embedded in GaN nanorods.

    PubMed

    Park, Youngsin; Chan, Christopher C S; Nuttall, Luke; Puchtler, Tim J; Taylor, Robert A; Kim, Nammee; Jo, Yongcheol; Im, Hyunsik

    2018-05-25

    We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO 2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%.

  2. Crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor prepared by sol-gel method.

    PubMed

    Pan, Heng; Li, Xu; Zhang, Jinping; Guan, Li; Su, Hongxin; Yang, Zhiping; Teng, Feng

    2016-07-04

    A series of Eu2+ (0.0025≤ × ≤0.025) activated Sr2SiO4:xEu2+ (SSO:xEu2+) phosphors were synthesized via a sol-gel method. The phosphors were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. The differences between α' and β phase of SSO in the density of states and energy band gap were investigated. The energy gap of α'-SSO and β-SSO are 4.489 and 4.106 eV, respectively. While, two samples showed similar total and partial densities of states. Under the excitation by the ultra violet (UV) light (365 nm), the SSO:xEu2+ phosphor exhibited a green emission band from 400 to 700 nm, which was corresponding to the transition of 5d → 4f of Eu2+ ions. Two emission peaks at 464 and 532 nm could be obtained through Gauss fitting curves. The ratio of the blue to green emission peak decreased with the Eu2+ concentration and the peaks shifted regularly with it. The thermal quenching property was investigated and its activation energy was calculated. The results indicated that this phosphor could be a candidate of green phosphor for UV-based light-emitting diodes (LEDs).

  3. Enhanced emission of charged-exciton polaritons from colloidal quantum dots on a SiN/SiO2 slab waveguide

    PubMed Central

    Xu, Xingsheng; Li, Xingyun

    2015-01-01

    We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709

  4. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.

    2017-10-01

    Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.

  5. GaInNAs Structures Grown by MBE for High-Efficiency Solar Cells: Final Report; 25 June 1999--24 August 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, C. W.

    The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAsmore » quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.« less

  6. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  7. Presence of the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease.

    PubMed

    Clark-Feoktistova, Y; Ruenes-Domech, C; García-Bacallao, E F; Roblejo-Balbuena, H; Feoktistova, L; Clark-Feoktistova, I; Jay-Herrera, O; Collazo-Mesa, T

    2018-06-10

    Wilson's disease is characterized by the accumulation of copper in different organs, mainly affecting the liver, brain, and cornea, and is caused by mutations in the ATP7B gene. More than 120 polymorphisms in the ATP7B gene have been reported in the medical literature. The aim of the present study was to identify the conformational changes in the exon 3 region of the ATP7B gene and detect the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease. A descriptive study was conducted at the Centro Nacional de Genética Médica and the Instituto Nacional de Gastroenterología within the time frame of 2007-2012 and included 105 patients with a clinical diagnosis of Wilson's disease. DNA extraction was performed through the salting-out method and the fragment of interest was amplified using the polymerase chain reaction technique. The conformational shift changes in the exon 3 region and the presence of the p.L456V polymorphism were identified through the Single-Strand Conformation Polymorphism analysis. The so-called b and c conformational shift changes, corresponding to the p.L456V polymorphism in the heterozygous and homozygous states, respectively, were identified. The allelic frequency of the p.L456V polymorphism in the 105 Cuban patients that had a clinical diagnosis of Wilson's disease was 41% and liver-related symptoms were the most frequent in the patients with that polymorphism. The p.L456V polymorphism was identified in 64 Cuban patients clinically diagnosed with Wilson's disease, making future molecular study through indirect methods possible. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Effect of heat treatment on absorption and fluorescence properties of PbS-doped silica optical fibre

    NASA Astrophysics Data System (ADS)

    Qin, Fu; Dong, Yanhua; Wen, Jianxiang; Pang, Fufei; Luo, Yanhua; Peng, Gang-Ding; Chen, Zhenyi; Wang, Tingyun

    2017-02-01

    The effect of heat treatment on the optical properties of a PbS-doped silica optical fibre was investigated. The experimental results showed that the absorption peak of the fibre red shifted from 1032 to 1133 nm when the heat treatment temperatures were carried out at 900, 950, 1000, and 1100 °C for 1 h, respectively. At the same time, when the heat treatment at 900 °C was carried out for 2, 5, 10, 20, and 40 h, the absorption spectra of the fibre showed a red shift from 1074 to 1143 nm. In addition, the intensity of the absorption peak increased from 0.258 to 1.384 dB/m and the full width at half maximum (FWHM) became narrower (from 130 to 50 nm) as the heat treatment proceeded. Moreover, the photoluminescence (PL) intensity in the wavelength range of 1100-1500 nm decreased with an increase in the heat treatment temperature. The theoretical analysis, using an effective mass method, showed that the effective band gap energy and average size of the lead sulphide (PbS) quantum dots (QDs) in the silica fibre core varied from 1.199 to 1.083 eV and from 4.28 to 4.81 nm, respectively. The results indicate that the size of the PbS QDs present in the silica fibre core could be controlled by a proper heat treatment, which is of great interest in optical fibre amplifiers and other fibre optic devices.

  9. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  10. Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1997-03-01

    We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)

  11. Shaping the photoluminescence from gold nanoshells by cavity plasmons in dielectric-metal core-shell resonators

    NASA Astrophysics Data System (ADS)

    Sun, Ren; Wan, Mingjie; Wu, Wenyang; Gu, Ping; Chen, Zhuo; Wang, Zhenlin

    2016-08-01

    We report experimental investigation of the photoluminescence (PL) generated from the gold nanoshells of the dielectric-metal core-shell resonators (DMCSR) that support multipolar electric and magnetic based cavity plasmon resonances. Significantly enhanced and modulated PL spectrum is observed. By comparing the experimental results with analytical Mie calculations, we are able to demonstrate that the observed reshaping effects are due to the excitations of those narrow-band cavity plasmon resonances. We also present that the variation on the dielectric core size allows for tuning the cavity plasmon resonance wavelengths and thus the peak positions of the PL spectrum.

  12. Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen

    2018-04-01

    The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.

  13. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates

    NASA Astrophysics Data System (ADS)

    Brammertz, Guy; Mols, Yves; Degroote, Stefan; Motsnyi, Vasyl; Leys, Maarten; Borghs, Gustaaf; Caymax, Matty

    2006-05-01

    Thin epitaxial GaAs films, with thickness varying from 140 to 1000 nm and different Si doping levels, were grown at 650 °C by organometallic vapor phase epitaxy on Ge substrates and analyzed by low-temperature photoluminescence (PL) spectroscopy. All spectra of thin GaAs on Ge show two different structures, one narrow band-to-band (B2B) structure at an energy of ~1.5 eV and a broad inner-band-gap (IB) structure at an energy of ~1.1 eV. Small strain in the thin GaAs films causes the B2B structure to be separated into a light-hole and a heavy-hole peak. At 2.5 K the good structural quality of the thin GaAs films on Ge can be observed from the narrow excitonic peaks. Peak widths of less than 1 meV are measured. GaAs films with thickness smaller than 200 nm show B2B PL spectra with characteristics of an n-type doping level of approximately 1018 at./cm3. This is caused by heavy Ge diffusion from the substrate into the GaAs at the heterointerface between the two materials. The IB structure observed in all films consists of two Gaussian peaks with energies of 1.04 and 1.17 eV. These deep trapping states arise from Ge-based complexes formed within the GaAs at the Ge-GaAs heterointerface, due to strong diffusion of Ge atoms into the GaAs. Because of similarities with Si-based complexes, the peak at 1.04 eV was identified to be due to a GeGa-GeAs complex, whereas the peak at 1.17 eV was attributed to the GeGa-VGa complex. The intensity of the IB structure decreases strongly as the GaAs film thickness is increased. PL intensity of undoped GaAs films containing antiphase domains (APDs) is four orders of magnitude lower than for similar films without APDs. This reduction in intensity is due to the electrically active Ga-Ga and As-As bonds at the boundaries between the different APDs. When the Si doping level is increased, the PL intensity of the APD-containing films is increased again as well. A film containing APDs with a Si doping level of ~1018 at./cm3 has only a factor 10 reduced intensity. We tentatively explain this observation by Si or Ge clustering at antiphase boundaries, which eliminates the effects of the Ga-Ga and As-As bonds. This assumption is confirmed by the fact that, at 77 K, the ratio between the intensity of the IB peak at 1.17 eV to the intensity of the peak at 1.04 eV is smaller than 1.4 for all films containing APDs, whereas it is larger than 1.4 for all films without APDs. This shows stronger clustering of Si or Ge in the material with APDs. For future electronic applications, Ge diffusion into the GaAs will have to be reduced. PL analysis will be a rapid tool for studying the Ge diffusion into the GaAs thin films.

  14. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  15. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  16. Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials

    DTIC Science & Technology

    2018-01-24

    TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra

  17. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  18. Experimental study of optical and electrical properties of ZnO nano composites electrodeposited on n-porous silicon substrate for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Selmane, Naceur; Cheknane, Ali; Gabouze, Nourddine; Maloufi, Nabila; Aillerie, Michel

    2017-11-01

    ZnO films deposited on silicon porous substrates (PS) were prepared by electro-deposition anodization on n type (100) silicon wafer. This ZnO/PS structure combines substrates having specific structural and optical properties (IR emission), with nano-composites of ZnO potentially interesting due to their functional properties (UV emission) to be integrated as constitutive elements of devices in various optoelectronic applications mainly in blue light emitters. With this combined structure, the blue shift in the PL peak is possible and easy to obtain (467nm). The vibration modes of PS and ZnO films on PS substrates (ZnO /PS) were investigated by infrared (FTIR) measurements and their behaviors were analyzed and discussed by considering the structural properties characterized by X-ray diffraction (DRX) and scanning electronic microscopy (MEB).

  19. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties.

    PubMed

    Liang, Yucang; Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-04

    Crystalline ZnO -ROH and ZnO -OR (R = Me, Et, i Pr, n Bu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)₂ deriving from the reaction of Zn[N(SiMe₃)₂]₂ with ROH and of the freshly prepared Zn(OR)₂ under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO -ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO -OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)₂ generated ZnO -R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.

  20. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties

    PubMed Central

    Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-01

    Crystalline ZnO-ROH and ZnO-OR (R = Me, Et, iPr, nBu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)2 deriving from the reaction of Zn[N(SiMe3)2]2 with ROH and of the freshly prepared Zn(OR)2 under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO-ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO-OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)2 generated ZnO-R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons’ movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties. PMID:29300343

  1. Synthesis and properties of ultra-long InP nanowires on glass.

    PubMed

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  2. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y.

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences ofmore » the PL characteristics are explained by the effects of the WL.« less

  3. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.

    PubMed

    Jung, Boo Young; Kim, Nam Young; Lee, Changhee; Hwangbo, Chang Kwon; Seoul, Chang

    2002-06-01

    We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air[Ag[Alq3]Ag]glass]; type B, of [air[dielectric[Alq3]dielectric]glass]; and type C, of [air[Ag[Alq2]dielectric]glass]. A bare Alq3 film of [air[Alq3]glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15-27.5, 7-10.5, and 16-16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

  4. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  5. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  6. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  7. Ultrathin type-II GaSb/GaAs quantum wells grown by OMVPE

    NASA Astrophysics Data System (ADS)

    Pitts, O. J.; Watkins, S. P.; Wang, C. X.; Stotz, J. A. H.; Meyer, T. A.; Thewalt, M. L. W.

    2004-09-01

    Heterostructures containing monolayer (ML) and submonolayer GaSb insertions in GaAs were grown using organometallic vapour phase epitaxy. At the GaAs-on-GaSb interface, strong intermixing occurs due to the surface segregation of Sb. To form structures with relatively abrupt interfaces, a flashoff growth sequence, in which growth interruptions are employed to desorb Sb from the surface, was introduced. Reflectance-difference spectroscopy and high-resolution X-ray diffraction data demonstrate that interfacial grading is strongly reduced by this procedure. For layer structures grown with the flashoff sequence, a GaSb coverage up to 1 ML can be obtained in the two-dimensional (2D) growth mode. For uncapped GaSb layers, on the other hand, atomic force microscope images show that the 2D-3D growth mode transition occurs at a submonolayer coverage between 0.3 and 0.5 ML. Low-temperature photoluminescence spectra of multiple quantum well samples grown using the flashoff sequence show a strong quantum well-related peak which shifts to lower energies as the amount of Sb incorporated increases. The PL peak energies are consistent with a type-II band lineup at the GaAs/GaSb interface.

  8. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  9. Evolution of superclusters and delocalized states in GaAs1-xNx

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.

    2012-11-01

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs1-xNx was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster is fully developed by 0.32% N.

  10. Using Microsensor Technology to Quantify Match Demands in Collegiate Women's Volleyball.

    PubMed

    Vlantes, Travis G; Readdy, Tucker

    2017-12-01

    Vlantes, TG and Readdy, T. Using microsensor technology to quantify match demands in collegiate women's volleyball. J Strength Cond Res 31(12): 3266-3278, 2017-The purpose of this study was to quantify internal and external load demands of women's NCAA Division I collegiate volleyball competitions using microsensor technology and session rating of perceived exertion (S-RPE). Eleven collegiate volleyball players wore microsensor technology (Optimeye S5; Catapult Sports, Chicago, IL, USA) during 15 matches played throughout the 2016 season. Parameters examined include player load (PL), high impact PL, percentage of HI PL, explosive efforts (EEs), and jumps. Session rating of perceived exertion was collected 20 minutes postmatch using a modified Borg scale. The relationship between internal and external load was explored, comparing S-RPE data with the microsensor metrics (PL, HI PL, % HI PL, EEs, and jumps). The setter had the greatest mean PL and highest number of jumps of all positions in a 5-1 system, playing all 6 rotations. Playing 4 sets yielded a mean PL increase of 25.1% over 3 sets, whereas playing 5 sets showed a 31.0% increase in PL. A multivariate analysis of variance revealed significant differences (p < 0.01) across all position groups when examining % HI PL and jumps. Cohen's d analysis revealed large (≥0.8) effect sizes for these differences. Defensive specialists recorded the greatest mean S-RPE values over all 15 matches (886 ± 384.6). Establishing positional load demands allows coaches, trainers, and strength and conditioning professionals to implement training programs for position-specific demands, creating consistent peak performance, and reducing injury risk.

  11. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizal, Umesh, E-mail: umeshrizal680@gmail.com; Swain, Bibhu P., E-mail: bibhu.s@smit.smu.edu.in; Swain, Bhabani S., E-mail: bsswain@kookmin.ac.kr

    Gallium nitride nanowires (GaN-NWs) of diameters ranging from 20 to 80 nm were grown on the p-type Si substrate by Thermal Chemical Vapor Deposition (TCVD) using Iron (Fe) catalyst via VLS mechanism. Raman and FTIR spectra reveal the presence of broad transverse optic (TO) and longitudinal optic (LO) phonon peak spreads over 500-600 cm{sup −1} and 720 cm{sup −1} respectively. The detail deconvolution of integrated transverse and longitudinal phonon analysis reveals phonon confinement brought out by incorporation of hydrogen atom. The red shifts of TO and LO phonon peak position indicates nanosized effect. I{sub A1(LO)}/I{sub A1(TO)} increases from 0.073 to 1.0 and theirmore » respective fwhm{sub A1(LO)}/fwhm{sub A1(TO)} also increases from 0.71 to 1.31 with increasing H{sub 2} flow rate. E{sub 1}(LO) - E{sub 1}(TO) and A{sub 1}(LO) - A{sub 1}(TO) increases from 173.83 to 190.73 and 184.89 to 193.22 respectively. Apart from this usual TO and LO phonon, we have found Surface Optic (SO) phonon at 671 cm{sup −1} in FTIR spectra. The intensity of PL peak increases with increasing H{sub 2} dilution reveals efficient passivation of defect centre at surface of GaN-NWs.« less

  13. Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications

    PubMed Central

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Liu, Sha; Law, Wing-Cheung; Wu, Fang; Swihart, Mark T.; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We have synthesized core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with an average size of 15 nm and exceptionally high photoluminescence (PL) quantum yield. When excited at 740 nm, the nanocrystals manifest spectrally distinguished, near infrared to near infrared (NIR-to-NIR) downconversion PL peaked at ~900, ~1050, and ~1300 nm. The absolute quantum yield of NIR-to-NIR PL reached 40% for core-shell nanoparticles dispersed in hexane. Time-resolved PL measurements revealed that this high quantum yield was achieved through suppression of nonradiative recombination originating from surface states and cross relaxations between dopants. NaGdF4:Nd3+/NaGdF4 nanocrystals, synthesized in organic media, were further converted to be water-dispersible by eliminating the capping ligand of oleic acid. NIR-to-NIR PL bioimaging was demonstrated both in vitro and in vivo through visualization of the NIR-to-NIR PL at ~900 nm under incoherent lamp light excitation. The fact that both excitation and the PL of these nanocrystals are in the biological window of optical transparency, combined with their high quantum efficiency, spectral sharpness and photostability, makes these nanocrystals extremely promising as optical biomaging probes. PMID:22401578

  14. Effect of preparation methods and doping on the structural and tunable emissions of CdS

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Bakr; Abdel-Kader, M. H.; Alhazime, Ali A.; Almarashi, Jamal Q. M.

    2018-03-01

    Fe, Mn and Mg doped CdS samples were prepared by thermolysis method in air and under flow of nitrogen. Structural, compositional and optical properties of the prepared samples were investigated using x-ray powder diffraction (XRD), scanning electron microscope (SEM/EDS mapping), Fourier transform infrared red (FTIR), UV-vis absorption and photoluminescence (PL) spectroscopes. Rietveld refinement of x-ray data showed that all the undoped and doped CdS samples prepared in air and under flow of nitrogen have both cubic and hexagonal structures. The percentages of hexagonal and cubic phases for all prepared samples were determined. The crystallite size increased for CdS prepared under flow of N2 compared with the sample prepared in air. The energy gap of all the samples was calculated using UV data. The intensity of PL emission changed according to the method of preparation and the kind of doping elements. PL emission revealed a blue shift for CdS prepared in air compared with CdS prepared under flow of nitrogen; also all doped samples showed a red shift of PL spectra compared with undoped samples. Undoped and doped CdS with Fe and Mg samples emitted violet and blue sub-spectra. Mn doped CdS prepared in air revealed violet, blue and yellow sub-spectra, while the sample prepared under flow of N2 emitted violet, blue and green sub-spectra.

  15. MBE growth of nitride-arsenides for long wavelength opto-electronics

    NASA Astrophysics Data System (ADS)

    Spruytte, Sylvia Gabrielle

    2001-07-01

    Until recently, the operating wavelength of opto-electronic devices on GaAs has been limited to below 1 mum due to the lack of III-V materials with close lattice match to GaAs that have a bandgap below 1.24 eV. To enable devices operating at 1.3 mum on GaAs, MBE growth of a new III-V material formed by adding small amounts of nitrogen to InGaAs was developed. The growth of group III-nitride-arsenides (GaInNAs) is complicated by the divergent properties of the alloy constituents and the difficulty of generating a reactive nitrogen species. Nitride-arsenide materials are grown by molecular beam epitaxy (MBE) using a radio frequency (rf) nitrogen plasma source. The plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen are determined using the emission spectrum of the plasma. To avoid phase segregation, nitride-arsenides must be grown at relatively low temperatures and high arsenic overpressures. It is shown that the group III growth rate controls the nitrogen concentration in the film. Absorption measurements allow the establishment of a range of GaInNAs alloys yielding 1.3 mum emission. The optical properties of GaInNAs and GaNAs quantum wells (QWs) are investigated with photoluminescence (PL) measurements. The peak PL intensity increases and peak wavelength shifts to shorter wavelengths when annealing. The increase in luminescence efficiency results from a decrease in non-radiative recombination centers. As the impurity concentration in the GaInNAs films is low, crystal defects associated with nitrogen incorporation were investigated and improvements in crystal quality after anneal were observed. Nuclear reaction channeling measurements show that as-grown nitride-arsenides contain a considerable amount of interstitial nitrogen and that a substantial fraction of the non-substitutional nitrogen disappears during anneal. Secondary ion mass spectroscopy depth profiling on GaInNAs quantum wells shows that during anneal, the nitrogen diffusion is more pronounced than indium diffusion, hence nitrogen diffusion is also the major cause of the shift during the anneal process of GaInNAs QWs. To limit nitrogen diffusion, the GaInNAs QWs were inserted between GaAsN barriers. This also resulted in longer wavelength emission due to decreased carrier confinement energy. This new active region resulted in devices emitting at 1.3 mum.

  16. Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha

    2017-10-01

    We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA complex.

  17. PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity.

    PubMed

    Incio, Joao; Tam, Josh; Rahbari, Nuh N; Suboj, Priya; McManus, Dan T; Chin, Shan M; Vardam, Trupti D; Batista, Ana; Babykutty, Suboj; Jung, Keehoon; Khachatryan, Anna; Hato, Tai; Ligibel, Jennifer A; Krop, Ian E; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Shibuya, Masabumi; Carmeliet, Peter; Soares, Raquel; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai

    2016-06-15

    Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: Effect of laser ablation time.

    PubMed

    Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong

    2018-06-19

    Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.

  19. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  20. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers

    DOE PAGES

    Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.; ...

    2017-07-24

    Excitonic states in monolayer transition metal dichalcogenides (TMDCs) have been the subject of extensive recent interest. Their intrinsic properties can, however, be obscured due to the influence of inhomogeneity in the external environment. Here we report methods for fabricating high quality TMDC monolayers with narrow photoluminescence (PL) linewidth approaching the intrinsic limit. We find that encapsulation in hexagonal boron nitride (h-BN) sharply reduces the PL linewidth, and that passivation of the oxide substrate by an alkyl monolayer further decreases the linewidth and also minimizes the charged exciton (trion) peak. The combination of these sample preparation methods results in much reducedmore » spatial variation in the PL emission, with a full-width-at-half-maximum as low as 1.7 meV. Furthermore, analysis of the PL line shape yields a homogeneous width of 1.43 ± 0.08 meV and inhomogeneous broadening of 1.1 ± 0.3 meV.« less

  1. Atmospheric pressure organometallic vapor-phase epitaxial growth of (Al/x/Ga/1-x/)0.51In0.49P (x from 0 to 1) using trimethylalkyls

    NASA Technical Reports Server (NTRS)

    Cao, D. S.; Kimball, A. W.; Stringfellow, G. B.

    1990-01-01

    This paper describes growth of (Al/x/Ga/1-x)0.51In0.49P layers (with x from 0 to 1) lattice-matched to (001)-oriented GaAs substrates by atmospheric-pressure OMVPE, using trimethylindium, trimethylaluminum, and trimethylgallium and PH3 as source materials in a horizontal reactor. Excellent surface morphologies were obtained over the entire range of Al compositions at a growth temperature of 680 C. Photoluminescence (PL) was observed for all samples with x values not below 0.52, with PL peak energies as high as 2.212 eV. The PL FWHM for Ga(0.51)In(0.49)P was 7.2 meV at 10 K and 35 meV at 300 K. At 10 K, the PL intensity was nearly a constant over the composition range from x = 0 to 0.52.

  2. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained bymore » varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.« less

  3. Photoluminescence and energy transfer process in Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvalakshmi, T.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    Variation in photoluminescence (PL) properties of Eu{sup 3+} and Tb{sup 3+} as a function of co-dopant (Tb{sup 3+}) concentration are studied for Gd{sub 2-x-y}O{sub 3}: Eu{sup 3+}{sub x} Tb{sup 3+}{sub y} (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu{sup 3+} and Tb{sup 3+}. The bandgap calculated from Kubelka – Munk function is also reported. PL spectra are recorded at the excitation wavelength ofmore » 307 nm and the emission peak corresponding to Eu{sup 3+} confirms the energy transfer from Tb{sup 3+} to Eu{sup 3+}. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.« less

  4. Emission mechanisms in stabilized iron-passivated porous silicon: Temperature and laser power dependences

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Moadhen, A.; Mabrouk Kamkoum, A.; Zaïbi, M.-A.; Chtourou, R.; Haji, L.; Oueslati, M.

    2012-02-01

    Photoluminescence (PL) measurements of porous silicon (PS) and iron-porous silicon nanocomposites (PS/Fe) with stable optical properties versus temperature and laser power density have been investigated. The presence of iron in PS matrix is confirmed by Raman spectroscopy. The PL intensity of PS and PS/Fe increases at low temperature, the evolution of integrated PL intensity follows the modified Arrhenius model. The incorporation of iron in PS matrix reduces the activation energy traducing the existence of shallow levels related to iron atoms. Also, the temperature dependence of the porous silicon PL peak position follows a linear evolution at high temperature and a quadratic one at low temperature. Such evolution is due to the thermal carriers' redistribution and an energy transfer. Similarly, we have compared the laser power dependence of the PL in PS and PS/Fe layers. The results prove that the recombination process in PS is realised through the lower energy traps localised in the electronic gap. However, the observed emission in PS/Fe is essentially due to direct transitions. So, we can conclude that the presence of iron in PS matrix induces a strong modification of the PL mechanisms.

  5. Role of the copper-oxygen defect in cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.

  6. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography

    NASA Astrophysics Data System (ADS)

    Wu, P.; Stayman, J. W.; Mow, M.; Zbijewski, W.; Sisniega, A.; Aygun, N.; Stevens, R.; Foos, D.; Wang, X.; Siewerdsen, J. H.

    2018-06-01

    Timely evaluation of neurovasculature via CT angiography (CTA) is critical to the detection of pathology such as ischemic stroke. Cone-beam CTA (CBCT-A) systems provide potential advantages in the timely use at the point-of-care, although challenges of a relatively slow gantry rotation speed introduce tradeoffs among image quality, data consistency and data sparsity. This work describes and evaluates a new reconstruction-of-difference (RoD) approach that is robust to such challenges. A fast digital simulation framework was developed to test the performance of the RoD over standard reference reconstruction methods such as filtered back-projection (FBP) and penalized likelihood (PL) over a broad range of imaging conditions, grouped into three scenarios to test the trade-off between data consistency, data sparsity and peak contrast. Two experiments were also conducted using a CBCT prototype and an anthropomorphic neurovascular phantom to test the simulation findings in real data. Performance was evaluated primarily in terms of normalized root mean square error (NRMSE) in comparison to truth, with reconstruction parameters chosen to optimize performance in each case to ensure fair comparison. The RoD approach reduced NRMSE in reconstructed images by up to 50%–53% compared to FBP and up to 29%–31% compared to PL for each scenario. Scan protocols well suited to the RoD approach were identified that balance tradeoffs among data consistency, sparsity and peak contrast—for example, a CBCT-A scan with 128 projections acquired in 8.5 s over a 180°  +  fan angle half-scan for a time attenuation curve with ~8.5 s time-to-peak and 600 HU peak contrast. With imaging conditions such as the simulation scenarios of fixed data sparsity (i.e. varying levels of data consistency and peak contrast), the experiments confirmed the reduction of NRMSE by 34% and 17% compared to FBP and PL, respectively. The RoD approach demonstrated superior performance in 3D angiography compared to FBP and PL in all simulation and physical experiments, suggesting the possibility of CBCT-A on low-cost, mobile imaging platforms suitable to the point-of-care. The algorithm demonstrated accurate reconstruction with a high degree of robustness against data sparsity and inconsistency.

  7. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  8. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00795c

  9. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    NASA Astrophysics Data System (ADS)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores. Investigation of the non-radiative Auger recombination (AR) process suggests that for high carrier densities in excess of 1019 cm-3, the AR lifetime is about 80 ns and decreases with increasing carrier density. This SiNW AR lifetime is slower than the AR process in Si nanocrystals at similar carrier densities, but faster than the radiative process. I also study the light emission and absorption properties of single SiNWs patterned on Silicon-on-insulator (SOI) substrates and find that a large fraction of NWs is optically dead. Moreover, the active, light-emitting nanostructures exhibit PL blinking, a mechanism often seen for individual nanostructure light emitters. These results are essential to evaluating Si nanostructures as a feasible gain or lasing medium. A second potential application for SiNWs is as a building block for low-cost, Si-based photovoltaics (PV). The market for thin-film PV, particularly organic thin-film PV, exists because it offers potential lower cost solutions for solar power versus bulk Si-based PV. However, many thin film technologies, while possessing superior optical absorption properties compared to Si, suffer from poor electronic transport properties. Here, I present a new Si-based PV design that combines the desirable optical properties of highly absorptive organic molecules and the high-mobility electronic properties of crystalline Si. This synergy is achieved by exploiting efficient Forster energy transfer from the light absorbing organic to SiNWs that enable current extraction. The energy transfer radius of a particular dye and bulk Si is found to be roughly 4 nm. Spectroscopic photocurrent experiments were performed on unpatterned SOI wafers as well as SiNWs patterned in SOI substrates and a significant photocurrent increase was seen in samples coated with organics versus uncoated samples. The photocurrent increase is seen in the wavelength range of the dye's absorption band, suggesting absorption of the dye and subsequent energy transfer to the Si plays a role. These results could pave the way for new low-cost, Si-based solar cell designs that leverage the strengths of the Si PV and microelectronics industries.

  10. Synthesis and Study of Optical Characteristics of Ti0.91O2/CdS Hybrid Sphere Structures

    NASA Astrophysics Data System (ADS)

    Kong, Lingbin; Xu, Qinfeng; Zhang, Meng; Wang, Dehua; Liu, Mingliang; Zhang, Lei; Jiao, Mengmeng; Wang, Honggang; Yang, Chuanlu

    2018-03-01

    The optical properties of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticle hybrid spherical structures designed by the layer-by-layer (LBL) assembly technique are investigated. From the photoluminescence (PL) spectral measurements on the hybrid spherical structures, a spectrum-shifted fluorescence emission occurs in this novel hybrid material. The time-resolved PL measurements exhibit a remarkably increased PL lifetime of 3.75 ns compared with only Ti0.91O2 spheres or CdS nanoparticles. The novel results were attributed to the enhanced electron-hole separation due to the new type II indirect optical transition mechanism between Ti0.91O2 and CdS in a charge-separated configuration.

  11. Optical, scintillation and dosimeter properties of MgO:Tb translucent ceramics synthesized by the SPS method

    NASA Astrophysics Data System (ADS)

    Kawano, Naoki; Kato, Takumi; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    MgO translucent ceramics doped with different concentrations of Tb (0.01, 0.05, 0.1, 0.5%) were prepared by the Spark Plasma Sintering (SPS) method. Further, the optical, scintillation, dosimeter properties of were evaluated systematically. In the photoluminescence (PL) and scintillation spectra, sharp emission peaks due to the 4f-4f transitions of Tb3+ were observed. In the PL and scintillation decay curves, the decay time constants were a few ms which were on a typical order of the 4f-4f transitions of Tb3+. The thermally-stimulated luminescence (TSL) glow curves exhibited glow peaks around 80, 160 °C after X ray irradiation of 10 mGy. The intensity of TSL peak at 160 °C exhibited a linear response against X-ray dose over a dose range of 0.1-10 mGy. The optically-stimulated luminescence (OSL) under 590 nm stimulation exhibited strong emissions due to Tb3+ around 385-550 nm after X-ray irradiation. As in TSL, the intensity of OSL peak showed a linear response to X-ray dose, and the dynamic range confirmed was 0.1-1000 mGy.

  12. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2018-01-01

    High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.

  13. Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Ghimire, P.; Demchenko, D. O.

    2018-05-01

    Defect-related photoluminescence (PL) is analyzed in detail for n -type, p -type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n -type and p -type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow M gGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (B LMg ) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019c m-3 . The B LMg band is attributed to electron transitions from an unknown deep donor to the shallow M gGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.

  14. Oxygen related recombination defects in Ta{sub 3}N{sub 5} water splitting photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Gao; Yu, Tao, E-mail: yscfei@nju.edu.cn, E-mail: yutao@nju.edu.cn; Zou, Zhigang

    2015-10-26

    A key route to improving the performance of Ta{sub 3}N{sub 5} photoelectrochemical film devices in solar driving water splitting to hydrogen is to understand the nature of the serious recombination of photo-generated carriers. Here, by using the temperature-dependent photoluminescence (PL) spectrum, we confirmed that for the Ta{sub 3}N{sub 5} films prepared by nitriding Ta{sub 2}O{sub 5} precursor, one PL peak at 561 nm originates from deep-level defects recombination of the oxygen-enriched Ta{sub 3}N{sub 5} phases, and another one at 580 nm can be assigned to band recombination of Ta{sub 3}N{sub 5} itself. Both of the two bulk recombination processes may decrease themore » photoelectrochemical performance of Ta{sub 3}N{sub 5}. It was difficult to remove the oxygen-enriched impurities in Ta{sub 3}N{sub 5} films by increasing the nitriding temperatures due to their high thermodynamically stability. In addition, a broadening PL peak between 600 and 850 nm resulting from oxygen related surface defects was observed by the low-temperature PL measurement, which may induce the surface recombination of photo-generated carriers and can be removed by increasing the nitridation temperature. Our results provided direct experimental evidence to understand the effect of oxygen-related crystal defects in Ta{sub 3}N{sub 5} films on its photoelectric performance.« less

  15. Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Gonzalez Debs, Mariam

    The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.

  16. Synthesis and Characterizations of Pb-modified CdSe Aqueous Quantum Dots and Their Applications in Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Hsin

    Quantum Dots (QDs) are semiconductor nanocrystals with typical size ranges around 1-20 nm. They exhibit distinctive size-dependent photoluminescence (PL) properties due to the quantum confinement effect. QDs have great potentials in display, lighting, lasing, bioimaging, fluorescent label, sensor, photodetector, and photovoltaic applications, and have been widely studied in the past decades. Cadmium selenide (CdSe) QDs have been synthesized using an environmentally friendly, aqueous method under low temperature. While traditional QDs synthesized by hot injection method using organic solvent generally exhibit edge-state emission with narrow peaks, aqueous quantum dots (AQDs) tend to have trap-state emissions with broad peaks. The objective of this thesis is to investigate how Pb modifications in CdSe AQDs synthesis can affect the optoelectronic properties of the QDs and how these modifications affect their corresponding photovoltaic performance in quantum dot-sensitized solar cell (QDSSC) applications. Lead (Pb) precursor has been introduced either during the synthesis or after the synthesis of CdSe AQDs forming either Pb-doped or Pb-coated CdSe QDs, respectively. Pb-doped CdSe QDs exhibit red-shift in both absorption and emission spectra while Pb-coated CdSe QDs exhibit blue-shift in both absorption and emission spectra along with the generation of more surface defects. Although blue-shifted absorption indicating a narrower absorption range and the surface defects providing undesired recombination pathways are detrimental to solar cell performance, however surprisingly, we found that QDSSCs made from Pb-coated CdSe QDs actually had better solar cell performance than that made from Pb-doped CdSe QDs. We attributed this finding to a protection/passivation layer formed in-situ when the coated Pb react with the iodide/triiodide electrolyte during solar cell operation resulting in QDSSCs with better charge injection and stability.

  17. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  18. Improvement in wettability of porous Si by carboxylate termination

    NASA Astrophysics Data System (ADS)

    Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya

    2018-02-01

    The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.

  19. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  20. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  1. Photocatalytic activity of Ag/ZnO core-shell nanoparticles with shell thickness as controlling parameter under green environment

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.

  2. Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique

    NASA Astrophysics Data System (ADS)

    Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar

    2016-05-01

    Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.

  3. Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Si nanopowder is fabricated using the simple beads milling method. Fabricated Si nanopowder reacts with water in the neutral pH region between 7 and 9 to generate hydrogen. The hydrogen generation rate greatly increases with pH, while pH does not change after the hydrogen generation reaction. In the case of the reactions of Si nanopowder with strong alkaline solutions (eg pH13.9), 1600 mL hydrogen is generated from 1 g Si nanopowder in a short time (eg 15 min). When Si nanopowder is etched with HF solutions and immersed in ethanol, green photoluminescence (PL) is observed, and it is attributed to band-to-band transition of Si nanopowder. The Si nanopowder without HF etching in hexane shows blue PL. The PL spectra possess peaked structure, and it is attributed to vibronic bands of 9,10-dimethylantracene (DMA) in hexane solutions. The PL intensity is increased by more than 3,000 times by adsorption of DMA on Si nanopowder.

  4. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  5. SEDHI: development status of the Pléiades detection electronics

    NASA Astrophysics Data System (ADS)

    Dantes, Didier; Biffi, Jean-Marc; Neveu, Claude; Renard, Christophe

    2017-11-01

    In the framework of the Pléiades program, Alcatel Space is developping with CNES a new concept of Highly Integrated Detection Electronic Subsystem (SEDHI) which lead to very high gains in term of camera mass, volume and power consumption. This paper presents the design of this new concept and summarizes its main performances. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies: panchromatic detector, multispectral detector, butting technology, ASIC for phase shift of detector clocks, ASIC for video processing, ASIC for phase trimming, hybrids, video modules... This concept and these technologies can be adapted to a large scale of missions and instruments. Design, performance and budgets of the subsystem are given for the Pléiades mission for which the SEDHI concept has been selected. The detailed performances of each critical component are provided, focusing on the most critical performances which have been obtained at this level of the Pléiades development.

  6. Photoluminescence and lasing properties of MAPbBr3 single crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Aryal, Sandip; Lafalce, Evan; Zhang, Chuang; Zhai, Yaxin; Vardeny, Z. Valy

    Recent studies of solution-grown single crystals of inorganic-organic hybrid lead-trihalide perovskites have suggested that surface traps may play a significant role in their photophysics. We study electron-hole recombination in single crystal MAPbBr3 through such trap states using cw photoluminescence (PL) and ps transient photoinduced absorption (PA) spectroscopies. By varying the depth of the collecting optics we examined the contributions from surface and bulk radiative recombination. We found a surface dominated PL band at the band-edge that is similar to that observed from polycrystalline thin films, as well as a weaker red-shifted emission band that originates from the bulk crystal. The two PL bands are distinguished in their temperature, excitation intensity and polarization dependencies, as well as their ps dynamics. Additionally, amplified spontaneous emission and crystal-related cavity lasing modes were observed in the same spectral range as the PL band assigned to the surface recombination. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.

  7. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Ji, Huiqiang; Shen, Junling; Xu, Yonghao; Liu, Xiaolian; Fu, Ziyi

    2018-04-01

    The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.

  8. Evolution of superclusters and delocalized states in GaAs 1–xN x

    DOE PAGES

    Fluegel, B.; Alberi, K.; Beaton, D. A.; ...

    2012-11-21

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs 1–xN x was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinitemore » supercluster is fully developed by 0.32% N.« less

  9. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN.

    PubMed

    Soh, C B; Liu, W; Yong, A M; Chua, S J; Chow, S Y; Tripathy, S; Tan, R J N

    2010-08-01

    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO(2) film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, η(extraction,) was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  10. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN

    NASA Astrophysics Data System (ADS)

    Soh, C. B.; Liu, W.; Yong, A. M.; Chua, S. J.; Chow, S. Y.; Tripathy, S.; Tan, R. J. N.

    2010-11-01

    Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO2 film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, ηextraction, was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  11. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid-infrared laser sources for integrated photonics.

  12. Morphological, Structural and Optical Evolution of Ag Nanostructures on c-Plane GaN Through the Variation of Deposition Amount and Temperature

    NASA Astrophysics Data System (ADS)

    Sui, Mao; Li, Ming-Yu; Pandey, Puran; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon

    2018-03-01

    Owing to their tunable properties, Ag nanostructures have been widely adapted in various applications and the morphological control can determine their performance and effectiveness. In this work, we demonstrate the morphological and optical evolution of Ag nanostructures on GaN (0001) by the systematic control of deposition amount at two distinctive annealing temperatures. Based on the Volmer-Weber and coalescence growth models, the nanostructure growth commenced by the thermal solid-state-dewetting evolve in terms of size, density and configuration. At 450 °C, the round-dome shaped Ag nanoparticles (regime I), irregular Ag nano-mounds (regime II) and void-layer structures (regime III) are observed along with the gradually increased deposition amount. As a sharp distinction, the solid state dewetting process occur more radically at 700 °C and also, the Ag sublimation and the effect on the nanostructure formation are observed in a clear regime shift scaled by the deposition amount. Meanwhile, a strong dependency of reflectance spectra evolution on the Ag nanostructure morphology is witnessed for both sets. In particular, Ag dipolar resonance peaks are significantly red-shifted from VIS to NIR regions along with the nanostructure evolution. The reflectance, PL and Raman intensity variation are also observed and discussed based on the evolution of Ag nanostructures.

  13. Incorporation of indium in TiO2-based photoanodes for enhancing the photovoltaic conversion efficiency of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Beula, R. Jeba; Devadason, Suganthi; Vidhya, B.

    2018-06-01

    Sol-gel-assisted spin-coating method was used to prepare TiO2 photoelectrodes doped with four different concentrations of indium 0.025, 0.05, 0.075 and 0.1 M. The crystalline phase and average crystallite size of the pure- and indium-doped TiO2 films were found using X-ray diffractometer. Raman analysis was performed for the pure- and In-doped TiO2 films to confirm the structure of anatase phase. UV-visible and photoluminescence spectrophotometer were used to analyze the optical properties of the films. A shift towards a lower wavelength in the absorption spectrum and widening of band gap were noted for the doped TiO2 films. Reduction in the peak intensity was observed in the PL spectra to indicate the inhibiting action of electron-hole recombination. A maximum (2.71%) light to current efficiency is noted for the dye-sensitized solar cells (DSSC) fabricated based on 0.025M In-doped TiO2 electrode.

  14. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  15. Emission and Structure-Varying ZnO and Carbon Nanocrystal Composite in Mechanical Processing

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Perez Millan, B.; Polupan, G.; Kakazey, M.

    2018-03-01

    Morphology, photoluminescence (PL), and Raman scattering spectra have been investigated for mixtures of ZnO+0.1%C nanocrystals (NCs) at different stages of mechanical processing (MP). The transformation of graphite into graphene monolayers covering the ZnO NC surface is revealed for the first MP stage. The interaction with oxygen has been detected in the second MP stage which leads to the dissolution of oxygen interstitials in the ZnO NCs and to the formation of graphene (graphite) oxides. Increasing the concentration of the oxygen interstitials in ZnO NCs also enhances the intensity stimulation of the orange PL band (2.18eV). Simultaneously, the PL band peaking at 2.82-2.90 eV is detected in the PL spectra of the ZnO+0.1%C NC mixture after MP for 9-90 min. Then, the variation of the ZnO NC shape, agglomeration of ZnO NCs, modification of ZnO defects and decreasing PL intensity have been detected after prolonged MP for 390 min. It is expected that short stages of MP can be useful for ZnO NC surface covering by graphene layers or graphene (graphite) oxides.

  16. Growth and characterization of AlInAsSb layers lattice-matched to GaSb

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Rouillard, Y.; Tournié, E.

    2017-11-01

    We report on the growth by solid-source MBE of random-alloy AlxIn1-xAsySb1-y layers lattice-matched to (0 0 1)-GaSb substrates, with xAl ∈ [0.25; 0.75]. The samples quality and morphology were characterized by X-ray diffraction, Nomarski microscopy and atomic force microscopy. Layers grown at 400 °C demonstrated smooth surfaces and no sign of phase decomposition. Samples with xAl ≤ 0.60 demonstrated photoluminescence (PL) at 300 K whereas samples with higher Al content only demonstrated PL at low temperature. Samples grown at 430 °C, in contrast, exhibited PL at low temperature only, whatever their composition. Inferred bandgap energies corroborate the estimation of a non-null quaternary bowing parameter made by Donati, Kaspi and Malloy in Journal of Applied Physics 94 (2003) 5814. Upon annealing, the PL peak energies increased, getting even closer to the theoretical values. These results are in agreement with recently published results on digital AlInAsSb alloys. Our work, which reports the first evidence for PL emission from random-alloy AlInAsSb layers lattice-matched to GaSb, opens the way to their use in optoelectronic devices.

  17. Relationship of Hip and Trunk Muscle Function with Single Leg Step-Down Performance: Implications for Return to Play Screening and Rehabilitation.

    PubMed

    Burnham, Jeremy M; Yonz, Michael C; Robertson, Kaley E; McKinley, Rachelle; Wilson, Benjamin R; Johnson, Darren L; Ireland, Mary Lloyd; Noehren, Brian

    2016-11-01

    Evaluate the relationship of hip and trunk muscle function with the Single Leg Step-Down test (SLSD). Laboratory study. Biomechanics Laboratory. 71 healthy participants with no history of anterior cruciate ligament (ACL) or lower extremity injury in the last 3 months completed this study (38 males, 33 females; mean 25.49 ± 0.62 years). Hip abduction (HABD), external rotation (HER), and extension (HEXT) peak isometric force were measured. Trunk endurance was measured with plank (PL) and side plank (SPL) tests. SLSD repetitions in 60-s and dynamic knee valgus (VAL) were recorded. PL, SPL, HABD, HER, and HEXT were positively correlated with SLSD repetitions. PL (r = 0.598, p < 0.001) was most correlated with SLSD repetitions, and regression demonstrated that PL (p = 0.001, R 2  = 0.469) was a predictor of SLSD repetitions. VAL trended toward negative correlation with PL and SPL. Sex-specific differences were present, with PL, SPL, HABD, and HER showing stronger relationships with SLSD in females. Hip and trunk muscle function were positively correlated with SLSD performance, and these relationships were strongest in females. PL predicted performance on the SLSD. Further research is needed to investigate the utility of SLSD as a screening or return-to-play test for lower extremity conditions such as ACL injury and patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Luminescence studies of a combustion-synthesized blue-green BaAlxOy:Eu2+,Dy3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bem, Daniel B.; Dejene, F. B.; Luyt, A. S.; Swart, H. C.

    2012-05-01

    Blue-green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.

  19. Synthesis and luminescence properties of KSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The KSrPO4:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO4:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO4:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al2O3:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  20. Comparative optical study of epitaxial InGaAs quantum rods grown with As{sub 2} and As{sub 4} sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius

    2013-12-04

    Photoreflectance and photoluminescence (PL) spectroscopies are used to examine the optical properties and electronic structure of InGaAs quantum rods (QRs), embedded within InGaAs quantum well (QW). The nanostructures studied were grown by molecular beam epitaxy using As{sub 2} or As{sub 4} sources. The impact of As source on spectral features associated with interband optical transitions in the QRs and the surrounding QW are demonstrated. A red shift of the QR- and a blue shift of the QW-related optical transitions, along with a significant increase in PL intensity, have been observed if an As{sub 4} source is used. The changes inmore » optical properties are attributed mainly to carrier confinement effects caused by variation of In content contrast between the QR material and the surrounding well.« less

  1. A comparison investigation of optical, structural and luminescence properties of CdOxTe1-x and CdTexSe1-x nanoparticles prepared by a simple one pot method

    NASA Astrophysics Data System (ADS)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    We present L-cysteine capped CdOXTe1-X and CdTeXSe1-X nanoparticles (NPs) prepared in one pot. The as-prepared CdOXTe1-X NPs were found to have a hexagonal crystal structure of CdTe with a cubic phase of CdO. There was, however, change in phase to cubic type when 2 mM of Se was introduced into the CdTe at 60 min of reaction time. The average crystallite sizes obtained from X-ray diffraction analysis for CdOXTe1-X and CdTeXSe1-X NPs were in the range of 10-36 nm. The diffraction peaks shifted to higher diffraction angle with longer growth time. Scanning electron microscope images display change in shape and size as reaction progress. Photoluminescence (PL) emission was observed to shift from 510-566 nm and 620-653 nm for CdOXTe1-X and CdTeXSe1-X NPs respectively followed by variation in the peak intensities. The emission spectra displayed a good symmetry and a narrow full width at half maximum ranging from 41 to 100 nm in both cases. The absorbance analysis of the as-prepared NPs displayed well-resolved absorption bands. The optical band gaps of the as-prepared NPs were found to decrease with increase in reaction time. Reaction parameters such as pH, reaction time, reaction temperature and the molar concentration could have major effects on the optical properties of the as-prepared nanoparticles hence their need to control them.

  2. Influence of thermally induced structural and morphological changes, and UV irradiation on photoluminescence and optical absorption behavior of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Osman, M. A.; El-Said, Waleed A.; Othman, A. A.; Abd-Elrahim, A. G.

    2016-04-01

    Polycrystalline cubic CdS nanoparticles (NPs) with a crystallite size ({{D}\\text{Sch}} ) ~3 nm were synthesized by chemical precipitation method at room temperature. Thermal induced structural and morphological changes have been investigated using x-ray diffraction, high-resolution transmission electron microscope, x-ray fluorescence, Fourier transform infrared and Raman spectroscopy. The influence of these changes on optical absorption and photoluminescence (PL) characteristics have been studied. It was found that increasing annealing temperature (T a), results in structural phase transitions at 300 and 700 °C, increasing {{D}\\text{Sch}} and red shift of the optical band gap (E\\text{g}\\text{opt} ) due to the improvement in crystallinity. The photoluminescence emission spectrum of nonstoichiometric CdS (Cd-rich) nanopowder reveals emission bands at 365, 397, and 434 nm. Furthermore, PL spectrum of colloidal solution exhibits additional green and red emission bands at 535, 570 and 622 nm. To explain the mechanism of PL emission in CdS NPs, trapping and radiative recombination levels have been identified and the corresponding energy band diagrams are suggested. Annealing process results in an overall enhancement in PL intensity due to the improvement in crystallinity associated with the reduction of nonradiative surface state defects. Irradiation of CdS NPs colloidal solution at UV irradiation dose  <13 J cm-2 leads to the enhancement of PL quantum efficiency and blue shift of E\\text{g}\\text{opt} (i.e. photo-brightening) due to the decrease in the particle size deduced from Brus equation ≤ft({{D}\\text{Brus}}\\right) , This behavior is due to UV irradiation effects such as photopolymerization, the formation of CdSO4 passivation layers due to photooxidation and the reduction in {{D}\\text{Brus}} by photocorrosion process. At UV irradiation dose  <13 J cm-2, PL emission intensity continuously enhances without any change in both E\\text{g}\\text{opt} and {{D}\\text{Brus}} . This behavior is discussed in terms of electron filling model. Boltzmann curve fitting successfully describes the dependence of both {{D}\\text{Brus}} and E\\text{g}\\text{opt} on UV irradiation dose.

  3. Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.

  4. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    NASA Astrophysics Data System (ADS)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  5. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Russell, Keith A.; Gibson, Thomas W. G.; Chong, Andrew; Co, Carmon; Koch, Thomas G.

    2015-01-01

    Background Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation. Results 1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis. Conclusions/Significance Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects. PMID:26353112

  6. Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.

    PubMed

    Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A

    2015-03-05

    Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  8. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide.

    PubMed

    Tsuchiya, Takashi; Tsuruoka, Tohru; Terabe, Kazuya; Aono, Masakazu

    2015-02-24

    In situ and nonvolatile tuning of photoluminescence (PL) has been achieved based on graphene oxide (GO), the PL of which is receiving much attention because of various potential applications of the oxide (e.g., display, lighting, and nano-biosensor). The technique is based on in situ and nonvolatile tuning of the sp(2) domain fraction to the sp(3) domain fraction (sp(2)/sp(3) fraction) in GO through an electrochemical redox reaction achieved by solid electrolyte thin films. The all-solid-state variable PL device was fabricated by GO and proton-conducting mesoporous SiO2 thin films, which showed an extremely low PL background. The device successfully tuned the PL peak wavelength in a very wide range from 393 to 712 nm, covering that for chemically tuned GO, by adjusting the applied DC voltage within several hundred seconds. We also demonstrate the sp(2)/sp(3) fraction tuning using a conductive atomic force microscope. The device achieved not only writing, but also erasing of the sp(2)/sp(3)-fraction-tuned nanodomain (both directions operation). The combination of these techniques is applicable to a wide range of nano-optoelectronic devices including nonvolatile PL memory devices and on-demand rewritable biosensors that can be integrated into nano- and microtips which are transparent, ultrathin, flexible, and inexpensive.

  9. Thermal transfer and interaction mechanisms of localized excitons in families of InAs quantum dashes grown on InP(001) vicinal substrate emitting near 1.55 μm wavelength

    NASA Astrophysics Data System (ADS)

    Besahraoui, Fatiha; Bouslama, M.'Hamed; Bouzaiene, Lotfi; Saidi, Faouzi; Maaref, Hassen; Gendry, Michel

    2016-06-01

    With the help of photoluminescence Spectroscopy (PLS), we have investigated the optoelectronic properties of two different families of InAs quantum dashes (QDashes) grown on misoriented InP(001) substrate with 2∘off miscut angle toward the [110] direction (2∘F type). The lowest full width at half maximum (FWHM) of the PL spectrum measured at 12 K indicates the good self organization of InAs QDashes. The weak ratio of the integrated PL measured in 12-300 K temperature range denotes the good spatial confinement of the photogenerated carriers in InAs QDashes. The fast redshift of the PL peaks energy and the anomalous decrease of the FWHM with the increase of the temperature are attributed to an efficient thermal relaxation process of photogenerated carriers in the vicinal sample. This result is highlighted with the help of theoretical modeling of the PL peak energy as a function of the temperature, using three models (Varshni, “Vina, Logothetidis and Cardona” and Pässler). From experimental and theoretical results, we have evidenced the contribution of longitudinal acoustic-phonons (LA-phonons) in the PL of InAs/InP QDashes, via the deformation potential, especially in high temperatures range. We have attributed this behavior to the strained InAs/InP QDashes and/or to the topography of the vicinal InP(001) substrate which favors the presence of stepped phonons polarized along the steps. These vibrational modes can further interact with the excitons at high temperatures. The measured thermal activation energies of each family of InAs QDashes demonstrate that the InAs wetting layer act as a barrier for the thermoionic emission of photogenerated carriers. This result confirms the good spatial confinement of excitons in this sample.

  10. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    NASA Astrophysics Data System (ADS)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  11. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jun, E-mail: jshao@mail.sitp.ac.cn; Qi, Zhen; Zhu, Liang

    The effects of thermal annealing on the interfaces of InGa(N)As/GaAs single quantum wells (SQWs) are investigated by excitation-, temperature-, and magnetic field-dependent photoluminescence (PL). The annealing at 750 °C results in more significant blueshift and narrowing to the PL peak than that at 600 °C. Each of the PL spectra can be reproduced with two PL components: (i) the low-energy component (LE) keeps energetically unchanged, while the high-energy component (HE) moves up with excitation and shows at higher energy for the In{sub 0.375}Ga{sub 0.625}As/GaAs but crosses over with the LE at a medium excitation power for the In{sub 0.375}Ga{sub 0.625}N{sub 0.012}As{sub 0.988}/GaAsmore » SQWs. The HE is broader than the corresponding LE, the annealing at 750 °C narrows the LE and HE and shrinks their energetic separation; (ii) the PL components are excitonic, and the InGaNAs shows slightly enhanced excitonic effects relative to the InGaAs SQW; (iii) no typical S-shape evolution of PL energy with temperature is detectable, and similar blueshift and narrowing are identified for the same annealing. The phenomena are mainly from the interfacial processes. Annealing improves the intralayer quality, enhances the interfacial In-Ga interdiffusion, and reduces the interfacial fluctuation. The interfacial interdiffusion does not change obviously by the small N content and hence similar PL-component narrowing and blueshift are observed for the SQWs after a nominally identical annealing. Comparison with previous studies is made and the PL measurements under different conditions are shown to be effective for probing the interfacial evolution in QWs.« less

  12. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance.

    PubMed

    Tobias, Gabriel; Benatti, Fabiana Braga; de Salles Painelli, Vitor; Roschel, Hamilton; Gualano, Bruno; Sale, Craig; Harris, Roger C; Lancha, Antonio Herbert; Artioli, Guilherme Gianinni

    2013-08-01

    We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) (6.4 g day⁻¹) was ingested for 4 weeks and 500 mg kg⁻¹ BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect.

  13. Senescence and quiescence in adipose-derived stromal cells: Effects of human platelet lysate, fetal bovine serum and hypoxia.

    PubMed

    Søndergaard, Rebekka Harary; Follin, Bjarke; Lund, Lisbeth Drozd; Juhl, Morten; Ekblond, Annette; Kastrup, Jens; Haack-Sørensen, Mandana

    2017-01-01

    Adipose-derived stromal cells (ASCs) are attractive sources for cell-based therapies. The hypoxic niche of ASCs in vivo implies that cells will benefit from hypoxia during in vitro expansion. Human platelet lysate (hPL) enhances ASC proliferation rates, compared with fetal bovine serum (FBS) at normoxia. However, the low proliferation rates of FBS-expanded ASCs could be signs of senescence or quiescence. We aimed to determine the effects of hypoxia and hPL on the expansion of ASCs and whether FBS-expanded ASCs are senescent or quiescent. ASCs expanded in FBS or hPL at normoxia or hypoxia until passage 7 (P7), or in FBS until P5 followed by culture in hPL until P7, were evaluated by proliferation rates, cell cycle analyses, gene expression and β-galactosidase activity. hPL at normoxia and hypoxia enhanced proliferation rates and expression of cyclins, and decreased G0/G1 fractions and expression of p21 and p27, compared with FBS. The shift from FBS to hPL enhanced cyclin levels, decreased p21 and p27 levels and tended to decrease G0/G1 fractions. Hypoxia does not add to the effect of hPL during ASC expansion with regard to proliferation, cell cycle regulation and expression of cyclins, p21 and p27. hPL rejuvenates FBS-expanded ASCs with regard to cell cycle regulation and expression of cyclins, p21 and p27. This indicates a reversible arrest. Therefore, we conclude that ASCs expanded until P7 are not senescent regardless of culture conditions. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Preparation of Cu-doped nickel oxide thin films and their properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowthami, V.; Meenakshi, M.; Anandhan, N.

    2014-04-24

    Copper doped Nickel oxide film was preferred on glass substrate by simple nebulizer technique keeping the substrate temperature at 350°C and characterized by X-ray diffraction (XRD), Photoluminescence (PL) and Four probe resistivity measurements. XRD studies indicated cubic structure and the crystallites are preferentially oriented along the [111] direction. Interesting results have been obtained from the study of PL spectra. A peak corresponding to 376nm in the emission spectra for 0%, 5% and 10% copper doped samples. The samples show sharp and strong UV emission corresponding to the near band edge emission under excitation of 275nm.

  15. Fluorescence spectral shift of QD films with electron injection: Dependence on counterion proximity

    NASA Astrophysics Data System (ADS)

    Lu, Meilin; Li, Bo; Zhang, Yaxin; Liu, Weilong; Yang, Yanqiang; Wang, Yuxiao; Yang, Qingxin

    2017-05-01

    Due to the promising application of quantum dot (QD) films in solar cells, LEDs and environmental detectors, the fluorescence of charged QD films has achieved much attention during recent years. In this work, we observe the spectral shift of photoluminescence (PL) in charged CdSe/ZnS QD films controlled by electrochemical potential. The spectral center under negative bias changes from red-shift to blue-shift while introducing smaller inorganic counterions (potassium ions) into the electrolyte. This repeatable effect is attributed to the enhanced electron injection with smaller cations and the electronic perturbations of QD luminescence by these excess charges.

  16. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE PAGES

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.; ...

    2016-10-25

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  17. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  18. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  19. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    PubMed

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  20. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    PubMed

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  1. The Adenosine Receptor Antagonist, 7-Methylxanthine, Alters Emmetropizing Responses in Infant Macaques

    PubMed Central

    Hung, Li-Fang; Arumugam, Baskar; Ostrin, Lisa; Patel, Nimesh; Trier, Klaus; Jong, Monica; III, Earl L. Smith

    2018-01-01

    Purpose Previous studies suggest that the adenosine receptor antagonist, 7-methylxanthine (7-MX), retards myopia progression. Our aim was to determine whether 7-MX alters the compensating refractive changes produced by defocus in rhesus monkeys. Methods Starting at age 3 weeks, monkeys were reared with −3 diopter (D; n = 10; 7-MX −3D/pl) or +3D (n = 6; 7-MX +3D/pl) spectacles over their treated eyes and zero-powered lenses over their fellow eyes. In addition, they were given 100 mg/kg of 7-MX orally twice daily throughout the lens-rearing period (age 147 ± 4 days). Comparison data were obtained from lens-reared controls (−3D/pl, n = 17; +3D/pl, n = 9) and normal monkeys (n = 37) maintained on a standard diet. Refractive status, corneal power, and axial dimensions were assessed biweekly. Results The −3D/pl and +3D/pl lens-reared controls developed compensating myopic (−2.10 ± 1.07 D) and hyperopic anisometropias (+1.86 ± 0.54 D), respectively. While the 7-MX +3D/pl monkeys developed hyperopic anisometropias (+1.79 ± 1.11 D) that were similar to those observed in +3D/pl controls, the 7-MX −3D/pl animals did not consistently exhibit compensating myopia in their treated eyes and were on average isometropic (+0.35 ± 1.96 D). The median refractive errors for both eyes of the 7-MX −3D/pl (+5.47 D and +4.38 D) and 7-MX +3D/pl (+5.28 and +3.84 D) monkeys were significantly more hyperopic than that for normal monkeys (+2.47 D). These 7-MX–induced hyperopic ametropias were associated with shorter vitreous chambers and thicker choroids. Conclusions In primates, 7-MX reduced the axial myopia produced by hyperopic defocus, augmented hyperopic shifts in response to myopic defocus, and induced hyperopia in control eyes. The results suggest that 7-MX has therapeutic potential in efforts to slow myopia progression. PMID:29368006

  2. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    PubMed

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed.

  3. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Fei; Zhang, Bei; Liu, Huixian; Jia, Guangyi; Liu, Changlong

    2012-11-01

    Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm-2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm-2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm-2.

  4. Nanophosphor CaSO4:Eu2+ for photoluminescence liquid crystal display (PLLCD)

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Moharil, S. V.

    2018-05-01

    In this work PL enhancement of CaSO4:Eu2+ nanophosphor which was synthesized with 0.01M molarity by co-precipitation method is presented. Synthesized phosphor was characterized by XRD, SEM, TEM and PL measurements. Average particle size is found to be in the range 80-100nm with Hexagonal morphology and PL studies showed emission peaks at 380nm, when samples were excited by 254nm. The observed PL emission is characteristic emission of Eu2+ similar to that observed in bulk CaSO4:Eu2. However under identical condition it is observed that intensity of emission get enhanced for 0.01M size which is doubled to that of 0.1M with similar emission at 380nm. A phosphor with narrow emission band around 390 nm is desirable, since at this wavelength the transmission of standard glass, polarizing plastic, other coating and LCD material is at acceptable level. Strong Eu2+ emission is observed in CaSO4:Eu nanophosphor which finds applications for PLLCD (photoluminescent liquid crystal display).

  5. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M.

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distributionmore » of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.« less

  6. Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth

    NASA Astrophysics Data System (ADS)

    Mickevičius, J.; Dobrovolskas, D.; Steponavičius, T.; Malinauskas, T.; Kolenda, M.; Kadys, A.; Tamulaitis, G.

    2018-01-01

    Capabilities of repeated deposition of ultrathin layers by pulsed metalorganic chemical vapor deposition (MOCVD) for improvement of structural and luminescence properties of InN thin films on GaN/sapphire templates were studied by varying the growth temperature and the durations of pulse and pause in the delivery of In precursor. X-ray diffraction, atomic force microscopy, and spatially-resolved photoluminescence (PL) spectroscopy were exploited to characterize the structural quality, surface morphology and luminescence properties. Better structural quality is achieved by using longer trimethylindium pulses. However, it is shown that the luminescence properties of InN epilayers correlate with the pause and pulse ratio rather than with their absolute lengths, and the deposition of 1.5-2 monolayers of InN during one growth cycle is optimal to achieve the highest PL intensity. Moreover, the use of temperature ramping enabled achieving the highest PL intensity and the smallest blue shift of the PL band. The luminescence parameters are linked with the structural properties, and domain-like patterns of InN layers are revealed.

  7. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure

    NASA Astrophysics Data System (ADS)

    Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo

    2018-03-01

    Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

  8. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  9. Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Jiang, Danyu; Yang, Wei; Wang, Dandan; Zheng, Huiping; Du, Yuansheng; Li, Xi; Li, Qiang

    2017-02-01

    Ag2S quantum dots (QDs) coated with thioglycolic acid (Ag2S QDs-TGA) have been synthesized in an organic solvent via a stepwise addition of reagents. When excited by a 980 nm laser, the near-infrared-emitting colloidal Ag2S QDs-TGA exhibit upconversion luminescence (UCL). The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces. Hence, upon dilution of the solution, the PL intensity initially increased before subsequently decreasing, accompanied by a blue shift in the PL spectra. The PL phenomena can be attributed to the increase in the amount of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET) and re-emission of the surface energy level. The relations between the emission intensity of Ag2S QDs-TGA and the excitation power are investigated, and the results confirm that the UCL in Ag2S QDs-TGA can be ascribed to a two-photon-assisted absorption process via a real energy state.

  10. [Evaluation of the clinical results in patients with symptomatic partial tears of the anterior cruciate ligament diagnosed arthroscopically].

    PubMed

    Zeman, P; Cibulková, J; Nepraš, P; Koudela, K; Matějka, J

    2013-01-01

    The study presents a retrospective evaluation of clinical data and arthroscopic findings in a group of our patients with symptomatic knee instability due to a partial tear of the anterior cruciate ligament (ACL). The group included 31 patients diagnosed with symptomatic partial ACL tears, i.e. an isolated tear of the posterolateral (PL) or the anteromedial (AM) bundle. The patients' average age was 26.5 years. A side-to-side difference in ventral knee laxity was assessed using the anterior drawer test and the Lachman test under general anaesthesia before arthroscopy was commenced; rotational knee laxity was evaluated by the pivot shift test. An objective evaluation of side-to-side ventral laxity differences in both knees was performed on the GNRB® arthrometer with an applied pressure of 134 N and 250 N in the conscious patient. During arthroscopic examination, findings on the two ACL bundles were recorded. All 31 patients were diagnosed with symptomatic partial ACL tears, of them 22 had a PL bundle lesion and nine had an AM bundle tear. All patients with PL bundle lesions only reported problems in association with pivot sports, and all patients with AM bundle tears had problems regardless of any sports activities. In all patients with isolated AM bundle tears, the lesion was located close to its femoral attachment. In the patients with PL bundle tears, femoral location was found in 68% and tibial location in 32% of the patients. In the patients with partial PL bundle lesions, + and ++ results in the pivot shift test were recorded in 32% and 68% of the treated patients, respectively. The Lachman test showed + and ++ results in 71% and 9% of the patients, respectively. The anterior drawer test had negative results in 87% and positive + results in 13% of the patients. The side-to-side difference on the GNRB arthrometer ranged from 0.4 to 2.3 mm at a pressure of 134 N and from 1.2 to 4.2 mm at 250 N in the patients with isolated PL bundle lesions. In the patients with AM bundle lesions, the results were as follows: pivot shift test, 89% negative. 11% positive +; Lachman test, 56% negative, 44% positive +; anterior drawer test, 89% +, 11% ++; GNRB test, 2.2 to 4.4 mm at 134 N, and 4.3 to 7.1 at 250 N. The diagnosis of partial ACL lesions, i.e., isolated tears of the AM or the PL bundle, requires accurate knowledge of knee anatomy and its biomechanics. In accordance with other authors our results showed that an arthroscopic examination of both bundles of the ligament as well as knee laxity evaluation under general anaesthesia are most essential for making the definite diagnosis in partial ACL tears. They also confirmed that, in isolated AM bundle lesions, ventral laxity is present more often particularly at a higher degree of knee flexion while, in PL bundle lesions, rotational laxity is more frequent and ranges from 0 to 30 degrees of knee flexion. To make the definite diagnosis of partial ACL tears, patient medical history, clinical knee examination including instability type and degree assessment under general anaesthesia and, most importantly, arthroscopic findings on both ACL bundles are necessary.

  11. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics

    PubMed Central

    Rey, Felisa; Alves, Eliana; Melo, Tânia; Domingues, Pedro; Queiroga, Henrique; Rosa, Rui; Domingues, M. Rosário M.; Calado, Ricardo

    2015-01-01

    Embryogenesis is an important stage of marine invertebrates with bi-phasic life cycles, as it conditions their larval and adult life. Throughout embryogenesis, phospholipids (PL) play a key role as an energy source, as well as constituents of biological membranes. However, the dynamics of PL during embryogenesis in marine invertebrates is still poorly studied. The present work used a lipidomic approach to determine how polar lipid profiles shift during embryogenesis in two sympatric estuarine crabs, Carcinus maenas and Necora puber. The combination of thin layer chromatography, liquid chromatography – mass spectrometry and gas chromatography – mass spectrometry allowed us to achieve an unprecedented resolution on PL classes and molecular species present on newly extruded embryos (stage 1) and those near hatching (stage 3). Embryogenesis proved to be a dynamic process, with four PL classes being recorded in stage 1 embryos (68 molecular species in total) and seven PL classes at stage 3 embryos (98 molecular species in total). The low interspecific difference recorded in the lipidomic profiles of stage 1 embryos appears to indicate the existence of similar maternal investment. The same pattern was recorded for stage 3 embryos revealing a similar catabolism of embryonic resources during incubation for both crab species. PMID:26419891

  12. Optical characterization of type-I to type-II band alignment transition in GaAs/Al x Ga1-x As quantum rings grown by droplet epitaxy

    NASA Astrophysics Data System (ADS)

    Su, Linlin; Wang, Ying; Guo, Qinglin; Li, Xiaowei; Wang, Shufang; Fu, Guangsheng; Mazur, Yuriy I.; E Ware, Morgan; Salamo, Gregory J.; Liang, Baolai; Huffaker, Diana L.

    2017-08-01

    Optical properties of GaAs/Al x Ga1-x As quantum rings (QRs) grown on GaAs (1 0 0) by droplet epitaxy have been investigated as a function of the Al-composition in the Al x Ga1-x As barrier. A transition from type-I to type-II band alignment is observed for the QRs via photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. While x  ⩽  0.45, the QR PL spectra show a blue-shift and an increasing intensity with increasing Al-composition, revealing the enhancement of quantum confinement in the QRs with type-I band alignment. While x  ⩾  0.60, the characteristic large blue-shift with excitation intensity and the much longer lifetime indicate the realization of a type-II band alignment. Due to the height fluctuation of QR structures grown by droplet epitaxy mode, it is not the large blue-shift of emission energy, but the long lifetime that becomes the more important feature to identify the type-II band alignment.

  13. [Phosphorescent effect of Ir (ppy)3 on the luminescent characteristic of Rubrene].

    PubMed

    Xu, Hong-Hua; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Yuan, Guang-Cai; Chen, Yue-Ning

    2008-07-01

    Many organic matters including heavy metal ions can validly utilize the singlet and triplet for luminescence owiog to the spin-orbit coupling. As a result, the internal quantum efficiency can easily achieve a value higher than traditional organic light emitting diodes in theory. There is a strong luminescence of PVK in PVK : PBD : Rubrene system. PL spectra excited by 345 nm of PVK : PBD : Rubrene thin film has a 410 nm PVK luminescent peak and a 560 nm Rubrene peak. EL still has a PVK luminescent peak, which should be kept from happening. Excitons can not adequately transferred from the matrix solution to Rubrene. The doping with Ir(ppy)3 improves the PVK : PBD : Rubrene system performance. PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with low concentration of Rubrene has a 510 nm Ir(ppy)3 peak and a new 548 nm one. However, the Ir(ppy)3 peak is smaller and the Rubrene one is bigger in EL spectra. Notably a strong and single luminescence of Rubrene is obtained in EL and PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with high concentration of Rubrene. Meanwhile, the Ir(ppy)3 luminescent peak disappears. The mechanism originates from the phosphorescent effect of Ir (ppy)3. The singlet excitons can basically be transferred from PVK : PBD or Ir(ppy)3 to Rubrene. But most excitons from Ir (ppy)3 can directly tunnel to the fluorescent material and come into being singlet states that can return to ground states and cause luminescence. Rubrene can accept proportional excitons with low concentration. While the concentration of Rubrene is higher, excitons can be entirely accepted by Rubrene. The effect also restricts the luminescent intensity of Ir(ppy)3 and boosts up that of Rubrene. Furthermore, the energy transfer in PVK : PBD : Ir(ppy)3 : Rubrene system is primary the Forester energy transfer. Excitation spectra of Rubrene and emission spectra of Ir(ppy)3 have a large overlap revealing that there is a strong energy transfer and further confirmed the phosphorescent effect of Ir(ppy)3. The doping system with phosphorescence material and small molecules can enhance the brightness and internal quantum efficiency.

  14. The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-04-01

    The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.

  15. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhasker, H. P.; Dhar, S.; Thakur, Varun

    2014-02-21

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close tomore » a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls.« less

  16. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2017-05-15

    We report theoretical and experimental realization of a SPR based fiber optic nicotine sensor having coatings of silver and graphene doped ZnO nanostructure onto the unclad core of the optical fiber. The volume fraction (f) of graphene in ZnO was optimized using simulation of electric field intensity. Four types of graphene doped ZnO nanostructures viz. nanocomposites, nanoflowers, nanotubes and nanofibers were prepared using optimized value of f. The morphology, photoluminescence (PL) spectra and UV-vis spectra of these nanostructures were studied. The peak PL intensity was found to be highest for ZnO: graphene nanofibers. The optimized value of f in ZnO: graphene nanofiber was reconfirmed using UV-vis spectroscopy. The experiments were performed on the fiber optic probe fabricated with Ag/ZnO: graphene layer and optimized parameters for in-situ detection of nicotine. The interaction of nicotine with ZnO: graphene nanostructures alters the dielectric function of ZnO: graphene nanostructure which is manifested in terms of shift in resonance wavelength. From the sensing signal, the performance parameters were measured including sensitivity, limit of detection (LOD), limit of quantification (LOQ), stability, repeatability and selectivity. The real sample prepared using cigarette tobacco leaves and analyzed using the fabricated sensor makes it suitable for practical applications. The achieved values of LOD and LOQ are found to be unrivalled in comparison to the reported ones. The sensor possesses additional advantages such as, immunity to electromagnetic interference, low cost, capability of online monitoring, remote sensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

    PubMed

    Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

    2011-09-23

    Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effect of Fontan geometry on exercise haemodynamics and its potential implications.

    PubMed

    Tang, Elaine; Wei, Zhenglun Alan; Whitehead, Kevin K; Khiabani, Reza H; Restrepo, Maria; Mirabella, Lucia; Bethel, James; Paridon, Stephen M; Marino, Bradley S; Fogel, Mark A; Yoganathan, Ajit P

    2017-11-01

    Exercise intolerance afflicts Fontan patients with total cavopulmonary connections (TCPCs) causing a reduction in quality of life. Optimising TCPC design is hypothesised to have a beneficial effect on exercise capacity. This study investigates relationships between TCPC geometries and exercise haemodynamics and performance. This study included 47 patients who completed metabolic exercise stress test with cardiac magnetic resonance (CMR). Phase-contrast CMR images were acquired immediately following supine lower limb exercise. Both anatomies and exercise vessel flow rates at ventilatory anaerobic threshold (VAT) were extracted. The vascular modelling toolkits were used to analyse TCPC geometries. Computational simulations were performed to quantify TCPC indexed power loss (iPL) at VAT. A highly significant inverse correlation was found between the TCPC diameter index, which factors in the narrowing of TCPC vessels, with iPL at VAT (r=-0.723, p<0.001) but positive correlations with exercise performance variables, including minute oxygen consumption (VO 2 ) at VAT (r=0.373, p=0.01), VO 2 at peak exercise (r=0.485, p=0.001) and work at VAT/weight (r=0.368, p=0.01). iPL at VAT was negatively correlated with VO 2 at VAT (r=-0.337, p=0.02), VO 2 at peak exercise (r=-0.394, p=0.007) and work at VAT/weight (r=-0.208, p=0.17). Eliminating vessel narrowing in TCPCs and reducing elevated iPL at VAT could enhance exercise tolerance for patients with TCPCs. These findings could help plan surgical or catheter-based strategies to improve patients' exercise capacity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Differences in Lateral Drop Jumps From an Unknown Height Among Individuals With Functional Ankle Instability

    PubMed Central

    Rosen, Adam; Swanik, Charles; Thomas, Stephen; Glutting, Joseph; Knight, Christopher; Kaminski, Thomas W.

    2013-01-01

    Context: Functional ankle instability (FAI) is a debilitating condition that has been reported to occur after 20% to 50% of all ankle sprains. Landing from a jump is one common mechanism of ankle injury, yet few researchers have explored the role of visual cues and anticipatory muscle contractions, which may influence ankle stability, in lateral jumping maneuvers. Objective: To examine muscle-activation strategies between FAI and stable ankles under a lateral load and to evaluate the differences in muscle activation in participants with FAI and participants with stable ankles when they were unable to anticipate the onset of lateral loads during eyes-open versus eyes-closed conditions. Design: Case-control study. Setting: Controlled laboratory setting. Patients or Other Participants: A total of 40 people participated: 20 with FAI and 20 healthy, uninjured, sex- and age-matched persons (control group). Intervention(s): Participants performed a 2-legged lateral jump off a platform onto a force plate set to heights of 35 cm or 50 cm and then immediately jumped for maximal height. They performed jumps in 2 conditions (eyes open, eyes closed) and were unaware of the jump height when their eyes were closed. Main Outcome Measure(s): Amplitude normalized electromyographic (EMG) area (%), peak (%), and time to peak in the tibialis anterior (TA), peroneus longus (PL), and lateral gastrocnemius (LG) muscles were measured. Results: Regardless of the eyes-open or eyes-closed condition, participants with FAI had less preparatory TA (t158 = 2.22, P = .03) and PL (t158 = 2.09, P = .04) EMG area and TA (t158 = 2.45, P = .02) and PL (t158 = 2.17, P = .03) peak EMG than control-group participants. Conclusions: By removing visual cues, unanticipated lateral joint loads occurred simultaneously with decreased muscle activity, which may reduce dynamic restraint capabilities in persons with FAI. Regardless of visual impairment and jump height, participants with FAI exhibited PL and TA inhibition, which may limit talonavicular stability and intensify lateral joint surface compression and pain. PMID:23952040

  20. Investigation on photoluminescence emission of (reduced) graphene oxide paper

    NASA Astrophysics Data System (ADS)

    Ding, J. J.; Chen, H. X.; Feng, D. Q.; Fu, H. W.

    2018-01-01

    In order to contrastively investigate optical properties of graphene oxide (GO) and reduced graphene oxide (rGO) paper, GO is prepared by improved Hummer method and controlled reduced using hydration hydrazine to obtain good dispersive rGO in organic solvent. Finally, GO and rGO paper are obtained by vacuum filtration method. Samples morphology and optical properties are analyzed by scanning electron microscopy (SEM) images, Raman spectra, absorbance spectra and photoluminescence (PL) spectra. Results indicate that there are large numbers of localized states in both GO and rGO paper, and optical gaps of two samples are 0.62 eV. In PL spectra of GO paper, we observe three emission peaks at 565, 578 and 608 nm, respectively whose intensity decreases evidently after reduced, which is due to the decrease of oxide functionalized groups and expansion of sp2 clusters. PL emission will gradually decrease during GO are reduced.

  1. Photoluminescence of Reduced Graphene Oxide Prepared from Old Coconut Shell with Carbonization Process at Varying Temperatures

    NASA Astrophysics Data System (ADS)

    Jayanti, Dwi Noor; Yogi Nugraheni, Ananda; Kurniasari; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    Reduced graphene oxide (rGO) powder has been prepared from coconut shells by carbonization process at 400°C, 600°C, 800°C and 1000°C for 5 hours at ambient air. In this study the exfoliation rGO was added into distilled water with variation of concentration solution using the sonication process for 3 hours and centrifugation at 4000 rpm for 20 minutes. The characterization were performed by using XRD and photoluminescence (PL) spectroscopy. The photoluminescence or rGO showed the peak of excitation and emission at wavelengths ranging from 340 nm to 800 nm. The PL emission spectra are at wavelength ranging from UV to visible region approaching red. Observation showed that the photoluminescence intensity was significantly increased by the increasing content of rGO in the solution. The influence of the varying temperature on the PL spectra will also be discussed in this study.

  2. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    NASA Astrophysics Data System (ADS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  3. Room temperature visible photoluminescence of silicon nanocrystallites embedded in amorphous silicon carbide matrix

    NASA Astrophysics Data System (ADS)

    Coscia, U.; Ambrosone, G.; Basa, D. K.

    2008-03-01

    The nanocrystalline silicon embedded in amorphous silicon carbide matrix was prepared by varying rf power in high vacuum plasma enhanced chemical vapor deposition system using silane methane gas mixture highly diluted in hydrogen. In this paper, we have studied the evolution of the structural, optical, and electrical properties of this material as a function of rf power. We have observed visible photoluminescence at room temperature and also have discussed the role played by the Si nanocrystallites and the amorphous silicon carbide matrix. The decrease of the nanocrystalline size, responsible for quantum confinement effect, facilitated by the amorphous silicon carbide matrix, is shown to be the primary cause for the increase in the PL intensity, blueshift of the PL peak position, decrease of the PL width (full width at half maximum) as well as the increase of the optical band gap and the decrease of the dark conductivity.

  4. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces.

    PubMed

    Kornfelt, L F; Weisbjerg, M R; Nørgaard, P

    2013-02-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37%, late: NDF 44% in dry matter (DM)), and from each harvest, a chopped (theoretical cutting length: 19 mm) and an unchopped crop was ensiled in bales. The silages were fed restrictively to four rumen cannulated non-lactating Jersey cows (391 ± 26 kg) in a 4 × 4 Latin square design. The cows were fed restrictively 80% of their ad libitum intake twice daily. Chewing activity was recorded for 96 h continuously. Swallowed boli, rumen content, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500 and 0.212 mm pore sizes into six fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P < 0.01) and min/kg NDF (P < 0.05)) was affected by harvest time. The mean ruminating time (min/kg DM) was affected by harvest time (P < 0.01), physical form (P < 0.05) and NDF intake per kg BW (P < 0.01). The proportion of washed particle DM of total DM in boli, rumen content, rumen fluid and faeces was affected by harvest time (P < 0.01) and highest by feeding late-harvested alfalfa silage. Two peaks on the probability density distribution function (PDF) of PW and PL values of boli, rumen content and faeces were identified. Chopping of the silage decreased the mean PL and PW, the most frequent PL (mode) and 95% percentile PL and PW values in boli. In the rumen content, chopping increased the mean PW (P < 0.05). The dimension sizes of faeces particles were not significantly affected by chopping. The mode PW value was lower in rumen content and faeces than in boli (P < 0.001), and the mode PL value was higher in boli and lower in faeces compared with rumen contents (P < 0.001). In conclusion, the mean total chewing activity per kg NDF decreased due to chopping and early harvest time. The mean PL and PW in boli decreased due to chopping and late harvest. The two peak values on the PDF (PL) and PDF (PW) of boli, rumen content and faeces particles are most likely related to the leaf and the stem residues.

  5. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming.

    PubMed

    Santo, Vítor E; Duarte, Ana Rita C; Popa, Elena G; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-08-20

    A new generation of scaffolds capable of acting not only as support for cells but also as a source of biological cues to promote tissue regeneration is currently a hot topic of in bone Tissue Engineering (TE) research. The inclusion of growth factor (GF) controlled release functionalities in the scaffolds is a possible strategy to achieve such goal. Platelet Lysate (PL) is an autologous source of GFs, providing several bioactive agents known to act on bone regeneration. In this study, chitosan-chondroitin sulfate nanoparticles loaded with PL were included in a poly(D,L-lactic acid) foam produced by supercritical fluid foaming. The tridimensional (3D) structures were then seeded with human adipose-derived stem cells (hASCs) and cultured in vitro under osteogenic stimulus. The osteogenic differentiation of the seeded hASCs was observed earlier for the PL-loaded constructs, as shown by the earlier alkaline phosphatase peak and calcium detection and stronger Runx2 expression at day 7 of culture, in comparison with the control scaffolds. Osteocalcin gene expression was upregulated in presence of PL during all culture period, which indicates an enhanced osteogenic induction. These results suggest the synergistic effect of PL and hASCs in combinatory TE strategies and support the potential of PL to increase the multifunctionality of the 3D hybrid construct for bone TE applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    PubMed

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  7. Effect of Al/Ga substitution on the structural and luminescence properties of Y3(Al1-xGax)5O12: Ce3+ phosphors

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Tan, Jin; Bai, Xin; Yang, Shanjie; You, Lei; Du, Zhengkang

    2018-01-01

    As candidates for display and lighting materials, a series of gallium-substituted cerium-doped yttrium aluminum garnet (Y3(GaxAl1-x)5O12: Ce3+) phosphors were synthesized by high temperature solid-state reaction. The phases, morphology, luminescence spectra and thermal stability of the phosphors were investigated. The volatilization of Ga2O3 induces the constituents out of stoichiometric ratio and different impurities in the system. The excitation and emission spectra occur red shift (339 nm - 351 nm) and blue shift (465 nm - 437 nm), and blue shift (541 nm - 517 nm), respectively. The spectra have no further blue shift and the luminescence intensity decrease with x over 0.4. Combining crystal structure with PL spectrum, the distortion of dodecahedron and crystal field splitting of 5d level of Ce3+ are influenced by Ga3+ in octahedral coordination polyhedron rather than tetrahedron. The crystalline perfection and Ga3+ occupying the tetrahedron induce less garnet phase formation, more impurities and the 5d level located in the conductive bands, thus accounting for the x = 0.4 turning points of the PL and PLE intensity. Based on the thermal quenching and CIE, the Y3(GaxAl1-x)5O12: Ce3+0.06 phosphors have great potential for use on the w-LED.

  8. Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery Suture Zone, southern India: Petrology and zircon SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Saitoh, Yohsuke; Tsunogae, Toshiaki; Santosh, M.; Chetty, T. R. K.; Horie, Kenji

    2011-08-01

    We report the metamorphic pressure-temperature ( P- T) history of mafic granulites from two localities in southern India, one from Kanja Malai in the northern margin and the other from Perundurai in the central domain of the Palghat-Cauvery Suture Zone (PCSZ). The PCSZ is described in recent models as the trace of the suture along which crustal blocks were amalgamated within the Gondwana supercontinent during Late Neoproterozoic-Cambrian. The mafic granulite from Kanja Malai yields P- T conditions of 750-800 °C and 8-12 kbar reflecting the partially retrograded conditions following a peak high-pressure (HP) metamorphic event. The common Grt + Cpx + Qtz assemblage in these rocks and lack of decompression texture suggest that peak metamorphism was probably buffered by Grt + Cpx + Opx + Pl + Qtz assemblage, following which the rocks were exhumed through a gradual P- T decrease. The mafic granulite from Perundurai (Grt + Cpx + Pl) contains Opx + Pl symplectite commonly occurring between garnet and clinopyroxene, suggesting the progress of reaction: Grt + Cpx + Qtz → Opx + Pl, with the Grt + Cpx + Qtz representing the peak metamorphic assemblage. The reaction microstructures and calculated P- T conditions suggest that the mafic granulites from Perundurai underwent peak HP metamorphism at P > 12 kbar and T = 800-900 °C and subsequent isothermal decompression along a clockwise P- T path, in contrast to the P- T path inferred for Kanja Malai. The contrasting P- T paths obtained from the two localities suggest that whereas Perundurai is a part of the metamorphic orogen developed within the PCSZ during Gondwana assembly, the high-pressure granulites of Kanja Malai belong to a different orogenic regime. In order to evaluate this aspect further, we analyzed zircons in a charnockite and garnet-bearing quartzo-feldspathic gneiss associated with the HP granulites from Kanja Malai which yielded mean 207Pb/ 206Pb magmatic protolith emplacement ages of 2536.1 ± 1.4 Ma and 2532.4 ± 3.7 Ma, and peak metamorphic ages of 2477.6 ± 1.8 Ma and 2483.9 ± 2.5 Ma, respectively. These results closely compare with the available magmatic (2530-2540 Ma) and metamorphic (2470-2480 Ma) ages reported from charnockites in the Salem Block at the southern fringe of the Archean Dharwar craton, immediately north of the PCSZ. The Neoarchean/Paleoproterozoic ages obtained from Kanja Malai correlate with the tectonic history at the margin of the Archean craton. Although no age data are available for the Perundurai mafic granulite, the close correspondence of their P- T data and exhumation path with those reported for Late Neoproterozoic-Cambrian HP-UHT metamorphism within the PCSZ suggest that these rocks form part of the Gondwana-forming orogen.

  9. LSE investigation of the thermal effect on band gap energy and thermodynamic parameters of BInGaAs/GaAs Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Hidouri, T.; Saidi, F.; Maaref, H.; Rodriguez, Ph.; Auvray, L.

    2016-12-01

    In this paper, we report on the experimental and theoretical study of BInGaAs/GaAs Single Quantum Well elaborated by Metal Organic Chemical Vapor Deposition (MOCVD). We carried out the photoluminescence (PL) peak energy temperature-dependence over a temperature range of 10-300 K. It shows the S-shaped behavior as a result of a competition process between localized and delocalized states. We simulate the peak evolution by the empirical model and modified models. The first one is limited at high PL temperature. For the second one, a correction due to the thermal redistribution based on the Localized State Ensemble model (LSE). The new fit gives a good agreement between theoretical and experimental data in the entire temperature range. Furthermore, we have investigated an approximate analytical expressions and interpretation for the entropy and enthalpy of formation of electron-hole pairs in quaternary BInGaAs/GaAs SQW.

  10. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  11. Synthesis and luminescence properties of KSrPO{sub 4}:Eu{sup 2+} phosphor for radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palan, C. B., E-mail: chetanpalan27@yahoo.in; Bajaj, N. S.; Omanwar, S. K.

    The KSrPO{sub 4}:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO{sub 4}:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO{sub 4}:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al{sub 2}O{sub 3}:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activationmore » energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.« less

  12. Analysis of muscle activity and ankle joint movement during the side-hop test.

    PubMed

    Yoshida, Masahiro; Taniguchi, Keigo; Katayose, Masaki

    2011-08-01

    Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.

  13. Ion beam modification of structural and optical properties of GeO2 thin films deposited at various substrate temperatures using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rathore, Mahendra Singh; Vinod, Arun; Angalakurthi, Rambabu; Pathak, A. P.; Singh, Fouran; Thatikonda, Santhosh Kumar; Nelamarri, Srinivasa Rao

    2017-11-01

    High energy heavy ion irradiation-induced modification of high quality crystalline GeO2 thin films grown at different substrate temperatures ranging from 100 to 500 °C using pulsed laser deposition has been investigated. The pristine films were irradiated with 100 MeV Ag7+ ions at fixed fluence of 1 × 1013 ions/cm2. These pristine and irradiated films have been characterized using X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared and photoluminescence spectroscopy. The XRD and Raman results of pristine films confirm the formation of hexagonal structure of GeO2 films, whereas the irradiation eliminates all the peaks except major GeO2 peak of (101) plane. It is evident from the XRD results that crystallite size changes with substrate temperature and SHI irradiation. The surface morphology of films was studied by AFM. The functional group of pristine and irradiated films was investigated by IR transmission spectra. Pristine films exhibited strong photoluminescence around 342 and 470 nm due to oxygen defects and a red shift in the PL bands is observed after irradiation. Possible mechanism of tuning structural and optical properties of pristine as well as irradiated GeO2 films with substrate temperature and ion beam irradiation has been reported in detail.

  14. The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process

    NASA Astrophysics Data System (ADS)

    Kiprotich, Sharon; Dejene, Francis B.; Ungula, Jatani; Onani, Martin O.

    2016-01-01

    This paper explains one pot synthesis of type II water soluble L-cysteine capped cadmium telluride (CdTe) core shell quantum dots using cadmium acetate, potassium tellurite and L-cysteine as the starting materials. The reaction was carried out in a single three necked flask without nitrogen under reflux at 100 °C. Results from PL show a sharp absorption excitonic band edge of the CdTe core with respect to the core shell which loses its shoulder during the growth of the shell on the core. The PL spectra indicate a drastic shift in emission window of the core which is simultaneously accompanied by an increase in emission intensity. X-ray diffraction pattern confirms the formation of hexagonal phase for all samples. Some difference in absorption edges were observed due to varying synthesis time of CdTe NPs. The position of the absorption band is observed to shift towards the lower wavelength side for shorter durations of synthesis.

  15. Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.

    PubMed

    Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua

    2009-01-01

    In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.

  16. The influence of conjugated alkynyl(aryl) surface groups on the optical properties of silicon nanocrystals: photoluminescence through in-gap states.

    PubMed

    Angı, Arzu; Sinelnikov, Regina; Heenen, Hendrik H; Meldrum, Al; Veinot, Jonathan G C; Scheurer, Christoph; Reuter, Karsten; Ashkenazy, Or; Azulay, Doron; Balberg, Isaac; Millo, Oded; Rieger, Bernhard

    2018-08-31

    Developing new methods, other than size and shape, for controlling the optoelectronic properties of semiconductor nanocrystals is a highly desired target. Here we demonstrate that the photoluminescence (PL) of silicon nanocrystals (SiNCs) can be tuned in the range 685-800 nm solely via surface functionalization with alkynyl(aryl) (phenylacetylene, 2-ethynylnaphthalene, 2-ethynyl-5-hexylthiophene) surface groups. Scanning tunneling microscopy/spectroscopy on single nanocrystals revealed the formation of new in-gap states adjacent to the conduction band edge of the functionalized SiNCs. PL red-shifts were attributed to emission through these in-gap states, which reduce the effective band gap for the electron-hole recombination process. The observed in-gap states can be associated with new interface states formed via (-Si-C≡C-) bonds in combination with conjugated molecules as indicated by ab initio calculations. In contrast to alkynyl(aryl)s, the formation of in-gap states and shifts in PL maximum of the SiNCs were not observed with aryl (phenyl, naphthalene, 2-hexylthiophene) and alkynyl (1-dodecyne) surface groups. These outcomes show that surface functionalization with alkynyl(aryl) molecules is a valuable tool to control the electronic structure and optical properties of SiNCs via tuneable interface states, which may enhance the performance of SiNCs in semiconductor devices.

  17. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    PubMed

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  18. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    DOE PAGES

    Carroll, Gerard M.; Limpens, Rens; Neale, Nathan R.

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative tomore » alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. Furthermore, these results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.« less

  19. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neale, Nathan R; Carroll, Gerard; Limpens, Rens

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative tomore » alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.« less

  1. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer

    NASA Astrophysics Data System (ADS)

    Kaveh, M.; Gao, Q.; Jagadish, C.; Ge, J.; Duscher, G.; Wagner, H. P.

    2016-12-01

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq3) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ˜10 nm thick Au coating but without an Alq3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq3 coated NWs.

  2. Physical reasons of emission transformation in infrared CdSeTe/ZnS quantum dots at bioconjugation

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.

    2015-04-01

    The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780-800 nm (1.55-1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed. The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55-1.60 eV) and the high energy PL band (1.88-1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.

  3. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer.

    PubMed

    Kaveh, M; Gao, Q; Jagadish, C; Ge, J; Duscher, G; Wagner, H P

    2016-12-02

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq 3 ) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ∼10 nm thick Au coating but without an Alq 3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq 3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq 3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq 3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq 3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq 3 coated NWs.

  4. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    PubMed

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  5. Detection of an inhibitory cortical gradient underlying peak shift in learning: a neural basis for a false memory.

    PubMed

    Miasnikov, Alexandre A; Weinberger, Norman M

    2012-11-01

    Experience often does not produce veridical memory. Understanding false attribution of events constitutes an important problem in memory research. "Peak shift" is a well-characterized, controllable phenomenon in which human and animal subjects that receive reinforcement associated with one sensory stimulus later respond maximally to another stimulus in post-training stimulus generalization tests. Peak shift ordinarily develops in discrimination learning (reinforced CS+, unreinforced CS-) and has long been attributed to the interaction of an excitatory gradient centered on the CS+ and an inhibitory gradient centered on the CS-; the shift is away from the CS-. In contrast, we have obtained peak shifts during single tone frequency training, using stimulation of the cholinergic nucleus basalis (NB) to implant behavioral memory into the rat. As we also recorded cortical activity, we took the opportunity to investigate the possible existence of a neural frequency gradient that could account for behavioral peak shift. Behavioral frequency generalization gradients (FGGs, interruption of ongoing respiration) were determined twice before training while evoked potentials were recorded from the primary auditory cortex (A1), to obtain a baseline gradient of "habituatory" neural decrement. A post-training behavioral FGG obtained 24h after three daily sessions of a single tone paired with NB stimulation (200 trials/day) revealed a peak shift. The peak of the FGG was at a frequency lower than the CS while the cortical inhibitory gradient was at a frequency higher than the CS frequency. Further analysis indicated that the frequency location and magnitude of the gradient could account for the behavioral peak shift. These results provide a neural basis for a systematic case of memory misattribution and may provide an animal model for the study of the neural bases of a type of "false memory". Published by Elsevier Inc.

  6. A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy

    PubMed Central

    2014-01-01

    Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors. PMID:25177217

  7. A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy

    NASA Astrophysics Data System (ADS)

    Liu, Huiyang; Wang, Qin; Shen, Guangxia; Zhang, Chunlei; Li, Chao; Ji, Weihang; Wang, Chun; Cui, Daxiang

    2014-08-01

    Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors.

  8. Synthesis and properties of Rb2GeF6:Mn4+ red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Sakurai, Shono; Nakamura, Toshihiro; Adachi, Sadao

    2018-02-01

    Rb2GeF6:Mn4+ red-emitting phosphors were synthesized by coprecipitation and their structural and optical properties were investigated by laser microscopy observation, X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurement. Single-crystalline ingots in the form of a hexagonal pyramid were prepared with a basal plane diameter of ˜2 mm. The XRD analysis suggested that Rb2GeF6 crystallizes in the hexagonal structure (C6v4 = P63mc) with a = 0.5955 nm and c = 0.9672 nm. The phosphor exhibited the strong Mn4+-related zero-phonon line (ZPL) emission peak typically observed in host crystals with piezoelectrically active lattices such as a hexagonal lattice. The quantum efficiencies of the bulk ingot and powdered samples were 87 and 74%, respectively, with nearly the same luminescence decay time of ˜6 ms. The exact ZPL energies and related crystal-field and Racah parameters were obtained from the PL and PLE spectra by Franck-Condon analysis. Temperature-dependent PL intensities were analyzed from T = 20 to 500 K using a thermal quenching model by considering Bose-Einstein phonon statistics. A comparative discussion on the phosphor properties of Rb2GeF6:Mn4+ and Rb2MF6:Mn4+ with M = Si and Ti was also given.

  9. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE PAGES

    Rice, W. D.; Liu, W.; Pinchetti, V.; ...

    2017-04-07

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  10. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, W. D.; Liu, W.; Pinchetti, V.

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  11. Synthesis, physiochemical and optical properties of chitosan based dye containing naphthalimide group.

    PubMed

    Kumar, Santosh; Koh, Joonseok

    2013-04-15

    A new biopolymer dye containing naphthalimide moiety was synthesized by reaction of N-naphthaloyl chitosan with 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazino-3-quinolinecarboxylic acid. N-naphthaloyl chitosan was synthesized by reaction of chitosan with 4-bromo-1,8-naphthalic anhydride in aqueous media by greener approach. The degree of substitution of chitosan biopolymer dye is 0.55 with a yield of 70%. The synthesized materials were characterized by using UV-vis, (1)H NMR, FTIR, and FT-Raman spectroscopy. Some physical properties and surface morphology were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Optical properties of chitosan biopolymer dye were evaluated by photoluminescence (PL) spectroscopy that showed red shift (λ(em)) peak at 442 nm and 551 nm at excitation wavelength 325 nm in comparison to chitosan. The solubility of chitosan biopolymer dye increased in most of the organic solvents. These results may provide new perspectives in biomedical applications as an optical and sensitive biosensor material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Crystalline Gaq3Nanostructures: Preparation, Thermal Property and Spectroscopy Characterization

    PubMed Central

    2009-01-01

    Crystalline Gaq31-D nanostructures and nanospheres could be fabricated by thermal evaporation under cold trap. The influences of the key process parameters on formation of the nanostructures were also investigated. It has been demonstrated that the morphology and dimension of the nanostructures were mainly controlled by working temperature and working pressure. One-dimensional nanostructures were fabricated at a lower working temperature, whereas nanospheres were formed at a higher working temperature. Larger nanospheres could be obtained when a higher working pressure was applied. The XRD, FTIR, and NMR analyses evidenced that the nanostructures mainly consisted of δ-phase Gaq3. Their DSC trace revealed two small exothermic peaks in addition to the melting endotherm. The one in lower temperature region was ascribed to a transition from δ to β phase, while another in higher temperature region could be identified as a transition from β to δ phase. All the crystalline nanostructures show similar PL spectra due to absence of quantum confinement effect. They also exhibited a spectral blue shift because of a looser interligand spacing and reduced orbital overlap in their δ-phase molecular structures. PMID:20596439

  13. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  14. Current performance of planter technology to support variable-rate seeding in the Southern US

    USDA-ARS?s Scientific Manuscript database

    Advances in planting technology are expanding opportunities to vary seeding rates on–the-go. Variable-rate seeding can help maximize overall profits by matching optimal planting rates to field production variability. An important aspect of variable-rate seeding is ensuring peak performance of the pl...

  15. Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres.

    PubMed

    Rannou, F; Droguet, M; Giroux-Metges, M A; Pennec, Y; Gioux, M; Pennec, J P

    2009-11-01

    The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n = 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (I(max)), maximal sodium conductance (g(Na,max)) and time constants of activation and inactivation ((m) and (h)) increase according to the scheme I-->IIa-->IIx-->IIb (P < 0.05). (m) values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P = 0.97) despite different contractile properties. The voltage dependence of activation (V(a,1/2)) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle.

  16. Stimulated electromagnetic emission and plasma line during pump wave frequency stepping near 4th electron gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Sergeev, Evgeny; Shindin, Alexey; Mishin, Evgeny; Watkins, Brenton

    Concurrent observations of stimulated (secondary) electromagnetic emissions (SEE) and incoherent plasma line (PL) backscatter from the MUIR radar during HF pumping of the ionosphere by the HAARP heating facility (62.4(°) °N, 145.15(°) W, magnetic inclination α = 75.8^circ) with the pump wave (PW) frequency sweeps about the fourth electron gyroharmonic (4f_c) are presented. The PW frequency f0 was changed every 0.2 s in a 1-kHz step, i.e. with the rate of r_{f_0}=5 kHz/s. PW was transmitted at the magnetic zenith (MZ). Prior to sweeping, PW was transmitted continuously (CW) during 2 min at f_0 = 5730 kHz <4f_c to create the “preconditioned” ionosphere with small-scale magnetic field-aligned irregularities. During CW pumping, a typical SEE spectrum for f_0<4f_c, containing the prominent downshifted maxiμm (DM) shifted by Delta f_{DM} = f_{DM}-f_0approx-9 kHz, developed in 5-10 s after PW turn on. The PL echoes were observed during 2-3 s from the range dsim 220 km corresponding to the altitude slightly above PW reflection height. After sim5 s the PL echoes descended to dsim 210-212 km corresponding to the height h = d / (sinalpha) by sim 7 km below the height where f_0 = 4f_c. During frequency sweeps, two upshifted features appeared in the SEE spectrum for f_0> 4f_c, namely BUM_S and BUM_D. The former (stationary broad upshifted maxiμm) peaks at Delta f_{BUMs} approx f0 - nfc (d) + 15-20 kHz and is a typical SEE spectral feature. The latter, the dynamic BUM_D at smaller Delta f, is observed only at high pump powers (ERP=1.7 GW) and corresponds to artificial descending plasma layers created in the F-region ionosphere [1]. In the experiment in question, the BUM_D was present for f_0> f^*, where f^* was 5805-5815 kHz during stepping up and sim 10 kHz less for stepping down, and located 8-10 km below the background F-layer. The miniμm DM which indicated that f_0=4f_c=f_{uh} in the background ionospheric plasma, was sim 5760 kHz. The PL was observed only for f_0< f^* and mainly from altitudes h where f_0 <4f_c. The height h decreased with increasing f_0 in accordance with the altitude dependence 4f_c(h), the difference Delta f_g = f_0 - 4f_c was kept constant during either sweeping up [-(4-8 kHz)] or sweeping down [-(18-22 kHz)]. This corresponds to the difference between the altitude where f_0=4f_c and the PL generation altitude by Delta h sim 1.5-3 km and 7-8 km, respectively. During stepping up, the PL was observed also from the ranges where f_0 > 4f_c. In this case we obtained Delta f_g sim 8-13 kHz corresponding to Delta h sim - 4 km. The PL has never been observed for f_0>f^*$. \\ 1. Sergeev E., Grach S., et al. //Phys. Rev. Lett., 110 (2013), 065002.

  17. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  18. The Frequency of Fitness Peak Shifts Is Increased at Expanding Range Margins Due to Mutation Surfing

    PubMed Central

    Burton, Olivia J.; Travis, Justin M. J.

    2008-01-01

    Dynamic species' ranges, those that are either invasive or shifting in response to environmental change, are the focus of much recent interest in ecology, evolution, and genetics. Understanding how range expansions can shape evolutionary trajectories requires the consideration of nonneutral variability and genetic architecture, yet the majority of empirical and theoretical work to date has explored patterns of neutral variability. Here we use forward computer simulations of population growth, dispersal, and mutation to explore how range-shifting dynamics can influence evolution on rugged fitness landscapes. We employ a two-locus model, incorporating sign epistasis, and find that there is an increased likelihood of fitness peak shifts during a period of range expansion. Maladapted valley genotypes can accumulate at an expanding range front through a phenomenon called mutation surfing, which increases the likelihood that a mutation leading to a higher peak will occur. Our results indicate that most peak shifts occur close to the expanding front. We also demonstrate that periods of range shifting are especially important for peak shifting in species with narrow geographic distributions. Our results imply that trajectories on rugged fitness landscapes can be modified substantially when ranges are dynamic. PMID:18505864

  19. Erbium doped aluminum nitride nanoparticles for nano-thermometer applications

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Kordesch, Martin E.

    2015-06-01

    We have synthesized nanoparticles (NPs) of aluminum nitride (AlN) doped in situ with erbium (Er) using the inert gas condensation technique. These NPs have optical properties that make them good candidates for nanoscale temperature sensors. The photoluminescence (PL) spectrum of Er3+ in these NPs shows two emission peaks in the green region at around 540 and 560 nm. The ratio of the intensities of these luminescence peaks is related to temperature. Using Boltzmann’s distribution, the temperature of the NP and its surrounding can be calculated. The NPs were directly deposited on (111) p-type silicon wafers, transmission electron microscope grids and glass cover slips. XRD and HRTEM study indicates that most of the NPs have crystalline hexagonal AlN structure. An enhancement of the luminescence from these NPs was observed after heating in-air at 770 K for 3 h. The sample was then heated in air using a scanning optical microscope laser. The corresponding change in PL peak intensities of the NPs was recorded for laser powers ranging from 0.2 to 15.1 mW. Temperature calculated using the Boltzmann’s distribution was in the range of 300-470 K. This temperature range is of interest for semiconductor device heating and for thermal treatment of cancerous cells, for example.

  20. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.

    PubMed

    Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang

    2006-02-28

    Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.

  1. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    NASA Astrophysics Data System (ADS)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge applications of graphene-ZnO based 2D-1D hybrid nanostructures.

  2. Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells: role of P36.

    PubMed

    Mazurek, S; Hugo, F; Failing, K; Eigenbrodt, E

    1996-05-01

    Isoelectric focusing of MCF-7 cell extracts revealed an association of the glycolytic enzymes glyceraldehyde 3-phosphate-dehydrogenase, phosphoglycerate kinase, enolase, and pyruvate kinase. This complex between the glycolytic enzymes is sensitive to RNase. p36 could not be detected within this association of glycolytic enzymes; however an association of p36 with a specific form of malate dehydrogenase was found. In MCF-7 cells three forms of malate dehydrogenase can be detected by isoelectric focusing: the mitochondrial form with an isoelectric point between 8.9 and 9.5, the cytosolic form with pl 5.0, and a p36-associated form with pl 7.8. The mitochondrial form comprises the mature mitochondrial isoenzyme (pl 9.5) and its precursor form (pl 8.9). Refocusing of the pl 7.8 form of malate dehydrogenase also gave rise to the mitochondrial isoenzyme. Thus, the pl 7.8 form of malate dehydrogenase is actually the mitochondrial isoenzyme retained in the cytosol by the association with p36. Addition of fructose 1,6-bisphosphate to the initial focusing column induced a quantitative shift of the pl 7.8 form of malate dehydrogenase to the mitochondrial forms (pl 8.9 and 9.5). In MCF-7 cells p36 is not phosphorylated in tyrosine. Kinetic measurements revealed that the pl 7.8 form of malate dehydrogenase has the lowest affinity for NADH. Compared to both mitochondrial forms the cytosolic isoenzyme has a high capacity when measured in the NAD --> NADH direction (malate --> oxaloacetate direction). The association of p36 with the mitochondrial isoenzyme may favor the flow of hydrogen from the cytosol into the mitochondria. Inhibition of cell proliferation by AMP which leads to an inhibition of glycolysis has no effect on complex formation by glycolytic and glutaminolytic enzymes in MCF-7 cells. AMP treatment leads to an activation of malate dehydrogenase, which correlates with the increase of pyruvate and the decrease of lactate levels, but has no effect on the distribution of the various malate dehydrogenase forms.

  3. Competition of the self-activated and Mn-related luminescence in ZnS single crystals

    NASA Astrophysics Data System (ADS)

    Bacherikov, Yu. Yu.; Vorona, I. P.; Markevich, I. V.; Korsunska, N. O.; Kurichka, R. V.

    2018-06-01

    The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnS single crystals thermally doped from ZnS/MnS mixture were studied at 300 and 77 K. PL spectra exhibit bands caused by Mn-related centers and centers of self-activated (SA) emission. Besides intrinsic maximum, a number of narrow peaks corresponded to Mn-related absorption are found in the PLE spectra of both SA and Mn-related emission. A redistribution of SA and Mn-related emission intensities is observed with temperature change. The mechanism of this phenomenon involving free hole trapping by MnZn and the possible position of a ground energy level of substitutional Mn are discussed.

  4. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE PAGES

    Limbach, F.; Gotschke, T.; Stoica, T.; ...

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  5. A study of the effects of aligned vertically growth time on ZnO nanorods deposited for the first time on Teflon substrate

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Oglat, Ammar A.; Abuelsamen, A. A.; Bououdina, M.; Qaeed, M. A.

    2017-12-01

    In this study, ZnO nanorods (NRs) were well deposited on Teflon substrates (PTFE) via a chemical bath deposition (CBD) method at low temperature. The consequences of growth time (1 h-4 h) on the structural and optical properties of the aligned ZnO (NRs) were investigated through X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) analyses. The results show that the ZnO (NRs) were preferred to grew aligned along the c-axis as hexagonal wurtzite structure as proved by the sharp and strong ZnO (002) peaks of the ZnO (NRs). Irrespective of the growth continuation, FESEM photos confirmed that the ZnO nanorods arrays were fit to be aligned along the c-axis and perpendicular to (PTFE) substrates. The ZnO nanorods that exhibited the sharper stand most intense PL peaks among the sample were grown for 3hs as demonstrated by PL spectra. The device further showed a sensitivity of 4068 to low-power (1.25 mW/cm2) 375 nm light pulses without an external bias. The measurements of photoresponse demonstrated the highly reproducible characteristics of the fabricated UV detector with rapid response and baseline recovery times of 48.05 ms. Thus, this work introduced a simple, low-cost method of fabricating rapid-response, and highly photosensitive UV detectors with zero power consumption on Teflon substrates.

  6. Structural and optical properties of InGaN-GaN nanowire heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Höfling, S.; Worschech, L.; Grützmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  7. Transition‐Metal‐Doped NIR‐Emitting Silicon Nanocrystals

    PubMed Central

    Chandra, Sourov; Masuda, Yoshitake

    2017-01-01

    Abstract Impurity‐doping in nanocrystals significantly affects their electronic properties and diversifies their applications. Herein, we report the synthesis of transition metal (Mn, Ni, Co, Cu)‐doped oleophilic silicon nanocrystals (SiNCs) through hydrolysis/polymerization of triethoxysilane with acidic aqueous metal salt solutions, followed by thermal disproportionation of the resulting gel into a doped‐Si/SiO2 composite that, upon HF etching and hydrosilylation with 1‐n‐octadecene, produces free‐standing octadecyl‐capped doped SiNCs (diameter≈3 to 8 nm; dopant <0.2 atom %). Metal‐doping triggers a red‐shift of the SiNC photoluminescence (PL) of up to 270 nm, while maintaining high PL quantum yield (26 % for Co doping). PMID:28374522

  8. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302

    2015-05-15

    Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performedmore » by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.« less

  9. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less

  10. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  11. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  12. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  13. Properties of Cadmium-(bis)dodecylthiolate and Polymeric Composites Based on It

    PubMed Central

    Agareva, Nadezhda; Smirnov, Anton A.; Afanasiev, Andrey; Sologubov, Semen; Markin, Alexey; Salomatina, Evgenia; Smirnova, Larisa; Bityurin, Nikita

    2015-01-01

    We study the thermo-physical and photoluminescence (PL) properties of cadmium-(bis)dodecylthiolate (Cd(C12H25S)2). Significant attention is drawn to characterization of Cd(C12H25S)2 by different methods. The laser-induced PLs of Cd(C12H25S)2 and Cd(C12H25S)2/(polymethyl methacrylate) (PMMA) composites are studied. Samples of Cd(C12H25S)2/PMMA are synthesized by the polymerization method. Ultraviolet (UV)-pulsed laser irradiation of the samples under relatively small fluences leads to the formation of induced PL with the maximum near the wavelength of 600 nm. This process can be attributed to the transformation of Cd(C12H25S)2 within the precursor grains. Another PL peak at 450–500 nm, which appears under the higher fluences, relies on the formation of CdS complexes with a significant impact of the polymer matrix. PMID:28793738

  14. Effects of post-annealing treatment on the structure and photoluminescence properties of CdS/PS nanocomposites prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-yan

    2016-03-01

    CdS nanocrystals have been successfully grown on porous silicon (PS) by sol-gel method. The plan-view field emission scanning electron microscopy (FESEM) shows that the pore size of PS is smaller than 5 μm in diameter and the agglomerates of CdS are broadly distributed on the surface of PS substrate. With the increase of annealing time, the CdS nanoparticles grow in both length and diameter along the preferred orientation. The cross-sectional FESEM images of ZnO/PS show that CdS nanocrystals are uniformly penetrated into all PS layers and adhere to them very well. photoluminescence (PL) spectra demonstrate that the intensity of PL peak located at about 425 nm has almost no change after the annealing time increases. The range of emission wavelength of CdS/PS is from 425 nm to 455 nm and the PL intensity is decreasing with the annealing temperature increasing from 100 °C to 200 °C.

  15. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Chunxu; Zhang, Jisen; Chen, Yongyi; Jing, Pengtao; Zhang, Ligong; Zhao, Haifeng; Fu, Xihong; Wang, Lijun

    2018-02-01

    Photoluminescence (PL) and time-resolved spectroscopic studies on plasmonically coupled semiconductor nanoparticles (SNPs) have demonstrated the PL quenched and lifetime enhanced of SNPs in the presence of metal nanoparticles (MNPs). The hybrid colloidal CsPbBr3 perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can’t be well described by the theory based on conventional Fӧster resonance energy transfer (FRET). The differences between theory and experiment may be due to the missing some PbBr2 PL peaks, the reason will be revealed further.

  16. Synthesis and optical properties of metal (M) atom-doped polycarbosilane (PCS) with extended conjugation (M = Al, Dy, Er and Eu)

    NASA Astrophysics Data System (ADS)

    Yao, Rongqian; Zhao, Haoran; Feng, Zude; Chen, Lifu; Zhang, Ying

    2013-10-01

    Optical properties of metal atom-doped polycarbosilane (PCS) which originated from σ-conjugation effect were studied. Al, Dy, Er and Eu were introduced into PCS by one-pot method to yield polyaluminocarbosilane (PACS), polydysprosiumcarbosilane (PDCS), polyerbiumcarbosilane (PErCS) and polyeuropiumcarbosilane (PECS), respectively. Effects of oxidation curing and ultraviolet (UV) radiation on the photoluminescence (PL) properties of the samples were investigated. PL spectra show strong blue light-emissions and the intensity of PCS is enhanced by adding metal atoms. PACS with extended σ-conjugation exhibits an obvious PL red-shift, high intensity, high quantum yield and excellent oxidation resistance as compared with those of others. As treated under UV lamp for 3 h in air, PACS retains good UV resistance performance, owing to the AlOx (x = 4, 5, or 6) groups which effectively extend the σ-conjugation. The obtained results are expected to have important applications in active sources for electroluminescence (EL) devices, especially suitable for blue emission.

  17. Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals.

    PubMed

    Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen

    2017-10-19

    In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.

  18. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.

    2016-12-01

    We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  19. Toward single-chirality carbon nanotube device arrays.

    PubMed

    Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph

    2010-05-25

    The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.

  20. Nature of exciton transitions in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Cao, X. K.; Lin, J. Y.

    2016-03-21

    In contrast to other III-nitride semiconductors GaN and AlN, the intrinsic (or free) exciton transition in hexagonal boron nitride (h-BN) consists of rather complex fine spectral features (resolved into six sharp emission peaks) and the origin of which is still unclear. Here, the free exciton transition (FX) in h-BN bulk crystals synthesized by a solution method at atmospheric pressure has been probed by deep UV time-resolved photoluminescence (PL) spectroscopy. Based on the separations between the energy peak positions of the FX emission lines, the identical PL decay kinetics among different FX emission lines, and the known phonon modes in h-BN,more » we suggest that there is only one principal emission line corresponding to the direct intrinsic FX transition in h-BN, whereas all other fine features are a result of phonon-assisted transitions. The identified phonon modes are all associated with the center of the Brillouin zone. Our results offer a simple picture for the understanding of the fundamental exciton transitions in h-BN.« less

  1. Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.

    2018-04-01

    A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.

  2. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less

  3. Influence of the heterostructure design on the optical properties of GaN and Al0.1Ga0.9N quantum dots for ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Matta, S.; Brault, J.; Ngo, T. H.; Damilano, B.; Korytov, M.; Vennéguès, P.; Nemoz, M.; Massies, J.; Leroux, M.; Gil, B.

    2017-08-01

    The optical properties of AlyGa1-yN quantum dots (QDs), with y = 0 or y = 0.1, in an AlxGa1-xN matrix are studied. The influence of the QD layer design is investigated pointing out the correlations between the QD structural and optical properties. In a first part, the role of the epitaxial strain in the dot self-assembling process is studied by fabricating GaN QD layers on different AlxGa1-xN layers with 0.5 ≤ x ≤ 0.7. Photoluminescence (PL) measurements show the main influence of the increase of the internal electric field (Fint) on the QD optical response inducing a strong red shift in the emission energy as x increases. Time resolved combined with temperature dependent PL measurements enabled the estimation of the QD internal quantum efficiencies at low temperature showing values around 50%. In addition, a PL integrated intensity ratio up to 74% is shown, between 300 and 9 K. In the second part, the design of Al0.1Ga0.9N QDs was investigated, by varying the Al0.1Ga0.9N amount deposited. An increase of the transition energy (from 3.65 eV up to 3.83 eV) is obtained while decreasing the deposited amount. Calculations of the ground state transition energies as a function of the Al0.1Ga0.9N dot height give a value of Fint around 2.0 ± 0.5 MV/cm. Therefore, the propensity of Al0.1Ga0.9N dots to emit at much higher energies than GaN dots (a PL shift of ˜1 eV using a low excitation power) is seen as the consequence of the reduced Fint together with their smaller sizes.

  4. X-ray induced luminescence properties of (Y,Eu)AlO3 single crystals

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Nakauchi, Daisuke; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-02-01

    We investigated photoluminescence, scintillation and dosimeter properties of (Y1-x Eux)AlO3 (x = 0.001, 0.5 and 1) single crystals (hereafter denoted as Eu:YAP for x = 0.001, EYAP for x = 0.5 and EAP for x = 1). The samples were prepared by the Floating Zone method. In photoluminescence (PL), we observed a broad emission around 300-400 nm due to host under excitation of 280 nm, and emissions due to the 4f state transitions of Eu3+ appeared around 590 nm and 615 nm. Scintillation spectra also show emission peaks around 590 and 615 nm due to the 4f state transitions of Eu3+ in all the samples. In addition, emissions around 300-400 nm due to YAP host and around 550-700 nm due to 5d-4f transitions of Eu2+ appeared in Eu:YAP. The PL and scintillation decay time profiles consisted of several exponential decay components. The fast (ns) component group was possibly due to host emission, and especially Eu:YAP demonstrated a very fast PL decay time of 16 ns. The intermediate (μs) component group was due to the 5d-4f transitions of Eu2+. The slow (ms) component group was ascribed to the 4f state transitions of Eu3+ ion. The Eu:YAP sample showed intense thermally-stimulated luminescence (TSL) with peaks at 46, 155, 255 and 443 °C. The intensity was much higher than those of EAP and EYAP. In particular, the peak at 254 °C, which showed the highest intensity, was due to doping with Eu. The TSL dose response function showed a good linearity (R2 > 0.99) over a wide dose range from 0.1 mGy to 100 mGy for Eu:YAP, which showed the highest sensitivity among the present samples.

  5. Preparations of PbSe quantum dots in silicate glasses by a melt-annealing technique

    NASA Astrophysics Data System (ADS)

    Ma, D. W.; Cheng, C.; Zhang, Y. N.; Xu, Z. S.

    2014-11-01

    Silicate glass containing PbSe quantum dots (QDs) has important prospective applications in near infra-red optoelectronic devices. In this study, single-stage and double-stage heat-treatment methods were used respectively to prepare PbSe QDs in silicate glasses. Investigation results show that the double-stage heat-treatment is a favorable method to synthesize PbSe QDs with strong photoluminescence (PL) intensity and narrow full weight at half maximum (FWHM) in PL peak. Therefore, the method to prepare PbSe QDs was emphasized on the double-stage heat-treatment. Transmission electron microscopy measurements show that the standard deviations of the average QD sizes from the samples heat-treated at the development temperature of 550 °C fluctuate slightly in the range of 0.6-0.8 nm, while this deviation increases up to 1.2 nm for the sample with the development temperature of 600 °C. In addition, the linear relationship between the QD size and holding time indicates that the crystallization behavior of PbSe QDs in silicate glasses is interface-controlled growth in early stage of crystallization. The growth rates of PbSe QDs are determined to be 0.24 nm/h at 550 °C and 0.72 nm/h at 600 °C. In short, the double-stage heat-treatment at 450 °C for 20 h followed by heat-treatment at 550 °C for 5 h is a preferred process for the crystallization of PbSe QDs in silicate glass. Through this treatment, PbSe QDs with a narrow size dispersion of 5.0 ± 0.6 nm can be obtained, the PL peak from this sample is highest in intensity and narrowest in FWHM among all samples, and the peak is centered on 1575 nm, very close to the most common wavelength of 1550 nm in fiber-optic communication systems.

  6. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Budhendra, E-mail: bksingh@ua.pt; Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt; Bdikin, Igor

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM).more » A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.« less

  7. Effect of harvest time of red and white clover silage on chewing activity and particle size distribution in boli, rumen content and faeces in cows.

    PubMed

    Kornfelt, L F; Nørgaard, P; Weisbjerg, M R

    2013-06-01

    The study examined the effects of harvest time of red and white clover silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in cows. The clover crops were harvested at two stages of growth and ensiled in bales. Red clover crops had 36% and 45% NDF in dry matter (DM) at early (ER) and late (LR) harvest, respectively, and the white clover crops had 19% and 29% NDF in DM at the early (EW) and late (LW) harvest, respectively. The silages were fed restrictively (80% of ad libitum intake) twice daily to four rumen cannulated non-lactating Jersey cows (588 ± 52 kg) in a 4 × 4 Latin square design. Jaw movements (JM) were recorded for 96 h continuously. Swallowed boli, rumen mat, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500, 0.212 and 0.106 mm into seven fractions. The length (PL) and width (PW) values of rumen and faeces particles within each fraction were measured by use of image analysis. The eating activity (min/kg DM intake; P < 0.05) was higher in LR compared with the other treatments. The eating activity (min/kg NDF intake; P < 0.05) was affected by clover type with highest values for white clover silage. The mean ruminating time (min/kg DM), daily ruminating cycles (P < 0.001) and JM during ruminating (P < 0.05) were affected by treatment with increasing values at later harvest time. The proportion of washed particle DM of total DM in boli (P < 0.001), rumen mat (P < 0.001), rumen fluid (P < 0.01) and faeces was (P < 0.001) highest by feeding LR. There were identified two peaks (modes 1 and 2) on the probability density distribution (PDF) of PW values of rumen mat and faeces, but only one peak (mode 1) for PL values. There was no difference in the mean and mode 1 PW and PL value in rumen mat between the four treatments. The mean PL, mode PL, mode 2 PW and mean PW in faeces were highest for LR (P < 0.05). The mean particle size in boli measured by sieving was higher at white clover compared with red clover treatments (P < 0.001) and the highest value in faeces was found in LR (P < 0.01). The two peaks on PDF for width values of rumen mat and faeces particles are most likely related to the leaves and the stems/petioles. In conclusion, the mean total chewing activity per kg DM was lowest for the white clover silage and increased for both silages due to later harvest time. The mean particle size in boli was smallest for LR, whereas the mean PL and PW in faeces were highest for the LR.

  8. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    NASA Astrophysics Data System (ADS)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.

  9. Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocola, Leonidas E.; Connolly, Aine; Gosztola, David J.

    We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (VO). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from VO states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles,more » the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications.« less

  10. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Xiaodong; Gao, Caitian; Wang, Jiangtao; Lu, Bingan; Chen, Wanjun; Song, Jie; Zhang, Shanshan; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2012-09-01

    Highly transparent nanocrystalline TiO2 films have been fabricated by electrospinning (ES) technique based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine (TEOA) added to the precursor. A possible evolution mechanism of the transparent nanocrystalline TiO2 films is proposed. It is found that the films prepared via transmutation from electrospun nanofibers possess rich bulk oxygen vacancies (BOVs, PL band at 621-640 nm) by using photoluminescence (PL) spectroscopy. Contrastively, the dominant peak in PL spectrum of the spin-coated film is the emission from surface oxygen vacancies (SOVs, PL band at 537-555 nm). The electrospun TiO2 films with rich BOVs induce large open-circuit voltage (Voc) and fill factor (FF) improvements in dye-sensitized solar cells (DSCs), and thus a large improvement of energy conversion efficiency (η). In addition, these performance advantages are maintained for a double-layer cell with a doctor-bladed ˜7 μm top layer (P25 nanometer TiO2, Degussa) and an electrospun ˜3 μm bottom layer. The double-layer cell yields a high η of 6.01%, which has increased by 14% as compared with that obtained from a 10 μm thick P25 film.

  11. Mechanisms of Loss in Internal Quantum Efficiency in III-Nitride-based Blue-and Green-Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Huang, Li

    The overarching goals of the research conducted for this dissertation have been to understand the scientific reasons for the losses in the internal quantum efficiency (IQE) in Group III-nitride-based blue and especially green light-emitting diodes (LEDs) containing a multi-quantum well (MQW) active region and to simultaneously develop LED epitaxial structures to ameliorate these losses. The p-type AlGaN EBL was determined to be both mandatory and effective in the prevention of electron overflow from the MQW region into the p-type cladding layer and the resultant lowering of the IQE. The overflow phenomenon was partially due to the low concentration (˜ 5 x 1017 cm-3) and mobility (˜ 10 cm2/(V•s)) of the holes injected into the active region. Electroluminescence (EL) studies of LEDs without an EBL revealed a dominant emission from donor-acceptor pair recombination in the p-type GaN layer. The incorporation of a 90 nm compositionally graded In0-0.1 Ga1-0.9N buffer layer between each MQW and n-GaN cladding layer grown on an Al/SiC substrate resulted in an increase in the luminescence intensity and a blue-shift in the emission wavelength, as observed in photoluminescence (PL) spectra. The graded InGaN buffer layer reduced the stress and thus the piezoelectric field across the MQW; this improved the electron/hole overlap that, in turn, resulted in an enhanced radiative recombination rate and an increase in efficiency. A direct correlation was observed between an increase in the IQE measured in temperature-dependent PL (TDPL) and an increase in the roughness of all the upper InGaN QW/GaN barrier interfaces, as determined using cross-sectional transmission electron microscopy of the MQW. These results agreed in general with the average surface roughness values of the pit-free region on the top GaN barrier determined via atomic force microscopy and the average roughness values of all the interfaces in the MQW calculated from the FWHM of the emission peak in the PL spectra acquired at 10 K for LED structures grown on both SiC and GaN substrates. This improvement occurred as a result of carrier localization at the rougher interfaces that, in turn, resulted in shorter carrier lifetimes and faster decay rates, as determined using time-resolved PL. The peak current densities determined from the curves of external quantum efficiency as a function of current density calculated from EL spectra acquired from a set of LEDs having 3 QWs, 5 QWs, and 6 QWs were 63 A/cm2, 78 A/cm2 and 78 A/cm2, respectively. These data indicated that the minority carrier (holes) in our powered devices penetrated into at least the 4th QW from the top p-type cladding layer. The peak emission from these LEDs occurred at 522 nm. The hole density decreased with distance away from the top p-type layer. Finally, a new process route was developed in this research for the epitaxial deposition of GaN(0001) thin films on chemo-mechanically polished GaN(0001) substrates. The latter possessed threading dislocations (TDs) having a density of the order of 5 x 107 cm-2, predominantly edge in character and oriented along [0001]. Step-flow-controlled growth of the films was achieved; thus, no additional TDs were generated at the film/substrate interface. The density of V-defects in InGaN films and in subsequently grown MQWs containing In0.26Ga0.74N wells grown on the GaN substrates was also reduced to within an order of 107 cm -2. The density of the latter defects was determined to be a function of both the density of the TDs and the growth temperature when the latter was > 900 °C. (Abstract shortened by UMI.)

  12. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed Central

    Selwood, T; Sinnott, M L

    1990-01-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2114090

  13. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed

    Selwood, T; Sinnott, M L

    1990-06-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Structure and photoluminescence properties of ZnS films grown on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing

    2011-11-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.

  15. Impact of surface morphology on the properties of light emission in InGaN epilayers

    NASA Astrophysics Data System (ADS)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  16. Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template

    PubMed Central

    2014-01-01

    Two-dimensional Zinc sulfide (ZnS) nanobowl arrays were synthesized via self-assembled monolayer polystyrene sphere template floating on precursor solution surface. A facile approach was proposed to investigate the morphology evolution of nanobowl arrays by post-annealing procedure. Photoluminescence (PL) measurement of as-grown nanoarrays shows that the spectrum mainly includes two parts: a purple emission peak at 382 nm and a broad blue emission band centering at 410 nm with a shoulder around 459 nm, and a blue emission band at 440 nm was obtained after the annealing procedure. ZnS nanoarrays with special morphologies and PL emission are benefits to their promising application in novel photoluminescence nanodevice. PMID:25246857

  17. Freestanding silicon quantum dots: origin of red and blue luminescence.

    PubMed

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  18. Structural and optical properties of glancing angle deposited TiO2 nanowires array.

    PubMed

    Chinnamuthu, P; Mondal, A; Singh, N K; Dhar, J C; Das, S K; Chattopadhyay, K K

    2012-08-01

    TiO2 nanowires (NWs) have been synthesized by glancing angle deposition technique using e-beam evaporator. The average length 490 nm and diameter 80 nm of NWs were examined by field emission-scanning electron microscopy. Transmission electron microscopy emphasized that the NWs were widely dispersed at the top. X-ray diffraction has been carried out on the TiO2 thin film (TF) and NW array. A small blue shift of 0.03 eV was observed in Photoluminescence (PL) main band emission for TiO2 NW as compared to TiO2 TF. The high temperature annealing at 980 degrees C partially removed the oxygen vacancy from the sample, which was investigated by PL and optical absorption measurements.

  19. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  20. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    NASA Astrophysics Data System (ADS)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  1. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE PAGES

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...

    2017-09-28

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  2. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  3. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the latter present a fast decay process prior to slower recombination. We show that this PL feature persists with similar decay amplitude and timescale for temperatures down to the phase transition temperature, and that it depends on pump photon energy at room temperature. Together with high-level electronic structure and dynamics calculations, we suggest the fast PL decay relates a characteristic organic-to-inorganic sub-lattice equilibration timescale at optoelectronic-relevant excitation energies.

  4. Evidence for a Peak Shift in a Humoral Response to Helminths: Age Profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES

    PubMed Central

    Blackwell, Aaron D.; Gurven, Michael D.; Sugiyama, Lawrence S.; Madimenos, Felicia C.; Liebert, Melissa A.; Martin, Melanie A.; Kaplan, Hillard S.; Snodgrass, J. Josh

    2011-01-01

    Background The peak shift model predicts that the age-profile of a pathogen's prevalence depends upon its transmission rate, peaking earlier in populations with higher transmission and declining as partial immunity is acquired. Helminth infections are associated with increased immunoglobulin E (IgE), which may convey partial immunity and influence the peak shift. Although studies have noted peak shifts in helminths, corresponding peak shifts in total IgE have not been investigated, nor has the age-patterning been carefully examined across populations. We test for differences in the age-patterning of IgE between two South American forager-horticulturalist populations and the United States: the Tsimane of Bolivia (n = 832), the Shuar of Ecuador (n = 289), and the U.S. NHANES (n = 8,336). We then examine the relationship between total IgE and helminth prevalences in the Tsimane. Methodology/Principal Findings Total IgE levels were assessed in serum and dried blood spots and age-patterns examined with non-linear regression models. Tsimane had the highest IgE (geometric mean  = 8,182 IU/ml), followed by Shuar (1,252 IU/ml), and NHANES (52 IU/ml). Consistent with predictions, higher population IgE was associated with steeper increases at early ages and earlier peaks: Tsimane IgE peaked at 7 years, Shuar at 10 years, and NHANES at 17 years. For Tsimane, the age-pattern was compared with fecal helminth prevalences. Overall, 57% had detectable eggs or larva, with hookworm (45.4%) and Ascaris lumbricoides (19.9%) the most prevalent. The peak in total IgE occurred around the peak in A. lumbricoides, which was associated with higher IgE in children <10, but with lower IgE in adolescents. Conclusions The age-patterning suggests a peak shift in total IgE similar to that seen in helminth infections, particularly A. lumbricoides. This age-patterning may have implications for understanding the effects of helminths on other health outcomes, such as allergy, growth, and response to childhood vaccination. PMID:21738813

  5. Evidence for a peak shift in a humoral response to helminths: age profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES.

    PubMed

    Blackwell, Aaron D; Gurven, Michael D; Sugiyama, Lawrence S; Madimenos, Felicia C; Liebert, Melissa A; Martin, Melanie A; Kaplan, Hillard S; Snodgrass, J Josh

    2011-06-01

    The peak shift model predicts that the age-profile of a pathogen's prevalence depends upon its transmission rate, peaking earlier in populations with higher transmission and declining as partial immunity is acquired. Helminth infections are associated with increased immunoglobulin E (IgE), which may convey partial immunity and influence the peak shift. Although studies have noted peak shifts in helminths, corresponding peak shifts in total IgE have not been investigated, nor has the age-patterning been carefully examined across populations. We test for differences in the age-patterning of IgE between two South American forager-horticulturalist populations and the United States: the Tsimane of Bolivia (n=832), the Shuar of Ecuador (n=289), and the U.S. NHANES (n=8,336). We then examine the relationship between total IgE and helminth prevalences in the Tsimane. Total IgE levels were assessed in serum and dried blood spots and age-patterns examined with non-linear regression models. Tsimane had the highest IgE (geometric mean =8,182 IU/ml), followed by Shuar (1,252 IU/ml), and NHANES (52 IU/ml). Consistent with predictions, higher population IgE was associated with steeper increases at early ages and earlier peaks: Tsimane IgE peaked at 7 years, Shuar at 10 years, and NHANES at 17 years. For Tsimane, the age-pattern was compared with fecal helminth prevalences. Overall, 57% had detectable eggs or larva, with hookworm (45.4%) and Ascaris lumbricoides (19.9%) the most prevalent. The peak in total IgE occurred around the peak in A. lumbricoides, which was associated with higher IgE in children <10, but with lower IgE in adolescents. The age-patterning suggests a peak shift in total IgE similar to that seen in helminth infections, particularly A. lumbricoides. This age-patterning may have implications for understanding the effects of helminths on other health outcomes, such as allergy, growth, and response to childhood vaccination.

  6. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecework alignment algorithm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Karisa M.; Wright, Bob W.; Synovec, Robert E.

    2007-02-02

    First, simulated chromatographic separations with declining retention time precision were used to study the performance of the piecewise retention time alignment algorithm and to demonstrate an unsupervised parameter optimization method. The average correlation coefficient between the first chromatogram and every other chromatogram in the data set was used to optimize the alignment parameters. This correlation method does not require a training set, so it is unsupervised and automated. This frees the user from needing to provide class information and makes the alignment algorithm more generally applicable to classifying completely unknown data sets. For a data set of simulated chromatograms wheremore » the average chromatographic peak was shifted past two neighboring peaks between runs, the average correlation coefficient of the raw data was 0.46 ± 0.25. After automated, optimized piecewise alignment, the average correlation coefficient was 0.93 ± 0.02. Additionally, a relative shift metric and principal component analysis (PCA) were used to independently quantify and categorize the alignment performance, respectively. The relative shift metric was defined as four times the standard deviation of a given peak’s retention time in all of the chromatograms, divided by the peak-width-at-base. The raw simulated data sets that were studied contained peaks with average relative shifts ranging between 0.3 and 3.0. Second, a “real” data set of gasoline separations was gathered using three different GC methods to induce severe retention time shifting. In these gasoline separations, retention time precision improved ~8 fold following alignment. Finally, piecewise alignment and the unsupervised correlation optimization method were applied to severely shifted GC separations of reformate distillation fractions. The effect of piecewise alignment on peak heights and peak areas is also reported. Piecewise alignment either did not change the peak height, or caused it to slightly decrease. The average relative difference in peak height after piecewise alignment was –0.20%. Piecewise alignment caused the peak areas to either stay the same, slightly increase, or slightly decrease. The average absolute relative difference in area after piecewise alignment was 0.15%.« less

  7. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debehets, J.; Homm, P.; Menghini, M.

    In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less

  8. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE PAGES

    Debehets, J.; Homm, P.; Menghini, M.; ...

    2018-01-12

    In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less

  9. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    PubMed

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  10. Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample

    NASA Astrophysics Data System (ADS)

    Rebelo Kornmeier, Joana; Gibmeier, Jens; Hofmann, Michael

    2011-06-01

    Neutron strain measurements are critical at the surface. When scanning close to a sample surface, aberration peak shifts arise due to geometrical and divergence effects. These aberration peak shifts can be of the same order as the peak shifts related to residual strains. In this study it will be demonstrated that by optimizing the horizontal bending radius of a Si (4 0 0) monochromator, the aberration peak shifts from surface effects can be strongly reduced. A stress-free sample of fine-grained construction steel, S690QL, was used to find the optimal instrumental conditions to minimize aberration peak shifts. The optimized Si (4 0 0) monochromator and instrument settings were then applied to measure the residual stress depth gradient of a shot-peened SAE 4140 steel sample to validate the effectiveness of the approach. The residual stress depth profile is in good agreement with results obtained by x-ray diffraction measurements from an international round robin test (BRITE-EURAM-project ENSPED). The results open very promising possibilities to bridge the gap between x-ray diffraction and conventional neutron diffraction for non-destructive residual stress analysis close to surfaces.

  11. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    PubMed

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  12. CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2012-01-01

    Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.

  13. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers

    PubMed Central

    Almeida, Rui M.; Ribeiro, Tiago

    2017-01-01

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO1.5. Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er3+ was used as an internal reference to compare the intensities of the Yb3+ PL peaks at ~ 1020 nm. The Yb3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO2-14 AlO1.5-15 YbO1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated. PMID:28869488

  14. Studies on annealed ZnO:V thin films deposited by nebulised spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Malini, D. Rachel

    2018-04-01

    Structural, optical and photoluminescence properties of annealed ZnO:V thin films deposited by nebulized spray pyrolysis technique by varying vanadium concentration are studied. Thickness of thin films varies from 1.52µm to 7.78µm. V2O5, VO2 and ZnO peaks are observed in XRD patterns deposited with high vanadium concentration and the intensity of peaks corresponding to ZnO decreases in those samples. Morphological properties were studied by analysing SEM images and annealed thin films deposited at ZnO:V = 50:50 possess dumb bell shape grains. Emission peaks corresponding to both Augur transition and deep level transition are observed in the PL spectra of the samples.

  15. Carrier and polarization dynamics in monolayer MoS2: temperature and power dependence

    NASA Astrophysics Data System (ADS)

    Urbaszek, Bernhard; Lagarde, D.; Bouet, L.; Amand, T.; Marie, X.; Zhu, C. R.; Liu, B. L.; Tan, P. H.

    2014-03-01

    In monolayer (ML) MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical k-valley initialization. Here we present the first time resolved photoluminescence (PL) polarization measurements in MoS2 MLs, providing vital information on the electron valley dynamics. Using quasi-resonant excitation of the A-exciton transitions, we can infer that the PL decays within τ ~= 4ps. The PL polarization of Pc ~ 60 % remains nearly constant in time for experiments from 4K - 300K, a necessary condition for the success of future Valley Hall experiments. τ does not vary significantly over this temperature range. This is surprising when considering the decrease of Pc in continuous wave experiments when going from 4K to 300K reported in the literature. By tuning the laser following the shift of the A-exciton resonance with temperature we are able to recover at 300K ~ 80 % of the polarization observed at 4K. For pulsed laser excitation, we observe a decrease of Pc with increasing laser power at all temperatures.

  16. Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization.

    PubMed

    Moerman, Wim; Carballa, Marta; Vandekerckhove, Andy; Derycke, Dirk; Verstraete, Willy

    2009-04-01

    Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89+/-3% and 75+/-8%, resulting in final effluent levels of 12+/-3 mg PO(4)(3-)-PL(-1) and 11+/-3mg PO(4)(3-)-PL(-1), respectively. In contrast, poor phosphate removal (19+/-8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca(2+)/PO(4)(3-)-P molar ratio (ca. 1.25+/-0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca(2+) interference. A shift in the influent Ca(2+)/PO(4)(3-)-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78+/-7%, corresponding with effluent levels of 14+/-4 mg P(total)L(-1) (9+/-3 mg PO(4)(3-)-PL(-1)). Under these conditions high quality spherical struvite crystals of 2-6mm were produced.

  17. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011

  18. Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: synthesis and optical properties.

    PubMed

    Xi, Guangcheng; Yu, Shijun; Zhang, Rui; Zhang, Meng; Ma, Dekun; Qian, Yitai

    2005-07-14

    A novel nanostructure, cubic silicon carbide (3C-SiC) nanoparticles encapsulated in branched wavelike carbon nanotubes have been prepared by a reaction of 1,2-dimenthoxyethane (CH3OCH2CH2OCH3), SiCl4, and Mg in an autoclave at 600 degrees C. According to X-ray powder diffraction, the products are composed of 3C-SiC and carbon. TEM and HRTEM images show that the as-synthesized products are composed of 3C-SiC nanoparticles encapsulated in branched carbon nanotubes with wavelike walls. The diameter of the 3C-SiC cores is approximately 20-40 nm and the thickness of the carbon shells is about 3-5 nm. In Raman scattering spectroscopy, both the TO (Gamma) phonon line and the LO (Gamma) phonon line have red shifts about 6 cm(-1) relative to that for the bulk 3C-SiC. The photoluminescence (PL) spectrum shows that there are two emission peaks: blue light emission (431 nm) and violet light emission (414 nm). A sequential deposition growth process (with cores as the templates for the shells) for the nanostructure was proposed.

  19. Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

    NASA Astrophysics Data System (ADS)

    Bera, Swades Ranjan; Saha, Satyajit

    2018-04-01

    CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.

  20. Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction.

    PubMed

    Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri

    2005-11-01

    An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.

  1. Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Rajesh, S.

    2017-04-01

    The paper deals with the impact of annealing on Cu2Se-In3Se2 multilayer structure and discusses the quantum confinements. Thermal evaporation technique was used to prepare multilayer films over the glass substrates. The films were annealed at different temperatures (150 °C-350 °C) under vacuum atmosphere. The XRD pattern reveals that the films exhibit (112) peaks with CuInSe2 Chalcopyrite structure and upon annealing crystallinity improved. The grain size comes around 13-19 nm. The optical band gap value was found to be 2.21 to 2.09 eV and band gap splitting was observed for higher annealing temperatures. The increase in the band gap is related to quantum confinement effect. SEM image shows nano crystals spread over the entire surface for higher annealing temperatures. Optical absorption and PL spectra shows the blue shift during annealing. The HR-TEM shows the particle size in the nano range and which confirms the CuInSe2 nanocrystal formation. AFM image shows the rough surface with homogenous grains for the as deposited films and smooth surface for annealed films.

  2. Optical and structural properties of Mo-doped NiTiO3 materials synthesized via modified Pechini methods

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo

    2017-07-01

    In this study, molybdenum (Mo)-doped nickel titanate (NiTiO3) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO3 structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO3 lattice was doped with Mo. On the other hand, Mo doping of NiTiO3 materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  3. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  4. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    NASA Astrophysics Data System (ADS)

    Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi

    2018-05-01

    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  5. Toward a better understanding of the GRB phenomenon: a new model for GRB prompt emission and its effects on the new L i NT$-$E peak,i rest,NT relation

    DOE PAGES

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; ...

    2015-07-09

    Gamma-ray burst (GRB) prompt emission spectra in the keV–MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. Here in this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like "twins" in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity–hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal Band function and its E peak only when the three components are fitted simultaneously to the data (i.e.,more » $${F}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{NT}}$$ relation). In addition, this result points toward a universal relation between those two quantities when transposed to the central engine rest frame for all GRBs (i.e., $${L}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{rest},\\mathrm{NT}}$$ relation). We discuss a possible theoretical interpretation of the three spectral components within this new empirical model. Lastly, we suggest that (i) the BB component may be interpreted as the photosphere emission of a magnetized relativistic outflow, (ii) the Band component has synchrotron radiation in an optically thin region above the photosphere, either from internal shocks or magnetic field dissipation, and (iii) the extra PL component extending to high energies likely has an inverse Compton origin of some sort, even though its extension to a much lower energy remains a mystery.« less

  6. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  7. Use of shift gradient in the second dimension to improve the separation space in comprehensive two-dimensional liquid chromatography.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2013-08-01

    Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7%. The effective peak distribution area increased significantly, which produced better separation.

  8. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  9. Anomalous luminescence phenomena of indium-doped ZnO nanostructures grown on Si substrates by the hydrothermal method

    PubMed Central

    2012-01-01

    In recent years, zinc oxide (ZnO) has become one of the most popular research materials due to its unique properties and various applications. ZnO is an intrinsic semiconductor, with a wide bandgap (3.37 eV) and large exciton binding energy (60 meV) making it suitable for many optical applications. In this experiment, the simple hydrothermal method is used to grow indium-doped ZnO nanostructures on a silicon wafer, which are then annealed at different temperatures (400°C to 1,000°C) in an abundant oxygen atmosphere. This study discusses the surface structure and optical characteristic of ZnO nanomaterials. The structure of the ZnO nanostructures is analyzed by X-ray diffraction, the superficial state by scanning electron microscopy, and the optical measurements which are carried out using the temperature-dependent photoluminescence (PL) spectra. In this study, we discuss the broad peak energy of the yellow-orange emission which shows tendency towards a blueshift with the temperature increase in the PL spectra. This differs from other common semiconductors which have an increase in their peak energy of deep-level emission along with measurement temperature. PMID:22647253

  10. Posterior root tear fixation of the lateral meniscus combined with arthroscopic ACL double-bundle reconstruction: technical note of a transosseous fixation using the tibial PL tunnel.

    PubMed

    Forkel, Philipp; Petersen, Wolf

    2012-03-01

    According to our observation in ACL reconstruction, we find root tears of the posterior horn of the lateral meniscus as a common concomitant injury in ACL-deficient knees. This might be a consequence of initial trauma or of the increased anterior-posterior translation of the tibia and an overload impact on the posterior meniscus root in ACL-deficient knees. A tear of the posterior horn of the medial meniscus causes a 25% increase in peak pressure in the medial compartment compared with that found in the intact condition. The repair restores the peak contact pressure to normal (Allaire et al. in J Bone Joint Surg Am 90(9):1922-1931, [2008]). A tear of the posterior horn of the lateral meniscus might have similar consequences. We hypothesize the surgical anatomical reattachment of the root at the tibia helping to restore knee joint kinematics and helping to advance ACL-graft function. This article presents an arthroscopical technique to reattach the posterior meniscus root in combination with ACL double-bundle reconstruction. The procedure uses the tibial PL tunnel to fix the meniscus suture.

  11. Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Venkatramana Reddy, S.

    2018-02-01

    We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.

  12. Who's in the Classroom Down the Hall?: An Examination of Demographic Shifts within Segregated Special Education Classrooms, 1975-2005

    ERIC Educational Resources Information Center

    Handler, Beth R.

    2007-01-01

    Prior to the passage of the Education for All Handicapped Children Act in 1975 (PL 94-142), the educational experience of disabled children and youth was varied and uncertain. Many children and youth with sensory, physical or cognitive impairments received minimal skill development training in institutions, separate day classes, church basements…

  13. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect.

    PubMed

    Liu, Xinfeng; Zhang, Qing; Yip, Jing Ngei; Xiong, Qihua; Sum, Tze Chien

    2013-01-01

    Wavelength tunable semiconductor nanowire (NW) lasers are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we present a demonstration of utilizing the surface plasmon polariton (SPP) enhanced Burstein-Moss (BM) effect to tune the lasing wavelength of a single semiconductor NW. The photonic lasing mode of the CdS NW (with length ~10 μm and diameter ~220 nm) significantly blue shifts from 504 to 483 nm at room temperature when the NW is in close proximity to the Au film. Systematic steady state power dependent photoluminescence (PL) and time-resolved PL studies validate that the BM effect in the hybrid CdS NW devices is greatly enhanced as a consequence of the strong coupling between the SPP and CdS excitons. With decreasing dielectric layer thickness h from 100 to 5 nm, the enhancement of the BM effect becomes stronger, leading to a larger blue shift of the lasing wavelength. Measurements of enhanced exciton emission intensities and recombination rates in the presence of Au film further support the strong interaction between SPP and excitons, which is consistent with the simulation results.

  14. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Rosales, Daniel; Gil, Bernard; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Excitonic recombination dynamics in (11-22) -oriented semipolar In0.2Ga0.8N/In0.06Ga0.94N multiquantum wells (MQWs) grown on GaN/m-sapphire templates have been investigated by temperature-dependent time-resolved photoluminescence (TRPL). The radiative and nonradiative recombination contributions to the PL intensity at different temperatures were evaluated by analysing temperature dependences of PL peak intensity and decay times. The obtained data indicate the existence of exciton localization with a localization energy of Eloc(15K) =7meV and delocalization temperature of Tdeloc = 200K in the semipolar InGaN MQWs. Presence of such exciton localization in semipolar (11-22) -oriented structures could lead to improvement of excitonic emission and internal quantum efficiency.

  15. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  16. Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao

    2015-10-01

    Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed. Electronic supplementary information (ESI) available: Crystal structure pattern; calculated DOS diagram. See DOI: 10.1039/c5nr05528h

  17. Simultaneous enhancement of photo- and electroluminescence in white organic light-emitting devices by localized surface plasmons of silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Jingting; Zhu, Wenqing; Shi, Guanjie; Zhai, Guangsheng; Qian, Bingjie; Li, Jun

    2017-02-01

    White organic light-emitting devices (WOLEDs) with enhanced current efficiency and negligible color shifting equipped with an internal color conversion layer (CCL) were fabricated. They were attained by embedding a single layer of silver nanoclusters (SNCs) between the CCL and light-emitting layer (EML). The simultaneous enhancement of the photoluminescence (PL) of the CCL and electroluminescence (EL) of the EML were realized by controlling the thickness and size of the SNCs to match the localized surface plasmon resonance spectrum with the PL spectrum of the CCL and the EL spectrum of the EML. The WOLED with optimal SNCs demonstrated a 25.81% enhancement in current efficiency at 60 mA cm-2 and good color stability over the entire range of current density.

  18. Optical characterization of CdS nanorods capped with starch

    NASA Astrophysics Data System (ADS)

    Roy, J. S.; Pal Majumder, T.; Schick, C.

    2015-05-01

    Well crystalline uniform CdS nanorods were grown by changing the concentration of maize starch. The highly polymeric (branched) structure of starch enhances the growth of CdS nanorods. The average diameter of the nanorods is 20-25 nm while length is of 500-600 nm as verified from SEM and XRD observations. The optical band gaps of the CdS nanorods are varying from 2.66 eV to 2.52 eV depending on concentration of maize starch. The photoluminescence (PL) emission bands are shifted from 526 nm to 529 nm with concentration of maize starch. We have also observed the enhanced PL intensity in CdS nanorods capped with starch. The Fourier transform infrared (FTIR) spectroscopy shows the significant effect of starch on CdS nanorods.

  19. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes.

    PubMed

    Kramer, Samuel J; Baur, Daniel A; Spicer, Maria T; Vukovich, Matthew D; Ormsbee, Michael J

    2016-01-01

    While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d -1 ) or a non-caloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t -tests were utilized to assess changes over time and to compare changes between treatments. Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p  = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p  = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes.

  20. Cu+ emission in Li2BPO5 material for thermoluminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Puppalwar, S. P.; Dhoble, S. J.; Kumar, Animesh

    2012-05-01

    In this study, Li2BPO5 doped with Cu and that co-doped with Mg are synthesized by the wet chemical technique and exposed to γ rays of 60Co to determine their thermoluminescence (TL) properties. The X-ray diffraction technique shows the crystalline nature of the prepared material. The photoluminescence (PL) emission spectra of Li2BPO5:Cu phosphor show the strong prominent peak at 368 nm in the violet region of the visible spectrum due to the transition of 3d94s1 ↔ 3d10 of monovalent copper ion. The PL emission of Li2BPO5:Cu is enhanced by the addition of Mg. The TL glow curves of γ-irradiated Li2BPO5:Cu sample show one glow peak at 143°C, indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak of Li2BPO5:Cu are calculated using the glow curve shape (Chen's) method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. A linear TL response is observed in Li2BPO5:Cu in a long span of exposures. The sensitivity of Li2BPO5:Cu sample is observed to be 7.8 times that of (TLD-100) LiF:Mg, Ti.

  1. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

    PubMed

    DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter

    2013-04-01

    Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.

  2. The safest parameters for FUS-induced blood-brain barrier opening without effects on the opening volume

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Olumolade, Yemi; Wang, Shutao; Wu, Shih-Ying; Konofagou, Elisa E.

    2012-11-01

    Acoustic cavitation has been identified as the main physical mechanism for the focused ultrasound (FUS) induced blood-brain barrier (BBB) opening. In this paper, the mechanism of stable cavitation (SC) and inertial cavitation (IC) responsible for BBB opening was investigated. Thirty-three (n=33) mice were intravenously injected with bubbles of 4-5 μm in diameter. The right hippocampus was then sonicated using focused 1.5-MHz ultrasound and three different studies were carried out. First, pulse lengths (PLs) of 0.1, 0.5, 2, and 5 ms at 0.18- MPa peak rarefactional pressure with 5-Hz pulse repetition frequency (PRF) and 5-minute duration were used to identify the threshold of PL using SC. Second, the effects of the duty cycle and exposure time were investigated. Third, the BBB opening size was compared between the SC and the IC. In the case of IC-induced BBB opening, a burst sequence (3-cycles PL; 5-Hz burst repetition frequency (BRF); 30 s duration) at 0.45 MPa was applied. Passive cavitation detection was performed with each sonication to detect whether a broadband response was obtained, i.e., if IC occurred, during BBB opening. The properties of BBB opening were measured through MRI. The threshold of PL for BBB opening was identified between 0.1 and 0.5 ms using SC, but the BBB can be opened in few cycles using IC. The BBB opening volume and normalized intensity increased with the PL, but reached saturation when the PL was above 2 ms. Once the PL threshold was reached, the same exposure time induced a similar BBB opening volume, but longer sonication duration induced higher MR intensity. The duty cycle was found not to play an important role on the BBB opening. Comparable BBB opening volume (20-25 mm3) could be reached between long PL (7500 cycles, i.e., 5 ms) at 0.18 MPa and 3 cycles at 0.45 MPa. 3-kDa fluorescently tagged dextran may be able to diffuse to the parenchyma after IC-induced BBB opening at 0.45 MPa but not after SC-induced BBB opening at 0.18 MPa.

  3. Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays.

    PubMed

    Dasgupta, Purnendu K

    2008-12-05

    Resolution of overlapped chromatographic peaks is generally accomplished by modeling the peaks as Gaussian or modified Gaussian functions. It is possible, even preferable, to use actual single analyte input responses for this purpose and a nonlinear least squares minimization routine such as that provided by Microsoft Excel Solver can then provide the resolution. In practice, the quality of the results obtained varies greatly due to small shifts in retention time. I show here that such deconvolution can be considerably improved if one or more of the response arrays are iteratively shifted in time.

  4. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

    PubMed

    Ormsbee, Michael J; Gorman, Katherine A; Miller, Elizabeth A; Baur, Daniel A; Eckel, Lisa A; Contreras, Robert J; Panton, Lynn B; Spicer, Maria T

    2016-07-01

    The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.

  5. Induced structural defects in Ti-doped ZnO and its two-photon-excitation

    NASA Astrophysics Data System (ADS)

    Martínez Julca, Milton A.; Rivera, Ivonnemary; Santillan Mercado, Jaime; Sierra, Heidy; Perales-Pérez, Oscar

    2016-03-01

    ZnO is a well-known luminescent material that reacts with light to generate free radicals enabling its use in cancer treatment by Photodynamic Therapy (PDT). Unfortunately, up to know, the photo-excitation of ZnO-based materials' requires excitation with ultraviolet light, which limits their biomedical applications. In this regard, this work investigates the effect of Ti species incorporation into the lattice of ZnO nanoparticles (NPs) with the aim of improving the corresponding optical properties and enabling the two-photoexcitation with 690nm-light (near infrared light). A modified polyol-based route was used to synthesize pure and Ti-doped (9% at.) ZnO NPs. X-ray diffraction confirmed the formation of ZnO-wurtzite whereas Scanning Electron Microscopy confirmed the formation of monodispersed 100-nm NPs. Raman Spectroscopy measurements evidenced the presence of zinc interstitials (Zni) and oxygen vacancies (VO) in the host oxide strcuture. Asynthesized NPs were excited using the technique of two-photon fluorescence microscopy (TPFM). The photoluminescence (PL) spectra generated from the analysis of TPFM images revealed a high emission peak presence in the green region (555 nm) that was assigned to VO. Also, a weak but noticeable band at 420 nm was detected, which is attributed to electron transition from the shallow donor level of Zni to the valence band. These PL transitions will favor triplet states formation necessary to yield cytotoxic reactive oxygen species. Furthermore, the presence of the PL peaks confirmed the Ti-ZnO NPs capacity to be excited by 690-nm light, thus, opening new possibilities for this NPs to be used in lightinduced bio-medical applications.

  6. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  7. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hssen; Férid, Mokhtar; Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn

    Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimesmore » were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I 13/2 → ⁴I 15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I 13/2 → ⁴I 15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.« less

  9. Effect of two oral doses of 17beta-estradiol associated with dydrogesterone on thrombin generation in healthy menopausal women: a randomized double-blind placebo-controlled study.

    PubMed

    Rousseau, Alexandra; Robert, Annie; Gerotziafas, Grigoris; Torchin, Dahlia; Zannad, Faiez; Lacut, Karine; Libersa, Christian; Dasque, Eric; Démolis, Jean-Louis; Elalamy, Ismail; Simon, Tabassome

    2010-04-01

    Oral hormone therapy is associated with an increased risk of venous thrombosis. Drug agencies recommend the use of the lowest efficient dose to treat menopausal symptoms for a better risk/ratio profile, although this profile has not been totally investigated yet. The aim of the study was to compare the effect of the standard dose of 17beta-estradiol to a lower one on thrombin generation (TG). In a 2-month study, healthy menopausal women were randomized to receive daily 1mg or 2 mg of 17beta-estradiol (E1, n = 24 and E2, n = 26; respectively) with 10 mg dydrogesterone or placebo (PL, n = 22). Plasma levels factors VII, X, VIII and II were assessed before and after treatment as well as Tissue factor triggered TG, which allows the investigation of the different phases of coagulation process. The peak of thrombin was higher in hormone therapy groups (E1: 42.39 +/- 50.23 nm, E2: 31.08 +/- 85.86 nm vs. 10.52 +/- 40.63 nm in PL, P = 0.002 and P = 0.01). Time to reach the peak was also shortened (PL: 0.26 +/- 0.69 min vs. E1: -0.26 +/- 0.80 min, E2: -0.55 +/- 0.79 min, P <10(-3) for both comparisons) and mean rate index of the propagation phase of TG was significantly increased. Among the studied clotting factors, only the levels of FVII were significantly increased after treatment administration. The two doses of 17beta-estradiol induced in a similar degree an acceleration of the initiation and propagation phase of tissue factor triggered thrombin generation and a significant increase of FVII coagulant activity.

  10. NH3-free growth of GaN nanostructure on n-Si (1 1 1) substrate using a conventional thermal evaporation technique

    NASA Astrophysics Data System (ADS)

    Saron, K. M. A.; Hashim, M. R.; Farrukh, M. A.

    2012-06-01

    We have investigated the influence of carrier gas on grown gallium nitride (GaN) epitaxial layers deposited on n-Si (1 1 1) by a physical vapour deposition (PVD) via thermal evaporation of GaN powder at 1150 °C. The GaN nanostructures were grown at a temperature of 1050 °C for 60 min under various gases (N2, H2 mixed with N2, and Ar2) with absence of NH3. The morphology, structure, and optical properties (SEM) images showed that the morphology of GaN displayed various shapes of nanostructured depending on the type of carrier gas. X-ray diffraction (XRD) pattern showed that the GaN polycrystalline reveals a wurtzite-hexagonal structure with [0 0 1] crystal orientation. Raman spectra exhibited a red shift in peaks of E2 (high) as a result of tensile stress. Photoluminescence (PL) measurements showed two band emissions aside from the UV emission. The ultraviolet band gap of GaN nanostructure displayed a red shift as compared with the bulk GaN; this might be attributed to an increase in the defect and stress present in the GaN nanostructure. In addition, the observed blue and green-yellow emissions indicated defects due to the N vacancy and C impurity of the supplied gas. These results clearly indicated that the carrier gas, similar to the growth temperature, is one of the important parameters to control the quality of thermal evaporation (TE)-GaN epilayers.

  11. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4

    NASA Astrophysics Data System (ADS)

    Yangui, A.; Pillet, S.; Mlayah, A.; Lusson, A.; Bouchez, G.; Triki, S.; Abid, Y.; Boukheddaden, K.

    2015-12-01

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ˜138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ˜130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.

  12. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4].

    PubMed

    Yangui, A; Pillet, S; Mlayah, A; Lusson, A; Bouchez, G; Triki, S; Abid, Y; Boukheddaden, K

    2015-12-14

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.

  13. Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu+- and Ag+-Doped CdSe Nanocrystals.

    PubMed

    Nelson, Heidi D; Hinterding, Stijn O M; Fainblat, Rachel; Creutz, Sidney E; Li, Xiaosong; Gamelin, Daniel R

    2017-05-10

    Mid-gap luminescence in copper (Cu + )-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag + )-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag + and Cu + ionization energies (∼1.5 eV), which should make hole trapping by Ag + highly unfavorable. Here, Ag + -doped CdSe NCs (Ag + :CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag + :CdSe and Cu + :CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu + :CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu + to Cu 2+ , in Ag + :CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se 2- ligands, and Ag + is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu + to Ag + . The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe 4 ] dopant clusters (M = Ag + , Cu + ). These findings reconcile the similar spectroscopies of Ag + - and Cu + -doped semiconductor NCs with the vastly different ionization potentials of their Ag + and Cu + dopants.

  14. Prompt isothermal decay properties of the Sr4Al14O25 co-doped with Eu2+ and Dy3+ persistent luminescent phosphor

    NASA Astrophysics Data System (ADS)

    Asal, Eren Karsu; Polymeris, George S.; Gultekin, Serdar; Kitis, George

    2018-06-01

    Thermoluminescence (TL) techniques are very useful in the research of the persistent Luminescence (PL) phosphors research. It gives information about the existence of energy levels within the forbidden band, its activation energy, kinetic order, lifetime etc. The TL glow curve of Sr4Al14O25 :Eu2+,Dy3+ persistent phosphor, consists of two well separated glow peaks. The TL techniques used to evaluate activation energy were the initial rise, prompt isothermal decay (PID) of TL of each peak at elevated temperatures and the glow - curve fitting. The behavior of the PID curves of the two peak is very different. According to the results of the PID procedure and the subsequent data analysis it is suggested that the mechanism behind the low temperature peak is a delocalized transition. On the other hand the mechanism behind the high temperature peak is localized transition involving a tunneling recombination between electron trap and luminescence center.

  15. Excited states of neutral donor bound excitons in GaN

    NASA Astrophysics Data System (ADS)

    Callsen, G.; Kure, T.; Wagner, M. R.; Butté, R.; Grandjean, N.

    2018-06-01

    We investigate the excited states of a neutral donor bound exciton (D0X) in bulk GaN by means of high-resolution, polychromatic photoluminescence excitation (PLE) spectroscopy. The optically most prominent donor in our sample is silicon accompanied by only a minor contribution of oxygen—the key for an unambiguous assignment of excited states. Consequently, we can observe a multitude of Si0X-related excitation channels with linewidths down to 200 μeV. Two groups of excitation channels are identified, belonging either to rotational-vibrational or electronic excited states of the hole in the Si0X complex. Such identification is achieved by modeling the excited states based on the equations of motion for a Kratzer potential, taking into account the particularly large anisotropy of effective hole masses in GaN. Furthermore, several ground- and excited states of the exciton-polaritons and the dominant bound exciton are observed in the photoluminescence (PL) and PLE spectra, facilitating an estimate of the associated complex binding energies. Our data clearly show that great care must be taken if only PL spectra of D0X centers in GaN are analyzed. Every PL feature we observe at higher emission energies with regard to the Si0X ground state corresponds to an excited state. Hence, any unambiguous peak identification renders PLE spectra highly valuable, as important spectral features are obscured in common PL spectra. Here, GaN represents a particular case among the wide-bandgap, wurtzite semiconductors, as comparably low localization energies for common D0X centers are usually paired with large emission linewidths and the prominent optical signature of exciton-polaritons, making the sole analysis of PL spectra a challenging task.

  16. Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen.

    PubMed

    Jin, Hui; Gui, Rijun; Gong, Jun; Huang, Wenxue

    2017-06-15

    In this article, Ag 2 S quantum dots (QDs) were prepared by a facile aqueous synthesis method, using thiourea as a new sulfur precursor. Based on electrostatic interactions, 5-fluorouracil (5-Fu) was combined with the aptamer of CA125 antigen to fabricate aptamer/5-Fu complex. The surface of as-prepared Ag 2 S QDs was modified with polyethylenimine, followed by combination with the aptamer/5-Fu complex to form Ag 2 S QDs/aptamer/5-Fu hybrids. During the combination of Ag 2 S QDs with aptamer/5-Fu complex, near-infrared (NIR) photoluminescence (PL) of QDs (peaked at 850nm) was markedly reduced under excitation at 625nm, attributed to photo-induced electron transfer from QDs to 5-Fu. However, the addition of CA125 induced obvious NIR PL recovery, which was ascribed to the strong binding affinity of CA125 with its aptamer, and the separation of aptamer/5-Fu complex from the surface of QDs. Hence, the Ag 2 S QDs/aptamer/5-Fu hybrids were developed as a novel NIR PL turn-on probe of CA125. In the concentration range of [CA125] from 0.1 to 10 6 ngmL -1 , there were a good linear relationship between NIR PL intensities of Ag 2 S QDs and Log[CA125], and a low limit of detection of 0.07ngmL -1 . Experimental results revealed the highly selective and sensitive NIR PL responses of this probe to CA125, over other potential interferences. In real human body fluids, this probe also exhibited superior analytical performance, together with high detection recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chih-Yi; Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated andmore » passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.« less

  18. Optical Absorption and Visible Photoluminescence from Thin Films of Silicon Phthalocyanine Derivatives

    PubMed Central

    Rodríguez Gómez, Arturo; Moises Sánchez-Hernández, Carlos; Fleitman-Levin, Ilán; Arenas-Alatorre, Jesús; Carlos Alonso-Huitrón, Juan; Elena Sánchez Vergara, María

    2014-01-01

    The interest of microelectronics industry in new organic compounds for the manufacture of luminescent devices has increased substantially in the last decade. In this paper, we carried out a study of the usage feasibility of three organic bidentate ligands (2,6-dihydroxyanthraquinone, anthraflavic acid and potassium derivative salt of anthraflavic acid) for the synthesis of an organic semiconductor based in silicon phthalocyanines (SiPcs). We report the visible photoluminescence (PL) at room temperature obtained from thermal-evaporated thin films of these new materials. The surface morphology of these films was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM indicated that the thermal evaporation technique is an excellent resource in order to obtain low thin film roughness when depositing these kinds of compounds. Fourier transform infrared spectroscopy (FTIR) spectroscopy was employed to investigate possible changes in the intra-molecular bonds and to identify any evidence of crystallinity in the powder compounds and in the thin films after their deposition. FTIR showed that there was not any important change in the samples after the thermal deposition. The absorption coefficient (α) in the absorption region reveals non-direct transitions. Furthermore, the PL of all the investigated samples were observed with the naked eye in a bright background and also measured by a spectrofluorometer. The normalized PL spectra showed a Stokes shift ≈ 0.6 eV in two of our three samples, and no PL emission in the last one. Those results indicate that the Vis PL comes from a recombination of charge carriers between conduction band and valence band preceded by a non-radiative relaxation in the conduction band tails. PMID:28788200

  19. Chemically and biologically-mediated fertilizing value of manure-derived biochar.

    PubMed

    Subedi, R; Taupe, N; Ikoyi, I; Bertora, C; Zavattaro, L; Schmalenberger, A; Leahy, J J; Grignani, C

    2016-04-15

    This study evaluates the potential of manure-derived biochars in promoting plant growth and enhancing soil chemical and biological properties during a 150day pot experiment. Biochars from pyrolysis of poultry litter (PL) and swine manure (SM) at 400 and 600°C, and a commonly available wood chip (WC) biochar produced at high temperature (1000°C) were incorporated to silt-loam (SL) and sandy (SY) soils on a 2% dry soil weight basis. Ryegrass was sown and moisture was adjusted to 60% water filled pore space (WFPS). The PL400 and SM400 biochars significantly increased (p<0.05) shoot dry matter (DM) yields (SL soil) and enhanced nitrogen (N), phosphorus (P) and potassium (K) uptake by the plants in both soils, compared to the Control. All biochars significantly increased the soil carbon (C) contents compared to the Control. Total N contents were significantly greater for PL400 and PL600 treatments in both soils. The dehydrogenase activity (DA) significantly increased for PL400 and SM400 treatments and was positively correlated with the volatile matter (VM) contents of the biochars, while β-glucosidase activity (GA) decreased for the same treatments in both soils. All biochars significantly shifted (p≤0.05) the bacterial community structure compared to the Control. This study suggests that pyrolysis of animal manures can produce a biochar that acts as both soil amendment and an organic fertilizer as proven by increased NPK uptake, positive liming effect and high soil nutrient availability, while WC biochar could work only in combination with fertilizers (organic as well as mineral). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    PubMed

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  1. Cross-shift peak expiratory flow changes are unassociated with respirable coal dust exposure among South African coal miners.

    PubMed

    Naidoo, Rajen N; Robins, Thomas G; Becklake, Margaret; Seixas, Noah; Thompson, Mary Lou

    2007-12-01

    The objectives of this study were to determine whether cross-shift changes in peak expiratory flow rate (PEFR) were related to respirable dust exposure in South African coalminers. Fifty workers were randomly selected from a cohort of 684 miners from 3 bituminous coalmines in Mpumalanga, South Africa. Peak expiratory efforts were measured prior to the commencement of the shift, and at the end of the shift on at least two occasions separated by at least 2 weeks, with full shift personal dust sampling being conducted on each occasion for each participant. Interviews were conducted, work histories were obtained and cumulative exposure estimates were constructed. Regression models examined the associations of cross-shift changes in PEFR with current and cumulative exposure, controlling for shift, smoking and past history of tuberculosis. There were marginal differences in cross-shift PEFR (ranging from 0.1 to 2 L/min). Linear regression analyses showed no association between cross-shift change in PEFR and current or cumulative exposure. The specific shift worked by participants in the study showed no effect. Our study showed no association between current respirable dust exposure and cross-shift changes in PEFR. There was a non-significant protective effect of cumulative dust exposure on the outcome, suggesting the presence of a "healthy worker survivor effect" in this data.

  2. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    NASA Astrophysics Data System (ADS)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  3. Interfacial exciplex formation in bilayers of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Nobuyasu, R. S.; Araujo, K. A. S.; Cury, L. A.; Jarrosson, T.; Serein-Spirau, F.; Lère-Porte, J.-P.; Dias, F. B.; Monkman, A. P.

    2013-10-01

    The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

  4. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H. J.

    2008-05-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. The obtained nanopowder was characterised by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range after thermal treatment at 500 °C in air. The energy position of the obtained PL band depends on the wavelength excitation and presents a blue shift with measurement temperature increase. Different possible attributions of this emission band will be discussed.

  5. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography

    PubMed Central

    Wang, Sheng-Wen; Hong, Kuo-Bin; Tsai, Yu-Lin; Teng, Chu-Hsiang; Tzou, An-Jye; Chu, You-Chen; Lee, Po-Tsung; Ku, Pei-Cheng; Lin, Chien-Chung; Kuo, Hao-Chung

    2017-01-01

    In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch induced strain inside the active region was relaxed when the wall width is reduced. Through the simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation results not only revealed the exact distribution of strain but also predicted the trend of wavelength-shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer were demonstrated. PMID:28256529

  6. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    PubMed Central

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations [5]. PMID:24388851

  7. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    PubMed

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Three-Photon Luminescence of Gold Nanorods Excited by 1040 nm Femtosecond Laser for High Contrast Tissue and In Vivo Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Shaowei; Zhao, Xinyuan; Zhang, Hequn; Cai, Fuhong; Qian, Jun

    2016-01-01

    Gold Nanorods (GNRs) with tunable aspect ratios can strongly absorb and scatter light in the NIR region due to their localized surface plasmon resonance (LSPR) property, and have been demonstrated to exhibit strong plasmon enhanced multiphoton luminescence (MPL) with brightness many times stronger than the conventional organic chromophores. In this study, we synthesized GNRs with longitudinal LSPR peak at 1036 nm to match our home-built light source 1040 nm femtosecond laser, which locates in the “optical window” where the tissue absorbs relatively little light. PEGylated GNRs with great biocompatibility were intravenously injected through the tail vein into mice. Excited by 1040 nm laser, the GNRs exhibit bright three-photon luminescence (3PL) signals while circulating in the blood vessels. The use of GNRs as bright contrast agents for 3PL imaging of mouse ear blood vessels in vivo was demonstrated. And GNRs targeted in tissues can be excited by 1040 nm laser and could be clearly visualized with no autofluorescence background. These results indicated that 3PL of GNRs is very promising for deep in vivo bioimaging and assessing the distribution of GNRs in tissues with high contrast.

  9. Photoluminescence of Co: ZnNiO and Zr: ZnNiO nanocomposites capped with biodegradable polymer poly (2-ethyl-2-oxazoline)

    NASA Astrophysics Data System (ADS)

    John, Sam; George, James Baben; Joseph, Abraham

    2018-05-01

    The optical properties of the semiconducting nanomaterials has a wide variety of applications in the biological and industrial fields, which include the synthesis of UV laser, light emitting diodes, solar cells, gas sensors, piezoelectric transducers etc. Among the various types of optical properties, luminescence especially photoluminescence (PL) of metal oxides are more prominently studied. This is because PL spectrum is an effective way to investigate the electronic structure, optical and photochemical properties of semiconductor materials which deciphers information such as surface oxygen vacancies, defects, efficiency of charge carrier trapping, immigration, transfer etc. To overcome the drawbacks in luminescence studies of metal oxide nanomaterials, polymer technology has also been incorporated. The scientists found that the doping of some elements into the polymer capped ZnO nanocomposites enhanced the luminescence properties of the compound. In the current study, we are investigating the photoluminescence properties of ZnO nanocomposites capped with a biodegradable polymer poly (2-ethyl 2-oxazoline) and doped with the elements Cobalt and Zirconium. We obtained many strong fluorescence peaks in the visible and UV regions in the PL spectrum and UV absorption spectroscopy.

  10. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  11. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-07-01

    SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.

  12. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Jaques, R.C.

    1998-01-01

    Dispersed kerogen of the Woodford-Chattanooga and Atoka Formations from the subsurface of the Arkoma Basin show a wide range of thermal maturities (0.38 to 6.1% R(o)) indicating thermal conditions ranging from diagenesis to incipient rock metamorphism. Raman spectral analysis reveals systematic changes of both the first- and second-order spectrum with increasing thermal maturity. These changes include a pronounced increase in the D/O peak height ratio accompanied by a narrowing of the D peak, a gradual decrease in the D/O peak width ratio, and a shift of both peaks toward higher wave numbers. Second-order Raman peaks, though less intensive, also show systematic peak shifting as a function of R(o). These empirical results underscore the high potential of Raman spectrometry as a fast and reliable geothermometer of mature to supermature hydrocarbon source rocks, and as an indicator of thermal maturity levels within the anchizone.Dispersed kerogen of the Woodford-Chattanooga and Atoka Formations from the subsurface of the Arkoma Basin show a wide range of thermal maturities (0.38 to 6.1% Ro) indicating thermal conditions ranging from diagenesis to incipient rock metamorphism. Raman spectral analysis reveals systematic changes of both the first- and second-order spectrum with increasing thermal maturity. These changes include a pronounced increase in the D/O peak height ratio accompanied by a narrowing of the D peak, a gradual decrease in the D/O peak width ratio, and a shift of both peaks toward higher wave numbers. Second-order Raman peaks, though less intensive, also show systematic peak shifting as a function of Ro. These empirical results underscore the high potential of Raman spectrometry as a fast and reliable geothermometer of mature to supermature hydrocarbon source rocks, and as an indicator of thermal maturity levels within the anchizone.

  13. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Ryo, E-mail: rsasai@riko.shimane-u.ac.jp; Shinomura, Hisashi

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr{sub 4}{sup 2-} layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization.more » Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: Black-Right-Pointing-Pointer PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. Black-Right-Pointing-Pointer Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. Black-Right-Pointing-Pointer PL property of the present hybrid could also be varied by photoisomerization.« less

  14. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak atmore » 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.« less

  15. Compositional inhomogeneities in AlGaN thin films grown by molecular beam epitaxy: Effect on MSM UV photodetectors

    NASA Astrophysics Data System (ADS)

    Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, A.

    2016-10-01

    Ultraviolet (UV) MSM photodetectors (PD) based on AlGaN alloys find many applications, including flame sensing. In this work we investigate the dependence of AlGaN based photodetectors grown by MBE on the kinetics of growth. MSM photodetectors were fabricated in the interdigitated configuration with Ni/Au contacts having 400 μm finger length and 10 μm finger spacing. Bulk Al0.4Ga0.6N films were grown on to sapphire substrates using an AlN buffer layer. A series of PDs were developed using the Al0.4Ga0.6N films grown under different group III/V flux ratios ranging from stoichiometric conditions to much higher than unity. Upon testing, it was observed that the otherwise identical photodetectors show significant decrease in dark current as AlGaN deposition conditions change from stoichiometric to excess group III, due to reduction of unintentional incorporation of oxygen-related point defects. In addition, the intensity and spectral dependence of the photocurrent also change, showing an extended low energy tail for the former and a sharp and prominent excitonic peak for the latter. The optical transmission measurements indicate a variation in Urbach energy with deposition conditions of the AlGaN films, although they have the same absorption edge. While all samples show a single red-shifted photoluminescence peak at room temperature, upon cooling, multiple higher energy peaks appear in the photoluminescence (PL) spectra, indicating that the alloys contain complex compositional inhomogeneities. Two types of alloy fluctuations, determined by the growth conditions, have been identified that modulate the optoelectronic properties of AlGaN by changing the spatial localization of excitons, thereby altering their stability. We identified that growth under stoichiometric conditions leads to compositional inhomogeneities that play a detrimental role in the operation of MSM photodetectors, which reduces the sharpness of the sensitivity edge, while growth under excess metal conditions enhances it.

  16. PECVD based silicon oxynitride thin films for nano photonic on chip interconnects applications.

    PubMed

    Sharma, Satinder K; Barthwal, Sumit; Singh, Vikram; Kumar, Anuj; Dwivedi, Prabhat K; Prasad, B; Kumar, Dinesh

    2013-01-01

    Thin silicon oxynitride (SiO(x)N(y)) films were deposited by low temperature (~300°C) plasma enhanced chemical vapour deposition (PECVD), using SiH(4), N(2)O, NH(3) precursor of the flow rate 25, 100, 30 sccm and subjected to the post deposition annealing (PDA) treatment at 400°C and 600°C for nano optical/photonics on chip interconnects applications. AFM result reveals the variation of roughness from 60.9 Å to 23.4 Å after PDA treatment with respect to the as-deposited films, favourable surface topography for integrated waveguide applications. A model of decrease in island height with the effect of PDA treatment is proposed in support of AFM results. Raman spectroscopy and FTIR measurements are performed in order to define the change in crystallite and chemical bonding of as-deposited as well as PDA treated samples. These outcomes endorsed to the densification of SiO(x)N(y) thin films, due to decrease in Si-N and Si-O bonds strain, as well the O-H, N-H bonds with in oxynitride network. The increase in refractive index and PL intensity of as deposited SiO(x)N(y) thin films to the PDA treated films at 400°C and 600°C are observed. The significant shift of PL spectra peak positions indicate the change in cluster size as the result of PDA treatment, which influence the optical properties of thin films. It might be due to out diffusion of hydrogen containing species from silicon oxynitride films after PDA treatment. In this way, the structural and optical, feasibility of SiO(x)N(y) films are demonstrated in order to obtain high quality thin films for nano optical/photonics on chip interconnects applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Combined Dietary Nitrate and Exercise Intervention in Peripheral Artery Disease: Protocol Rationale and Design

    PubMed Central

    Woessner, Mary N; VanBruggen, Mitch D; Pieper, Carl F; O'Reilly, Erin K; Kraus, William E

    2017-01-01

    Background Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population. Objective The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection. Methods A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session. Results Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered—EX+BR, n=11; EX+PL, n=13—to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large. Conclusions Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC. Trial Registration ClinicalTrials.gov NCT01684930; https://clinicaltrials.gov/ct2/show/NCT01684930 (Archived by WebCite at http://www.webcitation.org/6raXFyEcP) PMID:28974486

  18. XPS investigation of the photon degradation of Znq2 green organic phosphor

    NASA Astrophysics Data System (ADS)

    Duvenhage, Mart-Mari; Terblans, Jacobus J.; Ntwaeaborwa, Martin; Swart, Hendrik C.

    2016-01-01

    By substituting Al with Zn to form bis-(8-hydroxyquinoline) zinc (Znq2), the device performance of organic light emitting diodes (OLED) can be improved. Znq2 also has a more closed packed crystal structure that makes it less vulnerable to reactions with atmospheric oxygen and moisture leading to more stable and longer lasting devices. In this work the effect of photon degradation of Znq2 in air was investigated. Znq2 powder was synthesized using a co-precipitation method and recrystallized in acetone. The structure of the sample was confirmed to be Znq2·2H2O by X-ray diffraction. The photoluminescence (PL) emission data also confirmed that the Znq2·2H2O crystal form of Znq2 was present. To study the photon degradation, the sample was irradiated with a UV lamp for 400 h. The emission data was collected and the change in PL intensity with time was monitored. X-ray photoelectron spectroscopy was performed on the as prepared and photon-degraded samples. The Zn2p and N1s peaks showed no change after degradation. The O1s and C1s peaks confirmed that the phenoxide ring ruptured and that C=O and C-O species had formed.

  19. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  20. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    NASA Astrophysics Data System (ADS)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  1. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  2. Effects of Preventative Ankle Taping on Planned Change-of-Direction and Reactive Agility Performance and Ankle Muscle Activity in Basketballers

    PubMed Central

    Jeffriess, Matthew D.; Schultz, Adrian B.; McGann, Tye S.; Callaghan, Samuel J.; Lockie, Robert G.

    2015-01-01

    This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms) with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition) of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL), peroneus brevis (PB), and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG). Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01). Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02). There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers. Key points Ankle taping using the modified subtalar sling will not affect planned change-of-direction or reactive agility performance as measured by the Y-shaped agility test in healthy male basketball players. Ankle taping using the modified subtalar sling will also generally not affect the activity of the muscles about the ankle. There was some indication for reductions in the activity of the PL in the inside leg of certain cuts. The tape used for the modified subtalar sling may have supported the line of action of the PL, which could reduce the kinetic demand placed on this muscle, and provide a potential fatigue-reducing component for cutting actions. The subtalar sling taping of the ankle in healthy basketball players did not have any adverse effects on the muscle activity of the ankle-foot complex during planned change-of-direction or reactive agility performance tasks. PMID:26664285

  3. Quantum confined Stark effect in organic fluorophores.

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Anderson, John; Tepper, Gary; Bandyopadhyay, Supriyo; Nayak, Saroj

    2008-03-01

    Fluorescent molecules have widely been used to detect and visualize structure and processes in biological samples due to its extraordinary sensitivity. However, the emission spectra of flurophores are usually broad and the accurate identification is difficult. Recently, experiments show that energy shifts by Stark effect can be used to aid the identification of organic molecules [1]. Stark effect originates from the shifting/splitting of energy levels when a molecule is under an external electric field, which shows a shift/splitting of a peak in absorption/emission spectra. The size of the shift depends on the magnitude of the external field and the molecular structure. In this talk we will show our theoretical study of the peak shifts on emission spectra for a series of organic fluorophores such as tyrosine, tryptophan, rhodamine123 and coumarin314 using density functional theory. We find that a particular peak shift is determined by the local dipole moments of molecular orbitals rather than the global dipole moment of the molecule. These molecular-specific shifts in emission spectra may enable to improve molecular identification in biosensors. Our results will be compared with experimental data. [1]Unpublished, S. Sarkar, B. Kanchibotla, S. Bandyopadhyay, G. Tepper, J. Edwards, J. Anderson, and R. Kessick.

  4. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    NASA Astrophysics Data System (ADS)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  5. Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes.

    PubMed

    Alvi, Naveed Ul Hassan; Hussain, Sajjad; Jensen, Jen; Nur, Omer; Willander, Magnus

    2011-12-12

    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation.

  6. Understanding the role of Si doping on surface charge and optical properties: Photoluminescence study of intrinsic and Si-doped InN nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.

    2012-06-01

    In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.

  7. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].

    PubMed

    Duan, Hong-Tao; Ma, Rong-Hua; Zhang, Yuan-Zhi; Zhang, Bai

    2009-01-01

    Hyperspectral remote sensing offers the potential to detect water quality variables such as Chl-a by using narrow spectral channels of less than 10 nm, which could otherwise be masked by broadband satellites such as Landsat TM. Fluorescence peak of the red region is very important for the remote sensing of inland and coastal waters, which is unique to phytoplankton Chl-a that takes place in this region. Based on in situ water sampling and field spectral measurement from 2004 to 2006 in Nanhu Lake, the features of the spectral reflectance were analyzed in detail with peak position shift. The results showed: An exponential fitting model, peak position = a(Chl-a)b, was developed between chlorophyll-a concentration and fluorescence peak shift, where a varies between 686.11 and 686.29, while b between 0.0062 and 0.0065. It was found that the better the spectral resolution, the higher the precision of the model. Except that, the average of peak shift showed a high correlation with the average of different Chl-a grades, and the determination coefficient (R2) was higher than 0.81. It contributed significantly to the increase in the accuracy of the derivation of chlorophyll values from remote sensing data in Nanhu Lake. There is satisfactory correspondence between hyperspectral models and chl-a concentration, therefore, it is possible to monitor the water quality of Nanhu lake throngh the hyperspetral remote sensing data.

  8. Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode.

    PubMed

    Chen, Chih-Yen; Hsieh, Chieh; Liao, Che-Hao; Chung, Wei-Lun; Chen, Hao-Tsung; Cao, Wenyu; Chang, Wen-Ming; Chen, Horng-Shyang; Yao, Yu-Feng; Ting, Shao-Ying; Kiang, Yean-Woei; Yang, Chih-Chung C C; Hu, Xiaodong

    2012-05-07

    The counteraction between the increased carrier localization effect due to the change of composition nanostructure in the quantum wells (QWs), which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs due to the increased piezoelectric field, which is caused by the increased p-type layer thickness, when the p-type layer is grown at a high temperature on the InGaN/GaN QWs of a high-indium light-emitting diode (LED) is demonstrated. Temperature- and excitation power-dependent photoluminescence (PL) measurements are performed on three groups of sample, including 1) the samples with both effects of thermal annealing and increased p-type thickness, 2) those only with the similar thermal annealing process, and 3) those with increased overgrowth thickness and minimized thermal annealing effect. From the comparisons of emission wavelength, internal quantum efficiency (IQE), spectral shift with increasing PL excitation level, and calibrated activation energy of carrier localization between various samples in the three groups, one can clearly see the individual effects of thermal annealing and increased p-type layer thickness. The counteraction leads to increased IQE and blue-shifted emission spectrum with increasing p-type thickness when the thickness is below a certain value (20-nm p-AlGaN plus 60-nm p-GaN under our growth conditions). Beyond this thickness, the IQE value decreases and the emission spectrum red shifts with increasing p-type thickness.

  9. Phase-shift detection in a Fourier-transform method for temperature sensing using a tapered fiber microknot resonator.

    PubMed

    Larocque, Hugo; Lu, Ping; Bao, Xiaoyi

    2016-04-01

    Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542  rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.

  10. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.

    PubMed

    Yang, Yu; Fritzsching, Keith J; Hong, Mei

    2013-11-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.

  11. Assessment of the timing of daily peak streamflow during melt season in a snow dominated watershed

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that gauge-observed daily streamflow peak times (DPT) during spring snowmelt can exhibit distinct temporal shifts through the season. These shifts have been attributed to three processes that affect the timing of snowmelt arrival: 1) melt flux translation through the snow...

  12. Manipulating the alkali metal charge compensation and tungsten oxide to continuously enhance the red fluorescence in (Li,Na,K)Ca(Mo,W)O4:Eu3+ solid solution compounds

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Li, Jiaxin; Tian, Canxin; Wang, Zesong; Xie, Mubiao; Zou, Changwei; Sun, Guohuan; Kang, Fengwen

    2018-02-01

    When compared to other phosphors typically the blue and green phosphors, red phosphors, which can be used for white light-emitting diodes (wLEDs), always suffer from various problems such as higher cost, lower luminescence efficiency and bad thermal stability. And thus, great interests have been paid to how to enhance the red fluorescence intensity in the recent years. Here we report on a red-emitting solid solutions, (Li,Na,K)Ca(Mo,W)O4:Eu3+, which enable exhibiting continuous Eu3+ emission enhancement through manipulating the alkali metal ions and the relative content ratios between tungsten and molybdenum oxides. X-ray powder diffraction (XRD) has been employed to check the phase purity, and results show that all samples crystallize in a scheelite structure with space group of I41/a (No.88). A regular blue-shifting of XRD peaks, which indicates the increase of crystal plane spacing, appears as the alkali cationic radius increases from 0.92 Å (for Li), 1.18 Å (for Na) and to 1.38 Å (for K). Replacing Mo ion (0.41 Å) by W ion (0.42 Å) enables not only forming the solid solution compounds (Li,Na,K)Ca(Mo,W)O4:Eu3+, but also blue-shifting the XRD position. Similar to the XRD position shifting, our samples also exhibit the regular change in the photoluminescence (PL) spectra, in which the charge transfer (CT) band position as the alkali cationic radii increase from Li, Na and to K and further from Mo to W shows a continuous red-shifting behavior. As for the CT and Eu3+ intensity, our experimental results show that the alkali ion that corresponds to the maximum intensity is Li, and this intensity can be further enhanced by adding W. In coincidence with the change in the excitation spectral intensity, the continuous enhanced Eu3+ emission intensity can be observed up excitation at the CT band and Eu3+ lines. We have discussed the above CT band shifting and Eu3+ fluorescence enhancement and give a feasible mechanism profile that base on the energy transfer from CT band to Eu3+ dopant.

  13. Loading of free radicals on the functional graphene combined with liquid chromatography-tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants.

    PubMed

    Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju

    2013-11-13

    A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide radical scavenging capacity. The use of the free radical reaction screening method based on LC-PDA-ESI/APCI-MS/MS would provide a new approach for rapid detection and identification of radical-scavenging natural antioxidants from complex matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling.

    PubMed

    Bang, Seungho; Duong, Ngoc Thanh; Lee, Jubok; Cho, Yoo Hyun; Oh, Hye Min; Kim, Hyun; Yun, Seok Joon; Park, Chulho; Kwon, Min-Ki; Kim, Ja-Yeon; Kim, Jeongyong; Jeong, Mun Seok

    2018-04-11

    Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS 2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS 2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS 2 . Consequently, the overall photocurrent of the hybrid 1L-MoS 2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS 2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.

  15. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  16. Driving the photoluminescent and structural properties of X2-Y2SiO5 by varying the dopant Dy3+ concentration towards cool WLED applications

    NASA Astrophysics Data System (ADS)

    Ramakrishna, G.; Nagabhushana, H.; Hareesh, K.; Sunitha, D. V.

    2017-07-01

    Dy3+ doped Y2SiO5 nanophosphors were synthesized by solution combustion technique using Calotropis gigantean milk latex and NaCl as fuel and flux respectively. Powder X-ray diffraction (PXRD) confirmed the formation of monoclinic X2-phase Y2SiO5 belonging to the phase group C2/c. Fourier transform infrared spectroscopy (FTIR) shows characteristic metal-oxygen (Y-O) vibration band at 721 cm-1. Transmission electron microscopic (TEM) and Scanning electron microscopic (SEM) morphological feature exhibits non-uniform almost spherical shaped nanosized particles. The photoluminescence (PL) emission peaks, recorded at 388 nm, showed radiative emissions at 483, 575 and 636 nm respectively. Judd-Ofelt (JO) analysis was carried out to estimate the radiative (AR) properties, radiative life time (τR), branching ratio (βR) and stimulated emission crossection (σλp). The CIE and CCT was estimated using McCamy empirical formula. In the beginning, the CIE co-ordinate values were lying in the light blue region. However, with increase in Dy3+ concentration the values shifted towards white region. CCT value was found to be ∼6984 K. Therefore, Y2SiO5:Dy3+ (9 mol%) can be used for cool day light and WLED applications.

  17. Effects of Thickness of a Low-Temperature Buffer and Impurity Incorporation on the Characteristics of Nitrogen-polar GaN.

    PubMed

    Yang, Fann-Wei; Chen, Yu-Yu; Feng, Shih-Wei; Sun, Qian; Han, Jung

    2016-12-01

    In this study, effects of the thickness of a low temperature (LT) buffer and impurity incorporation on the characteristics of Nitrogen (N)-polar GaN are investigated. By using either a nitridation or thermal annealing step before the deposition of a LT buffer, three N-polar GaN samples with different thicknesses of LT buffer and different impurity incorporations are prepared. It is found that the sample with the thinnest LT buffer and a nitridation step proves to be the best in terms of a fewer impurity incorporations, strong PL intensity, fast mobility, small biaxial strain, and smooth surface. As the temperature increases at ~10 K, the apparent donor-acceptor-pair band is responsible for the decreasing integral intensity of the band-to-band emission peak. In addition, the thermal annealing of the sapphire substrates may cause more impurity incorporation around the HT-GaN/LT-GaN/sapphire interfacial regions, which in turn may result in a lower carrier mobility, larger biaxial strain, larger bandgap shift, and stronger yellow luminescence. By using a nitridation step, both a thinner LT buffer and less impurity incorporation are beneficial to obtaining a high quality N-polar GaN.

  18. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    PubMed Central

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-01-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827

  19. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    NASA Astrophysics Data System (ADS)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  20. Internal stress induced natural self-chemisorption of ZnO nanostructured films.

    PubMed

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-24

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

Top